OSDN Git Service

a34f58772022c9f40243e1d117a3473332bd76a2
[uclinux-h8/linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN))
51
52 /*
53  * Number of guaranteed r1bios in case of extreme VM load:
54  */
55 #define NR_RAID1_BIOS 256
56
57 /* when we get a read error on a read-only array, we redirect to another
58  * device without failing the first device, or trying to over-write to
59  * correct the read error.  To keep track of bad blocks on a per-bio
60  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
61  */
62 #define IO_BLOCKED ((struct bio *)1)
63 /* When we successfully write to a known bad-block, we need to remove the
64  * bad-block marking which must be done from process context.  So we record
65  * the success by setting devs[n].bio to IO_MADE_GOOD
66  */
67 #define IO_MADE_GOOD ((struct bio *)2)
68
69 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
70
71 /* When there are this many requests queue to be written by
72  * the raid1 thread, we become 'congested' to provide back-pressure
73  * for writeback.
74  */
75 static int max_queued_requests = 1024;
76
77 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
78 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
79
80 #define raid1_log(md, fmt, args...)                             \
81         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
82
83 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
84 {
85         struct pool_info *pi = data;
86         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
87
88         /* allocate a r1bio with room for raid_disks entries in the bios array */
89         return kzalloc(size, gfp_flags);
90 }
91
92 static void r1bio_pool_free(void *r1_bio, void *data)
93 {
94         kfree(r1_bio);
95 }
96
97 #define RESYNC_BLOCK_SIZE (64*1024)
98 #define RESYNC_DEPTH 32
99 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
100 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
101 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
102 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
103 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
104 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
105
106 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108         struct pool_info *pi = data;
109         struct r1bio *r1_bio;
110         struct bio *bio;
111         int need_pages;
112         int i, j;
113
114         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
115         if (!r1_bio)
116                 return NULL;
117
118         /*
119          * Allocate bios : 1 for reading, n-1 for writing
120          */
121         for (j = pi->raid_disks ; j-- ; ) {
122                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
123                 if (!bio)
124                         goto out_free_bio;
125                 r1_bio->bios[j] = bio;
126         }
127         /*
128          * Allocate RESYNC_PAGES data pages and attach them to
129          * the first bio.
130          * If this is a user-requested check/repair, allocate
131          * RESYNC_PAGES for each bio.
132          */
133         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
134                 need_pages = pi->raid_disks;
135         else
136                 need_pages = 1;
137         for (j = 0; j < need_pages; j++) {
138                 bio = r1_bio->bios[j];
139                 bio->bi_vcnt = RESYNC_PAGES;
140
141                 if (bio_alloc_pages(bio, gfp_flags))
142                         goto out_free_pages;
143         }
144         /* If not user-requests, copy the page pointers to all bios */
145         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
146                 for (i=0; i<RESYNC_PAGES ; i++)
147                         for (j=1; j<pi->raid_disks; j++)
148                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
149                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
150         }
151
152         r1_bio->master_bio = NULL;
153
154         return r1_bio;
155
156 out_free_pages:
157         while (--j >= 0)
158                 bio_free_pages(r1_bio->bios[j]);
159
160 out_free_bio:
161         while (++j < pi->raid_disks)
162                 bio_put(r1_bio->bios[j]);
163         r1bio_pool_free(r1_bio, data);
164         return NULL;
165 }
166
167 static void r1buf_pool_free(void *__r1_bio, void *data)
168 {
169         struct pool_info *pi = data;
170         int i,j;
171         struct r1bio *r1bio = __r1_bio;
172
173         for (i = 0; i < RESYNC_PAGES; i++)
174                 for (j = pi->raid_disks; j-- ;) {
175                         if (j == 0 ||
176                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
177                             r1bio->bios[0]->bi_io_vec[i].bv_page)
178                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
179                 }
180         for (i=0 ; i < pi->raid_disks; i++)
181                 bio_put(r1bio->bios[i]);
182
183         r1bio_pool_free(r1bio, data);
184 }
185
186 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
187 {
188         int i;
189
190         for (i = 0; i < conf->raid_disks * 2; i++) {
191                 struct bio **bio = r1_bio->bios + i;
192                 if (!BIO_SPECIAL(*bio))
193                         bio_put(*bio);
194                 *bio = NULL;
195         }
196 }
197
198 static void free_r1bio(struct r1bio *r1_bio)
199 {
200         struct r1conf *conf = r1_bio->mddev->private;
201
202         put_all_bios(conf, r1_bio);
203         mempool_free(r1_bio, conf->r1bio_pool);
204 }
205
206 static void put_buf(struct r1bio *r1_bio)
207 {
208         struct r1conf *conf = r1_bio->mddev->private;
209         sector_t sect = r1_bio->sector;
210         int i;
211
212         for (i = 0; i < conf->raid_disks * 2; i++) {
213                 struct bio *bio = r1_bio->bios[i];
214                 if (bio->bi_end_io)
215                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
216         }
217
218         mempool_free(r1_bio, conf->r1buf_pool);
219
220         lower_barrier(conf, sect);
221 }
222
223 static void reschedule_retry(struct r1bio *r1_bio)
224 {
225         unsigned long flags;
226         struct mddev *mddev = r1_bio->mddev;
227         struct r1conf *conf = mddev->private;
228         int idx;
229
230         idx = sector_to_idx(r1_bio->sector);
231         spin_lock_irqsave(&conf->device_lock, flags);
232         list_add(&r1_bio->retry_list, &conf->retry_list);
233         atomic_inc(&conf->nr_queued[idx]);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235
236         wake_up(&conf->wait_barrier);
237         md_wakeup_thread(mddev->thread);
238 }
239
240 /*
241  * raid_end_bio_io() is called when we have finished servicing a mirrored
242  * operation and are ready to return a success/failure code to the buffer
243  * cache layer.
244  */
245 static void call_bio_endio(struct r1bio *r1_bio)
246 {
247         struct bio *bio = r1_bio->master_bio;
248         int done;
249         struct r1conf *conf = r1_bio->mddev->private;
250         sector_t bi_sector = bio->bi_iter.bi_sector;
251
252         if (bio->bi_phys_segments) {
253                 unsigned long flags;
254                 spin_lock_irqsave(&conf->device_lock, flags);
255                 bio->bi_phys_segments--;
256                 done = (bio->bi_phys_segments == 0);
257                 spin_unlock_irqrestore(&conf->device_lock, flags);
258                 /*
259                  * make_request() might be waiting for
260                  * bi_phys_segments to decrease
261                  */
262                 wake_up(&conf->wait_barrier);
263         } else
264                 done = 1;
265
266         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
267                 bio->bi_error = -EIO;
268
269         if (done) {
270                 bio_endio(bio);
271                 /*
272                  * Wake up any possible resync thread that waits for the device
273                  * to go idle.
274                  */
275                 allow_barrier(conf, bi_sector);
276         }
277 }
278
279 static void raid_end_bio_io(struct r1bio *r1_bio)
280 {
281         struct bio *bio = r1_bio->master_bio;
282
283         /* if nobody has done the final endio yet, do it now */
284         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
285                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
286                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
287                          (unsigned long long) bio->bi_iter.bi_sector,
288                          (unsigned long long) bio_end_sector(bio) - 1);
289
290                 call_bio_endio(r1_bio);
291         }
292         free_r1bio(r1_bio);
293 }
294
295 /*
296  * Update disk head position estimator based on IRQ completion info.
297  */
298 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
299 {
300         struct r1conf *conf = r1_bio->mddev->private;
301
302         conf->mirrors[disk].head_position =
303                 r1_bio->sector + (r1_bio->sectors);
304 }
305
306 /*
307  * Find the disk number which triggered given bio
308  */
309 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
310 {
311         int mirror;
312         struct r1conf *conf = r1_bio->mddev->private;
313         int raid_disks = conf->raid_disks;
314
315         for (mirror = 0; mirror < raid_disks * 2; mirror++)
316                 if (r1_bio->bios[mirror] == bio)
317                         break;
318
319         BUG_ON(mirror == raid_disks * 2);
320         update_head_pos(mirror, r1_bio);
321
322         return mirror;
323 }
324
325 static void raid1_end_read_request(struct bio *bio)
326 {
327         int uptodate = !bio->bi_error;
328         struct r1bio *r1_bio = bio->bi_private;
329         struct r1conf *conf = r1_bio->mddev->private;
330         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
331
332         /*
333          * this branch is our 'one mirror IO has finished' event handler:
334          */
335         update_head_pos(r1_bio->read_disk, r1_bio);
336
337         if (uptodate)
338                 set_bit(R1BIO_Uptodate, &r1_bio->state);
339         else if (test_bit(FailFast, &rdev->flags) &&
340                  test_bit(R1BIO_FailFast, &r1_bio->state))
341                 /* This was a fail-fast read so we definitely
342                  * want to retry */
343                 ;
344         else {
345                 /* If all other devices have failed, we want to return
346                  * the error upwards rather than fail the last device.
347                  * Here we redefine "uptodate" to mean "Don't want to retry"
348                  */
349                 unsigned long flags;
350                 spin_lock_irqsave(&conf->device_lock, flags);
351                 if (r1_bio->mddev->degraded == conf->raid_disks ||
352                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
353                      test_bit(In_sync, &rdev->flags)))
354                         uptodate = 1;
355                 spin_unlock_irqrestore(&conf->device_lock, flags);
356         }
357
358         if (uptodate) {
359                 raid_end_bio_io(r1_bio);
360                 rdev_dec_pending(rdev, conf->mddev);
361         } else {
362                 /*
363                  * oops, read error:
364                  */
365                 char b[BDEVNAME_SIZE];
366                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
367                                    mdname(conf->mddev),
368                                    bdevname(rdev->bdev, b),
369                                    (unsigned long long)r1_bio->sector);
370                 set_bit(R1BIO_ReadError, &r1_bio->state);
371                 reschedule_retry(r1_bio);
372                 /* don't drop the reference on read_disk yet */
373         }
374 }
375
376 static void close_write(struct r1bio *r1_bio)
377 {
378         /* it really is the end of this request */
379         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380                 /* free extra copy of the data pages */
381                 int i = r1_bio->behind_page_count;
382                 while (i--)
383                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
384                 kfree(r1_bio->behind_bvecs);
385                 r1_bio->behind_bvecs = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                         r1_bio->sectors,
390                         !test_bit(R1BIO_Degraded, &r1_bio->state),
391                         test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_error && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else
658                         best_good_sectors = sectors;
659
660                 if (best_disk >= 0)
661                         /* At least two disks to choose from so failfast is OK */
662                         set_bit(R1BIO_FailFast, &r1_bio->state);
663
664                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
665                 has_nonrot_disk |= nonrot;
666                 pending = atomic_read(&rdev->nr_pending);
667                 dist = abs(this_sector - conf->mirrors[disk].head_position);
668                 if (choose_first) {
669                         best_disk = disk;
670                         break;
671                 }
672                 /* Don't change to another disk for sequential reads */
673                 if (conf->mirrors[disk].next_seq_sect == this_sector
674                     || dist == 0) {
675                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
676                         struct raid1_info *mirror = &conf->mirrors[disk];
677
678                         best_disk = disk;
679                         /*
680                          * If buffered sequential IO size exceeds optimal
681                          * iosize, check if there is idle disk. If yes, choose
682                          * the idle disk. read_balance could already choose an
683                          * idle disk before noticing it's a sequential IO in
684                          * this disk. This doesn't matter because this disk
685                          * will idle, next time it will be utilized after the
686                          * first disk has IO size exceeds optimal iosize. In
687                          * this way, iosize of the first disk will be optimal
688                          * iosize at least. iosize of the second disk might be
689                          * small, but not a big deal since when the second disk
690                          * starts IO, the first disk is likely still busy.
691                          */
692                         if (nonrot && opt_iosize > 0 &&
693                             mirror->seq_start != MaxSector &&
694                             mirror->next_seq_sect > opt_iosize &&
695                             mirror->next_seq_sect - opt_iosize >=
696                             mirror->seq_start) {
697                                 choose_next_idle = 1;
698                                 continue;
699                         }
700                         break;
701                 }
702
703                 if (choose_next_idle)
704                         continue;
705
706                 if (min_pending > pending) {
707                         min_pending = pending;
708                         best_pending_disk = disk;
709                 }
710
711                 if (dist < best_dist) {
712                         best_dist = dist;
713                         best_dist_disk = disk;
714                 }
715         }
716
717         /*
718          * If all disks are rotational, choose the closest disk. If any disk is
719          * non-rotational, choose the disk with less pending request even the
720          * disk is rotational, which might/might not be optimal for raids with
721          * mixed ratation/non-rotational disks depending on workload.
722          */
723         if (best_disk == -1) {
724                 if (has_nonrot_disk || min_pending == 0)
725                         best_disk = best_pending_disk;
726                 else
727                         best_disk = best_dist_disk;
728         }
729
730         if (best_disk >= 0) {
731                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
732                 if (!rdev)
733                         goto retry;
734                 atomic_inc(&rdev->nr_pending);
735                 sectors = best_good_sectors;
736
737                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
738                         conf->mirrors[best_disk].seq_start = this_sector;
739
740                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
741         }
742         rcu_read_unlock();
743         *max_sectors = sectors;
744
745         return best_disk;
746 }
747
748 static int raid1_congested(struct mddev *mddev, int bits)
749 {
750         struct r1conf *conf = mddev->private;
751         int i, ret = 0;
752
753         if ((bits & (1 << WB_async_congested)) &&
754             conf->pending_count >= max_queued_requests)
755                 return 1;
756
757         rcu_read_lock();
758         for (i = 0; i < conf->raid_disks * 2; i++) {
759                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
760                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
761                         struct request_queue *q = bdev_get_queue(rdev->bdev);
762
763                         BUG_ON(!q);
764
765                         /* Note the '|| 1' - when read_balance prefers
766                          * non-congested targets, it can be removed
767                          */
768                         if ((bits & (1 << WB_async_congested)) || 1)
769                                 ret |= bdi_congested(q->backing_dev_info, bits);
770                         else
771                                 ret &= bdi_congested(q->backing_dev_info, bits);
772                 }
773         }
774         rcu_read_unlock();
775         return ret;
776 }
777
778 static void flush_pending_writes(struct r1conf *conf)
779 {
780         /* Any writes that have been queued but are awaiting
781          * bitmap updates get flushed here.
782          */
783         spin_lock_irq(&conf->device_lock);
784
785         if (conf->pending_bio_list.head) {
786                 struct bio *bio;
787                 bio = bio_list_get(&conf->pending_bio_list);
788                 conf->pending_count = 0;
789                 spin_unlock_irq(&conf->device_lock);
790                 /* flush any pending bitmap writes to
791                  * disk before proceeding w/ I/O */
792                 bitmap_unplug(conf->mddev->bitmap);
793                 wake_up(&conf->wait_barrier);
794
795                 while (bio) { /* submit pending writes */
796                         struct bio *next = bio->bi_next;
797                         struct md_rdev *rdev = (void*)bio->bi_bdev;
798                         bio->bi_next = NULL;
799                         bio->bi_bdev = rdev->bdev;
800                         if (test_bit(Faulty, &rdev->flags)) {
801                                 bio->bi_error = -EIO;
802                                 bio_endio(bio);
803                         } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
804                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
805                                 /* Just ignore it */
806                                 bio_endio(bio);
807                         else
808                                 generic_make_request(bio);
809                         bio = next;
810                 }
811         } else
812                 spin_unlock_irq(&conf->device_lock);
813 }
814
815 /* Barriers....
816  * Sometimes we need to suspend IO while we do something else,
817  * either some resync/recovery, or reconfigure the array.
818  * To do this we raise a 'barrier'.
819  * The 'barrier' is a counter that can be raised multiple times
820  * to count how many activities are happening which preclude
821  * normal IO.
822  * We can only raise the barrier if there is no pending IO.
823  * i.e. if nr_pending == 0.
824  * We choose only to raise the barrier if no-one is waiting for the
825  * barrier to go down.  This means that as soon as an IO request
826  * is ready, no other operations which require a barrier will start
827  * until the IO request has had a chance.
828  *
829  * So: regular IO calls 'wait_barrier'.  When that returns there
830  *    is no backgroup IO happening,  It must arrange to call
831  *    allow_barrier when it has finished its IO.
832  * backgroup IO calls must call raise_barrier.  Once that returns
833  *    there is no normal IO happeing.  It must arrange to call
834  *    lower_barrier when the particular background IO completes.
835  */
836 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
837 {
838         int idx = sector_to_idx(sector_nr);
839
840         spin_lock_irq(&conf->resync_lock);
841
842         /* Wait until no block IO is waiting */
843         wait_event_lock_irq(conf->wait_barrier,
844                             !atomic_read(&conf->nr_waiting[idx]),
845                             conf->resync_lock);
846
847         /* block any new IO from starting */
848         atomic_inc(&conf->barrier[idx]);
849         /*
850          * In raise_barrier() we firstly increase conf->barrier[idx] then
851          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
852          * increase conf->nr_pending[idx] then check conf->barrier[idx].
853          * A memory barrier here to make sure conf->nr_pending[idx] won't
854          * be fetched before conf->barrier[idx] is increased. Otherwise
855          * there will be a race between raise_barrier() and _wait_barrier().
856          */
857         smp_mb__after_atomic();
858
859         /* For these conditions we must wait:
860          * A: while the array is in frozen state
861          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
862          *    existing in corresponding I/O barrier bucket.
863          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
864          *    max resync count which allowed on current I/O barrier bucket.
865          */
866         wait_event_lock_irq(conf->wait_barrier,
867                             !conf->array_frozen &&
868                              !atomic_read(&conf->nr_pending[idx]) &&
869                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
870                             conf->resync_lock);
871
872         atomic_inc(&conf->nr_pending[idx]);
873         spin_unlock_irq(&conf->resync_lock);
874 }
875
876 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
877 {
878         int idx = sector_to_idx(sector_nr);
879
880         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
881
882         atomic_dec(&conf->barrier[idx]);
883         atomic_dec(&conf->nr_pending[idx]);
884         wake_up(&conf->wait_barrier);
885 }
886
887 static void _wait_barrier(struct r1conf *conf, int idx)
888 {
889         /*
890          * We need to increase conf->nr_pending[idx] very early here,
891          * then raise_barrier() can be blocked when it waits for
892          * conf->nr_pending[idx] to be 0. Then we can avoid holding
893          * conf->resync_lock when there is no barrier raised in same
894          * barrier unit bucket. Also if the array is frozen, I/O
895          * should be blocked until array is unfrozen.
896          */
897         atomic_inc(&conf->nr_pending[idx]);
898         /*
899          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
900          * check conf->barrier[idx]. In raise_barrier() we firstly increase
901          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
902          * barrier is necessary here to make sure conf->barrier[idx] won't be
903          * fetched before conf->nr_pending[idx] is increased. Otherwise there
904          * will be a race between _wait_barrier() and raise_barrier().
905          */
906         smp_mb__after_atomic();
907
908         /*
909          * Don't worry about checking two atomic_t variables at same time
910          * here. If during we check conf->barrier[idx], the array is
911          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
912          * 0, it is safe to return and make the I/O continue. Because the
913          * array is frozen, all I/O returned here will eventually complete
914          * or be queued, no race will happen. See code comment in
915          * frozen_array().
916          */
917         if (!READ_ONCE(conf->array_frozen) &&
918             !atomic_read(&conf->barrier[idx]))
919                 return;
920
921         /*
922          * After holding conf->resync_lock, conf->nr_pending[idx]
923          * should be decreased before waiting for barrier to drop.
924          * Otherwise, we may encounter a race condition because
925          * raise_barrer() might be waiting for conf->nr_pending[idx]
926          * to be 0 at same time.
927          */
928         spin_lock_irq(&conf->resync_lock);
929         atomic_inc(&conf->nr_waiting[idx]);
930         atomic_dec(&conf->nr_pending[idx]);
931         /*
932          * In case freeze_array() is waiting for
933          * get_unqueued_pending() == extra
934          */
935         wake_up(&conf->wait_barrier);
936         /* Wait for the barrier in same barrier unit bucket to drop. */
937         wait_event_lock_irq(conf->wait_barrier,
938                             !conf->array_frozen &&
939                              !atomic_read(&conf->barrier[idx]),
940                             conf->resync_lock);
941         atomic_inc(&conf->nr_pending[idx]);
942         atomic_dec(&conf->nr_waiting[idx]);
943         spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
947 {
948         int idx = sector_to_idx(sector_nr);
949
950         /*
951          * Very similar to _wait_barrier(). The difference is, for read
952          * I/O we don't need wait for sync I/O, but if the whole array
953          * is frozen, the read I/O still has to wait until the array is
954          * unfrozen. Since there is no ordering requirement with
955          * conf->barrier[idx] here, memory barrier is unnecessary as well.
956          */
957         atomic_inc(&conf->nr_pending[idx]);
958
959         if (!READ_ONCE(conf->array_frozen))
960                 return;
961
962         spin_lock_irq(&conf->resync_lock);
963         atomic_inc(&conf->nr_waiting[idx]);
964         atomic_dec(&conf->nr_pending[idx]);
965         /*
966          * In case freeze_array() is waiting for
967          * get_unqueued_pending() == extra
968          */
969         wake_up(&conf->wait_barrier);
970         /* Wait for array to be unfrozen */
971         wait_event_lock_irq(conf->wait_barrier,
972                             !conf->array_frozen,
973                             conf->resync_lock);
974         atomic_inc(&conf->nr_pending[idx]);
975         atomic_dec(&conf->nr_waiting[idx]);
976         spin_unlock_irq(&conf->resync_lock);
977 }
978
979 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
980 {
981         int idx = sector_to_idx(sector_nr);
982
983         _wait_barrier(conf, idx);
984 }
985
986 static void wait_all_barriers(struct r1conf *conf)
987 {
988         int idx;
989
990         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
991                 _wait_barrier(conf, idx);
992 }
993
994 static void _allow_barrier(struct r1conf *conf, int idx)
995 {
996         atomic_dec(&conf->nr_pending[idx]);
997         wake_up(&conf->wait_barrier);
998 }
999
1000 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1001 {
1002         int idx = sector_to_idx(sector_nr);
1003
1004         _allow_barrier(conf, idx);
1005 }
1006
1007 static void allow_all_barriers(struct r1conf *conf)
1008 {
1009         int idx;
1010
1011         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012                 _allow_barrier(conf, idx);
1013 }
1014
1015 /* conf->resync_lock should be held */
1016 static int get_unqueued_pending(struct r1conf *conf)
1017 {
1018         int idx, ret;
1019
1020         for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1021                 ret += atomic_read(&conf->nr_pending[idx]) -
1022                         atomic_read(&conf->nr_queued[idx]);
1023
1024         return ret;
1025 }
1026
1027 static void freeze_array(struct r1conf *conf, int extra)
1028 {
1029         /* Stop sync I/O and normal I/O and wait for everything to
1030          * go quiet.
1031          * This is called in two situations:
1032          * 1) management command handlers (reshape, remove disk, quiesce).
1033          * 2) one normal I/O request failed.
1034
1035          * After array_frozen is set to 1, new sync IO will be blocked at
1036          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037          * or wait_read_barrier(). The flying I/Os will either complete or be
1038          * queued. When everything goes quite, there are only queued I/Os left.
1039
1040          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041          * barrier bucket index which this I/O request hits. When all sync and
1042          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044          * in handle_read_error(), we may call freeze_array() before trying to
1045          * fix the read error. In this case, the error read I/O is not queued,
1046          * so get_unqueued_pending() == 1.
1047          *
1048          * Therefore before this function returns, we need to wait until
1049          * get_unqueued_pendings(conf) gets equal to extra. For
1050          * normal I/O context, extra is 1, in rested situations extra is 0.
1051          */
1052         spin_lock_irq(&conf->resync_lock);
1053         conf->array_frozen = 1;
1054         raid1_log(conf->mddev, "wait freeze");
1055         wait_event_lock_irq_cmd(
1056                 conf->wait_barrier,
1057                 get_unqueued_pending(conf) == extra,
1058                 conf->resync_lock,
1059                 flush_pending_writes(conf));
1060         spin_unlock_irq(&conf->resync_lock);
1061 }
1062 static void unfreeze_array(struct r1conf *conf)
1063 {
1064         /* reverse the effect of the freeze */
1065         spin_lock_irq(&conf->resync_lock);
1066         conf->array_frozen = 0;
1067         spin_unlock_irq(&conf->resync_lock);
1068         wake_up(&conf->wait_barrier);
1069 }
1070
1071 /* duplicate the data pages for behind I/O
1072  */
1073 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1074 {
1075         int i;
1076         struct bio_vec *bvec;
1077         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1078                                         GFP_NOIO);
1079         if (unlikely(!bvecs))
1080                 return;
1081
1082         bio_for_each_segment_all(bvec, bio, i) {
1083                 bvecs[i] = *bvec;
1084                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1085                 if (unlikely(!bvecs[i].bv_page))
1086                         goto do_sync_io;
1087                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1088                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1089                 kunmap(bvecs[i].bv_page);
1090                 kunmap(bvec->bv_page);
1091         }
1092         r1_bio->behind_bvecs = bvecs;
1093         r1_bio->behind_page_count = bio->bi_vcnt;
1094         set_bit(R1BIO_BehindIO, &r1_bio->state);
1095         return;
1096
1097 do_sync_io:
1098         for (i = 0; i < bio->bi_vcnt; i++)
1099                 if (bvecs[i].bv_page)
1100                         put_page(bvecs[i].bv_page);
1101         kfree(bvecs);
1102         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103                  bio->bi_iter.bi_size);
1104 }
1105
1106 struct raid1_plug_cb {
1107         struct blk_plug_cb      cb;
1108         struct bio_list         pending;
1109         int                     pending_cnt;
1110 };
1111
1112 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113 {
1114         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1115                                                   cb);
1116         struct mddev *mddev = plug->cb.data;
1117         struct r1conf *conf = mddev->private;
1118         struct bio *bio;
1119
1120         if (from_schedule || current->bio_list) {
1121                 spin_lock_irq(&conf->device_lock);
1122                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1123                 conf->pending_count += plug->pending_cnt;
1124                 spin_unlock_irq(&conf->device_lock);
1125                 wake_up(&conf->wait_barrier);
1126                 md_wakeup_thread(mddev->thread);
1127                 kfree(plug);
1128                 return;
1129         }
1130
1131         /* we aren't scheduling, so we can do the write-out directly. */
1132         bio = bio_list_get(&plug->pending);
1133         bitmap_unplug(mddev->bitmap);
1134         wake_up(&conf->wait_barrier);
1135
1136         while (bio) { /* submit pending writes */
1137                 struct bio *next = bio->bi_next;
1138                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1139                 bio->bi_next = NULL;
1140                 bio->bi_bdev = rdev->bdev;
1141                 if (test_bit(Faulty, &rdev->flags)) {
1142                         bio->bi_error = -EIO;
1143                         bio_endio(bio);
1144                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1145                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                         /* Just ignore it */
1147                         bio_endio(bio);
1148                 else
1149                         generic_make_request(bio);
1150                 bio = next;
1151         }
1152         kfree(plug);
1153 }
1154
1155 static inline struct r1bio *
1156 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1157 {
1158         struct r1conf *conf = mddev->private;
1159         struct r1bio *r1_bio;
1160
1161         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1162
1163         r1_bio->master_bio = bio;
1164         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1165         r1_bio->state = 0;
1166         r1_bio->mddev = mddev;
1167         r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1168
1169         return r1_bio;
1170 }
1171
1172 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1173 {
1174         struct r1conf *conf = mddev->private;
1175         struct raid1_info *mirror;
1176         struct r1bio *r1_bio;
1177         struct bio *read_bio;
1178         struct bitmap *bitmap = mddev->bitmap;
1179         const int op = bio_op(bio);
1180         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1181         int sectors_handled;
1182         int max_sectors;
1183         int rdisk;
1184
1185         /*
1186          * Still need barrier for READ in case that whole
1187          * array is frozen.
1188          */
1189         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1190
1191         r1_bio = alloc_r1bio(mddev, bio, 0);
1192
1193         /*
1194          * We might need to issue multiple reads to different
1195          * devices if there are bad blocks around, so we keep
1196          * track of the number of reads in bio->bi_phys_segments.
1197          * If this is 0, there is only one r1_bio and no locking
1198          * will be needed when requests complete.  If it is
1199          * non-zero, then it is the number of not-completed requests.
1200          */
1201         bio->bi_phys_segments = 0;
1202         bio_clear_flag(bio, BIO_SEG_VALID);
1203
1204         /*
1205          * make_request() can abort the operation when read-ahead is being
1206          * used and no empty request is available.
1207          */
1208 read_again:
1209         rdisk = read_balance(conf, r1_bio, &max_sectors);
1210
1211         if (rdisk < 0) {
1212                 /* couldn't find anywhere to read from */
1213                 raid_end_bio_io(r1_bio);
1214                 return;
1215         }
1216         mirror = conf->mirrors + rdisk;
1217
1218         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1219             bitmap) {
1220                 /*
1221                  * Reading from a write-mostly device must take care not to
1222                  * over-take any writes that are 'behind'
1223                  */
1224                 raid1_log(mddev, "wait behind writes");
1225                 wait_event(bitmap->behind_wait,
1226                            atomic_read(&bitmap->behind_writes) == 0);
1227         }
1228         r1_bio->read_disk = rdisk;
1229
1230         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1231         bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1232                  max_sectors);
1233
1234         r1_bio->bios[rdisk] = read_bio;
1235
1236         read_bio->bi_iter.bi_sector = r1_bio->sector +
1237                 mirror->rdev->data_offset;
1238         read_bio->bi_bdev = mirror->rdev->bdev;
1239         read_bio->bi_end_io = raid1_end_read_request;
1240         bio_set_op_attrs(read_bio, op, do_sync);
1241         if (test_bit(FailFast, &mirror->rdev->flags) &&
1242             test_bit(R1BIO_FailFast, &r1_bio->state))
1243                 read_bio->bi_opf |= MD_FAILFAST;
1244         read_bio->bi_private = r1_bio;
1245
1246         if (mddev->gendisk)
1247                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1248                                       read_bio, disk_devt(mddev->gendisk),
1249                                       r1_bio->sector);
1250
1251         if (max_sectors < r1_bio->sectors) {
1252                 /*
1253                  * could not read all from this device, so we will need another
1254                  * r1_bio.
1255                  */
1256                 sectors_handled = (r1_bio->sector + max_sectors
1257                                    - bio->bi_iter.bi_sector);
1258                 r1_bio->sectors = max_sectors;
1259                 spin_lock_irq(&conf->device_lock);
1260                 if (bio->bi_phys_segments == 0)
1261                         bio->bi_phys_segments = 2;
1262                 else
1263                         bio->bi_phys_segments++;
1264                 spin_unlock_irq(&conf->device_lock);
1265
1266                 /*
1267                  * Cannot call generic_make_request directly as that will be
1268                  * queued in __make_request and subsequent mempool_alloc might
1269                  * block waiting for it.  So hand bio over to raid1d.
1270                  */
1271                 reschedule_retry(r1_bio);
1272
1273                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1274                 goto read_again;
1275         } else
1276                 generic_make_request(read_bio);
1277 }
1278
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1280 {
1281         struct r1conf *conf = mddev->private;
1282         struct r1bio *r1_bio;
1283         int i, disks;
1284         struct bitmap *bitmap = mddev->bitmap;
1285         unsigned long flags;
1286         struct md_rdev *blocked_rdev;
1287         struct blk_plug_cb *cb;
1288         struct raid1_plug_cb *plug = NULL;
1289         int first_clone;
1290         int sectors_handled;
1291         int max_sectors;
1292
1293         /*
1294          * Register the new request and wait if the reconstruction
1295          * thread has put up a bar for new requests.
1296          * Continue immediately if no resync is active currently.
1297          */
1298
1299         md_write_start(mddev, bio); /* wait on superblock update early */
1300
1301         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303             (mddev_is_clustered(mddev) &&
1304              md_cluster_ops->area_resyncing(mddev, WRITE,
1305                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306
1307                 /*
1308                  * As the suspend_* range is controlled by userspace, we want
1309                  * an interruptible wait.
1310                  */
1311                 DEFINE_WAIT(w);
1312                 for (;;) {
1313                         flush_signals(current);
1314                         prepare_to_wait(&conf->wait_barrier,
1315                                         &w, TASK_INTERRUPTIBLE);
1316                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318                             (mddev_is_clustered(mddev) &&
1319                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1320                                      bio->bi_iter.bi_sector,
1321                                      bio_end_sector(bio))))
1322                                 break;
1323                         schedule();
1324                 }
1325                 finish_wait(&conf->wait_barrier, &w);
1326         }
1327         wait_barrier(conf, bio->bi_iter.bi_sector);
1328
1329         r1_bio = alloc_r1bio(mddev, bio, 0);
1330
1331         /* We might need to issue multiple writes to different
1332          * devices if there are bad blocks around, so we keep
1333          * track of the number of writes in bio->bi_phys_segments.
1334          * If this is 0, there is only one r1_bio and no locking
1335          * will be needed when requests complete.  If it is
1336          * non-zero, then it is the number of not-completed requests.
1337          */
1338         bio->bi_phys_segments = 0;
1339         bio_clear_flag(bio, BIO_SEG_VALID);
1340
1341         if (conf->pending_count >= max_queued_requests) {
1342                 md_wakeup_thread(mddev->thread);
1343                 raid1_log(mddev, "wait queued");
1344                 wait_event(conf->wait_barrier,
1345                            conf->pending_count < max_queued_requests);
1346         }
1347         /* first select target devices under rcu_lock and
1348          * inc refcount on their rdev.  Record them by setting
1349          * bios[x] to bio
1350          * If there are known/acknowledged bad blocks on any device on
1351          * which we have seen a write error, we want to avoid writing those
1352          * blocks.
1353          * This potentially requires several writes to write around
1354          * the bad blocks.  Each set of writes gets it's own r1bio
1355          * with a set of bios attached.
1356          */
1357
1358         disks = conf->raid_disks * 2;
1359  retry_write:
1360         blocked_rdev = NULL;
1361         rcu_read_lock();
1362         max_sectors = r1_bio->sectors;
1363         for (i = 0;  i < disks; i++) {
1364                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366                         atomic_inc(&rdev->nr_pending);
1367                         blocked_rdev = rdev;
1368                         break;
1369                 }
1370                 r1_bio->bios[i] = NULL;
1371                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372                         if (i < conf->raid_disks)
1373                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1374                         continue;
1375                 }
1376
1377                 atomic_inc(&rdev->nr_pending);
1378                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379                         sector_t first_bad;
1380                         int bad_sectors;
1381                         int is_bad;
1382
1383                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384                                              &first_bad, &bad_sectors);
1385                         if (is_bad < 0) {
1386                                 /* mustn't write here until the bad block is
1387                                  * acknowledged*/
1388                                 set_bit(BlockedBadBlocks, &rdev->flags);
1389                                 blocked_rdev = rdev;
1390                                 break;
1391                         }
1392                         if (is_bad && first_bad <= r1_bio->sector) {
1393                                 /* Cannot write here at all */
1394                                 bad_sectors -= (r1_bio->sector - first_bad);
1395                                 if (bad_sectors < max_sectors)
1396                                         /* mustn't write more than bad_sectors
1397                                          * to other devices yet
1398                                          */
1399                                         max_sectors = bad_sectors;
1400                                 rdev_dec_pending(rdev, mddev);
1401                                 /* We don't set R1BIO_Degraded as that
1402                                  * only applies if the disk is
1403                                  * missing, so it might be re-added,
1404                                  * and we want to know to recover this
1405                                  * chunk.
1406                                  * In this case the device is here,
1407                                  * and the fact that this chunk is not
1408                                  * in-sync is recorded in the bad
1409                                  * block log
1410                                  */
1411                                 continue;
1412                         }
1413                         if (is_bad) {
1414                                 int good_sectors = first_bad - r1_bio->sector;
1415                                 if (good_sectors < max_sectors)
1416                                         max_sectors = good_sectors;
1417                         }
1418                 }
1419                 r1_bio->bios[i] = bio;
1420         }
1421         rcu_read_unlock();
1422
1423         if (unlikely(blocked_rdev)) {
1424                 /* Wait for this device to become unblocked */
1425                 int j;
1426
1427                 for (j = 0; j < i; j++)
1428                         if (r1_bio->bios[j])
1429                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430                 r1_bio->state = 0;
1431                 allow_barrier(conf, bio->bi_iter.bi_sector);
1432                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434                 wait_barrier(conf, bio->bi_iter.bi_sector);
1435                 goto retry_write;
1436         }
1437
1438         if (max_sectors < r1_bio->sectors) {
1439                 /* We are splitting this write into multiple parts, so
1440                  * we need to prepare for allocating another r1_bio.
1441                  */
1442                 r1_bio->sectors = max_sectors;
1443                 spin_lock_irq(&conf->device_lock);
1444                 if (bio->bi_phys_segments == 0)
1445                         bio->bi_phys_segments = 2;
1446                 else
1447                         bio->bi_phys_segments++;
1448                 spin_unlock_irq(&conf->device_lock);
1449         }
1450         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451
1452         atomic_set(&r1_bio->remaining, 1);
1453         atomic_set(&r1_bio->behind_remaining, 0);
1454
1455         first_clone = 1;
1456         for (i = 0; i < disks; i++) {
1457                 struct bio *mbio = NULL;
1458                 sector_t offset;
1459                 if (!r1_bio->bios[i])
1460                         continue;
1461
1462                 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463
1464                 if (first_clone) {
1465                         /* do behind I/O ?
1466                          * Not if there are too many, or cannot
1467                          * allocate memory, or a reader on WriteMostly
1468                          * is waiting for behind writes to flush */
1469                         if (bitmap &&
1470                             (atomic_read(&bitmap->behind_writes)
1471                              < mddev->bitmap_info.max_write_behind) &&
1472                             !waitqueue_active(&bitmap->behind_wait)) {
1473                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474                                                                 mddev->bio_set,
1475                                                                 offset << 9,
1476                                                                 max_sectors << 9);
1477                                 alloc_behind_pages(mbio, r1_bio);
1478                         }
1479
1480                         bitmap_startwrite(bitmap, r1_bio->sector,
1481                                           r1_bio->sectors,
1482                                           test_bit(R1BIO_BehindIO,
1483                                                    &r1_bio->state));
1484                         first_clone = 0;
1485                 }
1486
1487                 if (!mbio) {
1488                         if (r1_bio->behind_bvecs)
1489                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490                                                                 mddev->bio_set,
1491                                                                 offset << 9,
1492                                                                 max_sectors << 9);
1493                         else {
1494                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495                                 bio_trim(mbio, offset, max_sectors);
1496                         }
1497                 }
1498
1499                 if (r1_bio->behind_bvecs) {
1500                         struct bio_vec *bvec;
1501                         int j;
1502
1503                         /*
1504                          * We trimmed the bio, so _all is legit
1505                          */
1506                         bio_for_each_segment_all(bvec, mbio, j)
1507                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1508                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509                                 atomic_inc(&r1_bio->behind_remaining);
1510                 }
1511
1512                 r1_bio->bios[i] = mbio;
1513
1514                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1515                                    conf->mirrors[i].rdev->data_offset);
1516                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1517                 mbio->bi_end_io = raid1_end_write_request;
1518                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1519                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521                     conf->raid_disks - mddev->degraded > 1)
1522                         mbio->bi_opf |= MD_FAILFAST;
1523                 mbio->bi_private = r1_bio;
1524
1525                 atomic_inc(&r1_bio->remaining);
1526
1527                 if (mddev->gendisk)
1528                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529                                               mbio, disk_devt(mddev->gendisk),
1530                                               r1_bio->sector);
1531                 /* flush_pending_writes() needs access to the rdev so...*/
1532                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533
1534                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535                 if (cb)
1536                         plug = container_of(cb, struct raid1_plug_cb, cb);
1537                 else
1538                         plug = NULL;
1539                 spin_lock_irqsave(&conf->device_lock, flags);
1540                 if (plug) {
1541                         bio_list_add(&plug->pending, mbio);
1542                         plug->pending_cnt++;
1543                 } else {
1544                         bio_list_add(&conf->pending_bio_list, mbio);
1545                         conf->pending_count++;
1546                 }
1547                 spin_unlock_irqrestore(&conf->device_lock, flags);
1548                 if (!plug)
1549                         md_wakeup_thread(mddev->thread);
1550         }
1551         /* Mustn't call r1_bio_write_done before this next test,
1552          * as it could result in the bio being freed.
1553          */
1554         if (sectors_handled < bio_sectors(bio)) {
1555                 r1_bio_write_done(r1_bio);
1556                 /* We need another r1_bio.  It has already been counted
1557                  * in bio->bi_phys_segments
1558                  */
1559                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1560                 goto retry_write;
1561         }
1562
1563         r1_bio_write_done(r1_bio);
1564
1565         /* In case raid1d snuck in to freeze_array */
1566         wake_up(&conf->wait_barrier);
1567 }
1568
1569 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570 {
1571         struct bio *split;
1572         sector_t sectors;
1573
1574         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575                 md_flush_request(mddev, bio);
1576                 return;
1577         }
1578
1579         /* if bio exceeds barrier unit boundary, split it */
1580         do {
1581                 sectors = align_to_barrier_unit_end(
1582                                 bio->bi_iter.bi_sector, bio_sectors(bio));
1583                 if (sectors < bio_sectors(bio)) {
1584                         split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585                         bio_chain(split, bio);
1586                 } else {
1587                         split = bio;
1588                 }
1589
1590                 if (bio_data_dir(split) == READ) {
1591                         raid1_read_request(mddev, split);
1592
1593                         /*
1594                          * If a bio is splitted, the first part of bio will
1595                          * pass barrier but the bio is queued in
1596                          * current->bio_list (see generic_make_request). If
1597                          * there is a raise_barrier() called here, the second
1598                          * part of bio can't pass barrier. But since the first
1599                          * part bio isn't dispatched to underlaying disks yet,
1600                          * the barrier is never released, hence raise_barrier
1601                          * will alays wait. We have a deadlock.
1602                          * Note, this only happens in read path. For write
1603                          * path, the first part of bio is dispatched in a
1604                          * schedule() call (because of blk plug) or offloaded
1605                          * to raid10d.
1606                          * Quitting from the function immediately can change
1607                          * the bio order queued in bio_list and avoid the deadlock.
1608                          */
1609                         if (split != bio) {
1610                                 generic_make_request(bio);
1611                                 break;
1612                         }
1613                 } else
1614                         raid1_write_request(mddev, split);
1615         } while (split != bio);
1616 }
1617
1618 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1619 {
1620         struct r1conf *conf = mddev->private;
1621         int i;
1622
1623         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1624                    conf->raid_disks - mddev->degraded);
1625         rcu_read_lock();
1626         for (i = 0; i < conf->raid_disks; i++) {
1627                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1628                 seq_printf(seq, "%s",
1629                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1630         }
1631         rcu_read_unlock();
1632         seq_printf(seq, "]");
1633 }
1634
1635 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1636 {
1637         char b[BDEVNAME_SIZE];
1638         struct r1conf *conf = mddev->private;
1639         unsigned long flags;
1640
1641         /*
1642          * If it is not operational, then we have already marked it as dead
1643          * else if it is the last working disks, ignore the error, let the
1644          * next level up know.
1645          * else mark the drive as failed
1646          */
1647         spin_lock_irqsave(&conf->device_lock, flags);
1648         if (test_bit(In_sync, &rdev->flags)
1649             && (conf->raid_disks - mddev->degraded) == 1) {
1650                 /*
1651                  * Don't fail the drive, act as though we were just a
1652                  * normal single drive.
1653                  * However don't try a recovery from this drive as
1654                  * it is very likely to fail.
1655                  */
1656                 conf->recovery_disabled = mddev->recovery_disabled;
1657                 spin_unlock_irqrestore(&conf->device_lock, flags);
1658                 return;
1659         }
1660         set_bit(Blocked, &rdev->flags);
1661         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1662                 mddev->degraded++;
1663                 set_bit(Faulty, &rdev->flags);
1664         } else
1665                 set_bit(Faulty, &rdev->flags);
1666         spin_unlock_irqrestore(&conf->device_lock, flags);
1667         /*
1668          * if recovery is running, make sure it aborts.
1669          */
1670         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1671         set_mask_bits(&mddev->sb_flags, 0,
1672                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1673         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1674                 "md/raid1:%s: Operation continuing on %d devices.\n",
1675                 mdname(mddev), bdevname(rdev->bdev, b),
1676                 mdname(mddev), conf->raid_disks - mddev->degraded);
1677 }
1678
1679 static void print_conf(struct r1conf *conf)
1680 {
1681         int i;
1682
1683         pr_debug("RAID1 conf printout:\n");
1684         if (!conf) {
1685                 pr_debug("(!conf)\n");
1686                 return;
1687         }
1688         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1689                  conf->raid_disks);
1690
1691         rcu_read_lock();
1692         for (i = 0; i < conf->raid_disks; i++) {
1693                 char b[BDEVNAME_SIZE];
1694                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1695                 if (rdev)
1696                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697                                  i, !test_bit(In_sync, &rdev->flags),
1698                                  !test_bit(Faulty, &rdev->flags),
1699                                  bdevname(rdev->bdev,b));
1700         }
1701         rcu_read_unlock();
1702 }
1703
1704 static void close_sync(struct r1conf *conf)
1705 {
1706         wait_all_barriers(conf);
1707         allow_all_barriers(conf);
1708
1709         mempool_destroy(conf->r1buf_pool);
1710         conf->r1buf_pool = NULL;
1711 }
1712
1713 static int raid1_spare_active(struct mddev *mddev)
1714 {
1715         int i;
1716         struct r1conf *conf = mddev->private;
1717         int count = 0;
1718         unsigned long flags;
1719
1720         /*
1721          * Find all failed disks within the RAID1 configuration
1722          * and mark them readable.
1723          * Called under mddev lock, so rcu protection not needed.
1724          * device_lock used to avoid races with raid1_end_read_request
1725          * which expects 'In_sync' flags and ->degraded to be consistent.
1726          */
1727         spin_lock_irqsave(&conf->device_lock, flags);
1728         for (i = 0; i < conf->raid_disks; i++) {
1729                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1730                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731                 if (repl
1732                     && !test_bit(Candidate, &repl->flags)
1733                     && repl->recovery_offset == MaxSector
1734                     && !test_bit(Faulty, &repl->flags)
1735                     && !test_and_set_bit(In_sync, &repl->flags)) {
1736                         /* replacement has just become active */
1737                         if (!rdev ||
1738                             !test_and_clear_bit(In_sync, &rdev->flags))
1739                                 count++;
1740                         if (rdev) {
1741                                 /* Replaced device not technically
1742                                  * faulty, but we need to be sure
1743                                  * it gets removed and never re-added
1744                                  */
1745                                 set_bit(Faulty, &rdev->flags);
1746                                 sysfs_notify_dirent_safe(
1747                                         rdev->sysfs_state);
1748                         }
1749                 }
1750                 if (rdev
1751                     && rdev->recovery_offset == MaxSector
1752                     && !test_bit(Faulty, &rdev->flags)
1753                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1754                         count++;
1755                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1756                 }
1757         }
1758         mddev->degraded -= count;
1759         spin_unlock_irqrestore(&conf->device_lock, flags);
1760
1761         print_conf(conf);
1762         return count;
1763 }
1764
1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1766 {
1767         struct r1conf *conf = mddev->private;
1768         int err = -EEXIST;
1769         int mirror = 0;
1770         struct raid1_info *p;
1771         int first = 0;
1772         int last = conf->raid_disks - 1;
1773
1774         if (mddev->recovery_disabled == conf->recovery_disabled)
1775                 return -EBUSY;
1776
1777         if (md_integrity_add_rdev(rdev, mddev))
1778                 return -ENXIO;
1779
1780         if (rdev->raid_disk >= 0)
1781                 first = last = rdev->raid_disk;
1782
1783         /*
1784          * find the disk ... but prefer rdev->saved_raid_disk
1785          * if possible.
1786          */
1787         if (rdev->saved_raid_disk >= 0 &&
1788             rdev->saved_raid_disk >= first &&
1789             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1790                 first = last = rdev->saved_raid_disk;
1791
1792         for (mirror = first; mirror <= last; mirror++) {
1793                 p = conf->mirrors+mirror;
1794                 if (!p->rdev) {
1795
1796                         if (mddev->gendisk)
1797                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1798                                                   rdev->data_offset << 9);
1799
1800                         p->head_position = 0;
1801                         rdev->raid_disk = mirror;
1802                         err = 0;
1803                         /* As all devices are equivalent, we don't need a full recovery
1804                          * if this was recently any drive of the array
1805                          */
1806                         if (rdev->saved_raid_disk < 0)
1807                                 conf->fullsync = 1;
1808                         rcu_assign_pointer(p->rdev, rdev);
1809                         break;
1810                 }
1811                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1812                     p[conf->raid_disks].rdev == NULL) {
1813                         /* Add this device as a replacement */
1814                         clear_bit(In_sync, &rdev->flags);
1815                         set_bit(Replacement, &rdev->flags);
1816                         rdev->raid_disk = mirror;
1817                         err = 0;
1818                         conf->fullsync = 1;
1819                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820                         break;
1821                 }
1822         }
1823         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1824                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1825         print_conf(conf);
1826         return err;
1827 }
1828
1829 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830 {
1831         struct r1conf *conf = mddev->private;
1832         int err = 0;
1833         int number = rdev->raid_disk;
1834         struct raid1_info *p = conf->mirrors + number;
1835
1836         if (rdev != p->rdev)
1837                 p = conf->mirrors + conf->raid_disks + number;
1838
1839         print_conf(conf);
1840         if (rdev == p->rdev) {
1841                 if (test_bit(In_sync, &rdev->flags) ||
1842                     atomic_read(&rdev->nr_pending)) {
1843                         err = -EBUSY;
1844                         goto abort;
1845                 }
1846                 /* Only remove non-faulty devices if recovery
1847                  * is not possible.
1848                  */
1849                 if (!test_bit(Faulty, &rdev->flags) &&
1850                     mddev->recovery_disabled != conf->recovery_disabled &&
1851                     mddev->degraded < conf->raid_disks) {
1852                         err = -EBUSY;
1853                         goto abort;
1854                 }
1855                 p->rdev = NULL;
1856                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857                         synchronize_rcu();
1858                         if (atomic_read(&rdev->nr_pending)) {
1859                                 /* lost the race, try later */
1860                                 err = -EBUSY;
1861                                 p->rdev = rdev;
1862                                 goto abort;
1863                         }
1864                 }
1865                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1866                         /* We just removed a device that is being replaced.
1867                          * Move down the replacement.  We drain all IO before
1868                          * doing this to avoid confusion.
1869                          */
1870                         struct md_rdev *repl =
1871                                 conf->mirrors[conf->raid_disks + number].rdev;
1872                         freeze_array(conf, 0);
1873                         clear_bit(Replacement, &repl->flags);
1874                         p->rdev = repl;
1875                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1876                         unfreeze_array(conf);
1877                         clear_bit(WantReplacement, &rdev->flags);
1878                 } else
1879                         clear_bit(WantReplacement, &rdev->flags);
1880                 err = md_integrity_register(mddev);
1881         }
1882 abort:
1883
1884         print_conf(conf);
1885         return err;
1886 }
1887
1888 static void end_sync_read(struct bio *bio)
1889 {
1890         struct r1bio *r1_bio = bio->bi_private;
1891
1892         update_head_pos(r1_bio->read_disk, r1_bio);
1893
1894         /*
1895          * we have read a block, now it needs to be re-written,
1896          * or re-read if the read failed.
1897          * We don't do much here, just schedule handling by raid1d
1898          */
1899         if (!bio->bi_error)
1900                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1901
1902         if (atomic_dec_and_test(&r1_bio->remaining))
1903                 reschedule_retry(r1_bio);
1904 }
1905
1906 static void end_sync_write(struct bio *bio)
1907 {
1908         int uptodate = !bio->bi_error;
1909         struct r1bio *r1_bio = bio->bi_private;
1910         struct mddev *mddev = r1_bio->mddev;
1911         struct r1conf *conf = mddev->private;
1912         sector_t first_bad;
1913         int bad_sectors;
1914         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1915
1916         if (!uptodate) {
1917                 sector_t sync_blocks = 0;
1918                 sector_t s = r1_bio->sector;
1919                 long sectors_to_go = r1_bio->sectors;
1920                 /* make sure these bits doesn't get cleared. */
1921                 do {
1922                         bitmap_end_sync(mddev->bitmap, s,
1923                                         &sync_blocks, 1);
1924                         s += sync_blocks;
1925                         sectors_to_go -= sync_blocks;
1926                 } while (sectors_to_go > 0);
1927                 set_bit(WriteErrorSeen, &rdev->flags);
1928                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929                         set_bit(MD_RECOVERY_NEEDED, &
1930                                 mddev->recovery);
1931                 set_bit(R1BIO_WriteError, &r1_bio->state);
1932         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933                                &first_bad, &bad_sectors) &&
1934                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935                                 r1_bio->sector,
1936                                 r1_bio->sectors,
1937                                 &first_bad, &bad_sectors)
1938                 )
1939                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1940
1941         if (atomic_dec_and_test(&r1_bio->remaining)) {
1942                 int s = r1_bio->sectors;
1943                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1944                     test_bit(R1BIO_WriteError, &r1_bio->state))
1945                         reschedule_retry(r1_bio);
1946                 else {
1947                         put_buf(r1_bio);
1948                         md_done_sync(mddev, s, uptodate);
1949                 }
1950         }
1951 }
1952
1953 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1954                             int sectors, struct page *page, int rw)
1955 {
1956         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1957                 /* success */
1958                 return 1;
1959         if (rw == WRITE) {
1960                 set_bit(WriteErrorSeen, &rdev->flags);
1961                 if (!test_and_set_bit(WantReplacement,
1962                                       &rdev->flags))
1963                         set_bit(MD_RECOVERY_NEEDED, &
1964                                 rdev->mddev->recovery);
1965         }
1966         /* need to record an error - either for the block or the device */
1967         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1968                 md_error(rdev->mddev, rdev);
1969         return 0;
1970 }
1971
1972 static int fix_sync_read_error(struct r1bio *r1_bio)
1973 {
1974         /* Try some synchronous reads of other devices to get
1975          * good data, much like with normal read errors.  Only
1976          * read into the pages we already have so we don't
1977          * need to re-issue the read request.
1978          * We don't need to freeze the array, because being in an
1979          * active sync request, there is no normal IO, and
1980          * no overlapping syncs.
1981          * We don't need to check is_badblock() again as we
1982          * made sure that anything with a bad block in range
1983          * will have bi_end_io clear.
1984          */
1985         struct mddev *mddev = r1_bio->mddev;
1986         struct r1conf *conf = mddev->private;
1987         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1988         sector_t sect = r1_bio->sector;
1989         int sectors = r1_bio->sectors;
1990         int idx = 0;
1991         struct md_rdev *rdev;
1992
1993         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1994         if (test_bit(FailFast, &rdev->flags)) {
1995                 /* Don't try recovering from here - just fail it
1996                  * ... unless it is the last working device of course */
1997                 md_error(mddev, rdev);
1998                 if (test_bit(Faulty, &rdev->flags))
1999                         /* Don't try to read from here, but make sure
2000                          * put_buf does it's thing
2001                          */
2002                         bio->bi_end_io = end_sync_write;
2003         }
2004
2005         while(sectors) {
2006                 int s = sectors;
2007                 int d = r1_bio->read_disk;
2008                 int success = 0;
2009                 int start;
2010
2011                 if (s > (PAGE_SIZE>>9))
2012                         s = PAGE_SIZE >> 9;
2013                 do {
2014                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2015                                 /* No rcu protection needed here devices
2016                                  * can only be removed when no resync is
2017                                  * active, and resync is currently active
2018                                  */
2019                                 rdev = conf->mirrors[d].rdev;
2020                                 if (sync_page_io(rdev, sect, s<<9,
2021                                                  bio->bi_io_vec[idx].bv_page,
2022                                                  REQ_OP_READ, 0, false)) {
2023                                         success = 1;
2024                                         break;
2025                                 }
2026                         }
2027                         d++;
2028                         if (d == conf->raid_disks * 2)
2029                                 d = 0;
2030                 } while (!success && d != r1_bio->read_disk);
2031
2032                 if (!success) {
2033                         char b[BDEVNAME_SIZE];
2034                         int abort = 0;
2035                         /* Cannot read from anywhere, this block is lost.
2036                          * Record a bad block on each device.  If that doesn't
2037                          * work just disable and interrupt the recovery.
2038                          * Don't fail devices as that won't really help.
2039                          */
2040                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2041                                             mdname(mddev),
2042                                             bdevname(bio->bi_bdev, b),
2043                                             (unsigned long long)r1_bio->sector);
2044                         for (d = 0; d < conf->raid_disks * 2; d++) {
2045                                 rdev = conf->mirrors[d].rdev;
2046                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2047                                         continue;
2048                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2049                                         abort = 1;
2050                         }
2051                         if (abort) {
2052                                 conf->recovery_disabled =
2053                                         mddev->recovery_disabled;
2054                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055                                 md_done_sync(mddev, r1_bio->sectors, 0);
2056                                 put_buf(r1_bio);
2057                                 return 0;
2058                         }
2059                         /* Try next page */
2060                         sectors -= s;
2061                         sect += s;
2062                         idx++;
2063                         continue;
2064                 }
2065
2066                 start = d;
2067                 /* write it back and re-read */
2068                 while (d != r1_bio->read_disk) {
2069                         if (d == 0)
2070                                 d = conf->raid_disks * 2;
2071                         d--;
2072                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2073                                 continue;
2074                         rdev = conf->mirrors[d].rdev;
2075                         if (r1_sync_page_io(rdev, sect, s,
2076                                             bio->bi_io_vec[idx].bv_page,
2077                                             WRITE) == 0) {
2078                                 r1_bio->bios[d]->bi_end_io = NULL;
2079                                 rdev_dec_pending(rdev, mddev);
2080                         }
2081                 }
2082                 d = start;
2083                 while (d != r1_bio->read_disk) {
2084                         if (d == 0)
2085                                 d = conf->raid_disks * 2;
2086                         d--;
2087                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088                                 continue;
2089                         rdev = conf->mirrors[d].rdev;
2090                         if (r1_sync_page_io(rdev, sect, s,
2091                                             bio->bi_io_vec[idx].bv_page,
2092                                             READ) != 0)
2093                                 atomic_add(s, &rdev->corrected_errors);
2094                 }
2095                 sectors -= s;
2096                 sect += s;
2097                 idx ++;
2098         }
2099         set_bit(R1BIO_Uptodate, &r1_bio->state);
2100         bio->bi_error = 0;
2101         return 1;
2102 }
2103
2104 static void process_checks(struct r1bio *r1_bio)
2105 {
2106         /* We have read all readable devices.  If we haven't
2107          * got the block, then there is no hope left.
2108          * If we have, then we want to do a comparison
2109          * and skip the write if everything is the same.
2110          * If any blocks failed to read, then we need to
2111          * attempt an over-write
2112          */
2113         struct mddev *mddev = r1_bio->mddev;
2114         struct r1conf *conf = mddev->private;
2115         int primary;
2116         int i;
2117         int vcnt;
2118
2119         /* Fix variable parts of all bios */
2120         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2121         for (i = 0; i < conf->raid_disks * 2; i++) {
2122                 int j;
2123                 int size;
2124                 int error;
2125                 struct bio *b = r1_bio->bios[i];
2126                 if (b->bi_end_io != end_sync_read)
2127                         continue;
2128                 /* fixup the bio for reuse, but preserve errno */
2129                 error = b->bi_error;
2130                 bio_reset(b);
2131                 b->bi_error = error;
2132                 b->bi_vcnt = vcnt;
2133                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2134                 b->bi_iter.bi_sector = r1_bio->sector +
2135                         conf->mirrors[i].rdev->data_offset;
2136                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2137                 b->bi_end_io = end_sync_read;
2138                 b->bi_private = r1_bio;
2139
2140                 size = b->bi_iter.bi_size;
2141                 for (j = 0; j < vcnt ; j++) {
2142                         struct bio_vec *bi;
2143                         bi = &b->bi_io_vec[j];
2144                         bi->bv_offset = 0;
2145                         if (size > PAGE_SIZE)
2146                                 bi->bv_len = PAGE_SIZE;
2147                         else
2148                                 bi->bv_len = size;
2149                         size -= PAGE_SIZE;
2150                 }
2151         }
2152         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2153                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2154                     !r1_bio->bios[primary]->bi_error) {
2155                         r1_bio->bios[primary]->bi_end_io = NULL;
2156                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2157                         break;
2158                 }
2159         r1_bio->read_disk = primary;
2160         for (i = 0; i < conf->raid_disks * 2; i++) {
2161                 int j;
2162                 struct bio *pbio = r1_bio->bios[primary];
2163                 struct bio *sbio = r1_bio->bios[i];
2164                 int error = sbio->bi_error;
2165
2166                 if (sbio->bi_end_io != end_sync_read)
2167                         continue;
2168                 /* Now we can 'fixup' the error value */
2169                 sbio->bi_error = 0;
2170
2171                 if (!error) {
2172                         for (j = vcnt; j-- ; ) {
2173                                 struct page *p, *s;
2174                                 p = pbio->bi_io_vec[j].bv_page;
2175                                 s = sbio->bi_io_vec[j].bv_page;
2176                                 if (memcmp(page_address(p),
2177                                            page_address(s),
2178                                            sbio->bi_io_vec[j].bv_len))
2179                                         break;
2180                         }
2181                 } else
2182                         j = 0;
2183                 if (j >= 0)
2184                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2185                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2186                               && !error)) {
2187                         /* No need to write to this device. */
2188                         sbio->bi_end_io = NULL;
2189                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2190                         continue;
2191                 }
2192
2193                 bio_copy_data(sbio, pbio);
2194         }
2195 }
2196
2197 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2198 {
2199         struct r1conf *conf = mddev->private;
2200         int i;
2201         int disks = conf->raid_disks * 2;
2202         struct bio *bio, *wbio;
2203
2204         bio = r1_bio->bios[r1_bio->read_disk];
2205
2206         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2207                 /* ouch - failed to read all of that. */
2208                 if (!fix_sync_read_error(r1_bio))
2209                         return;
2210
2211         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2212                 process_checks(r1_bio);
2213
2214         /*
2215          * schedule writes
2216          */
2217         atomic_set(&r1_bio->remaining, 1);
2218         for (i = 0; i < disks ; i++) {
2219                 wbio = r1_bio->bios[i];
2220                 if (wbio->bi_end_io == NULL ||
2221                     (wbio->bi_end_io == end_sync_read &&
2222                      (i == r1_bio->read_disk ||
2223                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2224                         continue;
2225
2226                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2227                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2228                         wbio->bi_opf |= MD_FAILFAST;
2229
2230                 wbio->bi_end_io = end_sync_write;
2231                 atomic_inc(&r1_bio->remaining);
2232                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2233
2234                 generic_make_request(wbio);
2235         }
2236
2237         if (atomic_dec_and_test(&r1_bio->remaining)) {
2238                 /* if we're here, all write(s) have completed, so clean up */
2239                 int s = r1_bio->sectors;
2240                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2241                     test_bit(R1BIO_WriteError, &r1_bio->state))
2242                         reschedule_retry(r1_bio);
2243                 else {
2244                         put_buf(r1_bio);
2245                         md_done_sync(mddev, s, 1);
2246                 }
2247         }
2248 }
2249
2250 /*
2251  * This is a kernel thread which:
2252  *
2253  *      1.      Retries failed read operations on working mirrors.
2254  *      2.      Updates the raid superblock when problems encounter.
2255  *      3.      Performs writes following reads for array synchronising.
2256  */
2257
2258 static void fix_read_error(struct r1conf *conf, int read_disk,
2259                            sector_t sect, int sectors)
2260 {
2261         struct mddev *mddev = conf->mddev;
2262         while(sectors) {
2263                 int s = sectors;
2264                 int d = read_disk;
2265                 int success = 0;
2266                 int start;
2267                 struct md_rdev *rdev;
2268
2269                 if (s > (PAGE_SIZE>>9))
2270                         s = PAGE_SIZE >> 9;
2271
2272                 do {
2273                         sector_t first_bad;
2274                         int bad_sectors;
2275
2276                         rcu_read_lock();
2277                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2278                         if (rdev &&
2279                             (test_bit(In_sync, &rdev->flags) ||
2280                              (!test_bit(Faulty, &rdev->flags) &&
2281                               rdev->recovery_offset >= sect + s)) &&
2282                             is_badblock(rdev, sect, s,
2283                                         &first_bad, &bad_sectors) == 0) {
2284                                 atomic_inc(&rdev->nr_pending);
2285                                 rcu_read_unlock();
2286                                 if (sync_page_io(rdev, sect, s<<9,
2287                                          conf->tmppage, REQ_OP_READ, 0, false))
2288                                         success = 1;
2289                                 rdev_dec_pending(rdev, mddev);
2290                                 if (success)
2291                                         break;
2292                         } else
2293                                 rcu_read_unlock();
2294                         d++;
2295                         if (d == conf->raid_disks * 2)
2296                                 d = 0;
2297                 } while (!success && d != read_disk);
2298
2299                 if (!success) {
2300                         /* Cannot read from anywhere - mark it bad */
2301                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2302                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2303                                 md_error(mddev, rdev);
2304                         break;
2305                 }
2306                 /* write it back and re-read */
2307                 start = d;
2308                 while (d != read_disk) {
2309                         if (d==0)
2310                                 d = conf->raid_disks * 2;
2311                         d--;
2312                         rcu_read_lock();
2313                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2314                         if (rdev &&
2315                             !test_bit(Faulty, &rdev->flags)) {
2316                                 atomic_inc(&rdev->nr_pending);
2317                                 rcu_read_unlock();
2318                                 r1_sync_page_io(rdev, sect, s,
2319                                                 conf->tmppage, WRITE);
2320                                 rdev_dec_pending(rdev, mddev);
2321                         } else
2322                                 rcu_read_unlock();
2323                 }
2324                 d = start;
2325                 while (d != read_disk) {
2326                         char b[BDEVNAME_SIZE];
2327                         if (d==0)
2328                                 d = conf->raid_disks * 2;
2329                         d--;
2330                         rcu_read_lock();
2331                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2332                         if (rdev &&
2333                             !test_bit(Faulty, &rdev->flags)) {
2334                                 atomic_inc(&rdev->nr_pending);
2335                                 rcu_read_unlock();
2336                                 if (r1_sync_page_io(rdev, sect, s,
2337                                                     conf->tmppage, READ)) {
2338                                         atomic_add(s, &rdev->corrected_errors);
2339                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2340                                                 mdname(mddev), s,
2341                                                 (unsigned long long)(sect +
2342                                                                      rdev->data_offset),
2343                                                 bdevname(rdev->bdev, b));
2344                                 }
2345                                 rdev_dec_pending(rdev, mddev);
2346                         } else
2347                                 rcu_read_unlock();
2348                 }
2349                 sectors -= s;
2350                 sect += s;
2351         }
2352 }
2353
2354 static int narrow_write_error(struct r1bio *r1_bio, int i)
2355 {
2356         struct mddev *mddev = r1_bio->mddev;
2357         struct r1conf *conf = mddev->private;
2358         struct md_rdev *rdev = conf->mirrors[i].rdev;
2359
2360         /* bio has the data to be written to device 'i' where
2361          * we just recently had a write error.
2362          * We repeatedly clone the bio and trim down to one block,
2363          * then try the write.  Where the write fails we record
2364          * a bad block.
2365          * It is conceivable that the bio doesn't exactly align with
2366          * blocks.  We must handle this somehow.
2367          *
2368          * We currently own a reference on the rdev.
2369          */
2370
2371         int block_sectors;
2372         sector_t sector;
2373         int sectors;
2374         int sect_to_write = r1_bio->sectors;
2375         int ok = 1;
2376
2377         if (rdev->badblocks.shift < 0)
2378                 return 0;
2379
2380         block_sectors = roundup(1 << rdev->badblocks.shift,
2381                                 bdev_logical_block_size(rdev->bdev) >> 9);
2382         sector = r1_bio->sector;
2383         sectors = ((sector + block_sectors)
2384                    & ~(sector_t)(block_sectors - 1))
2385                 - sector;
2386
2387         while (sect_to_write) {
2388                 struct bio *wbio;
2389                 if (sectors > sect_to_write)
2390                         sectors = sect_to_write;
2391                 /* Write at 'sector' for 'sectors'*/
2392
2393                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394                         unsigned vcnt = r1_bio->behind_page_count;
2395                         struct bio_vec *vec = r1_bio->behind_bvecs;
2396
2397                         while (!vec->bv_page) {
2398                                 vec++;
2399                                 vcnt--;
2400                         }
2401
2402                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2403                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2404
2405                         wbio->bi_vcnt = vcnt;
2406                 } else {
2407                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2408                                               mddev->bio_set);
2409                 }
2410
2411                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2412                 wbio->bi_iter.bi_sector = r1_bio->sector;
2413                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2414
2415                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2416                 wbio->bi_iter.bi_sector += rdev->data_offset;
2417                 wbio->bi_bdev = rdev->bdev;
2418
2419                 if (submit_bio_wait(wbio) < 0)
2420                         /* failure! */
2421                         ok = rdev_set_badblocks(rdev, sector,
2422                                                 sectors, 0)
2423                                 && ok;
2424
2425                 bio_put(wbio);
2426                 sect_to_write -= sectors;
2427                 sector += sectors;
2428                 sectors = block_sectors;
2429         }
2430         return ok;
2431 }
2432
2433 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2434 {
2435         int m;
2436         int s = r1_bio->sectors;
2437         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2438                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2439                 struct bio *bio = r1_bio->bios[m];
2440                 if (bio->bi_end_io == NULL)
2441                         continue;
2442                 if (!bio->bi_error &&
2443                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2444                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2445                 }
2446                 if (bio->bi_error &&
2447                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2448                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2449                                 md_error(conf->mddev, rdev);
2450                 }
2451         }
2452         put_buf(r1_bio);
2453         md_done_sync(conf->mddev, s, 1);
2454 }
2455
2456 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2457 {
2458         int m, idx;
2459         bool fail = false;
2460
2461         for (m = 0; m < conf->raid_disks * 2 ; m++)
2462                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2463                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2464                         rdev_clear_badblocks(rdev,
2465                                              r1_bio->sector,
2466                                              r1_bio->sectors, 0);
2467                         rdev_dec_pending(rdev, conf->mddev);
2468                 } else if (r1_bio->bios[m] != NULL) {
2469                         /* This drive got a write error.  We need to
2470                          * narrow down and record precise write
2471                          * errors.
2472                          */
2473                         fail = true;
2474                         if (!narrow_write_error(r1_bio, m)) {
2475                                 md_error(conf->mddev,
2476                                          conf->mirrors[m].rdev);
2477                                 /* an I/O failed, we can't clear the bitmap */
2478                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2479                         }
2480                         rdev_dec_pending(conf->mirrors[m].rdev,
2481                                          conf->mddev);
2482                 }
2483         if (fail) {
2484                 spin_lock_irq(&conf->device_lock);
2485                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2486                 idx = sector_to_idx(r1_bio->sector);
2487                 atomic_inc(&conf->nr_queued[idx]);
2488                 spin_unlock_irq(&conf->device_lock);
2489                 /*
2490                  * In case freeze_array() is waiting for condition
2491                  * get_unqueued_pending() == extra to be true.
2492                  */
2493                 wake_up(&conf->wait_barrier);
2494                 md_wakeup_thread(conf->mddev->thread);
2495         } else {
2496                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2497                         close_write(r1_bio);
2498                 raid_end_bio_io(r1_bio);
2499         }
2500 }
2501
2502 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2503 {
2504         int disk;
2505         int max_sectors;
2506         struct mddev *mddev = conf->mddev;
2507         struct bio *bio;
2508         char b[BDEVNAME_SIZE];
2509         struct md_rdev *rdev;
2510         dev_t bio_dev;
2511         sector_t bio_sector;
2512
2513         clear_bit(R1BIO_ReadError, &r1_bio->state);
2514         /* we got a read error. Maybe the drive is bad.  Maybe just
2515          * the block and we can fix it.
2516          * We freeze all other IO, and try reading the block from
2517          * other devices.  When we find one, we re-write
2518          * and check it that fixes the read error.
2519          * This is all done synchronously while the array is
2520          * frozen
2521          */
2522
2523         bio = r1_bio->bios[r1_bio->read_disk];
2524         bdevname(bio->bi_bdev, b);
2525         bio_dev = bio->bi_bdev->bd_dev;
2526         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2527         bio_put(bio);
2528         r1_bio->bios[r1_bio->read_disk] = NULL;
2529
2530         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2531         if (mddev->ro == 0
2532             && !test_bit(FailFast, &rdev->flags)) {
2533                 freeze_array(conf, 1);
2534                 fix_read_error(conf, r1_bio->read_disk,
2535                                r1_bio->sector, r1_bio->sectors);
2536                 unfreeze_array(conf);
2537         } else {
2538                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539         }
2540
2541         rdev_dec_pending(rdev, conf->mddev);
2542
2543 read_more:
2544         disk = read_balance(conf, r1_bio, &max_sectors);
2545         if (disk == -1) {
2546                 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2547                                     mdname(mddev), b, (unsigned long long)r1_bio->sector);
2548                 raid_end_bio_io(r1_bio);
2549         } else {
2550                 const unsigned long do_sync
2551                         = r1_bio->master_bio->bi_opf & REQ_SYNC;
2552                 r1_bio->read_disk = disk;
2553                 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2554                                      mddev->bio_set);
2555                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2556                          max_sectors);
2557                 r1_bio->bios[r1_bio->read_disk] = bio;
2558                 rdev = conf->mirrors[disk].rdev;
2559                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2560                                     mdname(mddev),
2561                                     (unsigned long long)r1_bio->sector,
2562                                     bdevname(rdev->bdev, b));
2563                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2564                 bio->bi_bdev = rdev->bdev;
2565                 bio->bi_end_io = raid1_end_read_request;
2566                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2567                 if (test_bit(FailFast, &rdev->flags) &&
2568                     test_bit(R1BIO_FailFast, &r1_bio->state))
2569                         bio->bi_opf |= MD_FAILFAST;
2570                 bio->bi_private = r1_bio;
2571                 if (max_sectors < r1_bio->sectors) {
2572                         /* Drat - have to split this up more */
2573                         struct bio *mbio = r1_bio->master_bio;
2574                         int sectors_handled = (r1_bio->sector + max_sectors
2575                                                - mbio->bi_iter.bi_sector);
2576                         r1_bio->sectors = max_sectors;
2577                         spin_lock_irq(&conf->device_lock);
2578                         if (mbio->bi_phys_segments == 0)
2579                                 mbio->bi_phys_segments = 2;
2580                         else
2581                                 mbio->bi_phys_segments++;
2582                         spin_unlock_irq(&conf->device_lock);
2583                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2584                                               bio, bio_dev, bio_sector);
2585                         generic_make_request(bio);
2586                         bio = NULL;
2587
2588                         r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2589                         set_bit(R1BIO_ReadError, &r1_bio->state);
2590
2591                         goto read_more;
2592                 } else {
2593                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2594                                               bio, bio_dev, bio_sector);
2595                         generic_make_request(bio);
2596                 }
2597         }
2598 }
2599
2600 static void raid1d(struct md_thread *thread)
2601 {
2602         struct mddev *mddev = thread->mddev;
2603         struct r1bio *r1_bio;
2604         unsigned long flags;
2605         struct r1conf *conf = mddev->private;
2606         struct list_head *head = &conf->retry_list;
2607         struct blk_plug plug;
2608         int idx;
2609
2610         md_check_recovery(mddev);
2611
2612         if (!list_empty_careful(&conf->bio_end_io_list) &&
2613             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2614                 LIST_HEAD(tmp);
2615                 spin_lock_irqsave(&conf->device_lock, flags);
2616                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2617                         list_splice_init(&conf->bio_end_io_list, &tmp);
2618                 spin_unlock_irqrestore(&conf->device_lock, flags);
2619                 while (!list_empty(&tmp)) {
2620                         r1_bio = list_first_entry(&tmp, struct r1bio,
2621                                                   retry_list);
2622                         list_del(&r1_bio->retry_list);
2623                         idx = sector_to_idx(r1_bio->sector);
2624                         atomic_dec(&conf->nr_queued[idx]);
2625                         if (mddev->degraded)
2626                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2627                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2628                                 close_write(r1_bio);
2629                         raid_end_bio_io(r1_bio);
2630                 }
2631         }
2632
2633         blk_start_plug(&plug);
2634         for (;;) {
2635
2636                 flush_pending_writes(conf);
2637
2638                 spin_lock_irqsave(&conf->device_lock, flags);
2639                 if (list_empty(head)) {
2640                         spin_unlock_irqrestore(&conf->device_lock, flags);
2641                         break;
2642                 }
2643                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2644                 list_del(head->prev);
2645                 idx = sector_to_idx(r1_bio->sector);
2646                 atomic_dec(&conf->nr_queued[idx]);
2647                 spin_unlock_irqrestore(&conf->device_lock, flags);
2648
2649                 mddev = r1_bio->mddev;
2650                 conf = mddev->private;
2651                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2652                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2653                             test_bit(R1BIO_WriteError, &r1_bio->state))
2654                                 handle_sync_write_finished(conf, r1_bio);
2655                         else
2656                                 sync_request_write(mddev, r1_bio);
2657                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2658                            test_bit(R1BIO_WriteError, &r1_bio->state))
2659                         handle_write_finished(conf, r1_bio);
2660                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2661                         handle_read_error(conf, r1_bio);
2662                 else
2663                         /* just a partial read to be scheduled from separate
2664                          * context
2665                          */
2666                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2667
2668                 cond_resched();
2669                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2670                         md_check_recovery(mddev);
2671         }
2672         blk_finish_plug(&plug);
2673 }
2674
2675 static int init_resync(struct r1conf *conf)
2676 {
2677         int buffs;
2678
2679         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2680         BUG_ON(conf->r1buf_pool);
2681         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2682                                           conf->poolinfo);
2683         if (!conf->r1buf_pool)
2684                 return -ENOMEM;
2685         return 0;
2686 }
2687
2688 /*
2689  * perform a "sync" on one "block"
2690  *
2691  * We need to make sure that no normal I/O request - particularly write
2692  * requests - conflict with active sync requests.
2693  *
2694  * This is achieved by tracking pending requests and a 'barrier' concept
2695  * that can be installed to exclude normal IO requests.
2696  */
2697
2698 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2699                                    int *skipped)
2700 {
2701         struct r1conf *conf = mddev->private;
2702         struct r1bio *r1_bio;
2703         struct bio *bio;
2704         sector_t max_sector, nr_sectors;
2705         int disk = -1;
2706         int i;
2707         int wonly = -1;
2708         int write_targets = 0, read_targets = 0;
2709         sector_t sync_blocks;
2710         int still_degraded = 0;
2711         int good_sectors = RESYNC_SECTORS;
2712         int min_bad = 0; /* number of sectors that are bad in all devices */
2713         int idx = sector_to_idx(sector_nr);
2714
2715         if (!conf->r1buf_pool)
2716                 if (init_resync(conf))
2717                         return 0;
2718
2719         max_sector = mddev->dev_sectors;
2720         if (sector_nr >= max_sector) {
2721                 /* If we aborted, we need to abort the
2722                  * sync on the 'current' bitmap chunk (there will
2723                  * only be one in raid1 resync.
2724                  * We can find the current addess in mddev->curr_resync
2725                  */
2726                 if (mddev->curr_resync < max_sector) /* aborted */
2727                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2728                                                 &sync_blocks, 1);
2729                 else /* completed sync */
2730                         conf->fullsync = 0;
2731
2732                 bitmap_close_sync(mddev->bitmap);
2733                 close_sync(conf);
2734
2735                 if (mddev_is_clustered(mddev)) {
2736                         conf->cluster_sync_low = 0;
2737                         conf->cluster_sync_high = 0;
2738                 }
2739                 return 0;
2740         }
2741
2742         if (mddev->bitmap == NULL &&
2743             mddev->recovery_cp == MaxSector &&
2744             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2745             conf->fullsync == 0) {
2746                 *skipped = 1;
2747                 return max_sector - sector_nr;
2748         }
2749         /* before building a request, check if we can skip these blocks..
2750          * This call the bitmap_start_sync doesn't actually record anything
2751          */
2752         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2753             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2754                 /* We can skip this block, and probably several more */
2755                 *skipped = 1;
2756                 return sync_blocks;
2757         }
2758
2759         /*
2760          * If there is non-resync activity waiting for a turn, then let it
2761          * though before starting on this new sync request.
2762          */
2763         if (atomic_read(&conf->nr_waiting[idx]))
2764                 schedule_timeout_uninterruptible(1);
2765
2766         /* we are incrementing sector_nr below. To be safe, we check against
2767          * sector_nr + two times RESYNC_SECTORS
2768          */
2769
2770         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2771                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2772         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2773
2774         raise_barrier(conf, sector_nr);
2775
2776         rcu_read_lock();
2777         /*
2778          * If we get a correctably read error during resync or recovery,
2779          * we might want to read from a different device.  So we
2780          * flag all drives that could conceivably be read from for READ,
2781          * and any others (which will be non-In_sync devices) for WRITE.
2782          * If a read fails, we try reading from something else for which READ
2783          * is OK.
2784          */
2785
2786         r1_bio->mddev = mddev;
2787         r1_bio->sector = sector_nr;
2788         r1_bio->state = 0;
2789         set_bit(R1BIO_IsSync, &r1_bio->state);
2790         /* make sure good_sectors won't go across barrier unit boundary */
2791         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2792
2793         for (i = 0; i < conf->raid_disks * 2; i++) {
2794                 struct md_rdev *rdev;
2795                 bio = r1_bio->bios[i];
2796                 bio_reset(bio);
2797
2798                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2799                 if (rdev == NULL ||
2800                     test_bit(Faulty, &rdev->flags)) {
2801                         if (i < conf->raid_disks)
2802                                 still_degraded = 1;
2803                 } else if (!test_bit(In_sync, &rdev->flags)) {
2804                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2805                         bio->bi_end_io = end_sync_write;
2806                         write_targets ++;
2807                 } else {
2808                         /* may need to read from here */
2809                         sector_t first_bad = MaxSector;
2810                         int bad_sectors;
2811
2812                         if (is_badblock(rdev, sector_nr, good_sectors,
2813                                         &first_bad, &bad_sectors)) {
2814                                 if (first_bad > sector_nr)
2815                                         good_sectors = first_bad - sector_nr;
2816                                 else {
2817                                         bad_sectors -= (sector_nr - first_bad);
2818                                         if (min_bad == 0 ||
2819                                             min_bad > bad_sectors)
2820                                                 min_bad = bad_sectors;
2821                                 }
2822                         }
2823                         if (sector_nr < first_bad) {
2824                                 if (test_bit(WriteMostly, &rdev->flags)) {
2825                                         if (wonly < 0)
2826                                                 wonly = i;
2827                                 } else {
2828                                         if (disk < 0)
2829                                                 disk = i;
2830                                 }
2831                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2832                                 bio->bi_end_io = end_sync_read;
2833                                 read_targets++;
2834                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2835                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2837                                 /*
2838                                  * The device is suitable for reading (InSync),
2839                                  * but has bad block(s) here. Let's try to correct them,
2840                                  * if we are doing resync or repair. Otherwise, leave
2841                                  * this device alone for this sync request.
2842                                  */
2843                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2844                                 bio->bi_end_io = end_sync_write;
2845                                 write_targets++;
2846                         }
2847                 }
2848                 if (bio->bi_end_io) {
2849                         atomic_inc(&rdev->nr_pending);
2850                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2851                         bio->bi_bdev = rdev->bdev;
2852                         bio->bi_private = r1_bio;
2853                         if (test_bit(FailFast, &rdev->flags))
2854                                 bio->bi_opf |= MD_FAILFAST;
2855                 }
2856         }
2857         rcu_read_unlock();
2858         if (disk < 0)
2859                 disk = wonly;
2860         r1_bio->read_disk = disk;
2861
2862         if (read_targets == 0 && min_bad > 0) {
2863                 /* These sectors are bad on all InSync devices, so we
2864                  * need to mark them bad on all write targets
2865                  */
2866                 int ok = 1;
2867                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2868                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2869                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2870                                 ok = rdev_set_badblocks(rdev, sector_nr,
2871                                                         min_bad, 0
2872                                         ) && ok;
2873                         }
2874                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2875                 *skipped = 1;
2876                 put_buf(r1_bio);
2877
2878                 if (!ok) {
2879                         /* Cannot record the badblocks, so need to
2880                          * abort the resync.
2881                          * If there are multiple read targets, could just
2882                          * fail the really bad ones ???
2883                          */
2884                         conf->recovery_disabled = mddev->recovery_disabled;
2885                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2886                         return 0;
2887                 } else
2888                         return min_bad;
2889
2890         }
2891         if (min_bad > 0 && min_bad < good_sectors) {
2892                 /* only resync enough to reach the next bad->good
2893                  * transition */
2894                 good_sectors = min_bad;
2895         }
2896
2897         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2898                 /* extra read targets are also write targets */
2899                 write_targets += read_targets-1;
2900
2901         if (write_targets == 0 || read_targets == 0) {
2902                 /* There is nowhere to write, so all non-sync
2903                  * drives must be failed - so we are finished
2904                  */
2905                 sector_t rv;
2906                 if (min_bad > 0)
2907                         max_sector = sector_nr + min_bad;
2908                 rv = max_sector - sector_nr;
2909                 *skipped = 1;
2910                 put_buf(r1_bio);
2911                 return rv;
2912         }
2913
2914         if (max_sector > mddev->resync_max)
2915                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2916         if (max_sector > sector_nr + good_sectors)
2917                 max_sector = sector_nr + good_sectors;
2918         nr_sectors = 0;
2919         sync_blocks = 0;
2920         do {
2921                 struct page *page;
2922                 int len = PAGE_SIZE;
2923                 if (sector_nr + (len>>9) > max_sector)
2924                         len = (max_sector - sector_nr) << 9;
2925                 if (len == 0)
2926                         break;
2927                 if (sync_blocks == 0) {
2928                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2929                                                &sync_blocks, still_degraded) &&
2930                             !conf->fullsync &&
2931                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2932                                 break;
2933                         if ((len >> 9) > sync_blocks)
2934                                 len = sync_blocks<<9;
2935                 }
2936
2937                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2938                         bio = r1_bio->bios[i];
2939                         if (bio->bi_end_io) {
2940                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2941                                 if (bio_add_page(bio, page, len, 0) == 0) {
2942                                         /* stop here */
2943                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2944                                         while (i > 0) {
2945                                                 i--;
2946                                                 bio = r1_bio->bios[i];
2947                                                 if (bio->bi_end_io==NULL)
2948                                                         continue;
2949                                                 /* remove last page from this bio */
2950                                                 bio->bi_vcnt--;
2951                                                 bio->bi_iter.bi_size -= len;
2952                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2953                                         }
2954                                         goto bio_full;
2955                                 }
2956                         }
2957                 }
2958                 nr_sectors += len>>9;
2959                 sector_nr += len>>9;
2960                 sync_blocks -= (len>>9);
2961         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2962  bio_full:
2963         r1_bio->sectors = nr_sectors;
2964
2965         if (mddev_is_clustered(mddev) &&
2966                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2967                 conf->cluster_sync_low = mddev->curr_resync_completed;
2968                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2969                 /* Send resync message */
2970                 md_cluster_ops->resync_info_update(mddev,
2971                                 conf->cluster_sync_low,
2972                                 conf->cluster_sync_high);
2973         }
2974
2975         /* For a user-requested sync, we read all readable devices and do a
2976          * compare
2977          */
2978         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2979                 atomic_set(&r1_bio->remaining, read_targets);
2980                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2981                         bio = r1_bio->bios[i];
2982                         if (bio->bi_end_io == end_sync_read) {
2983                                 read_targets--;
2984                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2985                                 if (read_targets == 1)
2986                                         bio->bi_opf &= ~MD_FAILFAST;
2987                                 generic_make_request(bio);
2988                         }
2989                 }
2990         } else {
2991                 atomic_set(&r1_bio->remaining, 1);
2992                 bio = r1_bio->bios[r1_bio->read_disk];
2993                 md_sync_acct(bio->bi_bdev, nr_sectors);
2994                 if (read_targets == 1)
2995                         bio->bi_opf &= ~MD_FAILFAST;
2996                 generic_make_request(bio);
2997
2998         }
2999         return nr_sectors;
3000 }
3001
3002 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3003 {
3004         if (sectors)
3005                 return sectors;
3006
3007         return mddev->dev_sectors;
3008 }
3009
3010 static struct r1conf *setup_conf(struct mddev *mddev)
3011 {
3012         struct r1conf *conf;
3013         int i;
3014         struct raid1_info *disk;
3015         struct md_rdev *rdev;
3016         int err = -ENOMEM;
3017
3018         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3019         if (!conf)
3020                 goto abort;
3021
3022         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3023                                    sizeof(atomic_t), GFP_KERNEL);
3024         if (!conf->nr_pending)
3025                 goto abort;
3026
3027         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3028                                    sizeof(atomic_t), GFP_KERNEL);
3029         if (!conf->nr_waiting)
3030                 goto abort;
3031
3032         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3033                                   sizeof(atomic_t), GFP_KERNEL);
3034         if (!conf->nr_queued)
3035                 goto abort;
3036
3037         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3038                                 sizeof(atomic_t), GFP_KERNEL);
3039         if (!conf->barrier)
3040                 goto abort;
3041
3042         conf->mirrors = kzalloc(sizeof(struct raid1_info)
3043                                 * mddev->raid_disks * 2,
3044                                  GFP_KERNEL);
3045         if (!conf->mirrors)
3046                 goto abort;
3047
3048         conf->tmppage = alloc_page(GFP_KERNEL);
3049         if (!conf->tmppage)
3050                 goto abort;
3051
3052         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3053         if (!conf->poolinfo)
3054                 goto abort;
3055         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3056         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3057                                           r1bio_pool_free,
3058                                           conf->poolinfo);
3059         if (!conf->r1bio_pool)
3060                 goto abort;
3061
3062         conf->poolinfo->mddev = mddev;
3063
3064         err = -EINVAL;
3065         spin_lock_init(&conf->device_lock);
3066         rdev_for_each(rdev, mddev) {
3067                 struct request_queue *q;
3068                 int disk_idx = rdev->raid_disk;
3069                 if (disk_idx >= mddev->raid_disks
3070                     || disk_idx < 0)
3071                         continue;
3072                 if (test_bit(Replacement, &rdev->flags))
3073                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3074                 else
3075                         disk = conf->mirrors + disk_idx;
3076
3077                 if (disk->rdev)
3078                         goto abort;
3079                 disk->rdev = rdev;
3080                 q = bdev_get_queue(rdev->bdev);
3081
3082                 disk->head_position = 0;
3083                 disk->seq_start = MaxSector;
3084         }
3085         conf->raid_disks = mddev->raid_disks;
3086         conf->mddev = mddev;
3087         INIT_LIST_HEAD(&conf->retry_list);
3088         INIT_LIST_HEAD(&conf->bio_end_io_list);
3089
3090         spin_lock_init(&conf->resync_lock);
3091         init_waitqueue_head(&conf->wait_barrier);
3092
3093         bio_list_init(&conf->pending_bio_list);
3094         conf->pending_count = 0;
3095         conf->recovery_disabled = mddev->recovery_disabled - 1;
3096
3097         err = -EIO;
3098         for (i = 0; i < conf->raid_disks * 2; i++) {
3099
3100                 disk = conf->mirrors + i;
3101
3102                 if (i < conf->raid_disks &&
3103                     disk[conf->raid_disks].rdev) {
3104                         /* This slot has a replacement. */
3105                         if (!disk->rdev) {
3106                                 /* No original, just make the replacement
3107                                  * a recovering spare
3108                                  */
3109                                 disk->rdev =
3110                                         disk[conf->raid_disks].rdev;
3111                                 disk[conf->raid_disks].rdev = NULL;
3112                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3113                                 /* Original is not in_sync - bad */
3114                                 goto abort;
3115                 }
3116
3117                 if (!disk->rdev ||
3118                     !test_bit(In_sync, &disk->rdev->flags)) {
3119                         disk->head_position = 0;
3120                         if (disk->rdev &&
3121                             (disk->rdev->saved_raid_disk < 0))
3122                                 conf->fullsync = 1;
3123                 }
3124         }
3125
3126         err = -ENOMEM;
3127         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3128         if (!conf->thread)
3129                 goto abort;
3130
3131         return conf;
3132
3133  abort:
3134         if (conf) {
3135                 mempool_destroy(conf->r1bio_pool);
3136                 kfree(conf->mirrors);
3137                 safe_put_page(conf->tmppage);
3138                 kfree(conf->poolinfo);
3139                 kfree(conf->nr_pending);
3140                 kfree(conf->nr_waiting);
3141                 kfree(conf->nr_queued);
3142                 kfree(conf->barrier);
3143                 kfree(conf);
3144         }
3145         return ERR_PTR(err);
3146 }
3147
3148 static void raid1_free(struct mddev *mddev, void *priv);
3149 static int raid1_run(struct mddev *mddev)
3150 {
3151         struct r1conf *conf;
3152         int i;
3153         struct md_rdev *rdev;
3154         int ret;
3155         bool discard_supported = false;
3156
3157         if (mddev->level != 1) {
3158                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3159                         mdname(mddev), mddev->level);
3160                 return -EIO;
3161         }
3162         if (mddev->reshape_position != MaxSector) {
3163                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3164                         mdname(mddev));
3165                 return -EIO;
3166         }
3167         /*
3168          * copy the already verified devices into our private RAID1
3169          * bookkeeping area. [whatever we allocate in run(),
3170          * should be freed in raid1_free()]
3171          */
3172         if (mddev->private == NULL)
3173                 conf = setup_conf(mddev);
3174         else
3175                 conf = mddev->private;
3176
3177         if (IS_ERR(conf))
3178                 return PTR_ERR(conf);
3179
3180         if (mddev->queue)
3181                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3182
3183         rdev_for_each(rdev, mddev) {
3184                 if (!mddev->gendisk)
3185                         continue;
3186                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3187                                   rdev->data_offset << 9);
3188                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3189                         discard_supported = true;
3190         }
3191
3192         mddev->degraded = 0;
3193         for (i=0; i < conf->raid_disks; i++)
3194                 if (conf->mirrors[i].rdev == NULL ||
3195                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3196                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3197                         mddev->degraded++;
3198
3199         if (conf->raid_disks - mddev->degraded == 1)
3200                 mddev->recovery_cp = MaxSector;
3201
3202         if (mddev->recovery_cp != MaxSector)
3203                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3204                         mdname(mddev));
3205         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3206                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3207                 mddev->raid_disks);
3208
3209         /*
3210          * Ok, everything is just fine now
3211          */
3212         mddev->thread = conf->thread;
3213         conf->thread = NULL;
3214         mddev->private = conf;
3215         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3216
3217         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3218
3219         if (mddev->queue) {
3220                 if (discard_supported)
3221                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3222                                                 mddev->queue);
3223                 else
3224                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3225                                                   mddev->queue);
3226         }
3227
3228         ret =  md_integrity_register(mddev);
3229         if (ret) {
3230                 md_unregister_thread(&mddev->thread);
3231                 raid1_free(mddev, conf);
3232         }
3233         return ret;
3234 }
3235
3236 static void raid1_free(struct mddev *mddev, void *priv)
3237 {
3238         struct r1conf *conf = priv;
3239
3240         mempool_destroy(conf->r1bio_pool);
3241         kfree(conf->mirrors);
3242         safe_put_page(conf->tmppage);
3243         kfree(conf->poolinfo);
3244         kfree(conf->nr_pending);
3245         kfree(conf->nr_waiting);
3246         kfree(conf->nr_queued);
3247         kfree(conf->barrier);
3248         kfree(conf);
3249 }
3250
3251 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3252 {
3253         /* no resync is happening, and there is enough space
3254          * on all devices, so we can resize.
3255          * We need to make sure resync covers any new space.
3256          * If the array is shrinking we should possibly wait until
3257          * any io in the removed space completes, but it hardly seems
3258          * worth it.
3259          */
3260         sector_t newsize = raid1_size(mddev, sectors, 0);
3261         if (mddev->external_size &&
3262             mddev->array_sectors > newsize)
3263                 return -EINVAL;
3264         if (mddev->bitmap) {
3265                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3266                 if (ret)
3267                         return ret;
3268         }
3269         md_set_array_sectors(mddev, newsize);
3270         if (sectors > mddev->dev_sectors &&
3271             mddev->recovery_cp > mddev->dev_sectors) {
3272                 mddev->recovery_cp = mddev->dev_sectors;
3273                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274         }
3275         mddev->dev_sectors = sectors;
3276         mddev->resync_max_sectors = sectors;
3277         return 0;
3278 }
3279
3280 static int raid1_reshape(struct mddev *mddev)
3281 {
3282         /* We need to:
3283          * 1/ resize the r1bio_pool
3284          * 2/ resize conf->mirrors
3285          *
3286          * We allocate a new r1bio_pool if we can.
3287          * Then raise a device barrier and wait until all IO stops.
3288          * Then resize conf->mirrors and swap in the new r1bio pool.
3289          *
3290          * At the same time, we "pack" the devices so that all the missing
3291          * devices have the higher raid_disk numbers.
3292          */
3293         mempool_t *newpool, *oldpool;
3294         struct pool_info *newpoolinfo;
3295         struct raid1_info *newmirrors;
3296         struct r1conf *conf = mddev->private;
3297         int cnt, raid_disks;
3298         unsigned long flags;
3299         int d, d2, err;
3300
3301         /* Cannot change chunk_size, layout, or level */
3302         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3303             mddev->layout != mddev->new_layout ||
3304             mddev->level != mddev->new_level) {
3305                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3306                 mddev->new_layout = mddev->layout;
3307                 mddev->new_level = mddev->level;
3308                 return -EINVAL;
3309         }
3310
3311         if (!mddev_is_clustered(mddev)) {
3312                 err = md_allow_write(mddev);
3313                 if (err)
3314                         return err;
3315         }
3316
3317         raid_disks = mddev->raid_disks + mddev->delta_disks;
3318
3319         if (raid_disks < conf->raid_disks) {
3320                 cnt=0;
3321                 for (d= 0; d < conf->raid_disks; d++)
3322                         if (conf->mirrors[d].rdev)
3323                                 cnt++;
3324                 if (cnt > raid_disks)
3325                         return -EBUSY;
3326         }
3327
3328         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3329         if (!newpoolinfo)
3330                 return -ENOMEM;
3331         newpoolinfo->mddev = mddev;
3332         newpoolinfo->raid_disks = raid_disks * 2;
3333
3334         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3335                                  r1bio_pool_free, newpoolinfo);
3336         if (!newpool) {
3337                 kfree(newpoolinfo);
3338                 return -ENOMEM;
3339         }
3340         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3341                              GFP_KERNEL);
3342         if (!newmirrors) {
3343                 kfree(newpoolinfo);
3344                 mempool_destroy(newpool);
3345                 return -ENOMEM;
3346         }
3347
3348         freeze_array(conf, 0);
3349
3350         /* ok, everything is stopped */
3351         oldpool = conf->r1bio_pool;
3352         conf->r1bio_pool = newpool;
3353
3354         for (d = d2 = 0; d < conf->raid_disks; d++) {
3355                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3356                 if (rdev && rdev->raid_disk != d2) {
3357                         sysfs_unlink_rdev(mddev, rdev);
3358                         rdev->raid_disk = d2;
3359                         sysfs_unlink_rdev(mddev, rdev);
3360                         if (sysfs_link_rdev(mddev, rdev))
3361                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3362                                         mdname(mddev), rdev->raid_disk);
3363                 }
3364                 if (rdev)
3365                         newmirrors[d2++].rdev = rdev;
3366         }
3367         kfree(conf->mirrors);
3368         conf->mirrors = newmirrors;
3369         kfree(conf->poolinfo);
3370         conf->poolinfo = newpoolinfo;
3371
3372         spin_lock_irqsave(&conf->device_lock, flags);
3373         mddev->degraded += (raid_disks - conf->raid_disks);
3374         spin_unlock_irqrestore(&conf->device_lock, flags);
3375         conf->raid_disks = mddev->raid_disks = raid_disks;
3376         mddev->delta_disks = 0;
3377
3378         unfreeze_array(conf);
3379
3380         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3381         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3382         md_wakeup_thread(mddev->thread);
3383
3384         mempool_destroy(oldpool);
3385         return 0;
3386 }
3387
3388 static void raid1_quiesce(struct mddev *mddev, int state)
3389 {
3390         struct r1conf *conf = mddev->private;
3391
3392         switch(state) {
3393         case 2: /* wake for suspend */
3394                 wake_up(&conf->wait_barrier);
3395                 break;
3396         case 1:
3397                 freeze_array(conf, 0);
3398                 break;
3399         case 0:
3400                 unfreeze_array(conf);
3401                 break;
3402         }
3403 }
3404
3405 static void *raid1_takeover(struct mddev *mddev)
3406 {
3407         /* raid1 can take over:
3408          *  raid5 with 2 devices, any layout or chunk size
3409          */
3410         if (mddev->level == 5 && mddev->raid_disks == 2) {
3411                 struct r1conf *conf;
3412                 mddev->new_level = 1;
3413                 mddev->new_layout = 0;
3414                 mddev->new_chunk_sectors = 0;
3415                 conf = setup_conf(mddev);
3416                 if (!IS_ERR(conf)) {
3417                         /* Array must appear to be quiesced */
3418                         conf->array_frozen = 1;
3419                         mddev_clear_unsupported_flags(mddev,
3420                                 UNSUPPORTED_MDDEV_FLAGS);
3421                 }
3422                 return conf;
3423         }
3424         return ERR_PTR(-EINVAL);
3425 }
3426
3427 static struct md_personality raid1_personality =
3428 {
3429         .name           = "raid1",
3430         .level          = 1,
3431         .owner          = THIS_MODULE,
3432         .make_request   = raid1_make_request,
3433         .run            = raid1_run,
3434         .free           = raid1_free,
3435         .status         = raid1_status,
3436         .error_handler  = raid1_error,
3437         .hot_add_disk   = raid1_add_disk,
3438         .hot_remove_disk= raid1_remove_disk,
3439         .spare_active   = raid1_spare_active,
3440         .sync_request   = raid1_sync_request,
3441         .resize         = raid1_resize,
3442         .size           = raid1_size,
3443         .check_reshape  = raid1_reshape,
3444         .quiesce        = raid1_quiesce,
3445         .takeover       = raid1_takeover,
3446         .congested      = raid1_congested,
3447 };
3448
3449 static int __init raid_init(void)
3450 {
3451         return register_md_personality(&raid1_personality);
3452 }
3453
3454 static void raid_exit(void)
3455 {
3456         unregister_md_personality(&raid1_personality);
3457 }
3458
3459 module_init(raid_init);
3460 module_exit(raid_exit);
3461 MODULE_LICENSE("GPL");
3462 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3463 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3464 MODULE_ALIAS("md-raid1");
3465 MODULE_ALIAS("md-level-1");
3466
3467 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);