OSDN Git Service

mtd: atmel_nand: remove redundant dev_err call
[android-x86/kernel.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #include <linux/dma-mapping.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/platform_device.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
42
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/platform_data/atmel.h>
49
50 static int use_dma = 1;
51 module_param(use_dma, int, 0);
52
53 static int on_flash_bbt = 0;
54 module_param(on_flash_bbt, int, 0);
55
56 /* Register access macros */
57 #define ecc_readl(add, reg)                             \
58         __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value)                     \
60         __raw_writel((value), add + ATMEL_ECC_##reg)
61
62 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
64
65 /* oob layout for large page size
66  * bad block info is on bytes 0 and 1
67  * the bytes have to be consecutives to avoid
68  * several NAND_CMD_RNDOUT during read
69  */
70 static struct nand_ecclayout atmel_oobinfo_large = {
71         .eccbytes = 4,
72         .eccpos = {60, 61, 62, 63},
73         .oobfree = {
74                 {2, 58}
75         },
76 };
77
78 /* oob layout for small page size
79  * bad block info is on bytes 4 and 5
80  * the bytes have to be consecutives to avoid
81  * several NAND_CMD_RNDOUT during read
82  */
83 static struct nand_ecclayout atmel_oobinfo_small = {
84         .eccbytes = 4,
85         .eccpos = {0, 1, 2, 3},
86         .oobfree = {
87                 {6, 10}
88         },
89 };
90
91 struct atmel_nfc {
92         void __iomem            *base_cmd_regs;
93         void __iomem            *hsmc_regs;
94         void __iomem            *sram_bank0;
95         dma_addr_t              sram_bank0_phys;
96         bool                    use_nfc_sram;
97         bool                    write_by_sram;
98
99         bool                    is_initialized;
100         struct completion       comp_ready;
101         struct completion       comp_cmd_done;
102         struct completion       comp_xfer_done;
103
104         /* Point to the sram bank which include readed data via NFC */
105         void __iomem            *data_in_sram;
106         bool                    will_write_sram;
107 };
108 static struct atmel_nfc nand_nfc;
109
110 struct atmel_nand_host {
111         struct nand_chip        nand_chip;
112         struct mtd_info         mtd;
113         void __iomem            *io_base;
114         dma_addr_t              io_phys;
115         struct atmel_nand_data  board;
116         struct device           *dev;
117         void __iomem            *ecc;
118
119         struct completion       comp;
120         struct dma_chan         *dma_chan;
121
122         struct atmel_nfc        *nfc;
123
124         bool                    has_pmecc;
125         u8                      pmecc_corr_cap;
126         u16                     pmecc_sector_size;
127         u32                     pmecc_lookup_table_offset;
128         u32                     pmecc_lookup_table_offset_512;
129         u32                     pmecc_lookup_table_offset_1024;
130
131         int                     pmecc_bytes_per_sector;
132         int                     pmecc_sector_number;
133         int                     pmecc_degree;   /* Degree of remainders */
134         int                     pmecc_cw_len;   /* Length of codeword */
135
136         void __iomem            *pmerrloc_base;
137         void __iomem            *pmecc_rom_base;
138
139         /* lookup table for alpha_to and index_of */
140         void __iomem            *pmecc_alpha_to;
141         void __iomem            *pmecc_index_of;
142
143         /* data for pmecc computation */
144         int16_t                 *pmecc_partial_syn;
145         int16_t                 *pmecc_si;
146         int16_t                 *pmecc_smu;     /* Sigma table */
147         int16_t                 *pmecc_lmu;     /* polynomal order */
148         int                     *pmecc_mu;
149         int                     *pmecc_dmu;
150         int                     *pmecc_delta;
151 };
152
153 static struct nand_ecclayout atmel_pmecc_oobinfo;
154
155 /*
156  * Enable NAND.
157  */
158 static void atmel_nand_enable(struct atmel_nand_host *host)
159 {
160         if (gpio_is_valid(host->board.enable_pin))
161                 gpio_set_value(host->board.enable_pin, 0);
162 }
163
164 /*
165  * Disable NAND.
166  */
167 static void atmel_nand_disable(struct atmel_nand_host *host)
168 {
169         if (gpio_is_valid(host->board.enable_pin))
170                 gpio_set_value(host->board.enable_pin, 1);
171 }
172
173 /*
174  * Hardware specific access to control-lines
175  */
176 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
177 {
178         struct nand_chip *nand_chip = mtd->priv;
179         struct atmel_nand_host *host = nand_chip->priv;
180
181         if (ctrl & NAND_CTRL_CHANGE) {
182                 if (ctrl & NAND_NCE)
183                         atmel_nand_enable(host);
184                 else
185                         atmel_nand_disable(host);
186         }
187         if (cmd == NAND_CMD_NONE)
188                 return;
189
190         if (ctrl & NAND_CLE)
191                 writeb(cmd, host->io_base + (1 << host->board.cle));
192         else
193                 writeb(cmd, host->io_base + (1 << host->board.ale));
194 }
195
196 /*
197  * Read the Device Ready pin.
198  */
199 static int atmel_nand_device_ready(struct mtd_info *mtd)
200 {
201         struct nand_chip *nand_chip = mtd->priv;
202         struct atmel_nand_host *host = nand_chip->priv;
203
204         return gpio_get_value(host->board.rdy_pin) ^
205                 !!host->board.rdy_pin_active_low;
206 }
207
208 /* Set up for hardware ready pin and enable pin. */
209 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
210 {
211         struct nand_chip *chip = mtd->priv;
212         struct atmel_nand_host *host = chip->priv;
213         int res = 0;
214
215         if (gpio_is_valid(host->board.rdy_pin)) {
216                 res = devm_gpio_request(host->dev,
217                                 host->board.rdy_pin, "nand_rdy");
218                 if (res < 0) {
219                         dev_err(host->dev,
220                                 "can't request rdy gpio %d\n",
221                                 host->board.rdy_pin);
222                         return res;
223                 }
224
225                 res = gpio_direction_input(host->board.rdy_pin);
226                 if (res < 0) {
227                         dev_err(host->dev,
228                                 "can't request input direction rdy gpio %d\n",
229                                 host->board.rdy_pin);
230                         return res;
231                 }
232
233                 chip->dev_ready = atmel_nand_device_ready;
234         }
235
236         if (gpio_is_valid(host->board.enable_pin)) {
237                 res = devm_gpio_request(host->dev,
238                                 host->board.enable_pin, "nand_enable");
239                 if (res < 0) {
240                         dev_err(host->dev,
241                                 "can't request enable gpio %d\n",
242                                 host->board.enable_pin);
243                         return res;
244                 }
245
246                 res = gpio_direction_output(host->board.enable_pin, 1);
247                 if (res < 0) {
248                         dev_err(host->dev,
249                                 "can't request output direction enable gpio %d\n",
250                                 host->board.enable_pin);
251                         return res;
252                 }
253         }
254
255         return res;
256 }
257
258 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
259 {
260         int i;
261         u32 *t = trg;
262         const __iomem u32 *s = src;
263
264         for (i = 0; i < (size >> 2); i++)
265                 *t++ = readl_relaxed(s++);
266 }
267
268 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
269 {
270         int i;
271         u32 __iomem *t = trg;
272         const u32 *s = src;
273
274         for (i = 0; i < (size >> 2); i++)
275                 writel_relaxed(*s++, t++);
276 }
277
278 /*
279  * Minimal-overhead PIO for data access.
280  */
281 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
282 {
283         struct nand_chip        *nand_chip = mtd->priv;
284         struct atmel_nand_host *host = nand_chip->priv;
285
286         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
287                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
288                 host->nfc->data_in_sram += len;
289         } else {
290                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
291         }
292 }
293
294 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
295 {
296         struct nand_chip        *nand_chip = mtd->priv;
297         struct atmel_nand_host *host = nand_chip->priv;
298
299         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
300                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
301                 host->nfc->data_in_sram += len;
302         } else {
303                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
304         }
305 }
306
307 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
308 {
309         struct nand_chip        *nand_chip = mtd->priv;
310
311         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
312 }
313
314 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
315 {
316         struct nand_chip        *nand_chip = mtd->priv;
317
318         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
319 }
320
321 static void dma_complete_func(void *completion)
322 {
323         complete(completion);
324 }
325
326 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
327 {
328         /* NFC only has two banks. Must be 0 or 1 */
329         if (bank > 1)
330                 return -EINVAL;
331
332         if (bank) {
333                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
334                 if (host->mtd.writesize > 2048)
335                         return -EINVAL;
336                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
337         } else {
338                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
339         }
340
341         return 0;
342 }
343
344 static uint nfc_get_sram_off(struct atmel_nand_host *host)
345 {
346         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
347                 return NFC_SRAM_BANK1_OFFSET;
348         else
349                 return 0;
350 }
351
352 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
353 {
354         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
355                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
356         else
357                 return host->nfc->sram_bank0_phys;
358 }
359
360 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
361                                int is_read)
362 {
363         struct dma_device *dma_dev;
364         enum dma_ctrl_flags flags;
365         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
366         struct dma_async_tx_descriptor *tx = NULL;
367         dma_cookie_t cookie;
368         struct nand_chip *chip = mtd->priv;
369         struct atmel_nand_host *host = chip->priv;
370         void *p = buf;
371         int err = -EIO;
372         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
373         struct atmel_nfc *nfc = host->nfc;
374
375         if (buf >= high_memory)
376                 goto err_buf;
377
378         dma_dev = host->dma_chan->device;
379
380         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
381
382         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
383         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
384                 dev_err(host->dev, "Failed to dma_map_single\n");
385                 goto err_buf;
386         }
387
388         if (is_read) {
389                 if (nfc && nfc->data_in_sram)
390                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
391                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
392                 else
393                         dma_src_addr = host->io_phys;
394
395                 dma_dst_addr = phys_addr;
396         } else {
397                 dma_src_addr = phys_addr;
398
399                 if (nfc && nfc->write_by_sram)
400                         dma_dst_addr = nfc_sram_phys(host);
401                 else
402                         dma_dst_addr = host->io_phys;
403         }
404
405         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
406                                              dma_src_addr, len, flags);
407         if (!tx) {
408                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
409                 goto err_dma;
410         }
411
412         init_completion(&host->comp);
413         tx->callback = dma_complete_func;
414         tx->callback_param = &host->comp;
415
416         cookie = tx->tx_submit(tx);
417         if (dma_submit_error(cookie)) {
418                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
419                 goto err_dma;
420         }
421
422         dma_async_issue_pending(host->dma_chan);
423         wait_for_completion(&host->comp);
424
425         if (is_read && nfc && nfc->data_in_sram)
426                 /* After read data from SRAM, need to increase the position */
427                 nfc->data_in_sram += len;
428
429         err = 0;
430
431 err_dma:
432         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
433 err_buf:
434         if (err != 0)
435                 dev_dbg(host->dev, "Fall back to CPU I/O\n");
436         return err;
437 }
438
439 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
440 {
441         struct nand_chip *chip = mtd->priv;
442         struct atmel_nand_host *host = chip->priv;
443
444         if (use_dma && len > mtd->oobsize)
445                 /* only use DMA for bigger than oob size: better performances */
446                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
447                         return;
448
449         if (host->board.bus_width_16)
450                 atmel_read_buf16(mtd, buf, len);
451         else
452                 atmel_read_buf8(mtd, buf, len);
453 }
454
455 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
456 {
457         struct nand_chip *chip = mtd->priv;
458         struct atmel_nand_host *host = chip->priv;
459
460         if (use_dma && len > mtd->oobsize)
461                 /* only use DMA for bigger than oob size: better performances */
462                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
463                         return;
464
465         if (host->board.bus_width_16)
466                 atmel_write_buf16(mtd, buf, len);
467         else
468                 atmel_write_buf8(mtd, buf, len);
469 }
470
471 /*
472  * Return number of ecc bytes per sector according to sector size and
473  * correction capability
474  *
475  * Following table shows what at91 PMECC supported:
476  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
477  * =====================        ================        =================
478  *                2-bits                 4-bytes                  4-bytes
479  *                4-bits                 7-bytes                  7-bytes
480  *                8-bits                13-bytes                 14-bytes
481  *               12-bits                20-bytes                 21-bytes
482  *               24-bits                39-bytes                 42-bytes
483  */
484 static int pmecc_get_ecc_bytes(int cap, int sector_size)
485 {
486         int m = 12 + sector_size / 512;
487         return (m * cap + 7) / 8;
488 }
489
490 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
491                                     int oobsize, int ecc_len)
492 {
493         int i;
494
495         layout->eccbytes = ecc_len;
496
497         /* ECC will occupy the last ecc_len bytes continuously */
498         for (i = 0; i < ecc_len; i++)
499                 layout->eccpos[i] = oobsize - ecc_len + i;
500
501         layout->oobfree[0].offset = 2;
502         layout->oobfree[0].length =
503                 oobsize - ecc_len - layout->oobfree[0].offset;
504 }
505
506 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
507 {
508         int table_size;
509
510         table_size = host->pmecc_sector_size == 512 ?
511                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
512
513         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
514                         table_size * sizeof(int16_t);
515 }
516
517 static int pmecc_data_alloc(struct atmel_nand_host *host)
518 {
519         const int cap = host->pmecc_corr_cap;
520         int size;
521
522         size = (2 * cap + 1) * sizeof(int16_t);
523         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
524         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
525         host->pmecc_lmu = devm_kzalloc(host->dev,
526                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
527         host->pmecc_smu = devm_kzalloc(host->dev,
528                         (cap + 2) * size, GFP_KERNEL);
529
530         size = (cap + 1) * sizeof(int);
531         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
532         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
533         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
534
535         if (!host->pmecc_partial_syn ||
536                 !host->pmecc_si ||
537                 !host->pmecc_lmu ||
538                 !host->pmecc_smu ||
539                 !host->pmecc_mu ||
540                 !host->pmecc_dmu ||
541                 !host->pmecc_delta)
542                 return -ENOMEM;
543
544         return 0;
545 }
546
547 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
548 {
549         struct nand_chip *nand_chip = mtd->priv;
550         struct atmel_nand_host *host = nand_chip->priv;
551         int i;
552         uint32_t value;
553
554         /* Fill odd syndromes */
555         for (i = 0; i < host->pmecc_corr_cap; i++) {
556                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
557                 if (i & 1)
558                         value >>= 16;
559                 value &= 0xffff;
560                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
561         }
562 }
563
564 static void pmecc_substitute(struct mtd_info *mtd)
565 {
566         struct nand_chip *nand_chip = mtd->priv;
567         struct atmel_nand_host *host = nand_chip->priv;
568         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
569         int16_t __iomem *index_of = host->pmecc_index_of;
570         int16_t *partial_syn = host->pmecc_partial_syn;
571         const int cap = host->pmecc_corr_cap;
572         int16_t *si;
573         int i, j;
574
575         /* si[] is a table that holds the current syndrome value,
576          * an element of that table belongs to the field
577          */
578         si = host->pmecc_si;
579
580         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
581
582         /* Computation 2t syndromes based on S(x) */
583         /* Odd syndromes */
584         for (i = 1; i < 2 * cap; i += 2) {
585                 for (j = 0; j < host->pmecc_degree; j++) {
586                         if (partial_syn[i] & ((unsigned short)0x1 << j))
587                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
588                 }
589         }
590         /* Even syndrome = (Odd syndrome) ** 2 */
591         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
592                 if (si[j] == 0) {
593                         si[i] = 0;
594                 } else {
595                         int16_t tmp;
596
597                         tmp = readw_relaxed(index_of + si[j]);
598                         tmp = (tmp * 2) % host->pmecc_cw_len;
599                         si[i] = readw_relaxed(alpha_to + tmp);
600                 }
601         }
602
603         return;
604 }
605
606 static void pmecc_get_sigma(struct mtd_info *mtd)
607 {
608         struct nand_chip *nand_chip = mtd->priv;
609         struct atmel_nand_host *host = nand_chip->priv;
610
611         int16_t *lmu = host->pmecc_lmu;
612         int16_t *si = host->pmecc_si;
613         int *mu = host->pmecc_mu;
614         int *dmu = host->pmecc_dmu;     /* Discrepancy */
615         int *delta = host->pmecc_delta; /* Delta order */
616         int cw_len = host->pmecc_cw_len;
617         const int16_t cap = host->pmecc_corr_cap;
618         const int num = 2 * cap + 1;
619         int16_t __iomem *index_of = host->pmecc_index_of;
620         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
621         int i, j, k;
622         uint32_t dmu_0_count, tmp;
623         int16_t *smu = host->pmecc_smu;
624
625         /* index of largest delta */
626         int ro;
627         int largest;
628         int diff;
629
630         dmu_0_count = 0;
631
632         /* First Row */
633
634         /* Mu */
635         mu[0] = -1;
636
637         memset(smu, 0, sizeof(int16_t) * num);
638         smu[0] = 1;
639
640         /* discrepancy set to 1 */
641         dmu[0] = 1;
642         /* polynom order set to 0 */
643         lmu[0] = 0;
644         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
645
646         /* Second Row */
647
648         /* Mu */
649         mu[1] = 0;
650         /* Sigma(x) set to 1 */
651         memset(&smu[num], 0, sizeof(int16_t) * num);
652         smu[num] = 1;
653
654         /* discrepancy set to S1 */
655         dmu[1] = si[1];
656
657         /* polynom order set to 0 */
658         lmu[1] = 0;
659
660         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
661
662         /* Init the Sigma(x) last row */
663         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
664
665         for (i = 1; i <= cap; i++) {
666                 mu[i + 1] = i << 1;
667                 /* Begin Computing Sigma (Mu+1) and L(mu) */
668                 /* check if discrepancy is set to 0 */
669                 if (dmu[i] == 0) {
670                         dmu_0_count++;
671
672                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
673                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
674                                 tmp += 2;
675                         else
676                                 tmp += 1;
677
678                         if (dmu_0_count == tmp) {
679                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
680                                         smu[(cap + 1) * num + j] =
681                                                         smu[i * num + j];
682
683                                 lmu[cap + 1] = lmu[i];
684                                 return;
685                         }
686
687                         /* copy polynom */
688                         for (j = 0; j <= lmu[i] >> 1; j++)
689                                 smu[(i + 1) * num + j] = smu[i * num + j];
690
691                         /* copy previous polynom order to the next */
692                         lmu[i + 1] = lmu[i];
693                 } else {
694                         ro = 0;
695                         largest = -1;
696                         /* find largest delta with dmu != 0 */
697                         for (j = 0; j < i; j++) {
698                                 if ((dmu[j]) && (delta[j] > largest)) {
699                                         largest = delta[j];
700                                         ro = j;
701                                 }
702                         }
703
704                         /* compute difference */
705                         diff = (mu[i] - mu[ro]);
706
707                         /* Compute degree of the new smu polynomial */
708                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
709                                 lmu[i + 1] = lmu[i];
710                         else
711                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
712
713                         /* Init smu[i+1] with 0 */
714                         for (k = 0; k < num; k++)
715                                 smu[(i + 1) * num + k] = 0;
716
717                         /* Compute smu[i+1] */
718                         for (k = 0; k <= lmu[ro] >> 1; k++) {
719                                 int16_t a, b, c;
720
721                                 if (!(smu[ro * num + k] && dmu[i]))
722                                         continue;
723                                 a = readw_relaxed(index_of + dmu[i]);
724                                 b = readw_relaxed(index_of + dmu[ro]);
725                                 c = readw_relaxed(index_of + smu[ro * num + k]);
726                                 tmp = a + (cw_len - b) + c;
727                                 a = readw_relaxed(alpha_to + tmp % cw_len);
728                                 smu[(i + 1) * num + (k + diff)] = a;
729                         }
730
731                         for (k = 0; k <= lmu[i] >> 1; k++)
732                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
733                 }
734
735                 /* End Computing Sigma (Mu+1) and L(mu) */
736                 /* In either case compute delta */
737                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
738
739                 /* Do not compute discrepancy for the last iteration */
740                 if (i >= cap)
741                         continue;
742
743                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
744                         tmp = 2 * (i - 1);
745                         if (k == 0) {
746                                 dmu[i + 1] = si[tmp + 3];
747                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
748                                 int16_t a, b, c;
749                                 a = readw_relaxed(index_of +
750                                                 smu[(i + 1) * num + k]);
751                                 b = si[2 * (i - 1) + 3 - k];
752                                 c = readw_relaxed(index_of + b);
753                                 tmp = a + c;
754                                 tmp %= cw_len;
755                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
756                                         dmu[i + 1];
757                         }
758                 }
759         }
760
761         return;
762 }
763
764 static int pmecc_err_location(struct mtd_info *mtd)
765 {
766         struct nand_chip *nand_chip = mtd->priv;
767         struct atmel_nand_host *host = nand_chip->priv;
768         unsigned long end_time;
769         const int cap = host->pmecc_corr_cap;
770         const int num = 2 * cap + 1;
771         int sector_size = host->pmecc_sector_size;
772         int err_nbr = 0;        /* number of error */
773         int roots_nbr;          /* number of roots */
774         int i;
775         uint32_t val;
776         int16_t *smu = host->pmecc_smu;
777
778         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
779
780         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
781                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
782                                       smu[(cap + 1) * num + i]);
783                 err_nbr++;
784         }
785
786         val = (err_nbr - 1) << 16;
787         if (sector_size == 1024)
788                 val |= 1;
789
790         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
791         pmerrloc_writel(host->pmerrloc_base, ELEN,
792                         sector_size * 8 + host->pmecc_degree * cap);
793
794         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
795         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
796                  & PMERRLOC_CALC_DONE)) {
797                 if (unlikely(time_after(jiffies, end_time))) {
798                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
799                         return -1;
800                 }
801                 cpu_relax();
802         }
803
804         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
805                 & PMERRLOC_ERR_NUM_MASK) >> 8;
806         /* Number of roots == degree of smu hence <= cap */
807         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
808                 return err_nbr - 1;
809
810         /* Number of roots does not match the degree of smu
811          * unable to correct error */
812         return -1;
813 }
814
815 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
816                 int sector_num, int extra_bytes, int err_nbr)
817 {
818         struct nand_chip *nand_chip = mtd->priv;
819         struct atmel_nand_host *host = nand_chip->priv;
820         int i = 0;
821         int byte_pos, bit_pos, sector_size, pos;
822         uint32_t tmp;
823         uint8_t err_byte;
824
825         sector_size = host->pmecc_sector_size;
826
827         while (err_nbr) {
828                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
829                 byte_pos = tmp / 8;
830                 bit_pos  = tmp % 8;
831
832                 if (byte_pos >= (sector_size + extra_bytes))
833                         BUG();  /* should never happen */
834
835                 if (byte_pos < sector_size) {
836                         err_byte = *(buf + byte_pos);
837                         *(buf + byte_pos) ^= (1 << bit_pos);
838
839                         pos = sector_num * host->pmecc_sector_size + byte_pos;
840                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
841                                 pos, bit_pos, err_byte, *(buf + byte_pos));
842                 } else {
843                         /* Bit flip in OOB area */
844                         tmp = sector_num * host->pmecc_bytes_per_sector
845                                         + (byte_pos - sector_size);
846                         err_byte = ecc[tmp];
847                         ecc[tmp] ^= (1 << bit_pos);
848
849                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
850                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
851                                 pos, bit_pos, err_byte, ecc[tmp]);
852                 }
853
854                 i++;
855                 err_nbr--;
856         }
857
858         return;
859 }
860
861 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
862         u8 *ecc)
863 {
864         struct nand_chip *nand_chip = mtd->priv;
865         struct atmel_nand_host *host = nand_chip->priv;
866         int i, err_nbr;
867         uint8_t *buf_pos;
868         int total_err = 0;
869
870         for (i = 0; i < nand_chip->ecc.total; i++)
871                 if (ecc[i] != 0xff)
872                         goto normal_check;
873         /* Erased page, return OK */
874         return 0;
875
876 normal_check:
877         for (i = 0; i < host->pmecc_sector_number; i++) {
878                 err_nbr = 0;
879                 if (pmecc_stat & 0x1) {
880                         buf_pos = buf + i * host->pmecc_sector_size;
881
882                         pmecc_gen_syndrome(mtd, i);
883                         pmecc_substitute(mtd);
884                         pmecc_get_sigma(mtd);
885
886                         err_nbr = pmecc_err_location(mtd);
887                         if (err_nbr == -1) {
888                                 dev_err(host->dev, "PMECC: Too many errors\n");
889                                 mtd->ecc_stats.failed++;
890                                 return -EIO;
891                         } else {
892                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
893                                         host->pmecc_bytes_per_sector, err_nbr);
894                                 mtd->ecc_stats.corrected += err_nbr;
895                                 total_err += err_nbr;
896                         }
897                 }
898                 pmecc_stat >>= 1;
899         }
900
901         return total_err;
902 }
903
904 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
905 {
906         u32 val;
907
908         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
909                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
910                 return;
911         }
912
913         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
914         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
915         val = pmecc_readl_relaxed(host->ecc, CFG);
916
917         if (ecc_op == NAND_ECC_READ)
918                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
919                         | PMECC_CFG_AUTO_ENABLE);
920         else
921                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
922                         & ~PMECC_CFG_AUTO_ENABLE);
923
924         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
925         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
926 }
927
928 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
929         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
930 {
931         struct atmel_nand_host *host = chip->priv;
932         int eccsize = chip->ecc.size * chip->ecc.steps;
933         uint8_t *oob = chip->oob_poi;
934         uint32_t *eccpos = chip->ecc.layout->eccpos;
935         uint32_t stat;
936         unsigned long end_time;
937         int bitflips = 0;
938
939         if (!host->nfc || !host->nfc->use_nfc_sram)
940                 pmecc_enable(host, NAND_ECC_READ);
941
942         chip->read_buf(mtd, buf, eccsize);
943         chip->read_buf(mtd, oob, mtd->oobsize);
944
945         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
946         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
947                 if (unlikely(time_after(jiffies, end_time))) {
948                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
949                         return -EIO;
950                 }
951                 cpu_relax();
952         }
953
954         stat = pmecc_readl_relaxed(host->ecc, ISR);
955         if (stat != 0) {
956                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
957                 if (bitflips < 0)
958                         /* uncorrectable errors */
959                         return 0;
960         }
961
962         return bitflips;
963 }
964
965 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
966                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
967 {
968         struct atmel_nand_host *host = chip->priv;
969         uint32_t *eccpos = chip->ecc.layout->eccpos;
970         int i, j;
971         unsigned long end_time;
972
973         if (!host->nfc || !host->nfc->write_by_sram) {
974                 pmecc_enable(host, NAND_ECC_WRITE);
975                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
976         }
977
978         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
979         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
980                 if (unlikely(time_after(jiffies, end_time))) {
981                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
982                         return -EIO;
983                 }
984                 cpu_relax();
985         }
986
987         for (i = 0; i < host->pmecc_sector_number; i++) {
988                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
989                         int pos;
990
991                         pos = i * host->pmecc_bytes_per_sector + j;
992                         chip->oob_poi[eccpos[pos]] =
993                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
994                 }
995         }
996         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
997
998         return 0;
999 }
1000
1001 static void atmel_pmecc_core_init(struct mtd_info *mtd)
1002 {
1003         struct nand_chip *nand_chip = mtd->priv;
1004         struct atmel_nand_host *host = nand_chip->priv;
1005         uint32_t val = 0;
1006         struct nand_ecclayout *ecc_layout;
1007
1008         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1009         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1010
1011         switch (host->pmecc_corr_cap) {
1012         case 2:
1013                 val = PMECC_CFG_BCH_ERR2;
1014                 break;
1015         case 4:
1016                 val = PMECC_CFG_BCH_ERR4;
1017                 break;
1018         case 8:
1019                 val = PMECC_CFG_BCH_ERR8;
1020                 break;
1021         case 12:
1022                 val = PMECC_CFG_BCH_ERR12;
1023                 break;
1024         case 24:
1025                 val = PMECC_CFG_BCH_ERR24;
1026                 break;
1027         }
1028
1029         if (host->pmecc_sector_size == 512)
1030                 val |= PMECC_CFG_SECTOR512;
1031         else if (host->pmecc_sector_size == 1024)
1032                 val |= PMECC_CFG_SECTOR1024;
1033
1034         switch (host->pmecc_sector_number) {
1035         case 1:
1036                 val |= PMECC_CFG_PAGE_1SECTOR;
1037                 break;
1038         case 2:
1039                 val |= PMECC_CFG_PAGE_2SECTORS;
1040                 break;
1041         case 4:
1042                 val |= PMECC_CFG_PAGE_4SECTORS;
1043                 break;
1044         case 8:
1045                 val |= PMECC_CFG_PAGE_8SECTORS;
1046                 break;
1047         }
1048
1049         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1050                 | PMECC_CFG_AUTO_DISABLE);
1051         pmecc_writel(host->ecc, CFG, val);
1052
1053         ecc_layout = nand_chip->ecc.layout;
1054         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1055         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1056         pmecc_writel(host->ecc, EADDR,
1057                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1058         /* See datasheet about PMECC Clock Control Register */
1059         pmecc_writel(host->ecc, CLK, 2);
1060         pmecc_writel(host->ecc, IDR, 0xff);
1061         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1062 }
1063
1064 /*
1065  * Get minimum ecc requirements from NAND.
1066  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1067  * will set them according to minimum ecc requirement. Otherwise, use the
1068  * value in DTS file.
1069  * return 0 if success. otherwise return error code.
1070  */
1071 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1072                 int *cap, int *sector_size)
1073 {
1074         /* Get minimum ECC requirements */
1075         if (host->nand_chip.ecc_strength_ds) {
1076                 *cap = host->nand_chip.ecc_strength_ds;
1077                 *sector_size = host->nand_chip.ecc_step_ds;
1078                 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1079                                 *cap, *sector_size);
1080         } else {
1081                 *cap = 2;
1082                 *sector_size = 512;
1083                 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1084         }
1085
1086         /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1087         if (host->pmecc_corr_cap == 0) {
1088                 /* use the most fitable ecc bits (the near bigger one ) */
1089                 if (*cap <= 2)
1090                         host->pmecc_corr_cap = 2;
1091                 else if (*cap <= 4)
1092                         host->pmecc_corr_cap = 4;
1093                 else if (*cap <= 8)
1094                         host->pmecc_corr_cap = 8;
1095                 else if (*cap <= 12)
1096                         host->pmecc_corr_cap = 12;
1097                 else if (*cap <= 24)
1098                         host->pmecc_corr_cap = 24;
1099                 else
1100                         return -EINVAL;
1101         }
1102         if (host->pmecc_sector_size == 0) {
1103                 /* use the most fitable sector size (the near smaller one ) */
1104                 if (*sector_size >= 1024)
1105                         host->pmecc_sector_size = 1024;
1106                 else if (*sector_size >= 512)
1107                         host->pmecc_sector_size = 512;
1108                 else
1109                         return -EINVAL;
1110         }
1111         return 0;
1112 }
1113
1114 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1115                                          struct atmel_nand_host *host)
1116 {
1117         struct mtd_info *mtd = &host->mtd;
1118         struct nand_chip *nand_chip = &host->nand_chip;
1119         struct resource *regs, *regs_pmerr, *regs_rom;
1120         int cap, sector_size, err_no;
1121
1122         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1123         if (err_no) {
1124                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1125                 return err_no;
1126         }
1127
1128         if (cap > host->pmecc_corr_cap ||
1129                         sector_size != host->pmecc_sector_size)
1130                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1131
1132         cap = host->pmecc_corr_cap;
1133         sector_size = host->pmecc_sector_size;
1134         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1135                         host->pmecc_lookup_table_offset_512 :
1136                         host->pmecc_lookup_table_offset_1024;
1137
1138         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1139                  cap, sector_size);
1140
1141         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1142         if (!regs) {
1143                 dev_warn(host->dev,
1144                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1145                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1146                 return 0;
1147         }
1148
1149         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1150         if (IS_ERR(host->ecc)) {
1151                 err_no = PTR_ERR(host->ecc);
1152                 goto err;
1153         }
1154
1155         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1156         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1157         if (IS_ERR(host->pmerrloc_base)) {
1158                 err_no = PTR_ERR(host->pmerrloc_base);
1159                 goto err;
1160         }
1161
1162         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1163         host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1164         if (IS_ERR(host->pmecc_rom_base)) {
1165                 err_no = PTR_ERR(host->pmecc_rom_base);
1166                 goto err;
1167         }
1168
1169         nand_chip->ecc.size = sector_size;
1170
1171         /* set ECC page size and oob layout */
1172         switch (mtd->writesize) {
1173         case 512:
1174         case 1024:
1175         case 2048:
1176         case 4096:
1177         case 8192:
1178                 if (sector_size > mtd->writesize) {
1179                         dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1180                         err_no = -EINVAL;
1181                         goto err;
1182                 }
1183
1184                 host->pmecc_degree = (sector_size == 512) ?
1185                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1186                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1187                 host->pmecc_sector_number = mtd->writesize / sector_size;
1188                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1189                         cap, sector_size);
1190                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1191                 host->pmecc_index_of = host->pmecc_rom_base +
1192                         host->pmecc_lookup_table_offset;
1193
1194                 nand_chip->ecc.steps = host->pmecc_sector_number;
1195                 nand_chip->ecc.strength = cap;
1196                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector;
1197                 nand_chip->ecc.total = host->pmecc_bytes_per_sector *
1198                                        host->pmecc_sector_number;
1199                 if (nand_chip->ecc.total > mtd->oobsize - 2) {
1200                         dev_err(host->dev, "No room for ECC bytes\n");
1201                         err_no = -EINVAL;
1202                         goto err;
1203                 }
1204                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1205                                         mtd->oobsize,
1206                                         nand_chip->ecc.total);
1207
1208                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1209                 break;
1210         default:
1211                 dev_warn(host->dev,
1212                         "Unsupported page size for PMECC, use Software ECC\n");
1213                 /* page size not handled by HW ECC */
1214                 /* switching back to soft ECC */
1215                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1216                 return 0;
1217         }
1218
1219         /* Allocate data for PMECC computation */
1220         err_no = pmecc_data_alloc(host);
1221         if (err_no) {
1222                 dev_err(host->dev,
1223                                 "Cannot allocate memory for PMECC computation!\n");
1224                 goto err;
1225         }
1226
1227         nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1228         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1229         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1230
1231         atmel_pmecc_core_init(mtd);
1232
1233         return 0;
1234
1235 err:
1236         return err_no;
1237 }
1238
1239 /*
1240  * Calculate HW ECC
1241  *
1242  * function called after a write
1243  *
1244  * mtd:        MTD block structure
1245  * dat:        raw data (unused)
1246  * ecc_code:   buffer for ECC
1247  */
1248 static int atmel_nand_calculate(struct mtd_info *mtd,
1249                 const u_char *dat, unsigned char *ecc_code)
1250 {
1251         struct nand_chip *nand_chip = mtd->priv;
1252         struct atmel_nand_host *host = nand_chip->priv;
1253         unsigned int ecc_value;
1254
1255         /* get the first 2 ECC bytes */
1256         ecc_value = ecc_readl(host->ecc, PR);
1257
1258         ecc_code[0] = ecc_value & 0xFF;
1259         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1260
1261         /* get the last 2 ECC bytes */
1262         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1263
1264         ecc_code[2] = ecc_value & 0xFF;
1265         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * HW ECC read page function
1272  *
1273  * mtd:        mtd info structure
1274  * chip:       nand chip info structure
1275  * buf:        buffer to store read data
1276  * oob_required:    caller expects OOB data read to chip->oob_poi
1277  */
1278 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1279                                 uint8_t *buf, int oob_required, int page)
1280 {
1281         int eccsize = chip->ecc.size;
1282         int eccbytes = chip->ecc.bytes;
1283         uint32_t *eccpos = chip->ecc.layout->eccpos;
1284         uint8_t *p = buf;
1285         uint8_t *oob = chip->oob_poi;
1286         uint8_t *ecc_pos;
1287         int stat;
1288         unsigned int max_bitflips = 0;
1289
1290         /*
1291          * Errata: ALE is incorrectly wired up to the ECC controller
1292          * on the AP7000, so it will include the address cycles in the
1293          * ECC calculation.
1294          *
1295          * Workaround: Reset the parity registers before reading the
1296          * actual data.
1297          */
1298         struct atmel_nand_host *host = chip->priv;
1299         if (host->board.need_reset_workaround)
1300                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1301
1302         /* read the page */
1303         chip->read_buf(mtd, p, eccsize);
1304
1305         /* move to ECC position if needed */
1306         if (eccpos[0] != 0) {
1307                 /* This only works on large pages
1308                  * because the ECC controller waits for
1309                  * NAND_CMD_RNDOUTSTART after the
1310                  * NAND_CMD_RNDOUT.
1311                  * anyway, for small pages, the eccpos[0] == 0
1312                  */
1313                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1314                                 mtd->writesize + eccpos[0], -1);
1315         }
1316
1317         /* the ECC controller needs to read the ECC just after the data */
1318         ecc_pos = oob + eccpos[0];
1319         chip->read_buf(mtd, ecc_pos, eccbytes);
1320
1321         /* check if there's an error */
1322         stat = chip->ecc.correct(mtd, p, oob, NULL);
1323
1324         if (stat < 0) {
1325                 mtd->ecc_stats.failed++;
1326         } else {
1327                 mtd->ecc_stats.corrected += stat;
1328                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1329         }
1330
1331         /* get back to oob start (end of page) */
1332         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1333
1334         /* read the oob */
1335         chip->read_buf(mtd, oob, mtd->oobsize);
1336
1337         return max_bitflips;
1338 }
1339
1340 /*
1341  * HW ECC Correction
1342  *
1343  * function called after a read
1344  *
1345  * mtd:        MTD block structure
1346  * dat:        raw data read from the chip
1347  * read_ecc:   ECC from the chip (unused)
1348  * isnull:     unused
1349  *
1350  * Detect and correct a 1 bit error for a page
1351  */
1352 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1353                 u_char *read_ecc, u_char *isnull)
1354 {
1355         struct nand_chip *nand_chip = mtd->priv;
1356         struct atmel_nand_host *host = nand_chip->priv;
1357         unsigned int ecc_status;
1358         unsigned int ecc_word, ecc_bit;
1359
1360         /* get the status from the Status Register */
1361         ecc_status = ecc_readl(host->ecc, SR);
1362
1363         /* if there's no error */
1364         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1365                 return 0;
1366
1367         /* get error bit offset (4 bits) */
1368         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1369         /* get word address (12 bits) */
1370         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1371         ecc_word >>= 4;
1372
1373         /* if there are multiple errors */
1374         if (ecc_status & ATMEL_ECC_MULERR) {
1375                 /* check if it is a freshly erased block
1376                  * (filled with 0xff) */
1377                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1378                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1379                         /* the block has just been erased, return OK */
1380                         return 0;
1381                 }
1382                 /* it doesn't seems to be a freshly
1383                  * erased block.
1384                  * We can't correct so many errors */
1385                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1386                                 " Unable to correct.\n");
1387                 return -EIO;
1388         }
1389
1390         /* if there's a single bit error : we can correct it */
1391         if (ecc_status & ATMEL_ECC_ECCERR) {
1392                 /* there's nothing much to do here.
1393                  * the bit error is on the ECC itself.
1394                  */
1395                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1396                                 " Nothing to correct\n");
1397                 return 0;
1398         }
1399
1400         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1401                         " (word offset in the page :"
1402                         " 0x%x bit offset : 0x%x)\n",
1403                         ecc_word, ecc_bit);
1404         /* correct the error */
1405         if (nand_chip->options & NAND_BUSWIDTH_16) {
1406                 /* 16 bits words */
1407                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1408         } else {
1409                 /* 8 bits words */
1410                 dat[ecc_word] ^= (1 << ecc_bit);
1411         }
1412         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1413         return 1;
1414 }
1415
1416 /*
1417  * Enable HW ECC : unused on most chips
1418  */
1419 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1420 {
1421         struct nand_chip *nand_chip = mtd->priv;
1422         struct atmel_nand_host *host = nand_chip->priv;
1423
1424         if (host->board.need_reset_workaround)
1425                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1426 }
1427
1428 static int atmel_of_init_port(struct atmel_nand_host *host,
1429                               struct device_node *np)
1430 {
1431         u32 val;
1432         u32 offset[2];
1433         int ecc_mode;
1434         struct atmel_nand_data *board = &host->board;
1435         enum of_gpio_flags flags = 0;
1436
1437         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1438                 if (val >= 32) {
1439                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1440                         return -EINVAL;
1441                 }
1442                 board->ale = val;
1443         }
1444
1445         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1446                 if (val >= 32) {
1447                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1448                         return -EINVAL;
1449                 }
1450                 board->cle = val;
1451         }
1452
1453         ecc_mode = of_get_nand_ecc_mode(np);
1454
1455         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1456
1457         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1458
1459         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1460
1461         if (of_get_nand_bus_width(np) == 16)
1462                 board->bus_width_16 = 1;
1463
1464         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1465         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1466
1467         board->enable_pin = of_get_gpio(np, 1);
1468         board->det_pin = of_get_gpio(np, 2);
1469
1470         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1471
1472         /* load the nfc driver if there is */
1473         of_platform_populate(np, NULL, NULL, host->dev);
1474
1475         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1476                 return 0;       /* Not using PMECC */
1477
1478         /* use PMECC, get correction capability, sector size and lookup
1479          * table offset.
1480          * If correction bits and sector size are not specified, then find
1481          * them from NAND ONFI parameters.
1482          */
1483         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1484                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1485                                 (val != 24)) {
1486                         dev_err(host->dev,
1487                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1488                                 val);
1489                         return -EINVAL;
1490                 }
1491                 host->pmecc_corr_cap = (u8)val;
1492         }
1493
1494         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1495                 if ((val != 512) && (val != 1024)) {
1496                         dev_err(host->dev,
1497                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1498                                 val);
1499                         return -EINVAL;
1500                 }
1501                 host->pmecc_sector_size = (u16)val;
1502         }
1503
1504         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1505                         offset, 2) != 0) {
1506                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1507                 return -EINVAL;
1508         }
1509         if (!offset[0] && !offset[1]) {
1510                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1511                 return -EINVAL;
1512         }
1513         host->pmecc_lookup_table_offset_512 = offset[0];
1514         host->pmecc_lookup_table_offset_1024 = offset[1];
1515
1516         return 0;
1517 }
1518
1519 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1520                                          struct atmel_nand_host *host)
1521 {
1522         struct mtd_info *mtd = &host->mtd;
1523         struct nand_chip *nand_chip = &host->nand_chip;
1524         struct resource         *regs;
1525
1526         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1527         if (!regs) {
1528                 dev_err(host->dev,
1529                         "Can't get I/O resource regs, use software ECC\n");
1530                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1531                 return 0;
1532         }
1533
1534         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1535         if (IS_ERR(host->ecc))
1536                 return PTR_ERR(host->ecc);
1537
1538         /* ECC is calculated for the whole page (1 step) */
1539         nand_chip->ecc.size = mtd->writesize;
1540
1541         /* set ECC page size and oob layout */
1542         switch (mtd->writesize) {
1543         case 512:
1544                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1545                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1546                 break;
1547         case 1024:
1548                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1549                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1550                 break;
1551         case 2048:
1552                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1553                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1554                 break;
1555         case 4096:
1556                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1557                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1558                 break;
1559         default:
1560                 /* page size not handled by HW ECC */
1561                 /* switching back to soft ECC */
1562                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1563                 return 0;
1564         }
1565
1566         /* set up for HW ECC */
1567         nand_chip->ecc.calculate = atmel_nand_calculate;
1568         nand_chip->ecc.correct = atmel_nand_correct;
1569         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1570         nand_chip->ecc.read_page = atmel_nand_read_page;
1571         nand_chip->ecc.bytes = 4;
1572         nand_chip->ecc.strength = 1;
1573
1574         return 0;
1575 }
1576
1577 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1578 {
1579         u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1580         u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1581
1582         if (unlikely(nfc_status & err_flags)) {
1583                 if (nfc_status & NFC_SR_DTOE)
1584                         dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1585                 else if (nfc_status & NFC_SR_UNDEF)
1586                         dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1587                 else if (nfc_status & NFC_SR_AWB)
1588                         dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1589                 else if (nfc_status & NFC_SR_ASE)
1590                         dev_err(host->dev, "NFC: Access memory Size Error\n");
1591         }
1592
1593         return nfc_status;
1594 }
1595
1596 /* SMC interrupt service routine */
1597 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1598 {
1599         struct atmel_nand_host *host = dev_id;
1600         u32 status, mask, pending;
1601         irqreturn_t ret = IRQ_NONE;
1602
1603         status = nfc_read_status(host);
1604         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1605         pending = status & mask;
1606
1607         if (pending & NFC_SR_XFR_DONE) {
1608                 complete(&host->nfc->comp_xfer_done);
1609                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1610                 ret = IRQ_HANDLED;
1611         }
1612         if (pending & NFC_SR_RB_EDGE) {
1613                 complete(&host->nfc->comp_ready);
1614                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1615                 ret = IRQ_HANDLED;
1616         }
1617         if (pending & NFC_SR_CMD_DONE) {
1618                 complete(&host->nfc->comp_cmd_done);
1619                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1620                 ret = IRQ_HANDLED;
1621         }
1622
1623         return ret;
1624 }
1625
1626 /* NFC(Nand Flash Controller) related functions */
1627 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1628 {
1629         if (flag & NFC_SR_XFR_DONE)
1630                 init_completion(&host->nfc->comp_xfer_done);
1631
1632         if (flag & NFC_SR_RB_EDGE)
1633                 init_completion(&host->nfc->comp_ready);
1634
1635         if (flag & NFC_SR_CMD_DONE)
1636                 init_completion(&host->nfc->comp_cmd_done);
1637
1638         /* Enable interrupt that need to wait for */
1639         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1640 }
1641
1642 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1643 {
1644         int i, index = 0;
1645         struct completion *comp[3];     /* Support 3 interrupt completion */
1646
1647         if (flag & NFC_SR_XFR_DONE)
1648                 comp[index++] = &host->nfc->comp_xfer_done;
1649
1650         if (flag & NFC_SR_RB_EDGE)
1651                 comp[index++] = &host->nfc->comp_ready;
1652
1653         if (flag & NFC_SR_CMD_DONE)
1654                 comp[index++] = &host->nfc->comp_cmd_done;
1655
1656         if (index == 0) {
1657                 dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag);
1658                 return -EINVAL;
1659         }
1660
1661         for (i = 0; i < index; i++) {
1662                 if (wait_for_completion_timeout(comp[i],
1663                                 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1664                         continue;       /* wait for next completion */
1665                 else
1666                         goto err_timeout;
1667         }
1668
1669         return 0;
1670
1671 err_timeout:
1672         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1673         /* Disable the interrupt as it is not handled by interrupt handler */
1674         nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1675         return -ETIMEDOUT;
1676 }
1677
1678 static int nfc_send_command(struct atmel_nand_host *host,
1679         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1680 {
1681         unsigned long timeout;
1682         u32 flag = NFC_SR_CMD_DONE;
1683         flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1684
1685         dev_dbg(host->dev,
1686                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1687                 cmd, addr, cycle0);
1688
1689         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1690         while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1691                         & NFCADDR_CMD_NFCBUSY) {
1692                 if (time_after(jiffies, timeout)) {
1693                         dev_err(host->dev,
1694                                 "Time out to wait CMD_NFCBUSY ready!\n");
1695                         return -ETIMEDOUT;
1696                 }
1697         }
1698
1699         nfc_prepare_interrupt(host, flag);
1700         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1701         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1702         return nfc_wait_interrupt(host, flag);
1703 }
1704
1705 static int nfc_device_ready(struct mtd_info *mtd)
1706 {
1707         u32 status, mask;
1708         struct nand_chip *nand_chip = mtd->priv;
1709         struct atmel_nand_host *host = nand_chip->priv;
1710
1711         status = nfc_read_status(host);
1712         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1713
1714         /* The mask should be 0. If not we may lost interrupts */
1715         if (unlikely(mask & status))
1716                 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1717                                 mask & status);
1718
1719         return status & NFC_SR_RB_EDGE;
1720 }
1721
1722 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1723 {
1724         struct nand_chip *nand_chip = mtd->priv;
1725         struct atmel_nand_host *host = nand_chip->priv;
1726
1727         if (chip == -1)
1728                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1729         else
1730                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1731 }
1732
1733 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1734                 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1735 {
1736         struct nand_chip *chip = mtd->priv;
1737
1738         int acycle = 0;
1739         unsigned char addr_bytes[8];
1740         int index = 0, bit_shift;
1741
1742         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1743
1744         *cycle0 = 0;
1745         *addr1234 = 0;
1746
1747         if (column != -1) {
1748                 if (chip->options & NAND_BUSWIDTH_16 &&
1749                                 !nand_opcode_8bits(command))
1750                         column >>= 1;
1751                 addr_bytes[acycle++] = column & 0xff;
1752                 if (mtd->writesize > 512)
1753                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1754         }
1755
1756         if (page_addr != -1) {
1757                 addr_bytes[acycle++] = page_addr & 0xff;
1758                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1759                 if (chip->chipsize > (128 << 20))
1760                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1761         }
1762
1763         if (acycle > 4)
1764                 *cycle0 = addr_bytes[index++];
1765
1766         for (bit_shift = 0; index < acycle; bit_shift += 8)
1767                 *addr1234 += addr_bytes[index++] << bit_shift;
1768
1769         /* return acycle in cmd register */
1770         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1771 }
1772
1773 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1774                                 int column, int page_addr)
1775 {
1776         struct nand_chip *chip = mtd->priv;
1777         struct atmel_nand_host *host = chip->priv;
1778         unsigned long timeout;
1779         unsigned int nfc_addr_cmd = 0;
1780
1781         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1782
1783         /* Set default settings: no cmd2, no addr cycle. read from nand */
1784         unsigned int cmd2 = 0;
1785         unsigned int vcmd2 = 0;
1786         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1787         int csid = NFCADDR_CMD_CSID_3;
1788         int dataen = NFCADDR_CMD_DATADIS;
1789         int nfcwr = NFCADDR_CMD_NFCRD;
1790         unsigned int addr1234 = 0;
1791         unsigned int cycle0 = 0;
1792         bool do_addr = true;
1793         host->nfc->data_in_sram = NULL;
1794
1795         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1796              __func__, command, column, page_addr);
1797
1798         switch (command) {
1799         case NAND_CMD_RESET:
1800                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1801                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1802                 udelay(chip->chip_delay);
1803
1804                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1805                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1806                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1807                         if (time_after(jiffies, timeout)) {
1808                                 dev_err(host->dev,
1809                                         "Time out to wait status ready!\n");
1810                                 break;
1811                         }
1812                 }
1813                 return;
1814         case NAND_CMD_STATUS:
1815                 do_addr = false;
1816                 break;
1817         case NAND_CMD_PARAM:
1818         case NAND_CMD_READID:
1819                 do_addr = false;
1820                 acycle = NFCADDR_CMD_ACYCLE_1;
1821                 if (column != -1)
1822                         addr1234 = column;
1823                 break;
1824         case NAND_CMD_RNDOUT:
1825                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1826                 vcmd2 = NFCADDR_CMD_VCMD2;
1827                 break;
1828         case NAND_CMD_READ0:
1829         case NAND_CMD_READOOB:
1830                 if (command == NAND_CMD_READOOB) {
1831                         column += mtd->writesize;
1832                         command = NAND_CMD_READ0; /* only READ0 is valid */
1833                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1834                 }
1835                 if (host->nfc->use_nfc_sram) {
1836                         /* Enable Data transfer to sram */
1837                         dataen = NFCADDR_CMD_DATAEN;
1838
1839                         /* Need enable PMECC now, since NFC will transfer
1840                          * data in bus after sending nfc read command.
1841                          */
1842                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1843                                 pmecc_enable(host, NAND_ECC_READ);
1844                 }
1845
1846                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1847                 vcmd2 = NFCADDR_CMD_VCMD2;
1848                 break;
1849         /* For prgramming command, the cmd need set to write enable */
1850         case NAND_CMD_PAGEPROG:
1851         case NAND_CMD_SEQIN:
1852         case NAND_CMD_RNDIN:
1853                 nfcwr = NFCADDR_CMD_NFCWR;
1854                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1855                         dataen = NFCADDR_CMD_DATAEN;
1856                 break;
1857         default:
1858                 break;
1859         }
1860
1861         if (do_addr)
1862                 acycle = nfc_make_addr(mtd, command, column, page_addr,
1863                                 &addr1234, &cycle0);
1864
1865         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1866         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1867
1868         /*
1869          * Program and erase have their own busy handlers status, sequential
1870          * in, and deplete1 need no delay.
1871          */
1872         switch (command) {
1873         case NAND_CMD_CACHEDPROG:
1874         case NAND_CMD_PAGEPROG:
1875         case NAND_CMD_ERASE1:
1876         case NAND_CMD_ERASE2:
1877         case NAND_CMD_RNDIN:
1878         case NAND_CMD_STATUS:
1879         case NAND_CMD_RNDOUT:
1880         case NAND_CMD_SEQIN:
1881         case NAND_CMD_READID:
1882                 return;
1883
1884         case NAND_CMD_READ0:
1885                 if (dataen == NFCADDR_CMD_DATAEN) {
1886                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1887                                 nfc_get_sram_off(host);
1888                         return;
1889                 }
1890                 /* fall through */
1891         default:
1892                 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1893                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1894         }
1895 }
1896
1897 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1898                         uint32_t offset, int data_len, const uint8_t *buf,
1899                         int oob_required, int page, int cached, int raw)
1900 {
1901         int cfg, len;
1902         int status = 0;
1903         struct atmel_nand_host *host = chip->priv;
1904         void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1905
1906         /* Subpage write is not supported */
1907         if (offset || (data_len < mtd->writesize))
1908                 return -EINVAL;
1909
1910         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1911         len = mtd->writesize;
1912
1913         if (unlikely(raw)) {
1914                 len += mtd->oobsize;
1915                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1916         } else
1917                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1918
1919         /* Copy page data to sram that will write to nand via NFC */
1920         if (use_dma) {
1921                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1922                         /* Fall back to use cpu copy */
1923                         memcpy32_toio(sram, buf, len);
1924         } else {
1925                 memcpy32_toio(sram, buf, len);
1926         }
1927
1928         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1929                 /*
1930                  * When use NFC sram, need set up PMECC before send
1931                  * NAND_CMD_SEQIN command. Since when the nand command
1932                  * is sent, nfc will do transfer from sram and nand.
1933                  */
1934                 pmecc_enable(host, NAND_ECC_WRITE);
1935
1936         host->nfc->will_write_sram = true;
1937         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1938         host->nfc->will_write_sram = false;
1939
1940         if (likely(!raw))
1941                 /* Need to write ecc into oob */
1942                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1943
1944         if (status < 0)
1945                 return status;
1946
1947         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1948         status = chip->waitfunc(mtd, chip);
1949
1950         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1951                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1952
1953         if (status & NAND_STATUS_FAIL)
1954                 return -EIO;
1955
1956         return 0;
1957 }
1958
1959 static int nfc_sram_init(struct mtd_info *mtd)
1960 {
1961         struct nand_chip *chip = mtd->priv;
1962         struct atmel_nand_host *host = chip->priv;
1963         int res = 0;
1964
1965         /* Initialize the NFC CFG register */
1966         unsigned int cfg_nfc = 0;
1967
1968         /* set page size and oob layout */
1969         switch (mtd->writesize) {
1970         case 512:
1971                 cfg_nfc = NFC_CFG_PAGESIZE_512;
1972                 break;
1973         case 1024:
1974                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
1975                 break;
1976         case 2048:
1977                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
1978                 break;
1979         case 4096:
1980                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
1981                 break;
1982         case 8192:
1983                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
1984                 break;
1985         default:
1986                 dev_err(host->dev, "Unsupported page size for NFC.\n");
1987                 res = -ENXIO;
1988                 return res;
1989         }
1990
1991         /* oob bytes size = (NFCSPARESIZE + 1) * 4
1992          * Max support spare size is 512 bytes. */
1993         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1994                 & NFC_CFG_NFC_SPARESIZE);
1995         /* default set a max timeout */
1996         cfg_nfc |= NFC_CFG_RSPARE |
1997                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1998
1999         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2000
2001         host->nfc->will_write_sram = false;
2002         nfc_set_sram_bank(host, 0);
2003
2004         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2005         if (host->nfc->write_by_sram) {
2006                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2007                                 chip->ecc.mode == NAND_ECC_NONE)
2008                         chip->write_page = nfc_sram_write_page;
2009                 else
2010                         host->nfc->write_by_sram = false;
2011         }
2012
2013         dev_info(host->dev, "Using NFC Sram read %s\n",
2014                         host->nfc->write_by_sram ? "and write" : "");
2015         return 0;
2016 }
2017
2018 static struct platform_driver atmel_nand_nfc_driver;
2019 /*
2020  * Probe for the NAND device.
2021  */
2022 static int atmel_nand_probe(struct platform_device *pdev)
2023 {
2024         struct atmel_nand_host *host;
2025         struct mtd_info *mtd;
2026         struct nand_chip *nand_chip;
2027         struct resource *mem;
2028         struct mtd_part_parser_data ppdata = {};
2029         int res, irq;
2030
2031         /* Allocate memory for the device structure (and zero it) */
2032         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2033         if (!host)
2034                 return -ENOMEM;
2035
2036         res = platform_driver_register(&atmel_nand_nfc_driver);
2037         if (res)
2038                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2039
2040         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2041         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2042         if (IS_ERR(host->io_base)) {
2043                 res = PTR_ERR(host->io_base);
2044                 goto err_nand_ioremap;
2045         }
2046         host->io_phys = (dma_addr_t)mem->start;
2047
2048         mtd = &host->mtd;
2049         nand_chip = &host->nand_chip;
2050         host->dev = &pdev->dev;
2051         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2052                 /* Only when CONFIG_OF is enabled of_node can be parsed */
2053                 res = atmel_of_init_port(host, pdev->dev.of_node);
2054                 if (res)
2055                         goto err_nand_ioremap;
2056         } else {
2057                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2058                        sizeof(struct atmel_nand_data));
2059         }
2060
2061         nand_chip->priv = host;         /* link the private data structures */
2062         mtd->priv = nand_chip;
2063         mtd->owner = THIS_MODULE;
2064
2065         /* Set address of NAND IO lines */
2066         nand_chip->IO_ADDR_R = host->io_base;
2067         nand_chip->IO_ADDR_W = host->io_base;
2068
2069         if (nand_nfc.is_initialized) {
2070                 /* NFC driver is probed and initialized */
2071                 host->nfc = &nand_nfc;
2072
2073                 nand_chip->select_chip = nfc_select_chip;
2074                 nand_chip->dev_ready = nfc_device_ready;
2075                 nand_chip->cmdfunc = nfc_nand_command;
2076
2077                 /* Initialize the interrupt for NFC */
2078                 irq = platform_get_irq(pdev, 0);
2079                 if (irq < 0) {
2080                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2081                         res = irq;
2082                         goto err_nand_ioremap;
2083                 }
2084
2085                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2086                                 0, "hsmc", host);
2087                 if (res) {
2088                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2089                                 irq);
2090                         goto err_nand_ioremap;
2091                 }
2092         } else {
2093                 res = atmel_nand_set_enable_ready_pins(mtd);
2094                 if (res)
2095                         goto err_nand_ioremap;
2096
2097                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2098         }
2099
2100         nand_chip->ecc.mode = host->board.ecc_mode;
2101         nand_chip->chip_delay = 40;             /* 40us command delay time */
2102
2103         if (host->board.bus_width_16)   /* 16-bit bus width */
2104                 nand_chip->options |= NAND_BUSWIDTH_16;
2105
2106         nand_chip->read_buf = atmel_read_buf;
2107         nand_chip->write_buf = atmel_write_buf;
2108
2109         platform_set_drvdata(pdev, host);
2110         atmel_nand_enable(host);
2111
2112         if (gpio_is_valid(host->board.det_pin)) {
2113                 res = devm_gpio_request(&pdev->dev,
2114                                 host->board.det_pin, "nand_det");
2115                 if (res < 0) {
2116                         dev_err(&pdev->dev,
2117                                 "can't request det gpio %d\n",
2118                                 host->board.det_pin);
2119                         goto err_no_card;
2120                 }
2121
2122                 res = gpio_direction_input(host->board.det_pin);
2123                 if (res < 0) {
2124                         dev_err(&pdev->dev,
2125                                 "can't request input direction det gpio %d\n",
2126                                 host->board.det_pin);
2127                         goto err_no_card;
2128                 }
2129
2130                 if (gpio_get_value(host->board.det_pin)) {
2131                         dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2132                         res = -ENXIO;
2133                         goto err_no_card;
2134                 }
2135         }
2136
2137         if (host->board.on_flash_bbt || on_flash_bbt) {
2138                 dev_info(&pdev->dev, "Use On Flash BBT\n");
2139                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2140         }
2141
2142         if (!host->board.has_dma)
2143                 use_dma = 0;
2144
2145         if (use_dma) {
2146                 dma_cap_mask_t mask;
2147
2148                 dma_cap_zero(mask);
2149                 dma_cap_set(DMA_MEMCPY, mask);
2150                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2151                 if (!host->dma_chan) {
2152                         dev_err(host->dev, "Failed to request DMA channel\n");
2153                         use_dma = 0;
2154                 }
2155         }
2156         if (use_dma)
2157                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2158                                         dma_chan_name(host->dma_chan));
2159         else
2160                 dev_info(host->dev, "No DMA support for NAND access.\n");
2161
2162         /* first scan to find the device and get the page size */
2163         if (nand_scan_ident(mtd, 1, NULL)) {
2164                 res = -ENXIO;
2165                 goto err_scan_ident;
2166         }
2167
2168         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2169                 if (host->has_pmecc)
2170                         res = atmel_pmecc_nand_init_params(pdev, host);
2171                 else
2172                         res = atmel_hw_nand_init_params(pdev, host);
2173
2174                 if (res != 0)
2175                         goto err_hw_ecc;
2176         }
2177
2178         /* initialize the nfc configuration register */
2179         if (host->nfc && host->nfc->use_nfc_sram) {
2180                 res = nfc_sram_init(mtd);
2181                 if (res) {
2182                         host->nfc->use_nfc_sram = false;
2183                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2184                 }
2185         }
2186
2187         /* second phase scan */
2188         if (nand_scan_tail(mtd)) {
2189                 res = -ENXIO;
2190                 goto err_scan_tail;
2191         }
2192
2193         mtd->name = "atmel_nand";
2194         ppdata.of_node = pdev->dev.of_node;
2195         res = mtd_device_parse_register(mtd, NULL, &ppdata,
2196                         host->board.parts, host->board.num_parts);
2197         if (!res)
2198                 return res;
2199
2200 err_scan_tail:
2201         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2202                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2203 err_hw_ecc:
2204 err_scan_ident:
2205 err_no_card:
2206         atmel_nand_disable(host);
2207         if (host->dma_chan)
2208                 dma_release_channel(host->dma_chan);
2209 err_nand_ioremap:
2210         return res;
2211 }
2212
2213 /*
2214  * Remove a NAND device.
2215  */
2216 static int atmel_nand_remove(struct platform_device *pdev)
2217 {
2218         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2219         struct mtd_info *mtd = &host->mtd;
2220
2221         nand_release(mtd);
2222
2223         atmel_nand_disable(host);
2224
2225         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2226                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2227                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2228                                 PMERRLOC_DISABLE);
2229         }
2230
2231         if (host->dma_chan)
2232                 dma_release_channel(host->dma_chan);
2233
2234         platform_driver_unregister(&atmel_nand_nfc_driver);
2235
2236         return 0;
2237 }
2238
2239 static const struct of_device_id atmel_nand_dt_ids[] = {
2240         { .compatible = "atmel,at91rm9200-nand" },
2241         { /* sentinel */ }
2242 };
2243
2244 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2245
2246 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2247 {
2248         struct atmel_nfc *nfc = &nand_nfc;
2249         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2250
2251         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2252         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2253         if (IS_ERR(nfc->base_cmd_regs))
2254                 return PTR_ERR(nfc->base_cmd_regs);
2255
2256         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2257         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2258         if (IS_ERR(nfc->hsmc_regs))
2259                 return PTR_ERR(nfc->hsmc_regs);
2260
2261         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2262         if (nfc_sram) {
2263                 nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2264                 if (IS_ERR(nfc->sram_bank0)) {
2265                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2266                                         PTR_ERR(nfc->sram_bank0));
2267                 } else {
2268                         nfc->use_nfc_sram = true;
2269                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2270
2271                         if (pdev->dev.of_node)
2272                                 nfc->write_by_sram = of_property_read_bool(
2273                                                 pdev->dev.of_node,
2274                                                 "atmel,write-by-sram");
2275                 }
2276         }
2277
2278         nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2279         nfc_readl(nfc->hsmc_regs, SR);  /* clear the NFC_SR */
2280
2281         nfc->is_initialized = true;
2282         dev_info(&pdev->dev, "NFC is probed.\n");
2283         return 0;
2284 }
2285
2286 static const struct of_device_id atmel_nand_nfc_match[] = {
2287         { .compatible = "atmel,sama5d3-nfc" },
2288         { /* sentinel */ }
2289 };
2290 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2291
2292 static struct platform_driver atmel_nand_nfc_driver = {
2293         .driver = {
2294                 .name = "atmel_nand_nfc",
2295                 .owner = THIS_MODULE,
2296                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2297         },
2298         .probe = atmel_nand_nfc_probe,
2299 };
2300
2301 static struct platform_driver atmel_nand_driver = {
2302         .probe          = atmel_nand_probe,
2303         .remove         = atmel_nand_remove,
2304         .driver         = {
2305                 .name   = "atmel_nand",
2306                 .owner  = THIS_MODULE,
2307                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2308         },
2309 };
2310
2311 module_platform_driver(atmel_nand_driver);
2312
2313 MODULE_LICENSE("GPL");
2314 MODULE_AUTHOR("Rick Bronson");
2315 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2316 MODULE_ALIAS("platform:atmel_nand");