OSDN Git Service

mtd: rawnand: stm32_fmc2: Fix dma_map_sg error check
[tomoyo/tomoyo-test1.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_address.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/reset.h>
23
24 /* Bad block marker length */
25 #define FMC2_BBM_LEN                    2
26
27 /* ECC step size */
28 #define FMC2_ECC_STEP_SIZE              512
29
30 /* BCHDSRx registers length */
31 #define FMC2_BCHDSRS_LEN                20
32
33 /* HECCR length */
34 #define FMC2_HECCR_LEN                  4
35
36 /* Max requests done for a 8k nand page size */
37 #define FMC2_MAX_SG                     16
38
39 /* Max chip enable */
40 #define FMC2_MAX_CE                     2
41
42 /* Max ECC buffer length */
43 #define FMC2_MAX_ECC_BUF_LEN            (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
44
45 #define FMC2_TIMEOUT_MS                 5000
46
47 /* Timings */
48 #define FMC2_THIZ                       1
49 #define FMC2_TIO                        8000
50 #define FMC2_TSYNC                      3000
51 #define FMC2_PCR_TIMING_MASK            0xf
52 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
53
54 /* FMC2 Controller Registers */
55 #define FMC2_BCR1                       0x0
56 #define FMC2_PCR                        0x80
57 #define FMC2_SR                         0x84
58 #define FMC2_PMEM                       0x88
59 #define FMC2_PATT                       0x8c
60 #define FMC2_HECCR                      0x94
61 #define FMC2_ISR                        0x184
62 #define FMC2_ICR                        0x188
63 #define FMC2_CSQCR                      0x200
64 #define FMC2_CSQCFGR1                   0x204
65 #define FMC2_CSQCFGR2                   0x208
66 #define FMC2_CSQCFGR3                   0x20c
67 #define FMC2_CSQAR1                     0x210
68 #define FMC2_CSQAR2                     0x214
69 #define FMC2_CSQIER                     0x220
70 #define FMC2_CSQISR                     0x224
71 #define FMC2_CSQICR                     0x228
72 #define FMC2_CSQEMSR                    0x230
73 #define FMC2_BCHIER                     0x250
74 #define FMC2_BCHISR                     0x254
75 #define FMC2_BCHICR                     0x258
76 #define FMC2_BCHPBR1                    0x260
77 #define FMC2_BCHPBR2                    0x264
78 #define FMC2_BCHPBR3                    0x268
79 #define FMC2_BCHPBR4                    0x26c
80 #define FMC2_BCHDSR0                    0x27c
81 #define FMC2_BCHDSR1                    0x280
82 #define FMC2_BCHDSR2                    0x284
83 #define FMC2_BCHDSR3                    0x288
84 #define FMC2_BCHDSR4                    0x28c
85
86 /* Register: FMC2_BCR1 */
87 #define FMC2_BCR1_FMC2EN                BIT(31)
88
89 /* Register: FMC2_PCR */
90 #define FMC2_PCR_PWAITEN                BIT(1)
91 #define FMC2_PCR_PBKEN                  BIT(2)
92 #define FMC2_PCR_PWID                   GENMASK(5, 4)
93 #define FMC2_PCR_PWID_BUSWIDTH_8        0
94 #define FMC2_PCR_PWID_BUSWIDTH_16       1
95 #define FMC2_PCR_ECCEN                  BIT(6)
96 #define FMC2_PCR_ECCALG                 BIT(8)
97 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
98 #define FMC2_PCR_TCLR_DEFAULT           0xf
99 #define FMC2_PCR_TAR                    GENMASK(16, 13)
100 #define FMC2_PCR_TAR_DEFAULT            0xf
101 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
102 #define FMC2_PCR_ECCSS_512              1
103 #define FMC2_PCR_ECCSS_2048             3
104 #define FMC2_PCR_BCHECC                 BIT(24)
105 #define FMC2_PCR_WEN                    BIT(25)
106
107 /* Register: FMC2_SR */
108 #define FMC2_SR_NWRF                    BIT(6)
109
110 /* Register: FMC2_PMEM */
111 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
112 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
113 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
114 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
115 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
116
117 /* Register: FMC2_PATT */
118 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
119 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
120 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
121 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
122 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
123
124 /* Register: FMC2_ISR */
125 #define FMC2_ISR_IHLF                   BIT(1)
126
127 /* Register: FMC2_ICR */
128 #define FMC2_ICR_CIHLF                  BIT(1)
129
130 /* Register: FMC2_CSQCR */
131 #define FMC2_CSQCR_CSQSTART             BIT(0)
132
133 /* Register: FMC2_CSQCFGR1 */
134 #define FMC2_CSQCFGR1_CMD2EN            BIT(1)
135 #define FMC2_CSQCFGR1_DMADEN            BIT(2)
136 #define FMC2_CSQCFGR1_ACYNBR            GENMASK(6, 4)
137 #define FMC2_CSQCFGR1_CMD1              GENMASK(15, 8)
138 #define FMC2_CSQCFGR1_CMD2              GENMASK(23, 16)
139 #define FMC2_CSQCFGR1_CMD1T             BIT(24)
140 #define FMC2_CSQCFGR1_CMD2T             BIT(25)
141
142 /* Register: FMC2_CSQCFGR2 */
143 #define FMC2_CSQCFGR2_SQSDTEN           BIT(0)
144 #define FMC2_CSQCFGR2_RCMD2EN           BIT(1)
145 #define FMC2_CSQCFGR2_DMASEN            BIT(2)
146 #define FMC2_CSQCFGR2_RCMD1             GENMASK(15, 8)
147 #define FMC2_CSQCFGR2_RCMD2             GENMASK(23, 16)
148 #define FMC2_CSQCFGR2_RCMD1T            BIT(24)
149 #define FMC2_CSQCFGR2_RCMD2T            BIT(25)
150
151 /* Register: FMC2_CSQCFGR3 */
152 #define FMC2_CSQCFGR3_SNBR              GENMASK(13, 8)
153 #define FMC2_CSQCFGR3_AC1T              BIT(16)
154 #define FMC2_CSQCFGR3_AC2T              BIT(17)
155 #define FMC2_CSQCFGR3_AC3T              BIT(18)
156 #define FMC2_CSQCFGR3_AC4T              BIT(19)
157 #define FMC2_CSQCFGR3_AC5T              BIT(20)
158 #define FMC2_CSQCFGR3_SDT               BIT(21)
159 #define FMC2_CSQCFGR3_RAC1T             BIT(22)
160 #define FMC2_CSQCFGR3_RAC2T             BIT(23)
161
162 /* Register: FMC2_CSQCAR1 */
163 #define FMC2_CSQCAR1_ADDC1              GENMASK(7, 0)
164 #define FMC2_CSQCAR1_ADDC2              GENMASK(15, 8)
165 #define FMC2_CSQCAR1_ADDC3              GENMASK(23, 16)
166 #define FMC2_CSQCAR1_ADDC4              GENMASK(31, 24)
167
168 /* Register: FMC2_CSQCAR2 */
169 #define FMC2_CSQCAR2_ADDC5              GENMASK(7, 0)
170 #define FMC2_CSQCAR2_NANDCEN            GENMASK(11, 10)
171 #define FMC2_CSQCAR2_SAO                GENMASK(31, 16)
172
173 /* Register: FMC2_CSQIER */
174 #define FMC2_CSQIER_TCIE                BIT(0)
175
176 /* Register: FMC2_CSQICR */
177 #define FMC2_CSQICR_CLEAR_IRQ           GENMASK(4, 0)
178
179 /* Register: FMC2_CSQEMSR */
180 #define FMC2_CSQEMSR_SEM                GENMASK(15, 0)
181
182 /* Register: FMC2_BCHIER */
183 #define FMC2_BCHIER_DERIE               BIT(1)
184 #define FMC2_BCHIER_EPBRIE              BIT(4)
185
186 /* Register: FMC2_BCHICR */
187 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
188
189 /* Register: FMC2_BCHDSR0 */
190 #define FMC2_BCHDSR0_DUE                BIT(0)
191 #define FMC2_BCHDSR0_DEF                BIT(1)
192 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
193
194 /* Register: FMC2_BCHDSR1 */
195 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
196 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
197
198 /* Register: FMC2_BCHDSR2 */
199 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
200 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
201
202 /* Register: FMC2_BCHDSR3 */
203 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
204 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
205
206 /* Register: FMC2_BCHDSR4 */
207 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
208 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
209
210 enum stm32_fmc2_ecc {
211         FMC2_ECC_HAM = 1,
212         FMC2_ECC_BCH4 = 4,
213         FMC2_ECC_BCH8 = 8
214 };
215
216 enum stm32_fmc2_irq_state {
217         FMC2_IRQ_UNKNOWN = 0,
218         FMC2_IRQ_BCH,
219         FMC2_IRQ_SEQ
220 };
221
222 struct stm32_fmc2_timings {
223         u8 tclr;
224         u8 tar;
225         u8 thiz;
226         u8 twait;
227         u8 thold_mem;
228         u8 tset_mem;
229         u8 thold_att;
230         u8 tset_att;
231 };
232
233 struct stm32_fmc2_nand {
234         struct nand_chip chip;
235         struct gpio_desc *wp_gpio;
236         struct stm32_fmc2_timings timings;
237         int ncs;
238         int cs_used[FMC2_MAX_CE];
239 };
240
241 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
242 {
243         return container_of(chip, struct stm32_fmc2_nand, chip);
244 }
245
246 struct stm32_fmc2_nfc {
247         struct nand_controller base;
248         struct stm32_fmc2_nand nand;
249         struct device *dev;
250         struct device *cdev;
251         struct regmap *regmap;
252         void __iomem *data_base[FMC2_MAX_CE];
253         void __iomem *cmd_base[FMC2_MAX_CE];
254         void __iomem *addr_base[FMC2_MAX_CE];
255         phys_addr_t io_phys_addr;
256         phys_addr_t data_phys_addr[FMC2_MAX_CE];
257         struct clk *clk;
258         u8 irq_state;
259
260         struct dma_chan *dma_tx_ch;
261         struct dma_chan *dma_rx_ch;
262         struct dma_chan *dma_ecc_ch;
263         struct sg_table dma_data_sg;
264         struct sg_table dma_ecc_sg;
265         u8 *ecc_buf;
266         int dma_ecc_len;
267
268         struct completion complete;
269         struct completion dma_data_complete;
270         struct completion dma_ecc_complete;
271
272         u8 cs_assigned;
273         int cs_sel;
274 };
275
276 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
277 {
278         return container_of(base, struct stm32_fmc2_nfc, base);
279 }
280
281 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
282 {
283         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
284         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
285         struct stm32_fmc2_timings *timings = &nand->timings;
286         u32 pmem, patt;
287
288         /* Set tclr/tar timings */
289         regmap_update_bits(nfc->regmap, FMC2_PCR,
290                            FMC2_PCR_TCLR | FMC2_PCR_TAR,
291                            FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
292                            FIELD_PREP(FMC2_PCR_TAR, timings->tar));
293
294         /* Set tset/twait/thold/thiz timings in common bank */
295         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
296         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
297         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
298         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
299         regmap_write(nfc->regmap, FMC2_PMEM, pmem);
300
301         /* Set tset/twait/thold/thiz timings in attribut bank */
302         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
303         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
304         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
305         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
306         regmap_write(nfc->regmap, FMC2_PATT, patt);
307 }
308
309 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
310 {
311         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
312         u32 pcr = 0, pcr_mask;
313
314         /* Configure ECC algorithm (default configuration is Hamming) */
315         pcr_mask = FMC2_PCR_ECCALG;
316         pcr_mask |= FMC2_PCR_BCHECC;
317         if (chip->ecc.strength == FMC2_ECC_BCH8) {
318                 pcr |= FMC2_PCR_ECCALG;
319                 pcr |= FMC2_PCR_BCHECC;
320         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
321                 pcr |= FMC2_PCR_ECCALG;
322         }
323
324         /* Set buswidth */
325         pcr_mask |= FMC2_PCR_PWID;
326         if (chip->options & NAND_BUSWIDTH_16)
327                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
328
329         /* Set ECC sector size */
330         pcr_mask |= FMC2_PCR_ECCSS;
331         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
332
333         regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
334 }
335
336 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
337 {
338         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
339         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
340         struct dma_slave_config dma_cfg;
341         int ret;
342
343         if (nand->cs_used[chipnr] == nfc->cs_sel)
344                 return 0;
345
346         nfc->cs_sel = nand->cs_used[chipnr];
347         stm32_fmc2_nfc_setup(chip);
348         stm32_fmc2_nfc_timings_init(chip);
349
350         if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
351                 memset(&dma_cfg, 0, sizeof(dma_cfg));
352                 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
353                 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
354                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
355                 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
356                 dma_cfg.src_maxburst = 32;
357                 dma_cfg.dst_maxburst = 32;
358
359                 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
360                 if (ret) {
361                         dev_err(nfc->dev, "tx DMA engine slave config failed\n");
362                         return ret;
363                 }
364
365                 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
366                 if (ret) {
367                         dev_err(nfc->dev, "rx DMA engine slave config failed\n");
368                         return ret;
369                 }
370         }
371
372         if (nfc->dma_ecc_ch) {
373                 /*
374                  * Hamming: we read HECCR register
375                  * BCH4/BCH8: we read BCHDSRSx registers
376                  */
377                 memset(&dma_cfg, 0, sizeof(dma_cfg));
378                 dma_cfg.src_addr = nfc->io_phys_addr;
379                 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
380                                     FMC2_HECCR : FMC2_BCHDSR0;
381                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
382
383                 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
384                 if (ret) {
385                         dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
386                         return ret;
387                 }
388
389                 /* Calculate ECC length needed for one sector */
390                 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
391                                    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
392         }
393
394         return 0;
395 }
396
397 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
398 {
399         u32 pcr;
400
401         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
402                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
403
404         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
405 }
406
407 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
408 {
409         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
410                            enable ? FMC2_PCR_ECCEN : 0);
411 }
412
413 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
414 {
415         nfc->irq_state = FMC2_IRQ_SEQ;
416
417         regmap_update_bits(nfc->regmap, FMC2_CSQIER,
418                            FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
419 }
420
421 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
422 {
423         regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
424
425         nfc->irq_state = FMC2_IRQ_UNKNOWN;
426 }
427
428 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
429 {
430         regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
431 }
432
433 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
434 {
435         nfc->irq_state = FMC2_IRQ_BCH;
436
437         if (mode == NAND_ECC_WRITE)
438                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
439                                    FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
440         else
441                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
442                                    FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
443 }
444
445 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
446 {
447         regmap_update_bits(nfc->regmap, FMC2_BCHIER,
448                            FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
449
450         nfc->irq_state = FMC2_IRQ_UNKNOWN;
451 }
452
453 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
454 {
455         regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
456 }
457
458 /*
459  * Enable ECC logic and reset syndrome/parity bits previously calculated
460  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
461  */
462 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
463 {
464         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
465
466         stm32_fmc2_nfc_set_ecc(nfc, false);
467
468         if (chip->ecc.strength != FMC2_ECC_HAM) {
469                 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
470                                    mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
471
472                 reinit_completion(&nfc->complete);
473                 stm32_fmc2_nfc_clear_bch_irq(nfc);
474                 stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
475         }
476
477         stm32_fmc2_nfc_set_ecc(nfc, true);
478 }
479
480 /*
481  * ECC Hamming calculation
482  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
483  * max of 1-bit)
484  */
485 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
486 {
487         ecc[0] = ecc_sta;
488         ecc[1] = ecc_sta >> 8;
489         ecc[2] = ecc_sta >> 16;
490 }
491
492 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
493                                         u8 *ecc)
494 {
495         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
496         u32 sr, heccr;
497         int ret;
498
499         ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
500                                        sr & FMC2_SR_NWRF, 1,
501                                        1000 * FMC2_TIMEOUT_MS);
502         if (ret) {
503                 dev_err(nfc->dev, "ham timeout\n");
504                 return ret;
505         }
506
507         regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
508         stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
509         stm32_fmc2_nfc_set_ecc(nfc, false);
510
511         return 0;
512 }
513
514 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
515                                       u8 *read_ecc, u8 *calc_ecc)
516 {
517         u8 bit_position = 0, b0, b1, b2;
518         u32 byte_addr = 0, b;
519         u32 i, shifting = 1;
520
521         /* Indicate which bit and byte is faulty (if any) */
522         b0 = read_ecc[0] ^ calc_ecc[0];
523         b1 = read_ecc[1] ^ calc_ecc[1];
524         b2 = read_ecc[2] ^ calc_ecc[2];
525         b = b0 | (b1 << 8) | (b2 << 16);
526
527         /* No errors */
528         if (likely(!b))
529                 return 0;
530
531         /* Calculate bit position */
532         for (i = 0; i < 3; i++) {
533                 switch (b % 4) {
534                 case 2:
535                         bit_position += shifting;
536                         break;
537                 case 1:
538                         break;
539                 default:
540                         return -EBADMSG;
541                 }
542                 shifting <<= 1;
543                 b >>= 2;
544         }
545
546         /* Calculate byte position */
547         shifting = 1;
548         for (i = 0; i < 9; i++) {
549                 switch (b % 4) {
550                 case 2:
551                         byte_addr += shifting;
552                         break;
553                 case 1:
554                         break;
555                 default:
556                         return -EBADMSG;
557                 }
558                 shifting <<= 1;
559                 b >>= 2;
560         }
561
562         /* Flip the bit */
563         dat[byte_addr] ^= (1 << bit_position);
564
565         return 1;
566 }
567
568 /*
569  * ECC BCH calculation and correction
570  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
571  * max of 4-bit/8-bit)
572  */
573 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
574                                         u8 *ecc)
575 {
576         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
577         u32 bchpbr;
578
579         /* Wait until the BCH code is ready */
580         if (!wait_for_completion_timeout(&nfc->complete,
581                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
582                 dev_err(nfc->dev, "bch timeout\n");
583                 stm32_fmc2_nfc_disable_bch_irq(nfc);
584                 return -ETIMEDOUT;
585         }
586
587         /* Read parity bits */
588         regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
589         ecc[0] = bchpbr;
590         ecc[1] = bchpbr >> 8;
591         ecc[2] = bchpbr >> 16;
592         ecc[3] = bchpbr >> 24;
593
594         regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
595         ecc[4] = bchpbr;
596         ecc[5] = bchpbr >> 8;
597         ecc[6] = bchpbr >> 16;
598
599         if (chip->ecc.strength == FMC2_ECC_BCH8) {
600                 ecc[7] = bchpbr >> 24;
601
602                 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
603                 ecc[8] = bchpbr;
604                 ecc[9] = bchpbr >> 8;
605                 ecc[10] = bchpbr >> 16;
606                 ecc[11] = bchpbr >> 24;
607
608                 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
609                 ecc[12] = bchpbr;
610         }
611
612         stm32_fmc2_nfc_set_ecc(nfc, false);
613
614         return 0;
615 }
616
617 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
618 {
619         u32 bchdsr0 = ecc_sta[0];
620         u32 bchdsr1 = ecc_sta[1];
621         u32 bchdsr2 = ecc_sta[2];
622         u32 bchdsr3 = ecc_sta[3];
623         u32 bchdsr4 = ecc_sta[4];
624         u16 pos[8];
625         int i, den;
626         unsigned int nb_errs = 0;
627
628         /* No errors found */
629         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
630                 return 0;
631
632         /* Too many errors detected */
633         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
634                 return -EBADMSG;
635
636         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
637         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
638         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
639         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
640         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
641         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
642         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
643         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
644
645         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
646         for (i = 0; i < den; i++) {
647                 if (pos[i] < eccsize * 8) {
648                         change_bit(pos[i], (unsigned long *)dat);
649                         nb_errs++;
650                 }
651         }
652
653         return nb_errs;
654 }
655
656 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
657                                       u8 *read_ecc, u8 *calc_ecc)
658 {
659         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
660         u32 ecc_sta[5];
661
662         /* Wait until the decoding error is ready */
663         if (!wait_for_completion_timeout(&nfc->complete,
664                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
665                 dev_err(nfc->dev, "bch timeout\n");
666                 stm32_fmc2_nfc_disable_bch_irq(nfc);
667                 return -ETIMEDOUT;
668         }
669
670         regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
671
672         stm32_fmc2_nfc_set_ecc(nfc, false);
673
674         return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
675 }
676
677 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
678                                     int oob_required, int page)
679 {
680         struct mtd_info *mtd = nand_to_mtd(chip);
681         int ret, i, s, stat, eccsize = chip->ecc.size;
682         int eccbytes = chip->ecc.bytes;
683         int eccsteps = chip->ecc.steps;
684         int eccstrength = chip->ecc.strength;
685         u8 *p = buf;
686         u8 *ecc_calc = chip->ecc.calc_buf;
687         u8 *ecc_code = chip->ecc.code_buf;
688         unsigned int max_bitflips = 0;
689
690         ret = nand_read_page_op(chip, page, 0, NULL, 0);
691         if (ret)
692                 return ret;
693
694         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
695              s++, i += eccbytes, p += eccsize) {
696                 chip->ecc.hwctl(chip, NAND_ECC_READ);
697
698                 /* Read the nand page sector (512 bytes) */
699                 ret = nand_change_read_column_op(chip, s * eccsize, p,
700                                                  eccsize, false);
701                 if (ret)
702                         return ret;
703
704                 /* Read the corresponding ECC bytes */
705                 ret = nand_change_read_column_op(chip, i, ecc_code,
706                                                  eccbytes, false);
707                 if (ret)
708                         return ret;
709
710                 /* Correct the data */
711                 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
712                 if (stat == -EBADMSG)
713                         /* Check for empty pages with bitflips */
714                         stat = nand_check_erased_ecc_chunk(p, eccsize,
715                                                            ecc_code, eccbytes,
716                                                            NULL, 0,
717                                                            eccstrength);
718
719                 if (stat < 0) {
720                         mtd->ecc_stats.failed++;
721                 } else {
722                         mtd->ecc_stats.corrected += stat;
723                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
724                 }
725         }
726
727         /* Read oob */
728         if (oob_required) {
729                 ret = nand_change_read_column_op(chip, mtd->writesize,
730                                                  chip->oob_poi, mtd->oobsize,
731                                                  false);
732                 if (ret)
733                         return ret;
734         }
735
736         return max_bitflips;
737 }
738
739 /* Sequencer read/write configuration */
740 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
741                                         int raw, bool write_data)
742 {
743         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
744         struct mtd_info *mtd = nand_to_mtd(chip);
745         u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
746         /*
747          * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
748          * cfg[3] => csqar1, cfg[4] => csqar2
749          */
750         u32 cfg[5];
751
752         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
753                            write_data ? FMC2_PCR_WEN : 0);
754
755         /*
756          * - Set Program Page/Page Read command
757          * - Enable DMA request data
758          * - Set timings
759          */
760         cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
761         if (write_data)
762                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
763         else
764                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
765                           FMC2_CSQCFGR1_CMD2EN |
766                           FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
767                           FMC2_CSQCFGR1_CMD2T;
768
769         /*
770          * - Set Random Data Input/Random Data Read command
771          * - Enable the sequencer to access the Spare data area
772          * - Enable  DMA request status decoding for read
773          * - Set timings
774          */
775         if (write_data)
776                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
777         else
778                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
779                          FMC2_CSQCFGR2_RCMD2EN |
780                          FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
781                          FMC2_CSQCFGR2_RCMD1T |
782                          FMC2_CSQCFGR2_RCMD2T;
783         if (!raw) {
784                 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
785                 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
786         }
787
788         /*
789          * - Set the number of sectors to be written
790          * - Set timings
791          */
792         cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
793         if (write_data) {
794                 cfg[2] |= FMC2_CSQCFGR3_RAC2T;
795                 if (chip->options & NAND_ROW_ADDR_3)
796                         cfg[2] |= FMC2_CSQCFGR3_AC5T;
797                 else
798                         cfg[2] |= FMC2_CSQCFGR3_AC4T;
799         }
800
801         /*
802          * Set the fourth first address cycles
803          * Byte 1 and byte 2 => column, we start at 0x0
804          * Byte 3 and byte 4 => page
805          */
806         cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
807         cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
808
809         /*
810          * - Set chip enable number
811          * - Set ECC byte offset in the spare area
812          * - Calculate the number of address cycles to be issued
813          * - Set byte 5 of address cycle if needed
814          */
815         cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
816         if (chip->options & NAND_BUSWIDTH_16)
817                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
818         else
819                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
820         if (chip->options & NAND_ROW_ADDR_3) {
821                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
822                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
823         } else {
824                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
825         }
826
827         regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
828 }
829
830 static void stm32_fmc2_nfc_dma_callback(void *arg)
831 {
832         complete((struct completion *)arg);
833 }
834
835 /* Read/write data from/to a page */
836 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
837                                int raw, bool write_data)
838 {
839         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
840         struct dma_async_tx_descriptor *desc_data, *desc_ecc;
841         struct scatterlist *sg;
842         struct dma_chan *dma_ch = nfc->dma_rx_ch;
843         enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
844         enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
845         int eccsteps = chip->ecc.steps;
846         int eccsize = chip->ecc.size;
847         unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
848         const u8 *p = buf;
849         int s, ret;
850
851         /* Configure DMA data */
852         if (write_data) {
853                 dma_data_dir = DMA_TO_DEVICE;
854                 dma_transfer_dir = DMA_MEM_TO_DEV;
855                 dma_ch = nfc->dma_tx_ch;
856         }
857
858         for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
859                 sg_set_buf(sg, p, eccsize);
860                 p += eccsize;
861         }
862
863         ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
864                          eccsteps, dma_data_dir);
865         if (!ret)
866                 return -EIO;
867
868         desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
869                                             eccsteps, dma_transfer_dir,
870                                             DMA_PREP_INTERRUPT);
871         if (!desc_data) {
872                 ret = -ENOMEM;
873                 goto err_unmap_data;
874         }
875
876         reinit_completion(&nfc->dma_data_complete);
877         reinit_completion(&nfc->complete);
878         desc_data->callback = stm32_fmc2_nfc_dma_callback;
879         desc_data->callback_param = &nfc->dma_data_complete;
880         ret = dma_submit_error(dmaengine_submit(desc_data));
881         if (ret)
882                 goto err_unmap_data;
883
884         dma_async_issue_pending(dma_ch);
885
886         if (!write_data && !raw) {
887                 /* Configure DMA ECC status */
888                 p = nfc->ecc_buf;
889                 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
890                         sg_set_buf(sg, p, nfc->dma_ecc_len);
891                         p += nfc->dma_ecc_len;
892                 }
893
894                 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
895                                  eccsteps, dma_data_dir);
896                 if (!ret) {
897                         ret = -EIO;
898                         goto err_unmap_data;
899                 }
900
901                 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
902                                                    nfc->dma_ecc_sg.sgl,
903                                                    eccsteps, dma_transfer_dir,
904                                                    DMA_PREP_INTERRUPT);
905                 if (!desc_ecc) {
906                         ret = -ENOMEM;
907                         goto err_unmap_ecc;
908                 }
909
910                 reinit_completion(&nfc->dma_ecc_complete);
911                 desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
912                 desc_ecc->callback_param = &nfc->dma_ecc_complete;
913                 ret = dma_submit_error(dmaengine_submit(desc_ecc));
914                 if (ret)
915                         goto err_unmap_ecc;
916
917                 dma_async_issue_pending(nfc->dma_ecc_ch);
918         }
919
920         stm32_fmc2_nfc_clear_seq_irq(nfc);
921         stm32_fmc2_nfc_enable_seq_irq(nfc);
922
923         /* Start the transfer */
924         regmap_update_bits(nfc->regmap, FMC2_CSQCR,
925                            FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
926
927         /* Wait end of sequencer transfer */
928         if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
929                 dev_err(nfc->dev, "seq timeout\n");
930                 stm32_fmc2_nfc_disable_seq_irq(nfc);
931                 dmaengine_terminate_all(dma_ch);
932                 if (!write_data && !raw)
933                         dmaengine_terminate_all(nfc->dma_ecc_ch);
934                 ret = -ETIMEDOUT;
935                 goto err_unmap_ecc;
936         }
937
938         /* Wait DMA data transfer completion */
939         if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
940                 dev_err(nfc->dev, "data DMA timeout\n");
941                 dmaengine_terminate_all(dma_ch);
942                 ret = -ETIMEDOUT;
943         }
944
945         /* Wait DMA ECC transfer completion */
946         if (!write_data && !raw) {
947                 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
948                                                  timeout)) {
949                         dev_err(nfc->dev, "ECC DMA timeout\n");
950                         dmaengine_terminate_all(nfc->dma_ecc_ch);
951                         ret = -ETIMEDOUT;
952                 }
953         }
954
955 err_unmap_ecc:
956         if (!write_data && !raw)
957                 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
958                              eccsteps, dma_data_dir);
959
960 err_unmap_data:
961         dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
962
963         return ret;
964 }
965
966 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
967                                     int oob_required, int page, int raw)
968 {
969         struct mtd_info *mtd = nand_to_mtd(chip);
970         int ret;
971
972         /* Configure the sequencer */
973         stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
974
975         /* Write the page */
976         ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
977         if (ret)
978                 return ret;
979
980         /* Write oob */
981         if (oob_required) {
982                 ret = nand_change_write_column_op(chip, mtd->writesize,
983                                                   chip->oob_poi, mtd->oobsize,
984                                                   false);
985                 if (ret)
986                         return ret;
987         }
988
989         return nand_prog_page_end_op(chip);
990 }
991
992 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
993                                          int oob_required, int page)
994 {
995         int ret;
996
997         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
998         if (ret)
999                 return ret;
1000
1001         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1002 }
1003
1004 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1005                                              const u8 *buf, int oob_required,
1006                                              int page)
1007 {
1008         int ret;
1009
1010         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1011         if (ret)
1012                 return ret;
1013
1014         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1015 }
1016
1017 /* Get a status indicating which sectors have errors */
1018 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1019 {
1020         u32 csqemsr;
1021
1022         regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1023
1024         return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1025 }
1026
1027 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1028                                       u8 *read_ecc, u8 *calc_ecc)
1029 {
1030         struct mtd_info *mtd = nand_to_mtd(chip);
1031         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1032         int eccbytes = chip->ecc.bytes;
1033         int eccsteps = chip->ecc.steps;
1034         int eccstrength = chip->ecc.strength;
1035         int i, s, eccsize = chip->ecc.size;
1036         u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1037         u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1038         unsigned int max_bitflips = 0;
1039
1040         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1041                 int stat = 0;
1042
1043                 if (eccstrength == FMC2_ECC_HAM) {
1044                         /* Ecc_sta = FMC2_HECCR */
1045                         if (sta_map & BIT(s)) {
1046                                 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1047                                                            &calc_ecc[i]);
1048                                 stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1049                                                                   &read_ecc[i],
1050                                                                   &calc_ecc[i]);
1051                         }
1052                         ecc_sta++;
1053                 } else {
1054                         /*
1055                          * Ecc_sta[0] = FMC2_BCHDSR0
1056                          * Ecc_sta[1] = FMC2_BCHDSR1
1057                          * Ecc_sta[2] = FMC2_BCHDSR2
1058                          * Ecc_sta[3] = FMC2_BCHDSR3
1059                          * Ecc_sta[4] = FMC2_BCHDSR4
1060                          */
1061                         if (sta_map & BIT(s))
1062                                 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1063                                                                  ecc_sta);
1064                         ecc_sta += 5;
1065                 }
1066
1067                 if (stat == -EBADMSG)
1068                         /* Check for empty pages with bitflips */
1069                         stat = nand_check_erased_ecc_chunk(dat, eccsize,
1070                                                            &read_ecc[i],
1071                                                            eccbytes,
1072                                                            NULL, 0,
1073                                                            eccstrength);
1074
1075                 if (stat < 0) {
1076                         mtd->ecc_stats.failed++;
1077                 } else {
1078                         mtd->ecc_stats.corrected += stat;
1079                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1080                 }
1081         }
1082
1083         return max_bitflips;
1084 }
1085
1086 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1087                                         int oob_required, int page)
1088 {
1089         struct mtd_info *mtd = nand_to_mtd(chip);
1090         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1091         u8 *ecc_calc = chip->ecc.calc_buf;
1092         u8 *ecc_code = chip->ecc.code_buf;
1093         u16 sta_map;
1094         int ret;
1095
1096         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1097         if (ret)
1098                 return ret;
1099
1100         /* Configure the sequencer */
1101         stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1102
1103         /* Read the page */
1104         ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1105         if (ret)
1106                 return ret;
1107
1108         sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1109
1110         /* Check if errors happen */
1111         if (likely(!sta_map)) {
1112                 if (oob_required)
1113                         return nand_change_read_column_op(chip, mtd->writesize,
1114                                                           chip->oob_poi,
1115                                                           mtd->oobsize, false);
1116
1117                 return 0;
1118         }
1119
1120         /* Read oob */
1121         ret = nand_change_read_column_op(chip, mtd->writesize,
1122                                          chip->oob_poi, mtd->oobsize, false);
1123         if (ret)
1124                 return ret;
1125
1126         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1127                                          chip->ecc.total);
1128         if (ret)
1129                 return ret;
1130
1131         /* Correct data */
1132         return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1133 }
1134
1135 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1136                                             int oob_required, int page)
1137 {
1138         struct mtd_info *mtd = nand_to_mtd(chip);
1139         int ret;
1140
1141         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1142         if (ret)
1143                 return ret;
1144
1145         /* Configure the sequencer */
1146         stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1147
1148         /* Read the page */
1149         ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1150         if (ret)
1151                 return ret;
1152
1153         /* Read oob */
1154         if (oob_required)
1155                 return nand_change_read_column_op(chip, mtd->writesize,
1156                                                   chip->oob_poi, mtd->oobsize,
1157                                                   false);
1158
1159         return 0;
1160 }
1161
1162 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1163 {
1164         struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1165
1166         if (nfc->irq_state == FMC2_IRQ_SEQ)
1167                 /* Sequencer is used */
1168                 stm32_fmc2_nfc_disable_seq_irq(nfc);
1169         else if (nfc->irq_state == FMC2_IRQ_BCH)
1170                 /* BCH is used */
1171                 stm32_fmc2_nfc_disable_bch_irq(nfc);
1172
1173         complete(&nfc->complete);
1174
1175         return IRQ_HANDLED;
1176 }
1177
1178 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1179                                      unsigned int len, bool force_8bit)
1180 {
1181         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1182         void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1183
1184         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1185                 /* Reconfigure bus width to 8-bit */
1186                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1187
1188         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1189                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1190                         *(u8 *)buf = readb_relaxed(io_addr_r);
1191                         buf += sizeof(u8);
1192                         len -= sizeof(u8);
1193                 }
1194
1195                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1196                     len >= sizeof(u16)) {
1197                         *(u16 *)buf = readw_relaxed(io_addr_r);
1198                         buf += sizeof(u16);
1199                         len -= sizeof(u16);
1200                 }
1201         }
1202
1203         /* Buf is aligned */
1204         while (len >= sizeof(u32)) {
1205                 *(u32 *)buf = readl_relaxed(io_addr_r);
1206                 buf += sizeof(u32);
1207                 len -= sizeof(u32);
1208         }
1209
1210         /* Read remaining bytes */
1211         if (len >= sizeof(u16)) {
1212                 *(u16 *)buf = readw_relaxed(io_addr_r);
1213                 buf += sizeof(u16);
1214                 len -= sizeof(u16);
1215         }
1216
1217         if (len)
1218                 *(u8 *)buf = readb_relaxed(io_addr_r);
1219
1220         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1221                 /* Reconfigure bus width to 16-bit */
1222                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1223 }
1224
1225 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1226                                       unsigned int len, bool force_8bit)
1227 {
1228         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1229         void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1230
1231         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1232                 /* Reconfigure bus width to 8-bit */
1233                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1234
1235         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1236                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1237                         writeb_relaxed(*(u8 *)buf, io_addr_w);
1238                         buf += sizeof(u8);
1239                         len -= sizeof(u8);
1240                 }
1241
1242                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1243                     len >= sizeof(u16)) {
1244                         writew_relaxed(*(u16 *)buf, io_addr_w);
1245                         buf += sizeof(u16);
1246                         len -= sizeof(u16);
1247                 }
1248         }
1249
1250         /* Buf is aligned */
1251         while (len >= sizeof(u32)) {
1252                 writel_relaxed(*(u32 *)buf, io_addr_w);
1253                 buf += sizeof(u32);
1254                 len -= sizeof(u32);
1255         }
1256
1257         /* Write remaining bytes */
1258         if (len >= sizeof(u16)) {
1259                 writew_relaxed(*(u16 *)buf, io_addr_w);
1260                 buf += sizeof(u16);
1261                 len -= sizeof(u16);
1262         }
1263
1264         if (len)
1265                 writeb_relaxed(*(u8 *)buf, io_addr_w);
1266
1267         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1268                 /* Reconfigure bus width to 16-bit */
1269                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1270 }
1271
1272 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1273                                   unsigned long timeout_ms)
1274 {
1275         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1276         const struct nand_sdr_timings *timings;
1277         u32 isr, sr;
1278
1279         /* Check if there is no pending requests to the NAND flash */
1280         if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1281                                      sr & FMC2_SR_NWRF, 1,
1282                                      1000 * FMC2_TIMEOUT_MS))
1283                 dev_warn(nfc->dev, "Waitrdy timeout\n");
1284
1285         /* Wait tWB before R/B# signal is low */
1286         timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1287         ndelay(PSEC_TO_NSEC(timings->tWB_max));
1288
1289         /* R/B# signal is low, clear high level flag */
1290         regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1291
1292         /* Wait R/B# signal is high */
1293         return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1294                                         isr & FMC2_ISR_IHLF, 5,
1295                                         1000 * FMC2_TIMEOUT_MS);
1296 }
1297
1298 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1299                                   const struct nand_operation *op,
1300                                   bool check_only)
1301 {
1302         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1303         const struct nand_op_instr *instr = NULL;
1304         unsigned int op_id, i, timeout;
1305         int ret;
1306
1307         if (check_only)
1308                 return 0;
1309
1310         ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1311         if (ret)
1312                 return ret;
1313
1314         for (op_id = 0; op_id < op->ninstrs; op_id++) {
1315                 instr = &op->instrs[op_id];
1316
1317                 switch (instr->type) {
1318                 case NAND_OP_CMD_INSTR:
1319                         writeb_relaxed(instr->ctx.cmd.opcode,
1320                                        nfc->cmd_base[nfc->cs_sel]);
1321                         break;
1322
1323                 case NAND_OP_ADDR_INSTR:
1324                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
1325                                 writeb_relaxed(instr->ctx.addr.addrs[i],
1326                                                nfc->addr_base[nfc->cs_sel]);
1327                         break;
1328
1329                 case NAND_OP_DATA_IN_INSTR:
1330                         stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1331                                                  instr->ctx.data.len,
1332                                                  instr->ctx.data.force_8bit);
1333                         break;
1334
1335                 case NAND_OP_DATA_OUT_INSTR:
1336                         stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1337                                                   instr->ctx.data.len,
1338                                                   instr->ctx.data.force_8bit);
1339                         break;
1340
1341                 case NAND_OP_WAITRDY_INSTR:
1342                         timeout = instr->ctx.waitrdy.timeout_ms;
1343                         ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1344                         break;
1345                 }
1346         }
1347
1348         return ret;
1349 }
1350
1351 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1352 {
1353         u32 pcr;
1354
1355         regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1356
1357         /* Set CS used to undefined */
1358         nfc->cs_sel = -1;
1359
1360         /* Enable wait feature and nand flash memory bank */
1361         pcr |= FMC2_PCR_PWAITEN;
1362         pcr |= FMC2_PCR_PBKEN;
1363
1364         /* Set buswidth to 8 bits mode for identification */
1365         pcr &= ~FMC2_PCR_PWID;
1366
1367         /* ECC logic is disabled */
1368         pcr &= ~FMC2_PCR_ECCEN;
1369
1370         /* Default mode */
1371         pcr &= ~FMC2_PCR_ECCALG;
1372         pcr &= ~FMC2_PCR_BCHECC;
1373         pcr &= ~FMC2_PCR_WEN;
1374
1375         /* Set default ECC sector size */
1376         pcr &= ~FMC2_PCR_ECCSS;
1377         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1378
1379         /* Set default tclr/tar timings */
1380         pcr &= ~FMC2_PCR_TCLR;
1381         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1382         pcr &= ~FMC2_PCR_TAR;
1383         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1384
1385         /* Enable FMC2 controller */
1386         if (nfc->dev == nfc->cdev)
1387                 regmap_update_bits(nfc->regmap, FMC2_BCR1,
1388                                    FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1389
1390         regmap_write(nfc->regmap, FMC2_PCR, pcr);
1391         regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1392         regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1393 }
1394
1395 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1396                                         const struct nand_sdr_timings *sdrt)
1397 {
1398         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1399         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1400         struct stm32_fmc2_timings *tims = &nand->timings;
1401         unsigned long hclk = clk_get_rate(nfc->clk);
1402         unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1403         unsigned long timing, tar, tclr, thiz, twait;
1404         unsigned long tset_mem, tset_att, thold_mem, thold_att;
1405
1406         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1407         timing = DIV_ROUND_UP(tar, hclkp) - 1;
1408         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1409
1410         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1411         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1412         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1413
1414         tims->thiz = FMC2_THIZ;
1415         thiz = (tims->thiz + 1) * hclkp;
1416
1417         /*
1418          * tWAIT > tRP
1419          * tWAIT > tWP
1420          * tWAIT > tREA + tIO
1421          */
1422         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1423         twait = max_t(unsigned long, twait, sdrt->tWP_min);
1424         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1425         timing = DIV_ROUND_UP(twait, hclkp);
1426         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1427
1428         /*
1429          * tSETUP_MEM > tCS - tWAIT
1430          * tSETUP_MEM > tALS - tWAIT
1431          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1432          */
1433         tset_mem = hclkp;
1434         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1435                 tset_mem = sdrt->tCS_min - twait;
1436         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1437                 tset_mem = sdrt->tALS_min - twait;
1438         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1439             (tset_mem < sdrt->tDS_min - (twait - thiz)))
1440                 tset_mem = sdrt->tDS_min - (twait - thiz);
1441         timing = DIV_ROUND_UP(tset_mem, hclkp);
1442         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1443
1444         /*
1445          * tHOLD_MEM > tCH
1446          * tHOLD_MEM > tREH - tSETUP_MEM
1447          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1448          */
1449         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1450         if (sdrt->tREH_min > tset_mem &&
1451             (thold_mem < sdrt->tREH_min - tset_mem))
1452                 thold_mem = sdrt->tREH_min - tset_mem;
1453         if ((sdrt->tRC_min > tset_mem + twait) &&
1454             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1455                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
1456         if ((sdrt->tWC_min > tset_mem + twait) &&
1457             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1458                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
1459         timing = DIV_ROUND_UP(thold_mem, hclkp);
1460         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1461
1462         /*
1463          * tSETUP_ATT > tCS - tWAIT
1464          * tSETUP_ATT > tCLS - tWAIT
1465          * tSETUP_ATT > tALS - tWAIT
1466          * tSETUP_ATT > tRHW - tHOLD_MEM
1467          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1468          */
1469         tset_att = hclkp;
1470         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1471                 tset_att = sdrt->tCS_min - twait;
1472         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1473                 tset_att = sdrt->tCLS_min - twait;
1474         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1475                 tset_att = sdrt->tALS_min - twait;
1476         if (sdrt->tRHW_min > thold_mem &&
1477             (tset_att < sdrt->tRHW_min - thold_mem))
1478                 tset_att = sdrt->tRHW_min - thold_mem;
1479         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1480             (tset_att < sdrt->tDS_min - (twait - thiz)))
1481                 tset_att = sdrt->tDS_min - (twait - thiz);
1482         timing = DIV_ROUND_UP(tset_att, hclkp);
1483         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1484
1485         /*
1486          * tHOLD_ATT > tALH
1487          * tHOLD_ATT > tCH
1488          * tHOLD_ATT > tCLH
1489          * tHOLD_ATT > tCOH
1490          * tHOLD_ATT > tDH
1491          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1492          * tHOLD_ATT > tADL - tSETUP_MEM
1493          * tHOLD_ATT > tWH - tSETUP_MEM
1494          * tHOLD_ATT > tWHR - tSETUP_MEM
1495          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1496          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1497          */
1498         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1499         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1500         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1501         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1502         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1503         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1504             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1505                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1506         if (sdrt->tADL_min > tset_mem &&
1507             (thold_att < sdrt->tADL_min - tset_mem))
1508                 thold_att = sdrt->tADL_min - tset_mem;
1509         if (sdrt->tWH_min > tset_mem &&
1510             (thold_att < sdrt->tWH_min - tset_mem))
1511                 thold_att = sdrt->tWH_min - tset_mem;
1512         if (sdrt->tWHR_min > tset_mem &&
1513             (thold_att < sdrt->tWHR_min - tset_mem))
1514                 thold_att = sdrt->tWHR_min - tset_mem;
1515         if ((sdrt->tRC_min > tset_att + twait) &&
1516             (thold_att < sdrt->tRC_min - (tset_att + twait)))
1517                 thold_att = sdrt->tRC_min - (tset_att + twait);
1518         if ((sdrt->tWC_min > tset_att + twait) &&
1519             (thold_att < sdrt->tWC_min - (tset_att + twait)))
1520                 thold_att = sdrt->tWC_min - (tset_att + twait);
1521         timing = DIV_ROUND_UP(thold_att, hclkp);
1522         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1523 }
1524
1525 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1526                                           const struct nand_interface_config *conf)
1527 {
1528         const struct nand_sdr_timings *sdrt;
1529
1530         sdrt = nand_get_sdr_timings(conf);
1531         if (IS_ERR(sdrt))
1532                 return PTR_ERR(sdrt);
1533
1534         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1535                 return 0;
1536
1537         stm32_fmc2_nfc_calc_timings(chip, sdrt);
1538         stm32_fmc2_nfc_timings_init(chip);
1539
1540         return 0;
1541 }
1542
1543 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1544 {
1545         int ret = 0;
1546
1547         nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1548         if (IS_ERR(nfc->dma_tx_ch)) {
1549                 ret = PTR_ERR(nfc->dma_tx_ch);
1550                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1551                         dev_err(nfc->dev,
1552                                 "failed to request tx DMA channel: %d\n", ret);
1553                 nfc->dma_tx_ch = NULL;
1554                 goto err_dma;
1555         }
1556
1557         nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1558         if (IS_ERR(nfc->dma_rx_ch)) {
1559                 ret = PTR_ERR(nfc->dma_rx_ch);
1560                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1561                         dev_err(nfc->dev,
1562                                 "failed to request rx DMA channel: %d\n", ret);
1563                 nfc->dma_rx_ch = NULL;
1564                 goto err_dma;
1565         }
1566
1567         nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1568         if (IS_ERR(nfc->dma_ecc_ch)) {
1569                 ret = PTR_ERR(nfc->dma_ecc_ch);
1570                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1571                         dev_err(nfc->dev,
1572                                 "failed to request ecc DMA channel: %d\n", ret);
1573                 nfc->dma_ecc_ch = NULL;
1574                 goto err_dma;
1575         }
1576
1577         ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1578         if (ret)
1579                 return ret;
1580
1581         /* Allocate a buffer to store ECC status registers */
1582         nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1583         if (!nfc->ecc_buf)
1584                 return -ENOMEM;
1585
1586         ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1587         if (ret)
1588                 return ret;
1589
1590         init_completion(&nfc->dma_data_complete);
1591         init_completion(&nfc->dma_ecc_complete);
1592
1593         return 0;
1594
1595 err_dma:
1596         if (ret == -ENODEV) {
1597                 dev_warn(nfc->dev,
1598                          "DMAs not defined in the DT, polling mode is used\n");
1599                 ret = 0;
1600         }
1601
1602         return ret;
1603 }
1604
1605 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1606 {
1607         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1608
1609         /*
1610          * Specific callbacks to read/write a page depending on
1611          * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1612          */
1613         if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1614                 /* DMA => use sequencer mode callbacks */
1615                 chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1616                 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1617                 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1618                 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1619                 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1620         } else {
1621                 /* No DMA => use polling mode callbacks */
1622                 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1623                 if (chip->ecc.strength == FMC2_ECC_HAM) {
1624                         /* Hamming is used */
1625                         chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1626                         chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1627                         chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1628                 } else {
1629                         /* BCH is used */
1630                         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1631                         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1632                         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1633                 }
1634         }
1635
1636         /* Specific configurations depending on the algo used */
1637         if (chip->ecc.strength == FMC2_ECC_HAM)
1638                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1639         else if (chip->ecc.strength == FMC2_ECC_BCH8)
1640                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1641         else
1642                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1643 }
1644
1645 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1646                                         struct mtd_oob_region *oobregion)
1647 {
1648         struct nand_chip *chip = mtd_to_nand(mtd);
1649         struct nand_ecc_ctrl *ecc = &chip->ecc;
1650
1651         if (section)
1652                 return -ERANGE;
1653
1654         oobregion->length = ecc->total;
1655         oobregion->offset = FMC2_BBM_LEN;
1656
1657         return 0;
1658 }
1659
1660 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1661                                          struct mtd_oob_region *oobregion)
1662 {
1663         struct nand_chip *chip = mtd_to_nand(mtd);
1664         struct nand_ecc_ctrl *ecc = &chip->ecc;
1665
1666         if (section)
1667                 return -ERANGE;
1668
1669         oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1670         oobregion->offset = ecc->total + FMC2_BBM_LEN;
1671
1672         return 0;
1673 }
1674
1675 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1676         .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1677         .free = stm32_fmc2_nfc_ooblayout_free,
1678 };
1679
1680 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1681 {
1682         /* Hamming */
1683         if (strength == FMC2_ECC_HAM)
1684                 return 4;
1685
1686         /* BCH8 */
1687         if (strength == FMC2_ECC_BCH8)
1688                 return 14;
1689
1690         /* BCH4 */
1691         return 8;
1692 }
1693
1694 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1695                      FMC2_ECC_STEP_SIZE,
1696                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1697
1698 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1699 {
1700         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1701         struct mtd_info *mtd = nand_to_mtd(chip);
1702         int ret;
1703
1704         /*
1705          * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1706          * Hamming => ecc.strength = 1
1707          * BCH4 => ecc.strength = 4
1708          * BCH8 => ecc.strength = 8
1709          * ECC sector size = 512
1710          */
1711         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1712                 dev_err(nfc->dev,
1713                         "nand_ecc_engine_type is not well defined in the DT\n");
1714                 return -EINVAL;
1715         }
1716
1717         /* Default ECC settings in case they are not set in the device tree */
1718         if (!chip->ecc.size)
1719                 chip->ecc.size = FMC2_ECC_STEP_SIZE;
1720
1721         if (!chip->ecc.strength)
1722                 chip->ecc.strength = FMC2_ECC_BCH8;
1723
1724         ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1725                                    mtd->oobsize - FMC2_BBM_LEN);
1726         if (ret) {
1727                 dev_err(nfc->dev, "no valid ECC settings set\n");
1728                 return ret;
1729         }
1730
1731         if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1732                 dev_err(nfc->dev, "nand page size is not supported\n");
1733                 return -EINVAL;
1734         }
1735
1736         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1737                 chip->bbt_options |= NAND_BBT_NO_OOB;
1738
1739         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1740
1741         mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1742
1743         stm32_fmc2_nfc_setup(chip);
1744
1745         return 0;
1746 }
1747
1748 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1749         .attach_chip = stm32_fmc2_nfc_attach_chip,
1750         .exec_op = stm32_fmc2_nfc_exec_op,
1751         .setup_interface = stm32_fmc2_nfc_setup_interface,
1752 };
1753
1754 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1755 {
1756         if (nand->wp_gpio)
1757                 gpiod_set_value(nand->wp_gpio, 1);
1758 }
1759
1760 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1761 {
1762         if (nand->wp_gpio)
1763                 gpiod_set_value(nand->wp_gpio, 0);
1764 }
1765
1766 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1767                                       struct device_node *dn)
1768 {
1769         struct stm32_fmc2_nand *nand = &nfc->nand;
1770         u32 cs;
1771         int ret, i;
1772
1773         if (!of_get_property(dn, "reg", &nand->ncs))
1774                 return -EINVAL;
1775
1776         nand->ncs /= sizeof(u32);
1777         if (!nand->ncs) {
1778                 dev_err(nfc->dev, "invalid reg property size\n");
1779                 return -EINVAL;
1780         }
1781
1782         for (i = 0; i < nand->ncs; i++) {
1783                 ret = of_property_read_u32_index(dn, "reg", i, &cs);
1784                 if (ret) {
1785                         dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1786                                 ret);
1787                         return ret;
1788                 }
1789
1790                 if (cs >= FMC2_MAX_CE) {
1791                         dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1792                         return -EINVAL;
1793                 }
1794
1795                 if (nfc->cs_assigned & BIT(cs)) {
1796                         dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1797                         return -EINVAL;
1798                 }
1799
1800                 nfc->cs_assigned |= BIT(cs);
1801                 nand->cs_used[i] = cs;
1802         }
1803
1804         nand->wp_gpio = devm_gpiod_get_from_of_node(nfc->dev, dn,
1805                                                     "wp-gpios", 0,
1806                                                     GPIOD_OUT_HIGH, "wp");
1807         if (IS_ERR(nand->wp_gpio)) {
1808                 ret = PTR_ERR(nand->wp_gpio);
1809                 if (ret != -ENOENT)
1810                         return dev_err_probe(nfc->dev, ret,
1811                                              "failed to request WP GPIO\n");
1812
1813                 nand->wp_gpio = NULL;
1814         }
1815
1816         nand_set_flash_node(&nand->chip, dn);
1817
1818         return 0;
1819 }
1820
1821 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1822 {
1823         struct device_node *dn = nfc->dev->of_node;
1824         struct device_node *child;
1825         int nchips = of_get_child_count(dn);
1826         int ret = 0;
1827
1828         if (!nchips) {
1829                 dev_err(nfc->dev, "NAND chip not defined\n");
1830                 return -EINVAL;
1831         }
1832
1833         if (nchips > 1) {
1834                 dev_err(nfc->dev, "too many NAND chips defined\n");
1835                 return -EINVAL;
1836         }
1837
1838         for_each_child_of_node(dn, child) {
1839                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
1840                 if (ret < 0) {
1841                         of_node_put(child);
1842                         return ret;
1843                 }
1844         }
1845
1846         return ret;
1847 }
1848
1849 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1850 {
1851         struct device *dev = nfc->dev;
1852         bool ebi_found = false;
1853
1854         if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1855                                                    "st,stm32mp1-fmc2-ebi"))
1856                 ebi_found = true;
1857
1858         if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1859                 if (ebi_found) {
1860                         nfc->cdev = dev->parent;
1861
1862                         return 0;
1863                 }
1864
1865                 return -EINVAL;
1866         }
1867
1868         if (ebi_found)
1869                 return -EINVAL;
1870
1871         nfc->cdev = dev;
1872
1873         return 0;
1874 }
1875
1876 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1877 {
1878         struct device *dev = &pdev->dev;
1879         struct reset_control *rstc;
1880         struct stm32_fmc2_nfc *nfc;
1881         struct stm32_fmc2_nand *nand;
1882         struct resource *res;
1883         struct mtd_info *mtd;
1884         struct nand_chip *chip;
1885         struct resource cres;
1886         int chip_cs, mem_region, ret, irq;
1887         int start_region = 0;
1888
1889         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1890         if (!nfc)
1891                 return -ENOMEM;
1892
1893         nfc->dev = dev;
1894         nand_controller_init(&nfc->base);
1895         nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1896
1897         ret = stm32_fmc2_nfc_set_cdev(nfc);
1898         if (ret)
1899                 return ret;
1900
1901         ret = stm32_fmc2_nfc_parse_dt(nfc);
1902         if (ret)
1903                 return ret;
1904
1905         ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1906         if (ret)
1907                 return ret;
1908
1909         nfc->io_phys_addr = cres.start;
1910
1911         nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1912         if (IS_ERR(nfc->regmap))
1913                 return PTR_ERR(nfc->regmap);
1914
1915         if (nfc->dev == nfc->cdev)
1916                 start_region = 1;
1917
1918         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1919              chip_cs++, mem_region += 3) {
1920                 if (!(nfc->cs_assigned & BIT(chip_cs)))
1921                         continue;
1922
1923                 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1924                 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1925                 if (IS_ERR(nfc->data_base[chip_cs]))
1926                         return PTR_ERR(nfc->data_base[chip_cs]);
1927
1928                 nfc->data_phys_addr[chip_cs] = res->start;
1929
1930                 nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1931                 if (IS_ERR(nfc->cmd_base[chip_cs]))
1932                         return PTR_ERR(nfc->cmd_base[chip_cs]);
1933
1934                 nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1935                 if (IS_ERR(nfc->addr_base[chip_cs]))
1936                         return PTR_ERR(nfc->addr_base[chip_cs]);
1937         }
1938
1939         irq = platform_get_irq(pdev, 0);
1940         if (irq < 0)
1941                 return irq;
1942
1943         ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1944                                dev_name(dev), nfc);
1945         if (ret) {
1946                 dev_err(dev, "failed to request irq\n");
1947                 return ret;
1948         }
1949
1950         init_completion(&nfc->complete);
1951
1952         nfc->clk = devm_clk_get(nfc->cdev, NULL);
1953         if (IS_ERR(nfc->clk))
1954                 return PTR_ERR(nfc->clk);
1955
1956         ret = clk_prepare_enable(nfc->clk);
1957         if (ret) {
1958                 dev_err(dev, "can not enable the clock\n");
1959                 return ret;
1960         }
1961
1962         rstc = devm_reset_control_get(dev, NULL);
1963         if (IS_ERR(rstc)) {
1964                 ret = PTR_ERR(rstc);
1965                 if (ret == -EPROBE_DEFER)
1966                         goto err_clk_disable;
1967         } else {
1968                 reset_control_assert(rstc);
1969                 reset_control_deassert(rstc);
1970         }
1971
1972         ret = stm32_fmc2_nfc_dma_setup(nfc);
1973         if (ret)
1974                 goto err_release_dma;
1975
1976         stm32_fmc2_nfc_init(nfc);
1977
1978         nand = &nfc->nand;
1979         chip = &nand->chip;
1980         mtd = nand_to_mtd(chip);
1981         mtd->dev.parent = dev;
1982
1983         chip->controller = &nfc->base;
1984         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1985                          NAND_USES_DMA;
1986
1987         stm32_fmc2_nfc_wp_disable(nand);
1988
1989         /* Scan to find existence of the device */
1990         ret = nand_scan(chip, nand->ncs);
1991         if (ret)
1992                 goto err_wp_enable;
1993
1994         ret = mtd_device_register(mtd, NULL, 0);
1995         if (ret)
1996                 goto err_nand_cleanup;
1997
1998         platform_set_drvdata(pdev, nfc);
1999
2000         return 0;
2001
2002 err_nand_cleanup:
2003         nand_cleanup(chip);
2004
2005 err_wp_enable:
2006         stm32_fmc2_nfc_wp_enable(nand);
2007
2008 err_release_dma:
2009         if (nfc->dma_ecc_ch)
2010                 dma_release_channel(nfc->dma_ecc_ch);
2011         if (nfc->dma_tx_ch)
2012                 dma_release_channel(nfc->dma_tx_ch);
2013         if (nfc->dma_rx_ch)
2014                 dma_release_channel(nfc->dma_rx_ch);
2015
2016         sg_free_table(&nfc->dma_data_sg);
2017         sg_free_table(&nfc->dma_ecc_sg);
2018
2019 err_clk_disable:
2020         clk_disable_unprepare(nfc->clk);
2021
2022         return ret;
2023 }
2024
2025 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
2026 {
2027         struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2028         struct stm32_fmc2_nand *nand = &nfc->nand;
2029         struct nand_chip *chip = &nand->chip;
2030         int ret;
2031
2032         ret = mtd_device_unregister(nand_to_mtd(chip));
2033         WARN_ON(ret);
2034         nand_cleanup(chip);
2035
2036         if (nfc->dma_ecc_ch)
2037                 dma_release_channel(nfc->dma_ecc_ch);
2038         if (nfc->dma_tx_ch)
2039                 dma_release_channel(nfc->dma_tx_ch);
2040         if (nfc->dma_rx_ch)
2041                 dma_release_channel(nfc->dma_rx_ch);
2042
2043         sg_free_table(&nfc->dma_data_sg);
2044         sg_free_table(&nfc->dma_ecc_sg);
2045
2046         clk_disable_unprepare(nfc->clk);
2047
2048         stm32_fmc2_nfc_wp_enable(nand);
2049
2050         return 0;
2051 }
2052
2053 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2054 {
2055         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2056         struct stm32_fmc2_nand *nand = &nfc->nand;
2057
2058         clk_disable_unprepare(nfc->clk);
2059
2060         stm32_fmc2_nfc_wp_enable(nand);
2061
2062         pinctrl_pm_select_sleep_state(dev);
2063
2064         return 0;
2065 }
2066
2067 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2068 {
2069         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2070         struct stm32_fmc2_nand *nand = &nfc->nand;
2071         int chip_cs, ret;
2072
2073         pinctrl_pm_select_default_state(dev);
2074
2075         ret = clk_prepare_enable(nfc->clk);
2076         if (ret) {
2077                 dev_err(dev, "can not enable the clock\n");
2078                 return ret;
2079         }
2080
2081         stm32_fmc2_nfc_init(nfc);
2082
2083         stm32_fmc2_nfc_wp_disable(nand);
2084
2085         for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2086                 if (!(nfc->cs_assigned & BIT(chip_cs)))
2087                         continue;
2088
2089                 nand_reset(&nand->chip, chip_cs);
2090         }
2091
2092         return 0;
2093 }
2094
2095 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2096                          stm32_fmc2_nfc_resume);
2097
2098 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2099         {.compatible = "st,stm32mp15-fmc2"},
2100         {.compatible = "st,stm32mp1-fmc2-nfc"},
2101         {}
2102 };
2103 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2104
2105 static struct platform_driver stm32_fmc2_nfc_driver = {
2106         .probe  = stm32_fmc2_nfc_probe,
2107         .remove = stm32_fmc2_nfc_remove,
2108         .driver = {
2109                 .name = "stm32_fmc2_nfc",
2110                 .of_match_table = stm32_fmc2_nfc_match,
2111                 .pm = &stm32_fmc2_nfc_pm_ops,
2112         },
2113 };
2114 module_platform_driver(stm32_fmc2_nfc_driver);
2115
2116 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2117 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2118 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2119 MODULE_LICENSE("GPL v2");