OSDN Git Service

scripts/kallsyms: fix wrong kallsyms_relative_base
[tomoyo/tomoyo-test1.git] / drivers / net / can / dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31                              8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from can_dlc with sanitized can_dlc */
34 u8 can_dlc2len(u8 can_dlc)
35 {
36         return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
41                              9, 9, 9, 9,                        /* 9 - 12 */
42                              10, 10, 10, 10,                    /* 13 - 16 */
43                              11, 11, 11, 11,                    /* 17 - 20 */
44                              12, 12, 12, 12,                    /* 21 - 24 */
45                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
46                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
47                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
48                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
49                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
52 u8 can_len2dlc(u8 len)
53 {
54         if (unlikely(len > 64))
55                 return 0xF;
56
57         return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63 #define CAN_CALC_SYNC_SEG 1
64
65 /* Bit-timing calculation derived from:
66  *
67  * Code based on LinCAN sources and H8S2638 project
68  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
69  * Copyright 2005      Stanislav Marek
70  * email: pisa@cmp.felk.cvut.cz
71  *
72  * Calculates proper bit-timing parameters for a specified bit-rate
73  * and sample-point, which can then be used to set the bit-timing
74  * registers of the CAN controller. You can find more information
75  * in the header file linux/can/netlink.h.
76  */
77 static int
78 can_update_sample_point(const struct can_bittiming_const *btc,
79                         unsigned int sample_point_nominal, unsigned int tseg,
80                         unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
81                         unsigned int *sample_point_error_ptr)
82 {
83         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
84         unsigned int sample_point, best_sample_point = 0;
85         unsigned int tseg1, tseg2;
86         int i;
87
88         for (i = 0; i <= 1; i++) {
89                 tseg2 = tseg + CAN_CALC_SYNC_SEG -
90                         (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) /
91                         1000 - i;
92                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
93                 tseg1 = tseg - tseg2;
94                 if (tseg1 > btc->tseg1_max) {
95                         tseg1 = btc->tseg1_max;
96                         tseg2 = tseg - tseg1;
97                 }
98
99                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) /
100                         (tseg + CAN_CALC_SYNC_SEG);
101                 sample_point_error = abs(sample_point_nominal - sample_point);
102
103                 if (sample_point <= sample_point_nominal &&
104                     sample_point_error < best_sample_point_error) {
105                         best_sample_point = sample_point;
106                         best_sample_point_error = sample_point_error;
107                         *tseg1_ptr = tseg1;
108                         *tseg2_ptr = tseg2;
109                 }
110         }
111
112         if (sample_point_error_ptr)
113                 *sample_point_error_ptr = best_sample_point_error;
114
115         return best_sample_point;
116 }
117
118 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
119                               const struct can_bittiming_const *btc)
120 {
121         struct can_priv *priv = netdev_priv(dev);
122         unsigned int bitrate;                   /* current bitrate */
123         unsigned int bitrate_error;             /* difference between current and nominal value */
124         unsigned int best_bitrate_error = UINT_MAX;
125         unsigned int sample_point_error;        /* difference between current and nominal value */
126         unsigned int best_sample_point_error = UINT_MAX;
127         unsigned int sample_point_nominal;      /* nominal sample point */
128         unsigned int best_tseg = 0;             /* current best value for tseg */
129         unsigned int best_brp = 0;              /* current best value for brp */
130         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
131         u64 v64;
132
133         /* Use CiA recommended sample points */
134         if (bt->sample_point) {
135                 sample_point_nominal = bt->sample_point;
136         } else {
137                 if (bt->bitrate > 800000)
138                         sample_point_nominal = 750;
139                 else if (bt->bitrate > 500000)
140                         sample_point_nominal = 800;
141                 else
142                         sample_point_nominal = 875;
143         }
144
145         /* tseg even = round down, odd = round up */
146         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
147              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
148                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
149
150                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
151                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
152
153                 /* choose brp step which is possible in system */
154                 brp = (brp / btc->brp_inc) * btc->brp_inc;
155                 if (brp < btc->brp_min || brp > btc->brp_max)
156                         continue;
157
158                 bitrate = priv->clock.freq / (brp * tsegall);
159                 bitrate_error = abs(bt->bitrate - bitrate);
160
161                 /* tseg brp biterror */
162                 if (bitrate_error > best_bitrate_error)
163                         continue;
164
165                 /* reset sample point error if we have a better bitrate */
166                 if (bitrate_error < best_bitrate_error)
167                         best_sample_point_error = UINT_MAX;
168
169                 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
170                                         &tseg1, &tseg2, &sample_point_error);
171                 if (sample_point_error > best_sample_point_error)
172                         continue;
173
174                 best_sample_point_error = sample_point_error;
175                 best_bitrate_error = bitrate_error;
176                 best_tseg = tseg / 2;
177                 best_brp = brp;
178
179                 if (bitrate_error == 0 && sample_point_error == 0)
180                         break;
181         }
182
183         if (best_bitrate_error) {
184                 /* Error in one-tenth of a percent */
185                 v64 = (u64)best_bitrate_error * 1000;
186                 do_div(v64, bt->bitrate);
187                 bitrate_error = (u32)v64;
188                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
189                         netdev_err(dev,
190                                    "bitrate error %d.%d%% too high\n",
191                                    bitrate_error / 10, bitrate_error % 10);
192                         return -EDOM;
193                 }
194                 netdev_warn(dev, "bitrate error %d.%d%%\n",
195                             bitrate_error / 10, bitrate_error % 10);
196         }
197
198         /* real sample point */
199         bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
200                                                    best_tseg, &tseg1, &tseg2,
201                                                    NULL);
202
203         v64 = (u64)best_brp * 1000 * 1000 * 1000;
204         do_div(v64, priv->clock.freq);
205         bt->tq = (u32)v64;
206         bt->prop_seg = tseg1 / 2;
207         bt->phase_seg1 = tseg1 - bt->prop_seg;
208         bt->phase_seg2 = tseg2;
209
210         /* check for sjw user settings */
211         if (!bt->sjw || !btc->sjw_max) {
212                 bt->sjw = 1;
213         } else {
214                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
215                 if (bt->sjw > btc->sjw_max)
216                         bt->sjw = btc->sjw_max;
217                 /* bt->sjw must not be higher than tseg2 */
218                 if (tseg2 < bt->sjw)
219                         bt->sjw = tseg2;
220         }
221
222         bt->brp = best_brp;
223
224         /* real bitrate */
225         bt->bitrate = priv->clock.freq /
226                 (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
227
228         return 0;
229 }
230 #else /* !CONFIG_CAN_CALC_BITTIMING */
231 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
232                               const struct can_bittiming_const *btc)
233 {
234         netdev_err(dev, "bit-timing calculation not available\n");
235         return -EINVAL;
236 }
237 #endif /* CONFIG_CAN_CALC_BITTIMING */
238
239 /* Checks the validity of the specified bit-timing parameters prop_seg,
240  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
241  * prescaler value brp. You can find more information in the header
242  * file linux/can/netlink.h.
243  */
244 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
245                                const struct can_bittiming_const *btc)
246 {
247         struct can_priv *priv = netdev_priv(dev);
248         int tseg1, alltseg;
249         u64 brp64;
250
251         tseg1 = bt->prop_seg + bt->phase_seg1;
252         if (!bt->sjw)
253                 bt->sjw = 1;
254         if (bt->sjw > btc->sjw_max ||
255             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
256             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
257                 return -ERANGE;
258
259         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
260         if (btc->brp_inc > 1)
261                 do_div(brp64, btc->brp_inc);
262         brp64 += 500000000UL - 1;
263         do_div(brp64, 1000000000UL); /* the practicable BRP */
264         if (btc->brp_inc > 1)
265                 brp64 *= btc->brp_inc;
266         bt->brp = (u32)brp64;
267
268         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
269                 return -EINVAL;
270
271         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
272         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
273         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
274
275         return 0;
276 }
277
278 /* Checks the validity of predefined bitrate settings */
279 static int
280 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
281                      const u32 *bitrate_const,
282                      const unsigned int bitrate_const_cnt)
283 {
284         struct can_priv *priv = netdev_priv(dev);
285         unsigned int i;
286
287         for (i = 0; i < bitrate_const_cnt; i++) {
288                 if (bt->bitrate == bitrate_const[i])
289                         break;
290         }
291
292         if (i >= priv->bitrate_const_cnt)
293                 return -EINVAL;
294
295         return 0;
296 }
297
298 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
299                              const struct can_bittiming_const *btc,
300                              const u32 *bitrate_const,
301                              const unsigned int bitrate_const_cnt)
302 {
303         int err;
304
305         /* Depending on the given can_bittiming parameter structure the CAN
306          * timing parameters are calculated based on the provided bitrate OR
307          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
308          * provided directly which are then checked and fixed up.
309          */
310         if (!bt->tq && bt->bitrate && btc)
311                 err = can_calc_bittiming(dev, bt, btc);
312         else if (bt->tq && !bt->bitrate && btc)
313                 err = can_fixup_bittiming(dev, bt, btc);
314         else if (!bt->tq && bt->bitrate && bitrate_const)
315                 err = can_validate_bitrate(dev, bt, bitrate_const,
316                                            bitrate_const_cnt);
317         else
318                 err = -EINVAL;
319
320         return err;
321 }
322
323 static void can_update_state_error_stats(struct net_device *dev,
324                                          enum can_state new_state)
325 {
326         struct can_priv *priv = netdev_priv(dev);
327
328         if (new_state <= priv->state)
329                 return;
330
331         switch (new_state) {
332         case CAN_STATE_ERROR_WARNING:
333                 priv->can_stats.error_warning++;
334                 break;
335         case CAN_STATE_ERROR_PASSIVE:
336                 priv->can_stats.error_passive++;
337                 break;
338         case CAN_STATE_BUS_OFF:
339                 priv->can_stats.bus_off++;
340                 break;
341         default:
342                 break;
343         }
344 }
345
346 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
347 {
348         switch (state) {
349         case CAN_STATE_ERROR_ACTIVE:
350                 return CAN_ERR_CRTL_ACTIVE;
351         case CAN_STATE_ERROR_WARNING:
352                 return CAN_ERR_CRTL_TX_WARNING;
353         case CAN_STATE_ERROR_PASSIVE:
354                 return CAN_ERR_CRTL_TX_PASSIVE;
355         default:
356                 return 0;
357         }
358 }
359
360 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
361 {
362         switch (state) {
363         case CAN_STATE_ERROR_ACTIVE:
364                 return CAN_ERR_CRTL_ACTIVE;
365         case CAN_STATE_ERROR_WARNING:
366                 return CAN_ERR_CRTL_RX_WARNING;
367         case CAN_STATE_ERROR_PASSIVE:
368                 return CAN_ERR_CRTL_RX_PASSIVE;
369         default:
370                 return 0;
371         }
372 }
373
374 void can_change_state(struct net_device *dev, struct can_frame *cf,
375                       enum can_state tx_state, enum can_state rx_state)
376 {
377         struct can_priv *priv = netdev_priv(dev);
378         enum can_state new_state = max(tx_state, rx_state);
379
380         if (unlikely(new_state == priv->state)) {
381                 netdev_warn(dev, "%s: oops, state did not change", __func__);
382                 return;
383         }
384
385         netdev_dbg(dev, "New error state: %d\n", new_state);
386
387         can_update_state_error_stats(dev, new_state);
388         priv->state = new_state;
389
390         if (!cf)
391                 return;
392
393         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
394                 cf->can_id |= CAN_ERR_BUSOFF;
395                 return;
396         }
397
398         cf->can_id |= CAN_ERR_CRTL;
399         cf->data[1] |= tx_state >= rx_state ?
400                        can_tx_state_to_frame(dev, tx_state) : 0;
401         cf->data[1] |= tx_state <= rx_state ?
402                        can_rx_state_to_frame(dev, rx_state) : 0;
403 }
404 EXPORT_SYMBOL_GPL(can_change_state);
405
406 /* Local echo of CAN messages
407  *
408  * CAN network devices *should* support a local echo functionality
409  * (see Documentation/networking/can.rst). To test the handling of CAN
410  * interfaces that do not support the local echo both driver types are
411  * implemented. In the case that the driver does not support the echo
412  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
413  * to perform the echo as a fallback solution.
414  */
415 static void can_flush_echo_skb(struct net_device *dev)
416 {
417         struct can_priv *priv = netdev_priv(dev);
418         struct net_device_stats *stats = &dev->stats;
419         int i;
420
421         for (i = 0; i < priv->echo_skb_max; i++) {
422                 if (priv->echo_skb[i]) {
423                         kfree_skb(priv->echo_skb[i]);
424                         priv->echo_skb[i] = NULL;
425                         stats->tx_dropped++;
426                         stats->tx_aborted_errors++;
427                 }
428         }
429 }
430
431 /* Put the skb on the stack to be looped backed locally lateron
432  *
433  * The function is typically called in the start_xmit function
434  * of the device driver. The driver must protect access to
435  * priv->echo_skb, if necessary.
436  */
437 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
438                       unsigned int idx)
439 {
440         struct can_priv *priv = netdev_priv(dev);
441
442         BUG_ON(idx >= priv->echo_skb_max);
443
444         /* check flag whether this packet has to be looped back */
445         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
446             (skb->protocol != htons(ETH_P_CAN) &&
447              skb->protocol != htons(ETH_P_CANFD))) {
448                 kfree_skb(skb);
449                 return;
450         }
451
452         if (!priv->echo_skb[idx]) {
453                 skb = can_create_echo_skb(skb);
454                 if (!skb)
455                         return;
456
457                 /* make settings for echo to reduce code in irq context */
458                 skb->pkt_type = PACKET_BROADCAST;
459                 skb->ip_summed = CHECKSUM_UNNECESSARY;
460                 skb->dev = dev;
461
462                 /* save this skb for tx interrupt echo handling */
463                 priv->echo_skb[idx] = skb;
464         } else {
465                 /* locking problem with netif_stop_queue() ?? */
466                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
467                 kfree_skb(skb);
468         }
469 }
470 EXPORT_SYMBOL_GPL(can_put_echo_skb);
471
472 struct sk_buff *
473 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
474 {
475         struct can_priv *priv = netdev_priv(dev);
476
477         if (idx >= priv->echo_skb_max) {
478                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
479                            __func__, idx, priv->echo_skb_max);
480                 return NULL;
481         }
482
483         if (priv->echo_skb[idx]) {
484                 /* Using "struct canfd_frame::len" for the frame
485                  * length is supported on both CAN and CANFD frames.
486                  */
487                 struct sk_buff *skb = priv->echo_skb[idx];
488                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
489                 u8 len = cf->len;
490
491                 *len_ptr = len;
492                 priv->echo_skb[idx] = NULL;
493
494                 return skb;
495         }
496
497         return NULL;
498 }
499
500 /* Get the skb from the stack and loop it back locally
501  *
502  * The function is typically called when the TX done interrupt
503  * is handled in the device driver. The driver must protect
504  * access to priv->echo_skb, if necessary.
505  */
506 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
507 {
508         struct sk_buff *skb;
509         u8 len;
510
511         skb = __can_get_echo_skb(dev, idx, &len);
512         if (!skb)
513                 return 0;
514
515         netif_rx(skb);
516
517         return len;
518 }
519 EXPORT_SYMBOL_GPL(can_get_echo_skb);
520
521 /* Remove the skb from the stack and free it.
522  *
523  * The function is typically called when TX failed.
524  */
525 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
526 {
527         struct can_priv *priv = netdev_priv(dev);
528
529         BUG_ON(idx >= priv->echo_skb_max);
530
531         if (priv->echo_skb[idx]) {
532                 dev_kfree_skb_any(priv->echo_skb[idx]);
533                 priv->echo_skb[idx] = NULL;
534         }
535 }
536 EXPORT_SYMBOL_GPL(can_free_echo_skb);
537
538 /* CAN device restart for bus-off recovery */
539 static void can_restart(struct net_device *dev)
540 {
541         struct can_priv *priv = netdev_priv(dev);
542         struct net_device_stats *stats = &dev->stats;
543         struct sk_buff *skb;
544         struct can_frame *cf;
545         int err;
546
547         BUG_ON(netif_carrier_ok(dev));
548
549         /* No synchronization needed because the device is bus-off and
550          * no messages can come in or go out.
551          */
552         can_flush_echo_skb(dev);
553
554         /* send restart message upstream */
555         skb = alloc_can_err_skb(dev, &cf);
556         if (!skb)
557                 goto restart;
558
559         cf->can_id |= CAN_ERR_RESTARTED;
560
561         netif_rx(skb);
562
563         stats->rx_packets++;
564         stats->rx_bytes += cf->can_dlc;
565
566 restart:
567         netdev_dbg(dev, "restarted\n");
568         priv->can_stats.restarts++;
569
570         /* Now restart the device */
571         err = priv->do_set_mode(dev, CAN_MODE_START);
572
573         netif_carrier_on(dev);
574         if (err)
575                 netdev_err(dev, "Error %d during restart", err);
576 }
577
578 static void can_restart_work(struct work_struct *work)
579 {
580         struct delayed_work *dwork = to_delayed_work(work);
581         struct can_priv *priv = container_of(dwork, struct can_priv,
582                                              restart_work);
583
584         can_restart(priv->dev);
585 }
586
587 int can_restart_now(struct net_device *dev)
588 {
589         struct can_priv *priv = netdev_priv(dev);
590
591         /* A manual restart is only permitted if automatic restart is
592          * disabled and the device is in the bus-off state
593          */
594         if (priv->restart_ms)
595                 return -EINVAL;
596         if (priv->state != CAN_STATE_BUS_OFF)
597                 return -EBUSY;
598
599         cancel_delayed_work_sync(&priv->restart_work);
600         can_restart(dev);
601
602         return 0;
603 }
604
605 /* CAN bus-off
606  *
607  * This functions should be called when the device goes bus-off to
608  * tell the netif layer that no more packets can be sent or received.
609  * If enabled, a timer is started to trigger bus-off recovery.
610  */
611 void can_bus_off(struct net_device *dev)
612 {
613         struct can_priv *priv = netdev_priv(dev);
614
615         netdev_info(dev, "bus-off\n");
616
617         netif_carrier_off(dev);
618
619         if (priv->restart_ms)
620                 schedule_delayed_work(&priv->restart_work,
621                                       msecs_to_jiffies(priv->restart_ms));
622 }
623 EXPORT_SYMBOL_GPL(can_bus_off);
624
625 static void can_setup(struct net_device *dev)
626 {
627         dev->type = ARPHRD_CAN;
628         dev->mtu = CAN_MTU;
629         dev->hard_header_len = 0;
630         dev->addr_len = 0;
631         dev->tx_queue_len = 10;
632
633         /* New-style flags. */
634         dev->flags = IFF_NOARP;
635         dev->features = NETIF_F_HW_CSUM;
636 }
637
638 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
639 {
640         struct sk_buff *skb;
641
642         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
643                                sizeof(struct can_frame));
644         if (unlikely(!skb))
645                 return NULL;
646
647         skb->protocol = htons(ETH_P_CAN);
648         skb->pkt_type = PACKET_BROADCAST;
649         skb->ip_summed = CHECKSUM_UNNECESSARY;
650
651         skb_reset_mac_header(skb);
652         skb_reset_network_header(skb);
653         skb_reset_transport_header(skb);
654
655         can_skb_reserve(skb);
656         can_skb_prv(skb)->ifindex = dev->ifindex;
657         can_skb_prv(skb)->skbcnt = 0;
658
659         *cf = skb_put_zero(skb, sizeof(struct can_frame));
660
661         return skb;
662 }
663 EXPORT_SYMBOL_GPL(alloc_can_skb);
664
665 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
666                                 struct canfd_frame **cfd)
667 {
668         struct sk_buff *skb;
669
670         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
671                                sizeof(struct canfd_frame));
672         if (unlikely(!skb))
673                 return NULL;
674
675         skb->protocol = htons(ETH_P_CANFD);
676         skb->pkt_type = PACKET_BROADCAST;
677         skb->ip_summed = CHECKSUM_UNNECESSARY;
678
679         skb_reset_mac_header(skb);
680         skb_reset_network_header(skb);
681         skb_reset_transport_header(skb);
682
683         can_skb_reserve(skb);
684         can_skb_prv(skb)->ifindex = dev->ifindex;
685         can_skb_prv(skb)->skbcnt = 0;
686
687         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
688
689         return skb;
690 }
691 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
692
693 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
694 {
695         struct sk_buff *skb;
696
697         skb = alloc_can_skb(dev, cf);
698         if (unlikely(!skb))
699                 return NULL;
700
701         (*cf)->can_id = CAN_ERR_FLAG;
702         (*cf)->can_dlc = CAN_ERR_DLC;
703
704         return skb;
705 }
706 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
707
708 /* Allocate and setup space for the CAN network device */
709 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
710                                     unsigned int txqs, unsigned int rxqs)
711 {
712         struct net_device *dev;
713         struct can_priv *priv;
714         int size;
715
716         /* We put the driver's priv, the CAN mid layer priv and the
717          * echo skb into the netdevice's priv. The memory layout for
718          * the netdev_priv is like this:
719          *
720          * +-------------------------+
721          * | driver's priv           |
722          * +-------------------------+
723          * | struct can_ml_priv      |
724          * +-------------------------+
725          * | array of struct sk_buff |
726          * +-------------------------+
727          */
728
729         size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
730
731         if (echo_skb_max)
732                 size = ALIGN(size, sizeof(struct sk_buff *)) +
733                         echo_skb_max * sizeof(struct sk_buff *);
734
735         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
736                                txqs, rxqs);
737         if (!dev)
738                 return NULL;
739
740         priv = netdev_priv(dev);
741         priv->dev = dev;
742
743         dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
744
745         if (echo_skb_max) {
746                 priv->echo_skb_max = echo_skb_max;
747                 priv->echo_skb = (void *)priv +
748                         (size - echo_skb_max * sizeof(struct sk_buff *));
749         }
750
751         priv->state = CAN_STATE_STOPPED;
752
753         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
754
755         return dev;
756 }
757 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
758
759 /* Free space of the CAN network device */
760 void free_candev(struct net_device *dev)
761 {
762         free_netdev(dev);
763 }
764 EXPORT_SYMBOL_GPL(free_candev);
765
766 /* changing MTU and control mode for CAN/CANFD devices */
767 int can_change_mtu(struct net_device *dev, int new_mtu)
768 {
769         struct can_priv *priv = netdev_priv(dev);
770
771         /* Do not allow changing the MTU while running */
772         if (dev->flags & IFF_UP)
773                 return -EBUSY;
774
775         /* allow change of MTU according to the CANFD ability of the device */
776         switch (new_mtu) {
777         case CAN_MTU:
778                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
779                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
780                         return -EINVAL;
781
782                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
783                 break;
784
785         case CANFD_MTU:
786                 /* check for potential CANFD ability */
787                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
788                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
789                         return -EINVAL;
790
791                 priv->ctrlmode |= CAN_CTRLMODE_FD;
792                 break;
793
794         default:
795                 return -EINVAL;
796         }
797
798         dev->mtu = new_mtu;
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(can_change_mtu);
802
803 /* Common open function when the device gets opened.
804  *
805  * This function should be called in the open function of the device
806  * driver.
807  */
808 int open_candev(struct net_device *dev)
809 {
810         struct can_priv *priv = netdev_priv(dev);
811
812         if (!priv->bittiming.bitrate) {
813                 netdev_err(dev, "bit-timing not yet defined\n");
814                 return -EINVAL;
815         }
816
817         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
818         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
819             (!priv->data_bittiming.bitrate ||
820              priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
821                 netdev_err(dev, "incorrect/missing data bit-timing\n");
822                 return -EINVAL;
823         }
824
825         /* Switch carrier on if device was stopped while in bus-off state */
826         if (!netif_carrier_ok(dev))
827                 netif_carrier_on(dev);
828
829         return 0;
830 }
831 EXPORT_SYMBOL_GPL(open_candev);
832
833 #ifdef CONFIG_OF
834 /* Common function that can be used to understand the limitation of
835  * a transceiver when it provides no means to determine these limitations
836  * at runtime.
837  */
838 void of_can_transceiver(struct net_device *dev)
839 {
840         struct device_node *dn;
841         struct can_priv *priv = netdev_priv(dev);
842         struct device_node *np = dev->dev.parent->of_node;
843         int ret;
844
845         dn = of_get_child_by_name(np, "can-transceiver");
846         if (!dn)
847                 return;
848
849         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
850         of_node_put(dn);
851         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
852                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
853 }
854 EXPORT_SYMBOL_GPL(of_can_transceiver);
855 #endif
856
857 /* Common close function for cleanup before the device gets closed.
858  *
859  * This function should be called in the close function of the device
860  * driver.
861  */
862 void close_candev(struct net_device *dev)
863 {
864         struct can_priv *priv = netdev_priv(dev);
865
866         cancel_delayed_work_sync(&priv->restart_work);
867         can_flush_echo_skb(dev);
868 }
869 EXPORT_SYMBOL_GPL(close_candev);
870
871 /* CAN netlink interface */
872 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
873         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
874         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
875         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
876         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
877         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
878         [IFLA_CAN_BITTIMING_CONST]
879                                 = { .len = sizeof(struct can_bittiming_const) },
880         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
881         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
882         [IFLA_CAN_DATA_BITTIMING]
883                                 = { .len = sizeof(struct can_bittiming) },
884         [IFLA_CAN_DATA_BITTIMING_CONST]
885                                 = { .len = sizeof(struct can_bittiming_const) },
886 };
887
888 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
889                         struct netlink_ext_ack *extack)
890 {
891         bool is_can_fd = false;
892
893         /* Make sure that valid CAN FD configurations always consist of
894          * - nominal/arbitration bittiming
895          * - data bittiming
896          * - control mode with CAN_CTRLMODE_FD set
897          */
898
899         if (!data)
900                 return 0;
901
902         if (data[IFLA_CAN_CTRLMODE]) {
903                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
904
905                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
906         }
907
908         if (is_can_fd) {
909                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
910                         return -EOPNOTSUPP;
911         }
912
913         if (data[IFLA_CAN_DATA_BITTIMING]) {
914                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
915                         return -EOPNOTSUPP;
916         }
917
918         return 0;
919 }
920
921 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
922                           struct nlattr *data[],
923                           struct netlink_ext_ack *extack)
924 {
925         struct can_priv *priv = netdev_priv(dev);
926         int err;
927
928         /* We need synchronization with dev->stop() */
929         ASSERT_RTNL();
930
931         if (data[IFLA_CAN_BITTIMING]) {
932                 struct can_bittiming bt;
933
934                 /* Do not allow changing bittiming while running */
935                 if (dev->flags & IFF_UP)
936                         return -EBUSY;
937
938                 /* Calculate bittiming parameters based on
939                  * bittiming_const if set, otherwise pass bitrate
940                  * directly via do_set_bitrate(). Bail out if neither
941                  * is given.
942                  */
943                 if (!priv->bittiming_const && !priv->do_set_bittiming)
944                         return -EOPNOTSUPP;
945
946                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
947                 err = can_get_bittiming(dev, &bt,
948                                         priv->bittiming_const,
949                                         priv->bitrate_const,
950                                         priv->bitrate_const_cnt);
951                 if (err)
952                         return err;
953
954                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
955                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
956                                    priv->bitrate_max);
957                         return -EINVAL;
958                 }
959
960                 memcpy(&priv->bittiming, &bt, sizeof(bt));
961
962                 if (priv->do_set_bittiming) {
963                         /* Finally, set the bit-timing registers */
964                         err = priv->do_set_bittiming(dev);
965                         if (err)
966                                 return err;
967                 }
968         }
969
970         if (data[IFLA_CAN_CTRLMODE]) {
971                 struct can_ctrlmode *cm;
972                 u32 ctrlstatic;
973                 u32 maskedflags;
974
975                 /* Do not allow changing controller mode while running */
976                 if (dev->flags & IFF_UP)
977                         return -EBUSY;
978                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
979                 ctrlstatic = priv->ctrlmode_static;
980                 maskedflags = cm->flags & cm->mask;
981
982                 /* check whether provided bits are allowed to be passed */
983                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
984                         return -EOPNOTSUPP;
985
986                 /* do not check for static fd-non-iso if 'fd' is disabled */
987                 if (!(maskedflags & CAN_CTRLMODE_FD))
988                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
989
990                 /* make sure static options are provided by configuration */
991                 if ((maskedflags & ctrlstatic) != ctrlstatic)
992                         return -EOPNOTSUPP;
993
994                 /* clear bits to be modified and copy the flag values */
995                 priv->ctrlmode &= ~cm->mask;
996                 priv->ctrlmode |= maskedflags;
997
998                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
999                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1000                         dev->mtu = CANFD_MTU;
1001                 else
1002                         dev->mtu = CAN_MTU;
1003         }
1004
1005         if (data[IFLA_CAN_RESTART_MS]) {
1006                 /* Do not allow changing restart delay while running */
1007                 if (dev->flags & IFF_UP)
1008                         return -EBUSY;
1009                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1010         }
1011
1012         if (data[IFLA_CAN_RESTART]) {
1013                 /* Do not allow a restart while not running */
1014                 if (!(dev->flags & IFF_UP))
1015                         return -EINVAL;
1016                 err = can_restart_now(dev);
1017                 if (err)
1018                         return err;
1019         }
1020
1021         if (data[IFLA_CAN_DATA_BITTIMING]) {
1022                 struct can_bittiming dbt;
1023
1024                 /* Do not allow changing bittiming while running */
1025                 if (dev->flags & IFF_UP)
1026                         return -EBUSY;
1027
1028                 /* Calculate bittiming parameters based on
1029                  * data_bittiming_const if set, otherwise pass bitrate
1030                  * directly via do_set_bitrate(). Bail out if neither
1031                  * is given.
1032                  */
1033                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1034                         return -EOPNOTSUPP;
1035
1036                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1037                        sizeof(dbt));
1038                 err = can_get_bittiming(dev, &dbt,
1039                                         priv->data_bittiming_const,
1040                                         priv->data_bitrate_const,
1041                                         priv->data_bitrate_const_cnt);
1042                 if (err)
1043                         return err;
1044
1045                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1046                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1047                                    priv->bitrate_max);
1048                         return -EINVAL;
1049                 }
1050
1051                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1052
1053                 if (priv->do_set_data_bittiming) {
1054                         /* Finally, set the bit-timing registers */
1055                         err = priv->do_set_data_bittiming(dev);
1056                         if (err)
1057                                 return err;
1058                 }
1059         }
1060
1061         if (data[IFLA_CAN_TERMINATION]) {
1062                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1063                 const unsigned int num_term = priv->termination_const_cnt;
1064                 unsigned int i;
1065
1066                 if (!priv->do_set_termination)
1067                         return -EOPNOTSUPP;
1068
1069                 /* check whether given value is supported by the interface */
1070                 for (i = 0; i < num_term; i++) {
1071                         if (termval == priv->termination_const[i])
1072                                 break;
1073                 }
1074                 if (i >= num_term)
1075                         return -EINVAL;
1076
1077                 /* Finally, set the termination value */
1078                 err = priv->do_set_termination(dev, termval);
1079                 if (err)
1080                         return err;
1081
1082                 priv->termination = termval;
1083         }
1084
1085         return 0;
1086 }
1087
1088 static size_t can_get_size(const struct net_device *dev)
1089 {
1090         struct can_priv *priv = netdev_priv(dev);
1091         size_t size = 0;
1092
1093         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1094                 size += nla_total_size(sizeof(struct can_bittiming));
1095         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1096                 size += nla_total_size(sizeof(struct can_bittiming_const));
1097         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1098         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1099         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1100         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1101         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1102                 size += nla_total_size(sizeof(struct can_berr_counter));
1103         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1104                 size += nla_total_size(sizeof(struct can_bittiming));
1105         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1106                 size += nla_total_size(sizeof(struct can_bittiming_const));
1107         if (priv->termination_const) {
1108                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1109                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1110                                        priv->termination_const_cnt);
1111         }
1112         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1113                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1114                                        priv->bitrate_const_cnt);
1115         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1116                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1117                                        priv->data_bitrate_const_cnt);
1118         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1119
1120         return size;
1121 }
1122
1123 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1124 {
1125         struct can_priv *priv = netdev_priv(dev);
1126         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1127         struct can_berr_counter bec;
1128         enum can_state state = priv->state;
1129
1130         if (priv->do_get_state)
1131                 priv->do_get_state(dev, &state);
1132
1133         if ((priv->bittiming.bitrate &&
1134              nla_put(skb, IFLA_CAN_BITTIMING,
1135                      sizeof(priv->bittiming), &priv->bittiming)) ||
1136
1137             (priv->bittiming_const &&
1138              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1139                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1140
1141             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1142             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1143             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1144             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1145
1146             (priv->do_get_berr_counter &&
1147              !priv->do_get_berr_counter(dev, &bec) &&
1148              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1149
1150             (priv->data_bittiming.bitrate &&
1151              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1152                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1153
1154             (priv->data_bittiming_const &&
1155              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1156                      sizeof(*priv->data_bittiming_const),
1157                      priv->data_bittiming_const)) ||
1158
1159             (priv->termination_const &&
1160              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1161               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1162                       sizeof(*priv->termination_const) *
1163                       priv->termination_const_cnt,
1164                       priv->termination_const))) ||
1165
1166             (priv->bitrate_const &&
1167              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1168                      sizeof(*priv->bitrate_const) *
1169                      priv->bitrate_const_cnt,
1170                      priv->bitrate_const)) ||
1171
1172             (priv->data_bitrate_const &&
1173              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1174                      sizeof(*priv->data_bitrate_const) *
1175                      priv->data_bitrate_const_cnt,
1176                      priv->data_bitrate_const)) ||
1177
1178             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1179                      sizeof(priv->bitrate_max),
1180                      &priv->bitrate_max))
1181             )
1182
1183                 return -EMSGSIZE;
1184
1185         return 0;
1186 }
1187
1188 static size_t can_get_xstats_size(const struct net_device *dev)
1189 {
1190         return sizeof(struct can_device_stats);
1191 }
1192
1193 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1194 {
1195         struct can_priv *priv = netdev_priv(dev);
1196
1197         if (nla_put(skb, IFLA_INFO_XSTATS,
1198                     sizeof(priv->can_stats), &priv->can_stats))
1199                 goto nla_put_failure;
1200         return 0;
1201
1202 nla_put_failure:
1203         return -EMSGSIZE;
1204 }
1205
1206 static int can_newlink(struct net *src_net, struct net_device *dev,
1207                        struct nlattr *tb[], struct nlattr *data[],
1208                        struct netlink_ext_ack *extack)
1209 {
1210         return -EOPNOTSUPP;
1211 }
1212
1213 static void can_dellink(struct net_device *dev, struct list_head *head)
1214 {
1215 }
1216
1217 static struct rtnl_link_ops can_link_ops __read_mostly = {
1218         .kind           = "can",
1219         .maxtype        = IFLA_CAN_MAX,
1220         .policy         = can_policy,
1221         .setup          = can_setup,
1222         .validate       = can_validate,
1223         .newlink        = can_newlink,
1224         .changelink     = can_changelink,
1225         .dellink        = can_dellink,
1226         .get_size       = can_get_size,
1227         .fill_info      = can_fill_info,
1228         .get_xstats_size = can_get_xstats_size,
1229         .fill_xstats    = can_fill_xstats,
1230 };
1231
1232 /* Register the CAN network device */
1233 int register_candev(struct net_device *dev)
1234 {
1235         struct can_priv *priv = netdev_priv(dev);
1236
1237         /* Ensure termination_const, termination_const_cnt and
1238          * do_set_termination consistency. All must be either set or
1239          * unset.
1240          */
1241         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1242             (!priv->termination_const != !priv->do_set_termination))
1243                 return -EINVAL;
1244
1245         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1246                 return -EINVAL;
1247
1248         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1249                 return -EINVAL;
1250
1251         dev->rtnl_link_ops = &can_link_ops;
1252         netif_carrier_off(dev);
1253
1254         return register_netdev(dev);
1255 }
1256 EXPORT_SYMBOL_GPL(register_candev);
1257
1258 /* Unregister the CAN network device */
1259 void unregister_candev(struct net_device *dev)
1260 {
1261         unregister_netdev(dev);
1262 }
1263 EXPORT_SYMBOL_GPL(unregister_candev);
1264
1265 /* Test if a network device is a candev based device
1266  * and return the can_priv* if so.
1267  */
1268 struct can_priv *safe_candev_priv(struct net_device *dev)
1269 {
1270         if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1271                 return NULL;
1272
1273         return netdev_priv(dev);
1274 }
1275 EXPORT_SYMBOL_GPL(safe_candev_priv);
1276
1277 static __init int can_dev_init(void)
1278 {
1279         int err;
1280
1281         can_led_notifier_init();
1282
1283         err = rtnl_link_register(&can_link_ops);
1284         if (!err)
1285                 pr_info(MOD_DESC "\n");
1286
1287         return err;
1288 }
1289 module_init(can_dev_init);
1290
1291 static __exit void can_dev_exit(void)
1292 {
1293         rtnl_link_unregister(&can_link_ops);
1294
1295         can_led_notifier_exit();
1296 }
1297 module_exit(can_dev_exit);
1298
1299 MODULE_ALIAS_RTNL_LINK("can");