OSDN Git Service

bnxt_en: Add external loopback test to ethtool selftest.
[android-x86/kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 #include "bnxt_debugfs.h"
66
67 #define BNXT_TX_TIMEOUT         (5 * HZ)
68
69 static const char version[] =
70         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
71
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79
80 #define BNXT_TX_PUSH_THRESH 164
81
82 enum board_idx {
83         BCM57301,
84         BCM57302,
85         BCM57304,
86         BCM57417_NPAR,
87         BCM58700,
88         BCM57311,
89         BCM57312,
90         BCM57402,
91         BCM57404,
92         BCM57406,
93         BCM57402_NPAR,
94         BCM57407,
95         BCM57412,
96         BCM57414,
97         BCM57416,
98         BCM57417,
99         BCM57412_NPAR,
100         BCM57314,
101         BCM57417_SFP,
102         BCM57416_SFP,
103         BCM57404_NPAR,
104         BCM57406_NPAR,
105         BCM57407_SFP,
106         BCM57407_NPAR,
107         BCM57414_NPAR,
108         BCM57416_NPAR,
109         BCM57452,
110         BCM57454,
111         BCM5745x_NPAR,
112         BCM58802,
113         BCM58804,
114         BCM58808,
115         NETXTREME_E_VF,
116         NETXTREME_C_VF,
117         NETXTREME_S_VF,
118 };
119
120 /* indexed by enum above */
121 static const struct {
122         char *name;
123 } board_info[] = {
124         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
125         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
126         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
127         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
128         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
129         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
130         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
131         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
132         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
133         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
134         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
135         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
136         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
137         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
138         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
139         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
140         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
141         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
142         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
143         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
144         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
145         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
146         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
147         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
148         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
149         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
150         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
151         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
153         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
154         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
156         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
157         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
158         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
159 };
160
161 static const struct pci_device_id bnxt_pci_tbl[] = {
162         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
163         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
164         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
165         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
166         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
167         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
168         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
169         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
170         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
171         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
172         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
173         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
174         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
175         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
176         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
177         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
178         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
179         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
180         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
181         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
182         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
183         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
184         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
185         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
186         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
187         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
188         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
189         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
190         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
191         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
192         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
193         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
194         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
195         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
196         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
197         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
198         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
199 #ifdef CONFIG_BNXT_SRIOV
200         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
201         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
202         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
203         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
204         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
205         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
206         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
207         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
208         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
209 #endif
210         { 0 }
211 };
212
213 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
214
215 static const u16 bnxt_vf_req_snif[] = {
216         HWRM_FUNC_CFG,
217         HWRM_FUNC_VF_CFG,
218         HWRM_PORT_PHY_QCFG,
219         HWRM_CFA_L2_FILTER_ALLOC,
220 };
221
222 static const u16 bnxt_async_events_arr[] = {
223         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
224         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 };
229
230 static struct workqueue_struct *bnxt_pf_wq;
231
232 static bool bnxt_vf_pciid(enum board_idx idx)
233 {
234         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
235                 idx == NETXTREME_S_VF);
236 }
237
238 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
239 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
240 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
241
242 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
243                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
244
245 #define BNXT_CP_DB(db, raw_cons)                                        \
246                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
247
248 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
249                 writel(DB_CP_IRQ_DIS_FLAGS, db)
250
251 const u16 bnxt_lhint_arr[] = {
252         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
253         TX_BD_FLAGS_LHINT_512_TO_1023,
254         TX_BD_FLAGS_LHINT_1024_TO_2047,
255         TX_BD_FLAGS_LHINT_1024_TO_2047,
256         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
271 };
272
273 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
274 {
275         struct metadata_dst *md_dst = skb_metadata_dst(skb);
276
277         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
278                 return 0;
279
280         return md_dst->u.port_info.port_id;
281 }
282
283 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
284 {
285         struct bnxt *bp = netdev_priv(dev);
286         struct tx_bd *txbd;
287         struct tx_bd_ext *txbd1;
288         struct netdev_queue *txq;
289         int i;
290         dma_addr_t mapping;
291         unsigned int length, pad = 0;
292         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
293         u16 prod, last_frag;
294         struct pci_dev *pdev = bp->pdev;
295         struct bnxt_tx_ring_info *txr;
296         struct bnxt_sw_tx_bd *tx_buf;
297
298         i = skb_get_queue_mapping(skb);
299         if (unlikely(i >= bp->tx_nr_rings)) {
300                 dev_kfree_skb_any(skb);
301                 return NETDEV_TX_OK;
302         }
303
304         txq = netdev_get_tx_queue(dev, i);
305         txr = &bp->tx_ring[bp->tx_ring_map[i]];
306         prod = txr->tx_prod;
307
308         free_size = bnxt_tx_avail(bp, txr);
309         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
310                 netif_tx_stop_queue(txq);
311                 return NETDEV_TX_BUSY;
312         }
313
314         length = skb->len;
315         len = skb_headlen(skb);
316         last_frag = skb_shinfo(skb)->nr_frags;
317
318         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
319
320         txbd->tx_bd_opaque = prod;
321
322         tx_buf = &txr->tx_buf_ring[prod];
323         tx_buf->skb = skb;
324         tx_buf->nr_frags = last_frag;
325
326         vlan_tag_flags = 0;
327         cfa_action = bnxt_xmit_get_cfa_action(skb);
328         if (skb_vlan_tag_present(skb)) {
329                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
330                                  skb_vlan_tag_get(skb);
331                 /* Currently supports 8021Q, 8021AD vlan offloads
332                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
333                  */
334                 if (skb->vlan_proto == htons(ETH_P_8021Q))
335                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
336         }
337
338         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
339                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
340                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
341                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
342                 void *pdata = tx_push_buf->data;
343                 u64 *end;
344                 int j, push_len;
345
346                 /* Set COAL_NOW to be ready quickly for the next push */
347                 tx_push->tx_bd_len_flags_type =
348                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
349                                         TX_BD_TYPE_LONG_TX_BD |
350                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
351                                         TX_BD_FLAGS_COAL_NOW |
352                                         TX_BD_FLAGS_PACKET_END |
353                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
354
355                 if (skb->ip_summed == CHECKSUM_PARTIAL)
356                         tx_push1->tx_bd_hsize_lflags =
357                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
358                 else
359                         tx_push1->tx_bd_hsize_lflags = 0;
360
361                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
362                 tx_push1->tx_bd_cfa_action =
363                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
364
365                 end = pdata + length;
366                 end = PTR_ALIGN(end, 8) - 1;
367                 *end = 0;
368
369                 skb_copy_from_linear_data(skb, pdata, len);
370                 pdata += len;
371                 for (j = 0; j < last_frag; j++) {
372                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
373                         void *fptr;
374
375                         fptr = skb_frag_address_safe(frag);
376                         if (!fptr)
377                                 goto normal_tx;
378
379                         memcpy(pdata, fptr, skb_frag_size(frag));
380                         pdata += skb_frag_size(frag);
381                 }
382
383                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
384                 txbd->tx_bd_haddr = txr->data_mapping;
385                 prod = NEXT_TX(prod);
386                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
387                 memcpy(txbd, tx_push1, sizeof(*txbd));
388                 prod = NEXT_TX(prod);
389                 tx_push->doorbell =
390                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
391                 txr->tx_prod = prod;
392
393                 tx_buf->is_push = 1;
394                 netdev_tx_sent_queue(txq, skb->len);
395                 wmb();  /* Sync is_push and byte queue before pushing data */
396
397                 push_len = (length + sizeof(*tx_push) + 7) / 8;
398                 if (push_len > 16) {
399                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
400                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
401                                          (push_len - 16) << 1);
402                 } else {
403                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
404                                          push_len);
405                 }
406
407                 goto tx_done;
408         }
409
410 normal_tx:
411         if (length < BNXT_MIN_PKT_SIZE) {
412                 pad = BNXT_MIN_PKT_SIZE - length;
413                 if (skb_pad(skb, pad)) {
414                         /* SKB already freed. */
415                         tx_buf->skb = NULL;
416                         return NETDEV_TX_OK;
417                 }
418                 length = BNXT_MIN_PKT_SIZE;
419         }
420
421         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
422
423         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
424                 dev_kfree_skb_any(skb);
425                 tx_buf->skb = NULL;
426                 return NETDEV_TX_OK;
427         }
428
429         dma_unmap_addr_set(tx_buf, mapping, mapping);
430         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
431                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
432
433         txbd->tx_bd_haddr = cpu_to_le64(mapping);
434
435         prod = NEXT_TX(prod);
436         txbd1 = (struct tx_bd_ext *)
437                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
438
439         txbd1->tx_bd_hsize_lflags = 0;
440         if (skb_is_gso(skb)) {
441                 u32 hdr_len;
442
443                 if (skb->encapsulation)
444                         hdr_len = skb_inner_network_offset(skb) +
445                                 skb_inner_network_header_len(skb) +
446                                 inner_tcp_hdrlen(skb);
447                 else
448                         hdr_len = skb_transport_offset(skb) +
449                                 tcp_hdrlen(skb);
450
451                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
452                                         TX_BD_FLAGS_T_IPID |
453                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
454                 length = skb_shinfo(skb)->gso_size;
455                 txbd1->tx_bd_mss = cpu_to_le32(length);
456                 length += hdr_len;
457         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
458                 txbd1->tx_bd_hsize_lflags =
459                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
460                 txbd1->tx_bd_mss = 0;
461         }
462
463         length >>= 9;
464         flags |= bnxt_lhint_arr[length];
465         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
466
467         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
468         txbd1->tx_bd_cfa_action =
469                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
470         for (i = 0; i < last_frag; i++) {
471                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
472
473                 prod = NEXT_TX(prod);
474                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
475
476                 len = skb_frag_size(frag);
477                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
478                                            DMA_TO_DEVICE);
479
480                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
481                         goto tx_dma_error;
482
483                 tx_buf = &txr->tx_buf_ring[prod];
484                 dma_unmap_addr_set(tx_buf, mapping, mapping);
485
486                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
487
488                 flags = len << TX_BD_LEN_SHIFT;
489                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
490         }
491
492         flags &= ~TX_BD_LEN;
493         txbd->tx_bd_len_flags_type =
494                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
495                             TX_BD_FLAGS_PACKET_END);
496
497         netdev_tx_sent_queue(txq, skb->len);
498
499         /* Sync BD data before updating doorbell */
500         wmb();
501
502         prod = NEXT_TX(prod);
503         txr->tx_prod = prod;
504
505         if (!skb->xmit_more || netif_xmit_stopped(txq))
506                 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
507
508 tx_done:
509
510         mmiowb();
511
512         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
513                 if (skb->xmit_more && !tx_buf->is_push)
514                         bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
515
516                 netif_tx_stop_queue(txq);
517
518                 /* netif_tx_stop_queue() must be done before checking
519                  * tx index in bnxt_tx_avail() below, because in
520                  * bnxt_tx_int(), we update tx index before checking for
521                  * netif_tx_queue_stopped().
522                  */
523                 smp_mb();
524                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
525                         netif_tx_wake_queue(txq);
526         }
527         return NETDEV_TX_OK;
528
529 tx_dma_error:
530         last_frag = i;
531
532         /* start back at beginning and unmap skb */
533         prod = txr->tx_prod;
534         tx_buf = &txr->tx_buf_ring[prod];
535         tx_buf->skb = NULL;
536         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
537                          skb_headlen(skb), PCI_DMA_TODEVICE);
538         prod = NEXT_TX(prod);
539
540         /* unmap remaining mapped pages */
541         for (i = 0; i < last_frag; i++) {
542                 prod = NEXT_TX(prod);
543                 tx_buf = &txr->tx_buf_ring[prod];
544                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
545                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
546                                PCI_DMA_TODEVICE);
547         }
548
549         dev_kfree_skb_any(skb);
550         return NETDEV_TX_OK;
551 }
552
553 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
554 {
555         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
556         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
557         u16 cons = txr->tx_cons;
558         struct pci_dev *pdev = bp->pdev;
559         int i;
560         unsigned int tx_bytes = 0;
561
562         for (i = 0; i < nr_pkts; i++) {
563                 struct bnxt_sw_tx_bd *tx_buf;
564                 struct sk_buff *skb;
565                 int j, last;
566
567                 tx_buf = &txr->tx_buf_ring[cons];
568                 cons = NEXT_TX(cons);
569                 skb = tx_buf->skb;
570                 tx_buf->skb = NULL;
571
572                 if (tx_buf->is_push) {
573                         tx_buf->is_push = 0;
574                         goto next_tx_int;
575                 }
576
577                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
578                                  skb_headlen(skb), PCI_DMA_TODEVICE);
579                 last = tx_buf->nr_frags;
580
581                 for (j = 0; j < last; j++) {
582                         cons = NEXT_TX(cons);
583                         tx_buf = &txr->tx_buf_ring[cons];
584                         dma_unmap_page(
585                                 &pdev->dev,
586                                 dma_unmap_addr(tx_buf, mapping),
587                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
588                                 PCI_DMA_TODEVICE);
589                 }
590
591 next_tx_int:
592                 cons = NEXT_TX(cons);
593
594                 tx_bytes += skb->len;
595                 dev_kfree_skb_any(skb);
596         }
597
598         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
599         txr->tx_cons = cons;
600
601         /* Need to make the tx_cons update visible to bnxt_start_xmit()
602          * before checking for netif_tx_queue_stopped().  Without the
603          * memory barrier, there is a small possibility that bnxt_start_xmit()
604          * will miss it and cause the queue to be stopped forever.
605          */
606         smp_mb();
607
608         if (unlikely(netif_tx_queue_stopped(txq)) &&
609             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
610                 __netif_tx_lock(txq, smp_processor_id());
611                 if (netif_tx_queue_stopped(txq) &&
612                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
613                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
614                         netif_tx_wake_queue(txq);
615                 __netif_tx_unlock(txq);
616         }
617 }
618
619 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
620                                          gfp_t gfp)
621 {
622         struct device *dev = &bp->pdev->dev;
623         struct page *page;
624
625         page = alloc_page(gfp);
626         if (!page)
627                 return NULL;
628
629         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
630                                       DMA_ATTR_WEAK_ORDERING);
631         if (dma_mapping_error(dev, *mapping)) {
632                 __free_page(page);
633                 return NULL;
634         }
635         *mapping += bp->rx_dma_offset;
636         return page;
637 }
638
639 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
640                                        gfp_t gfp)
641 {
642         u8 *data;
643         struct pci_dev *pdev = bp->pdev;
644
645         data = kmalloc(bp->rx_buf_size, gfp);
646         if (!data)
647                 return NULL;
648
649         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
650                                         bp->rx_buf_use_size, bp->rx_dir,
651                                         DMA_ATTR_WEAK_ORDERING);
652
653         if (dma_mapping_error(&pdev->dev, *mapping)) {
654                 kfree(data);
655                 data = NULL;
656         }
657         return data;
658 }
659
660 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
661                        u16 prod, gfp_t gfp)
662 {
663         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
664         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
665         dma_addr_t mapping;
666
667         if (BNXT_RX_PAGE_MODE(bp)) {
668                 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
669
670                 if (!page)
671                         return -ENOMEM;
672
673                 rx_buf->data = page;
674                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
675         } else {
676                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
677
678                 if (!data)
679                         return -ENOMEM;
680
681                 rx_buf->data = data;
682                 rx_buf->data_ptr = data + bp->rx_offset;
683         }
684         rx_buf->mapping = mapping;
685
686         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
687         return 0;
688 }
689
690 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
691 {
692         u16 prod = rxr->rx_prod;
693         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
694         struct rx_bd *cons_bd, *prod_bd;
695
696         prod_rx_buf = &rxr->rx_buf_ring[prod];
697         cons_rx_buf = &rxr->rx_buf_ring[cons];
698
699         prod_rx_buf->data = data;
700         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
701
702         prod_rx_buf->mapping = cons_rx_buf->mapping;
703
704         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
705         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
706
707         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
708 }
709
710 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
711 {
712         u16 next, max = rxr->rx_agg_bmap_size;
713
714         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
715         if (next >= max)
716                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
717         return next;
718 }
719
720 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
721                                      struct bnxt_rx_ring_info *rxr,
722                                      u16 prod, gfp_t gfp)
723 {
724         struct rx_bd *rxbd =
725                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
726         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
727         struct pci_dev *pdev = bp->pdev;
728         struct page *page;
729         dma_addr_t mapping;
730         u16 sw_prod = rxr->rx_sw_agg_prod;
731         unsigned int offset = 0;
732
733         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
734                 page = rxr->rx_page;
735                 if (!page) {
736                         page = alloc_page(gfp);
737                         if (!page)
738                                 return -ENOMEM;
739                         rxr->rx_page = page;
740                         rxr->rx_page_offset = 0;
741                 }
742                 offset = rxr->rx_page_offset;
743                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
744                 if (rxr->rx_page_offset == PAGE_SIZE)
745                         rxr->rx_page = NULL;
746                 else
747                         get_page(page);
748         } else {
749                 page = alloc_page(gfp);
750                 if (!page)
751                         return -ENOMEM;
752         }
753
754         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
755                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
756                                      DMA_ATTR_WEAK_ORDERING);
757         if (dma_mapping_error(&pdev->dev, mapping)) {
758                 __free_page(page);
759                 return -EIO;
760         }
761
762         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
763                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
764
765         __set_bit(sw_prod, rxr->rx_agg_bmap);
766         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
767         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
768
769         rx_agg_buf->page = page;
770         rx_agg_buf->offset = offset;
771         rx_agg_buf->mapping = mapping;
772         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
773         rxbd->rx_bd_opaque = sw_prod;
774         return 0;
775 }
776
777 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
778                                    u32 agg_bufs)
779 {
780         struct bnxt *bp = bnapi->bp;
781         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
782         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
783         u16 prod = rxr->rx_agg_prod;
784         u16 sw_prod = rxr->rx_sw_agg_prod;
785         u32 i;
786
787         for (i = 0; i < agg_bufs; i++) {
788                 u16 cons;
789                 struct rx_agg_cmp *agg;
790                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
791                 struct rx_bd *prod_bd;
792                 struct page *page;
793
794                 agg = (struct rx_agg_cmp *)
795                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
796                 cons = agg->rx_agg_cmp_opaque;
797                 __clear_bit(cons, rxr->rx_agg_bmap);
798
799                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
800                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
801
802                 __set_bit(sw_prod, rxr->rx_agg_bmap);
803                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
804                 cons_rx_buf = &rxr->rx_agg_ring[cons];
805
806                 /* It is possible for sw_prod to be equal to cons, so
807                  * set cons_rx_buf->page to NULL first.
808                  */
809                 page = cons_rx_buf->page;
810                 cons_rx_buf->page = NULL;
811                 prod_rx_buf->page = page;
812                 prod_rx_buf->offset = cons_rx_buf->offset;
813
814                 prod_rx_buf->mapping = cons_rx_buf->mapping;
815
816                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817
818                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
819                 prod_bd->rx_bd_opaque = sw_prod;
820
821                 prod = NEXT_RX_AGG(prod);
822                 sw_prod = NEXT_RX_AGG(sw_prod);
823                 cp_cons = NEXT_CMP(cp_cons);
824         }
825         rxr->rx_agg_prod = prod;
826         rxr->rx_sw_agg_prod = sw_prod;
827 }
828
829 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
830                                         struct bnxt_rx_ring_info *rxr,
831                                         u16 cons, void *data, u8 *data_ptr,
832                                         dma_addr_t dma_addr,
833                                         unsigned int offset_and_len)
834 {
835         unsigned int payload = offset_and_len >> 16;
836         unsigned int len = offset_and_len & 0xffff;
837         struct skb_frag_struct *frag;
838         struct page *page = data;
839         u16 prod = rxr->rx_prod;
840         struct sk_buff *skb;
841         int off, err;
842
843         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
844         if (unlikely(err)) {
845                 bnxt_reuse_rx_data(rxr, cons, data);
846                 return NULL;
847         }
848         dma_addr -= bp->rx_dma_offset;
849         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
850                              DMA_ATTR_WEAK_ORDERING);
851
852         if (unlikely(!payload))
853                 payload = eth_get_headlen(data_ptr, len);
854
855         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
856         if (!skb) {
857                 __free_page(page);
858                 return NULL;
859         }
860
861         off = (void *)data_ptr - page_address(page);
862         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
863         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
864                payload + NET_IP_ALIGN);
865
866         frag = &skb_shinfo(skb)->frags[0];
867         skb_frag_size_sub(frag, payload);
868         frag->page_offset += payload;
869         skb->data_len -= payload;
870         skb->tail += payload;
871
872         return skb;
873 }
874
875 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
876                                    struct bnxt_rx_ring_info *rxr, u16 cons,
877                                    void *data, u8 *data_ptr,
878                                    dma_addr_t dma_addr,
879                                    unsigned int offset_and_len)
880 {
881         u16 prod = rxr->rx_prod;
882         struct sk_buff *skb;
883         int err;
884
885         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
886         if (unlikely(err)) {
887                 bnxt_reuse_rx_data(rxr, cons, data);
888                 return NULL;
889         }
890
891         skb = build_skb(data, 0);
892         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
893                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
894         if (!skb) {
895                 kfree(data);
896                 return NULL;
897         }
898
899         skb_reserve(skb, bp->rx_offset);
900         skb_put(skb, offset_and_len & 0xffff);
901         return skb;
902 }
903
904 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
905                                      struct sk_buff *skb, u16 cp_cons,
906                                      u32 agg_bufs)
907 {
908         struct pci_dev *pdev = bp->pdev;
909         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
910         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
911         u16 prod = rxr->rx_agg_prod;
912         u32 i;
913
914         for (i = 0; i < agg_bufs; i++) {
915                 u16 cons, frag_len;
916                 struct rx_agg_cmp *agg;
917                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
918                 struct page *page;
919                 dma_addr_t mapping;
920
921                 agg = (struct rx_agg_cmp *)
922                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
923                 cons = agg->rx_agg_cmp_opaque;
924                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
925                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
926
927                 cons_rx_buf = &rxr->rx_agg_ring[cons];
928                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
929                                    cons_rx_buf->offset, frag_len);
930                 __clear_bit(cons, rxr->rx_agg_bmap);
931
932                 /* It is possible for bnxt_alloc_rx_page() to allocate
933                  * a sw_prod index that equals the cons index, so we
934                  * need to clear the cons entry now.
935                  */
936                 mapping = cons_rx_buf->mapping;
937                 page = cons_rx_buf->page;
938                 cons_rx_buf->page = NULL;
939
940                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
941                         struct skb_shared_info *shinfo;
942                         unsigned int nr_frags;
943
944                         shinfo = skb_shinfo(skb);
945                         nr_frags = --shinfo->nr_frags;
946                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
947
948                         dev_kfree_skb(skb);
949
950                         cons_rx_buf->page = page;
951
952                         /* Update prod since possibly some pages have been
953                          * allocated already.
954                          */
955                         rxr->rx_agg_prod = prod;
956                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
957                         return NULL;
958                 }
959
960                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
961                                      PCI_DMA_FROMDEVICE,
962                                      DMA_ATTR_WEAK_ORDERING);
963
964                 skb->data_len += frag_len;
965                 skb->len += frag_len;
966                 skb->truesize += PAGE_SIZE;
967
968                 prod = NEXT_RX_AGG(prod);
969                 cp_cons = NEXT_CMP(cp_cons);
970         }
971         rxr->rx_agg_prod = prod;
972         return skb;
973 }
974
975 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
976                                u8 agg_bufs, u32 *raw_cons)
977 {
978         u16 last;
979         struct rx_agg_cmp *agg;
980
981         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
982         last = RING_CMP(*raw_cons);
983         agg = (struct rx_agg_cmp *)
984                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
985         return RX_AGG_CMP_VALID(agg, *raw_cons);
986 }
987
988 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
989                                             unsigned int len,
990                                             dma_addr_t mapping)
991 {
992         struct bnxt *bp = bnapi->bp;
993         struct pci_dev *pdev = bp->pdev;
994         struct sk_buff *skb;
995
996         skb = napi_alloc_skb(&bnapi->napi, len);
997         if (!skb)
998                 return NULL;
999
1000         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1001                                 bp->rx_dir);
1002
1003         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1004                len + NET_IP_ALIGN);
1005
1006         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1007                                    bp->rx_dir);
1008
1009         skb_put(skb, len);
1010         return skb;
1011 }
1012
1013 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1014                            u32 *raw_cons, void *cmp)
1015 {
1016         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1017         struct rx_cmp *rxcmp = cmp;
1018         u32 tmp_raw_cons = *raw_cons;
1019         u8 cmp_type, agg_bufs = 0;
1020
1021         cmp_type = RX_CMP_TYPE(rxcmp);
1022
1023         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1024                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1025                             RX_CMP_AGG_BUFS) >>
1026                            RX_CMP_AGG_BUFS_SHIFT;
1027         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1028                 struct rx_tpa_end_cmp *tpa_end = cmp;
1029
1030                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1031                             RX_TPA_END_CMP_AGG_BUFS) >>
1032                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1033         }
1034
1035         if (agg_bufs) {
1036                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1037                         return -EBUSY;
1038         }
1039         *raw_cons = tmp_raw_cons;
1040         return 0;
1041 }
1042
1043 static void bnxt_queue_sp_work(struct bnxt *bp)
1044 {
1045         if (BNXT_PF(bp))
1046                 queue_work(bnxt_pf_wq, &bp->sp_task);
1047         else
1048                 schedule_work(&bp->sp_task);
1049 }
1050
1051 static void bnxt_cancel_sp_work(struct bnxt *bp)
1052 {
1053         if (BNXT_PF(bp))
1054                 flush_workqueue(bnxt_pf_wq);
1055         else
1056                 cancel_work_sync(&bp->sp_task);
1057 }
1058
1059 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1060 {
1061         if (!rxr->bnapi->in_reset) {
1062                 rxr->bnapi->in_reset = true;
1063                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1064                 bnxt_queue_sp_work(bp);
1065         }
1066         rxr->rx_next_cons = 0xffff;
1067 }
1068
1069 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1070                            struct rx_tpa_start_cmp *tpa_start,
1071                            struct rx_tpa_start_cmp_ext *tpa_start1)
1072 {
1073         u8 agg_id = TPA_START_AGG_ID(tpa_start);
1074         u16 cons, prod;
1075         struct bnxt_tpa_info *tpa_info;
1076         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1077         struct rx_bd *prod_bd;
1078         dma_addr_t mapping;
1079
1080         cons = tpa_start->rx_tpa_start_cmp_opaque;
1081         prod = rxr->rx_prod;
1082         cons_rx_buf = &rxr->rx_buf_ring[cons];
1083         prod_rx_buf = &rxr->rx_buf_ring[prod];
1084         tpa_info = &rxr->rx_tpa[agg_id];
1085
1086         if (unlikely(cons != rxr->rx_next_cons)) {
1087                 bnxt_sched_reset(bp, rxr);
1088                 return;
1089         }
1090         /* Store cfa_code in tpa_info to use in tpa_end
1091          * completion processing.
1092          */
1093         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1094         prod_rx_buf->data = tpa_info->data;
1095         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1096
1097         mapping = tpa_info->mapping;
1098         prod_rx_buf->mapping = mapping;
1099
1100         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1101
1102         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1103
1104         tpa_info->data = cons_rx_buf->data;
1105         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1106         cons_rx_buf->data = NULL;
1107         tpa_info->mapping = cons_rx_buf->mapping;
1108
1109         tpa_info->len =
1110                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1111                                 RX_TPA_START_CMP_LEN_SHIFT;
1112         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1113                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1114
1115                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1116                 tpa_info->gso_type = SKB_GSO_TCPV4;
1117                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1118                 if (hash_type == 3)
1119                         tpa_info->gso_type = SKB_GSO_TCPV6;
1120                 tpa_info->rss_hash =
1121                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1122         } else {
1123                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1124                 tpa_info->gso_type = 0;
1125                 if (netif_msg_rx_err(bp))
1126                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1127         }
1128         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1129         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1130         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1131
1132         rxr->rx_prod = NEXT_RX(prod);
1133         cons = NEXT_RX(cons);
1134         rxr->rx_next_cons = NEXT_RX(cons);
1135         cons_rx_buf = &rxr->rx_buf_ring[cons];
1136
1137         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1138         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1139         cons_rx_buf->data = NULL;
1140 }
1141
1142 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1143                            u16 cp_cons, u32 agg_bufs)
1144 {
1145         if (agg_bufs)
1146                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1147 }
1148
1149 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1150                                            int payload_off, int tcp_ts,
1151                                            struct sk_buff *skb)
1152 {
1153 #ifdef CONFIG_INET
1154         struct tcphdr *th;
1155         int len, nw_off;
1156         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1157         u32 hdr_info = tpa_info->hdr_info;
1158         bool loopback = false;
1159
1160         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1161         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1162         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1163
1164         /* If the packet is an internal loopback packet, the offsets will
1165          * have an extra 4 bytes.
1166          */
1167         if (inner_mac_off == 4) {
1168                 loopback = true;
1169         } else if (inner_mac_off > 4) {
1170                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1171                                             ETH_HLEN - 2));
1172
1173                 /* We only support inner iPv4/ipv6.  If we don't see the
1174                  * correct protocol ID, it must be a loopback packet where
1175                  * the offsets are off by 4.
1176                  */
1177                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1178                         loopback = true;
1179         }
1180         if (loopback) {
1181                 /* internal loopback packet, subtract all offsets by 4 */
1182                 inner_ip_off -= 4;
1183                 inner_mac_off -= 4;
1184                 outer_ip_off -= 4;
1185         }
1186
1187         nw_off = inner_ip_off - ETH_HLEN;
1188         skb_set_network_header(skb, nw_off);
1189         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1190                 struct ipv6hdr *iph = ipv6_hdr(skb);
1191
1192                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1193                 len = skb->len - skb_transport_offset(skb);
1194                 th = tcp_hdr(skb);
1195                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1196         } else {
1197                 struct iphdr *iph = ip_hdr(skb);
1198
1199                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1200                 len = skb->len - skb_transport_offset(skb);
1201                 th = tcp_hdr(skb);
1202                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1203         }
1204
1205         if (inner_mac_off) { /* tunnel */
1206                 struct udphdr *uh = NULL;
1207                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1208                                             ETH_HLEN - 2));
1209
1210                 if (proto == htons(ETH_P_IP)) {
1211                         struct iphdr *iph = (struct iphdr *)skb->data;
1212
1213                         if (iph->protocol == IPPROTO_UDP)
1214                                 uh = (struct udphdr *)(iph + 1);
1215                 } else {
1216                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1217
1218                         if (iph->nexthdr == IPPROTO_UDP)
1219                                 uh = (struct udphdr *)(iph + 1);
1220                 }
1221                 if (uh) {
1222                         if (uh->check)
1223                                 skb_shinfo(skb)->gso_type |=
1224                                         SKB_GSO_UDP_TUNNEL_CSUM;
1225                         else
1226                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1227                 }
1228         }
1229 #endif
1230         return skb;
1231 }
1232
1233 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1234 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1235
1236 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1237                                            int payload_off, int tcp_ts,
1238                                            struct sk_buff *skb)
1239 {
1240 #ifdef CONFIG_INET
1241         struct tcphdr *th;
1242         int len, nw_off, tcp_opt_len = 0;
1243
1244         if (tcp_ts)
1245                 tcp_opt_len = 12;
1246
1247         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1248                 struct iphdr *iph;
1249
1250                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1251                          ETH_HLEN;
1252                 skb_set_network_header(skb, nw_off);
1253                 iph = ip_hdr(skb);
1254                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1255                 len = skb->len - skb_transport_offset(skb);
1256                 th = tcp_hdr(skb);
1257                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1258         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1259                 struct ipv6hdr *iph;
1260
1261                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1262                          ETH_HLEN;
1263                 skb_set_network_header(skb, nw_off);
1264                 iph = ipv6_hdr(skb);
1265                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1266                 len = skb->len - skb_transport_offset(skb);
1267                 th = tcp_hdr(skb);
1268                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1269         } else {
1270                 dev_kfree_skb_any(skb);
1271                 return NULL;
1272         }
1273
1274         if (nw_off) { /* tunnel */
1275                 struct udphdr *uh = NULL;
1276
1277                 if (skb->protocol == htons(ETH_P_IP)) {
1278                         struct iphdr *iph = (struct iphdr *)skb->data;
1279
1280                         if (iph->protocol == IPPROTO_UDP)
1281                                 uh = (struct udphdr *)(iph + 1);
1282                 } else {
1283                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1284
1285                         if (iph->nexthdr == IPPROTO_UDP)
1286                                 uh = (struct udphdr *)(iph + 1);
1287                 }
1288                 if (uh) {
1289                         if (uh->check)
1290                                 skb_shinfo(skb)->gso_type |=
1291                                         SKB_GSO_UDP_TUNNEL_CSUM;
1292                         else
1293                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1294                 }
1295         }
1296 #endif
1297         return skb;
1298 }
1299
1300 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1301                                            struct bnxt_tpa_info *tpa_info,
1302                                            struct rx_tpa_end_cmp *tpa_end,
1303                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1304                                            struct sk_buff *skb)
1305 {
1306 #ifdef CONFIG_INET
1307         int payload_off;
1308         u16 segs;
1309
1310         segs = TPA_END_TPA_SEGS(tpa_end);
1311         if (segs == 1)
1312                 return skb;
1313
1314         NAPI_GRO_CB(skb)->count = segs;
1315         skb_shinfo(skb)->gso_size =
1316                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1317         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1318         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1319                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1320                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1321         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1322         if (likely(skb))
1323                 tcp_gro_complete(skb);
1324 #endif
1325         return skb;
1326 }
1327
1328 /* Given the cfa_code of a received packet determine which
1329  * netdev (vf-rep or PF) the packet is destined to.
1330  */
1331 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1332 {
1333         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1334
1335         /* if vf-rep dev is NULL, the must belongs to the PF */
1336         return dev ? dev : bp->dev;
1337 }
1338
1339 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1340                                            struct bnxt_napi *bnapi,
1341                                            u32 *raw_cons,
1342                                            struct rx_tpa_end_cmp *tpa_end,
1343                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1344                                            u8 *event)
1345 {
1346         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1347         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1348         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1349         u8 *data_ptr, agg_bufs;
1350         u16 cp_cons = RING_CMP(*raw_cons);
1351         unsigned int len;
1352         struct bnxt_tpa_info *tpa_info;
1353         dma_addr_t mapping;
1354         struct sk_buff *skb;
1355         void *data;
1356
1357         if (unlikely(bnapi->in_reset)) {
1358                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1359
1360                 if (rc < 0)
1361                         return ERR_PTR(-EBUSY);
1362                 return NULL;
1363         }
1364
1365         tpa_info = &rxr->rx_tpa[agg_id];
1366         data = tpa_info->data;
1367         data_ptr = tpa_info->data_ptr;
1368         prefetch(data_ptr);
1369         len = tpa_info->len;
1370         mapping = tpa_info->mapping;
1371
1372         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1373                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1374
1375         if (agg_bufs) {
1376                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1377                         return ERR_PTR(-EBUSY);
1378
1379                 *event |= BNXT_AGG_EVENT;
1380                 cp_cons = NEXT_CMP(cp_cons);
1381         }
1382
1383         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1384                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1385                 if (agg_bufs > MAX_SKB_FRAGS)
1386                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1387                                     agg_bufs, (int)MAX_SKB_FRAGS);
1388                 return NULL;
1389         }
1390
1391         if (len <= bp->rx_copy_thresh) {
1392                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1393                 if (!skb) {
1394                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1395                         return NULL;
1396                 }
1397         } else {
1398                 u8 *new_data;
1399                 dma_addr_t new_mapping;
1400
1401                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1402                 if (!new_data) {
1403                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1404                         return NULL;
1405                 }
1406
1407                 tpa_info->data = new_data;
1408                 tpa_info->data_ptr = new_data + bp->rx_offset;
1409                 tpa_info->mapping = new_mapping;
1410
1411                 skb = build_skb(data, 0);
1412                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1413                                        bp->rx_buf_use_size, bp->rx_dir,
1414                                        DMA_ATTR_WEAK_ORDERING);
1415
1416                 if (!skb) {
1417                         kfree(data);
1418                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1419                         return NULL;
1420                 }
1421                 skb_reserve(skb, bp->rx_offset);
1422                 skb_put(skb, len);
1423         }
1424
1425         if (agg_bufs) {
1426                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1427                 if (!skb) {
1428                         /* Page reuse already handled by bnxt_rx_pages(). */
1429                         return NULL;
1430                 }
1431         }
1432
1433         skb->protocol =
1434                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1435
1436         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1437                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1438
1439         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1440             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1441                 u16 vlan_proto = tpa_info->metadata >>
1442                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1444
1445                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1446         }
1447
1448         skb_checksum_none_assert(skb);
1449         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1450                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1451                 skb->csum_level =
1452                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1453         }
1454
1455         if (TPA_END_GRO(tpa_end))
1456                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1457
1458         return skb;
1459 }
1460
1461 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1462                              struct sk_buff *skb)
1463 {
1464         if (skb->dev != bp->dev) {
1465                 /* this packet belongs to a vf-rep */
1466                 bnxt_vf_rep_rx(bp, skb);
1467                 return;
1468         }
1469         skb_record_rx_queue(skb, bnapi->index);
1470         napi_gro_receive(&bnapi->napi, skb);
1471 }
1472
1473 /* returns the following:
1474  * 1       - 1 packet successfully received
1475  * 0       - successful TPA_START, packet not completed yet
1476  * -EBUSY  - completion ring does not have all the agg buffers yet
1477  * -ENOMEM - packet aborted due to out of memory
1478  * -EIO    - packet aborted due to hw error indicated in BD
1479  */
1480 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1481                        u8 *event)
1482 {
1483         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1484         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1485         struct net_device *dev = bp->dev;
1486         struct rx_cmp *rxcmp;
1487         struct rx_cmp_ext *rxcmp1;
1488         u32 tmp_raw_cons = *raw_cons;
1489         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1490         struct bnxt_sw_rx_bd *rx_buf;
1491         unsigned int len;
1492         u8 *data_ptr, agg_bufs, cmp_type;
1493         dma_addr_t dma_addr;
1494         struct sk_buff *skb;
1495         void *data;
1496         int rc = 0;
1497         u32 misc;
1498
1499         rxcmp = (struct rx_cmp *)
1500                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1501
1502         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1503         cp_cons = RING_CMP(tmp_raw_cons);
1504         rxcmp1 = (struct rx_cmp_ext *)
1505                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1506
1507         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1508                 return -EBUSY;
1509
1510         cmp_type = RX_CMP_TYPE(rxcmp);
1511
1512         prod = rxr->rx_prod;
1513
1514         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1515                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1516                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1517
1518                 *event |= BNXT_RX_EVENT;
1519                 goto next_rx_no_prod_no_len;
1520
1521         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1522                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1523                                    (struct rx_tpa_end_cmp *)rxcmp,
1524                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1525
1526                 if (IS_ERR(skb))
1527                         return -EBUSY;
1528
1529                 rc = -ENOMEM;
1530                 if (likely(skb)) {
1531                         bnxt_deliver_skb(bp, bnapi, skb);
1532                         rc = 1;
1533                 }
1534                 *event |= BNXT_RX_EVENT;
1535                 goto next_rx_no_prod_no_len;
1536         }
1537
1538         cons = rxcmp->rx_cmp_opaque;
1539         rx_buf = &rxr->rx_buf_ring[cons];
1540         data = rx_buf->data;
1541         data_ptr = rx_buf->data_ptr;
1542         if (unlikely(cons != rxr->rx_next_cons)) {
1543                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1544
1545                 bnxt_sched_reset(bp, rxr);
1546                 return rc1;
1547         }
1548         prefetch(data_ptr);
1549
1550         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1551         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1552
1553         if (agg_bufs) {
1554                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1555                         return -EBUSY;
1556
1557                 cp_cons = NEXT_CMP(cp_cons);
1558                 *event |= BNXT_AGG_EVENT;
1559         }
1560         *event |= BNXT_RX_EVENT;
1561
1562         rx_buf->data = NULL;
1563         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1564                 bnxt_reuse_rx_data(rxr, cons, data);
1565                 if (agg_bufs)
1566                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1567
1568                 rc = -EIO;
1569                 goto next_rx;
1570         }
1571
1572         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1573         dma_addr = rx_buf->mapping;
1574
1575         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1576                 rc = 1;
1577                 goto next_rx;
1578         }
1579
1580         if (len <= bp->rx_copy_thresh) {
1581                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1582                 bnxt_reuse_rx_data(rxr, cons, data);
1583                 if (!skb) {
1584                         rc = -ENOMEM;
1585                         goto next_rx;
1586                 }
1587         } else {
1588                 u32 payload;
1589
1590                 if (rx_buf->data_ptr == data_ptr)
1591                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1592                 else
1593                         payload = 0;
1594                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1595                                       payload | len);
1596                 if (!skb) {
1597                         rc = -ENOMEM;
1598                         goto next_rx;
1599                 }
1600         }
1601
1602         if (agg_bufs) {
1603                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1604                 if (!skb) {
1605                         rc = -ENOMEM;
1606                         goto next_rx;
1607                 }
1608         }
1609
1610         if (RX_CMP_HASH_VALID(rxcmp)) {
1611                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1612                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1613
1614                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1615                 if (hash_type != 1 && hash_type != 3)
1616                         type = PKT_HASH_TYPE_L3;
1617                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1618         }
1619
1620         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1621         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1622
1623         if ((rxcmp1->rx_cmp_flags2 &
1624              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1625             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1626                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1627                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1628                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1629
1630                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1631         }
1632
1633         skb_checksum_none_assert(skb);
1634         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1635                 if (dev->features & NETIF_F_RXCSUM) {
1636                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1637                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1638                 }
1639         } else {
1640                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1641                         if (dev->features & NETIF_F_RXCSUM)
1642                                 cpr->rx_l4_csum_errors++;
1643                 }
1644         }
1645
1646         bnxt_deliver_skb(bp, bnapi, skb);
1647         rc = 1;
1648
1649 next_rx:
1650         rxr->rx_prod = NEXT_RX(prod);
1651         rxr->rx_next_cons = NEXT_RX(cons);
1652
1653         cpr->rx_packets += 1;
1654         cpr->rx_bytes += len;
1655
1656 next_rx_no_prod_no_len:
1657         *raw_cons = tmp_raw_cons;
1658
1659         return rc;
1660 }
1661
1662 /* In netpoll mode, if we are using a combined completion ring, we need to
1663  * discard the rx packets and recycle the buffers.
1664  */
1665 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1666                                  u32 *raw_cons, u8 *event)
1667 {
1668         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1669         u32 tmp_raw_cons = *raw_cons;
1670         struct rx_cmp_ext *rxcmp1;
1671         struct rx_cmp *rxcmp;
1672         u16 cp_cons;
1673         u8 cmp_type;
1674
1675         cp_cons = RING_CMP(tmp_raw_cons);
1676         rxcmp = (struct rx_cmp *)
1677                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1678
1679         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1680         cp_cons = RING_CMP(tmp_raw_cons);
1681         rxcmp1 = (struct rx_cmp_ext *)
1682                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1683
1684         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1685                 return -EBUSY;
1686
1687         cmp_type = RX_CMP_TYPE(rxcmp);
1688         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1689                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1690                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1691         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1692                 struct rx_tpa_end_cmp_ext *tpa_end1;
1693
1694                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1695                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1696                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1697         }
1698         return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1699 }
1700
1701 #define BNXT_GET_EVENT_PORT(data)       \
1702         ((data) &                       \
1703          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1704
1705 static int bnxt_async_event_process(struct bnxt *bp,
1706                                     struct hwrm_async_event_cmpl *cmpl)
1707 {
1708         u16 event_id = le16_to_cpu(cmpl->event_id);
1709
1710         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1711         switch (event_id) {
1712         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1713                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1714                 struct bnxt_link_info *link_info = &bp->link_info;
1715
1716                 if (BNXT_VF(bp))
1717                         goto async_event_process_exit;
1718
1719                 /* print unsupported speed warning in forced speed mode only */
1720                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1721                     (data1 & 0x20000)) {
1722                         u16 fw_speed = link_info->force_link_speed;
1723                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1724
1725                         if (speed != SPEED_UNKNOWN)
1726                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1727                                             speed);
1728                 }
1729                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1730                 /* fall through */
1731         }
1732         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1733                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1734                 break;
1735         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1736                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1737                 break;
1738         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1739                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1740                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1741
1742                 if (BNXT_VF(bp))
1743                         break;
1744
1745                 if (bp->pf.port_id != port_id)
1746                         break;
1747
1748                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1749                 break;
1750         }
1751         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1752                 if (BNXT_PF(bp))
1753                         goto async_event_process_exit;
1754                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1755                 break;
1756         default:
1757                 goto async_event_process_exit;
1758         }
1759         bnxt_queue_sp_work(bp);
1760 async_event_process_exit:
1761         bnxt_ulp_async_events(bp, cmpl);
1762         return 0;
1763 }
1764
1765 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1766 {
1767         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1768         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1769         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1770                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1771
1772         switch (cmpl_type) {
1773         case CMPL_BASE_TYPE_HWRM_DONE:
1774                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1775                 if (seq_id == bp->hwrm_intr_seq_id)
1776                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1777                 else
1778                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1779                 break;
1780
1781         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1782                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1783
1784                 if ((vf_id < bp->pf.first_vf_id) ||
1785                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1786                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1787                                    vf_id);
1788                         return -EINVAL;
1789                 }
1790
1791                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1792                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1793                 bnxt_queue_sp_work(bp);
1794                 break;
1795
1796         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1797                 bnxt_async_event_process(bp,
1798                                          (struct hwrm_async_event_cmpl *)txcmp);
1799
1800         default:
1801                 break;
1802         }
1803
1804         return 0;
1805 }
1806
1807 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1808 {
1809         struct bnxt_napi *bnapi = dev_instance;
1810         struct bnxt *bp = bnapi->bp;
1811         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1812         u32 cons = RING_CMP(cpr->cp_raw_cons);
1813
1814         cpr->event_ctr++;
1815         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1816         napi_schedule(&bnapi->napi);
1817         return IRQ_HANDLED;
1818 }
1819
1820 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1821 {
1822         u32 raw_cons = cpr->cp_raw_cons;
1823         u16 cons = RING_CMP(raw_cons);
1824         struct tx_cmp *txcmp;
1825
1826         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1827
1828         return TX_CMP_VALID(txcmp, raw_cons);
1829 }
1830
1831 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1832 {
1833         struct bnxt_napi *bnapi = dev_instance;
1834         struct bnxt *bp = bnapi->bp;
1835         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1836         u32 cons = RING_CMP(cpr->cp_raw_cons);
1837         u32 int_status;
1838
1839         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1840
1841         if (!bnxt_has_work(bp, cpr)) {
1842                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1843                 /* return if erroneous interrupt */
1844                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1845                         return IRQ_NONE;
1846         }
1847
1848         /* disable ring IRQ */
1849         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1850
1851         /* Return here if interrupt is shared and is disabled. */
1852         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1853                 return IRQ_HANDLED;
1854
1855         napi_schedule(&bnapi->napi);
1856         return IRQ_HANDLED;
1857 }
1858
1859 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1860 {
1861         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1862         u32 raw_cons = cpr->cp_raw_cons;
1863         u32 cons;
1864         int tx_pkts = 0;
1865         int rx_pkts = 0;
1866         u8 event = 0;
1867         struct tx_cmp *txcmp;
1868
1869         while (1) {
1870                 int rc;
1871
1872                 cons = RING_CMP(raw_cons);
1873                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1874
1875                 if (!TX_CMP_VALID(txcmp, raw_cons))
1876                         break;
1877
1878                 /* The valid test of the entry must be done first before
1879                  * reading any further.
1880                  */
1881                 dma_rmb();
1882                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1883                         tx_pkts++;
1884                         /* return full budget so NAPI will complete. */
1885                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1886                                 rx_pkts = budget;
1887                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1888                         if (likely(budget))
1889                                 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1890                         else
1891                                 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1892                                                            &event);
1893                         if (likely(rc >= 0))
1894                                 rx_pkts += rc;
1895                         /* Increment rx_pkts when rc is -ENOMEM to count towards
1896                          * the NAPI budget.  Otherwise, we may potentially loop
1897                          * here forever if we consistently cannot allocate
1898                          * buffers.
1899                          */
1900                         else if (rc == -ENOMEM && budget)
1901                                 rx_pkts++;
1902                         else if (rc == -EBUSY)  /* partial completion */
1903                                 break;
1904                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1905                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1906                                     (TX_CMP_TYPE(txcmp) ==
1907                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1908                                     (TX_CMP_TYPE(txcmp) ==
1909                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1910                         bnxt_hwrm_handler(bp, txcmp);
1911                 }
1912                 raw_cons = NEXT_RAW_CMP(raw_cons);
1913
1914                 if (rx_pkts == budget)
1915                         break;
1916         }
1917
1918         if (event & BNXT_TX_EVENT) {
1919                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1920                 void __iomem *db = txr->tx_doorbell;
1921                 u16 prod = txr->tx_prod;
1922
1923                 /* Sync BD data before updating doorbell */
1924                 wmb();
1925
1926                 bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1927         }
1928
1929         cpr->cp_raw_cons = raw_cons;
1930         /* ACK completion ring before freeing tx ring and producing new
1931          * buffers in rx/agg rings to prevent overflowing the completion
1932          * ring.
1933          */
1934         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1935
1936         if (tx_pkts)
1937                 bnapi->tx_int(bp, bnapi, tx_pkts);
1938
1939         if (event & BNXT_RX_EVENT) {
1940                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1941
1942                 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1943                 if (event & BNXT_AGG_EVENT)
1944                         bnxt_db_write(bp, rxr->rx_agg_doorbell,
1945                                       DB_KEY_RX | rxr->rx_agg_prod);
1946         }
1947         return rx_pkts;
1948 }
1949
1950 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1951 {
1952         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1953         struct bnxt *bp = bnapi->bp;
1954         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1955         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1956         struct tx_cmp *txcmp;
1957         struct rx_cmp_ext *rxcmp1;
1958         u32 cp_cons, tmp_raw_cons;
1959         u32 raw_cons = cpr->cp_raw_cons;
1960         u32 rx_pkts = 0;
1961         u8 event = 0;
1962
1963         while (1) {
1964                 int rc;
1965
1966                 cp_cons = RING_CMP(raw_cons);
1967                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1968
1969                 if (!TX_CMP_VALID(txcmp, raw_cons))
1970                         break;
1971
1972                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1973                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1974                         cp_cons = RING_CMP(tmp_raw_cons);
1975                         rxcmp1 = (struct rx_cmp_ext *)
1976                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977
1978                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1979                                 break;
1980
1981                         /* force an error to recycle the buffer */
1982                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1983                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1984
1985                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1986                         if (likely(rc == -EIO) && budget)
1987                                 rx_pkts++;
1988                         else if (rc == -EBUSY)  /* partial completion */
1989                                 break;
1990                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1991                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1992                         bnxt_hwrm_handler(bp, txcmp);
1993                 } else {
1994                         netdev_err(bp->dev,
1995                                    "Invalid completion received on special ring\n");
1996                 }
1997                 raw_cons = NEXT_RAW_CMP(raw_cons);
1998
1999                 if (rx_pkts == budget)
2000                         break;
2001         }
2002
2003         cpr->cp_raw_cons = raw_cons;
2004         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2005         bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2006
2007         if (event & BNXT_AGG_EVENT)
2008                 bnxt_db_write(bp, rxr->rx_agg_doorbell,
2009                               DB_KEY_RX | rxr->rx_agg_prod);
2010
2011         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2012                 napi_complete_done(napi, rx_pkts);
2013                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2014         }
2015         return rx_pkts;
2016 }
2017
2018 static int bnxt_poll(struct napi_struct *napi, int budget)
2019 {
2020         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2021         struct bnxt *bp = bnapi->bp;
2022         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2023         int work_done = 0;
2024
2025         while (1) {
2026                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2027
2028                 if (work_done >= budget)
2029                         break;
2030
2031                 if (!bnxt_has_work(bp, cpr)) {
2032                         if (napi_complete_done(napi, work_done))
2033                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
2034                                                  cpr->cp_raw_cons);
2035                         break;
2036                 }
2037         }
2038         if (bp->flags & BNXT_FLAG_DIM) {
2039                 struct net_dim_sample dim_sample;
2040
2041                 net_dim_sample(cpr->event_ctr,
2042                                cpr->rx_packets,
2043                                cpr->rx_bytes,
2044                                &dim_sample);
2045                 net_dim(&cpr->dim, dim_sample);
2046         }
2047         mmiowb();
2048         return work_done;
2049 }
2050
2051 static void bnxt_free_tx_skbs(struct bnxt *bp)
2052 {
2053         int i, max_idx;
2054         struct pci_dev *pdev = bp->pdev;
2055
2056         if (!bp->tx_ring)
2057                 return;
2058
2059         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2060         for (i = 0; i < bp->tx_nr_rings; i++) {
2061                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2062                 int j;
2063
2064                 for (j = 0; j < max_idx;) {
2065                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2066                         struct sk_buff *skb = tx_buf->skb;
2067                         int k, last;
2068
2069                         if (!skb) {
2070                                 j++;
2071                                 continue;
2072                         }
2073
2074                         tx_buf->skb = NULL;
2075
2076                         if (tx_buf->is_push) {
2077                                 dev_kfree_skb(skb);
2078                                 j += 2;
2079                                 continue;
2080                         }
2081
2082                         dma_unmap_single(&pdev->dev,
2083                                          dma_unmap_addr(tx_buf, mapping),
2084                                          skb_headlen(skb),
2085                                          PCI_DMA_TODEVICE);
2086
2087                         last = tx_buf->nr_frags;
2088                         j += 2;
2089                         for (k = 0; k < last; k++, j++) {
2090                                 int ring_idx = j & bp->tx_ring_mask;
2091                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2092
2093                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2094                                 dma_unmap_page(
2095                                         &pdev->dev,
2096                                         dma_unmap_addr(tx_buf, mapping),
2097                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2098                         }
2099                         dev_kfree_skb(skb);
2100                 }
2101                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2102         }
2103 }
2104
2105 static void bnxt_free_rx_skbs(struct bnxt *bp)
2106 {
2107         int i, max_idx, max_agg_idx;
2108         struct pci_dev *pdev = bp->pdev;
2109
2110         if (!bp->rx_ring)
2111                 return;
2112
2113         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2114         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2115         for (i = 0; i < bp->rx_nr_rings; i++) {
2116                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2117                 int j;
2118
2119                 if (rxr->rx_tpa) {
2120                         for (j = 0; j < MAX_TPA; j++) {
2121                                 struct bnxt_tpa_info *tpa_info =
2122                                                         &rxr->rx_tpa[j];
2123                                 u8 *data = tpa_info->data;
2124
2125                                 if (!data)
2126                                         continue;
2127
2128                                 dma_unmap_single_attrs(&pdev->dev,
2129                                                        tpa_info->mapping,
2130                                                        bp->rx_buf_use_size,
2131                                                        bp->rx_dir,
2132                                                        DMA_ATTR_WEAK_ORDERING);
2133
2134                                 tpa_info->data = NULL;
2135
2136                                 kfree(data);
2137                         }
2138                 }
2139
2140                 for (j = 0; j < max_idx; j++) {
2141                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2142                         dma_addr_t mapping = rx_buf->mapping;
2143                         void *data = rx_buf->data;
2144
2145                         if (!data)
2146                                 continue;
2147
2148                         rx_buf->data = NULL;
2149
2150                         if (BNXT_RX_PAGE_MODE(bp)) {
2151                                 mapping -= bp->rx_dma_offset;
2152                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2153                                                      PAGE_SIZE, bp->rx_dir,
2154                                                      DMA_ATTR_WEAK_ORDERING);
2155                                 __free_page(data);
2156                         } else {
2157                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2158                                                        bp->rx_buf_use_size,
2159                                                        bp->rx_dir,
2160                                                        DMA_ATTR_WEAK_ORDERING);
2161                                 kfree(data);
2162                         }
2163                 }
2164
2165                 for (j = 0; j < max_agg_idx; j++) {
2166                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2167                                 &rxr->rx_agg_ring[j];
2168                         struct page *page = rx_agg_buf->page;
2169
2170                         if (!page)
2171                                 continue;
2172
2173                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2174                                              BNXT_RX_PAGE_SIZE,
2175                                              PCI_DMA_FROMDEVICE,
2176                                              DMA_ATTR_WEAK_ORDERING);
2177
2178                         rx_agg_buf->page = NULL;
2179                         __clear_bit(j, rxr->rx_agg_bmap);
2180
2181                         __free_page(page);
2182                 }
2183                 if (rxr->rx_page) {
2184                         __free_page(rxr->rx_page);
2185                         rxr->rx_page = NULL;
2186                 }
2187         }
2188 }
2189
2190 static void bnxt_free_skbs(struct bnxt *bp)
2191 {
2192         bnxt_free_tx_skbs(bp);
2193         bnxt_free_rx_skbs(bp);
2194 }
2195
2196 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2197 {
2198         struct pci_dev *pdev = bp->pdev;
2199         int i;
2200
2201         for (i = 0; i < ring->nr_pages; i++) {
2202                 if (!ring->pg_arr[i])
2203                         continue;
2204
2205                 dma_free_coherent(&pdev->dev, ring->page_size,
2206                                   ring->pg_arr[i], ring->dma_arr[i]);
2207
2208                 ring->pg_arr[i] = NULL;
2209         }
2210         if (ring->pg_tbl) {
2211                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2212                                   ring->pg_tbl, ring->pg_tbl_map);
2213                 ring->pg_tbl = NULL;
2214         }
2215         if (ring->vmem_size && *ring->vmem) {
2216                 vfree(*ring->vmem);
2217                 *ring->vmem = NULL;
2218         }
2219 }
2220
2221 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2222 {
2223         int i;
2224         struct pci_dev *pdev = bp->pdev;
2225
2226         if (ring->nr_pages > 1) {
2227                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2228                                                   ring->nr_pages * 8,
2229                                                   &ring->pg_tbl_map,
2230                                                   GFP_KERNEL);
2231                 if (!ring->pg_tbl)
2232                         return -ENOMEM;
2233         }
2234
2235         for (i = 0; i < ring->nr_pages; i++) {
2236                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2237                                                      ring->page_size,
2238                                                      &ring->dma_arr[i],
2239                                                      GFP_KERNEL);
2240                 if (!ring->pg_arr[i])
2241                         return -ENOMEM;
2242
2243                 if (ring->nr_pages > 1)
2244                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2245         }
2246
2247         if (ring->vmem_size) {
2248                 *ring->vmem = vzalloc(ring->vmem_size);
2249                 if (!(*ring->vmem))
2250                         return -ENOMEM;
2251         }
2252         return 0;
2253 }
2254
2255 static void bnxt_free_rx_rings(struct bnxt *bp)
2256 {
2257         int i;
2258
2259         if (!bp->rx_ring)
2260                 return;
2261
2262         for (i = 0; i < bp->rx_nr_rings; i++) {
2263                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2264                 struct bnxt_ring_struct *ring;
2265
2266                 if (rxr->xdp_prog)
2267                         bpf_prog_put(rxr->xdp_prog);
2268
2269                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2270                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2271
2272                 kfree(rxr->rx_tpa);
2273                 rxr->rx_tpa = NULL;
2274
2275                 kfree(rxr->rx_agg_bmap);
2276                 rxr->rx_agg_bmap = NULL;
2277
2278                 ring = &rxr->rx_ring_struct;
2279                 bnxt_free_ring(bp, ring);
2280
2281                 ring = &rxr->rx_agg_ring_struct;
2282                 bnxt_free_ring(bp, ring);
2283         }
2284 }
2285
2286 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2287 {
2288         int i, rc, agg_rings = 0, tpa_rings = 0;
2289
2290         if (!bp->rx_ring)
2291                 return -ENOMEM;
2292
2293         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2294                 agg_rings = 1;
2295
2296         if (bp->flags & BNXT_FLAG_TPA)
2297                 tpa_rings = 1;
2298
2299         for (i = 0; i < bp->rx_nr_rings; i++) {
2300                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2301                 struct bnxt_ring_struct *ring;
2302
2303                 ring = &rxr->rx_ring_struct;
2304
2305                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2306                 if (rc < 0)
2307                         return rc;
2308
2309                 rc = bnxt_alloc_ring(bp, ring);
2310                 if (rc)
2311                         return rc;
2312
2313                 if (agg_rings) {
2314                         u16 mem_size;
2315
2316                         ring = &rxr->rx_agg_ring_struct;
2317                         rc = bnxt_alloc_ring(bp, ring);
2318                         if (rc)
2319                                 return rc;
2320
2321                         ring->grp_idx = i;
2322                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2323                         mem_size = rxr->rx_agg_bmap_size / 8;
2324                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2325                         if (!rxr->rx_agg_bmap)
2326                                 return -ENOMEM;
2327
2328                         if (tpa_rings) {
2329                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2330                                                 sizeof(struct bnxt_tpa_info),
2331                                                 GFP_KERNEL);
2332                                 if (!rxr->rx_tpa)
2333                                         return -ENOMEM;
2334                         }
2335                 }
2336         }
2337         return 0;
2338 }
2339
2340 static void bnxt_free_tx_rings(struct bnxt *bp)
2341 {
2342         int i;
2343         struct pci_dev *pdev = bp->pdev;
2344
2345         if (!bp->tx_ring)
2346                 return;
2347
2348         for (i = 0; i < bp->tx_nr_rings; i++) {
2349                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2350                 struct bnxt_ring_struct *ring;
2351
2352                 if (txr->tx_push) {
2353                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2354                                           txr->tx_push, txr->tx_push_mapping);
2355                         txr->tx_push = NULL;
2356                 }
2357
2358                 ring = &txr->tx_ring_struct;
2359
2360                 bnxt_free_ring(bp, ring);
2361         }
2362 }
2363
2364 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2365 {
2366         int i, j, rc;
2367         struct pci_dev *pdev = bp->pdev;
2368
2369         bp->tx_push_size = 0;
2370         if (bp->tx_push_thresh) {
2371                 int push_size;
2372
2373                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2374                                         bp->tx_push_thresh);
2375
2376                 if (push_size > 256) {
2377                         push_size = 0;
2378                         bp->tx_push_thresh = 0;
2379                 }
2380
2381                 bp->tx_push_size = push_size;
2382         }
2383
2384         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2385                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2386                 struct bnxt_ring_struct *ring;
2387                 u8 qidx;
2388
2389                 ring = &txr->tx_ring_struct;
2390
2391                 rc = bnxt_alloc_ring(bp, ring);
2392                 if (rc)
2393                         return rc;
2394
2395                 ring->grp_idx = txr->bnapi->index;
2396                 if (bp->tx_push_size) {
2397                         dma_addr_t mapping;
2398
2399                         /* One pre-allocated DMA buffer to backup
2400                          * TX push operation
2401                          */
2402                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2403                                                 bp->tx_push_size,
2404                                                 &txr->tx_push_mapping,
2405                                                 GFP_KERNEL);
2406
2407                         if (!txr->tx_push)
2408                                 return -ENOMEM;
2409
2410                         mapping = txr->tx_push_mapping +
2411                                 sizeof(struct tx_push_bd);
2412                         txr->data_mapping = cpu_to_le64(mapping);
2413
2414                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2415                 }
2416                 qidx = bp->tc_to_qidx[j];
2417                 ring->queue_id = bp->q_info[qidx].queue_id;
2418                 if (i < bp->tx_nr_rings_xdp)
2419                         continue;
2420                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2421                         j++;
2422         }
2423         return 0;
2424 }
2425
2426 static void bnxt_free_cp_rings(struct bnxt *bp)
2427 {
2428         int i;
2429
2430         if (!bp->bnapi)
2431                 return;
2432
2433         for (i = 0; i < bp->cp_nr_rings; i++) {
2434                 struct bnxt_napi *bnapi = bp->bnapi[i];
2435                 struct bnxt_cp_ring_info *cpr;
2436                 struct bnxt_ring_struct *ring;
2437
2438                 if (!bnapi)
2439                         continue;
2440
2441                 cpr = &bnapi->cp_ring;
2442                 ring = &cpr->cp_ring_struct;
2443
2444                 bnxt_free_ring(bp, ring);
2445         }
2446 }
2447
2448 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2449 {
2450         int i, rc, ulp_base_vec, ulp_msix;
2451
2452         ulp_msix = bnxt_get_ulp_msix_num(bp);
2453         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2454         for (i = 0; i < bp->cp_nr_rings; i++) {
2455                 struct bnxt_napi *bnapi = bp->bnapi[i];
2456                 struct bnxt_cp_ring_info *cpr;
2457                 struct bnxt_ring_struct *ring;
2458
2459                 if (!bnapi)
2460                         continue;
2461
2462                 cpr = &bnapi->cp_ring;
2463                 ring = &cpr->cp_ring_struct;
2464
2465                 rc = bnxt_alloc_ring(bp, ring);
2466                 if (rc)
2467                         return rc;
2468
2469                 if (ulp_msix && i >= ulp_base_vec)
2470                         ring->map_idx = i + ulp_msix;
2471                 else
2472                         ring->map_idx = i;
2473         }
2474         return 0;
2475 }
2476
2477 static void bnxt_init_ring_struct(struct bnxt *bp)
2478 {
2479         int i;
2480
2481         for (i = 0; i < bp->cp_nr_rings; i++) {
2482                 struct bnxt_napi *bnapi = bp->bnapi[i];
2483                 struct bnxt_cp_ring_info *cpr;
2484                 struct bnxt_rx_ring_info *rxr;
2485                 struct bnxt_tx_ring_info *txr;
2486                 struct bnxt_ring_struct *ring;
2487
2488                 if (!bnapi)
2489                         continue;
2490
2491                 cpr = &bnapi->cp_ring;
2492                 ring = &cpr->cp_ring_struct;
2493                 ring->nr_pages = bp->cp_nr_pages;
2494                 ring->page_size = HW_CMPD_RING_SIZE;
2495                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2496                 ring->dma_arr = cpr->cp_desc_mapping;
2497                 ring->vmem_size = 0;
2498
2499                 rxr = bnapi->rx_ring;
2500                 if (!rxr)
2501                         goto skip_rx;
2502
2503                 ring = &rxr->rx_ring_struct;
2504                 ring->nr_pages = bp->rx_nr_pages;
2505                 ring->page_size = HW_RXBD_RING_SIZE;
2506                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2507                 ring->dma_arr = rxr->rx_desc_mapping;
2508                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2509                 ring->vmem = (void **)&rxr->rx_buf_ring;
2510
2511                 ring = &rxr->rx_agg_ring_struct;
2512                 ring->nr_pages = bp->rx_agg_nr_pages;
2513                 ring->page_size = HW_RXBD_RING_SIZE;
2514                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2515                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2516                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2517                 ring->vmem = (void **)&rxr->rx_agg_ring;
2518
2519 skip_rx:
2520                 txr = bnapi->tx_ring;
2521                 if (!txr)
2522                         continue;
2523
2524                 ring = &txr->tx_ring_struct;
2525                 ring->nr_pages = bp->tx_nr_pages;
2526                 ring->page_size = HW_RXBD_RING_SIZE;
2527                 ring->pg_arr = (void **)txr->tx_desc_ring;
2528                 ring->dma_arr = txr->tx_desc_mapping;
2529                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2530                 ring->vmem = (void **)&txr->tx_buf_ring;
2531         }
2532 }
2533
2534 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2535 {
2536         int i;
2537         u32 prod;
2538         struct rx_bd **rx_buf_ring;
2539
2540         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2541         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2542                 int j;
2543                 struct rx_bd *rxbd;
2544
2545                 rxbd = rx_buf_ring[i];
2546                 if (!rxbd)
2547                         continue;
2548
2549                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2550                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2551                         rxbd->rx_bd_opaque = prod;
2552                 }
2553         }
2554 }
2555
2556 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2557 {
2558         struct net_device *dev = bp->dev;
2559         struct bnxt_rx_ring_info *rxr;
2560         struct bnxt_ring_struct *ring;
2561         u32 prod, type;
2562         int i;
2563
2564         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2565                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2566
2567         if (NET_IP_ALIGN == 2)
2568                 type |= RX_BD_FLAGS_SOP;
2569
2570         rxr = &bp->rx_ring[ring_nr];
2571         ring = &rxr->rx_ring_struct;
2572         bnxt_init_rxbd_pages(ring, type);
2573
2574         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2575                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2576                 if (IS_ERR(rxr->xdp_prog)) {
2577                         int rc = PTR_ERR(rxr->xdp_prog);
2578
2579                         rxr->xdp_prog = NULL;
2580                         return rc;
2581                 }
2582         }
2583         prod = rxr->rx_prod;
2584         for (i = 0; i < bp->rx_ring_size; i++) {
2585                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2586                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2587                                     ring_nr, i, bp->rx_ring_size);
2588                         break;
2589                 }
2590                 prod = NEXT_RX(prod);
2591         }
2592         rxr->rx_prod = prod;
2593         ring->fw_ring_id = INVALID_HW_RING_ID;
2594
2595         ring = &rxr->rx_agg_ring_struct;
2596         ring->fw_ring_id = INVALID_HW_RING_ID;
2597
2598         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2599                 return 0;
2600
2601         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2602                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2603
2604         bnxt_init_rxbd_pages(ring, type);
2605
2606         prod = rxr->rx_agg_prod;
2607         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2608                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2609                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2610                                     ring_nr, i, bp->rx_ring_size);
2611                         break;
2612                 }
2613                 prod = NEXT_RX_AGG(prod);
2614         }
2615         rxr->rx_agg_prod = prod;
2616
2617         if (bp->flags & BNXT_FLAG_TPA) {
2618                 if (rxr->rx_tpa) {
2619                         u8 *data;
2620                         dma_addr_t mapping;
2621
2622                         for (i = 0; i < MAX_TPA; i++) {
2623                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2624                                                             GFP_KERNEL);
2625                                 if (!data)
2626                                         return -ENOMEM;
2627
2628                                 rxr->rx_tpa[i].data = data;
2629                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2630                                 rxr->rx_tpa[i].mapping = mapping;
2631                         }
2632                 } else {
2633                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2634                         return -ENOMEM;
2635                 }
2636         }
2637
2638         return 0;
2639 }
2640
2641 static void bnxt_init_cp_rings(struct bnxt *bp)
2642 {
2643         int i;
2644
2645         for (i = 0; i < bp->cp_nr_rings; i++) {
2646                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2647                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2648
2649                 ring->fw_ring_id = INVALID_HW_RING_ID;
2650                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2651                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2652         }
2653 }
2654
2655 static int bnxt_init_rx_rings(struct bnxt *bp)
2656 {
2657         int i, rc = 0;
2658
2659         if (BNXT_RX_PAGE_MODE(bp)) {
2660                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2661                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2662         } else {
2663                 bp->rx_offset = BNXT_RX_OFFSET;
2664                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2665         }
2666
2667         for (i = 0; i < bp->rx_nr_rings; i++) {
2668                 rc = bnxt_init_one_rx_ring(bp, i);
2669                 if (rc)
2670                         break;
2671         }
2672
2673         return rc;
2674 }
2675
2676 static int bnxt_init_tx_rings(struct bnxt *bp)
2677 {
2678         u16 i;
2679
2680         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2681                                    MAX_SKB_FRAGS + 1);
2682
2683         for (i = 0; i < bp->tx_nr_rings; i++) {
2684                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2685                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2686
2687                 ring->fw_ring_id = INVALID_HW_RING_ID;
2688         }
2689
2690         return 0;
2691 }
2692
2693 static void bnxt_free_ring_grps(struct bnxt *bp)
2694 {
2695         kfree(bp->grp_info);
2696         bp->grp_info = NULL;
2697 }
2698
2699 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2700 {
2701         int i;
2702
2703         if (irq_re_init) {
2704                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2705                                        sizeof(struct bnxt_ring_grp_info),
2706                                        GFP_KERNEL);
2707                 if (!bp->grp_info)
2708                         return -ENOMEM;
2709         }
2710         for (i = 0; i < bp->cp_nr_rings; i++) {
2711                 if (irq_re_init)
2712                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2713                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2714                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2715                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2716                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2717         }
2718         return 0;
2719 }
2720
2721 static void bnxt_free_vnics(struct bnxt *bp)
2722 {
2723         kfree(bp->vnic_info);
2724         bp->vnic_info = NULL;
2725         bp->nr_vnics = 0;
2726 }
2727
2728 static int bnxt_alloc_vnics(struct bnxt *bp)
2729 {
2730         int num_vnics = 1;
2731
2732 #ifdef CONFIG_RFS_ACCEL
2733         if (bp->flags & BNXT_FLAG_RFS)
2734                 num_vnics += bp->rx_nr_rings;
2735 #endif
2736
2737         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2738                 num_vnics++;
2739
2740         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2741                                 GFP_KERNEL);
2742         if (!bp->vnic_info)
2743                 return -ENOMEM;
2744
2745         bp->nr_vnics = num_vnics;
2746         return 0;
2747 }
2748
2749 static void bnxt_init_vnics(struct bnxt *bp)
2750 {
2751         int i;
2752
2753         for (i = 0; i < bp->nr_vnics; i++) {
2754                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2755
2756                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2757                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2758                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2759                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2760
2761                 if (bp->vnic_info[i].rss_hash_key) {
2762                         if (i == 0)
2763                                 prandom_bytes(vnic->rss_hash_key,
2764                                               HW_HASH_KEY_SIZE);
2765                         else
2766                                 memcpy(vnic->rss_hash_key,
2767                                        bp->vnic_info[0].rss_hash_key,
2768                                        HW_HASH_KEY_SIZE);
2769                 }
2770         }
2771 }
2772
2773 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2774 {
2775         int pages;
2776
2777         pages = ring_size / desc_per_pg;
2778
2779         if (!pages)
2780                 return 1;
2781
2782         pages++;
2783
2784         while (pages & (pages - 1))
2785                 pages++;
2786
2787         return pages;
2788 }
2789
2790 void bnxt_set_tpa_flags(struct bnxt *bp)
2791 {
2792         bp->flags &= ~BNXT_FLAG_TPA;
2793         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2794                 return;
2795         if (bp->dev->features & NETIF_F_LRO)
2796                 bp->flags |= BNXT_FLAG_LRO;
2797         else if (bp->dev->features & NETIF_F_GRO_HW)
2798                 bp->flags |= BNXT_FLAG_GRO;
2799 }
2800
2801 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2802  * be set on entry.
2803  */
2804 void bnxt_set_ring_params(struct bnxt *bp)
2805 {
2806         u32 ring_size, rx_size, rx_space;
2807         u32 agg_factor = 0, agg_ring_size = 0;
2808
2809         /* 8 for CRC and VLAN */
2810         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2811
2812         rx_space = rx_size + NET_SKB_PAD +
2813                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2814
2815         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2816         ring_size = bp->rx_ring_size;
2817         bp->rx_agg_ring_size = 0;
2818         bp->rx_agg_nr_pages = 0;
2819
2820         if (bp->flags & BNXT_FLAG_TPA)
2821                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2822
2823         bp->flags &= ~BNXT_FLAG_JUMBO;
2824         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2825                 u32 jumbo_factor;
2826
2827                 bp->flags |= BNXT_FLAG_JUMBO;
2828                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2829                 if (jumbo_factor > agg_factor)
2830                         agg_factor = jumbo_factor;
2831         }
2832         agg_ring_size = ring_size * agg_factor;
2833
2834         if (agg_ring_size) {
2835                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2836                                                         RX_DESC_CNT);
2837                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2838                         u32 tmp = agg_ring_size;
2839
2840                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2841                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2842                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2843                                     tmp, agg_ring_size);
2844                 }
2845                 bp->rx_agg_ring_size = agg_ring_size;
2846                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2847                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2848                 rx_space = rx_size + NET_SKB_PAD +
2849                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2850         }
2851
2852         bp->rx_buf_use_size = rx_size;
2853         bp->rx_buf_size = rx_space;
2854
2855         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2856         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2857
2858         ring_size = bp->tx_ring_size;
2859         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2860         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2861
2862         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2863         bp->cp_ring_size = ring_size;
2864
2865         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2866         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2867                 bp->cp_nr_pages = MAX_CP_PAGES;
2868                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2869                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2870                             ring_size, bp->cp_ring_size);
2871         }
2872         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2873         bp->cp_ring_mask = bp->cp_bit - 1;
2874 }
2875
2876 /* Changing allocation mode of RX rings.
2877  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2878  */
2879 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2880 {
2881         if (page_mode) {
2882                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2883                         return -EOPNOTSUPP;
2884                 bp->dev->max_mtu =
2885                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2886                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2887                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2888                 bp->rx_dir = DMA_BIDIRECTIONAL;
2889                 bp->rx_skb_func = bnxt_rx_page_skb;
2890                 /* Disable LRO or GRO_HW */
2891                 netdev_update_features(bp->dev);
2892         } else {
2893                 bp->dev->max_mtu = bp->max_mtu;
2894                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2895                 bp->rx_dir = DMA_FROM_DEVICE;
2896                 bp->rx_skb_func = bnxt_rx_skb;
2897         }
2898         return 0;
2899 }
2900
2901 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2902 {
2903         int i;
2904         struct bnxt_vnic_info *vnic;
2905         struct pci_dev *pdev = bp->pdev;
2906
2907         if (!bp->vnic_info)
2908                 return;
2909
2910         for (i = 0; i < bp->nr_vnics; i++) {
2911                 vnic = &bp->vnic_info[i];
2912
2913                 kfree(vnic->fw_grp_ids);
2914                 vnic->fw_grp_ids = NULL;
2915
2916                 kfree(vnic->uc_list);
2917                 vnic->uc_list = NULL;
2918
2919                 if (vnic->mc_list) {
2920                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2921                                           vnic->mc_list, vnic->mc_list_mapping);
2922                         vnic->mc_list = NULL;
2923                 }
2924
2925                 if (vnic->rss_table) {
2926                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2927                                           vnic->rss_table,
2928                                           vnic->rss_table_dma_addr);
2929                         vnic->rss_table = NULL;
2930                 }
2931
2932                 vnic->rss_hash_key = NULL;
2933                 vnic->flags = 0;
2934         }
2935 }
2936
2937 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2938 {
2939         int i, rc = 0, size;
2940         struct bnxt_vnic_info *vnic;
2941         struct pci_dev *pdev = bp->pdev;
2942         int max_rings;
2943
2944         for (i = 0; i < bp->nr_vnics; i++) {
2945                 vnic = &bp->vnic_info[i];
2946
2947                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2948                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2949
2950                         if (mem_size > 0) {
2951                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2952                                 if (!vnic->uc_list) {
2953                                         rc = -ENOMEM;
2954                                         goto out;
2955                                 }
2956                         }
2957                 }
2958
2959                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2960                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2961                         vnic->mc_list =
2962                                 dma_alloc_coherent(&pdev->dev,
2963                                                    vnic->mc_list_size,
2964                                                    &vnic->mc_list_mapping,
2965                                                    GFP_KERNEL);
2966                         if (!vnic->mc_list) {
2967                                 rc = -ENOMEM;
2968                                 goto out;
2969                         }
2970                 }
2971
2972                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2973                         max_rings = bp->rx_nr_rings;
2974                 else
2975                         max_rings = 1;
2976
2977                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2978                 if (!vnic->fw_grp_ids) {
2979                         rc = -ENOMEM;
2980                         goto out;
2981                 }
2982
2983                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2984                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2985                         continue;
2986
2987                 /* Allocate rss table and hash key */
2988                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2989                                                      &vnic->rss_table_dma_addr,
2990                                                      GFP_KERNEL);
2991                 if (!vnic->rss_table) {
2992                         rc = -ENOMEM;
2993                         goto out;
2994                 }
2995
2996                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2997
2998                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2999                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3000         }
3001         return 0;
3002
3003 out:
3004         return rc;
3005 }
3006
3007 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3008 {
3009         struct pci_dev *pdev = bp->pdev;
3010
3011         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3012                           bp->hwrm_cmd_resp_dma_addr);
3013
3014         bp->hwrm_cmd_resp_addr = NULL;
3015 }
3016
3017 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3018 {
3019         struct pci_dev *pdev = bp->pdev;
3020
3021         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3022                                                    &bp->hwrm_cmd_resp_dma_addr,
3023                                                    GFP_KERNEL);
3024         if (!bp->hwrm_cmd_resp_addr)
3025                 return -ENOMEM;
3026
3027         return 0;
3028 }
3029
3030 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3031 {
3032         if (bp->hwrm_short_cmd_req_addr) {
3033                 struct pci_dev *pdev = bp->pdev;
3034
3035                 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3036                                   bp->hwrm_short_cmd_req_addr,
3037                                   bp->hwrm_short_cmd_req_dma_addr);
3038                 bp->hwrm_short_cmd_req_addr = NULL;
3039         }
3040 }
3041
3042 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3043 {
3044         struct pci_dev *pdev = bp->pdev;
3045
3046         bp->hwrm_short_cmd_req_addr =
3047                 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3048                                    &bp->hwrm_short_cmd_req_dma_addr,
3049                                    GFP_KERNEL);
3050         if (!bp->hwrm_short_cmd_req_addr)
3051                 return -ENOMEM;
3052
3053         return 0;
3054 }
3055
3056 static void bnxt_free_stats(struct bnxt *bp)
3057 {
3058         u32 size, i;
3059         struct pci_dev *pdev = bp->pdev;
3060
3061         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3062         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3063
3064         if (bp->hw_rx_port_stats) {
3065                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3066                                   bp->hw_rx_port_stats,
3067                                   bp->hw_rx_port_stats_map);
3068                 bp->hw_rx_port_stats = NULL;
3069         }
3070
3071         if (bp->hw_rx_port_stats_ext) {
3072                 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3073                                   bp->hw_rx_port_stats_ext,
3074                                   bp->hw_rx_port_stats_ext_map);
3075                 bp->hw_rx_port_stats_ext = NULL;
3076         }
3077
3078         if (!bp->bnapi)
3079                 return;
3080
3081         size = sizeof(struct ctx_hw_stats);
3082
3083         for (i = 0; i < bp->cp_nr_rings; i++) {
3084                 struct bnxt_napi *bnapi = bp->bnapi[i];
3085                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3086
3087                 if (cpr->hw_stats) {
3088                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3089                                           cpr->hw_stats_map);
3090                         cpr->hw_stats = NULL;
3091                 }
3092         }
3093 }
3094
3095 static int bnxt_alloc_stats(struct bnxt *bp)
3096 {
3097         u32 size, i;
3098         struct pci_dev *pdev = bp->pdev;
3099
3100         size = sizeof(struct ctx_hw_stats);
3101
3102         for (i = 0; i < bp->cp_nr_rings; i++) {
3103                 struct bnxt_napi *bnapi = bp->bnapi[i];
3104                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3105
3106                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3107                                                    &cpr->hw_stats_map,
3108                                                    GFP_KERNEL);
3109                 if (!cpr->hw_stats)
3110                         return -ENOMEM;
3111
3112                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3113         }
3114
3115         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3116                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3117                                          sizeof(struct tx_port_stats) + 1024;
3118
3119                 bp->hw_rx_port_stats =
3120                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3121                                            &bp->hw_rx_port_stats_map,
3122                                            GFP_KERNEL);
3123                 if (!bp->hw_rx_port_stats)
3124                         return -ENOMEM;
3125
3126                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3127                                        512;
3128                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3129                                            sizeof(struct rx_port_stats) + 512;
3130                 bp->flags |= BNXT_FLAG_PORT_STATS;
3131
3132                 /* Display extended statistics only if FW supports it */
3133                 if (bp->hwrm_spec_code < 0x10804 ||
3134                     bp->hwrm_spec_code == 0x10900)
3135                         return 0;
3136
3137                 bp->hw_rx_port_stats_ext =
3138                         dma_zalloc_coherent(&pdev->dev,
3139                                             sizeof(struct rx_port_stats_ext),
3140                                             &bp->hw_rx_port_stats_ext_map,
3141                                             GFP_KERNEL);
3142                 if (!bp->hw_rx_port_stats_ext)
3143                         return 0;
3144
3145                 bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3146         }
3147         return 0;
3148 }
3149
3150 static void bnxt_clear_ring_indices(struct bnxt *bp)
3151 {
3152         int i;
3153
3154         if (!bp->bnapi)
3155                 return;
3156
3157         for (i = 0; i < bp->cp_nr_rings; i++) {
3158                 struct bnxt_napi *bnapi = bp->bnapi[i];
3159                 struct bnxt_cp_ring_info *cpr;
3160                 struct bnxt_rx_ring_info *rxr;
3161                 struct bnxt_tx_ring_info *txr;
3162
3163                 if (!bnapi)
3164                         continue;
3165
3166                 cpr = &bnapi->cp_ring;
3167                 cpr->cp_raw_cons = 0;
3168
3169                 txr = bnapi->tx_ring;
3170                 if (txr) {
3171                         txr->tx_prod = 0;
3172                         txr->tx_cons = 0;
3173                 }
3174
3175                 rxr = bnapi->rx_ring;
3176                 if (rxr) {
3177                         rxr->rx_prod = 0;
3178                         rxr->rx_agg_prod = 0;
3179                         rxr->rx_sw_agg_prod = 0;
3180                         rxr->rx_next_cons = 0;
3181                 }
3182         }
3183 }
3184
3185 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3186 {
3187 #ifdef CONFIG_RFS_ACCEL
3188         int i;
3189
3190         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3191          * safe to delete the hash table.
3192          */
3193         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3194                 struct hlist_head *head;
3195                 struct hlist_node *tmp;
3196                 struct bnxt_ntuple_filter *fltr;
3197
3198                 head = &bp->ntp_fltr_hash_tbl[i];
3199                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3200                         hlist_del(&fltr->hash);
3201                         kfree(fltr);
3202                 }
3203         }
3204         if (irq_reinit) {
3205                 kfree(bp->ntp_fltr_bmap);
3206                 bp->ntp_fltr_bmap = NULL;
3207         }
3208         bp->ntp_fltr_count = 0;
3209 #endif
3210 }
3211
3212 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3213 {
3214 #ifdef CONFIG_RFS_ACCEL
3215         int i, rc = 0;
3216
3217         if (!(bp->flags & BNXT_FLAG_RFS))
3218                 return 0;
3219
3220         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3221                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3222
3223         bp->ntp_fltr_count = 0;
3224         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3225                                     sizeof(long),
3226                                     GFP_KERNEL);
3227
3228         if (!bp->ntp_fltr_bmap)
3229                 rc = -ENOMEM;
3230
3231         return rc;
3232 #else
3233         return 0;
3234 #endif
3235 }
3236
3237 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3238 {
3239         bnxt_free_vnic_attributes(bp);
3240         bnxt_free_tx_rings(bp);
3241         bnxt_free_rx_rings(bp);
3242         bnxt_free_cp_rings(bp);
3243         bnxt_free_ntp_fltrs(bp, irq_re_init);
3244         if (irq_re_init) {
3245                 bnxt_free_stats(bp);
3246                 bnxt_free_ring_grps(bp);
3247                 bnxt_free_vnics(bp);
3248                 kfree(bp->tx_ring_map);
3249                 bp->tx_ring_map = NULL;
3250                 kfree(bp->tx_ring);
3251                 bp->tx_ring = NULL;
3252                 kfree(bp->rx_ring);
3253                 bp->rx_ring = NULL;
3254                 kfree(bp->bnapi);
3255                 bp->bnapi = NULL;
3256         } else {
3257                 bnxt_clear_ring_indices(bp);
3258         }
3259 }
3260
3261 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3262 {
3263         int i, j, rc, size, arr_size;
3264         void *bnapi;
3265
3266         if (irq_re_init) {
3267                 /* Allocate bnapi mem pointer array and mem block for
3268                  * all queues
3269                  */
3270                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3271                                 bp->cp_nr_rings);
3272                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3273                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3274                 if (!bnapi)
3275                         return -ENOMEM;
3276
3277                 bp->bnapi = bnapi;
3278                 bnapi += arr_size;
3279                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3280                         bp->bnapi[i] = bnapi;
3281                         bp->bnapi[i]->index = i;
3282                         bp->bnapi[i]->bp = bp;
3283                 }
3284
3285                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3286                                       sizeof(struct bnxt_rx_ring_info),
3287                                       GFP_KERNEL);
3288                 if (!bp->rx_ring)
3289                         return -ENOMEM;
3290
3291                 for (i = 0; i < bp->rx_nr_rings; i++) {
3292                         bp->rx_ring[i].bnapi = bp->bnapi[i];
3293                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3294                 }
3295
3296                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3297                                       sizeof(struct bnxt_tx_ring_info),
3298                                       GFP_KERNEL);
3299                 if (!bp->tx_ring)
3300                         return -ENOMEM;
3301
3302                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3303                                           GFP_KERNEL);
3304
3305                 if (!bp->tx_ring_map)
3306                         return -ENOMEM;
3307
3308                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3309                         j = 0;
3310                 else
3311                         j = bp->rx_nr_rings;
3312
3313                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3314                         bp->tx_ring[i].bnapi = bp->bnapi[j];
3315                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3316                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3317                         if (i >= bp->tx_nr_rings_xdp) {
3318                                 bp->tx_ring[i].txq_index = i -
3319                                         bp->tx_nr_rings_xdp;
3320                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
3321                         } else {
3322                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3323                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3324                         }
3325                 }
3326
3327                 rc = bnxt_alloc_stats(bp);
3328                 if (rc)
3329                         goto alloc_mem_err;
3330
3331                 rc = bnxt_alloc_ntp_fltrs(bp);
3332                 if (rc)
3333                         goto alloc_mem_err;
3334
3335                 rc = bnxt_alloc_vnics(bp);
3336                 if (rc)
3337                         goto alloc_mem_err;
3338         }
3339
3340         bnxt_init_ring_struct(bp);
3341
3342         rc = bnxt_alloc_rx_rings(bp);
3343         if (rc)
3344                 goto alloc_mem_err;
3345
3346         rc = bnxt_alloc_tx_rings(bp);
3347         if (rc)
3348                 goto alloc_mem_err;
3349
3350         rc = bnxt_alloc_cp_rings(bp);
3351         if (rc)
3352                 goto alloc_mem_err;
3353
3354         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3355                                   BNXT_VNIC_UCAST_FLAG;
3356         rc = bnxt_alloc_vnic_attributes(bp);
3357         if (rc)
3358                 goto alloc_mem_err;
3359         return 0;
3360
3361 alloc_mem_err:
3362         bnxt_free_mem(bp, true);
3363         return rc;
3364 }
3365
3366 static void bnxt_disable_int(struct bnxt *bp)
3367 {
3368         int i;
3369
3370         if (!bp->bnapi)
3371                 return;
3372
3373         for (i = 0; i < bp->cp_nr_rings; i++) {
3374                 struct bnxt_napi *bnapi = bp->bnapi[i];
3375                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3376                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3377
3378                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3379                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3380         }
3381 }
3382
3383 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3384 {
3385         struct bnxt_napi *bnapi = bp->bnapi[n];
3386         struct bnxt_cp_ring_info *cpr;
3387
3388         cpr = &bnapi->cp_ring;
3389         return cpr->cp_ring_struct.map_idx;
3390 }
3391
3392 static void bnxt_disable_int_sync(struct bnxt *bp)
3393 {
3394         int i;
3395
3396         atomic_inc(&bp->intr_sem);
3397
3398         bnxt_disable_int(bp);
3399         for (i = 0; i < bp->cp_nr_rings; i++) {
3400                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3401
3402                 synchronize_irq(bp->irq_tbl[map_idx].vector);
3403         }
3404 }
3405
3406 static void bnxt_enable_int(struct bnxt *bp)
3407 {
3408         int i;
3409
3410         atomic_set(&bp->intr_sem, 0);
3411         for (i = 0; i < bp->cp_nr_rings; i++) {
3412                 struct bnxt_napi *bnapi = bp->bnapi[i];
3413                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3414
3415                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3416         }
3417 }
3418
3419 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3420                             u16 cmpl_ring, u16 target_id)
3421 {
3422         struct input *req = request;
3423
3424         req->req_type = cpu_to_le16(req_type);
3425         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3426         req->target_id = cpu_to_le16(target_id);
3427         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3428 }
3429
3430 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3431                                  int timeout, bool silent)
3432 {
3433         int i, intr_process, rc, tmo_count;
3434         struct input *req = msg;
3435         u32 *data = msg;
3436         __le32 *resp_len;
3437         u8 *valid;
3438         u16 cp_ring_id, len = 0;
3439         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3440         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3441         struct hwrm_short_input short_input = {0};
3442
3443         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3444         memset(resp, 0, PAGE_SIZE);
3445         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3446         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3447
3448         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3449                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3450
3451                 memcpy(short_cmd_req, req, msg_len);
3452                 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3453                                                    msg_len);
3454
3455                 short_input.req_type = req->req_type;
3456                 short_input.signature =
3457                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3458                 short_input.size = cpu_to_le16(msg_len);
3459                 short_input.req_addr =
3460                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3461
3462                 data = (u32 *)&short_input;
3463                 msg_len = sizeof(short_input);
3464
3465                 /* Sync memory write before updating doorbell */
3466                 wmb();
3467
3468                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3469         }
3470
3471         /* Write request msg to hwrm channel */
3472         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3473
3474         for (i = msg_len; i < max_req_len; i += 4)
3475                 writel(0, bp->bar0 + i);
3476
3477         /* currently supports only one outstanding message */
3478         if (intr_process)
3479                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3480
3481         /* Ring channel doorbell */
3482         writel(1, bp->bar0 + 0x100);
3483
3484         if (!timeout)
3485                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3486         /* convert timeout to usec */
3487         timeout *= 1000;
3488
3489         i = 0;
3490         /* Short timeout for the first few iterations:
3491          * number of loops = number of loops for short timeout +
3492          * number of loops for standard timeout.
3493          */
3494         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3495         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3496         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3497         resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3498         if (intr_process) {
3499                 /* Wait until hwrm response cmpl interrupt is processed */
3500                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3501                        i++ < tmo_count) {
3502                         /* on first few passes, just barely sleep */
3503                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3504                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3505                                              HWRM_SHORT_MAX_TIMEOUT);
3506                         else
3507                                 usleep_range(HWRM_MIN_TIMEOUT,
3508                                              HWRM_MAX_TIMEOUT);
3509                 }
3510
3511                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3512                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3513                                    le16_to_cpu(req->req_type));
3514                         return -1;
3515                 }
3516                 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3517                       HWRM_RESP_LEN_SFT;
3518                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3519         } else {
3520                 int j;
3521
3522                 /* Check if response len is updated */
3523                 for (i = 0; i < tmo_count; i++) {
3524                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3525                               HWRM_RESP_LEN_SFT;
3526                         if (len)
3527                                 break;
3528                         /* on first few passes, just barely sleep */
3529                         if (i < DFLT_HWRM_CMD_TIMEOUT)
3530                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3531                                              HWRM_SHORT_MAX_TIMEOUT);
3532                         else
3533                                 usleep_range(HWRM_MIN_TIMEOUT,
3534                                              HWRM_MAX_TIMEOUT);
3535                 }
3536
3537                 if (i >= tmo_count) {
3538                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3539                                    HWRM_TOTAL_TIMEOUT(i),
3540                                    le16_to_cpu(req->req_type),
3541                                    le16_to_cpu(req->seq_id), len);
3542                         return -1;
3543                 }
3544
3545                 /* Last byte of resp contains valid bit */
3546                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3547                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3548                         /* make sure we read from updated DMA memory */
3549                         dma_rmb();
3550                         if (*valid)
3551                                 break;
3552                         udelay(1);
3553                 }
3554
3555                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3556                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3557                                    HWRM_TOTAL_TIMEOUT(i),
3558                                    le16_to_cpu(req->req_type),
3559                                    le16_to_cpu(req->seq_id), len, *valid);
3560                         return -1;
3561                 }
3562         }
3563
3564         /* Zero valid bit for compatibility.  Valid bit in an older spec
3565          * may become a new field in a newer spec.  We must make sure that
3566          * a new field not implemented by old spec will read zero.
3567          */
3568         *valid = 0;
3569         rc = le16_to_cpu(resp->error_code);
3570         if (rc && !silent)
3571                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3572                            le16_to_cpu(resp->req_type),
3573                            le16_to_cpu(resp->seq_id), rc);
3574         return rc;
3575 }
3576
3577 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3578 {
3579         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3580 }
3581
3582 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3583                               int timeout)
3584 {
3585         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3586 }
3587
3588 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3589 {
3590         int rc;
3591
3592         mutex_lock(&bp->hwrm_cmd_lock);
3593         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3594         mutex_unlock(&bp->hwrm_cmd_lock);
3595         return rc;
3596 }
3597
3598 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3599                              int timeout)
3600 {
3601         int rc;
3602
3603         mutex_lock(&bp->hwrm_cmd_lock);
3604         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3605         mutex_unlock(&bp->hwrm_cmd_lock);
3606         return rc;
3607 }
3608
3609 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3610                                      int bmap_size)
3611 {
3612         struct hwrm_func_drv_rgtr_input req = {0};
3613         DECLARE_BITMAP(async_events_bmap, 256);
3614         u32 *events = (u32 *)async_events_bmap;
3615         int i;
3616
3617         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3618
3619         req.enables =
3620                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3621
3622         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3623         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3624                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3625
3626         if (bmap && bmap_size) {
3627                 for (i = 0; i < bmap_size; i++) {
3628                         if (test_bit(i, bmap))
3629                                 __set_bit(i, async_events_bmap);
3630                 }
3631         }
3632
3633         for (i = 0; i < 8; i++)
3634                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3635
3636         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3637 }
3638
3639 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3640 {
3641         struct hwrm_func_drv_rgtr_input req = {0};
3642
3643         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3644
3645         req.enables =
3646                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3647                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3648
3649         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3650         req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3651         req.ver_maj_8b = DRV_VER_MAJ;
3652         req.ver_min_8b = DRV_VER_MIN;
3653         req.ver_upd_8b = DRV_VER_UPD;
3654         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3655         req.ver_min = cpu_to_le16(DRV_VER_MIN);
3656         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3657
3658         if (BNXT_PF(bp)) {
3659                 u32 data[8];
3660                 int i;
3661
3662                 memset(data, 0, sizeof(data));
3663                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3664                         u16 cmd = bnxt_vf_req_snif[i];
3665                         unsigned int bit, idx;
3666
3667                         idx = cmd / 32;
3668                         bit = cmd % 32;
3669                         data[idx] |= 1 << bit;
3670                 }
3671
3672                 for (i = 0; i < 8; i++)
3673                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3674
3675                 req.enables |=
3676                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3677         }
3678
3679         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3680 }
3681
3682 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3683 {
3684         struct hwrm_func_drv_unrgtr_input req = {0};
3685
3686         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3687         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3688 }
3689
3690 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3691 {
3692         u32 rc = 0;
3693         struct hwrm_tunnel_dst_port_free_input req = {0};
3694
3695         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3696         req.tunnel_type = tunnel_type;
3697
3698         switch (tunnel_type) {
3699         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3700                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3701                 break;
3702         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3703                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3704                 break;
3705         default:
3706                 break;
3707         }
3708
3709         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3710         if (rc)
3711                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3712                            rc);
3713         return rc;
3714 }
3715
3716 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3717                                            u8 tunnel_type)
3718 {
3719         u32 rc = 0;
3720         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3721         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3722
3723         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3724
3725         req.tunnel_type = tunnel_type;
3726         req.tunnel_dst_port_val = port;
3727
3728         mutex_lock(&bp->hwrm_cmd_lock);
3729         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3730         if (rc) {
3731                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3732                            rc);
3733                 goto err_out;
3734         }
3735
3736         switch (tunnel_type) {
3737         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3738                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3739                 break;
3740         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3741                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3742                 break;
3743         default:
3744                 break;
3745         }
3746
3747 err_out:
3748         mutex_unlock(&bp->hwrm_cmd_lock);
3749         return rc;
3750 }
3751
3752 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3753 {
3754         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3755         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3756
3757         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3758         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3759
3760         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3761         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3762         req.mask = cpu_to_le32(vnic->rx_mask);
3763         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3764 }
3765
3766 #ifdef CONFIG_RFS_ACCEL
3767 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3768                                             struct bnxt_ntuple_filter *fltr)
3769 {
3770         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3771
3772         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3773         req.ntuple_filter_id = fltr->filter_id;
3774         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3775 }
3776
3777 #define BNXT_NTP_FLTR_FLAGS                                     \
3778         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3779          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3780          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3781          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3782          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3783          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3784          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3785          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3786          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3787          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3788          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3789          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3790          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3791          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3792
3793 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
3794                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3795
3796 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3797                                              struct bnxt_ntuple_filter *fltr)
3798 {
3799         int rc = 0;
3800         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3801         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3802                 bp->hwrm_cmd_resp_addr;
3803         struct flow_keys *keys = &fltr->fkeys;
3804         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3805
3806         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3807         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3808
3809         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3810
3811         req.ethertype = htons(ETH_P_IP);
3812         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3813         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3814         req.ip_protocol = keys->basic.ip_proto;
3815
3816         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3817                 int i;
3818
3819                 req.ethertype = htons(ETH_P_IPV6);
3820                 req.ip_addr_type =
3821                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3822                 *(struct in6_addr *)&req.src_ipaddr[0] =
3823                         keys->addrs.v6addrs.src;
3824                 *(struct in6_addr *)&req.dst_ipaddr[0] =
3825                         keys->addrs.v6addrs.dst;
3826                 for (i = 0; i < 4; i++) {
3827                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3828                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3829                 }
3830         } else {
3831                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3832                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3833                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3834                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3835         }
3836         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3837                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3838                 req.tunnel_type =
3839                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3840         }
3841
3842         req.src_port = keys->ports.src;
3843         req.src_port_mask = cpu_to_be16(0xffff);
3844         req.dst_port = keys->ports.dst;
3845         req.dst_port_mask = cpu_to_be16(0xffff);
3846
3847         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3848         mutex_lock(&bp->hwrm_cmd_lock);
3849         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3850         if (!rc)
3851                 fltr->filter_id = resp->ntuple_filter_id;
3852         mutex_unlock(&bp->hwrm_cmd_lock);
3853         return rc;
3854 }
3855 #endif
3856
3857 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3858                                      u8 *mac_addr)
3859 {
3860         u32 rc = 0;
3861         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3862         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3863
3864         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3865         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3866         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3867                 req.flags |=
3868                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3869         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3870         req.enables =
3871                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3872                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3873                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3874         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3875         req.l2_addr_mask[0] = 0xff;
3876         req.l2_addr_mask[1] = 0xff;
3877         req.l2_addr_mask[2] = 0xff;
3878         req.l2_addr_mask[3] = 0xff;
3879         req.l2_addr_mask[4] = 0xff;
3880         req.l2_addr_mask[5] = 0xff;
3881
3882         mutex_lock(&bp->hwrm_cmd_lock);
3883         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3884         if (!rc)
3885                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3886                                                         resp->l2_filter_id;
3887         mutex_unlock(&bp->hwrm_cmd_lock);
3888         return rc;
3889 }
3890
3891 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3892 {
3893         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3894         int rc = 0;
3895
3896         /* Any associated ntuple filters will also be cleared by firmware. */
3897         mutex_lock(&bp->hwrm_cmd_lock);
3898         for (i = 0; i < num_of_vnics; i++) {
3899                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3900
3901                 for (j = 0; j < vnic->uc_filter_count; j++) {
3902                         struct hwrm_cfa_l2_filter_free_input req = {0};
3903
3904                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3905                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3906
3907                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3908
3909                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3910                                                 HWRM_CMD_TIMEOUT);
3911                 }
3912                 vnic->uc_filter_count = 0;
3913         }
3914         mutex_unlock(&bp->hwrm_cmd_lock);
3915
3916         return rc;
3917 }
3918
3919 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3920 {
3921         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3922         struct hwrm_vnic_tpa_cfg_input req = {0};
3923
3924         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3925                 return 0;
3926
3927         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3928
3929         if (tpa_flags) {
3930                 u16 mss = bp->dev->mtu - 40;
3931                 u32 nsegs, n, segs = 0, flags;
3932
3933                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3934                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3935                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3936                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3937                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3938                 if (tpa_flags & BNXT_FLAG_GRO)
3939                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3940
3941                 req.flags = cpu_to_le32(flags);
3942
3943                 req.enables =
3944                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3945                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3946                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3947
3948                 /* Number of segs are log2 units, and first packet is not
3949                  * included as part of this units.
3950                  */
3951                 if (mss <= BNXT_RX_PAGE_SIZE) {
3952                         n = BNXT_RX_PAGE_SIZE / mss;
3953                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3954                 } else {
3955                         n = mss / BNXT_RX_PAGE_SIZE;
3956                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3957                                 n++;
3958                         nsegs = (MAX_SKB_FRAGS - n) / n;
3959                 }
3960
3961                 segs = ilog2(nsegs);
3962                 req.max_agg_segs = cpu_to_le16(segs);
3963                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3964
3965                 req.min_agg_len = cpu_to_le32(512);
3966         }
3967         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3968
3969         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3970 }
3971
3972 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3973 {
3974         u32 i, j, max_rings;
3975         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3976         struct hwrm_vnic_rss_cfg_input req = {0};
3977
3978         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3979                 return 0;
3980
3981         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3982         if (set_rss) {
3983                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3984                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3985                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3986                                 max_rings = bp->rx_nr_rings - 1;
3987                         else
3988                                 max_rings = bp->rx_nr_rings;
3989                 } else {
3990                         max_rings = 1;
3991                 }
3992
3993                 /* Fill the RSS indirection table with ring group ids */
3994                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3995                         if (j == max_rings)
3996                                 j = 0;
3997                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3998                 }
3999
4000                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4001                 req.hash_key_tbl_addr =
4002                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
4003         }
4004         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4005         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4006 }
4007
4008 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4009 {
4010         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4011         struct hwrm_vnic_plcmodes_cfg_input req = {0};
4012
4013         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4014         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4015                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4016                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4017         req.enables =
4018                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4019                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4020         /* thresholds not implemented in firmware yet */
4021         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4022         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4023         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4024         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4025 }
4026
4027 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4028                                         u16 ctx_idx)
4029 {
4030         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4031
4032         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4033         req.rss_cos_lb_ctx_id =
4034                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4035
4036         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4037         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4038 }
4039
4040 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4041 {
4042         int i, j;
4043
4044         for (i = 0; i < bp->nr_vnics; i++) {
4045                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4046
4047                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4048                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4049                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4050                 }
4051         }
4052         bp->rsscos_nr_ctxs = 0;
4053 }
4054
4055 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4056 {
4057         int rc;
4058         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4059         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4060                                                 bp->hwrm_cmd_resp_addr;
4061
4062         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4063                                -1);
4064
4065         mutex_lock(&bp->hwrm_cmd_lock);
4066         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4067         if (!rc)
4068                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4069                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
4070         mutex_unlock(&bp->hwrm_cmd_lock);
4071
4072         return rc;
4073 }
4074
4075 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4076 {
4077         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4078                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4079         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4080 }
4081
4082 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4083 {
4084         unsigned int ring = 0, grp_idx;
4085         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4086         struct hwrm_vnic_cfg_input req = {0};
4087         u16 def_vlan = 0;
4088
4089         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4090
4091         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4092         /* Only RSS support for now TBD: COS & LB */
4093         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4094                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4095                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4096                                            VNIC_CFG_REQ_ENABLES_MRU);
4097         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4098                 req.rss_rule =
4099                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4100                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4101                                            VNIC_CFG_REQ_ENABLES_MRU);
4102                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4103         } else {
4104                 req.rss_rule = cpu_to_le16(0xffff);
4105         }
4106
4107         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4108             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4109                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4110                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4111         } else {
4112                 req.cos_rule = cpu_to_le16(0xffff);
4113         }
4114
4115         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4116                 ring = 0;
4117         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4118                 ring = vnic_id - 1;
4119         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4120                 ring = bp->rx_nr_rings - 1;
4121
4122         grp_idx = bp->rx_ring[ring].bnapi->index;
4123         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4124         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4125
4126         req.lb_rule = cpu_to_le16(0xffff);
4127         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4128                               VLAN_HLEN);
4129
4130 #ifdef CONFIG_BNXT_SRIOV
4131         if (BNXT_VF(bp))
4132                 def_vlan = bp->vf.vlan;
4133 #endif
4134         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4135                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4136         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4137                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4138
4139         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4140 }
4141
4142 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4143 {
4144         u32 rc = 0;
4145
4146         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4147                 struct hwrm_vnic_free_input req = {0};
4148
4149                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4150                 req.vnic_id =
4151                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4152
4153                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4154                 if (rc)
4155                         return rc;
4156                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4157         }
4158         return rc;
4159 }
4160
4161 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4162 {
4163         u16 i;
4164
4165         for (i = 0; i < bp->nr_vnics; i++)
4166                 bnxt_hwrm_vnic_free_one(bp, i);
4167 }
4168
4169 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4170                                 unsigned int start_rx_ring_idx,
4171                                 unsigned int nr_rings)
4172 {
4173         int rc = 0;
4174         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4175         struct hwrm_vnic_alloc_input req = {0};
4176         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4177
4178         /* map ring groups to this vnic */
4179         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4180                 grp_idx = bp->rx_ring[i].bnapi->index;
4181                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4182                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4183                                    j, nr_rings);
4184                         break;
4185                 }
4186                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4187                                         bp->grp_info[grp_idx].fw_grp_id;
4188         }
4189
4190         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4191         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4192         if (vnic_id == 0)
4193                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4194
4195         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4196
4197         mutex_lock(&bp->hwrm_cmd_lock);
4198         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4199         if (!rc)
4200                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4201         mutex_unlock(&bp->hwrm_cmd_lock);
4202         return rc;
4203 }
4204
4205 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4206 {
4207         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4208         struct hwrm_vnic_qcaps_input req = {0};
4209         int rc;
4210
4211         if (bp->hwrm_spec_code < 0x10600)
4212                 return 0;
4213
4214         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4215         mutex_lock(&bp->hwrm_cmd_lock);
4216         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4217         if (!rc) {
4218                 u32 flags = le32_to_cpu(resp->flags);
4219
4220                 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4221                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4222                 if (flags &
4223                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4224                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4225         }
4226         mutex_unlock(&bp->hwrm_cmd_lock);
4227         return rc;
4228 }
4229
4230 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4231 {
4232         u16 i;
4233         u32 rc = 0;
4234
4235         mutex_lock(&bp->hwrm_cmd_lock);
4236         for (i = 0; i < bp->rx_nr_rings; i++) {
4237                 struct hwrm_ring_grp_alloc_input req = {0};
4238                 struct hwrm_ring_grp_alloc_output *resp =
4239                                         bp->hwrm_cmd_resp_addr;
4240                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4241
4242                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4243
4244                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4245                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4246                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4247                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4248
4249                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4250                                         HWRM_CMD_TIMEOUT);
4251                 if (rc)
4252                         break;
4253
4254                 bp->grp_info[grp_idx].fw_grp_id =
4255                         le32_to_cpu(resp->ring_group_id);
4256         }
4257         mutex_unlock(&bp->hwrm_cmd_lock);
4258         return rc;
4259 }
4260
4261 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4262 {
4263         u16 i;
4264         u32 rc = 0;
4265         struct hwrm_ring_grp_free_input req = {0};
4266
4267         if (!bp->grp_info)
4268                 return 0;
4269
4270         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4271
4272         mutex_lock(&bp->hwrm_cmd_lock);
4273         for (i = 0; i < bp->cp_nr_rings; i++) {
4274                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4275                         continue;
4276                 req.ring_group_id =
4277                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
4278
4279                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4280                                         HWRM_CMD_TIMEOUT);
4281                 if (rc)
4282                         break;
4283                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4284         }
4285         mutex_unlock(&bp->hwrm_cmd_lock);
4286         return rc;
4287 }
4288
4289 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4290                                     struct bnxt_ring_struct *ring,
4291                                     u32 ring_type, u32 map_index)
4292 {
4293         int rc = 0, err = 0;
4294         struct hwrm_ring_alloc_input req = {0};
4295         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4296         struct bnxt_ring_grp_info *grp_info;
4297         u16 ring_id;
4298
4299         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4300
4301         req.enables = 0;
4302         if (ring->nr_pages > 1) {
4303                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4304                 /* Page size is in log2 units */
4305                 req.page_size = BNXT_PAGE_SHIFT;
4306                 req.page_tbl_depth = 1;
4307         } else {
4308                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4309         }
4310         req.fbo = 0;
4311         /* Association of ring index with doorbell index and MSIX number */
4312         req.logical_id = cpu_to_le16(map_index);
4313
4314         switch (ring_type) {
4315         case HWRM_RING_ALLOC_TX:
4316                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4317                 /* Association of transmit ring with completion ring */
4318                 grp_info = &bp->grp_info[ring->grp_idx];
4319                 req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4320                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4321                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4322                 req.queue_id = cpu_to_le16(ring->queue_id);
4323                 break;
4324         case HWRM_RING_ALLOC_RX:
4325                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4326                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4327                 break;
4328         case HWRM_RING_ALLOC_AGG:
4329                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4330                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4331                 break;
4332         case HWRM_RING_ALLOC_CMPL:
4333                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4334                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4335                 if (bp->flags & BNXT_FLAG_USING_MSIX)
4336                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4337                 break;
4338         default:
4339                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4340                            ring_type);
4341                 return -1;
4342         }
4343
4344         mutex_lock(&bp->hwrm_cmd_lock);
4345         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4346         err = le16_to_cpu(resp->error_code);
4347         ring_id = le16_to_cpu(resp->ring_id);
4348         mutex_unlock(&bp->hwrm_cmd_lock);
4349
4350         if (rc || err) {
4351                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4352                            ring_type, rc, err);
4353                 return -EIO;
4354         }
4355         ring->fw_ring_id = ring_id;
4356         return rc;
4357 }
4358
4359 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4360 {
4361         int rc;
4362
4363         if (BNXT_PF(bp)) {
4364                 struct hwrm_func_cfg_input req = {0};
4365
4366                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4367                 req.fid = cpu_to_le16(0xffff);
4368                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4369                 req.async_event_cr = cpu_to_le16(idx);
4370                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4371         } else {
4372                 struct hwrm_func_vf_cfg_input req = {0};
4373
4374                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4375                 req.enables =
4376                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4377                 req.async_event_cr = cpu_to_le16(idx);
4378                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4379         }
4380         return rc;
4381 }
4382
4383 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4384 {
4385         int i, rc = 0;
4386
4387         for (i = 0; i < bp->cp_nr_rings; i++) {
4388                 struct bnxt_napi *bnapi = bp->bnapi[i];
4389                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4390                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4391                 u32 map_idx = ring->map_idx;
4392
4393                 cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4394                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4395                                               map_idx);
4396                 if (rc)
4397                         goto err_out;
4398                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4399                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4400
4401                 if (!i) {
4402                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4403                         if (rc)
4404                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4405                 }
4406         }
4407
4408         for (i = 0; i < bp->tx_nr_rings; i++) {
4409                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4410                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4411                 u32 map_idx = i;
4412
4413                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4414                                               map_idx);
4415                 if (rc)
4416                         goto err_out;
4417                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4418         }
4419
4420         for (i = 0; i < bp->rx_nr_rings; i++) {
4421                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4422                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4423                 u32 map_idx = rxr->bnapi->index;
4424
4425                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4426                                               map_idx);
4427                 if (rc)
4428                         goto err_out;
4429                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4430                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4431                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4432         }
4433
4434         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4435                 for (i = 0; i < bp->rx_nr_rings; i++) {
4436                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4437                         struct bnxt_ring_struct *ring =
4438                                                 &rxr->rx_agg_ring_struct;
4439                         u32 grp_idx = ring->grp_idx;
4440                         u32 map_idx = grp_idx + bp->rx_nr_rings;
4441
4442                         rc = hwrm_ring_alloc_send_msg(bp, ring,
4443                                                       HWRM_RING_ALLOC_AGG,
4444                                                       map_idx);
4445                         if (rc)
4446                                 goto err_out;
4447
4448                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4449                         writel(DB_KEY_RX | rxr->rx_agg_prod,
4450                                rxr->rx_agg_doorbell);
4451                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4452                 }
4453         }
4454 err_out:
4455         return rc;
4456 }
4457
4458 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4459                                    struct bnxt_ring_struct *ring,
4460                                    u32 ring_type, int cmpl_ring_id)
4461 {
4462         int rc;
4463         struct hwrm_ring_free_input req = {0};
4464         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4465         u16 error_code;
4466
4467         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4468         req.ring_type = ring_type;
4469         req.ring_id = cpu_to_le16(ring->fw_ring_id);
4470
4471         mutex_lock(&bp->hwrm_cmd_lock);
4472         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4473         error_code = le16_to_cpu(resp->error_code);
4474         mutex_unlock(&bp->hwrm_cmd_lock);
4475
4476         if (rc || error_code) {
4477                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4478                            ring_type, rc, error_code);
4479                 return -EIO;
4480         }
4481         return 0;
4482 }
4483
4484 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4485 {
4486         int i;
4487
4488         if (!bp->bnapi)
4489                 return;
4490
4491         for (i = 0; i < bp->tx_nr_rings; i++) {
4492                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4493                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4494                 u32 grp_idx = txr->bnapi->index;
4495                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4496
4497                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4498                         hwrm_ring_free_send_msg(bp, ring,
4499                                                 RING_FREE_REQ_RING_TYPE_TX,
4500                                                 close_path ? cmpl_ring_id :
4501                                                 INVALID_HW_RING_ID);
4502                         ring->fw_ring_id = INVALID_HW_RING_ID;
4503                 }
4504         }
4505
4506         for (i = 0; i < bp->rx_nr_rings; i++) {
4507                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4508                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4509                 u32 grp_idx = rxr->bnapi->index;
4510                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4511
4512                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4513                         hwrm_ring_free_send_msg(bp, ring,
4514                                                 RING_FREE_REQ_RING_TYPE_RX,
4515                                                 close_path ? cmpl_ring_id :
4516                                                 INVALID_HW_RING_ID);
4517                         ring->fw_ring_id = INVALID_HW_RING_ID;
4518                         bp->grp_info[grp_idx].rx_fw_ring_id =
4519                                 INVALID_HW_RING_ID;
4520                 }
4521         }
4522
4523         for (i = 0; i < bp->rx_nr_rings; i++) {
4524                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4525                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4526                 u32 grp_idx = rxr->bnapi->index;
4527                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4528
4529                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4530                         hwrm_ring_free_send_msg(bp, ring,
4531                                                 RING_FREE_REQ_RING_TYPE_RX,
4532                                                 close_path ? cmpl_ring_id :
4533                                                 INVALID_HW_RING_ID);
4534                         ring->fw_ring_id = INVALID_HW_RING_ID;
4535                         bp->grp_info[grp_idx].agg_fw_ring_id =
4536                                 INVALID_HW_RING_ID;
4537                 }
4538         }
4539
4540         /* The completion rings are about to be freed.  After that the
4541          * IRQ doorbell will not work anymore.  So we need to disable
4542          * IRQ here.
4543          */
4544         bnxt_disable_int_sync(bp);
4545
4546         for (i = 0; i < bp->cp_nr_rings; i++) {
4547                 struct bnxt_napi *bnapi = bp->bnapi[i];
4548                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4549                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4550
4551                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4552                         hwrm_ring_free_send_msg(bp, ring,
4553                                                 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4554                                                 INVALID_HW_RING_ID);
4555                         ring->fw_ring_id = INVALID_HW_RING_ID;
4556                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4557                 }
4558         }
4559 }
4560
4561 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4562 {
4563         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4564         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4565         struct hwrm_func_qcfg_input req = {0};
4566         int rc;
4567
4568         if (bp->hwrm_spec_code < 0x10601)
4569                 return 0;
4570
4571         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4572         req.fid = cpu_to_le16(0xffff);
4573         mutex_lock(&bp->hwrm_cmd_lock);
4574         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4575         if (rc) {
4576                 mutex_unlock(&bp->hwrm_cmd_lock);
4577                 return -EIO;
4578         }
4579
4580         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4581         if (bp->flags & BNXT_FLAG_NEW_RM) {
4582                 u16 cp, stats;
4583
4584                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4585                 hw_resc->resv_hw_ring_grps =
4586                         le32_to_cpu(resp->alloc_hw_ring_grps);
4587                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4588                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
4589                 stats = le16_to_cpu(resp->alloc_stat_ctx);
4590                 cp = min_t(u16, cp, stats);
4591                 hw_resc->resv_cp_rings = cp;
4592         }
4593         mutex_unlock(&bp->hwrm_cmd_lock);
4594         return 0;
4595 }
4596
4597 /* Caller must hold bp->hwrm_cmd_lock */
4598 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4599 {
4600         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4601         struct hwrm_func_qcfg_input req = {0};
4602         int rc;
4603
4604         if (bp->hwrm_spec_code < 0x10601)
4605                 return 0;
4606
4607         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4608         req.fid = cpu_to_le16(fid);
4609         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4610         if (!rc)
4611                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4612
4613         return rc;
4614 }
4615
4616 static void
4617 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4618                              int tx_rings, int rx_rings, int ring_grps,
4619                              int cp_rings, int vnics)
4620 {
4621         u32 enables = 0;
4622
4623         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4624         req->fid = cpu_to_le16(0xffff);
4625         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4626         req->num_tx_rings = cpu_to_le16(tx_rings);
4627         if (bp->flags & BNXT_FLAG_NEW_RM) {
4628                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4629                 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4630                                       FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4631                 enables |= ring_grps ?
4632                            FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4633                 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4634
4635                 req->num_rx_rings = cpu_to_le16(rx_rings);
4636                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4637                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
4638                 req->num_stat_ctxs = req->num_cmpl_rings;
4639                 req->num_vnics = cpu_to_le16(vnics);
4640         }
4641         req->enables = cpu_to_le32(enables);
4642 }
4643
4644 static void
4645 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4646                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
4647                              int rx_rings, int ring_grps, int cp_rings,
4648                              int vnics)
4649 {
4650         u32 enables = 0;
4651
4652         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4653         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4654         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4655         enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4656                               FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4657         enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4658         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4659
4660         req->num_tx_rings = cpu_to_le16(tx_rings);
4661         req->num_rx_rings = cpu_to_le16(rx_rings);
4662         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4663         req->num_cmpl_rings = cpu_to_le16(cp_rings);
4664         req->num_stat_ctxs = req->num_cmpl_rings;
4665         req->num_vnics = cpu_to_le16(vnics);
4666
4667         req->enables = cpu_to_le32(enables);
4668 }
4669
4670 static int
4671 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4672                            int ring_grps, int cp_rings, int vnics)
4673 {
4674         struct hwrm_func_cfg_input req = {0};
4675         int rc;
4676
4677         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4678                                      cp_rings, vnics);
4679         if (!req.enables)
4680                 return 0;
4681
4682         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4683         if (rc)
4684                 return -ENOMEM;
4685
4686         if (bp->hwrm_spec_code < 0x10601)
4687                 bp->hw_resc.resv_tx_rings = tx_rings;
4688
4689         rc = bnxt_hwrm_get_rings(bp);
4690         return rc;
4691 }
4692
4693 static int
4694 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4695                            int ring_grps, int cp_rings, int vnics)
4696 {
4697         struct hwrm_func_vf_cfg_input req = {0};
4698         int rc;
4699
4700         if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4701                 bp->hw_resc.resv_tx_rings = tx_rings;
4702                 return 0;
4703         }
4704
4705         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4706                                      cp_rings, vnics);
4707         req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
4708                                    FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
4709         req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
4710         req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
4711         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4712         if (rc)
4713                 return -ENOMEM;
4714
4715         rc = bnxt_hwrm_get_rings(bp);
4716         return rc;
4717 }
4718
4719 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4720                                    int cp, int vnic)
4721 {
4722         if (BNXT_PF(bp))
4723                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4724         else
4725                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4726 }
4727
4728 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4729 {
4730         int cp = bp->cp_nr_rings;
4731         int ulp_msix, ulp_base;
4732
4733         ulp_msix = bnxt_get_ulp_msix_num(bp);
4734         if (ulp_msix) {
4735                 ulp_base = bnxt_get_ulp_msix_base(bp);
4736                 cp += ulp_msix;
4737                 if ((ulp_base + ulp_msix) > cp)
4738                         cp = ulp_base + ulp_msix;
4739         }
4740         return cp;
4741 }
4742
4743 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4744 {
4745         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4746         int cp = bnxt_cp_rings_in_use(bp);
4747         int rx = bp->rx_nr_rings;
4748         int vnic = 1, grp = rx;
4749
4750         if (bp->hwrm_spec_code < 0x10601)
4751                 return false;
4752
4753         if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4754                 return true;
4755
4756         if (bp->flags & BNXT_FLAG_RFS)
4757                 vnic = rx + 1;
4758         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4759                 rx <<= 1;
4760         if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4761             (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4762              hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4763                 return true;
4764         return false;
4765 }
4766
4767 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4768                            bool shared);
4769
4770 static int __bnxt_reserve_rings(struct bnxt *bp)
4771 {
4772         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4773         int cp = bnxt_cp_rings_in_use(bp);
4774         int tx = bp->tx_nr_rings;
4775         int rx = bp->rx_nr_rings;
4776         int grp, rx_rings, rc;
4777         bool sh = false;
4778         int vnic = 1;
4779
4780         if (!bnxt_need_reserve_rings(bp))
4781                 return 0;
4782
4783         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4784                 sh = true;
4785         if (bp->flags & BNXT_FLAG_RFS)
4786                 vnic = rx + 1;
4787         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4788                 rx <<= 1;
4789         grp = bp->rx_nr_rings;
4790
4791         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4792         if (rc)
4793                 return rc;
4794
4795         tx = hw_resc->resv_tx_rings;
4796         if (bp->flags & BNXT_FLAG_NEW_RM) {
4797                 rx = hw_resc->resv_rx_rings;
4798                 cp = hw_resc->resv_cp_rings;
4799                 grp = hw_resc->resv_hw_ring_grps;
4800                 vnic = hw_resc->resv_vnics;
4801         }
4802
4803         rx_rings = rx;
4804         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4805                 if (rx >= 2) {
4806                         rx_rings = rx >> 1;
4807                 } else {
4808                         if (netif_running(bp->dev))
4809                                 return -ENOMEM;
4810
4811                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4812                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4813                         bp->dev->hw_features &= ~NETIF_F_LRO;
4814                         bp->dev->features &= ~NETIF_F_LRO;
4815                         bnxt_set_ring_params(bp);
4816                 }
4817         }
4818         rx_rings = min_t(int, rx_rings, grp);
4819         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4820         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4821                 rx = rx_rings << 1;
4822         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4823         bp->tx_nr_rings = tx;
4824         bp->rx_nr_rings = rx_rings;
4825         bp->cp_nr_rings = cp;
4826
4827         if (!tx || !rx || !cp || !grp || !vnic)
4828                 return -ENOMEM;
4829
4830         return rc;
4831 }
4832
4833 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4834                                     int ring_grps, int cp_rings, int vnics)
4835 {
4836         struct hwrm_func_vf_cfg_input req = {0};
4837         u32 flags;
4838         int rc;
4839
4840         if (!(bp->flags & BNXT_FLAG_NEW_RM))
4841                 return 0;
4842
4843         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4844                                      cp_rings, vnics);
4845         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4846                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4847                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4848                 FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4849                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4850                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4851
4852         req.flags = cpu_to_le32(flags);
4853         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4854         if (rc)
4855                 return -ENOMEM;
4856         return 0;
4857 }
4858
4859 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4860                                     int ring_grps, int cp_rings, int vnics)
4861 {
4862         struct hwrm_func_cfg_input req = {0};
4863         u32 flags;
4864         int rc;
4865
4866         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4867                                      cp_rings, vnics);
4868         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4869         if (bp->flags & BNXT_FLAG_NEW_RM)
4870                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4871                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4872                          FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4873                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4874                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4875
4876         req.flags = cpu_to_le32(flags);
4877         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4878         if (rc)
4879                 return -ENOMEM;
4880         return 0;
4881 }
4882
4883 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4884                                  int ring_grps, int cp_rings, int vnics)
4885 {
4886         if (bp->hwrm_spec_code < 0x10801)
4887                 return 0;
4888
4889         if (BNXT_PF(bp))
4890                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4891                                                 ring_grps, cp_rings, vnics);
4892
4893         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4894                                         cp_rings, vnics);
4895 }
4896
4897 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4898         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4899 {
4900         u16 val, tmr, max, flags;
4901
4902         max = hw_coal->bufs_per_record * 128;
4903         if (hw_coal->budget)
4904                 max = hw_coal->bufs_per_record * hw_coal->budget;
4905
4906         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4907         req->num_cmpl_aggr_int = cpu_to_le16(val);
4908
4909         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4910         val = min_t(u16, val, 63);
4911         req->num_cmpl_dma_aggr = cpu_to_le16(val);
4912
4913         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4914         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4915         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4916
4917         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4918         tmr = max_t(u16, tmr, 1);
4919         req->int_lat_tmr_max = cpu_to_le16(tmr);
4920
4921         /* min timer set to 1/2 of interrupt timer */
4922         val = tmr / 2;
4923         req->int_lat_tmr_min = cpu_to_le16(val);
4924
4925         /* buf timer set to 1/4 of interrupt timer */
4926         val = max_t(u16, tmr / 4, 1);
4927         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4928
4929         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4930         tmr = max_t(u16, tmr, 1);
4931         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4932
4933         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4934         if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4935                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4936         req->flags = cpu_to_le16(flags);
4937 }
4938
4939 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4940 {
4941         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4942         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4943         struct bnxt_coal coal;
4944         unsigned int grp_idx;
4945
4946         /* Tick values in micro seconds.
4947          * 1 coal_buf x bufs_per_record = 1 completion record.
4948          */
4949         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4950
4951         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4952         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4953
4954         if (!bnapi->rx_ring)
4955                 return -ENODEV;
4956
4957         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4958                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4959
4960         bnxt_hwrm_set_coal_params(&coal, &req_rx);
4961
4962         grp_idx = bnapi->index;
4963         req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4964
4965         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4966                                  HWRM_CMD_TIMEOUT);
4967 }
4968
4969 int bnxt_hwrm_set_coal(struct bnxt *bp)
4970 {
4971         int i, rc = 0;
4972         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4973                                                            req_tx = {0}, *req;
4974
4975         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4976                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4977         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4978                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4979
4980         bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4981         bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4982
4983         mutex_lock(&bp->hwrm_cmd_lock);
4984         for (i = 0; i < bp->cp_nr_rings; i++) {
4985                 struct bnxt_napi *bnapi = bp->bnapi[i];
4986
4987                 req = &req_rx;
4988                 if (!bnapi->rx_ring)
4989                         req = &req_tx;
4990                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4991
4992                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4993                                         HWRM_CMD_TIMEOUT);
4994                 if (rc)
4995                         break;
4996         }
4997         mutex_unlock(&bp->hwrm_cmd_lock);
4998         return rc;
4999 }
5000
5001 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5002 {
5003         int rc = 0, i;
5004         struct hwrm_stat_ctx_free_input req = {0};
5005
5006         if (!bp->bnapi)
5007                 return 0;
5008
5009         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5010                 return 0;
5011
5012         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5013
5014         mutex_lock(&bp->hwrm_cmd_lock);
5015         for (i = 0; i < bp->cp_nr_rings; i++) {
5016                 struct bnxt_napi *bnapi = bp->bnapi[i];
5017                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5018
5019                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5020                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5021
5022                         rc = _hwrm_send_message(bp, &req, sizeof(req),
5023                                                 HWRM_CMD_TIMEOUT);
5024                         if (rc)
5025                                 break;
5026
5027                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5028                 }
5029         }
5030         mutex_unlock(&bp->hwrm_cmd_lock);
5031         return rc;
5032 }
5033
5034 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5035 {
5036         int rc = 0, i;
5037         struct hwrm_stat_ctx_alloc_input req = {0};
5038         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5039
5040         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5041                 return 0;
5042
5043         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5044
5045         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5046
5047         mutex_lock(&bp->hwrm_cmd_lock);
5048         for (i = 0; i < bp->cp_nr_rings; i++) {
5049                 struct bnxt_napi *bnapi = bp->bnapi[i];
5050                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5051
5052                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5053
5054                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5055                                         HWRM_CMD_TIMEOUT);
5056                 if (rc)
5057                         break;
5058
5059                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5060
5061                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5062         }
5063         mutex_unlock(&bp->hwrm_cmd_lock);
5064         return rc;
5065 }
5066
5067 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5068 {
5069         struct hwrm_func_qcfg_input req = {0};
5070         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5071         u16 flags;
5072         int rc;
5073
5074         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5075         req.fid = cpu_to_le16(0xffff);
5076         mutex_lock(&bp->hwrm_cmd_lock);
5077         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5078         if (rc)
5079                 goto func_qcfg_exit;
5080
5081 #ifdef CONFIG_BNXT_SRIOV
5082         if (BNXT_VF(bp)) {
5083                 struct bnxt_vf_info *vf = &bp->vf;
5084
5085                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5086         }
5087 #endif
5088         flags = le16_to_cpu(resp->flags);
5089         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5090                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5091                 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5092                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5093                         bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5094         }
5095         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5096                 bp->flags |= BNXT_FLAG_MULTI_HOST;
5097
5098         switch (resp->port_partition_type) {
5099         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5100         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5101         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5102                 bp->port_partition_type = resp->port_partition_type;
5103                 break;
5104         }
5105         if (bp->hwrm_spec_code < 0x10707 ||
5106             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5107                 bp->br_mode = BRIDGE_MODE_VEB;
5108         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5109                 bp->br_mode = BRIDGE_MODE_VEPA;
5110         else
5111                 bp->br_mode = BRIDGE_MODE_UNDEF;
5112
5113         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5114         if (!bp->max_mtu)
5115                 bp->max_mtu = BNXT_MAX_MTU;
5116
5117 func_qcfg_exit:
5118         mutex_unlock(&bp->hwrm_cmd_lock);
5119         return rc;
5120 }
5121
5122 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5123 {
5124         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5125         struct hwrm_func_resource_qcaps_input req = {0};
5126         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5127         int rc;
5128
5129         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5130         req.fid = cpu_to_le16(0xffff);
5131
5132         mutex_lock(&bp->hwrm_cmd_lock);
5133         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5134         if (rc) {
5135                 rc = -EIO;
5136                 goto hwrm_func_resc_qcaps_exit;
5137         }
5138
5139         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5140         if (!all)
5141                 goto hwrm_func_resc_qcaps_exit;
5142
5143         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5144         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5145         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5146         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5147         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5148         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5149         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5150         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5151         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5152         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5153         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5154         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5155         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5156         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5157         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5158         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5159
5160         if (BNXT_PF(bp)) {
5161                 struct bnxt_pf_info *pf = &bp->pf;
5162
5163                 pf->vf_resv_strategy =
5164                         le16_to_cpu(resp->vf_reservation_strategy);
5165                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5166                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5167         }
5168 hwrm_func_resc_qcaps_exit:
5169         mutex_unlock(&bp->hwrm_cmd_lock);
5170         return rc;
5171 }
5172
5173 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5174 {
5175         int rc = 0;
5176         struct hwrm_func_qcaps_input req = {0};
5177         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5178         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5179         u32 flags;
5180
5181         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5182         req.fid = cpu_to_le16(0xffff);
5183
5184         mutex_lock(&bp->hwrm_cmd_lock);
5185         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5186         if (rc)
5187                 goto hwrm_func_qcaps_exit;
5188
5189         flags = le32_to_cpu(resp->flags);
5190         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5191                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5192         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5193                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5194
5195         bp->tx_push_thresh = 0;
5196         if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5197                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5198
5199         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5200         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5201         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5202         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5203         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5204         if (!hw_resc->max_hw_ring_grps)
5205                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5206         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5207         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5208         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5209
5210         if (BNXT_PF(bp)) {
5211                 struct bnxt_pf_info *pf = &bp->pf;
5212
5213                 pf->fw_fid = le16_to_cpu(resp->fid);
5214                 pf->port_id = le16_to_cpu(resp->port_id);
5215                 bp->dev->dev_port = pf->port_id;
5216                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5217                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5218                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
5219                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5220                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5221                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5222                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5223                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5224                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5225                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5226                         bp->flags |= BNXT_FLAG_WOL_CAP;
5227         } else {
5228 #ifdef CONFIG_BNXT_SRIOV
5229                 struct bnxt_vf_info *vf = &bp->vf;
5230
5231                 vf->fw_fid = le16_to_cpu(resp->fid);
5232                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5233 #endif
5234         }
5235
5236 hwrm_func_qcaps_exit:
5237         mutex_unlock(&bp->hwrm_cmd_lock);
5238         return rc;
5239 }
5240
5241 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5242 {
5243         int rc;
5244
5245         rc = __bnxt_hwrm_func_qcaps(bp);
5246         if (rc)
5247                 return rc;
5248         if (bp->hwrm_spec_code >= 0x10803) {
5249                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5250                 if (!rc)
5251                         bp->flags |= BNXT_FLAG_NEW_RM;
5252         }
5253         return 0;
5254 }
5255
5256 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5257 {
5258         struct hwrm_func_reset_input req = {0};
5259
5260         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5261         req.enables = 0;
5262
5263         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5264 }
5265
5266 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5267 {
5268         int rc = 0;
5269         struct hwrm_queue_qportcfg_input req = {0};
5270         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5271         u8 i, *qptr;
5272
5273         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5274
5275         mutex_lock(&bp->hwrm_cmd_lock);
5276         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5277         if (rc)
5278                 goto qportcfg_exit;
5279
5280         if (!resp->max_configurable_queues) {
5281                 rc = -EINVAL;
5282                 goto qportcfg_exit;
5283         }
5284         bp->max_tc = resp->max_configurable_queues;
5285         bp->max_lltc = resp->max_configurable_lossless_queues;
5286         if (bp->max_tc > BNXT_MAX_QUEUE)
5287                 bp->max_tc = BNXT_MAX_QUEUE;
5288
5289         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5290                 bp->max_tc = 1;
5291
5292         if (bp->max_lltc > bp->max_tc)
5293                 bp->max_lltc = bp->max_tc;
5294
5295         qptr = &resp->queue_id0;
5296         for (i = 0; i < bp->max_tc; i++) {
5297                 bp->q_info[i].queue_id = *qptr++;
5298                 bp->q_info[i].queue_profile = *qptr++;
5299                 bp->tc_to_qidx[i] = i;
5300         }
5301
5302 qportcfg_exit:
5303         mutex_unlock(&bp->hwrm_cmd_lock);
5304         return rc;
5305 }
5306
5307 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5308 {
5309         int rc;
5310         struct hwrm_ver_get_input req = {0};
5311         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5312         u32 dev_caps_cfg;
5313
5314         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5315         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5316         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5317         req.hwrm_intf_min = HWRM_VERSION_MINOR;
5318         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5319         mutex_lock(&bp->hwrm_cmd_lock);
5320         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5321         if (rc)
5322                 goto hwrm_ver_get_exit;
5323
5324         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5325
5326         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5327                              resp->hwrm_intf_min_8b << 8 |
5328                              resp->hwrm_intf_upd_8b;
5329         if (resp->hwrm_intf_maj_8b < 1) {
5330                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5331                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5332                             resp->hwrm_intf_upd_8b);
5333                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5334         }
5335         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5336                  resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5337                  resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5338
5339         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5340         if (!bp->hwrm_cmd_timeout)
5341                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5342
5343         if (resp->hwrm_intf_maj_8b >= 1)
5344                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5345
5346         bp->chip_num = le16_to_cpu(resp->chip_num);
5347         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5348             !resp->chip_metal)
5349                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5350
5351         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5352         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5353             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5354                 bp->flags |= BNXT_FLAG_SHORT_CMD;
5355
5356 hwrm_ver_get_exit:
5357         mutex_unlock(&bp->hwrm_cmd_lock);
5358         return rc;
5359 }
5360
5361 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5362 {
5363         struct hwrm_fw_set_time_input req = {0};
5364         struct tm tm;
5365         time64_t now = ktime_get_real_seconds();
5366
5367         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
5368             bp->hwrm_spec_code < 0x10400)
5369                 return -EOPNOTSUPP;
5370
5371         time64_to_tm(now, 0, &tm);
5372         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5373         req.year = cpu_to_le16(1900 + tm.tm_year);
5374         req.month = 1 + tm.tm_mon;
5375         req.day = tm.tm_mday;
5376         req.hour = tm.tm_hour;
5377         req.minute = tm.tm_min;
5378         req.second = tm.tm_sec;
5379         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5380 }
5381
5382 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5383 {
5384         int rc;
5385         struct bnxt_pf_info *pf = &bp->pf;
5386         struct hwrm_port_qstats_input req = {0};
5387
5388         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5389                 return 0;
5390
5391         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5392         req.port_id = cpu_to_le16(pf->port_id);
5393         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5394         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5395         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5396         return rc;
5397 }
5398
5399 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5400 {
5401         struct hwrm_port_qstats_ext_input req = {0};
5402         struct bnxt_pf_info *pf = &bp->pf;
5403
5404         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5405                 return 0;
5406
5407         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5408         req.port_id = cpu_to_le16(pf->port_id);
5409         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5410         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5411         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5412 }
5413
5414 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5415 {
5416         if (bp->vxlan_port_cnt) {
5417                 bnxt_hwrm_tunnel_dst_port_free(
5418                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5419         }
5420         bp->vxlan_port_cnt = 0;
5421         if (bp->nge_port_cnt) {
5422                 bnxt_hwrm_tunnel_dst_port_free(
5423                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5424         }
5425         bp->nge_port_cnt = 0;
5426 }
5427
5428 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5429 {
5430         int rc, i;
5431         u32 tpa_flags = 0;
5432
5433         if (set_tpa)
5434                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
5435         for (i = 0; i < bp->nr_vnics; i++) {
5436                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5437                 if (rc) {
5438                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5439                                    i, rc);
5440                         return rc;
5441                 }
5442         }
5443         return 0;
5444 }
5445
5446 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5447 {
5448         int i;
5449
5450         for (i = 0; i < bp->nr_vnics; i++)
5451                 bnxt_hwrm_vnic_set_rss(bp, i, false);
5452 }
5453
5454 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5455                                     bool irq_re_init)
5456 {
5457         if (bp->vnic_info) {
5458                 bnxt_hwrm_clear_vnic_filter(bp);
5459                 /* clear all RSS setting before free vnic ctx */
5460                 bnxt_hwrm_clear_vnic_rss(bp);
5461                 bnxt_hwrm_vnic_ctx_free(bp);
5462                 /* before free the vnic, undo the vnic tpa settings */
5463                 if (bp->flags & BNXT_FLAG_TPA)
5464                         bnxt_set_tpa(bp, false);
5465                 bnxt_hwrm_vnic_free(bp);
5466         }
5467         bnxt_hwrm_ring_free(bp, close_path);
5468         bnxt_hwrm_ring_grp_free(bp);
5469         if (irq_re_init) {
5470                 bnxt_hwrm_stat_ctx_free(bp);
5471                 bnxt_hwrm_free_tunnel_ports(bp);
5472         }
5473 }
5474
5475 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5476 {
5477         struct hwrm_func_cfg_input req = {0};
5478         int rc;
5479
5480         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5481         req.fid = cpu_to_le16(0xffff);
5482         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5483         if (br_mode == BRIDGE_MODE_VEB)
5484                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5485         else if (br_mode == BRIDGE_MODE_VEPA)
5486                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5487         else
5488                 return -EINVAL;
5489         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5490         if (rc)
5491                 rc = -EIO;
5492         return rc;
5493 }
5494
5495 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5496 {
5497         struct hwrm_func_cfg_input req = {0};
5498         int rc;
5499
5500         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5501                 return 0;
5502
5503         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5504         req.fid = cpu_to_le16(0xffff);
5505         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5506         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5507         if (size == 128)
5508                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5509
5510         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5511         if (rc)
5512                 rc = -EIO;
5513         return rc;
5514 }
5515
5516 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5517 {
5518         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5519         int rc;
5520
5521         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5522                 goto skip_rss_ctx;
5523
5524         /* allocate context for vnic */
5525         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5526         if (rc) {
5527                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5528                            vnic_id, rc);
5529                 goto vnic_setup_err;
5530         }
5531         bp->rsscos_nr_ctxs++;
5532
5533         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5534                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5535                 if (rc) {
5536                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5537                                    vnic_id, rc);
5538                         goto vnic_setup_err;
5539                 }
5540                 bp->rsscos_nr_ctxs++;
5541         }
5542
5543 skip_rss_ctx:
5544         /* configure default vnic, ring grp */
5545         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5546         if (rc) {
5547                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5548                            vnic_id, rc);
5549                 goto vnic_setup_err;
5550         }
5551
5552         /* Enable RSS hashing on vnic */
5553         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5554         if (rc) {
5555                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5556                            vnic_id, rc);
5557                 goto vnic_setup_err;
5558         }
5559
5560         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5561                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5562                 if (rc) {
5563                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5564                                    vnic_id, rc);
5565                 }
5566         }
5567
5568 vnic_setup_err:
5569         return rc;
5570 }
5571
5572 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5573 {
5574 #ifdef CONFIG_RFS_ACCEL
5575         int i, rc = 0;
5576
5577         for (i = 0; i < bp->rx_nr_rings; i++) {
5578                 struct bnxt_vnic_info *vnic;
5579                 u16 vnic_id = i + 1;
5580                 u16 ring_id = i;
5581
5582                 if (vnic_id >= bp->nr_vnics)
5583                         break;
5584
5585                 vnic = &bp->vnic_info[vnic_id];
5586                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5587                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5588                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5589                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5590                 if (rc) {
5591                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5592                                    vnic_id, rc);
5593                         break;
5594                 }
5595                 rc = bnxt_setup_vnic(bp, vnic_id);
5596                 if (rc)
5597                         break;
5598         }
5599         return rc;
5600 #else
5601         return 0;
5602 #endif
5603 }
5604
5605 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5606 static bool bnxt_promisc_ok(struct bnxt *bp)
5607 {
5608 #ifdef CONFIG_BNXT_SRIOV
5609         if (BNXT_VF(bp) && !bp->vf.vlan)
5610                 return false;
5611 #endif
5612         return true;
5613 }
5614
5615 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5616 {
5617         unsigned int rc = 0;
5618
5619         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5620         if (rc) {
5621                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5622                            rc);
5623                 return rc;
5624         }
5625
5626         rc = bnxt_hwrm_vnic_cfg(bp, 1);
5627         if (rc) {
5628                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5629                            rc);
5630                 return rc;
5631         }
5632         return rc;
5633 }
5634
5635 static int bnxt_cfg_rx_mode(struct bnxt *);
5636 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5637
5638 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5639 {
5640         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5641         int rc = 0;
5642         unsigned int rx_nr_rings = bp->rx_nr_rings;
5643
5644         if (irq_re_init) {
5645                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5646                 if (rc) {
5647                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5648                                    rc);
5649                         goto err_out;
5650                 }
5651         }
5652
5653         rc = bnxt_hwrm_ring_alloc(bp);
5654         if (rc) {
5655                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5656                 goto err_out;
5657         }
5658
5659         rc = bnxt_hwrm_ring_grp_alloc(bp);
5660         if (rc) {
5661                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5662                 goto err_out;
5663         }
5664
5665         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5666                 rx_nr_rings--;
5667
5668         /* default vnic 0 */
5669         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5670         if (rc) {
5671                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5672                 goto err_out;
5673         }
5674
5675         rc = bnxt_setup_vnic(bp, 0);
5676         if (rc)
5677                 goto err_out;
5678
5679         if (bp->flags & BNXT_FLAG_RFS) {
5680                 rc = bnxt_alloc_rfs_vnics(bp);
5681                 if (rc)
5682                         goto err_out;
5683         }
5684
5685         if (bp->flags & BNXT_FLAG_TPA) {
5686                 rc = bnxt_set_tpa(bp, true);
5687                 if (rc)
5688                         goto err_out;
5689         }
5690
5691         if (BNXT_VF(bp))
5692                 bnxt_update_vf_mac(bp);
5693
5694         /* Filter for default vnic 0 */
5695         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5696         if (rc) {
5697                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5698                 goto err_out;
5699         }
5700         vnic->uc_filter_count = 1;
5701
5702         vnic->rx_mask = 0;
5703         if (bp->dev->flags & IFF_BROADCAST)
5704                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5705
5706         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5707                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5708
5709         if (bp->dev->flags & IFF_ALLMULTI) {
5710                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5711                 vnic->mc_list_count = 0;
5712         } else {
5713                 u32 mask = 0;
5714
5715                 bnxt_mc_list_updated(bp, &mask);
5716                 vnic->rx_mask |= mask;
5717         }
5718
5719         rc = bnxt_cfg_rx_mode(bp);
5720         if (rc)
5721                 goto err_out;
5722
5723         rc = bnxt_hwrm_set_coal(bp);
5724         if (rc)
5725                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5726                                 rc);
5727
5728         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5729                 rc = bnxt_setup_nitroa0_vnic(bp);
5730                 if (rc)
5731                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5732                                    rc);
5733         }
5734
5735         if (BNXT_VF(bp)) {
5736                 bnxt_hwrm_func_qcfg(bp);
5737                 netdev_update_features(bp->dev);
5738         }
5739
5740         return 0;
5741
5742 err_out:
5743         bnxt_hwrm_resource_free(bp, 0, true);
5744
5745         return rc;
5746 }
5747
5748 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5749 {
5750         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5751         return 0;
5752 }
5753
5754 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5755 {
5756         bnxt_init_cp_rings(bp);
5757         bnxt_init_rx_rings(bp);
5758         bnxt_init_tx_rings(bp);
5759         bnxt_init_ring_grps(bp, irq_re_init);
5760         bnxt_init_vnics(bp);
5761
5762         return bnxt_init_chip(bp, irq_re_init);
5763 }
5764
5765 static int bnxt_set_real_num_queues(struct bnxt *bp)
5766 {
5767         int rc;
5768         struct net_device *dev = bp->dev;
5769
5770         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5771                                           bp->tx_nr_rings_xdp);
5772         if (rc)
5773                 return rc;
5774
5775         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5776         if (rc)
5777                 return rc;
5778
5779 #ifdef CONFIG_RFS_ACCEL
5780         if (bp->flags & BNXT_FLAG_RFS)
5781                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5782 #endif
5783
5784         return rc;
5785 }
5786
5787 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5788                            bool shared)
5789 {
5790         int _rx = *rx, _tx = *tx;
5791
5792         if (shared) {
5793                 *rx = min_t(int, _rx, max);
5794                 *tx = min_t(int, _tx, max);
5795         } else {
5796                 if (max < 2)
5797                         return -ENOMEM;
5798
5799                 while (_rx + _tx > max) {
5800                         if (_rx > _tx && _rx > 1)
5801                                 _rx--;
5802                         else if (_tx > 1)
5803                                 _tx--;
5804                 }
5805                 *rx = _rx;
5806                 *tx = _tx;
5807         }
5808         return 0;
5809 }
5810
5811 static void bnxt_setup_msix(struct bnxt *bp)
5812 {
5813         const int len = sizeof(bp->irq_tbl[0].name);
5814         struct net_device *dev = bp->dev;
5815         int tcs, i;
5816
5817         tcs = netdev_get_num_tc(dev);
5818         if (tcs > 1) {
5819                 int i, off, count;
5820
5821                 for (i = 0; i < tcs; i++) {
5822                         count = bp->tx_nr_rings_per_tc;
5823                         off = i * count;
5824                         netdev_set_tc_queue(dev, i, count, off);
5825                 }
5826         }
5827
5828         for (i = 0; i < bp->cp_nr_rings; i++) {
5829                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5830                 char *attr;
5831
5832                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5833                         attr = "TxRx";
5834                 else if (i < bp->rx_nr_rings)
5835                         attr = "rx";
5836                 else
5837                         attr = "tx";
5838
5839                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5840                          attr, i);
5841                 bp->irq_tbl[map_idx].handler = bnxt_msix;
5842         }
5843 }
5844
5845 static void bnxt_setup_inta(struct bnxt *bp)
5846 {
5847         const int len = sizeof(bp->irq_tbl[0].name);
5848
5849         if (netdev_get_num_tc(bp->dev))
5850                 netdev_reset_tc(bp->dev);
5851
5852         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5853                  0);
5854         bp->irq_tbl[0].handler = bnxt_inta;
5855 }
5856
5857 static int bnxt_setup_int_mode(struct bnxt *bp)
5858 {
5859         int rc;
5860
5861         if (bp->flags & BNXT_FLAG_USING_MSIX)
5862                 bnxt_setup_msix(bp);
5863         else
5864                 bnxt_setup_inta(bp);
5865
5866         rc = bnxt_set_real_num_queues(bp);
5867         return rc;
5868 }
5869
5870 #ifdef CONFIG_RFS_ACCEL
5871 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5872 {
5873         return bp->hw_resc.max_rsscos_ctxs;
5874 }
5875
5876 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5877 {
5878         return bp->hw_resc.max_vnics;
5879 }
5880 #endif
5881
5882 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5883 {
5884         return bp->hw_resc.max_stat_ctxs;
5885 }
5886
5887 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5888 {
5889         bp->hw_resc.max_stat_ctxs = max;
5890 }
5891
5892 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5893 {
5894         return bp->hw_resc.max_cp_rings;
5895 }
5896
5897 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5898 {
5899         bp->hw_resc.max_cp_rings = max;
5900 }
5901
5902 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5903 {
5904         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5905
5906         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5907 }
5908
5909 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5910 {
5911         bp->hw_resc.max_irqs = max_irqs;
5912 }
5913
5914 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5915 {
5916         int max_cp = bnxt_get_max_func_cp_rings(bp);
5917         int max_irq = bnxt_get_max_func_irqs(bp);
5918         int total_req = bp->cp_nr_rings + num;
5919         int max_idx, avail_msix;
5920
5921         max_idx = min_t(int, bp->total_irqs, max_cp);
5922         avail_msix = max_idx - bp->cp_nr_rings;
5923         if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
5924                 return avail_msix;
5925
5926         if (max_irq < total_req) {
5927                 num = max_irq - bp->cp_nr_rings;
5928                 if (num <= 0)
5929                         return 0;
5930         }
5931         return num;
5932 }
5933
5934 static int bnxt_get_num_msix(struct bnxt *bp)
5935 {
5936         if (!(bp->flags & BNXT_FLAG_NEW_RM))
5937                 return bnxt_get_max_func_irqs(bp);
5938
5939         return bnxt_cp_rings_in_use(bp);
5940 }
5941
5942 static int bnxt_init_msix(struct bnxt *bp)
5943 {
5944         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5945         struct msix_entry *msix_ent;
5946
5947         total_vecs = bnxt_get_num_msix(bp);
5948         max = bnxt_get_max_func_irqs(bp);
5949         if (total_vecs > max)
5950                 total_vecs = max;
5951
5952         if (!total_vecs)
5953                 return 0;
5954
5955         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5956         if (!msix_ent)
5957                 return -ENOMEM;
5958
5959         for (i = 0; i < total_vecs; i++) {
5960                 msix_ent[i].entry = i;
5961                 msix_ent[i].vector = 0;
5962         }
5963
5964         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5965                 min = 2;
5966
5967         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5968         ulp_msix = bnxt_get_ulp_msix_num(bp);
5969         if (total_vecs < 0 || total_vecs < ulp_msix) {
5970                 rc = -ENODEV;
5971                 goto msix_setup_exit;
5972         }
5973
5974         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5975         if (bp->irq_tbl) {
5976                 for (i = 0; i < total_vecs; i++)
5977                         bp->irq_tbl[i].vector = msix_ent[i].vector;
5978
5979                 bp->total_irqs = total_vecs;
5980                 /* Trim rings based upon num of vectors allocated */
5981                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5982                                      total_vecs - ulp_msix, min == 1);
5983                 if (rc)
5984                         goto msix_setup_exit;
5985
5986                 bp->cp_nr_rings = (min == 1) ?
5987                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5988                                   bp->tx_nr_rings + bp->rx_nr_rings;
5989
5990         } else {
5991                 rc = -ENOMEM;
5992                 goto msix_setup_exit;
5993         }
5994         bp->flags |= BNXT_FLAG_USING_MSIX;
5995         kfree(msix_ent);
5996         return 0;
5997
5998 msix_setup_exit:
5999         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6000         kfree(bp->irq_tbl);
6001         bp->irq_tbl = NULL;
6002         pci_disable_msix(bp->pdev);
6003         kfree(msix_ent);
6004         return rc;
6005 }
6006
6007 static int bnxt_init_inta(struct bnxt *bp)
6008 {
6009         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6010         if (!bp->irq_tbl)
6011                 return -ENOMEM;
6012
6013         bp->total_irqs = 1;
6014         bp->rx_nr_rings = 1;
6015         bp->tx_nr_rings = 1;
6016         bp->cp_nr_rings = 1;
6017         bp->flags |= BNXT_FLAG_SHARED_RINGS;
6018         bp->irq_tbl[0].vector = bp->pdev->irq;
6019         return 0;
6020 }
6021
6022 static int bnxt_init_int_mode(struct bnxt *bp)
6023 {
6024         int rc = 0;
6025
6026         if (bp->flags & BNXT_FLAG_MSIX_CAP)
6027                 rc = bnxt_init_msix(bp);
6028
6029         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6030                 /* fallback to INTA */
6031                 rc = bnxt_init_inta(bp);
6032         }
6033         return rc;
6034 }
6035
6036 static void bnxt_clear_int_mode(struct bnxt *bp)
6037 {
6038         if (bp->flags & BNXT_FLAG_USING_MSIX)
6039                 pci_disable_msix(bp->pdev);
6040
6041         kfree(bp->irq_tbl);
6042         bp->irq_tbl = NULL;
6043         bp->flags &= ~BNXT_FLAG_USING_MSIX;
6044 }
6045
6046 int bnxt_reserve_rings(struct bnxt *bp)
6047 {
6048         int tcs = netdev_get_num_tc(bp->dev);
6049         int rc;
6050
6051         if (!bnxt_need_reserve_rings(bp))
6052                 return 0;
6053
6054         rc = __bnxt_reserve_rings(bp);
6055         if (rc) {
6056                 netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6057                 return rc;
6058         }
6059         if ((bp->flags & BNXT_FLAG_NEW_RM) &&
6060             (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6061                 bnxt_ulp_irq_stop(bp);
6062                 bnxt_clear_int_mode(bp);
6063                 rc = bnxt_init_int_mode(bp);
6064                 bnxt_ulp_irq_restart(bp, rc);
6065                 if (rc)
6066                         return rc;
6067         }
6068         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6069                 netdev_err(bp->dev, "tx ring reservation failure\n");
6070                 netdev_reset_tc(bp->dev);
6071                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6072                 return -ENOMEM;
6073         }
6074         bp->num_stat_ctxs = bp->cp_nr_rings;
6075         return 0;
6076 }
6077
6078 static void bnxt_free_irq(struct bnxt *bp)
6079 {
6080         struct bnxt_irq *irq;
6081         int i;
6082
6083 #ifdef CONFIG_RFS_ACCEL
6084         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6085         bp->dev->rx_cpu_rmap = NULL;
6086 #endif
6087         if (!bp->irq_tbl || !bp->bnapi)
6088                 return;
6089
6090         for (i = 0; i < bp->cp_nr_rings; i++) {
6091                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6092
6093                 irq = &bp->irq_tbl[map_idx];
6094                 if (irq->requested) {
6095                         if (irq->have_cpumask) {
6096                                 irq_set_affinity_hint(irq->vector, NULL);
6097                                 free_cpumask_var(irq->cpu_mask);
6098                                 irq->have_cpumask = 0;
6099                         }
6100                         free_irq(irq->vector, bp->bnapi[i]);
6101                 }
6102
6103                 irq->requested = 0;
6104         }
6105 }
6106
6107 static int bnxt_request_irq(struct bnxt *bp)
6108 {
6109         int i, j, rc = 0;
6110         unsigned long flags = 0;
6111 #ifdef CONFIG_RFS_ACCEL
6112         struct cpu_rmap *rmap;
6113 #endif
6114
6115         rc = bnxt_setup_int_mode(bp);
6116         if (rc) {
6117                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6118                            rc);
6119                 return rc;
6120         }
6121 #ifdef CONFIG_RFS_ACCEL
6122         rmap = bp->dev->rx_cpu_rmap;
6123 #endif
6124         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6125                 flags = IRQF_SHARED;
6126
6127         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6128                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6129                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6130
6131 #ifdef CONFIG_RFS_ACCEL
6132                 if (rmap && bp->bnapi[i]->rx_ring) {
6133                         rc = irq_cpu_rmap_add(rmap, irq->vector);
6134                         if (rc)
6135                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6136                                             j);
6137                         j++;
6138                 }
6139 #endif
6140                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6141                                  bp->bnapi[i]);
6142                 if (rc)
6143                         break;
6144
6145                 irq->requested = 1;
6146
6147                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6148                         int numa_node = dev_to_node(&bp->pdev->dev);
6149
6150                         irq->have_cpumask = 1;
6151                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6152                                         irq->cpu_mask);
6153                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6154                         if (rc) {
6155                                 netdev_warn(bp->dev,
6156                                             "Set affinity failed, IRQ = %d\n",
6157                                             irq->vector);
6158                                 break;
6159                         }
6160                 }
6161         }
6162         return rc;
6163 }
6164
6165 static void bnxt_del_napi(struct bnxt *bp)
6166 {
6167         int i;
6168
6169         if (!bp->bnapi)
6170                 return;
6171
6172         for (i = 0; i < bp->cp_nr_rings; i++) {
6173                 struct bnxt_napi *bnapi = bp->bnapi[i];
6174
6175                 napi_hash_del(&bnapi->napi);
6176                 netif_napi_del(&bnapi->napi);
6177         }
6178         /* We called napi_hash_del() before netif_napi_del(), we need
6179          * to respect an RCU grace period before freeing napi structures.
6180          */
6181         synchronize_net();
6182 }
6183
6184 static void bnxt_init_napi(struct bnxt *bp)
6185 {
6186         int i;
6187         unsigned int cp_nr_rings = bp->cp_nr_rings;
6188         struct bnxt_napi *bnapi;
6189
6190         if (bp->flags & BNXT_FLAG_USING_MSIX) {
6191                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6192                         cp_nr_rings--;
6193                 for (i = 0; i < cp_nr_rings; i++) {
6194                         bnapi = bp->bnapi[i];
6195                         netif_napi_add(bp->dev, &bnapi->napi,
6196                                        bnxt_poll, 64);
6197                 }
6198                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6199                         bnapi = bp->bnapi[cp_nr_rings];
6200                         netif_napi_add(bp->dev, &bnapi->napi,
6201                                        bnxt_poll_nitroa0, 64);
6202                 }
6203         } else {
6204                 bnapi = bp->bnapi[0];
6205                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6206         }
6207 }
6208
6209 static void bnxt_disable_napi(struct bnxt *bp)
6210 {
6211         int i;
6212
6213         if (!bp->bnapi)
6214                 return;
6215
6216         for (i = 0; i < bp->cp_nr_rings; i++) {
6217                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6218
6219                 if (bp->bnapi[i]->rx_ring)
6220                         cancel_work_sync(&cpr->dim.work);
6221
6222                 napi_disable(&bp->bnapi[i]->napi);
6223         }
6224 }
6225
6226 static void bnxt_enable_napi(struct bnxt *bp)
6227 {
6228         int i;
6229
6230         for (i = 0; i < bp->cp_nr_rings; i++) {
6231                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6232                 bp->bnapi[i]->in_reset = false;
6233
6234                 if (bp->bnapi[i]->rx_ring) {
6235                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6236                         cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6237                 }
6238                 napi_enable(&bp->bnapi[i]->napi);
6239         }
6240 }
6241
6242 void bnxt_tx_disable(struct bnxt *bp)
6243 {
6244         int i;
6245         struct bnxt_tx_ring_info *txr;
6246
6247         if (bp->tx_ring) {
6248                 for (i = 0; i < bp->tx_nr_rings; i++) {
6249                         txr = &bp->tx_ring[i];
6250                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
6251                 }
6252         }
6253         /* Stop all TX queues */
6254         netif_tx_disable(bp->dev);
6255         netif_carrier_off(bp->dev);
6256 }
6257
6258 void bnxt_tx_enable(struct bnxt *bp)
6259 {
6260         int i;
6261         struct bnxt_tx_ring_info *txr;
6262
6263         for (i = 0; i < bp->tx_nr_rings; i++) {
6264                 txr = &bp->tx_ring[i];
6265                 txr->dev_state = 0;
6266         }
6267         netif_tx_wake_all_queues(bp->dev);
6268         if (bp->link_info.link_up)
6269                 netif_carrier_on(bp->dev);
6270 }
6271
6272 static void bnxt_report_link(struct bnxt *bp)
6273 {
6274         if (bp->link_info.link_up) {
6275                 const char *duplex;
6276                 const char *flow_ctrl;
6277                 u32 speed;
6278                 u16 fec;
6279
6280                 netif_carrier_on(bp->dev);
6281                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6282                         duplex = "full";
6283                 else
6284                         duplex = "half";
6285                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6286                         flow_ctrl = "ON - receive & transmit";
6287                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6288                         flow_ctrl = "ON - transmit";
6289                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6290                         flow_ctrl = "ON - receive";
6291                 else
6292                         flow_ctrl = "none";
6293                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6294                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6295                             speed, duplex, flow_ctrl);
6296                 if (bp->flags & BNXT_FLAG_EEE_CAP)
6297                         netdev_info(bp->dev, "EEE is %s\n",
6298                                     bp->eee.eee_active ? "active" :
6299                                                          "not active");
6300                 fec = bp->link_info.fec_cfg;
6301                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6302                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6303                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6304                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6305                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6306         } else {
6307                 netif_carrier_off(bp->dev);
6308                 netdev_err(bp->dev, "NIC Link is Down\n");
6309         }
6310 }
6311
6312 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6313 {
6314         int rc = 0;
6315         struct hwrm_port_phy_qcaps_input req = {0};
6316         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6317         struct bnxt_link_info *link_info = &bp->link_info;
6318
6319         if (bp->hwrm_spec_code < 0x10201)
6320                 return 0;
6321
6322         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6323
6324         mutex_lock(&bp->hwrm_cmd_lock);
6325         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6326         if (rc)
6327                 goto hwrm_phy_qcaps_exit;
6328
6329         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6330                 struct ethtool_eee *eee = &bp->eee;
6331                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6332
6333                 bp->flags |= BNXT_FLAG_EEE_CAP;
6334                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6335                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6336                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6337                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6338                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6339         }
6340         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
6341                 if (bp->test_info)
6342                         bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
6343         }
6344         if (resp->supported_speeds_auto_mode)
6345                 link_info->support_auto_speeds =
6346                         le16_to_cpu(resp->supported_speeds_auto_mode);
6347
6348         bp->port_count = resp->port_cnt;
6349
6350 hwrm_phy_qcaps_exit:
6351         mutex_unlock(&bp->hwrm_cmd_lock);
6352         return rc;
6353 }
6354
6355 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6356 {
6357         int rc = 0;
6358         struct bnxt_link_info *link_info = &bp->link_info;
6359         struct hwrm_port_phy_qcfg_input req = {0};
6360         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6361         u8 link_up = link_info->link_up;
6362         u16 diff;
6363
6364         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6365
6366         mutex_lock(&bp->hwrm_cmd_lock);
6367         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6368         if (rc) {
6369                 mutex_unlock(&bp->hwrm_cmd_lock);
6370                 return rc;
6371         }
6372
6373         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6374         link_info->phy_link_status = resp->link;
6375         link_info->duplex = resp->duplex_cfg;
6376         if (bp->hwrm_spec_code >= 0x10800)
6377                 link_info->duplex = resp->duplex_state;
6378         link_info->pause = resp->pause;
6379         link_info->auto_mode = resp->auto_mode;
6380         link_info->auto_pause_setting = resp->auto_pause;
6381         link_info->lp_pause = resp->link_partner_adv_pause;
6382         link_info->force_pause_setting = resp->force_pause;
6383         link_info->duplex_setting = resp->duplex_cfg;
6384         if (link_info->phy_link_status == BNXT_LINK_LINK)
6385                 link_info->link_speed = le16_to_cpu(resp->link_speed);
6386         else
6387                 link_info->link_speed = 0;
6388         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6389         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6390         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6391         link_info->lp_auto_link_speeds =
6392                 le16_to_cpu(resp->link_partner_adv_speeds);
6393         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6394         link_info->phy_ver[0] = resp->phy_maj;
6395         link_info->phy_ver[1] = resp->phy_min;
6396         link_info->phy_ver[2] = resp->phy_bld;
6397         link_info->media_type = resp->media_type;
6398         link_info->phy_type = resp->phy_type;
6399         link_info->transceiver = resp->xcvr_pkg_type;
6400         link_info->phy_addr = resp->eee_config_phy_addr &
6401                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6402         link_info->module_status = resp->module_status;
6403
6404         if (bp->flags & BNXT_FLAG_EEE_CAP) {
6405                 struct ethtool_eee *eee = &bp->eee;
6406                 u16 fw_speeds;
6407
6408                 eee->eee_active = 0;
6409                 if (resp->eee_config_phy_addr &
6410                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6411                         eee->eee_active = 1;
6412                         fw_speeds = le16_to_cpu(
6413                                 resp->link_partner_adv_eee_link_speed_mask);
6414                         eee->lp_advertised =
6415                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6416                 }
6417
6418                 /* Pull initial EEE config */
6419                 if (!chng_link_state) {
6420                         if (resp->eee_config_phy_addr &
6421                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6422                                 eee->eee_enabled = 1;
6423
6424                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6425                         eee->advertised =
6426                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6427
6428                         if (resp->eee_config_phy_addr &
6429                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6430                                 __le32 tmr;
6431
6432                                 eee->tx_lpi_enabled = 1;
6433                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6434                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
6435                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6436                         }
6437                 }
6438         }
6439
6440         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6441         if (bp->hwrm_spec_code >= 0x10504)
6442                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6443
6444         /* TODO: need to add more logic to report VF link */
6445         if (chng_link_state) {
6446                 if (link_info->phy_link_status == BNXT_LINK_LINK)
6447                         link_info->link_up = 1;
6448                 else
6449                         link_info->link_up = 0;
6450                 if (link_up != link_info->link_up)
6451                         bnxt_report_link(bp);
6452         } else {
6453                 /* alwasy link down if not require to update link state */
6454                 link_info->link_up = 0;
6455         }
6456         mutex_unlock(&bp->hwrm_cmd_lock);
6457
6458         if (!BNXT_SINGLE_PF(bp))
6459                 return 0;
6460
6461         diff = link_info->support_auto_speeds ^ link_info->advertising;
6462         if ((link_info->support_auto_speeds | diff) !=
6463             link_info->support_auto_speeds) {
6464                 /* An advertised speed is no longer supported, so we need to
6465                  * update the advertisement settings.  Caller holds RTNL
6466                  * so we can modify link settings.
6467                  */
6468                 link_info->advertising = link_info->support_auto_speeds;
6469                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6470                         bnxt_hwrm_set_link_setting(bp, true, false);
6471         }
6472         return 0;
6473 }
6474
6475 static void bnxt_get_port_module_status(struct bnxt *bp)
6476 {
6477         struct bnxt_link_info *link_info = &bp->link_info;
6478         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6479         u8 module_status;
6480
6481         if (bnxt_update_link(bp, true))
6482                 return;
6483
6484         module_status = link_info->module_status;
6485         switch (module_status) {
6486         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6487         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6488         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6489                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6490                             bp->pf.port_id);
6491                 if (bp->hwrm_spec_code >= 0x10201) {
6492                         netdev_warn(bp->dev, "Module part number %s\n",
6493                                     resp->phy_vendor_partnumber);
6494                 }
6495                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6496                         netdev_warn(bp->dev, "TX is disabled\n");
6497                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6498                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6499         }
6500 }
6501
6502 static void
6503 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6504 {
6505         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6506                 if (bp->hwrm_spec_code >= 0x10201)
6507                         req->auto_pause =
6508                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6509                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6510                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6511                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6512                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6513                 req->enables |=
6514                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6515         } else {
6516                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6517                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6518                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6519                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6520                 req->enables |=
6521                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6522                 if (bp->hwrm_spec_code >= 0x10201) {
6523                         req->auto_pause = req->force_pause;
6524                         req->enables |= cpu_to_le32(
6525                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6526                 }
6527         }
6528 }
6529
6530 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6531                                       struct hwrm_port_phy_cfg_input *req)
6532 {
6533         u8 autoneg = bp->link_info.autoneg;
6534         u16 fw_link_speed = bp->link_info.req_link_speed;
6535         u16 advertising = bp->link_info.advertising;
6536
6537         if (autoneg & BNXT_AUTONEG_SPEED) {
6538                 req->auto_mode |=
6539                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6540
6541                 req->enables |= cpu_to_le32(
6542                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6543                 req->auto_link_speed_mask = cpu_to_le16(advertising);
6544
6545                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6546                 req->flags |=
6547                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6548         } else {
6549                 req->force_link_speed = cpu_to_le16(fw_link_speed);
6550                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6551         }
6552
6553         /* tell chimp that the setting takes effect immediately */
6554         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6555 }
6556
6557 int bnxt_hwrm_set_pause(struct bnxt *bp)
6558 {
6559         struct hwrm_port_phy_cfg_input req = {0};
6560         int rc;
6561
6562         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6563         bnxt_hwrm_set_pause_common(bp, &req);
6564
6565         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6566             bp->link_info.force_link_chng)
6567                 bnxt_hwrm_set_link_common(bp, &req);
6568
6569         mutex_lock(&bp->hwrm_cmd_lock);
6570         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6571         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6572                 /* since changing of pause setting doesn't trigger any link
6573                  * change event, the driver needs to update the current pause
6574                  * result upon successfully return of the phy_cfg command
6575                  */
6576                 bp->link_info.pause =
6577                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6578                 bp->link_info.auto_pause_setting = 0;
6579                 if (!bp->link_info.force_link_chng)
6580                         bnxt_report_link(bp);
6581         }
6582         bp->link_info.force_link_chng = false;
6583         mutex_unlock(&bp->hwrm_cmd_lock);
6584         return rc;
6585 }
6586
6587 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6588                               struct hwrm_port_phy_cfg_input *req)
6589 {
6590         struct ethtool_eee *eee = &bp->eee;
6591
6592         if (eee->eee_enabled) {
6593                 u16 eee_speeds;
6594                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6595
6596                 if (eee->tx_lpi_enabled)
6597                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6598                 else
6599                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6600
6601                 req->flags |= cpu_to_le32(flags);
6602                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6603                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6604                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6605         } else {
6606                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6607         }
6608 }
6609
6610 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6611 {
6612         struct hwrm_port_phy_cfg_input req = {0};
6613
6614         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6615         if (set_pause)
6616                 bnxt_hwrm_set_pause_common(bp, &req);
6617
6618         bnxt_hwrm_set_link_common(bp, &req);
6619
6620         if (set_eee)
6621                 bnxt_hwrm_set_eee(bp, &req);
6622         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6623 }
6624
6625 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6626 {
6627         struct hwrm_port_phy_cfg_input req = {0};
6628
6629         if (!BNXT_SINGLE_PF(bp))
6630                 return 0;
6631
6632         if (pci_num_vf(bp->pdev))
6633                 return 0;
6634
6635         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6636         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6637         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6638 }
6639
6640 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6641 {
6642         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6643         struct hwrm_port_led_qcaps_input req = {0};
6644         struct bnxt_pf_info *pf = &bp->pf;
6645         int rc;
6646
6647         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6648                 return 0;
6649
6650         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6651         req.port_id = cpu_to_le16(pf->port_id);
6652         mutex_lock(&bp->hwrm_cmd_lock);
6653         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6654         if (rc) {
6655                 mutex_unlock(&bp->hwrm_cmd_lock);
6656                 return rc;
6657         }
6658         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6659                 int i;
6660
6661                 bp->num_leds = resp->num_leds;
6662                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6663                                                  bp->num_leds);
6664                 for (i = 0; i < bp->num_leds; i++) {
6665                         struct bnxt_led_info *led = &bp->leds[i];
6666                         __le16 caps = led->led_state_caps;
6667
6668                         if (!led->led_group_id ||
6669                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
6670                                 bp->num_leds = 0;
6671                                 break;
6672                         }
6673                 }
6674         }
6675         mutex_unlock(&bp->hwrm_cmd_lock);
6676         return 0;
6677 }
6678
6679 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6680 {
6681         struct hwrm_wol_filter_alloc_input req = {0};
6682         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6683         int rc;
6684
6685         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6686         req.port_id = cpu_to_le16(bp->pf.port_id);
6687         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6688         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6689         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6690         mutex_lock(&bp->hwrm_cmd_lock);
6691         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6692         if (!rc)
6693                 bp->wol_filter_id = resp->wol_filter_id;
6694         mutex_unlock(&bp->hwrm_cmd_lock);
6695         return rc;
6696 }
6697
6698 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6699 {
6700         struct hwrm_wol_filter_free_input req = {0};
6701         int rc;
6702
6703         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6704         req.port_id = cpu_to_le16(bp->pf.port_id);
6705         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6706         req.wol_filter_id = bp->wol_filter_id;
6707         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6708         return rc;
6709 }
6710
6711 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6712 {
6713         struct hwrm_wol_filter_qcfg_input req = {0};
6714         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6715         u16 next_handle = 0;
6716         int rc;
6717
6718         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6719         req.port_id = cpu_to_le16(bp->pf.port_id);
6720         req.handle = cpu_to_le16(handle);
6721         mutex_lock(&bp->hwrm_cmd_lock);
6722         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6723         if (!rc) {
6724                 next_handle = le16_to_cpu(resp->next_handle);
6725                 if (next_handle != 0) {
6726                         if (resp->wol_type ==
6727                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6728                                 bp->wol = 1;
6729                                 bp->wol_filter_id = resp->wol_filter_id;
6730                         }
6731                 }
6732         }
6733         mutex_unlock(&bp->hwrm_cmd_lock);
6734         return next_handle;
6735 }
6736
6737 static void bnxt_get_wol_settings(struct bnxt *bp)
6738 {
6739         u16 handle = 0;
6740
6741         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6742                 return;
6743
6744         do {
6745                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6746         } while (handle && handle != 0xffff);
6747 }
6748
6749 static bool bnxt_eee_config_ok(struct bnxt *bp)
6750 {
6751         struct ethtool_eee *eee = &bp->eee;
6752         struct bnxt_link_info *link_info = &bp->link_info;
6753
6754         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6755                 return true;
6756
6757         if (eee->eee_enabled) {
6758                 u32 advertising =
6759                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6760
6761                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6762                         eee->eee_enabled = 0;
6763                         return false;
6764                 }
6765                 if (eee->advertised & ~advertising) {
6766                         eee->advertised = advertising & eee->supported;
6767                         return false;
6768                 }
6769         }
6770         return true;
6771 }
6772
6773 static int bnxt_update_phy_setting(struct bnxt *bp)
6774 {
6775         int rc;
6776         bool update_link = false;
6777         bool update_pause = false;
6778         bool update_eee = false;
6779         struct bnxt_link_info *link_info = &bp->link_info;
6780
6781         rc = bnxt_update_link(bp, true);
6782         if (rc) {
6783                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6784                            rc);
6785                 return rc;
6786         }
6787         if (!BNXT_SINGLE_PF(bp))
6788                 return 0;
6789
6790         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6791             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6792             link_info->req_flow_ctrl)
6793                 update_pause = true;
6794         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6795             link_info->force_pause_setting != link_info->req_flow_ctrl)
6796                 update_pause = true;
6797         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6798                 if (BNXT_AUTO_MODE(link_info->auto_mode))
6799                         update_link = true;
6800                 if (link_info->req_link_speed != link_info->force_link_speed)
6801                         update_link = true;
6802                 if (link_info->req_duplex != link_info->duplex_setting)
6803                         update_link = true;
6804         } else {
6805                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6806                         update_link = true;
6807                 if (link_info->advertising != link_info->auto_link_speeds)
6808                         update_link = true;
6809         }
6810
6811         /* The last close may have shutdown the link, so need to call
6812          * PHY_CFG to bring it back up.
6813          */
6814         if (!netif_carrier_ok(bp->dev))
6815                 update_link = true;
6816
6817         if (!bnxt_eee_config_ok(bp))
6818                 update_eee = true;
6819
6820         if (update_link)
6821                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6822         else if (update_pause)
6823                 rc = bnxt_hwrm_set_pause(bp);
6824         if (rc) {
6825                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6826                            rc);
6827                 return rc;
6828         }
6829
6830         return rc;
6831 }
6832
6833 /* Common routine to pre-map certain register block to different GRC window.
6834  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6835  * in PF and 3 windows in VF that can be customized to map in different
6836  * register blocks.
6837  */
6838 static void bnxt_preset_reg_win(struct bnxt *bp)
6839 {
6840         if (BNXT_PF(bp)) {
6841                 /* CAG registers map to GRC window #4 */
6842                 writel(BNXT_CAG_REG_BASE,
6843                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6844         }
6845 }
6846
6847 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
6848
6849 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6850 {
6851         int rc = 0;
6852
6853         bnxt_preset_reg_win(bp);
6854         netif_carrier_off(bp->dev);
6855         if (irq_re_init) {
6856                 /* Reserve rings now if none were reserved at driver probe. */
6857                 rc = bnxt_init_dflt_ring_mode(bp);
6858                 if (rc) {
6859                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
6860                         return rc;
6861                 }
6862                 rc = bnxt_reserve_rings(bp);
6863                 if (rc)
6864                         return rc;
6865         }
6866         if ((bp->flags & BNXT_FLAG_RFS) &&
6867             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6868                 /* disable RFS if falling back to INTA */
6869                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6870                 bp->flags &= ~BNXT_FLAG_RFS;
6871         }
6872
6873         rc = bnxt_alloc_mem(bp, irq_re_init);
6874         if (rc) {
6875                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6876                 goto open_err_free_mem;
6877         }
6878
6879         if (irq_re_init) {
6880                 bnxt_init_napi(bp);
6881                 rc = bnxt_request_irq(bp);
6882                 if (rc) {
6883                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6884                         goto open_err_irq;
6885                 }
6886         }
6887
6888         bnxt_enable_napi(bp);
6889         bnxt_debug_dev_init(bp);
6890
6891         rc = bnxt_init_nic(bp, irq_re_init);
6892         if (rc) {
6893                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6894                 goto open_err;
6895         }
6896
6897         if (link_re_init) {
6898                 mutex_lock(&bp->link_lock);
6899                 rc = bnxt_update_phy_setting(bp);
6900                 mutex_unlock(&bp->link_lock);
6901                 if (rc)
6902                         netdev_warn(bp->dev, "failed to update phy settings\n");
6903         }
6904
6905         if (irq_re_init)
6906                 udp_tunnel_get_rx_info(bp->dev);
6907
6908         set_bit(BNXT_STATE_OPEN, &bp->state);
6909         bnxt_enable_int(bp);
6910         /* Enable TX queues */
6911         bnxt_tx_enable(bp);
6912         mod_timer(&bp->timer, jiffies + bp->current_interval);
6913         /* Poll link status and check for SFP+ module status */
6914         bnxt_get_port_module_status(bp);
6915
6916         /* VF-reps may need to be re-opened after the PF is re-opened */
6917         if (BNXT_PF(bp))
6918                 bnxt_vf_reps_open(bp);
6919         return 0;
6920
6921 open_err:
6922         bnxt_debug_dev_exit(bp);
6923         bnxt_disable_napi(bp);
6924
6925 open_err_irq:
6926         bnxt_del_napi(bp);
6927
6928 open_err_free_mem:
6929         bnxt_free_skbs(bp);
6930         bnxt_free_irq(bp);
6931         bnxt_free_mem(bp, true);
6932         return rc;
6933 }
6934
6935 /* rtnl_lock held */
6936 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6937 {
6938         int rc = 0;
6939
6940         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6941         if (rc) {
6942                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6943                 dev_close(bp->dev);
6944         }
6945         return rc;
6946 }
6947
6948 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6949  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6950  * self tests.
6951  */
6952 int bnxt_half_open_nic(struct bnxt *bp)
6953 {
6954         int rc = 0;
6955
6956         rc = bnxt_alloc_mem(bp, false);
6957         if (rc) {
6958                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6959                 goto half_open_err;
6960         }
6961         rc = bnxt_init_nic(bp, false);
6962         if (rc) {
6963                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6964                 goto half_open_err;
6965         }
6966         return 0;
6967
6968 half_open_err:
6969         bnxt_free_skbs(bp);
6970         bnxt_free_mem(bp, false);
6971         dev_close(bp->dev);
6972         return rc;
6973 }
6974
6975 /* rtnl_lock held, this call can only be made after a previous successful
6976  * call to bnxt_half_open_nic().
6977  */
6978 void bnxt_half_close_nic(struct bnxt *bp)
6979 {
6980         bnxt_hwrm_resource_free(bp, false, false);
6981         bnxt_free_skbs(bp);
6982         bnxt_free_mem(bp, false);
6983 }
6984
6985 static int bnxt_open(struct net_device *dev)
6986 {
6987         struct bnxt *bp = netdev_priv(dev);
6988
6989         return __bnxt_open_nic(bp, true, true);
6990 }
6991
6992 static bool bnxt_drv_busy(struct bnxt *bp)
6993 {
6994         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6995                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
6996 }
6997
6998 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
6999                              bool link_re_init)
7000 {
7001         /* Close the VF-reps before closing PF */
7002         if (BNXT_PF(bp))
7003                 bnxt_vf_reps_close(bp);
7004
7005         /* Change device state to avoid TX queue wake up's */
7006         bnxt_tx_disable(bp);
7007
7008         clear_bit(BNXT_STATE_OPEN, &bp->state);
7009         smp_mb__after_atomic();
7010         while (bnxt_drv_busy(bp))
7011                 msleep(20);
7012
7013         /* Flush rings and and disable interrupts */
7014         bnxt_shutdown_nic(bp, irq_re_init);
7015
7016         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7017
7018         bnxt_debug_dev_exit(bp);
7019         bnxt_disable_napi(bp);
7020         del_timer_sync(&bp->timer);
7021         bnxt_free_skbs(bp);
7022
7023         if (irq_re_init) {
7024                 bnxt_free_irq(bp);
7025                 bnxt_del_napi(bp);
7026         }
7027         bnxt_free_mem(bp, irq_re_init);
7028 }
7029
7030 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7031 {
7032         int rc = 0;
7033
7034 #ifdef CONFIG_BNXT_SRIOV
7035         if (bp->sriov_cfg) {
7036                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7037                                                       !bp->sriov_cfg,
7038                                                       BNXT_SRIOV_CFG_WAIT_TMO);
7039                 if (rc)
7040                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7041         }
7042 #endif
7043         __bnxt_close_nic(bp, irq_re_init, link_re_init);
7044         return rc;
7045 }
7046
7047 static int bnxt_close(struct net_device *dev)
7048 {
7049         struct bnxt *bp = netdev_priv(dev);
7050
7051         bnxt_close_nic(bp, true, true);
7052         bnxt_hwrm_shutdown_link(bp);
7053         return 0;
7054 }
7055
7056 /* rtnl_lock held */
7057 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7058 {
7059         switch (cmd) {
7060         case SIOCGMIIPHY:
7061                 /* fallthru */
7062         case SIOCGMIIREG: {
7063                 if (!netif_running(dev))
7064                         return -EAGAIN;
7065
7066                 return 0;
7067         }
7068
7069         case SIOCSMIIREG:
7070                 if (!netif_running(dev))
7071                         return -EAGAIN;
7072
7073                 return 0;
7074
7075         default:
7076                 /* do nothing */
7077                 break;
7078         }
7079         return -EOPNOTSUPP;
7080 }
7081
7082 static void
7083 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7084 {
7085         u32 i;
7086         struct bnxt *bp = netdev_priv(dev);
7087
7088         set_bit(BNXT_STATE_READ_STATS, &bp->state);
7089         /* Make sure bnxt_close_nic() sees that we are reading stats before
7090          * we check the BNXT_STATE_OPEN flag.
7091          */
7092         smp_mb__after_atomic();
7093         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7094                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7095                 return;
7096         }
7097
7098         /* TODO check if we need to synchronize with bnxt_close path */
7099         for (i = 0; i < bp->cp_nr_rings; i++) {
7100                 struct bnxt_napi *bnapi = bp->bnapi[i];
7101                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7102                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7103
7104                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7105                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7106                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7107
7108                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7109                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7110                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7111
7112                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7113                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7114                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7115
7116                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7117                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7118                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7119
7120                 stats->rx_missed_errors +=
7121                         le64_to_cpu(hw_stats->rx_discard_pkts);
7122
7123                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7124
7125                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7126         }
7127
7128         if (bp->flags & BNXT_FLAG_PORT_STATS) {
7129                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
7130                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
7131
7132                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7133                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7134                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7135                                           le64_to_cpu(rx->rx_ovrsz_frames) +
7136                                           le64_to_cpu(rx->rx_runt_frames);
7137                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7138                                    le64_to_cpu(rx->rx_jbr_frames);
7139                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7140                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7141                 stats->tx_errors = le64_to_cpu(tx->tx_err);
7142         }
7143         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7144 }
7145
7146 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7147 {
7148         struct net_device *dev = bp->dev;
7149         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7150         struct netdev_hw_addr *ha;
7151         u8 *haddr;
7152         int mc_count = 0;
7153         bool update = false;
7154         int off = 0;
7155
7156         netdev_for_each_mc_addr(ha, dev) {
7157                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
7158                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7159                         vnic->mc_list_count = 0;
7160                         return false;
7161                 }
7162                 haddr = ha->addr;
7163                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7164                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7165                         update = true;
7166                 }
7167                 off += ETH_ALEN;
7168                 mc_count++;
7169         }
7170         if (mc_count)
7171                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7172
7173         if (mc_count != vnic->mc_list_count) {
7174                 vnic->mc_list_count = mc_count;
7175                 update = true;
7176         }
7177         return update;
7178 }
7179
7180 static bool bnxt_uc_list_updated(struct bnxt *bp)
7181 {
7182         struct net_device *dev = bp->dev;
7183         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7184         struct netdev_hw_addr *ha;
7185         int off = 0;
7186
7187         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7188                 return true;
7189
7190         netdev_for_each_uc_addr(ha, dev) {
7191                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7192                         return true;
7193
7194                 off += ETH_ALEN;
7195         }
7196         return false;
7197 }
7198
7199 static void bnxt_set_rx_mode(struct net_device *dev)
7200 {
7201         struct bnxt *bp = netdev_priv(dev);
7202         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7203         u32 mask = vnic->rx_mask;
7204         bool mc_update = false;
7205         bool uc_update;
7206
7207         if (!netif_running(dev))
7208                 return;
7209
7210         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7211                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7212                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
7213                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
7214
7215         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7216                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7217
7218         uc_update = bnxt_uc_list_updated(bp);
7219
7220         if (dev->flags & IFF_BROADCAST)
7221                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7222         if (dev->flags & IFF_ALLMULTI) {
7223                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7224                 vnic->mc_list_count = 0;
7225         } else {
7226                 mc_update = bnxt_mc_list_updated(bp, &mask);
7227         }
7228
7229         if (mask != vnic->rx_mask || uc_update || mc_update) {
7230                 vnic->rx_mask = mask;
7231
7232                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7233                 bnxt_queue_sp_work(bp);
7234         }
7235 }
7236
7237 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7238 {
7239         struct net_device *dev = bp->dev;
7240         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7241         struct netdev_hw_addr *ha;
7242         int i, off = 0, rc;
7243         bool uc_update;
7244
7245         netif_addr_lock_bh(dev);
7246         uc_update = bnxt_uc_list_updated(bp);
7247         netif_addr_unlock_bh(dev);
7248
7249         if (!uc_update)
7250                 goto skip_uc;
7251
7252         mutex_lock(&bp->hwrm_cmd_lock);
7253         for (i = 1; i < vnic->uc_filter_count; i++) {
7254                 struct hwrm_cfa_l2_filter_free_input req = {0};
7255
7256                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7257                                        -1);
7258
7259                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
7260
7261                 rc = _hwrm_send_message(bp, &req, sizeof(req),
7262                                         HWRM_CMD_TIMEOUT);
7263         }
7264         mutex_unlock(&bp->hwrm_cmd_lock);
7265
7266         vnic->uc_filter_count = 1;
7267
7268         netif_addr_lock_bh(dev);
7269         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7270                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7271         } else {
7272                 netdev_for_each_uc_addr(ha, dev) {
7273                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7274                         off += ETH_ALEN;
7275                         vnic->uc_filter_count++;
7276                 }
7277         }
7278         netif_addr_unlock_bh(dev);
7279
7280         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7281                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7282                 if (rc) {
7283                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7284                                    rc);
7285                         vnic->uc_filter_count = i;
7286                         return rc;
7287                 }
7288         }
7289
7290 skip_uc:
7291         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7292         if (rc)
7293                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7294                            rc);
7295
7296         return rc;
7297 }
7298
7299 static bool bnxt_can_reserve_rings(struct bnxt *bp)
7300 {
7301 #ifdef CONFIG_BNXT_SRIOV
7302         if ((bp->flags & BNXT_FLAG_NEW_RM) && BNXT_VF(bp)) {
7303                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7304
7305                 /* No minimum rings were provisioned by the PF.  Don't
7306                  * reserve rings by default when device is down.
7307                  */
7308                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
7309                         return true;
7310
7311                 if (!netif_running(bp->dev))
7312                         return false;
7313         }
7314 #endif
7315         return true;
7316 }
7317
7318 /* If the chip and firmware supports RFS */
7319 static bool bnxt_rfs_supported(struct bnxt *bp)
7320 {
7321         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7322                 return true;
7323         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7324                 return true;
7325         return false;
7326 }
7327
7328 /* If runtime conditions support RFS */
7329 static bool bnxt_rfs_capable(struct bnxt *bp)
7330 {
7331 #ifdef CONFIG_RFS_ACCEL
7332         int vnics, max_vnics, max_rss_ctxs;
7333
7334         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
7335                 return false;
7336
7337         vnics = 1 + bp->rx_nr_rings;
7338         max_vnics = bnxt_get_max_func_vnics(bp);
7339         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7340
7341         /* RSS contexts not a limiting factor */
7342         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7343                 max_rss_ctxs = max_vnics;
7344         if (vnics > max_vnics || vnics > max_rss_ctxs) {
7345                 if (bp->rx_nr_rings > 1)
7346                         netdev_warn(bp->dev,
7347                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7348                                     min(max_rss_ctxs - 1, max_vnics - 1));
7349                 return false;
7350         }
7351
7352         if (!(bp->flags & BNXT_FLAG_NEW_RM))
7353                 return true;
7354
7355         if (vnics == bp->hw_resc.resv_vnics)
7356                 return true;
7357
7358         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7359         if (vnics <= bp->hw_resc.resv_vnics)
7360                 return true;
7361
7362         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7363         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7364         return false;
7365 #else
7366         return false;
7367 #endif
7368 }
7369
7370 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7371                                            netdev_features_t features)
7372 {
7373         struct bnxt *bp = netdev_priv(dev);
7374
7375         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7376                 features &= ~NETIF_F_NTUPLE;
7377
7378         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7379                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7380
7381         if (!(features & NETIF_F_GRO))
7382                 features &= ~NETIF_F_GRO_HW;
7383
7384         if (features & NETIF_F_GRO_HW)
7385                 features &= ~NETIF_F_LRO;
7386
7387         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
7388          * turned on or off together.
7389          */
7390         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7391             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7392                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7393                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7394                                       NETIF_F_HW_VLAN_STAG_RX);
7395                 else
7396                         features |= NETIF_F_HW_VLAN_CTAG_RX |
7397                                     NETIF_F_HW_VLAN_STAG_RX;
7398         }
7399 #ifdef CONFIG_BNXT_SRIOV
7400         if (BNXT_VF(bp)) {
7401                 if (bp->vf.vlan) {
7402                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7403                                       NETIF_F_HW_VLAN_STAG_RX);
7404                 }
7405         }
7406 #endif
7407         return features;
7408 }
7409
7410 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7411 {
7412         struct bnxt *bp = netdev_priv(dev);
7413         u32 flags = bp->flags;
7414         u32 changes;
7415         int rc = 0;
7416         bool re_init = false;
7417         bool update_tpa = false;
7418
7419         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7420         if (features & NETIF_F_GRO_HW)
7421                 flags |= BNXT_FLAG_GRO;
7422         else if (features & NETIF_F_LRO)
7423                 flags |= BNXT_FLAG_LRO;
7424
7425         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7426                 flags &= ~BNXT_FLAG_TPA;
7427
7428         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7429                 flags |= BNXT_FLAG_STRIP_VLAN;
7430
7431         if (features & NETIF_F_NTUPLE)
7432                 flags |= BNXT_FLAG_RFS;
7433
7434         changes = flags ^ bp->flags;
7435         if (changes & BNXT_FLAG_TPA) {
7436                 update_tpa = true;
7437                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7438                     (flags & BNXT_FLAG_TPA) == 0)
7439                         re_init = true;
7440         }
7441
7442         if (changes & ~BNXT_FLAG_TPA)
7443                 re_init = true;
7444
7445         if (flags != bp->flags) {
7446                 u32 old_flags = bp->flags;
7447
7448                 bp->flags = flags;
7449
7450                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7451                         if (update_tpa)
7452                                 bnxt_set_ring_params(bp);
7453                         return rc;
7454                 }
7455
7456                 if (re_init) {
7457                         bnxt_close_nic(bp, false, false);
7458                         if (update_tpa)
7459                                 bnxt_set_ring_params(bp);
7460
7461                         return bnxt_open_nic(bp, false, false);
7462                 }
7463                 if (update_tpa) {
7464                         rc = bnxt_set_tpa(bp,
7465                                           (flags & BNXT_FLAG_TPA) ?
7466                                           true : false);
7467                         if (rc)
7468                                 bp->flags = old_flags;
7469                 }
7470         }
7471         return rc;
7472 }
7473
7474 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7475 {
7476         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7477         int i = bnapi->index;
7478
7479         if (!txr)
7480                 return;
7481
7482         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7483                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7484                     txr->tx_cons);
7485 }
7486
7487 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7488 {
7489         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7490         int i = bnapi->index;
7491
7492         if (!rxr)
7493                 return;
7494
7495         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7496                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7497                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7498                     rxr->rx_sw_agg_prod);
7499 }
7500
7501 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7502 {
7503         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7504         int i = bnapi->index;
7505
7506         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7507                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7508 }
7509
7510 static void bnxt_dbg_dump_states(struct bnxt *bp)
7511 {
7512         int i;
7513         struct bnxt_napi *bnapi;
7514
7515         for (i = 0; i < bp->cp_nr_rings; i++) {
7516                 bnapi = bp->bnapi[i];
7517                 if (netif_msg_drv(bp)) {
7518                         bnxt_dump_tx_sw_state(bnapi);
7519                         bnxt_dump_rx_sw_state(bnapi);
7520                         bnxt_dump_cp_sw_state(bnapi);
7521                 }
7522         }
7523 }
7524
7525 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7526 {
7527         if (!silent)
7528                 bnxt_dbg_dump_states(bp);
7529         if (netif_running(bp->dev)) {
7530                 int rc;
7531
7532                 if (!silent)
7533                         bnxt_ulp_stop(bp);
7534                 bnxt_close_nic(bp, false, false);
7535                 rc = bnxt_open_nic(bp, false, false);
7536                 if (!silent && !rc)
7537                         bnxt_ulp_start(bp);
7538         }
7539 }
7540
7541 static void bnxt_tx_timeout(struct net_device *dev)
7542 {
7543         struct bnxt *bp = netdev_priv(dev);
7544
7545         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7546         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7547         bnxt_queue_sp_work(bp);
7548 }
7549
7550 #ifdef CONFIG_NET_POLL_CONTROLLER
7551 static void bnxt_poll_controller(struct net_device *dev)
7552 {
7553         struct bnxt *bp = netdev_priv(dev);
7554         int i;
7555
7556         /* Only process tx rings/combined rings in netpoll mode. */
7557         for (i = 0; i < bp->tx_nr_rings; i++) {
7558                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7559
7560                 napi_schedule(&txr->bnapi->napi);
7561         }
7562 }
7563 #endif
7564
7565 static void bnxt_timer(struct timer_list *t)
7566 {
7567         struct bnxt *bp = from_timer(bp, t, timer);
7568         struct net_device *dev = bp->dev;
7569
7570         if (!netif_running(dev))
7571                 return;
7572
7573         if (atomic_read(&bp->intr_sem) != 0)
7574                 goto bnxt_restart_timer;
7575
7576         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7577             bp->stats_coal_ticks) {
7578                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7579                 bnxt_queue_sp_work(bp);
7580         }
7581
7582         if (bnxt_tc_flower_enabled(bp)) {
7583                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7584                 bnxt_queue_sp_work(bp);
7585         }
7586 bnxt_restart_timer:
7587         mod_timer(&bp->timer, jiffies + bp->current_interval);
7588 }
7589
7590 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7591 {
7592         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7593          * set.  If the device is being closed, bnxt_close() may be holding
7594          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7595          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7596          */
7597         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7598         rtnl_lock();
7599 }
7600
7601 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7602 {
7603         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7604         rtnl_unlock();
7605 }
7606
7607 /* Only called from bnxt_sp_task() */
7608 static void bnxt_reset(struct bnxt *bp, bool silent)
7609 {
7610         bnxt_rtnl_lock_sp(bp);
7611         if (test_bit(BNXT_STATE_OPEN, &bp->state))
7612                 bnxt_reset_task(bp, silent);
7613         bnxt_rtnl_unlock_sp(bp);
7614 }
7615
7616 static void bnxt_cfg_ntp_filters(struct bnxt *);
7617
7618 static void bnxt_sp_task(struct work_struct *work)
7619 {
7620         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7621
7622         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7623         smp_mb__after_atomic();
7624         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7625                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7626                 return;
7627         }
7628
7629         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7630                 bnxt_cfg_rx_mode(bp);
7631
7632         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7633                 bnxt_cfg_ntp_filters(bp);
7634         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7635                 bnxt_hwrm_exec_fwd_req(bp);
7636         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7637                 bnxt_hwrm_tunnel_dst_port_alloc(
7638                         bp, bp->vxlan_port,
7639                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7640         }
7641         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7642                 bnxt_hwrm_tunnel_dst_port_free(
7643                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7644         }
7645         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7646                 bnxt_hwrm_tunnel_dst_port_alloc(
7647                         bp, bp->nge_port,
7648                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7649         }
7650         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7651                 bnxt_hwrm_tunnel_dst_port_free(
7652                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7653         }
7654         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7655                 bnxt_hwrm_port_qstats(bp);
7656                 bnxt_hwrm_port_qstats_ext(bp);
7657         }
7658
7659         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7660                 int rc;
7661
7662                 mutex_lock(&bp->link_lock);
7663                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7664                                        &bp->sp_event))
7665                         bnxt_hwrm_phy_qcaps(bp);
7666
7667                 rc = bnxt_update_link(bp, true);
7668                 mutex_unlock(&bp->link_lock);
7669                 if (rc)
7670                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7671                                    rc);
7672         }
7673         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7674                 mutex_lock(&bp->link_lock);
7675                 bnxt_get_port_module_status(bp);
7676                 mutex_unlock(&bp->link_lock);
7677         }
7678
7679         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7680                 bnxt_tc_flow_stats_work(bp);
7681
7682         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7683          * must be the last functions to be called before exiting.
7684          */
7685         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7686                 bnxt_reset(bp, false);
7687
7688         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7689                 bnxt_reset(bp, true);
7690
7691         smp_mb__before_atomic();
7692         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7693 }
7694
7695 /* Under rtnl_lock */
7696 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7697                      int tx_xdp)
7698 {
7699         int max_rx, max_tx, tx_sets = 1;
7700         int tx_rings_needed;
7701         int rx_rings = rx;
7702         int cp, vnics, rc;
7703
7704         if (tcs)
7705                 tx_sets = tcs;
7706
7707         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7708         if (rc)
7709                 return rc;
7710
7711         if (max_rx < rx)
7712                 return -ENOMEM;
7713
7714         tx_rings_needed = tx * tx_sets + tx_xdp;
7715         if (max_tx < tx_rings_needed)
7716                 return -ENOMEM;
7717
7718         vnics = 1;
7719         if (bp->flags & BNXT_FLAG_RFS)
7720                 vnics += rx_rings;
7721
7722         if (bp->flags & BNXT_FLAG_AGG_RINGS)
7723                 rx_rings <<= 1;
7724         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7725         if (bp->flags & BNXT_FLAG_NEW_RM)
7726                 cp += bnxt_get_ulp_msix_num(bp);
7727         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7728                                      vnics);
7729 }
7730
7731 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7732 {
7733         if (bp->bar2) {
7734                 pci_iounmap(pdev, bp->bar2);
7735                 bp->bar2 = NULL;
7736         }
7737
7738         if (bp->bar1) {
7739                 pci_iounmap(pdev, bp->bar1);
7740                 bp->bar1 = NULL;
7741         }
7742
7743         if (bp->bar0) {
7744                 pci_iounmap(pdev, bp->bar0);
7745                 bp->bar0 = NULL;
7746         }
7747 }
7748
7749 static void bnxt_cleanup_pci(struct bnxt *bp)
7750 {
7751         bnxt_unmap_bars(bp, bp->pdev);
7752         pci_release_regions(bp->pdev);
7753         pci_disable_device(bp->pdev);
7754 }
7755
7756 static void bnxt_init_dflt_coal(struct bnxt *bp)
7757 {
7758         struct bnxt_coal *coal;
7759
7760         /* Tick values in micro seconds.
7761          * 1 coal_buf x bufs_per_record = 1 completion record.
7762          */
7763         coal = &bp->rx_coal;
7764         coal->coal_ticks = 14;
7765         coal->coal_bufs = 30;
7766         coal->coal_ticks_irq = 1;
7767         coal->coal_bufs_irq = 2;
7768         coal->idle_thresh = 50;
7769         coal->bufs_per_record = 2;
7770         coal->budget = 64;              /* NAPI budget */
7771
7772         coal = &bp->tx_coal;
7773         coal->coal_ticks = 28;
7774         coal->coal_bufs = 30;
7775         coal->coal_ticks_irq = 2;
7776         coal->coal_bufs_irq = 2;
7777         coal->bufs_per_record = 1;
7778
7779         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7780 }
7781
7782 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7783 {
7784         int rc;
7785         struct bnxt *bp = netdev_priv(dev);
7786
7787         SET_NETDEV_DEV(dev, &pdev->dev);
7788
7789         /* enable device (incl. PCI PM wakeup), and bus-mastering */
7790         rc = pci_enable_device(pdev);
7791         if (rc) {
7792                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7793                 goto init_err;
7794         }
7795
7796         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7797                 dev_err(&pdev->dev,
7798                         "Cannot find PCI device base address, aborting\n");
7799                 rc = -ENODEV;
7800                 goto init_err_disable;
7801         }
7802
7803         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7804         if (rc) {
7805                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7806                 goto init_err_disable;
7807         }
7808
7809         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7810             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7811                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7812                 goto init_err_disable;
7813         }
7814
7815         pci_set_master(pdev);
7816
7817         bp->dev = dev;
7818         bp->pdev = pdev;
7819
7820         bp->bar0 = pci_ioremap_bar(pdev, 0);
7821         if (!bp->bar0) {
7822                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7823                 rc = -ENOMEM;
7824                 goto init_err_release;
7825         }
7826
7827         bp->bar1 = pci_ioremap_bar(pdev, 2);
7828         if (!bp->bar1) {
7829                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7830                 rc = -ENOMEM;
7831                 goto init_err_release;
7832         }
7833
7834         bp->bar2 = pci_ioremap_bar(pdev, 4);
7835         if (!bp->bar2) {
7836                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7837                 rc = -ENOMEM;
7838                 goto init_err_release;
7839         }
7840
7841         pci_enable_pcie_error_reporting(pdev);
7842
7843         INIT_WORK(&bp->sp_task, bnxt_sp_task);
7844
7845         spin_lock_init(&bp->ntp_fltr_lock);
7846
7847         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7848         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7849
7850         bnxt_init_dflt_coal(bp);
7851
7852         timer_setup(&bp->timer, bnxt_timer, 0);
7853         bp->current_interval = BNXT_TIMER_INTERVAL;
7854
7855         clear_bit(BNXT_STATE_OPEN, &bp->state);
7856         return 0;
7857
7858 init_err_release:
7859         bnxt_unmap_bars(bp, pdev);
7860         pci_release_regions(pdev);
7861
7862 init_err_disable:
7863         pci_disable_device(pdev);
7864
7865 init_err:
7866         return rc;
7867 }
7868
7869 /* rtnl_lock held */
7870 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7871 {
7872         struct sockaddr *addr = p;
7873         struct bnxt *bp = netdev_priv(dev);
7874         int rc = 0;
7875
7876         if (!is_valid_ether_addr(addr->sa_data))
7877                 return -EADDRNOTAVAIL;
7878
7879         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7880                 return 0;
7881
7882         rc = bnxt_approve_mac(bp, addr->sa_data);
7883         if (rc)
7884                 return rc;
7885
7886         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7887         if (netif_running(dev)) {
7888                 bnxt_close_nic(bp, false, false);
7889                 rc = bnxt_open_nic(bp, false, false);
7890         }
7891
7892         return rc;
7893 }
7894
7895 /* rtnl_lock held */
7896 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7897 {
7898         struct bnxt *bp = netdev_priv(dev);
7899
7900         if (netif_running(dev))
7901                 bnxt_close_nic(bp, false, false);
7902
7903         dev->mtu = new_mtu;
7904         bnxt_set_ring_params(bp);
7905
7906         if (netif_running(dev))
7907                 return bnxt_open_nic(bp, false, false);
7908
7909         return 0;
7910 }
7911
7912 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7913 {
7914         struct bnxt *bp = netdev_priv(dev);
7915         bool sh = false;
7916         int rc;
7917
7918         if (tc > bp->max_tc) {
7919                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7920                            tc, bp->max_tc);
7921                 return -EINVAL;
7922         }
7923
7924         if (netdev_get_num_tc(dev) == tc)
7925                 return 0;
7926
7927         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7928                 sh = true;
7929
7930         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7931                               sh, tc, bp->tx_nr_rings_xdp);
7932         if (rc)
7933                 return rc;
7934
7935         /* Needs to close the device and do hw resource re-allocations */
7936         if (netif_running(bp->dev))
7937                 bnxt_close_nic(bp, true, false);
7938
7939         if (tc) {
7940                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7941                 netdev_set_num_tc(dev, tc);
7942         } else {
7943                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7944                 netdev_reset_tc(dev);
7945         }
7946         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7947         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7948                                bp->tx_nr_rings + bp->rx_nr_rings;
7949         bp->num_stat_ctxs = bp->cp_nr_rings;
7950
7951         if (netif_running(bp->dev))
7952                 return bnxt_open_nic(bp, true, false);
7953
7954         return 0;
7955 }
7956
7957 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7958                                   void *cb_priv)
7959 {
7960         struct bnxt *bp = cb_priv;
7961
7962         if (!bnxt_tc_flower_enabled(bp) ||
7963             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7964                 return -EOPNOTSUPP;
7965
7966         switch (type) {
7967         case TC_SETUP_CLSFLOWER:
7968                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7969         default:
7970                 return -EOPNOTSUPP;
7971         }
7972 }
7973
7974 static int bnxt_setup_tc_block(struct net_device *dev,
7975                                struct tc_block_offload *f)
7976 {
7977         struct bnxt *bp = netdev_priv(dev);
7978
7979         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7980                 return -EOPNOTSUPP;
7981
7982         switch (f->command) {
7983         case TC_BLOCK_BIND:
7984                 return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7985                                              bp, bp, f->extack);
7986         case TC_BLOCK_UNBIND:
7987                 tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7988                 return 0;
7989         default:
7990                 return -EOPNOTSUPP;
7991         }
7992 }
7993
7994 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7995                          void *type_data)
7996 {
7997         switch (type) {
7998         case TC_SETUP_BLOCK:
7999                 return bnxt_setup_tc_block(dev, type_data);
8000         case TC_SETUP_QDISC_MQPRIO: {
8001                 struct tc_mqprio_qopt *mqprio = type_data;
8002
8003                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
8004
8005                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
8006         }
8007         default:
8008                 return -EOPNOTSUPP;
8009         }
8010 }
8011
8012 #ifdef CONFIG_RFS_ACCEL
8013 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
8014                             struct bnxt_ntuple_filter *f2)
8015 {
8016         struct flow_keys *keys1 = &f1->fkeys;
8017         struct flow_keys *keys2 = &f2->fkeys;
8018
8019         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
8020             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
8021             keys1->ports.ports == keys2->ports.ports &&
8022             keys1->basic.ip_proto == keys2->basic.ip_proto &&
8023             keys1->basic.n_proto == keys2->basic.n_proto &&
8024             keys1->control.flags == keys2->control.flags &&
8025             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
8026             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
8027                 return true;
8028
8029         return false;
8030 }
8031
8032 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
8033                               u16 rxq_index, u32 flow_id)
8034 {
8035         struct bnxt *bp = netdev_priv(dev);
8036         struct bnxt_ntuple_filter *fltr, *new_fltr;
8037         struct flow_keys *fkeys;
8038         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8039         int rc = 0, idx, bit_id, l2_idx = 0;
8040         struct hlist_head *head;
8041
8042         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8043                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8044                 int off = 0, j;
8045
8046                 netif_addr_lock_bh(dev);
8047                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8048                         if (ether_addr_equal(eth->h_dest,
8049                                              vnic->uc_list + off)) {
8050                                 l2_idx = j + 1;
8051                                 break;
8052                         }
8053                 }
8054                 netif_addr_unlock_bh(dev);
8055                 if (!l2_idx)
8056                         return -EINVAL;
8057         }
8058         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8059         if (!new_fltr)
8060                 return -ENOMEM;
8061
8062         fkeys = &new_fltr->fkeys;
8063         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8064                 rc = -EPROTONOSUPPORT;
8065                 goto err_free;
8066         }
8067
8068         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8069              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8070             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8071              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8072                 rc = -EPROTONOSUPPORT;
8073                 goto err_free;
8074         }
8075         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8076             bp->hwrm_spec_code < 0x10601) {
8077                 rc = -EPROTONOSUPPORT;
8078                 goto err_free;
8079         }
8080         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8081             bp->hwrm_spec_code < 0x10601) {
8082                 rc = -EPROTONOSUPPORT;
8083                 goto err_free;
8084         }
8085
8086         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8087         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8088
8089         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8090         head = &bp->ntp_fltr_hash_tbl[idx];
8091         rcu_read_lock();
8092         hlist_for_each_entry_rcu(fltr, head, hash) {
8093                 if (bnxt_fltr_match(fltr, new_fltr)) {
8094                         rcu_read_unlock();
8095                         rc = 0;
8096                         goto err_free;
8097                 }
8098         }
8099         rcu_read_unlock();
8100
8101         spin_lock_bh(&bp->ntp_fltr_lock);
8102         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8103                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
8104         if (bit_id < 0) {
8105                 spin_unlock_bh(&bp->ntp_fltr_lock);
8106                 rc = -ENOMEM;
8107                 goto err_free;
8108         }
8109
8110         new_fltr->sw_id = (u16)bit_id;
8111         new_fltr->flow_id = flow_id;
8112         new_fltr->l2_fltr_idx = l2_idx;
8113         new_fltr->rxq = rxq_index;
8114         hlist_add_head_rcu(&new_fltr->hash, head);
8115         bp->ntp_fltr_count++;
8116         spin_unlock_bh(&bp->ntp_fltr_lock);
8117
8118         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8119         bnxt_queue_sp_work(bp);
8120
8121         return new_fltr->sw_id;
8122
8123 err_free:
8124         kfree(new_fltr);
8125         return rc;
8126 }
8127
8128 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8129 {
8130         int i;
8131
8132         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8133                 struct hlist_head *head;
8134                 struct hlist_node *tmp;
8135                 struct bnxt_ntuple_filter *fltr;
8136                 int rc;
8137
8138                 head = &bp->ntp_fltr_hash_tbl[i];
8139                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8140                         bool del = false;
8141
8142                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8143                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
8144                                                         fltr->flow_id,
8145                                                         fltr->sw_id)) {
8146                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
8147                                                                          fltr);
8148                                         del = true;
8149                                 }
8150                         } else {
8151                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8152                                                                        fltr);
8153                                 if (rc)
8154                                         del = true;
8155                                 else
8156                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
8157                         }
8158
8159                         if (del) {
8160                                 spin_lock_bh(&bp->ntp_fltr_lock);
8161                                 hlist_del_rcu(&fltr->hash);
8162                                 bp->ntp_fltr_count--;
8163                                 spin_unlock_bh(&bp->ntp_fltr_lock);
8164                                 synchronize_rcu();
8165                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8166                                 kfree(fltr);
8167                         }
8168                 }
8169         }
8170         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8171                 netdev_info(bp->dev, "Receive PF driver unload event!");
8172 }
8173
8174 #else
8175
8176 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8177 {
8178 }
8179
8180 #endif /* CONFIG_RFS_ACCEL */
8181
8182 static void bnxt_udp_tunnel_add(struct net_device *dev,
8183                                 struct udp_tunnel_info *ti)
8184 {
8185         struct bnxt *bp = netdev_priv(dev);
8186
8187         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8188                 return;
8189
8190         if (!netif_running(dev))
8191                 return;
8192
8193         switch (ti->type) {
8194         case UDP_TUNNEL_TYPE_VXLAN:
8195                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8196                         return;
8197
8198                 bp->vxlan_port_cnt++;
8199                 if (bp->vxlan_port_cnt == 1) {
8200                         bp->vxlan_port = ti->port;
8201                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8202                         bnxt_queue_sp_work(bp);
8203                 }
8204                 break;
8205         case UDP_TUNNEL_TYPE_GENEVE:
8206                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
8207                         return;
8208
8209                 bp->nge_port_cnt++;
8210                 if (bp->nge_port_cnt == 1) {
8211                         bp->nge_port = ti->port;
8212                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8213                 }
8214                 break;
8215         default:
8216                 return;
8217         }
8218
8219         bnxt_queue_sp_work(bp);
8220 }
8221
8222 static void bnxt_udp_tunnel_del(struct net_device *dev,
8223                                 struct udp_tunnel_info *ti)
8224 {
8225         struct bnxt *bp = netdev_priv(dev);
8226
8227         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8228                 return;
8229
8230         if (!netif_running(dev))
8231                 return;
8232
8233         switch (ti->type) {
8234         case UDP_TUNNEL_TYPE_VXLAN:
8235                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8236                         return;
8237                 bp->vxlan_port_cnt--;
8238
8239                 if (bp->vxlan_port_cnt != 0)
8240                         return;
8241
8242                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8243                 break;
8244         case UDP_TUNNEL_TYPE_GENEVE:
8245                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8246                         return;
8247                 bp->nge_port_cnt--;
8248
8249                 if (bp->nge_port_cnt != 0)
8250                         return;
8251
8252                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8253                 break;
8254         default:
8255                 return;
8256         }
8257
8258         bnxt_queue_sp_work(bp);
8259 }
8260
8261 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8262                                struct net_device *dev, u32 filter_mask,
8263                                int nlflags)
8264 {
8265         struct bnxt *bp = netdev_priv(dev);
8266
8267         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8268                                        nlflags, filter_mask, NULL);
8269 }
8270
8271 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8272                                u16 flags)
8273 {
8274         struct bnxt *bp = netdev_priv(dev);
8275         struct nlattr *attr, *br_spec;
8276         int rem, rc = 0;
8277
8278         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8279                 return -EOPNOTSUPP;
8280
8281         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8282         if (!br_spec)
8283                 return -EINVAL;
8284
8285         nla_for_each_nested(attr, br_spec, rem) {
8286                 u16 mode;
8287
8288                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
8289                         continue;
8290
8291                 if (nla_len(attr) < sizeof(mode))
8292                         return -EINVAL;
8293
8294                 mode = nla_get_u16(attr);
8295                 if (mode == bp->br_mode)
8296                         break;
8297
8298                 rc = bnxt_hwrm_set_br_mode(bp, mode);
8299                 if (!rc)
8300                         bp->br_mode = mode;
8301                 break;
8302         }
8303         return rc;
8304 }
8305
8306 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8307                                    size_t len)
8308 {
8309         struct bnxt *bp = netdev_priv(dev);
8310         int rc;
8311
8312         /* The PF and it's VF-reps only support the switchdev framework */
8313         if (!BNXT_PF(bp))
8314                 return -EOPNOTSUPP;
8315
8316         rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8317
8318         if (rc >= len)
8319                 return -EOPNOTSUPP;
8320         return 0;
8321 }
8322
8323 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8324 {
8325         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8326                 return -EOPNOTSUPP;
8327
8328         /* The PF and it's VF-reps only support the switchdev framework */
8329         if (!BNXT_PF(bp))
8330                 return -EOPNOTSUPP;
8331
8332         switch (attr->id) {
8333         case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8334                 attr->u.ppid.id_len = sizeof(bp->switch_id);
8335                 memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8336                 break;
8337         default:
8338                 return -EOPNOTSUPP;
8339         }
8340         return 0;
8341 }
8342
8343 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8344                                     struct switchdev_attr *attr)
8345 {
8346         return bnxt_port_attr_get(netdev_priv(dev), attr);
8347 }
8348
8349 static const struct switchdev_ops bnxt_switchdev_ops = {
8350         .switchdev_port_attr_get        = bnxt_swdev_port_attr_get
8351 };
8352
8353 static const struct net_device_ops bnxt_netdev_ops = {
8354         .ndo_open               = bnxt_open,
8355         .ndo_start_xmit         = bnxt_start_xmit,
8356         .ndo_stop               = bnxt_close,
8357         .ndo_get_stats64        = bnxt_get_stats64,
8358         .ndo_set_rx_mode        = bnxt_set_rx_mode,
8359         .ndo_do_ioctl           = bnxt_ioctl,
8360         .ndo_validate_addr      = eth_validate_addr,
8361         .ndo_set_mac_address    = bnxt_change_mac_addr,
8362         .ndo_change_mtu         = bnxt_change_mtu,
8363         .ndo_fix_features       = bnxt_fix_features,
8364         .ndo_set_features       = bnxt_set_features,
8365         .ndo_tx_timeout         = bnxt_tx_timeout,
8366 #ifdef CONFIG_BNXT_SRIOV
8367         .ndo_get_vf_config      = bnxt_get_vf_config,
8368         .ndo_set_vf_mac         = bnxt_set_vf_mac,
8369         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
8370         .ndo_set_vf_rate        = bnxt_set_vf_bw,
8371         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
8372         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
8373         .ndo_set_vf_trust       = bnxt_set_vf_trust,
8374 #endif
8375 #ifdef CONFIG_NET_POLL_CONTROLLER
8376         .ndo_poll_controller    = bnxt_poll_controller,
8377 #endif
8378         .ndo_setup_tc           = bnxt_setup_tc,
8379 #ifdef CONFIG_RFS_ACCEL
8380         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
8381 #endif
8382         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
8383         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
8384         .ndo_bpf                = bnxt_xdp,
8385         .ndo_bridge_getlink     = bnxt_bridge_getlink,
8386         .ndo_bridge_setlink     = bnxt_bridge_setlink,
8387         .ndo_get_phys_port_name = bnxt_get_phys_port_name
8388 };
8389
8390 static void bnxt_remove_one(struct pci_dev *pdev)
8391 {
8392         struct net_device *dev = pci_get_drvdata(pdev);
8393         struct bnxt *bp = netdev_priv(dev);
8394
8395         if (BNXT_PF(bp)) {
8396                 bnxt_sriov_disable(bp);
8397                 bnxt_dl_unregister(bp);
8398         }
8399
8400         pci_disable_pcie_error_reporting(pdev);
8401         unregister_netdev(dev);
8402         bnxt_shutdown_tc(bp);
8403         bnxt_cancel_sp_work(bp);
8404         bp->sp_event = 0;
8405
8406         bnxt_clear_int_mode(bp);
8407         bnxt_hwrm_func_drv_unrgtr(bp);
8408         bnxt_free_hwrm_resources(bp);
8409         bnxt_free_hwrm_short_cmd_req(bp);
8410         bnxt_ethtool_free(bp);
8411         bnxt_dcb_free(bp);
8412         kfree(bp->edev);
8413         bp->edev = NULL;
8414         bnxt_cleanup_pci(bp);
8415         free_netdev(dev);
8416 }
8417
8418 static int bnxt_probe_phy(struct bnxt *bp)
8419 {
8420         int rc = 0;
8421         struct bnxt_link_info *link_info = &bp->link_info;
8422
8423         rc = bnxt_hwrm_phy_qcaps(bp);
8424         if (rc) {
8425                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8426                            rc);
8427                 return rc;
8428         }
8429         mutex_init(&bp->link_lock);
8430
8431         rc = bnxt_update_link(bp, false);
8432         if (rc) {
8433                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8434                            rc);
8435                 return rc;
8436         }
8437
8438         /* Older firmware does not have supported_auto_speeds, so assume
8439          * that all supported speeds can be autonegotiated.
8440          */
8441         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8442                 link_info->support_auto_speeds = link_info->support_speeds;
8443
8444         /*initialize the ethool setting copy with NVM settings */
8445         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8446                 link_info->autoneg = BNXT_AUTONEG_SPEED;
8447                 if (bp->hwrm_spec_code >= 0x10201) {
8448                         if (link_info->auto_pause_setting &
8449                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8450                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8451                 } else {
8452                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8453                 }
8454                 link_info->advertising = link_info->auto_link_speeds;
8455         } else {
8456                 link_info->req_link_speed = link_info->force_link_speed;
8457                 link_info->req_duplex = link_info->duplex_setting;
8458         }
8459         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8460                 link_info->req_flow_ctrl =
8461                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8462         else
8463                 link_info->req_flow_ctrl = link_info->force_pause_setting;
8464         return rc;
8465 }
8466
8467 static int bnxt_get_max_irq(struct pci_dev *pdev)
8468 {
8469         u16 ctrl;
8470
8471         if (!pdev->msix_cap)
8472                 return 1;
8473
8474         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8475         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8476 }
8477
8478 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8479                                 int *max_cp)
8480 {
8481         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8482         int max_ring_grps = 0;
8483
8484         *max_tx = hw_resc->max_tx_rings;
8485         *max_rx = hw_resc->max_rx_rings;
8486         *max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8487         *max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8488         max_ring_grps = hw_resc->max_hw_ring_grps;
8489         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8490                 *max_cp -= 1;
8491                 *max_rx -= 2;
8492         }
8493         if (bp->flags & BNXT_FLAG_AGG_RINGS)
8494                 *max_rx >>= 1;
8495         *max_rx = min_t(int, *max_rx, max_ring_grps);
8496 }
8497
8498 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8499 {
8500         int rx, tx, cp;
8501
8502         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
8503         *max_rx = rx;
8504         *max_tx = tx;
8505         if (!rx || !tx || !cp)
8506                 return -ENOMEM;
8507
8508         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8509 }
8510
8511 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8512                                bool shared)
8513 {
8514         int rc;
8515
8516         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8517         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8518                 /* Not enough rings, try disabling agg rings. */
8519                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8520                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8521                 if (rc) {
8522                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
8523                         bp->flags |= BNXT_FLAG_AGG_RINGS;
8524                         return rc;
8525                 }
8526                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8527                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8528                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8529                 bnxt_set_ring_params(bp);
8530         }
8531
8532         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8533                 int max_cp, max_stat, max_irq;
8534
8535                 /* Reserve minimum resources for RoCE */
8536                 max_cp = bnxt_get_max_func_cp_rings(bp);
8537                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
8538                 max_irq = bnxt_get_max_func_irqs(bp);
8539                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8540                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8541                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8542                         return 0;
8543
8544                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8545                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8546                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8547                 max_cp = min_t(int, max_cp, max_irq);
8548                 max_cp = min_t(int, max_cp, max_stat);
8549                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8550                 if (rc)
8551                         rc = 0;
8552         }
8553         return rc;
8554 }
8555
8556 /* In initial default shared ring setting, each shared ring must have a
8557  * RX/TX ring pair.
8558  */
8559 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8560 {
8561         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8562         bp->rx_nr_rings = bp->cp_nr_rings;
8563         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8564         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8565 }
8566
8567 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8568 {
8569         int dflt_rings, max_rx_rings, max_tx_rings, rc;
8570
8571         if (!bnxt_can_reserve_rings(bp))
8572                 return 0;
8573
8574         if (sh)
8575                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
8576         dflt_rings = netif_get_num_default_rss_queues();
8577         /* Reduce default rings on multi-port cards so that total default
8578          * rings do not exceed CPU count.
8579          */
8580         if (bp->port_count > 1) {
8581                 int max_rings =
8582                         max_t(int, num_online_cpus() / bp->port_count, 1);
8583
8584                 dflt_rings = min_t(int, dflt_rings, max_rings);
8585         }
8586         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8587         if (rc)
8588                 return rc;
8589         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8590         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8591         if (sh)
8592                 bnxt_trim_dflt_sh_rings(bp);
8593         else
8594                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8595         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8596
8597         rc = __bnxt_reserve_rings(bp);
8598         if (rc)
8599                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8600         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8601         if (sh)
8602                 bnxt_trim_dflt_sh_rings(bp);
8603
8604         /* Rings may have been trimmed, re-reserve the trimmed rings. */
8605         if (bnxt_need_reserve_rings(bp)) {
8606                 rc = __bnxt_reserve_rings(bp);
8607                 if (rc)
8608                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8609                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8610         }
8611         bp->num_stat_ctxs = bp->cp_nr_rings;
8612         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8613                 bp->rx_nr_rings++;
8614                 bp->cp_nr_rings++;
8615         }
8616         return rc;
8617 }
8618
8619 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
8620 {
8621         int rc;
8622
8623         if (bp->tx_nr_rings)
8624                 return 0;
8625
8626         rc = bnxt_set_dflt_rings(bp, true);
8627         if (rc) {
8628                 netdev_err(bp->dev, "Not enough rings available.\n");
8629                 return rc;
8630         }
8631         rc = bnxt_init_int_mode(bp);
8632         if (rc)
8633                 return rc;
8634         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8635         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
8636                 bp->flags |= BNXT_FLAG_RFS;
8637                 bp->dev->features |= NETIF_F_NTUPLE;
8638         }
8639         return 0;
8640 }
8641
8642 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8643 {
8644         int rc;
8645
8646         ASSERT_RTNL();
8647         bnxt_hwrm_func_qcaps(bp);
8648
8649         if (netif_running(bp->dev))
8650                 __bnxt_close_nic(bp, true, false);
8651
8652         bnxt_ulp_irq_stop(bp);
8653         bnxt_clear_int_mode(bp);
8654         rc = bnxt_init_int_mode(bp);
8655         bnxt_ulp_irq_restart(bp, rc);
8656
8657         if (netif_running(bp->dev)) {
8658                 if (rc)
8659                         dev_close(bp->dev);
8660                 else
8661                         rc = bnxt_open_nic(bp, true, false);
8662         }
8663
8664         return rc;
8665 }
8666
8667 static int bnxt_init_mac_addr(struct bnxt *bp)
8668 {
8669         int rc = 0;
8670
8671         if (BNXT_PF(bp)) {
8672                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8673         } else {
8674 #ifdef CONFIG_BNXT_SRIOV
8675                 struct bnxt_vf_info *vf = &bp->vf;
8676
8677                 if (is_valid_ether_addr(vf->mac_addr)) {
8678                         /* overwrite netdev dev_addr with admin VF MAC */
8679                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8680                 } else {
8681                         eth_hw_addr_random(bp->dev);
8682                 }
8683                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8684 #endif
8685         }
8686         return rc;
8687 }
8688
8689 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8690 {
8691         static int version_printed;
8692         struct net_device *dev;
8693         struct bnxt *bp;
8694         int rc, max_irqs;
8695
8696         if (pci_is_bridge(pdev))
8697                 return -ENODEV;
8698
8699         if (version_printed++ == 0)
8700                 pr_info("%s", version);
8701
8702         max_irqs = bnxt_get_max_irq(pdev);
8703         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8704         if (!dev)
8705                 return -ENOMEM;
8706
8707         bp = netdev_priv(dev);
8708
8709         if (bnxt_vf_pciid(ent->driver_data))
8710                 bp->flags |= BNXT_FLAG_VF;
8711
8712         if (pdev->msix_cap)
8713                 bp->flags |= BNXT_FLAG_MSIX_CAP;
8714
8715         rc = bnxt_init_board(pdev, dev);
8716         if (rc < 0)
8717                 goto init_err_free;
8718
8719         dev->netdev_ops = &bnxt_netdev_ops;
8720         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8721         dev->ethtool_ops = &bnxt_ethtool_ops;
8722         SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8723         pci_set_drvdata(pdev, dev);
8724
8725         rc = bnxt_alloc_hwrm_resources(bp);
8726         if (rc)
8727                 goto init_err_pci_clean;
8728
8729         mutex_init(&bp->hwrm_cmd_lock);
8730         rc = bnxt_hwrm_ver_get(bp);
8731         if (rc)
8732                 goto init_err_pci_clean;
8733
8734         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8735                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8736                 if (rc)
8737                         goto init_err_pci_clean;
8738         }
8739
8740         rc = bnxt_hwrm_func_reset(bp);
8741         if (rc)
8742                 goto init_err_pci_clean;
8743
8744         bnxt_hwrm_fw_set_time(bp);
8745
8746         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8747                            NETIF_F_TSO | NETIF_F_TSO6 |
8748                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8749                            NETIF_F_GSO_IPXIP4 |
8750                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8751                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8752                            NETIF_F_RXCSUM | NETIF_F_GRO;
8753
8754         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8755                 dev->hw_features |= NETIF_F_LRO;
8756
8757         dev->hw_enc_features =
8758                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8759                         NETIF_F_TSO | NETIF_F_TSO6 |
8760                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8761                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8762                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8763         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8764                                     NETIF_F_GSO_GRE_CSUM;
8765         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8766         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8767                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8768         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8769                 dev->hw_features |= NETIF_F_GRO_HW;
8770         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8771         if (dev->features & NETIF_F_GRO_HW)
8772                 dev->features &= ~NETIF_F_LRO;
8773         dev->priv_flags |= IFF_UNICAST_FLT;
8774
8775 #ifdef CONFIG_BNXT_SRIOV
8776         init_waitqueue_head(&bp->sriov_cfg_wait);
8777         mutex_init(&bp->sriov_lock);
8778 #endif
8779         bp->gro_func = bnxt_gro_func_5730x;
8780         if (BNXT_CHIP_P4_PLUS(bp))
8781                 bp->gro_func = bnxt_gro_func_5731x;
8782         else
8783                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8784
8785         rc = bnxt_hwrm_func_drv_rgtr(bp);
8786         if (rc)
8787                 goto init_err_pci_clean;
8788
8789         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8790         if (rc)
8791                 goto init_err_pci_clean;
8792
8793         bp->ulp_probe = bnxt_ulp_probe;
8794
8795         /* Get the MAX capabilities for this function */
8796         rc = bnxt_hwrm_func_qcaps(bp);
8797         if (rc) {
8798                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8799                            rc);
8800                 rc = -1;
8801                 goto init_err_pci_clean;
8802         }
8803         rc = bnxt_init_mac_addr(bp);
8804         if (rc) {
8805                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8806                 rc = -EADDRNOTAVAIL;
8807                 goto init_err_pci_clean;
8808         }
8809         rc = bnxt_hwrm_queue_qportcfg(bp);
8810         if (rc) {
8811                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8812                            rc);
8813                 rc = -1;
8814                 goto init_err_pci_clean;
8815         }
8816
8817         bnxt_hwrm_func_qcfg(bp);
8818         bnxt_hwrm_port_led_qcaps(bp);
8819         bnxt_ethtool_init(bp);
8820         bnxt_dcb_init(bp);
8821
8822         /* MTU range: 60 - FW defined max */
8823         dev->min_mtu = ETH_ZLEN;
8824         dev->max_mtu = bp->max_mtu;
8825
8826         rc = bnxt_probe_phy(bp);
8827         if (rc)
8828                 goto init_err_pci_clean;
8829
8830         bnxt_set_rx_skb_mode(bp, false);
8831         bnxt_set_tpa_flags(bp);
8832         bnxt_set_ring_params(bp);
8833         bnxt_set_max_func_irqs(bp, max_irqs);
8834         rc = bnxt_set_dflt_rings(bp, true);
8835         if (rc) {
8836                 netdev_err(bp->dev, "Not enough rings available.\n");
8837                 rc = -ENOMEM;
8838                 goto init_err_pci_clean;
8839         }
8840
8841         /* Default RSS hash cfg. */
8842         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8843                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8844                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8845                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8846         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8847                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8848                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8849                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8850         }
8851
8852         bnxt_hwrm_vnic_qcaps(bp);
8853         if (bnxt_rfs_supported(bp)) {
8854                 dev->hw_features |= NETIF_F_NTUPLE;
8855                 if (bnxt_rfs_capable(bp)) {
8856                         bp->flags |= BNXT_FLAG_RFS;
8857                         dev->features |= NETIF_F_NTUPLE;
8858                 }
8859         }
8860
8861         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8862                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
8863
8864         rc = bnxt_init_int_mode(bp);
8865         if (rc)
8866                 goto init_err_pci_clean;
8867
8868         /* No TC has been set yet and rings may have been trimmed due to
8869          * limited MSIX, so we re-initialize the TX rings per TC.
8870          */
8871         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8872
8873         bnxt_get_wol_settings(bp);
8874         if (bp->flags & BNXT_FLAG_WOL_CAP)
8875                 device_set_wakeup_enable(&pdev->dev, bp->wol);
8876         else
8877                 device_set_wakeup_capable(&pdev->dev, false);
8878
8879         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8880
8881         if (BNXT_PF(bp)) {
8882                 if (!bnxt_pf_wq) {
8883                         bnxt_pf_wq =
8884                                 create_singlethread_workqueue("bnxt_pf_wq");
8885                         if (!bnxt_pf_wq) {
8886                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
8887                                 goto init_err_pci_clean;
8888                         }
8889                 }
8890                 bnxt_init_tc(bp);
8891         }
8892
8893         rc = register_netdev(dev);
8894         if (rc)
8895                 goto init_err_cleanup_tc;
8896
8897         if (BNXT_PF(bp))
8898                 bnxt_dl_register(bp);
8899
8900         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8901                     board_info[ent->driver_data].name,
8902                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
8903         pcie_print_link_status(pdev);
8904
8905         return 0;
8906
8907 init_err_cleanup_tc:
8908         bnxt_shutdown_tc(bp);
8909         bnxt_clear_int_mode(bp);
8910
8911 init_err_pci_clean:
8912         bnxt_cleanup_pci(bp);
8913
8914 init_err_free:
8915         free_netdev(dev);
8916         return rc;
8917 }
8918
8919 static void bnxt_shutdown(struct pci_dev *pdev)
8920 {
8921         struct net_device *dev = pci_get_drvdata(pdev);
8922         struct bnxt *bp;
8923
8924         if (!dev)
8925                 return;
8926
8927         rtnl_lock();
8928         bp = netdev_priv(dev);
8929         if (!bp)
8930                 goto shutdown_exit;
8931
8932         if (netif_running(dev))
8933                 dev_close(dev);
8934
8935         bnxt_ulp_shutdown(bp);
8936
8937         if (system_state == SYSTEM_POWER_OFF) {
8938                 bnxt_clear_int_mode(bp);
8939                 pci_wake_from_d3(pdev, bp->wol);
8940                 pci_set_power_state(pdev, PCI_D3hot);
8941         }
8942
8943 shutdown_exit:
8944         rtnl_unlock();
8945 }
8946
8947 #ifdef CONFIG_PM_SLEEP
8948 static int bnxt_suspend(struct device *device)
8949 {
8950         struct pci_dev *pdev = to_pci_dev(device);
8951         struct net_device *dev = pci_get_drvdata(pdev);
8952         struct bnxt *bp = netdev_priv(dev);
8953         int rc = 0;
8954
8955         rtnl_lock();
8956         if (netif_running(dev)) {
8957                 netif_device_detach(dev);
8958                 rc = bnxt_close(dev);
8959         }
8960         bnxt_hwrm_func_drv_unrgtr(bp);
8961         rtnl_unlock();
8962         return rc;
8963 }
8964
8965 static int bnxt_resume(struct device *device)
8966 {
8967         struct pci_dev *pdev = to_pci_dev(device);
8968         struct net_device *dev = pci_get_drvdata(pdev);
8969         struct bnxt *bp = netdev_priv(dev);
8970         int rc = 0;
8971
8972         rtnl_lock();
8973         if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8974                 rc = -ENODEV;
8975                 goto resume_exit;
8976         }
8977         rc = bnxt_hwrm_func_reset(bp);
8978         if (rc) {
8979                 rc = -EBUSY;
8980                 goto resume_exit;
8981         }
8982         bnxt_get_wol_settings(bp);
8983         if (netif_running(dev)) {
8984                 rc = bnxt_open(dev);
8985                 if (!rc)
8986                         netif_device_attach(dev);
8987         }
8988
8989 resume_exit:
8990         rtnl_unlock();
8991         return rc;
8992 }
8993
8994 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8995 #define BNXT_PM_OPS (&bnxt_pm_ops)
8996
8997 #else
8998
8999 #define BNXT_PM_OPS NULL
9000
9001 #endif /* CONFIG_PM_SLEEP */
9002
9003 /**
9004  * bnxt_io_error_detected - called when PCI error is detected
9005  * @pdev: Pointer to PCI device
9006  * @state: The current pci connection state
9007  *
9008  * This function is called after a PCI bus error affecting
9009  * this device has been detected.
9010  */
9011 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
9012                                                pci_channel_state_t state)
9013 {
9014         struct net_device *netdev = pci_get_drvdata(pdev);
9015         struct bnxt *bp = netdev_priv(netdev);
9016
9017         netdev_info(netdev, "PCI I/O error detected\n");
9018
9019         rtnl_lock();
9020         netif_device_detach(netdev);
9021
9022         bnxt_ulp_stop(bp);
9023
9024         if (state == pci_channel_io_perm_failure) {
9025                 rtnl_unlock();
9026                 return PCI_ERS_RESULT_DISCONNECT;
9027         }
9028
9029         if (netif_running(netdev))
9030                 bnxt_close(netdev);
9031
9032         pci_disable_device(pdev);
9033         rtnl_unlock();
9034
9035         /* Request a slot slot reset. */
9036         return PCI_ERS_RESULT_NEED_RESET;
9037 }
9038
9039 /**
9040  * bnxt_io_slot_reset - called after the pci bus has been reset.
9041  * @pdev: Pointer to PCI device
9042  *
9043  * Restart the card from scratch, as if from a cold-boot.
9044  * At this point, the card has exprienced a hard reset,
9045  * followed by fixups by BIOS, and has its config space
9046  * set up identically to what it was at cold boot.
9047  */
9048 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9049 {
9050         struct net_device *netdev = pci_get_drvdata(pdev);
9051         struct bnxt *bp = netdev_priv(netdev);
9052         int err = 0;
9053         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9054
9055         netdev_info(bp->dev, "PCI Slot Reset\n");
9056
9057         rtnl_lock();
9058
9059         if (pci_enable_device(pdev)) {
9060                 dev_err(&pdev->dev,
9061                         "Cannot re-enable PCI device after reset.\n");
9062         } else {
9063                 pci_set_master(pdev);
9064
9065                 err = bnxt_hwrm_func_reset(bp);
9066                 if (!err && netif_running(netdev))
9067                         err = bnxt_open(netdev);
9068
9069                 if (!err) {
9070                         result = PCI_ERS_RESULT_RECOVERED;
9071                         bnxt_ulp_start(bp);
9072                 }
9073         }
9074
9075         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9076                 dev_close(netdev);
9077
9078         rtnl_unlock();
9079
9080         err = pci_cleanup_aer_uncorrect_error_status(pdev);
9081         if (err) {
9082                 dev_err(&pdev->dev,
9083                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9084                          err); /* non-fatal, continue */
9085         }
9086
9087         return PCI_ERS_RESULT_RECOVERED;
9088 }
9089
9090 /**
9091  * bnxt_io_resume - called when traffic can start flowing again.
9092  * @pdev: Pointer to PCI device
9093  *
9094  * This callback is called when the error recovery driver tells
9095  * us that its OK to resume normal operation.
9096  */
9097 static void bnxt_io_resume(struct pci_dev *pdev)
9098 {
9099         struct net_device *netdev = pci_get_drvdata(pdev);
9100
9101         rtnl_lock();
9102
9103         netif_device_attach(netdev);
9104
9105         rtnl_unlock();
9106 }
9107
9108 static const struct pci_error_handlers bnxt_err_handler = {
9109         .error_detected = bnxt_io_error_detected,
9110         .slot_reset     = bnxt_io_slot_reset,
9111         .resume         = bnxt_io_resume
9112 };
9113
9114 static struct pci_driver bnxt_pci_driver = {
9115         .name           = DRV_MODULE_NAME,
9116         .id_table       = bnxt_pci_tbl,
9117         .probe          = bnxt_init_one,
9118         .remove         = bnxt_remove_one,
9119         .shutdown       = bnxt_shutdown,
9120         .driver.pm      = BNXT_PM_OPS,
9121         .err_handler    = &bnxt_err_handler,
9122 #if defined(CONFIG_BNXT_SRIOV)
9123         .sriov_configure = bnxt_sriov_configure,
9124 #endif
9125 };
9126
9127 static int __init bnxt_init(void)
9128 {
9129         bnxt_debug_init();
9130         return pci_register_driver(&bnxt_pci_driver);
9131 }
9132
9133 static void __exit bnxt_exit(void)
9134 {
9135         pci_unregister_driver(&bnxt_pci_driver);
9136         if (bnxt_pf_wq)
9137                 destroy_workqueue(bnxt_pf_wq);
9138         bnxt_debug_exit();
9139 }
9140
9141 module_init(bnxt_init);
9142 module_exit(bnxt_exit);