OSDN Git Service

Merge tag 'kbuild-fixes-v5.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_tc_mqprio.h"
87 #include "cxgb4_tc_matchall.h"
88 #include "cxgb4_ptp.h"
89 #include "cxgb4_cudbg.h"
90
91 char cxgb4_driver_name[] = KBUILD_MODNAME;
92
93 #ifdef DRV_VERSION
94 #undef DRV_VERSION
95 #endif
96 #define DRV_VERSION "2.0.0-ko"
97 const char cxgb4_driver_version[] = DRV_VERSION;
98 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
99
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
103
104 /* Macros needed to support the PCI Device ID Table ...
105  */
106 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
107         static const struct pci_device_id cxgb4_pci_tbl[] = {
108 #define CXGB4_UNIFIED_PF 0x4
109
110 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
111
112 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
113  * called for both.
114  */
115 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
116
117 #define CH_PCI_ID_TABLE_ENTRY(devid) \
118                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
119
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
121                 { 0, } \
122         }
123
124 #include "t4_pci_id_tbl.h"
125
126 #define FW4_FNAME "cxgb4/t4fw.bin"
127 #define FW5_FNAME "cxgb4/t5fw.bin"
128 #define FW6_FNAME "cxgb4/t6fw.bin"
129 #define FW4_CFNAME "cxgb4/t4-config.txt"
130 #define FW5_CFNAME "cxgb4/t5-config.txt"
131 #define FW6_CFNAME "cxgb4/t6-config.txt"
132 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
133 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
134 #define PHY_AQ1202_DEVICEID 0x4409
135 #define PHY_BCM84834_DEVICEID 0x4486
136
137 MODULE_DESCRIPTION(DRV_DESC);
138 MODULE_AUTHOR("Chelsio Communications");
139 MODULE_LICENSE("Dual BSD/GPL");
140 MODULE_VERSION(DRV_VERSION);
141 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
142 MODULE_FIRMWARE(FW4_FNAME);
143 MODULE_FIRMWARE(FW5_FNAME);
144 MODULE_FIRMWARE(FW6_FNAME);
145
146 /*
147  * The driver uses the best interrupt scheme available on a platform in the
148  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
149  * of these schemes the driver may consider as follows:
150  *
151  * msi = 2: choose from among all three options
152  * msi = 1: only consider MSI and INTx interrupts
153  * msi = 0: force INTx interrupts
154  */
155 static int msi = 2;
156
157 module_param(msi, int, 0644);
158 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
159
160 /*
161  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
162  * offset by 2 bytes in order to have the IP headers line up on 4-byte
163  * boundaries.  This is a requirement for many architectures which will throw
164  * a machine check fault if an attempt is made to access one of the 4-byte IP
165  * header fields on a non-4-byte boundary.  And it's a major performance issue
166  * even on some architectures which allow it like some implementations of the
167  * x86 ISA.  However, some architectures don't mind this and for some very
168  * edge-case performance sensitive applications (like forwarding large volumes
169  * of small packets), setting this DMA offset to 0 will decrease the number of
170  * PCI-E Bus transfers enough to measurably affect performance.
171  */
172 static int rx_dma_offset = 2;
173
174 /* TX Queue select used to determine what algorithm to use for selecting TX
175  * queue. Select between the kernel provided function (select_queue=0) or user
176  * cxgb_select_queue function (select_queue=1)
177  *
178  * Default: select_queue=0
179  */
180 static int select_queue;
181 module_param(select_queue, int, 0644);
182 MODULE_PARM_DESC(select_queue,
183                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
184
185 static struct dentry *cxgb4_debugfs_root;
186
187 LIST_HEAD(adapter_list);
188 DEFINE_MUTEX(uld_mutex);
189
190 static int cfg_queues(struct adapter *adap);
191
192 static void link_report(struct net_device *dev)
193 {
194         if (!netif_carrier_ok(dev))
195                 netdev_info(dev, "link down\n");
196         else {
197                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
198
199                 const char *s;
200                 const struct port_info *p = netdev_priv(dev);
201
202                 switch (p->link_cfg.speed) {
203                 case 100:
204                         s = "100Mbps";
205                         break;
206                 case 1000:
207                         s = "1Gbps";
208                         break;
209                 case 10000:
210                         s = "10Gbps";
211                         break;
212                 case 25000:
213                         s = "25Gbps";
214                         break;
215                 case 40000:
216                         s = "40Gbps";
217                         break;
218                 case 50000:
219                         s = "50Gbps";
220                         break;
221                 case 100000:
222                         s = "100Gbps";
223                         break;
224                 default:
225                         pr_info("%s: unsupported speed: %d\n",
226                                 dev->name, p->link_cfg.speed);
227                         return;
228                 }
229
230                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
231                             fc[p->link_cfg.fc]);
232         }
233 }
234
235 #ifdef CONFIG_CHELSIO_T4_DCB
236 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
237 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
238 {
239         struct port_info *pi = netdev_priv(dev);
240         struct adapter *adap = pi->adapter;
241         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
242         int i;
243
244         /* We use a simple mapping of Port TX Queue Index to DCB
245          * Priority when we're enabling DCB.
246          */
247         for (i = 0; i < pi->nqsets; i++, txq++) {
248                 u32 name, value;
249                 int err;
250
251                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
252                         FW_PARAMS_PARAM_X_V(
253                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
254                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
255                 value = enable ? i : 0xffffffff;
256
257                 /* Since we can be called while atomic (from "interrupt
258                  * level") we need to issue the Set Parameters Commannd
259                  * without sleeping (timeout < 0).
260                  */
261                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
262                                             &name, &value,
263                                             -FW_CMD_MAX_TIMEOUT);
264
265                 if (err)
266                         dev_err(adap->pdev_dev,
267                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
268                                 enable ? "set" : "unset", pi->port_id, i, -err);
269                 else
270                         txq->dcb_prio = enable ? value : 0;
271         }
272 }
273
274 int cxgb4_dcb_enabled(const struct net_device *dev)
275 {
276         struct port_info *pi = netdev_priv(dev);
277
278         if (!pi->dcb.enabled)
279                 return 0;
280
281         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
282                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
283 }
284 #endif /* CONFIG_CHELSIO_T4_DCB */
285
286 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
287 {
288         struct net_device *dev = adapter->port[port_id];
289
290         /* Skip changes from disabled ports. */
291         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
292                 if (link_stat)
293                         netif_carrier_on(dev);
294                 else {
295 #ifdef CONFIG_CHELSIO_T4_DCB
296                         if (cxgb4_dcb_enabled(dev)) {
297                                 cxgb4_dcb_reset(dev);
298                                 dcb_tx_queue_prio_enable(dev, false);
299                         }
300 #endif /* CONFIG_CHELSIO_T4_DCB */
301                         netif_carrier_off(dev);
302                 }
303
304                 link_report(dev);
305         }
306 }
307
308 void t4_os_portmod_changed(struct adapter *adap, int port_id)
309 {
310         static const char *mod_str[] = {
311                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
312         };
313
314         struct net_device *dev = adap->port[port_id];
315         struct port_info *pi = netdev_priv(dev);
316
317         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
318                 netdev_info(dev, "port module unplugged\n");
319         else if (pi->mod_type < ARRAY_SIZE(mod_str))
320                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
321         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
322                 netdev_info(dev, "%s: unsupported port module inserted\n",
323                             dev->name);
324         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
325                 netdev_info(dev, "%s: unknown port module inserted\n",
326                             dev->name);
327         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
328                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
329         else
330                 netdev_info(dev, "%s: unknown module type %d inserted\n",
331                             dev->name, pi->mod_type);
332
333         /* If the interface is running, then we'll need any "sticky" Link
334          * Parameters redone with a new Transceiver Module.
335          */
336         pi->link_cfg.redo_l1cfg = netif_running(dev);
337 }
338
339 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
340 module_param(dbfifo_int_thresh, int, 0644);
341 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
342
343 /*
344  * usecs to sleep while draining the dbfifo
345  */
346 static int dbfifo_drain_delay = 1000;
347 module_param(dbfifo_drain_delay, int, 0644);
348 MODULE_PARM_DESC(dbfifo_drain_delay,
349                  "usecs to sleep while draining the dbfifo");
350
351 static inline int cxgb4_set_addr_hash(struct port_info *pi)
352 {
353         struct adapter *adap = pi->adapter;
354         u64 vec = 0;
355         bool ucast = false;
356         struct hash_mac_addr *entry;
357
358         /* Calculate the hash vector for the updated list and program it */
359         list_for_each_entry(entry, &adap->mac_hlist, list) {
360                 ucast |= is_unicast_ether_addr(entry->addr);
361                 vec |= (1ULL << hash_mac_addr(entry->addr));
362         }
363         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
364                                 vec, false);
365 }
366
367 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
368 {
369         struct port_info *pi = netdev_priv(netdev);
370         struct adapter *adap = pi->adapter;
371         int ret;
372         u64 mhash = 0;
373         u64 uhash = 0;
374         /* idx stores the index of allocated filters,
375          * its size should be modified based on the number of
376          * MAC addresses that we allocate filters for
377          */
378
379         u16 idx[1] = {};
380         bool free = false;
381         bool ucast = is_unicast_ether_addr(mac_addr);
382         const u8 *maclist[1] = {mac_addr};
383         struct hash_mac_addr *new_entry;
384
385         ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
386                                    idx, ucast ? &uhash : &mhash, false);
387         if (ret < 0)
388                 goto out;
389         /* if hash != 0, then add the addr to hash addr list
390          * so on the end we will calculate the hash for the
391          * list and program it
392          */
393         if (uhash || mhash) {
394                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
395                 if (!new_entry)
396                         return -ENOMEM;
397                 ether_addr_copy(new_entry->addr, mac_addr);
398                 list_add_tail(&new_entry->list, &adap->mac_hlist);
399                 ret = cxgb4_set_addr_hash(pi);
400         }
401 out:
402         return ret < 0 ? ret : 0;
403 }
404
405 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
406 {
407         struct port_info *pi = netdev_priv(netdev);
408         struct adapter *adap = pi->adapter;
409         int ret;
410         const u8 *maclist[1] = {mac_addr};
411         struct hash_mac_addr *entry, *tmp;
412
413         /* If the MAC address to be removed is in the hash addr
414          * list, delete it from the list and update hash vector
415          */
416         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
417                 if (ether_addr_equal(entry->addr, mac_addr)) {
418                         list_del(&entry->list);
419                         kfree(entry);
420                         return cxgb4_set_addr_hash(pi);
421                 }
422         }
423
424         ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
425         return ret < 0 ? -EINVAL : 0;
426 }
427
428 /*
429  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
430  * If @mtu is -1 it is left unchanged.
431  */
432 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
433 {
434         struct port_info *pi = netdev_priv(dev);
435         struct adapter *adapter = pi->adapter;
436
437         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
438         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
439
440         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
441                              (dev->flags & IFF_PROMISC) ? 1 : 0,
442                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
443                              sleep_ok);
444 }
445
446 /**
447  *      cxgb4_change_mac - Update match filter for a MAC address.
448  *      @pi: the port_info
449  *      @viid: the VI id
450  *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
451  *                 or -1
452  *      @addr: the new MAC address value
453  *      @persist: whether a new MAC allocation should be persistent
454  *      @add_smt: if true also add the address to the HW SMT
455  *
456  *      Modifies an MPS filter and sets it to the new MAC address if
457  *      @tcam_idx >= 0, or adds the MAC address to a new filter if
458  *      @tcam_idx < 0. In the latter case the address is added persistently
459  *      if @persist is %true.
460  *      Addresses are programmed to hash region, if tcam runs out of entries.
461  *
462  */
463 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
464                      int *tcam_idx, const u8 *addr, bool persist,
465                      u8 *smt_idx)
466 {
467         struct adapter *adapter = pi->adapter;
468         struct hash_mac_addr *entry, *new_entry;
469         int ret;
470
471         ret = t4_change_mac(adapter, adapter->mbox, viid,
472                             *tcam_idx, addr, persist, smt_idx);
473         /* We ran out of TCAM entries. try programming hash region. */
474         if (ret == -ENOMEM) {
475                 /* If the MAC address to be updated is in the hash addr
476                  * list, update it from the list
477                  */
478                 list_for_each_entry(entry, &adapter->mac_hlist, list) {
479                         if (entry->iface_mac) {
480                                 ether_addr_copy(entry->addr, addr);
481                                 goto set_hash;
482                         }
483                 }
484                 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
485                 if (!new_entry)
486                         return -ENOMEM;
487                 ether_addr_copy(new_entry->addr, addr);
488                 new_entry->iface_mac = true;
489                 list_add_tail(&new_entry->list, &adapter->mac_hlist);
490 set_hash:
491                 ret = cxgb4_set_addr_hash(pi);
492         } else if (ret >= 0) {
493                 *tcam_idx = ret;
494                 ret = 0;
495         }
496
497         return ret;
498 }
499
500 /*
501  *      link_start - enable a port
502  *      @dev: the port to enable
503  *
504  *      Performs the MAC and PHY actions needed to enable a port.
505  */
506 static int link_start(struct net_device *dev)
507 {
508         int ret;
509         struct port_info *pi = netdev_priv(dev);
510         unsigned int mb = pi->adapter->pf;
511
512         /*
513          * We do not set address filters and promiscuity here, the stack does
514          * that step explicitly.
515          */
516         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
517                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
518         if (ret == 0)
519                 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
520                                             dev->dev_addr, true, &pi->smt_idx);
521         if (ret == 0)
522                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
523                                     &pi->link_cfg);
524         if (ret == 0) {
525                 local_bh_disable();
526                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
527                                           true, CXGB4_DCB_ENABLED);
528                 local_bh_enable();
529         }
530
531         return ret;
532 }
533
534 #ifdef CONFIG_CHELSIO_T4_DCB
535 /* Handle a Data Center Bridging update message from the firmware. */
536 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
537 {
538         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
539         struct net_device *dev = adap->port[adap->chan_map[port]];
540         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
541         int new_dcb_enabled;
542
543         cxgb4_dcb_handle_fw_update(adap, pcmd);
544         new_dcb_enabled = cxgb4_dcb_enabled(dev);
545
546         /* If the DCB has become enabled or disabled on the port then we're
547          * going to need to set up/tear down DCB Priority parameters for the
548          * TX Queues associated with the port.
549          */
550         if (new_dcb_enabled != old_dcb_enabled)
551                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
552 }
553 #endif /* CONFIG_CHELSIO_T4_DCB */
554
555 /* Response queue handler for the FW event queue.
556  */
557 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
558                           const struct pkt_gl *gl)
559 {
560         u8 opcode = ((const struct rss_header *)rsp)->opcode;
561
562         rsp++;                                          /* skip RSS header */
563
564         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
565          */
566         if (unlikely(opcode == CPL_FW4_MSG &&
567            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
568                 rsp++;
569                 opcode = ((const struct rss_header *)rsp)->opcode;
570                 rsp++;
571                 if (opcode != CPL_SGE_EGR_UPDATE) {
572                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
573                                 , opcode);
574                         goto out;
575                 }
576         }
577
578         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
579                 const struct cpl_sge_egr_update *p = (void *)rsp;
580                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
581                 struct sge_txq *txq;
582
583                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
584                 txq->restarts++;
585                 if (txq->q_type == CXGB4_TXQ_ETH) {
586                         struct sge_eth_txq *eq;
587
588                         eq = container_of(txq, struct sge_eth_txq, q);
589                         t4_sge_eth_txq_egress_update(q->adap, eq, -1);
590                 } else {
591                         struct sge_uld_txq *oq;
592
593                         oq = container_of(txq, struct sge_uld_txq, q);
594                         tasklet_schedule(&oq->qresume_tsk);
595                 }
596         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
597                 const struct cpl_fw6_msg *p = (void *)rsp;
598
599 #ifdef CONFIG_CHELSIO_T4_DCB
600                 const struct fw_port_cmd *pcmd = (const void *)p->data;
601                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
602                 unsigned int action =
603                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
604
605                 if (cmd == FW_PORT_CMD &&
606                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
607                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
608                         int port = FW_PORT_CMD_PORTID_G(
609                                         be32_to_cpu(pcmd->op_to_portid));
610                         struct net_device *dev;
611                         int dcbxdis, state_input;
612
613                         dev = q->adap->port[q->adap->chan_map[port]];
614                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
615                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
616                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
617                                & FW_PORT_CMD_DCBXDIS32_F));
618                         state_input = (dcbxdis
619                                        ? CXGB4_DCB_INPUT_FW_DISABLED
620                                        : CXGB4_DCB_INPUT_FW_ENABLED);
621
622                         cxgb4_dcb_state_fsm(dev, state_input);
623                 }
624
625                 if (cmd == FW_PORT_CMD &&
626                     action == FW_PORT_ACTION_L2_DCB_CFG)
627                         dcb_rpl(q->adap, pcmd);
628                 else
629 #endif
630                         if (p->type == 0)
631                                 t4_handle_fw_rpl(q->adap, p->data);
632         } else if (opcode == CPL_L2T_WRITE_RPL) {
633                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
634
635                 do_l2t_write_rpl(q->adap, p);
636         } else if (opcode == CPL_SMT_WRITE_RPL) {
637                 const struct cpl_smt_write_rpl *p = (void *)rsp;
638
639                 do_smt_write_rpl(q->adap, p);
640         } else if (opcode == CPL_SET_TCB_RPL) {
641                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
642
643                 filter_rpl(q->adap, p);
644         } else if (opcode == CPL_ACT_OPEN_RPL) {
645                 const struct cpl_act_open_rpl *p = (void *)rsp;
646
647                 hash_filter_rpl(q->adap, p);
648         } else if (opcode == CPL_ABORT_RPL_RSS) {
649                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
650
651                 hash_del_filter_rpl(q->adap, p);
652         } else if (opcode == CPL_SRQ_TABLE_RPL) {
653                 const struct cpl_srq_table_rpl *p = (void *)rsp;
654
655                 do_srq_table_rpl(q->adap, p);
656         } else
657                 dev_err(q->adap->pdev_dev,
658                         "unexpected CPL %#x on FW event queue\n", opcode);
659 out:
660         return 0;
661 }
662
663 static void disable_msi(struct adapter *adapter)
664 {
665         if (adapter->flags & CXGB4_USING_MSIX) {
666                 pci_disable_msix(adapter->pdev);
667                 adapter->flags &= ~CXGB4_USING_MSIX;
668         } else if (adapter->flags & CXGB4_USING_MSI) {
669                 pci_disable_msi(adapter->pdev);
670                 adapter->flags &= ~CXGB4_USING_MSI;
671         }
672 }
673
674 /*
675  * Interrupt handler for non-data events used with MSI-X.
676  */
677 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
678 {
679         struct adapter *adap = cookie;
680         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
681
682         if (v & PFSW_F) {
683                 adap->swintr = 1;
684                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
685         }
686         if (adap->flags & CXGB4_MASTER_PF)
687                 t4_slow_intr_handler(adap);
688         return IRQ_HANDLED;
689 }
690
691 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
692                        cpumask_var_t *aff_mask, int idx)
693 {
694         int rv;
695
696         if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
697                 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
698                 return -ENOMEM;
699         }
700
701         cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
702                         *aff_mask);
703
704         rv = irq_set_affinity_hint(vec, *aff_mask);
705         if (rv)
706                 dev_warn(adap->pdev_dev,
707                          "irq_set_affinity_hint %u failed %d\n",
708                          vec, rv);
709
710         return 0;
711 }
712
713 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
714 {
715         irq_set_affinity_hint(vec, NULL);
716         free_cpumask_var(aff_mask);
717 }
718
719 static int request_msix_queue_irqs(struct adapter *adap)
720 {
721         struct sge *s = &adap->sge;
722         struct msix_info *minfo;
723         int err, ethqidx;
724
725         if (s->fwevtq_msix_idx < 0)
726                 return -ENOMEM;
727
728         err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
729                           t4_sge_intr_msix, 0,
730                           adap->msix_info[s->fwevtq_msix_idx].desc,
731                           &s->fw_evtq);
732         if (err)
733                 return err;
734
735         for_each_ethrxq(s, ethqidx) {
736                 minfo = s->ethrxq[ethqidx].msix;
737                 err = request_irq(minfo->vec,
738                                   t4_sge_intr_msix, 0,
739                                   minfo->desc,
740                                   &s->ethrxq[ethqidx].rspq);
741                 if (err)
742                         goto unwind;
743
744                 cxgb4_set_msix_aff(adap, minfo->vec,
745                                    &minfo->aff_mask, ethqidx);
746         }
747         return 0;
748
749 unwind:
750         while (--ethqidx >= 0) {
751                 minfo = s->ethrxq[ethqidx].msix;
752                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
753                 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
754         }
755         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
756         return err;
757 }
758
759 static void free_msix_queue_irqs(struct adapter *adap)
760 {
761         struct sge *s = &adap->sge;
762         struct msix_info *minfo;
763         int i;
764
765         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
766         for_each_ethrxq(s, i) {
767                 minfo = s->ethrxq[i].msix;
768                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
769                 free_irq(minfo->vec, &s->ethrxq[i].rspq);
770         }
771 }
772
773 static int setup_ppod_edram(struct adapter *adap)
774 {
775         unsigned int param, val;
776         int ret;
777
778         /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
779          * if firmware supports ppod edram feature or not. If firmware
780          * returns 1, then driver can enable this feature by sending
781          * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
782          * enable ppod edram feature.
783          */
784         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
785                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
786
787         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
788         if (ret < 0) {
789                 dev_warn(adap->pdev_dev,
790                          "querying PPOD_EDRAM support failed: %d\n",
791                          ret);
792                 return -1;
793         }
794
795         if (val != 1)
796                 return -1;
797
798         ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
799         if (ret < 0) {
800                 dev_err(adap->pdev_dev,
801                         "setting PPOD_EDRAM failed: %d\n", ret);
802                 return -1;
803         }
804         return 0;
805 }
806
807 static void adap_config_hpfilter(struct adapter *adapter)
808 {
809         u32 param, val = 0;
810         int ret;
811
812         /* Enable HP filter region. Older fw will fail this request and
813          * it is fine.
814          */
815         param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
816         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
817                             1, &param, &val);
818
819         /* An error means FW doesn't know about HP filter support,
820          * it's not a problem, don't return an error.
821          */
822         if (ret < 0)
823                 dev_err(adapter->pdev_dev,
824                         "HP filter region isn't supported by FW\n");
825 }
826
827 /**
828  *      cxgb4_write_rss - write the RSS table for a given port
829  *      @pi: the port
830  *      @queues: array of queue indices for RSS
831  *
832  *      Sets up the portion of the HW RSS table for the port's VI to distribute
833  *      packets to the Rx queues in @queues.
834  *      Should never be called before setting up sge eth rx queues
835  */
836 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
837 {
838         u16 *rss;
839         int i, err;
840         struct adapter *adapter = pi->adapter;
841         const struct sge_eth_rxq *rxq;
842
843         rxq = &adapter->sge.ethrxq[pi->first_qset];
844         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
845         if (!rss)
846                 return -ENOMEM;
847
848         /* map the queue indices to queue ids */
849         for (i = 0; i < pi->rss_size; i++, queues++)
850                 rss[i] = rxq[*queues].rspq.abs_id;
851
852         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
853                                   pi->rss_size, rss, pi->rss_size);
854         /* If Tunnel All Lookup isn't specified in the global RSS
855          * Configuration, then we need to specify a default Ingress
856          * Queue for any ingress packets which aren't hashed.  We'll
857          * use our first ingress queue ...
858          */
859         if (!err)
860                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
861                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
862                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
863                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
864                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
865                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
866                                        rss[0]);
867         kfree(rss);
868         return err;
869 }
870
871 /**
872  *      setup_rss - configure RSS
873  *      @adap: the adapter
874  *
875  *      Sets up RSS for each port.
876  */
877 static int setup_rss(struct adapter *adap)
878 {
879         int i, j, err;
880
881         for_each_port(adap, i) {
882                 const struct port_info *pi = adap2pinfo(adap, i);
883
884                 /* Fill default values with equal distribution */
885                 for (j = 0; j < pi->rss_size; j++)
886                         pi->rss[j] = j % pi->nqsets;
887
888                 err = cxgb4_write_rss(pi, pi->rss);
889                 if (err)
890                         return err;
891         }
892         return 0;
893 }
894
895 /*
896  * Return the channel of the ingress queue with the given qid.
897  */
898 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
899 {
900         qid -= p->ingr_start;
901         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
902 }
903
904 void cxgb4_quiesce_rx(struct sge_rspq *q)
905 {
906         if (q->handler)
907                 napi_disable(&q->napi);
908 }
909
910 /*
911  * Wait until all NAPI handlers are descheduled.
912  */
913 static void quiesce_rx(struct adapter *adap)
914 {
915         int i;
916
917         for (i = 0; i < adap->sge.ingr_sz; i++) {
918                 struct sge_rspq *q = adap->sge.ingr_map[i];
919
920                 if (!q)
921                         continue;
922
923                 cxgb4_quiesce_rx(q);
924         }
925 }
926
927 /* Disable interrupt and napi handler */
928 static void disable_interrupts(struct adapter *adap)
929 {
930         struct sge *s = &adap->sge;
931
932         if (adap->flags & CXGB4_FULL_INIT_DONE) {
933                 t4_intr_disable(adap);
934                 if (adap->flags & CXGB4_USING_MSIX) {
935                         free_msix_queue_irqs(adap);
936                         free_irq(adap->msix_info[s->nd_msix_idx].vec,
937                                  adap);
938                 } else {
939                         free_irq(adap->pdev->irq, adap);
940                 }
941                 quiesce_rx(adap);
942         }
943 }
944
945 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
946 {
947         if (q->handler)
948                 napi_enable(&q->napi);
949
950         /* 0-increment GTS to start the timer and enable interrupts */
951         t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
952                      SEINTARM_V(q->intr_params) |
953                      INGRESSQID_V(q->cntxt_id));
954 }
955
956 /*
957  * Enable NAPI scheduling and interrupt generation for all Rx queues.
958  */
959 static void enable_rx(struct adapter *adap)
960 {
961         int i;
962
963         for (i = 0; i < adap->sge.ingr_sz; i++) {
964                 struct sge_rspq *q = adap->sge.ingr_map[i];
965
966                 if (!q)
967                         continue;
968
969                 cxgb4_enable_rx(adap, q);
970         }
971 }
972
973 static int setup_non_data_intr(struct adapter *adap)
974 {
975         int msix;
976
977         adap->sge.nd_msix_idx = -1;
978         if (!(adap->flags & CXGB4_USING_MSIX))
979                 return 0;
980
981         /* Request MSI-X vector for non-data interrupt */
982         msix = cxgb4_get_msix_idx_from_bmap(adap);
983         if (msix < 0)
984                 return -ENOMEM;
985
986         snprintf(adap->msix_info[msix].desc,
987                  sizeof(adap->msix_info[msix].desc),
988                  "%s", adap->port[0]->name);
989
990         adap->sge.nd_msix_idx = msix;
991         return 0;
992 }
993
994 static int setup_fw_sge_queues(struct adapter *adap)
995 {
996         struct sge *s = &adap->sge;
997         int msix, err = 0;
998
999         bitmap_zero(s->starving_fl, s->egr_sz);
1000         bitmap_zero(s->txq_maperr, s->egr_sz);
1001
1002         if (adap->flags & CXGB4_USING_MSIX) {
1003                 s->fwevtq_msix_idx = -1;
1004                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1005                 if (msix < 0)
1006                         return -ENOMEM;
1007
1008                 snprintf(adap->msix_info[msix].desc,
1009                          sizeof(adap->msix_info[msix].desc),
1010                          "%s-FWeventq", adap->port[0]->name);
1011         } else {
1012                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1013                                        NULL, NULL, NULL, -1);
1014                 if (err)
1015                         return err;
1016                 msix = -((int)s->intrq.abs_id + 1);
1017         }
1018
1019         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1020                                msix, NULL, fwevtq_handler, NULL, -1);
1021         if (err && msix >= 0)
1022                 cxgb4_free_msix_idx_in_bmap(adap, msix);
1023
1024         s->fwevtq_msix_idx = msix;
1025         return err;
1026 }
1027
1028 /**
1029  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1030  *      @adap: the adapter
1031  *
1032  *      Determines how many sets of SGE queues to use and initializes them.
1033  *      We support multiple queue sets per port if we have MSI-X, otherwise
1034  *      just one queue set per port.
1035  */
1036 static int setup_sge_queues(struct adapter *adap)
1037 {
1038         struct sge_uld_rxq_info *rxq_info = NULL;
1039         struct sge *s = &adap->sge;
1040         unsigned int cmplqid = 0;
1041         int err, i, j, msix = 0;
1042
1043         if (is_uld(adap))
1044                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1045
1046         if (!(adap->flags & CXGB4_USING_MSIX))
1047                 msix = -((int)s->intrq.abs_id + 1);
1048
1049         for_each_port(adap, i) {
1050                 struct net_device *dev = adap->port[i];
1051                 struct port_info *pi = netdev_priv(dev);
1052                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1053                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1054
1055                 for (j = 0; j < pi->nqsets; j++, q++) {
1056                         if (msix >= 0) {
1057                                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1058                                 if (msix < 0) {
1059                                         err = msix;
1060                                         goto freeout;
1061                                 }
1062
1063                                 snprintf(adap->msix_info[msix].desc,
1064                                          sizeof(adap->msix_info[msix].desc),
1065                                          "%s-Rx%d", dev->name, j);
1066                                 q->msix = &adap->msix_info[msix];
1067                         }
1068
1069                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1070                                                msix, &q->fl,
1071                                                t4_ethrx_handler,
1072                                                NULL,
1073                                                t4_get_tp_ch_map(adap,
1074                                                                 pi->tx_chan));
1075                         if (err)
1076                                 goto freeout;
1077                         q->rspq.idx = j;
1078                         memset(&q->stats, 0, sizeof(q->stats));
1079                 }
1080
1081                 q = &s->ethrxq[pi->first_qset];
1082                 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1083                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1084                                         netdev_get_tx_queue(dev, j),
1085                                         q->rspq.cntxt_id,
1086                                         !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1087                         if (err)
1088                                 goto freeout;
1089                 }
1090         }
1091
1092         for_each_port(adap, i) {
1093                 /* Note that cmplqid below is 0 if we don't
1094                  * have RDMA queues, and that's the right value.
1095                  */
1096                 if (rxq_info)
1097                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1098
1099                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1100                                             s->fw_evtq.cntxt_id, cmplqid);
1101                 if (err)
1102                         goto freeout;
1103         }
1104
1105         if (!is_t4(adap->params.chip)) {
1106                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1107                                            netdev_get_tx_queue(adap->port[0], 0)
1108                                            , s->fw_evtq.cntxt_id, false);
1109                 if (err)
1110                         goto freeout;
1111         }
1112
1113         t4_write_reg(adap, is_t4(adap->params.chip) ?
1114                                 MPS_TRC_RSS_CONTROL_A :
1115                                 MPS_T5_TRC_RSS_CONTROL_A,
1116                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1117                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1118         return 0;
1119 freeout:
1120         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1121         t4_free_sge_resources(adap);
1122         return err;
1123 }
1124
1125 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1126                              struct net_device *sb_dev)
1127 {
1128         int txq;
1129
1130 #ifdef CONFIG_CHELSIO_T4_DCB
1131         /* If a Data Center Bridging has been successfully negotiated on this
1132          * link then we'll use the skb's priority to map it to a TX Queue.
1133          * The skb's priority is determined via the VLAN Tag Priority Code
1134          * Point field.
1135          */
1136         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1137                 u16 vlan_tci;
1138                 int err;
1139
1140                 err = vlan_get_tag(skb, &vlan_tci);
1141                 if (unlikely(err)) {
1142                         if (net_ratelimit())
1143                                 netdev_warn(dev,
1144                                             "TX Packet without VLAN Tag on DCB Link\n");
1145                         txq = 0;
1146                 } else {
1147                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1148 #ifdef CONFIG_CHELSIO_T4_FCOE
1149                         if (skb->protocol == htons(ETH_P_FCOE))
1150                                 txq = skb->priority & 0x7;
1151 #endif /* CONFIG_CHELSIO_T4_FCOE */
1152                 }
1153                 return txq;
1154         }
1155 #endif /* CONFIG_CHELSIO_T4_DCB */
1156
1157         if (dev->num_tc) {
1158                 struct port_info *pi = netdev2pinfo(dev);
1159                 u8 ver, proto;
1160
1161                 ver = ip_hdr(skb)->version;
1162                 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1163                                      ip_hdr(skb)->protocol;
1164
1165                 /* Send unsupported traffic pattern to normal NIC queues. */
1166                 txq = netdev_pick_tx(dev, skb, sb_dev);
1167                 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1168                     skb->encapsulation ||
1169                     (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1170                         txq = txq % pi->nqsets;
1171
1172                 return txq;
1173         }
1174
1175         if (select_queue) {
1176                 txq = (skb_rx_queue_recorded(skb)
1177                         ? skb_get_rx_queue(skb)
1178                         : smp_processor_id());
1179
1180                 while (unlikely(txq >= dev->real_num_tx_queues))
1181                         txq -= dev->real_num_tx_queues;
1182
1183                 return txq;
1184         }
1185
1186         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1187 }
1188
1189 static int closest_timer(const struct sge *s, int time)
1190 {
1191         int i, delta, match = 0, min_delta = INT_MAX;
1192
1193         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1194                 delta = time - s->timer_val[i];
1195                 if (delta < 0)
1196                         delta = -delta;
1197                 if (delta < min_delta) {
1198                         min_delta = delta;
1199                         match = i;
1200                 }
1201         }
1202         return match;
1203 }
1204
1205 static int closest_thres(const struct sge *s, int thres)
1206 {
1207         int i, delta, match = 0, min_delta = INT_MAX;
1208
1209         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1210                 delta = thres - s->counter_val[i];
1211                 if (delta < 0)
1212                         delta = -delta;
1213                 if (delta < min_delta) {
1214                         min_delta = delta;
1215                         match = i;
1216                 }
1217         }
1218         return match;
1219 }
1220
1221 /**
1222  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1223  *      @q: the Rx queue
1224  *      @us: the hold-off time in us, or 0 to disable timer
1225  *      @cnt: the hold-off packet count, or 0 to disable counter
1226  *
1227  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1228  *      one of the two needs to be enabled for the queue to generate interrupts.
1229  */
1230 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1231                                unsigned int us, unsigned int cnt)
1232 {
1233         struct adapter *adap = q->adap;
1234
1235         if ((us | cnt) == 0)
1236                 cnt = 1;
1237
1238         if (cnt) {
1239                 int err;
1240                 u32 v, new_idx;
1241
1242                 new_idx = closest_thres(&adap->sge, cnt);
1243                 if (q->desc && q->pktcnt_idx != new_idx) {
1244                         /* the queue has already been created, update it */
1245                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1246                             FW_PARAMS_PARAM_X_V(
1247                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1248                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1249                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1250                                             &v, &new_idx);
1251                         if (err)
1252                                 return err;
1253                 }
1254                 q->pktcnt_idx = new_idx;
1255         }
1256
1257         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1258         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1259         return 0;
1260 }
1261
1262 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1263 {
1264         const struct port_info *pi = netdev_priv(dev);
1265         netdev_features_t changed = dev->features ^ features;
1266         int err;
1267
1268         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1269                 return 0;
1270
1271         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1272                             -1, -1, -1,
1273                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1274         if (unlikely(err))
1275                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1276         return err;
1277 }
1278
1279 static int setup_debugfs(struct adapter *adap)
1280 {
1281         if (IS_ERR_OR_NULL(adap->debugfs_root))
1282                 return -1;
1283
1284 #ifdef CONFIG_DEBUG_FS
1285         t4_setup_debugfs(adap);
1286 #endif
1287         return 0;
1288 }
1289
1290 /*
1291  * upper-layer driver support
1292  */
1293
1294 /*
1295  * Allocate an active-open TID and set it to the supplied value.
1296  */
1297 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1298 {
1299         int atid = -1;
1300
1301         spin_lock_bh(&t->atid_lock);
1302         if (t->afree) {
1303                 union aopen_entry *p = t->afree;
1304
1305                 atid = (p - t->atid_tab) + t->atid_base;
1306                 t->afree = p->next;
1307                 p->data = data;
1308                 t->atids_in_use++;
1309         }
1310         spin_unlock_bh(&t->atid_lock);
1311         return atid;
1312 }
1313 EXPORT_SYMBOL(cxgb4_alloc_atid);
1314
1315 /*
1316  * Release an active-open TID.
1317  */
1318 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1319 {
1320         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1321
1322         spin_lock_bh(&t->atid_lock);
1323         p->next = t->afree;
1324         t->afree = p;
1325         t->atids_in_use--;
1326         spin_unlock_bh(&t->atid_lock);
1327 }
1328 EXPORT_SYMBOL(cxgb4_free_atid);
1329
1330 /*
1331  * Allocate a server TID and set it to the supplied value.
1332  */
1333 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1334 {
1335         int stid;
1336
1337         spin_lock_bh(&t->stid_lock);
1338         if (family == PF_INET) {
1339                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1340                 if (stid < t->nstids)
1341                         __set_bit(stid, t->stid_bmap);
1342                 else
1343                         stid = -1;
1344         } else {
1345                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1346                 if (stid < 0)
1347                         stid = -1;
1348         }
1349         if (stid >= 0) {
1350                 t->stid_tab[stid].data = data;
1351                 stid += t->stid_base;
1352                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1353                  * This is equivalent to 4 TIDs. With CLIP enabled it
1354                  * needs 2 TIDs.
1355                  */
1356                 if (family == PF_INET6) {
1357                         t->stids_in_use += 2;
1358                         t->v6_stids_in_use += 2;
1359                 } else {
1360                         t->stids_in_use++;
1361                 }
1362         }
1363         spin_unlock_bh(&t->stid_lock);
1364         return stid;
1365 }
1366 EXPORT_SYMBOL(cxgb4_alloc_stid);
1367
1368 /* Allocate a server filter TID and set it to the supplied value.
1369  */
1370 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1371 {
1372         int stid;
1373
1374         spin_lock_bh(&t->stid_lock);
1375         if (family == PF_INET) {
1376                 stid = find_next_zero_bit(t->stid_bmap,
1377                                 t->nstids + t->nsftids, t->nstids);
1378                 if (stid < (t->nstids + t->nsftids))
1379                         __set_bit(stid, t->stid_bmap);
1380                 else
1381                         stid = -1;
1382         } else {
1383                 stid = -1;
1384         }
1385         if (stid >= 0) {
1386                 t->stid_tab[stid].data = data;
1387                 stid -= t->nstids;
1388                 stid += t->sftid_base;
1389                 t->sftids_in_use++;
1390         }
1391         spin_unlock_bh(&t->stid_lock);
1392         return stid;
1393 }
1394 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1395
1396 /* Release a server TID.
1397  */
1398 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1399 {
1400         /* Is it a server filter TID? */
1401         if (t->nsftids && (stid >= t->sftid_base)) {
1402                 stid -= t->sftid_base;
1403                 stid += t->nstids;
1404         } else {
1405                 stid -= t->stid_base;
1406         }
1407
1408         spin_lock_bh(&t->stid_lock);
1409         if (family == PF_INET)
1410                 __clear_bit(stid, t->stid_bmap);
1411         else
1412                 bitmap_release_region(t->stid_bmap, stid, 1);
1413         t->stid_tab[stid].data = NULL;
1414         if (stid < t->nstids) {
1415                 if (family == PF_INET6) {
1416                         t->stids_in_use -= 2;
1417                         t->v6_stids_in_use -= 2;
1418                 } else {
1419                         t->stids_in_use--;
1420                 }
1421         } else {
1422                 t->sftids_in_use--;
1423         }
1424
1425         spin_unlock_bh(&t->stid_lock);
1426 }
1427 EXPORT_SYMBOL(cxgb4_free_stid);
1428
1429 /*
1430  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1431  */
1432 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1433                            unsigned int tid)
1434 {
1435         struct cpl_tid_release *req;
1436
1437         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1438         req = __skb_put(skb, sizeof(*req));
1439         INIT_TP_WR(req, tid);
1440         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1441 }
1442
1443 /*
1444  * Queue a TID release request and if necessary schedule a work queue to
1445  * process it.
1446  */
1447 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1448                                     unsigned int tid)
1449 {
1450         struct adapter *adap = container_of(t, struct adapter, tids);
1451         void **p = &t->tid_tab[tid - t->tid_base];
1452
1453         spin_lock_bh(&adap->tid_release_lock);
1454         *p = adap->tid_release_head;
1455         /* Low 2 bits encode the Tx channel number */
1456         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1457         if (!adap->tid_release_task_busy) {
1458                 adap->tid_release_task_busy = true;
1459                 queue_work(adap->workq, &adap->tid_release_task);
1460         }
1461         spin_unlock_bh(&adap->tid_release_lock);
1462 }
1463
1464 /*
1465  * Process the list of pending TID release requests.
1466  */
1467 static void process_tid_release_list(struct work_struct *work)
1468 {
1469         struct sk_buff *skb;
1470         struct adapter *adap;
1471
1472         adap = container_of(work, struct adapter, tid_release_task);
1473
1474         spin_lock_bh(&adap->tid_release_lock);
1475         while (adap->tid_release_head) {
1476                 void **p = adap->tid_release_head;
1477                 unsigned int chan = (uintptr_t)p & 3;
1478                 p = (void *)p - chan;
1479
1480                 adap->tid_release_head = *p;
1481                 *p = NULL;
1482                 spin_unlock_bh(&adap->tid_release_lock);
1483
1484                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1485                                          GFP_KERNEL)))
1486                         schedule_timeout_uninterruptible(1);
1487
1488                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1489                 t4_ofld_send(adap, skb);
1490                 spin_lock_bh(&adap->tid_release_lock);
1491         }
1492         adap->tid_release_task_busy = false;
1493         spin_unlock_bh(&adap->tid_release_lock);
1494 }
1495
1496 /*
1497  * Release a TID and inform HW.  If we are unable to allocate the release
1498  * message we defer to a work queue.
1499  */
1500 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1501                       unsigned short family)
1502 {
1503         struct adapter *adap = container_of(t, struct adapter, tids);
1504         struct sk_buff *skb;
1505
1506         WARN_ON(tid_out_of_range(&adap->tids, tid));
1507
1508         if (t->tid_tab[tid - adap->tids.tid_base]) {
1509                 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1510                 atomic_dec(&t->conns_in_use);
1511                 if (t->hash_base && (tid >= t->hash_base)) {
1512                         if (family == AF_INET6)
1513                                 atomic_sub(2, &t->hash_tids_in_use);
1514                         else
1515                                 atomic_dec(&t->hash_tids_in_use);
1516                 } else {
1517                         if (family == AF_INET6)
1518                                 atomic_sub(2, &t->tids_in_use);
1519                         else
1520                                 atomic_dec(&t->tids_in_use);
1521                 }
1522         }
1523
1524         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1525         if (likely(skb)) {
1526                 mk_tid_release(skb, chan, tid);
1527                 t4_ofld_send(adap, skb);
1528         } else
1529                 cxgb4_queue_tid_release(t, chan, tid);
1530 }
1531 EXPORT_SYMBOL(cxgb4_remove_tid);
1532
1533 /*
1534  * Allocate and initialize the TID tables.  Returns 0 on success.
1535  */
1536 static int tid_init(struct tid_info *t)
1537 {
1538         struct adapter *adap = container_of(t, struct adapter, tids);
1539         unsigned int max_ftids = t->nftids + t->nsftids;
1540         unsigned int natids = t->natids;
1541         unsigned int hpftid_bmap_size;
1542         unsigned int eotid_bmap_size;
1543         unsigned int stid_bmap_size;
1544         unsigned int ftid_bmap_size;
1545         size_t size;
1546
1547         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1548         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1549         hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1550         eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1551         size = t->ntids * sizeof(*t->tid_tab) +
1552                natids * sizeof(*t->atid_tab) +
1553                t->nstids * sizeof(*t->stid_tab) +
1554                t->nsftids * sizeof(*t->stid_tab) +
1555                stid_bmap_size * sizeof(long) +
1556                t->nhpftids * sizeof(*t->hpftid_tab) +
1557                hpftid_bmap_size * sizeof(long) +
1558                max_ftids * sizeof(*t->ftid_tab) +
1559                ftid_bmap_size * sizeof(long) +
1560                t->neotids * sizeof(*t->eotid_tab) +
1561                eotid_bmap_size * sizeof(long);
1562
1563         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1564         if (!t->tid_tab)
1565                 return -ENOMEM;
1566
1567         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1568         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1569         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1570         t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1571         t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1572         t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1573         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1574         t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1575         t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1576         spin_lock_init(&t->stid_lock);
1577         spin_lock_init(&t->atid_lock);
1578         spin_lock_init(&t->ftid_lock);
1579
1580         t->stids_in_use = 0;
1581         t->v6_stids_in_use = 0;
1582         t->sftids_in_use = 0;
1583         t->afree = NULL;
1584         t->atids_in_use = 0;
1585         atomic_set(&t->tids_in_use, 0);
1586         atomic_set(&t->conns_in_use, 0);
1587         atomic_set(&t->hash_tids_in_use, 0);
1588
1589         /* Setup the free list for atid_tab and clear the stid bitmap. */
1590         if (natids) {
1591                 while (--natids)
1592                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1593                 t->afree = t->atid_tab;
1594         }
1595
1596         if (is_offload(adap)) {
1597                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1598                 /* Reserve stid 0 for T4/T5 adapters */
1599                 if (!t->stid_base &&
1600                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1601                         __set_bit(0, t->stid_bmap);
1602
1603                 if (t->neotids)
1604                         bitmap_zero(t->eotid_bmap, t->neotids);
1605         }
1606
1607         if (t->nhpftids)
1608                 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1609         bitmap_zero(t->ftid_bmap, t->nftids);
1610         return 0;
1611 }
1612
1613 /**
1614  *      cxgb4_create_server - create an IP server
1615  *      @dev: the device
1616  *      @stid: the server TID
1617  *      @sip: local IP address to bind server to
1618  *      @sport: the server's TCP port
1619  *      @queue: queue to direct messages from this server to
1620  *
1621  *      Create an IP server for the given port and address.
1622  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1623  */
1624 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1625                         __be32 sip, __be16 sport, __be16 vlan,
1626                         unsigned int queue)
1627 {
1628         unsigned int chan;
1629         struct sk_buff *skb;
1630         struct adapter *adap;
1631         struct cpl_pass_open_req *req;
1632         int ret;
1633
1634         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1635         if (!skb)
1636                 return -ENOMEM;
1637
1638         adap = netdev2adap(dev);
1639         req = __skb_put(skb, sizeof(*req));
1640         INIT_TP_WR(req, 0);
1641         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1642         req->local_port = sport;
1643         req->peer_port = htons(0);
1644         req->local_ip = sip;
1645         req->peer_ip = htonl(0);
1646         chan = rxq_to_chan(&adap->sge, queue);
1647         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1648         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1649                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1650         ret = t4_mgmt_tx(adap, skb);
1651         return net_xmit_eval(ret);
1652 }
1653 EXPORT_SYMBOL(cxgb4_create_server);
1654
1655 /*      cxgb4_create_server6 - create an IPv6 server
1656  *      @dev: the device
1657  *      @stid: the server TID
1658  *      @sip: local IPv6 address to bind server to
1659  *      @sport: the server's TCP port
1660  *      @queue: queue to direct messages from this server to
1661  *
1662  *      Create an IPv6 server for the given port and address.
1663  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1664  */
1665 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1666                          const struct in6_addr *sip, __be16 sport,
1667                          unsigned int queue)
1668 {
1669         unsigned int chan;
1670         struct sk_buff *skb;
1671         struct adapter *adap;
1672         struct cpl_pass_open_req6 *req;
1673         int ret;
1674
1675         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1676         if (!skb)
1677                 return -ENOMEM;
1678
1679         adap = netdev2adap(dev);
1680         req = __skb_put(skb, sizeof(*req));
1681         INIT_TP_WR(req, 0);
1682         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1683         req->local_port = sport;
1684         req->peer_port = htons(0);
1685         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1686         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1687         req->peer_ip_hi = cpu_to_be64(0);
1688         req->peer_ip_lo = cpu_to_be64(0);
1689         chan = rxq_to_chan(&adap->sge, queue);
1690         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1691         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1692                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1693         ret = t4_mgmt_tx(adap, skb);
1694         return net_xmit_eval(ret);
1695 }
1696 EXPORT_SYMBOL(cxgb4_create_server6);
1697
1698 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1699                         unsigned int queue, bool ipv6)
1700 {
1701         struct sk_buff *skb;
1702         struct adapter *adap;
1703         struct cpl_close_listsvr_req *req;
1704         int ret;
1705
1706         adap = netdev2adap(dev);
1707
1708         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1709         if (!skb)
1710                 return -ENOMEM;
1711
1712         req = __skb_put(skb, sizeof(*req));
1713         INIT_TP_WR(req, 0);
1714         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1715         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1716                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1717         ret = t4_mgmt_tx(adap, skb);
1718         return net_xmit_eval(ret);
1719 }
1720 EXPORT_SYMBOL(cxgb4_remove_server);
1721
1722 /**
1723  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1724  *      @mtus: the HW MTU table
1725  *      @mtu: the target MTU
1726  *      @idx: index of selected entry in the MTU table
1727  *
1728  *      Returns the index and the value in the HW MTU table that is closest to
1729  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1730  *      table, in which case that smallest available value is selected.
1731  */
1732 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1733                             unsigned int *idx)
1734 {
1735         unsigned int i = 0;
1736
1737         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1738                 ++i;
1739         if (idx)
1740                 *idx = i;
1741         return mtus[i];
1742 }
1743 EXPORT_SYMBOL(cxgb4_best_mtu);
1744
1745 /**
1746  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1747  *     @mtus: the HW MTU table
1748  *     @header_size: Header Size
1749  *     @data_size_max: maximum Data Segment Size
1750  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1751  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1752  *
1753  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1754  *     MTU Table based solely on a Maximum MTU parameter, we break that
1755  *     parameter up into a Header Size and Maximum Data Segment Size, and
1756  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1757  *     the Hardware MTU Table which will result in a Data Segment Size with
1758  *     the requested alignment _and_ that MTU isn't "too far" from the
1759  *     closest MTU, then we'll return that rather than the closest MTU.
1760  */
1761 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1762                                     unsigned short header_size,
1763                                     unsigned short data_size_max,
1764                                     unsigned short data_size_align,
1765                                     unsigned int *mtu_idxp)
1766 {
1767         unsigned short max_mtu = header_size + data_size_max;
1768         unsigned short data_size_align_mask = data_size_align - 1;
1769         int mtu_idx, aligned_mtu_idx;
1770
1771         /* Scan the MTU Table till we find an MTU which is larger than our
1772          * Maximum MTU or we reach the end of the table.  Along the way,
1773          * record the last MTU found, if any, which will result in a Data
1774          * Segment Length matching the requested alignment.
1775          */
1776         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1777                 unsigned short data_size = mtus[mtu_idx] - header_size;
1778
1779                 /* If this MTU minus the Header Size would result in a
1780                  * Data Segment Size of the desired alignment, remember it.
1781                  */
1782                 if ((data_size & data_size_align_mask) == 0)
1783                         aligned_mtu_idx = mtu_idx;
1784
1785                 /* If we're not at the end of the Hardware MTU Table and the
1786                  * next element is larger than our Maximum MTU, drop out of
1787                  * the loop.
1788                  */
1789                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1790                         break;
1791         }
1792
1793         /* If we fell out of the loop because we ran to the end of the table,
1794          * then we just have to use the last [largest] entry.
1795          */
1796         if (mtu_idx == NMTUS)
1797                 mtu_idx--;
1798
1799         /* If we found an MTU which resulted in the requested Data Segment
1800          * Length alignment and that's "not far" from the largest MTU which is
1801          * less than or equal to the maximum MTU, then use that.
1802          */
1803         if (aligned_mtu_idx >= 0 &&
1804             mtu_idx - aligned_mtu_idx <= 1)
1805                 mtu_idx = aligned_mtu_idx;
1806
1807         /* If the caller has passed in an MTU Index pointer, pass the
1808          * MTU Index back.  Return the MTU value.
1809          */
1810         if (mtu_idxp)
1811                 *mtu_idxp = mtu_idx;
1812         return mtus[mtu_idx];
1813 }
1814 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1815
1816 /**
1817  *      cxgb4_port_chan - get the HW channel of a port
1818  *      @dev: the net device for the port
1819  *
1820  *      Return the HW Tx channel of the given port.
1821  */
1822 unsigned int cxgb4_port_chan(const struct net_device *dev)
1823 {
1824         return netdev2pinfo(dev)->tx_chan;
1825 }
1826 EXPORT_SYMBOL(cxgb4_port_chan);
1827
1828 /**
1829  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1830  *      @dev: the net device for the port
1831  *
1832  *      Return the HW RX c-channel of the given port.
1833  */
1834 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1835 {
1836         return netdev2pinfo(dev)->rx_cchan;
1837 }
1838 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1839
1840 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1841 {
1842         struct adapter *adap = netdev2adap(dev);
1843         u32 v1, v2, lp_count, hp_count;
1844
1845         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1846         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1847         if (is_t4(adap->params.chip)) {
1848                 lp_count = LP_COUNT_G(v1);
1849                 hp_count = HP_COUNT_G(v1);
1850         } else {
1851                 lp_count = LP_COUNT_T5_G(v1);
1852                 hp_count = HP_COUNT_T5_G(v2);
1853         }
1854         return lpfifo ? lp_count : hp_count;
1855 }
1856 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1857
1858 /**
1859  *      cxgb4_port_viid - get the VI id of a port
1860  *      @dev: the net device for the port
1861  *
1862  *      Return the VI id of the given port.
1863  */
1864 unsigned int cxgb4_port_viid(const struct net_device *dev)
1865 {
1866         return netdev2pinfo(dev)->viid;
1867 }
1868 EXPORT_SYMBOL(cxgb4_port_viid);
1869
1870 /**
1871  *      cxgb4_port_idx - get the index of a port
1872  *      @dev: the net device for the port
1873  *
1874  *      Return the index of the given port.
1875  */
1876 unsigned int cxgb4_port_idx(const struct net_device *dev)
1877 {
1878         return netdev2pinfo(dev)->port_id;
1879 }
1880 EXPORT_SYMBOL(cxgb4_port_idx);
1881
1882 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1883                          struct tp_tcp_stats *v6)
1884 {
1885         struct adapter *adap = pci_get_drvdata(pdev);
1886
1887         spin_lock(&adap->stats_lock);
1888         t4_tp_get_tcp_stats(adap, v4, v6, false);
1889         spin_unlock(&adap->stats_lock);
1890 }
1891 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1892
1893 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1894                       const unsigned int *pgsz_order)
1895 {
1896         struct adapter *adap = netdev2adap(dev);
1897
1898         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1899         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1900                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1901                      HPZ3_V(pgsz_order[3]));
1902 }
1903 EXPORT_SYMBOL(cxgb4_iscsi_init);
1904
1905 int cxgb4_flush_eq_cache(struct net_device *dev)
1906 {
1907         struct adapter *adap = netdev2adap(dev);
1908
1909         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1910 }
1911 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1912
1913 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1914 {
1915         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1916         __be64 indices;
1917         int ret;
1918
1919         spin_lock(&adap->win0_lock);
1920         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1921                            sizeof(indices), (__be32 *)&indices,
1922                            T4_MEMORY_READ);
1923         spin_unlock(&adap->win0_lock);
1924         if (!ret) {
1925                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1926                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1927         }
1928         return ret;
1929 }
1930
1931 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1932                         u16 size)
1933 {
1934         struct adapter *adap = netdev2adap(dev);
1935         u16 hw_pidx, hw_cidx;
1936         int ret;
1937
1938         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1939         if (ret)
1940                 goto out;
1941
1942         if (pidx != hw_pidx) {
1943                 u16 delta;
1944                 u32 val;
1945
1946                 if (pidx >= hw_pidx)
1947                         delta = pidx - hw_pidx;
1948                 else
1949                         delta = size - hw_pidx + pidx;
1950
1951                 if (is_t4(adap->params.chip))
1952                         val = PIDX_V(delta);
1953                 else
1954                         val = PIDX_T5_V(delta);
1955                 wmb();
1956                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1957                              QID_V(qid) | val);
1958         }
1959 out:
1960         return ret;
1961 }
1962 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1963
1964 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1965 {
1966         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1967         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1968         u32 offset, memtype, memaddr;
1969         struct adapter *adap;
1970         u32 hma_size = 0;
1971         int ret;
1972
1973         adap = netdev2adap(dev);
1974
1975         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1976
1977         /* Figure out where the offset lands in the Memory Type/Address scheme.
1978          * This code assumes that the memory is laid out starting at offset 0
1979          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1980          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1981          * MC0, and some have both MC0 and MC1.
1982          */
1983         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1984         edc0_size = EDRAM0_SIZE_G(size) << 20;
1985         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1986         edc1_size = EDRAM1_SIZE_G(size) << 20;
1987         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1988         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1989
1990         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1991                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1992                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1993         }
1994         edc0_end = edc0_size;
1995         edc1_end = edc0_end + edc1_size;
1996         mc0_end = edc1_end + mc0_size;
1997
1998         if (offset < edc0_end) {
1999                 memtype = MEM_EDC0;
2000                 memaddr = offset;
2001         } else if (offset < edc1_end) {
2002                 memtype = MEM_EDC1;
2003                 memaddr = offset - edc0_end;
2004         } else {
2005                 if (hma_size && (offset < (edc1_end + hma_size))) {
2006                         memtype = MEM_HMA;
2007                         memaddr = offset - edc1_end;
2008                 } else if (offset < mc0_end) {
2009                         memtype = MEM_MC0;
2010                         memaddr = offset - edc1_end;
2011                 } else if (is_t5(adap->params.chip)) {
2012                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2013                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2014                         mc1_end = mc0_end + mc1_size;
2015                         if (offset < mc1_end) {
2016                                 memtype = MEM_MC1;
2017                                 memaddr = offset - mc0_end;
2018                         } else {
2019                                 /* offset beyond the end of any memory */
2020                                 goto err;
2021                         }
2022                 } else {
2023                         /* T4/T6 only has a single memory channel */
2024                         goto err;
2025                 }
2026         }
2027
2028         spin_lock(&adap->win0_lock);
2029         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2030         spin_unlock(&adap->win0_lock);
2031         return ret;
2032
2033 err:
2034         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2035                 stag, offset);
2036         return -EINVAL;
2037 }
2038 EXPORT_SYMBOL(cxgb4_read_tpte);
2039
2040 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2041 {
2042         u32 hi, lo;
2043         struct adapter *adap;
2044
2045         adap = netdev2adap(dev);
2046         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2047         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2048
2049         return ((u64)hi << 32) | (u64)lo;
2050 }
2051 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2052
2053 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2054                          unsigned int qid,
2055                          enum cxgb4_bar2_qtype qtype,
2056                          int user,
2057                          u64 *pbar2_qoffset,
2058                          unsigned int *pbar2_qid)
2059 {
2060         return t4_bar2_sge_qregs(netdev2adap(dev),
2061                                  qid,
2062                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2063                                   ? T4_BAR2_QTYPE_EGRESS
2064                                   : T4_BAR2_QTYPE_INGRESS),
2065                                  user,
2066                                  pbar2_qoffset,
2067                                  pbar2_qid);
2068 }
2069 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2070
2071 static struct pci_driver cxgb4_driver;
2072
2073 static void check_neigh_update(struct neighbour *neigh)
2074 {
2075         const struct device *parent;
2076         const struct net_device *netdev = neigh->dev;
2077
2078         if (is_vlan_dev(netdev))
2079                 netdev = vlan_dev_real_dev(netdev);
2080         parent = netdev->dev.parent;
2081         if (parent && parent->driver == &cxgb4_driver.driver)
2082                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2083 }
2084
2085 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2086                        void *data)
2087 {
2088         switch (event) {
2089         case NETEVENT_NEIGH_UPDATE:
2090                 check_neigh_update(data);
2091                 break;
2092         case NETEVENT_REDIRECT:
2093         default:
2094                 break;
2095         }
2096         return 0;
2097 }
2098
2099 static bool netevent_registered;
2100 static struct notifier_block cxgb4_netevent_nb = {
2101         .notifier_call = netevent_cb
2102 };
2103
2104 static void drain_db_fifo(struct adapter *adap, int usecs)
2105 {
2106         u32 v1, v2, lp_count, hp_count;
2107
2108         do {
2109                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2110                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2111                 if (is_t4(adap->params.chip)) {
2112                         lp_count = LP_COUNT_G(v1);
2113                         hp_count = HP_COUNT_G(v1);
2114                 } else {
2115                         lp_count = LP_COUNT_T5_G(v1);
2116                         hp_count = HP_COUNT_T5_G(v2);
2117                 }
2118
2119                 if (lp_count == 0 && hp_count == 0)
2120                         break;
2121                 set_current_state(TASK_UNINTERRUPTIBLE);
2122                 schedule_timeout(usecs_to_jiffies(usecs));
2123         } while (1);
2124 }
2125
2126 static void disable_txq_db(struct sge_txq *q)
2127 {
2128         unsigned long flags;
2129
2130         spin_lock_irqsave(&q->db_lock, flags);
2131         q->db_disabled = 1;
2132         spin_unlock_irqrestore(&q->db_lock, flags);
2133 }
2134
2135 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2136 {
2137         spin_lock_irq(&q->db_lock);
2138         if (q->db_pidx_inc) {
2139                 /* Make sure that all writes to the TX descriptors
2140                  * are committed before we tell HW about them.
2141                  */
2142                 wmb();
2143                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2144                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2145                 q->db_pidx_inc = 0;
2146         }
2147         q->db_disabled = 0;
2148         spin_unlock_irq(&q->db_lock);
2149 }
2150
2151 static void disable_dbs(struct adapter *adap)
2152 {
2153         int i;
2154
2155         for_each_ethrxq(&adap->sge, i)
2156                 disable_txq_db(&adap->sge.ethtxq[i].q);
2157         if (is_offload(adap)) {
2158                 struct sge_uld_txq_info *txq_info =
2159                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2160
2161                 if (txq_info) {
2162                         for_each_ofldtxq(&adap->sge, i) {
2163                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2164
2165                                 disable_txq_db(&txq->q);
2166                         }
2167                 }
2168         }
2169         for_each_port(adap, i)
2170                 disable_txq_db(&adap->sge.ctrlq[i].q);
2171 }
2172
2173 static void enable_dbs(struct adapter *adap)
2174 {
2175         int i;
2176
2177         for_each_ethrxq(&adap->sge, i)
2178                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2179         if (is_offload(adap)) {
2180                 struct sge_uld_txq_info *txq_info =
2181                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2182
2183                 if (txq_info) {
2184                         for_each_ofldtxq(&adap->sge, i) {
2185                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2186
2187                                 enable_txq_db(adap, &txq->q);
2188                         }
2189                 }
2190         }
2191         for_each_port(adap, i)
2192                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2193 }
2194
2195 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2196 {
2197         enum cxgb4_uld type = CXGB4_ULD_RDMA;
2198
2199         if (adap->uld && adap->uld[type].handle)
2200                 adap->uld[type].control(adap->uld[type].handle, cmd);
2201 }
2202
2203 static void process_db_full(struct work_struct *work)
2204 {
2205         struct adapter *adap;
2206
2207         adap = container_of(work, struct adapter, db_full_task);
2208
2209         drain_db_fifo(adap, dbfifo_drain_delay);
2210         enable_dbs(adap);
2211         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2212         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2214                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2215                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2216         else
2217                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2218                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2219 }
2220
2221 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2222 {
2223         u16 hw_pidx, hw_cidx;
2224         int ret;
2225
2226         spin_lock_irq(&q->db_lock);
2227         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2228         if (ret)
2229                 goto out;
2230         if (q->db_pidx != hw_pidx) {
2231                 u16 delta;
2232                 u32 val;
2233
2234                 if (q->db_pidx >= hw_pidx)
2235                         delta = q->db_pidx - hw_pidx;
2236                 else
2237                         delta = q->size - hw_pidx + q->db_pidx;
2238
2239                 if (is_t4(adap->params.chip))
2240                         val = PIDX_V(delta);
2241                 else
2242                         val = PIDX_T5_V(delta);
2243                 wmb();
2244                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2245                              QID_V(q->cntxt_id) | val);
2246         }
2247 out:
2248         q->db_disabled = 0;
2249         q->db_pidx_inc = 0;
2250         spin_unlock_irq(&q->db_lock);
2251         if (ret)
2252                 CH_WARN(adap, "DB drop recovery failed.\n");
2253 }
2254
2255 static void recover_all_queues(struct adapter *adap)
2256 {
2257         int i;
2258
2259         for_each_ethrxq(&adap->sge, i)
2260                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2261         if (is_offload(adap)) {
2262                 struct sge_uld_txq_info *txq_info =
2263                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2264                 if (txq_info) {
2265                         for_each_ofldtxq(&adap->sge, i) {
2266                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2267
2268                                 sync_txq_pidx(adap, &txq->q);
2269                         }
2270                 }
2271         }
2272         for_each_port(adap, i)
2273                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2274 }
2275
2276 static void process_db_drop(struct work_struct *work)
2277 {
2278         struct adapter *adap;
2279
2280         adap = container_of(work, struct adapter, db_drop_task);
2281
2282         if (is_t4(adap->params.chip)) {
2283                 drain_db_fifo(adap, dbfifo_drain_delay);
2284                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2285                 drain_db_fifo(adap, dbfifo_drain_delay);
2286                 recover_all_queues(adap);
2287                 drain_db_fifo(adap, dbfifo_drain_delay);
2288                 enable_dbs(adap);
2289                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2290         } else if (is_t5(adap->params.chip)) {
2291                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2292                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2293                 u16 pidx_inc = dropped_db & 0x1fff;
2294                 u64 bar2_qoffset;
2295                 unsigned int bar2_qid;
2296                 int ret;
2297
2298                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2299                                         0, &bar2_qoffset, &bar2_qid);
2300                 if (ret)
2301                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2302                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2303                 else
2304                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2305                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2306
2307                 /* Re-enable BAR2 WC */
2308                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2309         }
2310
2311         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2312                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2313 }
2314
2315 void t4_db_full(struct adapter *adap)
2316 {
2317         if (is_t4(adap->params.chip)) {
2318                 disable_dbs(adap);
2319                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2320                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2321                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2322                 queue_work(adap->workq, &adap->db_full_task);
2323         }
2324 }
2325
2326 void t4_db_dropped(struct adapter *adap)
2327 {
2328         if (is_t4(adap->params.chip)) {
2329                 disable_dbs(adap);
2330                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2331         }
2332         queue_work(adap->workq, &adap->db_drop_task);
2333 }
2334
2335 void t4_register_netevent_notifier(void)
2336 {
2337         if (!netevent_registered) {
2338                 register_netevent_notifier(&cxgb4_netevent_nb);
2339                 netevent_registered = true;
2340         }
2341 }
2342
2343 static void detach_ulds(struct adapter *adap)
2344 {
2345         unsigned int i;
2346
2347         mutex_lock(&uld_mutex);
2348         list_del(&adap->list_node);
2349
2350         for (i = 0; i < CXGB4_ULD_MAX; i++)
2351                 if (adap->uld && adap->uld[i].handle)
2352                         adap->uld[i].state_change(adap->uld[i].handle,
2353                                              CXGB4_STATE_DETACH);
2354
2355         if (netevent_registered && list_empty(&adapter_list)) {
2356                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2357                 netevent_registered = false;
2358         }
2359         mutex_unlock(&uld_mutex);
2360 }
2361
2362 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2363 {
2364         unsigned int i;
2365
2366         mutex_lock(&uld_mutex);
2367         for (i = 0; i < CXGB4_ULD_MAX; i++)
2368                 if (adap->uld && adap->uld[i].handle)
2369                         adap->uld[i].state_change(adap->uld[i].handle,
2370                                                   new_state);
2371         mutex_unlock(&uld_mutex);
2372 }
2373
2374 #if IS_ENABLED(CONFIG_IPV6)
2375 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2376                                    unsigned long event, void *data)
2377 {
2378         struct inet6_ifaddr *ifa = data;
2379         struct net_device *event_dev = ifa->idev->dev;
2380         const struct device *parent = NULL;
2381 #if IS_ENABLED(CONFIG_BONDING)
2382         struct adapter *adap;
2383 #endif
2384         if (is_vlan_dev(event_dev))
2385                 event_dev = vlan_dev_real_dev(event_dev);
2386 #if IS_ENABLED(CONFIG_BONDING)
2387         if (event_dev->flags & IFF_MASTER) {
2388                 list_for_each_entry(adap, &adapter_list, list_node) {
2389                         switch (event) {
2390                         case NETDEV_UP:
2391                                 cxgb4_clip_get(adap->port[0],
2392                                                (const u32 *)ifa, 1);
2393                                 break;
2394                         case NETDEV_DOWN:
2395                                 cxgb4_clip_release(adap->port[0],
2396                                                    (const u32 *)ifa, 1);
2397                                 break;
2398                         default:
2399                                 break;
2400                         }
2401                 }
2402                 return NOTIFY_OK;
2403         }
2404 #endif
2405
2406         if (event_dev)
2407                 parent = event_dev->dev.parent;
2408
2409         if (parent && parent->driver == &cxgb4_driver.driver) {
2410                 switch (event) {
2411                 case NETDEV_UP:
2412                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2413                         break;
2414                 case NETDEV_DOWN:
2415                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2416                         break;
2417                 default:
2418                         break;
2419                 }
2420         }
2421         return NOTIFY_OK;
2422 }
2423
2424 static bool inet6addr_registered;
2425 static struct notifier_block cxgb4_inet6addr_notifier = {
2426         .notifier_call = cxgb4_inet6addr_handler
2427 };
2428
2429 static void update_clip(const struct adapter *adap)
2430 {
2431         int i;
2432         struct net_device *dev;
2433         int ret;
2434
2435         rcu_read_lock();
2436
2437         for (i = 0; i < MAX_NPORTS; i++) {
2438                 dev = adap->port[i];
2439                 ret = 0;
2440
2441                 if (dev)
2442                         ret = cxgb4_update_root_dev_clip(dev);
2443
2444                 if (ret < 0)
2445                         break;
2446         }
2447         rcu_read_unlock();
2448 }
2449 #endif /* IS_ENABLED(CONFIG_IPV6) */
2450
2451 /**
2452  *      cxgb_up - enable the adapter
2453  *      @adap: adapter being enabled
2454  *
2455  *      Called when the first port is enabled, this function performs the
2456  *      actions necessary to make an adapter operational, such as completing
2457  *      the initialization of HW modules, and enabling interrupts.
2458  *
2459  *      Must be called with the rtnl lock held.
2460  */
2461 static int cxgb_up(struct adapter *adap)
2462 {
2463         struct sge *s = &adap->sge;
2464         int err;
2465
2466         mutex_lock(&uld_mutex);
2467         err = setup_sge_queues(adap);
2468         if (err)
2469                 goto rel_lock;
2470         err = setup_rss(adap);
2471         if (err)
2472                 goto freeq;
2473
2474         if (adap->flags & CXGB4_USING_MSIX) {
2475                 if (s->nd_msix_idx < 0) {
2476                         err = -ENOMEM;
2477                         goto irq_err;
2478                 }
2479
2480                 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2481                                   t4_nondata_intr, 0,
2482                                   adap->msix_info[s->nd_msix_idx].desc, adap);
2483                 if (err)
2484                         goto irq_err;
2485
2486                 err = request_msix_queue_irqs(adap);
2487                 if (err)
2488                         goto irq_err_free_nd_msix;
2489         } else {
2490                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2491                                   (adap->flags & CXGB4_USING_MSI) ? 0
2492                                                                   : IRQF_SHARED,
2493                                   adap->port[0]->name, adap);
2494                 if (err)
2495                         goto irq_err;
2496         }
2497
2498         enable_rx(adap);
2499         t4_sge_start(adap);
2500         t4_intr_enable(adap);
2501         adap->flags |= CXGB4_FULL_INIT_DONE;
2502         mutex_unlock(&uld_mutex);
2503
2504         notify_ulds(adap, CXGB4_STATE_UP);
2505 #if IS_ENABLED(CONFIG_IPV6)
2506         update_clip(adap);
2507 #endif
2508         return err;
2509
2510 irq_err_free_nd_msix:
2511         free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2512 irq_err:
2513         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2514 freeq:
2515         t4_free_sge_resources(adap);
2516 rel_lock:
2517         mutex_unlock(&uld_mutex);
2518         return err;
2519 }
2520
2521 static void cxgb_down(struct adapter *adapter)
2522 {
2523         cancel_work_sync(&adapter->tid_release_task);
2524         cancel_work_sync(&adapter->db_full_task);
2525         cancel_work_sync(&adapter->db_drop_task);
2526         adapter->tid_release_task_busy = false;
2527         adapter->tid_release_head = NULL;
2528
2529         t4_sge_stop(adapter);
2530         t4_free_sge_resources(adapter);
2531
2532         adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2533 }
2534
2535 /*
2536  * net_device operations
2537  */
2538 int cxgb_open(struct net_device *dev)
2539 {
2540         struct port_info *pi = netdev_priv(dev);
2541         struct adapter *adapter = pi->adapter;
2542         int err;
2543
2544         netif_carrier_off(dev);
2545
2546         if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2547                 err = cxgb_up(adapter);
2548                 if (err < 0)
2549                         return err;
2550         }
2551
2552         /* It's possible that the basic port information could have
2553          * changed since we first read it.
2554          */
2555         err = t4_update_port_info(pi);
2556         if (err < 0)
2557                 return err;
2558
2559         err = link_start(dev);
2560         if (!err)
2561                 netif_tx_start_all_queues(dev);
2562         return err;
2563 }
2564
2565 int cxgb_close(struct net_device *dev)
2566 {
2567         struct port_info *pi = netdev_priv(dev);
2568         struct adapter *adapter = pi->adapter;
2569         int ret;
2570
2571         netif_tx_stop_all_queues(dev);
2572         netif_carrier_off(dev);
2573         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2574                                   false, false, false);
2575 #ifdef CONFIG_CHELSIO_T4_DCB
2576         cxgb4_dcb_reset(dev);
2577         dcb_tx_queue_prio_enable(dev, false);
2578 #endif
2579         return ret;
2580 }
2581
2582 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2583                 __be32 sip, __be16 sport, __be16 vlan,
2584                 unsigned int queue, unsigned char port, unsigned char mask)
2585 {
2586         int ret;
2587         struct filter_entry *f;
2588         struct adapter *adap;
2589         int i;
2590         u8 *val;
2591
2592         adap = netdev2adap(dev);
2593
2594         /* Adjust stid to correct filter index */
2595         stid -= adap->tids.sftid_base;
2596         stid += adap->tids.nftids;
2597
2598         /* Check to make sure the filter requested is writable ...
2599          */
2600         f = &adap->tids.ftid_tab[stid];
2601         ret = writable_filter(f);
2602         if (ret)
2603                 return ret;
2604
2605         /* Clear out any old resources being used by the filter before
2606          * we start constructing the new filter.
2607          */
2608         if (f->valid)
2609                 clear_filter(adap, f);
2610
2611         /* Clear out filter specifications */
2612         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2613         f->fs.val.lport = cpu_to_be16(sport);
2614         f->fs.mask.lport  = ~0;
2615         val = (u8 *)&sip;
2616         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2617                 for (i = 0; i < 4; i++) {
2618                         f->fs.val.lip[i] = val[i];
2619                         f->fs.mask.lip[i] = ~0;
2620                 }
2621                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2622                         f->fs.val.iport = port;
2623                         f->fs.mask.iport = mask;
2624                 }
2625         }
2626
2627         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2628                 f->fs.val.proto = IPPROTO_TCP;
2629                 f->fs.mask.proto = ~0;
2630         }
2631
2632         f->fs.dirsteer = 1;
2633         f->fs.iq = queue;
2634         /* Mark filter as locked */
2635         f->locked = 1;
2636         f->fs.rpttid = 1;
2637
2638         /* Save the actual tid. We need this to get the corresponding
2639          * filter entry structure in filter_rpl.
2640          */
2641         f->tid = stid + adap->tids.ftid_base;
2642         ret = set_filter_wr(adap, stid);
2643         if (ret) {
2644                 clear_filter(adap, f);
2645                 return ret;
2646         }
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(cxgb4_create_server_filter);
2651
2652 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2653                 unsigned int queue, bool ipv6)
2654 {
2655         struct filter_entry *f;
2656         struct adapter *adap;
2657
2658         adap = netdev2adap(dev);
2659
2660         /* Adjust stid to correct filter index */
2661         stid -= adap->tids.sftid_base;
2662         stid += adap->tids.nftids;
2663
2664         f = &adap->tids.ftid_tab[stid];
2665         /* Unlock the filter */
2666         f->locked = 0;
2667
2668         return delete_filter(adap, stid);
2669 }
2670 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2671
2672 static void cxgb_get_stats(struct net_device *dev,
2673                            struct rtnl_link_stats64 *ns)
2674 {
2675         struct port_stats stats;
2676         struct port_info *p = netdev_priv(dev);
2677         struct adapter *adapter = p->adapter;
2678
2679         /* Block retrieving statistics during EEH error
2680          * recovery. Otherwise, the recovery might fail
2681          * and the PCI device will be removed permanently
2682          */
2683         spin_lock(&adapter->stats_lock);
2684         if (!netif_device_present(dev)) {
2685                 spin_unlock(&adapter->stats_lock);
2686                 return;
2687         }
2688         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2689                                  &p->stats_base);
2690         spin_unlock(&adapter->stats_lock);
2691
2692         ns->tx_bytes   = stats.tx_octets;
2693         ns->tx_packets = stats.tx_frames;
2694         ns->rx_bytes   = stats.rx_octets;
2695         ns->rx_packets = stats.rx_frames;
2696         ns->multicast  = stats.rx_mcast_frames;
2697
2698         /* detailed rx_errors */
2699         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2700                                stats.rx_runt;
2701         ns->rx_over_errors   = 0;
2702         ns->rx_crc_errors    = stats.rx_fcs_err;
2703         ns->rx_frame_errors  = stats.rx_symbol_err;
2704         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2705                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2706                                stats.rx_trunc0 + stats.rx_trunc1 +
2707                                stats.rx_trunc2 + stats.rx_trunc3;
2708         ns->rx_missed_errors = 0;
2709
2710         /* detailed tx_errors */
2711         ns->tx_aborted_errors   = 0;
2712         ns->tx_carrier_errors   = 0;
2713         ns->tx_fifo_errors      = 0;
2714         ns->tx_heartbeat_errors = 0;
2715         ns->tx_window_errors    = 0;
2716
2717         ns->tx_errors = stats.tx_error_frames;
2718         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2719                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2720 }
2721
2722 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2723 {
2724         unsigned int mbox;
2725         int ret = 0, prtad, devad;
2726         struct port_info *pi = netdev_priv(dev);
2727         struct adapter *adapter = pi->adapter;
2728         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2729
2730         switch (cmd) {
2731         case SIOCGMIIPHY:
2732                 if (pi->mdio_addr < 0)
2733                         return -EOPNOTSUPP;
2734                 data->phy_id = pi->mdio_addr;
2735                 break;
2736         case SIOCGMIIREG:
2737         case SIOCSMIIREG:
2738                 if (mdio_phy_id_is_c45(data->phy_id)) {
2739                         prtad = mdio_phy_id_prtad(data->phy_id);
2740                         devad = mdio_phy_id_devad(data->phy_id);
2741                 } else if (data->phy_id < 32) {
2742                         prtad = data->phy_id;
2743                         devad = 0;
2744                         data->reg_num &= 0x1f;
2745                 } else
2746                         return -EINVAL;
2747
2748                 mbox = pi->adapter->pf;
2749                 if (cmd == SIOCGMIIREG)
2750                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2751                                          data->reg_num, &data->val_out);
2752                 else
2753                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2754                                          data->reg_num, data->val_in);
2755                 break;
2756         case SIOCGHWTSTAMP:
2757                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2758                                     sizeof(pi->tstamp_config)) ?
2759                         -EFAULT : 0;
2760         case SIOCSHWTSTAMP:
2761                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2762                                    sizeof(pi->tstamp_config)))
2763                         return -EFAULT;
2764
2765                 if (!is_t4(adapter->params.chip)) {
2766                         switch (pi->tstamp_config.tx_type) {
2767                         case HWTSTAMP_TX_OFF:
2768                         case HWTSTAMP_TX_ON:
2769                                 break;
2770                         default:
2771                                 return -ERANGE;
2772                         }
2773
2774                         switch (pi->tstamp_config.rx_filter) {
2775                         case HWTSTAMP_FILTER_NONE:
2776                                 pi->rxtstamp = false;
2777                                 break;
2778                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2779                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2780                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2781                                                          PTP_TS_L4);
2782                                 break;
2783                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2784                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2785                                                          PTP_TS_L2_L4);
2786                                 break;
2787                         case HWTSTAMP_FILTER_ALL:
2788                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2789                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2790                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2791                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2792                                 pi->rxtstamp = true;
2793                                 break;
2794                         default:
2795                                 pi->tstamp_config.rx_filter =
2796                                         HWTSTAMP_FILTER_NONE;
2797                                 return -ERANGE;
2798                         }
2799
2800                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2801                             (pi->tstamp_config.rx_filter ==
2802                                 HWTSTAMP_FILTER_NONE)) {
2803                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2804                                         pi->ptp_enable = false;
2805                         }
2806
2807                         if (pi->tstamp_config.rx_filter !=
2808                                 HWTSTAMP_FILTER_NONE) {
2809                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2810                                                                  pi) >= 0)
2811                                         pi->ptp_enable = true;
2812                         }
2813                 } else {
2814                         /* For T4 Adapters */
2815                         switch (pi->tstamp_config.rx_filter) {
2816                         case HWTSTAMP_FILTER_NONE:
2817                         pi->rxtstamp = false;
2818                         break;
2819                         case HWTSTAMP_FILTER_ALL:
2820                         pi->rxtstamp = true;
2821                         break;
2822                         default:
2823                         pi->tstamp_config.rx_filter =
2824                         HWTSTAMP_FILTER_NONE;
2825                         return -ERANGE;
2826                         }
2827                 }
2828                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2829                                     sizeof(pi->tstamp_config)) ?
2830                         -EFAULT : 0;
2831         default:
2832                 return -EOPNOTSUPP;
2833         }
2834         return ret;
2835 }
2836
2837 static void cxgb_set_rxmode(struct net_device *dev)
2838 {
2839         /* unfortunately we can't return errors to the stack */
2840         set_rxmode(dev, -1, false);
2841 }
2842
2843 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2844 {
2845         int ret;
2846         struct port_info *pi = netdev_priv(dev);
2847
2848         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2849                             -1, -1, -1, true);
2850         if (!ret)
2851                 dev->mtu = new_mtu;
2852         return ret;
2853 }
2854
2855 #ifdef CONFIG_PCI_IOV
2856 static int cxgb4_mgmt_open(struct net_device *dev)
2857 {
2858         /* Turn carrier off since we don't have to transmit anything on this
2859          * interface.
2860          */
2861         netif_carrier_off(dev);
2862         return 0;
2863 }
2864
2865 /* Fill MAC address that will be assigned by the FW */
2866 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2867 {
2868         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2869         unsigned int i, vf, nvfs;
2870         u16 a, b;
2871         int err;
2872         u8 *na;
2873
2874         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2875                                                             PCI_CAP_ID_VPD);
2876         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2877         if (err)
2878                 return;
2879
2880         na = adap->params.vpd.na;
2881         for (i = 0; i < ETH_ALEN; i++)
2882                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2883                               hex2val(na[2 * i + 1]));
2884
2885         a = (hw_addr[0] << 8) | hw_addr[1];
2886         b = (hw_addr[1] << 8) | hw_addr[2];
2887         a ^= b;
2888         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2889         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2890         macaddr[0] = a >> 8;
2891         macaddr[1] = a & 0xff;
2892
2893         for (i = 2; i < 5; i++)
2894                 macaddr[i] = hw_addr[i + 1];
2895
2896         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2897                 vf < nvfs; vf++) {
2898                 macaddr[5] = adap->pf * nvfs + vf;
2899                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2900         }
2901 }
2902
2903 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2904 {
2905         struct port_info *pi = netdev_priv(dev);
2906         struct adapter *adap = pi->adapter;
2907         int ret;
2908
2909         /* verify MAC addr is valid */
2910         if (!is_valid_ether_addr(mac)) {
2911                 dev_err(pi->adapter->pdev_dev,
2912                         "Invalid Ethernet address %pM for VF %d\n",
2913                         mac, vf);
2914                 return -EINVAL;
2915         }
2916
2917         dev_info(pi->adapter->pdev_dev,
2918                  "Setting MAC %pM on VF %d\n", mac, vf);
2919         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2920         if (!ret)
2921                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2922         return ret;
2923 }
2924
2925 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2926                                     int vf, struct ifla_vf_info *ivi)
2927 {
2928         struct port_info *pi = netdev_priv(dev);
2929         struct adapter *adap = pi->adapter;
2930         struct vf_info *vfinfo;
2931
2932         if (vf >= adap->num_vfs)
2933                 return -EINVAL;
2934         vfinfo = &adap->vfinfo[vf];
2935
2936         ivi->vf = vf;
2937         ivi->max_tx_rate = vfinfo->tx_rate;
2938         ivi->min_tx_rate = 0;
2939         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2940         ivi->vlan = vfinfo->vlan;
2941         ivi->linkstate = vfinfo->link_state;
2942         return 0;
2943 }
2944
2945 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2946                                        struct netdev_phys_item_id *ppid)
2947 {
2948         struct port_info *pi = netdev_priv(dev);
2949         unsigned int phy_port_id;
2950
2951         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2952         ppid->id_len = sizeof(phy_port_id);
2953         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2954         return 0;
2955 }
2956
2957 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2958                                   int min_tx_rate, int max_tx_rate)
2959 {
2960         struct port_info *pi = netdev_priv(dev);
2961         struct adapter *adap = pi->adapter;
2962         unsigned int link_ok, speed, mtu;
2963         u32 fw_pfvf, fw_class;
2964         int class_id = vf;
2965         int ret;
2966         u16 pktsize;
2967
2968         if (vf >= adap->num_vfs)
2969                 return -EINVAL;
2970
2971         if (min_tx_rate) {
2972                 dev_err(adap->pdev_dev,
2973                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2974                         min_tx_rate, vf);
2975                 return -EINVAL;
2976         }
2977
2978         if (max_tx_rate == 0) {
2979                 /* unbind VF to to any Traffic Class */
2980                 fw_pfvf =
2981                     (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2982                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2983                 fw_class = 0xffffffff;
2984                 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2985                                     &fw_pfvf, &fw_class);
2986                 if (ret) {
2987                         dev_err(adap->pdev_dev,
2988                                 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2989                                 ret, adap->pf, vf);
2990                         return -EINVAL;
2991                 }
2992                 dev_info(adap->pdev_dev,
2993                          "PF %d VF %d is unbound from TX Rate Limiting\n",
2994                          adap->pf, vf);
2995                 adap->vfinfo[vf].tx_rate = 0;
2996                 return 0;
2997         }
2998
2999         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3000         if (ret != FW_SUCCESS) {
3001                 dev_err(adap->pdev_dev,
3002                         "Failed to get link information for VF %d\n", vf);
3003                 return -EINVAL;
3004         }
3005
3006         if (!link_ok) {
3007                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3008                 return -EINVAL;
3009         }
3010
3011         if (max_tx_rate > speed) {
3012                 dev_err(adap->pdev_dev,
3013                         "Max tx rate %d for VF %d can't be > link-speed %u",
3014                         max_tx_rate, vf, speed);
3015                 return -EINVAL;
3016         }
3017
3018         pktsize = mtu;
3019         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3020         pktsize = pktsize - sizeof(struct ethhdr) - 4;
3021         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3022         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3023         /* configure Traffic Class for rate-limiting */
3024         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3025                               SCHED_CLASS_LEVEL_CL_RL,
3026                               SCHED_CLASS_MODE_CLASS,
3027                               SCHED_CLASS_RATEUNIT_BITS,
3028                               SCHED_CLASS_RATEMODE_ABS,
3029                               pi->tx_chan, class_id, 0,
3030                               max_tx_rate * 1000, 0, pktsize);
3031         if (ret) {
3032                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3033                         ret);
3034                 return -EINVAL;
3035         }
3036         dev_info(adap->pdev_dev,
3037                  "Class %d with MSS %u configured with rate %u\n",
3038                  class_id, pktsize, max_tx_rate);
3039
3040         /* bind VF to configured Traffic Class */
3041         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3042                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3043         fw_class = class_id;
3044         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3045                             &fw_class);
3046         if (ret) {
3047                 dev_err(adap->pdev_dev,
3048                         "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3049                         ret, adap->pf, vf, class_id);
3050                 return -EINVAL;
3051         }
3052         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3053                  adap->pf, vf, class_id);
3054         adap->vfinfo[vf].tx_rate = max_tx_rate;
3055         return 0;
3056 }
3057
3058 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3059                                   u16 vlan, u8 qos, __be16 vlan_proto)
3060 {
3061         struct port_info *pi = netdev_priv(dev);
3062         struct adapter *adap = pi->adapter;
3063         int ret;
3064
3065         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3066                 return -EINVAL;
3067
3068         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3069                 return -EPROTONOSUPPORT;
3070
3071         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3072         if (!ret) {
3073                 adap->vfinfo[vf].vlan = vlan;
3074                 return 0;
3075         }
3076
3077         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3078                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3079         return ret;
3080 }
3081
3082 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3083                                         int link)
3084 {
3085         struct port_info *pi = netdev_priv(dev);
3086         struct adapter *adap = pi->adapter;
3087         u32 param, val;
3088         int ret = 0;
3089
3090         if (vf >= adap->num_vfs)
3091                 return -EINVAL;
3092
3093         switch (link) {
3094         case IFLA_VF_LINK_STATE_AUTO:
3095                 val = FW_VF_LINK_STATE_AUTO;
3096                 break;
3097
3098         case IFLA_VF_LINK_STATE_ENABLE:
3099                 val = FW_VF_LINK_STATE_ENABLE;
3100                 break;
3101
3102         case IFLA_VF_LINK_STATE_DISABLE:
3103                 val = FW_VF_LINK_STATE_DISABLE;
3104                 break;
3105
3106         default:
3107                 return -EINVAL;
3108         }
3109
3110         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3111                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3112         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3113                             &param, &val);
3114         if (ret) {
3115                 dev_err(adap->pdev_dev,
3116                         "Error %d in setting PF %d VF %d link state\n",
3117                         ret, adap->pf, vf);
3118                 return -EINVAL;
3119         }
3120
3121         adap->vfinfo[vf].link_state = link;
3122         return ret;
3123 }
3124 #endif /* CONFIG_PCI_IOV */
3125
3126 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3127 {
3128         int ret;
3129         struct sockaddr *addr = p;
3130         struct port_info *pi = netdev_priv(dev);
3131
3132         if (!is_valid_ether_addr(addr->sa_data))
3133                 return -EADDRNOTAVAIL;
3134
3135         ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3136                                     addr->sa_data, true, &pi->smt_idx);
3137         if (ret < 0)
3138                 return ret;
3139
3140         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3141         pi->xact_addr_filt = ret;
3142         return 0;
3143 }
3144
3145 #ifdef CONFIG_NET_POLL_CONTROLLER
3146 static void cxgb_netpoll(struct net_device *dev)
3147 {
3148         struct port_info *pi = netdev_priv(dev);
3149         struct adapter *adap = pi->adapter;
3150
3151         if (adap->flags & CXGB4_USING_MSIX) {
3152                 int i;
3153                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3154
3155                 for (i = pi->nqsets; i; i--, rx++)
3156                         t4_sge_intr_msix(0, &rx->rspq);
3157         } else
3158                 t4_intr_handler(adap)(0, adap);
3159 }
3160 #endif
3161
3162 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3163 {
3164         struct port_info *pi = netdev_priv(dev);
3165         struct adapter *adap = pi->adapter;
3166         struct ch_sched_queue qe = { 0 };
3167         struct ch_sched_params p = { 0 };
3168         struct sched_class *e;
3169         u32 req_rate;
3170         int err = 0;
3171
3172         if (!can_sched(dev))
3173                 return -ENOTSUPP;
3174
3175         if (index < 0 || index > pi->nqsets - 1)
3176                 return -EINVAL;
3177
3178         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3179                 dev_err(adap->pdev_dev,
3180                         "Failed to rate limit on queue %d. Link Down?\n",
3181                         index);
3182                 return -EINVAL;
3183         }
3184
3185         qe.queue = index;
3186         e = cxgb4_sched_queue_lookup(dev, &qe);
3187         if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3188                 dev_err(adap->pdev_dev,
3189                         "Queue %u already bound to class %u of type: %u\n",
3190                         index, e->idx, e->info.u.params.level);
3191                 return -EBUSY;
3192         }
3193
3194         /* Convert from Mbps to Kbps */
3195         req_rate = rate * 1000;
3196
3197         /* Max rate is 100 Gbps */
3198         if (req_rate > SCHED_MAX_RATE_KBPS) {
3199                 dev_err(adap->pdev_dev,
3200                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3201                         rate, SCHED_MAX_RATE_KBPS / 1000);
3202                 return -ERANGE;
3203         }
3204
3205         /* First unbind the queue from any existing class */
3206         memset(&qe, 0, sizeof(qe));
3207         qe.queue = index;
3208         qe.class = SCHED_CLS_NONE;
3209
3210         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3211         if (err) {
3212                 dev_err(adap->pdev_dev,
3213                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3214                         index, pi->port_id, err);
3215                 return err;
3216         }
3217
3218         /* Queue already unbound */
3219         if (!req_rate)
3220                 return 0;
3221
3222         /* Fetch any available unused or matching scheduling class */
3223         p.type = SCHED_CLASS_TYPE_PACKET;
3224         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3225         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3226         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3227         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3228         p.u.params.channel  = pi->tx_chan;
3229         p.u.params.class    = SCHED_CLS_NONE;
3230         p.u.params.minrate  = 0;
3231         p.u.params.maxrate  = req_rate;
3232         p.u.params.weight   = 0;
3233         p.u.params.pktsize  = dev->mtu;
3234
3235         e = cxgb4_sched_class_alloc(dev, &p);
3236         if (!e)
3237                 return -ENOMEM;
3238
3239         /* Bind the queue to a scheduling class */
3240         memset(&qe, 0, sizeof(qe));
3241         qe.queue = index;
3242         qe.class = e->idx;
3243
3244         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3245         if (err)
3246                 dev_err(adap->pdev_dev,
3247                         "Queue rate limiting failed. Err: %d\n", err);
3248         return err;
3249 }
3250
3251 static int cxgb_setup_tc_flower(struct net_device *dev,
3252                                 struct flow_cls_offload *cls_flower)
3253 {
3254         switch (cls_flower->command) {
3255         case FLOW_CLS_REPLACE:
3256                 return cxgb4_tc_flower_replace(dev, cls_flower);
3257         case FLOW_CLS_DESTROY:
3258                 return cxgb4_tc_flower_destroy(dev, cls_flower);
3259         case FLOW_CLS_STATS:
3260                 return cxgb4_tc_flower_stats(dev, cls_flower);
3261         default:
3262                 return -EOPNOTSUPP;
3263         }
3264 }
3265
3266 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3267                                  struct tc_cls_u32_offload *cls_u32)
3268 {
3269         switch (cls_u32->command) {
3270         case TC_CLSU32_NEW_KNODE:
3271         case TC_CLSU32_REPLACE_KNODE:
3272                 return cxgb4_config_knode(dev, cls_u32);
3273         case TC_CLSU32_DELETE_KNODE:
3274                 return cxgb4_delete_knode(dev, cls_u32);
3275         default:
3276                 return -EOPNOTSUPP;
3277         }
3278 }
3279
3280 static int cxgb_setup_tc_matchall(struct net_device *dev,
3281                                   struct tc_cls_matchall_offload *cls_matchall,
3282                                   bool ingress)
3283 {
3284         struct adapter *adap = netdev2adap(dev);
3285
3286         if (!adap->tc_matchall)
3287                 return -ENOMEM;
3288
3289         switch (cls_matchall->command) {
3290         case TC_CLSMATCHALL_REPLACE:
3291                 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3292         case TC_CLSMATCHALL_DESTROY:
3293                 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3294         case TC_CLSMATCHALL_STATS:
3295                 if (ingress)
3296                         return cxgb4_tc_matchall_stats(dev, cls_matchall);
3297                 break;
3298         default:
3299                 break;
3300         }
3301
3302         return -EOPNOTSUPP;
3303 }
3304
3305 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3306                                           void *type_data, void *cb_priv)
3307 {
3308         struct net_device *dev = cb_priv;
3309         struct port_info *pi = netdev2pinfo(dev);
3310         struct adapter *adap = netdev2adap(dev);
3311
3312         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3313                 dev_err(adap->pdev_dev,
3314                         "Failed to setup tc on port %d. Link Down?\n",
3315                         pi->port_id);
3316                 return -EINVAL;
3317         }
3318
3319         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3320                 return -EOPNOTSUPP;
3321
3322         switch (type) {
3323         case TC_SETUP_CLSU32:
3324                 return cxgb_setup_tc_cls_u32(dev, type_data);
3325         case TC_SETUP_CLSFLOWER:
3326                 return cxgb_setup_tc_flower(dev, type_data);
3327         case TC_SETUP_CLSMATCHALL:
3328                 return cxgb_setup_tc_matchall(dev, type_data, true);
3329         default:
3330                 return -EOPNOTSUPP;
3331         }
3332 }
3333
3334 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3335                                          void *type_data, void *cb_priv)
3336 {
3337         struct net_device *dev = cb_priv;
3338         struct port_info *pi = netdev2pinfo(dev);
3339         struct adapter *adap = netdev2adap(dev);
3340
3341         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3342                 dev_err(adap->pdev_dev,
3343                         "Failed to setup tc on port %d. Link Down?\n",
3344                         pi->port_id);
3345                 return -EINVAL;
3346         }
3347
3348         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3349                 return -EOPNOTSUPP;
3350
3351         switch (type) {
3352         case TC_SETUP_CLSMATCHALL:
3353                 return cxgb_setup_tc_matchall(dev, type_data, false);
3354         default:
3355                 break;
3356         }
3357
3358         return -EOPNOTSUPP;
3359 }
3360
3361 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3362                                 struct tc_mqprio_qopt_offload *mqprio)
3363 {
3364         struct adapter *adap = netdev2adap(dev);
3365
3366         if (!is_ethofld(adap) || !adap->tc_mqprio)
3367                 return -ENOMEM;
3368
3369         return cxgb4_setup_tc_mqprio(dev, mqprio);
3370 }
3371
3372 static LIST_HEAD(cxgb_block_cb_list);
3373
3374 static int cxgb_setup_tc_block(struct net_device *dev,
3375                                struct flow_block_offload *f)
3376 {
3377         struct port_info *pi = netdev_priv(dev);
3378         flow_setup_cb_t *cb;
3379         bool ingress_only;
3380
3381         pi->tc_block_shared = f->block_shared;
3382         if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3383                 cb = cxgb_setup_tc_block_egress_cb;
3384                 ingress_only = false;
3385         } else {
3386                 cb = cxgb_setup_tc_block_ingress_cb;
3387                 ingress_only = true;
3388         }
3389
3390         return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3391                                           cb, pi, dev, ingress_only);
3392 }
3393
3394 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3395                          void *type_data)
3396 {
3397         switch (type) {
3398         case TC_SETUP_QDISC_MQPRIO:
3399                 return cxgb_setup_tc_mqprio(dev, type_data);
3400         case TC_SETUP_BLOCK:
3401                 return cxgb_setup_tc_block(dev, type_data);
3402         default:
3403                 return -EOPNOTSUPP;
3404         }
3405 }
3406
3407 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3408                                 struct udp_tunnel_info *ti)
3409 {
3410         struct port_info *pi = netdev_priv(netdev);
3411         struct adapter *adapter = pi->adapter;
3412         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3413         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3414         int ret = 0, i;
3415
3416         if (chip_ver < CHELSIO_T6)
3417                 return;
3418
3419         switch (ti->type) {
3420         case UDP_TUNNEL_TYPE_VXLAN:
3421                 if (!adapter->vxlan_port_cnt ||
3422                     adapter->vxlan_port != ti->port)
3423                         return; /* Invalid VxLAN destination port */
3424
3425                 adapter->vxlan_port_cnt--;
3426                 if (adapter->vxlan_port_cnt)
3427                         return;
3428
3429                 adapter->vxlan_port = 0;
3430                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3431                 break;
3432         case UDP_TUNNEL_TYPE_GENEVE:
3433                 if (!adapter->geneve_port_cnt ||
3434                     adapter->geneve_port != ti->port)
3435                         return; /* Invalid GENEVE destination port */
3436
3437                 adapter->geneve_port_cnt--;
3438                 if (adapter->geneve_port_cnt)
3439                         return;
3440
3441                 adapter->geneve_port = 0;
3442                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3443                 break;
3444         default:
3445                 return;
3446         }
3447
3448         /* Matchall mac entries can be deleted only after all tunnel ports
3449          * are brought down or removed.
3450          */
3451         if (!adapter->rawf_cnt)
3452                 return;
3453         for_each_port(adapter, i) {
3454                 pi = adap2pinfo(adapter, i);
3455                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3456                                            match_all_mac, match_all_mac,
3457                                            adapter->rawf_start +
3458                                             pi->port_id,
3459                                            1, pi->port_id, false);
3460                 if (ret < 0) {
3461                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3462                                     i);
3463                         return;
3464                 }
3465         }
3466 }
3467
3468 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3469                                 struct udp_tunnel_info *ti)
3470 {
3471         struct port_info *pi = netdev_priv(netdev);
3472         struct adapter *adapter = pi->adapter;
3473         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3474         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3475         int i, ret;
3476
3477         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3478                 return;
3479
3480         switch (ti->type) {
3481         case UDP_TUNNEL_TYPE_VXLAN:
3482                 /* Callback for adding vxlan port can be called with the same
3483                  * port for both IPv4 and IPv6. We should not disable the
3484                  * offloading when the same port for both protocols is added
3485                  * and later one of them is removed.
3486                  */
3487                 if (adapter->vxlan_port_cnt &&
3488                     adapter->vxlan_port == ti->port) {
3489                         adapter->vxlan_port_cnt++;
3490                         return;
3491                 }
3492
3493                 /* We will support only one VxLAN port */
3494                 if (adapter->vxlan_port_cnt) {
3495                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3496                                     be16_to_cpu(adapter->vxlan_port),
3497                                     be16_to_cpu(ti->port));
3498                         return;
3499                 }
3500
3501                 adapter->vxlan_port = ti->port;
3502                 adapter->vxlan_port_cnt = 1;
3503
3504                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3505                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3506                 break;
3507         case UDP_TUNNEL_TYPE_GENEVE:
3508                 if (adapter->geneve_port_cnt &&
3509                     adapter->geneve_port == ti->port) {
3510                         adapter->geneve_port_cnt++;
3511                         return;
3512                 }
3513
3514                 /* We will support only one GENEVE port */
3515                 if (adapter->geneve_port_cnt) {
3516                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3517                                     be16_to_cpu(adapter->geneve_port),
3518                                     be16_to_cpu(ti->port));
3519                         return;
3520                 }
3521
3522                 adapter->geneve_port = ti->port;
3523                 adapter->geneve_port_cnt = 1;
3524
3525                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3526                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3527                 break;
3528         default:
3529                 return;
3530         }
3531
3532         /* Create a 'match all' mac filter entry for inner mac,
3533          * if raw mac interface is supported. Once the linux kernel provides
3534          * driver entry points for adding/deleting the inner mac addresses,
3535          * we will remove this 'match all' entry and fallback to adding
3536          * exact match filters.
3537          */
3538         for_each_port(adapter, i) {
3539                 pi = adap2pinfo(adapter, i);
3540
3541                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3542                                             match_all_mac,
3543                                             match_all_mac,
3544                                             adapter->rawf_start +
3545                                             pi->port_id,
3546                                             1, pi->port_id, false);
3547                 if (ret < 0) {
3548                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3549                                     be16_to_cpu(ti->port));
3550                         cxgb_del_udp_tunnel(netdev, ti);
3551                         return;
3552                 }
3553         }
3554 }
3555
3556 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3557                                              struct net_device *dev,
3558                                              netdev_features_t features)
3559 {
3560         struct port_info *pi = netdev_priv(dev);
3561         struct adapter *adapter = pi->adapter;
3562
3563         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3564                 return features;
3565
3566         /* Check if hw supports offload for this packet */
3567         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3568                 return features;
3569
3570         /* Offload is not supported for this encapsulated packet */
3571         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3572 }
3573
3574 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3575                                            netdev_features_t features)
3576 {
3577         /* Disable GRO, if RX_CSUM is disabled */
3578         if (!(features & NETIF_F_RXCSUM))
3579                 features &= ~NETIF_F_GRO;
3580
3581         return features;
3582 }
3583
3584 static const struct net_device_ops cxgb4_netdev_ops = {
3585         .ndo_open             = cxgb_open,
3586         .ndo_stop             = cxgb_close,
3587         .ndo_start_xmit       = t4_start_xmit,
3588         .ndo_select_queue     = cxgb_select_queue,
3589         .ndo_get_stats64      = cxgb_get_stats,
3590         .ndo_set_rx_mode      = cxgb_set_rxmode,
3591         .ndo_set_mac_address  = cxgb_set_mac_addr,
3592         .ndo_set_features     = cxgb_set_features,
3593         .ndo_validate_addr    = eth_validate_addr,
3594         .ndo_do_ioctl         = cxgb_ioctl,
3595         .ndo_change_mtu       = cxgb_change_mtu,
3596 #ifdef CONFIG_NET_POLL_CONTROLLER
3597         .ndo_poll_controller  = cxgb_netpoll,
3598 #endif
3599 #ifdef CONFIG_CHELSIO_T4_FCOE
3600         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3601         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3602 #endif /* CONFIG_CHELSIO_T4_FCOE */
3603         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3604         .ndo_setup_tc         = cxgb_setup_tc,
3605         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3606         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3607         .ndo_features_check   = cxgb_features_check,
3608         .ndo_fix_features     = cxgb_fix_features,
3609 };
3610
3611 #ifdef CONFIG_PCI_IOV
3612 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3613         .ndo_open               = cxgb4_mgmt_open,
3614         .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3615         .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3616         .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3617         .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3618         .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3619         .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3620 };
3621 #endif
3622
3623 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3624                                    struct ethtool_drvinfo *info)
3625 {
3626         struct adapter *adapter = netdev2adap(dev);
3627
3628         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3629         strlcpy(info->version, cxgb4_driver_version,
3630                 sizeof(info->version));
3631         strlcpy(info->bus_info, pci_name(adapter->pdev),
3632                 sizeof(info->bus_info));
3633 }
3634
3635 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3636         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3637 };
3638
3639 static void notify_fatal_err(struct work_struct *work)
3640 {
3641         struct adapter *adap;
3642
3643         adap = container_of(work, struct adapter, fatal_err_notify_task);
3644         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3645 }
3646
3647 void t4_fatal_err(struct adapter *adap)
3648 {
3649         int port;
3650
3651         if (pci_channel_offline(adap->pdev))
3652                 return;
3653
3654         /* Disable the SGE since ULDs are going to free resources that
3655          * could be exposed to the adapter.  RDMA MWs for example...
3656          */
3657         t4_shutdown_adapter(adap);
3658         for_each_port(adap, port) {
3659                 struct net_device *dev = adap->port[port];
3660
3661                 /* If we get here in very early initialization the network
3662                  * devices may not have been set up yet.
3663                  */
3664                 if (!dev)
3665                         continue;
3666
3667                 netif_tx_stop_all_queues(dev);
3668                 netif_carrier_off(dev);
3669         }
3670         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3671         queue_work(adap->workq, &adap->fatal_err_notify_task);
3672 }
3673
3674 static void setup_memwin(struct adapter *adap)
3675 {
3676         u32 nic_win_base = t4_get_util_window(adap);
3677
3678         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3679 }
3680
3681 static void setup_memwin_rdma(struct adapter *adap)
3682 {
3683         if (adap->vres.ocq.size) {
3684                 u32 start;
3685                 unsigned int sz_kb;
3686
3687                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3688                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3689                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3690                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3691                 t4_write_reg(adap,
3692                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3693                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3694                 t4_write_reg(adap,
3695                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3696                              adap->vres.ocq.start);
3697                 t4_read_reg(adap,
3698                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3699         }
3700 }
3701
3702 /* HMA Definitions */
3703
3704 /* The maximum number of address that can be send in a single FW cmd */
3705 #define HMA_MAX_ADDR_IN_CMD     5
3706
3707 #define HMA_PAGE_SIZE           PAGE_SIZE
3708
3709 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3710
3711 #define HMA_PAGE_ORDER                                  \
3712         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3713         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3714
3715 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3716  * configuration(in units of MB).
3717  */
3718 #define HMA_MIN_TOTAL_SIZE      1
3719 #define HMA_MAX_TOTAL_SIZE                              \
3720         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3721           HMA_MAX_NO_FW_ADDRESS) >> 20)
3722
3723 static void adap_free_hma_mem(struct adapter *adapter)
3724 {
3725         struct scatterlist *iter;
3726         struct page *page;
3727         int i;
3728
3729         if (!adapter->hma.sgt)
3730                 return;
3731
3732         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3733                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3734                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3735                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3736         }
3737
3738         for_each_sg(adapter->hma.sgt->sgl, iter,
3739                     adapter->hma.sgt->orig_nents, i) {
3740                 page = sg_page(iter);
3741                 if (page)
3742                         __free_pages(page, HMA_PAGE_ORDER);
3743         }
3744
3745         kfree(adapter->hma.phy_addr);
3746         sg_free_table(adapter->hma.sgt);
3747         kfree(adapter->hma.sgt);
3748         adapter->hma.sgt = NULL;
3749 }
3750
3751 static int adap_config_hma(struct adapter *adapter)
3752 {
3753         struct scatterlist *sgl, *iter;
3754         struct sg_table *sgt;
3755         struct page *newpage;
3756         unsigned int i, j, k;
3757         u32 param, hma_size;
3758         unsigned int ncmds;
3759         size_t page_size;
3760         u32 page_order;
3761         int node, ret;
3762
3763         /* HMA is supported only for T6+ cards.
3764          * Avoid initializing HMA in kdump kernels.
3765          */
3766         if (is_kdump_kernel() ||
3767             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3768                 return 0;
3769
3770         /* Get the HMA region size required by fw */
3771         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3772                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3773         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3774                               1, &param, &hma_size);
3775         /* An error means card has its own memory or HMA is not supported by
3776          * the firmware. Return without any errors.
3777          */
3778         if (ret || !hma_size)
3779                 return 0;
3780
3781         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3782             hma_size > HMA_MAX_TOTAL_SIZE) {
3783                 dev_err(adapter->pdev_dev,
3784                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3785                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3786                 return -EINVAL;
3787         }
3788
3789         page_size = HMA_PAGE_SIZE;
3790         page_order = HMA_PAGE_ORDER;
3791         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3792         if (unlikely(!adapter->hma.sgt)) {
3793                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3794                 return -ENOMEM;
3795         }
3796         sgt = adapter->hma.sgt;
3797         /* FW returned value will be in MB's
3798          */
3799         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3800         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3801                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3802                 kfree(adapter->hma.sgt);
3803                 adapter->hma.sgt = NULL;
3804                 return -ENOMEM;
3805         }
3806
3807         sgl = adapter->hma.sgt->sgl;
3808         node = dev_to_node(adapter->pdev_dev);
3809         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3810                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3811                                            __GFP_ZERO, page_order);
3812                 if (!newpage) {
3813                         dev_err(adapter->pdev_dev,
3814                                 "Not enough memory for HMA page allocation\n");
3815                         ret = -ENOMEM;
3816                         goto free_hma;
3817                 }
3818                 sg_set_page(iter, newpage, page_size << page_order, 0);
3819         }
3820
3821         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3822                                 DMA_BIDIRECTIONAL);
3823         if (!sgt->nents) {
3824                 dev_err(adapter->pdev_dev,
3825                         "Not enough memory for HMA DMA mapping");
3826                 ret = -ENOMEM;
3827                 goto free_hma;
3828         }
3829         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3830
3831         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3832                                         GFP_KERNEL);
3833         if (unlikely(!adapter->hma.phy_addr))
3834                 goto free_hma;
3835
3836         for_each_sg(sgl, iter, sgt->nents, i) {
3837                 newpage = sg_page(iter);
3838                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3839         }
3840
3841         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3842         /* Pass on the addresses to firmware */
3843         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3844                 struct fw_hma_cmd hma_cmd;
3845                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3846                 u8 soc = 0, eoc = 0;
3847                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3848
3849                 soc = (i == 0) ? 1 : 0;
3850                 eoc = (i == ncmds - 1) ? 1 : 0;
3851
3852                 /* For last cmd, set naddr corresponding to remaining
3853                  * addresses
3854                  */
3855                 if (i == ncmds - 1) {
3856                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3857                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3858                 }
3859                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3860                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3861                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3862                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3863
3864                 hma_cmd.mode_to_pcie_params =
3865                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3866                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3867
3868                 /* HMA cmd size specified in MB's */
3869                 hma_cmd.naddr_size =
3870                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3871                               FW_HMA_CMD_NADDR_V(naddr));
3872
3873                 /* Total Page size specified in units of 4K */
3874                 hma_cmd.addr_size_pkd =
3875                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3876                                 ((page_size << page_order) >> 12));
3877
3878                 /* Fill the 5 addresses */
3879                 for (j = 0; j < naddr; j++) {
3880                         hma_cmd.phy_address[j] =
3881                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3882                 }
3883                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3884                                  sizeof(hma_cmd), &hma_cmd);
3885                 if (ret) {
3886                         dev_err(adapter->pdev_dev,
3887                                 "HMA FW command failed with err %d\n", ret);
3888                         goto free_hma;
3889                 }
3890         }
3891
3892         if (!ret)
3893                 dev_info(adapter->pdev_dev,
3894                          "Reserved %uMB host memory for HMA\n", hma_size);
3895         return ret;
3896
3897 free_hma:
3898         adap_free_hma_mem(adapter);
3899         return ret;
3900 }
3901
3902 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3903 {
3904         u32 v;
3905         int ret;
3906
3907         /* Now that we've successfully configured and initialized the adapter
3908          * can ask the Firmware what resources it has provisioned for us.
3909          */
3910         ret = t4_get_pfres(adap);
3911         if (ret) {
3912                 dev_err(adap->pdev_dev,
3913                         "Unable to retrieve resource provisioning information\n");
3914                 return ret;
3915         }
3916
3917         /* get device capabilities */
3918         memset(c, 0, sizeof(*c));
3919         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3920                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3921         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3922         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3923         if (ret < 0)
3924                 return ret;
3925
3926         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3927                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3928         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3929         if (ret < 0)
3930                 return ret;
3931
3932         ret = t4_config_glbl_rss(adap, adap->pf,
3933                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3934                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3935                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3936         if (ret < 0)
3937                 return ret;
3938
3939         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3940                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3941                           FW_CMD_CAP_PF);
3942         if (ret < 0)
3943                 return ret;
3944
3945         t4_sge_init(adap);
3946
3947         /* tweak some settings */
3948         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3949         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3950         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3951         v = t4_read_reg(adap, TP_PIO_DATA_A);
3952         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3953
3954         /* first 4 Tx modulation queues point to consecutive Tx channels */
3955         adap->params.tp.tx_modq_map = 0xE4;
3956         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3957                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3958
3959         /* associate each Tx modulation queue with consecutive Tx channels */
3960         v = 0x84218421;
3961         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3962                           &v, 1, TP_TX_SCHED_HDR_A);
3963         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3964                           &v, 1, TP_TX_SCHED_FIFO_A);
3965         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3966                           &v, 1, TP_TX_SCHED_PCMD_A);
3967
3968 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3969         if (is_offload(adap)) {
3970                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3971                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3972                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3973                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3974                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3975                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3976                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3977                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3978                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3979                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3980         }
3981
3982         /* get basic stuff going */
3983         return t4_early_init(adap, adap->pf);
3984 }
3985
3986 /*
3987  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3988  */
3989 #define MAX_ATIDS 8192U
3990
3991 /*
3992  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3993  *
3994  * If the firmware we're dealing with has Configuration File support, then
3995  * we use that to perform all configuration
3996  */
3997
3998 /*
3999  * Tweak configuration based on module parameters, etc.  Most of these have
4000  * defaults assigned to them by Firmware Configuration Files (if we're using
4001  * them) but need to be explicitly set if we're using hard-coded
4002  * initialization.  But even in the case of using Firmware Configuration
4003  * Files, we'd like to expose the ability to change these via module
4004  * parameters so these are essentially common tweaks/settings for
4005  * Configuration Files and hard-coded initialization ...
4006  */
4007 static int adap_init0_tweaks(struct adapter *adapter)
4008 {
4009         /*
4010          * Fix up various Host-Dependent Parameters like Page Size, Cache
4011          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4012          * 64B Cache Line Size ...
4013          */
4014         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4015
4016         /*
4017          * Process module parameters which affect early initialization.
4018          */
4019         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4020                 dev_err(&adapter->pdev->dev,
4021                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4022                         rx_dma_offset);
4023                 rx_dma_offset = 2;
4024         }
4025         t4_set_reg_field(adapter, SGE_CONTROL_A,
4026                          PKTSHIFT_V(PKTSHIFT_M),
4027                          PKTSHIFT_V(rx_dma_offset));
4028
4029         /*
4030          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4031          * adds the pseudo header itself.
4032          */
4033         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4034                                CSUM_HAS_PSEUDO_HDR_F, 0);
4035
4036         return 0;
4037 }
4038
4039 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4040  * unto themselves and they contain their own firmware to perform their
4041  * tasks ...
4042  */
4043 static int phy_aq1202_version(const u8 *phy_fw_data,
4044                               size_t phy_fw_size)
4045 {
4046         int offset;
4047
4048         /* At offset 0x8 you're looking for the primary image's
4049          * starting offset which is 3 Bytes wide
4050          *
4051          * At offset 0xa of the primary image, you look for the offset
4052          * of the DRAM segment which is 3 Bytes wide.
4053          *
4054          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4055          * wide
4056          */
4057         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4058         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4059         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4060
4061         offset = le24(phy_fw_data + 0x8) << 12;
4062         offset = le24(phy_fw_data + offset + 0xa);
4063         return be16(phy_fw_data + offset + 0x27e);
4064
4065         #undef be16
4066         #undef le16
4067         #undef le24
4068 }
4069
4070 static struct info_10gbt_phy_fw {
4071         unsigned int phy_fw_id;         /* PCI Device ID */
4072         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
4073         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4074         int phy_flash;                  /* Has FLASH for PHY Firmware */
4075 } phy_info_array[] = {
4076         {
4077                 PHY_AQ1202_DEVICEID,
4078                 PHY_AQ1202_FIRMWARE,
4079                 phy_aq1202_version,
4080                 1,
4081         },
4082         {
4083                 PHY_BCM84834_DEVICEID,
4084                 PHY_BCM84834_FIRMWARE,
4085                 NULL,
4086                 0,
4087         },
4088         { 0, NULL, NULL },
4089 };
4090
4091 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4092 {
4093         int i;
4094
4095         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4096                 if (phy_info_array[i].phy_fw_id == devid)
4097                         return &phy_info_array[i];
4098         }
4099         return NULL;
4100 }
4101
4102 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4103  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4104  * we return a negative error number.  If we transfer new firmware we return 1
4105  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4106  */
4107 static int adap_init0_phy(struct adapter *adap)
4108 {
4109         const struct firmware *phyf;
4110         int ret;
4111         struct info_10gbt_phy_fw *phy_info;
4112
4113         /* Use the device ID to determine which PHY file to flash.
4114          */
4115         phy_info = find_phy_info(adap->pdev->device);
4116         if (!phy_info) {
4117                 dev_warn(adap->pdev_dev,
4118                          "No PHY Firmware file found for this PHY\n");
4119                 return -EOPNOTSUPP;
4120         }
4121
4122         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4123          * use that. The adapter firmware provides us with a memory buffer
4124          * where we can load a PHY firmware file from the host if we want to
4125          * override the PHY firmware File in flash.
4126          */
4127         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4128                                       adap->pdev_dev);
4129         if (ret < 0) {
4130                 /* For adapters without FLASH attached to PHY for their
4131                  * firmware, it's obviously a fatal error if we can't get the
4132                  * firmware to the adapter.  For adapters with PHY firmware
4133                  * FLASH storage, it's worth a warning if we can't find the
4134                  * PHY Firmware but we'll neuter the error ...
4135                  */
4136                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4137                         "/lib/firmware/%s, error %d\n",
4138                         phy_info->phy_fw_file, -ret);
4139                 if (phy_info->phy_flash) {
4140                         int cur_phy_fw_ver = 0;
4141
4142                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4143                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4144                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
4145                         ret = 0;
4146                 }
4147
4148                 return ret;
4149         }
4150
4151         /* Load PHY Firmware onto adapter.
4152          */
4153         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
4154                              phy_info->phy_fw_version,
4155                              (u8 *)phyf->data, phyf->size);
4156         if (ret < 0)
4157                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4158                         -ret);
4159         else if (ret > 0) {
4160                 int new_phy_fw_ver = 0;
4161
4162                 if (phy_info->phy_fw_version)
4163                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4164                                                                   phyf->size);
4165                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4166                          "Firmware /lib/firmware/%s, version %#x\n",
4167                          phy_info->phy_fw_file, new_phy_fw_ver);
4168         }
4169
4170         release_firmware(phyf);
4171
4172         return ret;
4173 }
4174
4175 /*
4176  * Attempt to initialize the adapter via a Firmware Configuration File.
4177  */
4178 static int adap_init0_config(struct adapter *adapter, int reset)
4179 {
4180         char *fw_config_file, fw_config_file_path[256];
4181         u32 finiver, finicsum, cfcsum, param, val;
4182         struct fw_caps_config_cmd caps_cmd;
4183         unsigned long mtype = 0, maddr = 0;
4184         const struct firmware *cf;
4185         char *config_name = NULL;
4186         int config_issued = 0;
4187         int ret;
4188
4189         /*
4190          * Reset device if necessary.
4191          */
4192         if (reset) {
4193                 ret = t4_fw_reset(adapter, adapter->mbox,
4194                                   PIORSTMODE_F | PIORST_F);
4195                 if (ret < 0)
4196                         goto bye;
4197         }
4198
4199         /* If this is a 10Gb/s-BT adapter make sure the chip-external
4200          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4201          * to be performed after any global adapter RESET above since some
4202          * PHYs only have local RAM copies of the PHY firmware.
4203          */
4204         if (is_10gbt_device(adapter->pdev->device)) {
4205                 ret = adap_init0_phy(adapter);
4206                 if (ret < 0)
4207                         goto bye;
4208         }
4209         /*
4210          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4211          * then use that.  Otherwise, use the configuration file stored
4212          * in the adapter flash ...
4213          */
4214         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4215         case CHELSIO_T4:
4216                 fw_config_file = FW4_CFNAME;
4217                 break;
4218         case CHELSIO_T5:
4219                 fw_config_file = FW5_CFNAME;
4220                 break;
4221         case CHELSIO_T6:
4222                 fw_config_file = FW6_CFNAME;
4223                 break;
4224         default:
4225                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4226                        adapter->pdev->device);
4227                 ret = -EINVAL;
4228                 goto bye;
4229         }
4230
4231         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4232         if (ret < 0) {
4233                 config_name = "On FLASH";
4234                 mtype = FW_MEMTYPE_CF_FLASH;
4235                 maddr = t4_flash_cfg_addr(adapter);
4236         } else {
4237                 u32 params[7], val[7];
4238
4239                 sprintf(fw_config_file_path,
4240                         "/lib/firmware/%s", fw_config_file);
4241                 config_name = fw_config_file_path;
4242
4243                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4244                         ret = -ENOMEM;
4245                 else {
4246                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4247                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4248                         ret = t4_query_params(adapter, adapter->mbox,
4249                                               adapter->pf, 0, 1, params, val);
4250                         if (ret == 0) {
4251                                 /*
4252                                  * For t4_memory_rw() below addresses and
4253                                  * sizes have to be in terms of multiples of 4
4254                                  * bytes.  So, if the Configuration File isn't
4255                                  * a multiple of 4 bytes in length we'll have
4256                                  * to write that out separately since we can't
4257                                  * guarantee that the bytes following the
4258                                  * residual byte in the buffer returned by
4259                                  * request_firmware() are zeroed out ...
4260                                  */
4261                                 size_t resid = cf->size & 0x3;
4262                                 size_t size = cf->size & ~0x3;
4263                                 __be32 *data = (__be32 *)cf->data;
4264
4265                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4266                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4267
4268                                 spin_lock(&adapter->win0_lock);
4269                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4270                                                    size, data, T4_MEMORY_WRITE);
4271                                 if (ret == 0 && resid != 0) {
4272                                         union {
4273                                                 __be32 word;
4274                                                 char buf[4];
4275                                         } last;
4276                                         int i;
4277
4278                                         last.word = data[size >> 2];
4279                                         for (i = resid; i < 4; i++)
4280                                                 last.buf[i] = 0;
4281                                         ret = t4_memory_rw(adapter, 0, mtype,
4282                                                            maddr + size,
4283                                                            4, &last.word,
4284                                                            T4_MEMORY_WRITE);
4285                                 }
4286                                 spin_unlock(&adapter->win0_lock);
4287                         }
4288                 }
4289
4290                 release_firmware(cf);
4291                 if (ret)
4292                         goto bye;
4293         }
4294
4295         val = 0;
4296
4297         /* Ofld + Hash filter is supported. Older fw will fail this request and
4298          * it is fine.
4299          */
4300         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4301                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4302         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4303                             1, &param, &val);
4304
4305         /* FW doesn't know about Hash filter + ofld support,
4306          * it's not a problem, don't return an error.
4307          */
4308         if (ret < 0) {
4309                 dev_warn(adapter->pdev_dev,
4310                          "Hash filter with ofld is not supported by FW\n");
4311         }
4312
4313         /*
4314          * Issue a Capability Configuration command to the firmware to get it
4315          * to parse the Configuration File.  We don't use t4_fw_config_file()
4316          * because we want the ability to modify various features after we've
4317          * processed the configuration file ...
4318          */
4319         memset(&caps_cmd, 0, sizeof(caps_cmd));
4320         caps_cmd.op_to_write =
4321                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4322                       FW_CMD_REQUEST_F |
4323                       FW_CMD_READ_F);
4324         caps_cmd.cfvalid_to_len16 =
4325                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4326                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4327                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4328                       FW_LEN16(caps_cmd));
4329         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4330                          &caps_cmd);
4331
4332         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4333          * Configuration File in FLASH), our last gasp effort is to use the
4334          * Firmware Configuration File which is embedded in the firmware.  A
4335          * very few early versions of the firmware didn't have one embedded
4336          * but we can ignore those.
4337          */
4338         if (ret == -ENOENT) {
4339                 memset(&caps_cmd, 0, sizeof(caps_cmd));
4340                 caps_cmd.op_to_write =
4341                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4342                                         FW_CMD_REQUEST_F |
4343                                         FW_CMD_READ_F);
4344                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4345                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4346                                 sizeof(caps_cmd), &caps_cmd);
4347                 config_name = "Firmware Default";
4348         }
4349
4350         config_issued = 1;
4351         if (ret < 0)
4352                 goto bye;
4353
4354         finiver = ntohl(caps_cmd.finiver);
4355         finicsum = ntohl(caps_cmd.finicsum);
4356         cfcsum = ntohl(caps_cmd.cfcsum);
4357         if (finicsum != cfcsum)
4358                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4359                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4360                          finicsum, cfcsum);
4361
4362         /*
4363          * And now tell the firmware to use the configuration we just loaded.
4364          */
4365         caps_cmd.op_to_write =
4366                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4367                       FW_CMD_REQUEST_F |
4368                       FW_CMD_WRITE_F);
4369         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4370         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4371                          NULL);
4372         if (ret < 0)
4373                 goto bye;
4374
4375         /*
4376          * Tweak configuration based on system architecture, module
4377          * parameters, etc.
4378          */
4379         ret = adap_init0_tweaks(adapter);
4380         if (ret < 0)
4381                 goto bye;
4382
4383         /* We will proceed even if HMA init fails. */
4384         ret = adap_config_hma(adapter);
4385         if (ret)
4386                 dev_err(adapter->pdev_dev,
4387                         "HMA configuration failed with error %d\n", ret);
4388
4389         if (is_t6(adapter->params.chip)) {
4390                 adap_config_hpfilter(adapter);
4391                 ret = setup_ppod_edram(adapter);
4392                 if (!ret)
4393                         dev_info(adapter->pdev_dev, "Successfully enabled "
4394                                  "ppod edram feature\n");
4395         }
4396
4397         /*
4398          * And finally tell the firmware to initialize itself using the
4399          * parameters from the Configuration File.
4400          */
4401         ret = t4_fw_initialize(adapter, adapter->mbox);
4402         if (ret < 0)
4403                 goto bye;
4404
4405         /* Emit Firmware Configuration File information and return
4406          * successfully.
4407          */
4408         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4409                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4410                  config_name, finiver, cfcsum);
4411         return 0;
4412
4413         /*
4414          * Something bad happened.  Return the error ...  (If the "error"
4415          * is that there's no Configuration File on the adapter we don't
4416          * want to issue a warning since this is fairly common.)
4417          */
4418 bye:
4419         if (config_issued && ret != -ENOENT)
4420                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4421                          config_name, -ret);
4422         return ret;
4423 }
4424
4425 static struct fw_info fw_info_array[] = {
4426         {
4427                 .chip = CHELSIO_T4,
4428                 .fs_name = FW4_CFNAME,
4429                 .fw_mod_name = FW4_FNAME,
4430                 .fw_hdr = {
4431                         .chip = FW_HDR_CHIP_T4,
4432                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4433                         .intfver_nic = FW_INTFVER(T4, NIC),
4434                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4435                         .intfver_ri = FW_INTFVER(T4, RI),
4436                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4437                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4438                 },
4439         }, {
4440                 .chip = CHELSIO_T5,
4441                 .fs_name = FW5_CFNAME,
4442                 .fw_mod_name = FW5_FNAME,
4443                 .fw_hdr = {
4444                         .chip = FW_HDR_CHIP_T5,
4445                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4446                         .intfver_nic = FW_INTFVER(T5, NIC),
4447                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4448                         .intfver_ri = FW_INTFVER(T5, RI),
4449                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4450                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4451                 },
4452         }, {
4453                 .chip = CHELSIO_T6,
4454                 .fs_name = FW6_CFNAME,
4455                 .fw_mod_name = FW6_FNAME,
4456                 .fw_hdr = {
4457                         .chip = FW_HDR_CHIP_T6,
4458                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4459                         .intfver_nic = FW_INTFVER(T6, NIC),
4460                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4461                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4462                         .intfver_ri = FW_INTFVER(T6, RI),
4463                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4464                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4465                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4466                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4467                 },
4468         }
4469
4470 };
4471
4472 static struct fw_info *find_fw_info(int chip)
4473 {
4474         int i;
4475
4476         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4477                 if (fw_info_array[i].chip == chip)
4478                         return &fw_info_array[i];
4479         }
4480         return NULL;
4481 }
4482
4483 /*
4484  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4485  */
4486 static int adap_init0(struct adapter *adap, int vpd_skip)
4487 {
4488         struct fw_caps_config_cmd caps_cmd;
4489         u32 params[7], val[7];
4490         enum dev_state state;
4491         u32 v, port_vec;
4492         int reset = 1;
4493         int ret;
4494
4495         /* Grab Firmware Device Log parameters as early as possible so we have
4496          * access to it for debugging, etc.
4497          */
4498         ret = t4_init_devlog_params(adap);
4499         if (ret < 0)
4500                 return ret;
4501
4502         /* Contact FW, advertising Master capability */
4503         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4504                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4505         if (ret < 0) {
4506                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4507                         ret);
4508                 return ret;
4509         }
4510         if (ret == adap->mbox)
4511                 adap->flags |= CXGB4_MASTER_PF;
4512
4513         /*
4514          * If we're the Master PF Driver and the device is uninitialized,
4515          * then let's consider upgrading the firmware ...  (We always want
4516          * to check the firmware version number in order to A. get it for
4517          * later reporting and B. to warn if the currently loaded firmware
4518          * is excessively mismatched relative to the driver.)
4519          */
4520
4521         t4_get_version_info(adap);
4522         ret = t4_check_fw_version(adap);
4523         /* If firmware is too old (not supported by driver) force an update. */
4524         if (ret)
4525                 state = DEV_STATE_UNINIT;
4526         if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4527                 struct fw_info *fw_info;
4528                 struct fw_hdr *card_fw;
4529                 const struct firmware *fw;
4530                 const u8 *fw_data = NULL;
4531                 unsigned int fw_size = 0;
4532
4533                 /* This is the firmware whose headers the driver was compiled
4534                  * against
4535                  */
4536                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4537                 if (fw_info == NULL) {
4538                         dev_err(adap->pdev_dev,
4539                                 "unable to get firmware info for chip %d.\n",
4540                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4541                         return -EINVAL;
4542                 }
4543
4544                 /* allocate memory to read the header of the firmware on the
4545                  * card
4546                  */
4547                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4548                 if (!card_fw) {
4549                         ret = -ENOMEM;
4550                         goto bye;
4551                 }
4552
4553                 /* Get FW from from /lib/firmware/ */
4554                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4555                                        adap->pdev_dev);
4556                 if (ret < 0) {
4557                         dev_err(adap->pdev_dev,
4558                                 "unable to load firmware image %s, error %d\n",
4559                                 fw_info->fw_mod_name, ret);
4560                 } else {
4561                         fw_data = fw->data;
4562                         fw_size = fw->size;
4563                 }
4564
4565                 /* upgrade FW logic */
4566                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4567                                  state, &reset);
4568
4569                 /* Cleaning up */
4570                 release_firmware(fw);
4571                 kvfree(card_fw);
4572
4573                 if (ret < 0)
4574                         goto bye;
4575         }
4576
4577         /* If the firmware is initialized already, emit a simply note to that
4578          * effect. Otherwise, it's time to try initializing the adapter.
4579          */
4580         if (state == DEV_STATE_INIT) {
4581                 ret = adap_config_hma(adap);
4582                 if (ret)
4583                         dev_err(adap->pdev_dev,
4584                                 "HMA configuration failed with error %d\n",
4585                                 ret);
4586                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4587                          "Adapter already initialized\n",
4588                          adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4589         } else {
4590                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4591                          "Initializing adapter\n");
4592
4593                 /* Find out whether we're dealing with a version of the
4594                  * firmware which has configuration file support.
4595                  */
4596                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4597                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4598                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4599                                       params, val);
4600
4601                 /* If the firmware doesn't support Configuration Files,
4602                  * return an error.
4603                  */
4604                 if (ret < 0) {
4605                         dev_err(adap->pdev_dev, "firmware doesn't support "
4606                                 "Firmware Configuration Files\n");
4607                         goto bye;
4608                 }
4609
4610                 /* The firmware provides us with a memory buffer where we can
4611                  * load a Configuration File from the host if we want to
4612                  * override the Configuration File in flash.
4613                  */
4614                 ret = adap_init0_config(adap, reset);
4615                 if (ret == -ENOENT) {
4616                         dev_err(adap->pdev_dev, "no Configuration File "
4617                                 "present on adapter.\n");
4618                         goto bye;
4619                 }
4620                 if (ret < 0) {
4621                         dev_err(adap->pdev_dev, "could not initialize "
4622                                 "adapter, error %d\n", -ret);
4623                         goto bye;
4624                 }
4625         }
4626
4627         /* Now that we've successfully configured and initialized the adapter
4628          * (or found it already initialized), we can ask the Firmware what
4629          * resources it has provisioned for us.
4630          */
4631         ret = t4_get_pfres(adap);
4632         if (ret) {
4633                 dev_err(adap->pdev_dev,
4634                         "Unable to retrieve resource provisioning information\n");
4635                 goto bye;
4636         }
4637
4638         /* Grab VPD parameters.  This should be done after we establish a
4639          * connection to the firmware since some of the VPD parameters
4640          * (notably the Core Clock frequency) are retrieved via requests to
4641          * the firmware.  On the other hand, we need these fairly early on
4642          * so we do this right after getting ahold of the firmware.
4643          *
4644          * We need to do this after initializing the adapter because someone
4645          * could have FLASHed a new VPD which won't be read by the firmware
4646          * until we do the RESET ...
4647          */
4648         if (!vpd_skip) {
4649                 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4650                 if (ret < 0)
4651                         goto bye;
4652         }
4653
4654         /* Find out what ports are available to us.  Note that we need to do
4655          * this before calling adap_init0_no_config() since it needs nports
4656          * and portvec ...
4657          */
4658         v =
4659             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4660             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4661         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4662         if (ret < 0)
4663                 goto bye;
4664
4665         adap->params.nports = hweight32(port_vec);
4666         adap->params.portvec = port_vec;
4667
4668         /* Give the SGE code a chance to pull in anything that it needs ...
4669          * Note that this must be called after we retrieve our VPD parameters
4670          * in order to know how to convert core ticks to seconds, etc.
4671          */
4672         ret = t4_sge_init(adap);
4673         if (ret < 0)
4674                 goto bye;
4675
4676         /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4677          * indicates that the Firmware and Hardware support this.
4678          */
4679         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4680                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4681         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4682                               1, params, val);
4683
4684         if (!ret) {
4685                 adap->sge.dbqtimer_tick = val[0];
4686                 ret = t4_read_sge_dbqtimers(adap,
4687                                             ARRAY_SIZE(adap->sge.dbqtimer_val),
4688                                             adap->sge.dbqtimer_val);
4689         }
4690
4691         if (!ret)
4692                 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4693
4694         if (is_bypass_device(adap->pdev->device))
4695                 adap->params.bypass = 1;
4696
4697         /*
4698          * Grab some of our basic fundamental operating parameters.
4699          */
4700         params[0] = FW_PARAM_PFVF(EQ_START);
4701         params[1] = FW_PARAM_PFVF(L2T_START);
4702         params[2] = FW_PARAM_PFVF(L2T_END);
4703         params[3] = FW_PARAM_PFVF(FILTER_START);
4704         params[4] = FW_PARAM_PFVF(FILTER_END);
4705         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4706         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4707         if (ret < 0)
4708                 goto bye;
4709         adap->sge.egr_start = val[0];
4710         adap->l2t_start = val[1];
4711         adap->l2t_end = val[2];
4712         adap->tids.ftid_base = val[3];
4713         adap->tids.nftids = val[4] - val[3] + 1;
4714         adap->sge.ingr_start = val[5];
4715
4716         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4717                 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4718                 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4719                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4720                                       params, val);
4721                 if (ret < 0)
4722                         goto bye;
4723
4724                 adap->tids.hpftid_base = val[0];
4725                 adap->tids.nhpftids = val[1] - val[0] + 1;
4726
4727                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4728                  * are reserved for raw mac addresses (rawf = 2, one per port).
4729                  */
4730                 params[0] = FW_PARAM_PFVF(RAWF_START);
4731                 params[1] = FW_PARAM_PFVF(RAWF_END);
4732                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4733                                       params, val);
4734                 if (ret == 0) {
4735                         adap->rawf_start = val[0];
4736                         adap->rawf_cnt = val[1] - val[0] + 1;
4737                 }
4738
4739                 adap->tids.tid_base =
4740                         t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
4741         }
4742
4743         /* qids (ingress/egress) returned from firmware can be anywhere
4744          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4745          * Hence driver needs to allocate memory for this range to
4746          * store the queue info. Get the highest IQFLINT/EQ index returned
4747          * in FW_EQ_*_CMD.alloc command.
4748          */
4749         params[0] = FW_PARAM_PFVF(EQ_END);
4750         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4751         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4752         if (ret < 0)
4753                 goto bye;
4754         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4755         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4756
4757         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4758                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4759         if (!adap->sge.egr_map) {
4760                 ret = -ENOMEM;
4761                 goto bye;
4762         }
4763
4764         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4765                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4766         if (!adap->sge.ingr_map) {
4767                 ret = -ENOMEM;
4768                 goto bye;
4769         }
4770
4771         /* Allocate the memory for the vaious egress queue bitmaps
4772          * ie starving_fl, txq_maperr and blocked_fl.
4773          */
4774         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4775                                         sizeof(long), GFP_KERNEL);
4776         if (!adap->sge.starving_fl) {
4777                 ret = -ENOMEM;
4778                 goto bye;
4779         }
4780
4781         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4782                                        sizeof(long), GFP_KERNEL);
4783         if (!adap->sge.txq_maperr) {
4784                 ret = -ENOMEM;
4785                 goto bye;
4786         }
4787
4788 #ifdef CONFIG_DEBUG_FS
4789         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4790                                        sizeof(long), GFP_KERNEL);
4791         if (!adap->sge.blocked_fl) {
4792                 ret = -ENOMEM;
4793                 goto bye;
4794         }
4795 #endif
4796
4797         params[0] = FW_PARAM_PFVF(CLIP_START);
4798         params[1] = FW_PARAM_PFVF(CLIP_END);
4799         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4800         if (ret < 0)
4801                 goto bye;
4802         adap->clipt_start = val[0];
4803         adap->clipt_end = val[1];
4804
4805         /* Get the supported number of traffic classes */
4806         params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
4807         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4808         if (ret < 0) {
4809                 /* We couldn't retrieve the number of Traffic Classes
4810                  * supported by the hardware/firmware. So we hard
4811                  * code it here.
4812                  */
4813                 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4814         } else {
4815                 adap->params.nsched_cls = val[0];
4816         }
4817
4818         /* query params related to active filter region */
4819         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4820         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4821         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4822         /* If Active filter size is set we enable establishing
4823          * offload connection through firmware work request
4824          */
4825         if ((val[0] != val[1]) && (ret >= 0)) {
4826                 adap->flags |= CXGB4_FW_OFLD_CONN;
4827                 adap->tids.aftid_base = val[0];
4828                 adap->tids.aftid_end = val[1];
4829         }
4830
4831         /* If we're running on newer firmware, let it know that we're
4832          * prepared to deal with encapsulated CPL messages.  Older
4833          * firmware won't understand this and we'll just get
4834          * unencapsulated messages ...
4835          */
4836         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4837         val[0] = 1;
4838         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4839
4840         /*
4841          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4842          * capability.  Earlier versions of the firmware didn't have the
4843          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4844          * permission to use ULPTX MEMWRITE DSGL.
4845          */
4846         if (is_t4(adap->params.chip)) {
4847                 adap->params.ulptx_memwrite_dsgl = false;
4848         } else {
4849                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4850                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4851                                       1, params, val);
4852                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4853         }
4854
4855         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4856         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4857         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4858                               1, params, val);
4859         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4860
4861         /* See if FW supports FW_FILTER2 work request */
4862         if (is_t4(adap->params.chip)) {
4863                 adap->params.filter2_wr_support = 0;
4864         } else {
4865                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4866                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4867                                       1, params, val);
4868                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4869         }
4870
4871         /* Check if FW supports returning vin and smt index.
4872          * If this is not supported, driver will interpret
4873          * these values from viid.
4874          */
4875         params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4876         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4877                               1, params, val);
4878         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4879
4880         /*
4881          * Get device capabilities so we can determine what resources we need
4882          * to manage.
4883          */
4884         memset(&caps_cmd, 0, sizeof(caps_cmd));
4885         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4886                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4887         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4888         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4889                          &caps_cmd);
4890         if (ret < 0)
4891                 goto bye;
4892
4893         /* hash filter has some mandatory register settings to be tested and for
4894          * that it needs to test whether offload is enabled or not, hence
4895          * checking and setting it here.
4896          */
4897         if (caps_cmd.ofldcaps)
4898                 adap->params.offload = 1;
4899
4900         if (caps_cmd.ofldcaps ||
4901             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
4902             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
4903                 /* query offload-related parameters */
4904                 params[0] = FW_PARAM_DEV(NTID);
4905                 params[1] = FW_PARAM_PFVF(SERVER_START);
4906                 params[2] = FW_PARAM_PFVF(SERVER_END);
4907                 params[3] = FW_PARAM_PFVF(TDDP_START);
4908                 params[4] = FW_PARAM_PFVF(TDDP_END);
4909                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4910                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4911                                       params, val);
4912                 if (ret < 0)
4913                         goto bye;
4914                 adap->tids.ntids = val[0];
4915                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4916                 adap->tids.stid_base = val[1];
4917                 adap->tids.nstids = val[2] - val[1] + 1;
4918                 /*
4919                  * Setup server filter region. Divide the available filter
4920                  * region into two parts. Regular filters get 1/3rd and server
4921                  * filters get 2/3rd part. This is only enabled if workarond
4922                  * path is enabled.
4923                  * 1. For regular filters.
4924                  * 2. Server filter: This are special filters which are used
4925                  * to redirect SYN packets to offload queue.
4926                  */
4927                 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4928                         adap->tids.sftid_base = adap->tids.ftid_base +
4929                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4930                         adap->tids.nsftids = adap->tids.nftids -
4931                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4932                         adap->tids.nftids = adap->tids.sftid_base -
4933                                                 adap->tids.ftid_base;
4934                 }
4935                 adap->vres.ddp.start = val[3];
4936                 adap->vres.ddp.size = val[4] - val[3] + 1;
4937                 adap->params.ofldq_wr_cred = val[5];
4938
4939                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4940                         init_hash_filter(adap);
4941                 } else {
4942                         adap->num_ofld_uld += 1;
4943                 }
4944
4945                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
4946                         params[0] = FW_PARAM_PFVF(ETHOFLD_START);
4947                         params[1] = FW_PARAM_PFVF(ETHOFLD_END);
4948                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4949                                               params, val);
4950                         if (!ret) {
4951                                 adap->tids.eotid_base = val[0];
4952                                 adap->tids.neotids = min_t(u32, MAX_ATIDS,
4953                                                            val[1] - val[0] + 1);
4954                                 adap->params.ethofld = 1;
4955                         }
4956                 }
4957         }
4958         if (caps_cmd.rdmacaps) {
4959                 params[0] = FW_PARAM_PFVF(STAG_START);
4960                 params[1] = FW_PARAM_PFVF(STAG_END);
4961                 params[2] = FW_PARAM_PFVF(RQ_START);
4962                 params[3] = FW_PARAM_PFVF(RQ_END);
4963                 params[4] = FW_PARAM_PFVF(PBL_START);
4964                 params[5] = FW_PARAM_PFVF(PBL_END);
4965                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4966                                       params, val);
4967                 if (ret < 0)
4968                         goto bye;
4969                 adap->vres.stag.start = val[0];
4970                 adap->vres.stag.size = val[1] - val[0] + 1;
4971                 adap->vres.rq.start = val[2];
4972                 adap->vres.rq.size = val[3] - val[2] + 1;
4973                 adap->vres.pbl.start = val[4];
4974                 adap->vres.pbl.size = val[5] - val[4] + 1;
4975
4976                 params[0] = FW_PARAM_PFVF(SRQ_START);
4977                 params[1] = FW_PARAM_PFVF(SRQ_END);
4978                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4979                                       params, val);
4980                 if (!ret) {
4981                         adap->vres.srq.start = val[0];
4982                         adap->vres.srq.size = val[1] - val[0] + 1;
4983                 }
4984                 if (adap->vres.srq.size) {
4985                         adap->srq = t4_init_srq(adap->vres.srq.size);
4986                         if (!adap->srq)
4987                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4988                 }
4989
4990                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4991                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4992                 params[2] = FW_PARAM_PFVF(CQ_START);
4993                 params[3] = FW_PARAM_PFVF(CQ_END);
4994                 params[4] = FW_PARAM_PFVF(OCQ_START);
4995                 params[5] = FW_PARAM_PFVF(OCQ_END);
4996                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4997                                       val);
4998                 if (ret < 0)
4999                         goto bye;
5000                 adap->vres.qp.start = val[0];
5001                 adap->vres.qp.size = val[1] - val[0] + 1;
5002                 adap->vres.cq.start = val[2];
5003                 adap->vres.cq.size = val[3] - val[2] + 1;
5004                 adap->vres.ocq.start = val[4];
5005                 adap->vres.ocq.size = val[5] - val[4] + 1;
5006
5007                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5008                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5009                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5010                                       val);
5011                 if (ret < 0) {
5012                         adap->params.max_ordird_qp = 8;
5013                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5014                         ret = 0;
5015                 } else {
5016                         adap->params.max_ordird_qp = val[0];
5017                         adap->params.max_ird_adapter = val[1];
5018                 }
5019                 dev_info(adap->pdev_dev,
5020                          "max_ordird_qp %d max_ird_adapter %d\n",
5021                          adap->params.max_ordird_qp,
5022                          adap->params.max_ird_adapter);
5023
5024                 /* Enable write_with_immediate if FW supports it */
5025                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5026                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5027                                       val);
5028                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5029
5030                 /* Enable write_cmpl if FW supports it */
5031                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5032                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5033                                       val);
5034                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5035                 adap->num_ofld_uld += 2;
5036         }
5037         if (caps_cmd.iscsicaps) {
5038                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5039                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5040                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5041                                       params, val);
5042                 if (ret < 0)
5043                         goto bye;
5044                 adap->vres.iscsi.start = val[0];
5045                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5046                 if (is_t6(adap->params.chip)) {
5047                         params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5048                         params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5049                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5050                                               params, val);
5051                         if (!ret) {
5052                                 adap->vres.ppod_edram.start = val[0];
5053                                 adap->vres.ppod_edram.size =
5054                                         val[1] - val[0] + 1;
5055
5056                                 dev_info(adap->pdev_dev,
5057                                          "ppod edram start 0x%x end 0x%x size 0x%x\n",
5058                                          val[0], val[1],
5059                                          adap->vres.ppod_edram.size);
5060                         }
5061                 }
5062                 /* LIO target and cxgb4i initiaitor */
5063                 adap->num_ofld_uld += 2;
5064         }
5065         if (caps_cmd.cryptocaps) {
5066                 if (ntohs(caps_cmd.cryptocaps) &
5067                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5068                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5069                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5070                                               2, params, val);
5071                         if (ret < 0) {
5072                                 if (ret != -EINVAL)
5073                                         goto bye;
5074                         } else {
5075                                 adap->vres.ncrypto_fc = val[0];
5076                         }
5077                         adap->num_ofld_uld += 1;
5078                 }
5079                 if (ntohs(caps_cmd.cryptocaps) &
5080                     FW_CAPS_CONFIG_TLS_INLINE) {
5081                         params[0] = FW_PARAM_PFVF(TLS_START);
5082                         params[1] = FW_PARAM_PFVF(TLS_END);
5083                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5084                                               2, params, val);
5085                         if (ret < 0)
5086                                 goto bye;
5087                         adap->vres.key.start = val[0];
5088                         adap->vres.key.size = val[1] - val[0] + 1;
5089                         adap->num_uld += 1;
5090                 }
5091                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5092         }
5093
5094         /* The MTU/MSS Table is initialized by now, so load their values.  If
5095          * we're initializing the adapter, then we'll make any modifications
5096          * we want to the MTU/MSS Table and also initialize the congestion
5097          * parameters.
5098          */
5099         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5100         if (state != DEV_STATE_INIT) {
5101                 int i;
5102
5103                 /* The default MTU Table contains values 1492 and 1500.
5104                  * However, for TCP, it's better to have two values which are
5105                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5106                  * This allows us to have a TCP Data Payload which is a
5107                  * multiple of 8 regardless of what combination of TCP Options
5108                  * are in use (always a multiple of 4 bytes) which is
5109                  * important for performance reasons.  For instance, if no
5110                  * options are in use, then we have a 20-byte IP header and a
5111                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5112                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5113                  * which is not a multiple of 8.  So using an MSS of 1488 in
5114                  * this case results in a TCP Data Payload of 1448 bytes which
5115                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5116                  * Stamps have been negotiated, then an MTU of 1500 bytes
5117                  * results in a TCP Data Payload of 1448 bytes which, as
5118                  * above, is a multiple of 8 bytes ...
5119                  */
5120                 for (i = 0; i < NMTUS; i++)
5121                         if (adap->params.mtus[i] == 1492) {
5122                                 adap->params.mtus[i] = 1488;
5123                                 break;
5124                         }
5125
5126                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5127                              adap->params.b_wnd);
5128         }
5129         t4_init_sge_params(adap);
5130         adap->flags |= CXGB4_FW_OK;
5131         t4_init_tp_params(adap, true);
5132         return 0;
5133
5134         /*
5135          * Something bad happened.  If a command timed out or failed with EIO
5136          * FW does not operate within its spec or something catastrophic
5137          * happened to HW/FW, stop issuing commands.
5138          */
5139 bye:
5140         adap_free_hma_mem(adap);
5141         kfree(adap->sge.egr_map);
5142         kfree(adap->sge.ingr_map);
5143         kfree(adap->sge.starving_fl);
5144         kfree(adap->sge.txq_maperr);
5145 #ifdef CONFIG_DEBUG_FS
5146         kfree(adap->sge.blocked_fl);
5147 #endif
5148         if (ret != -ETIMEDOUT && ret != -EIO)
5149                 t4_fw_bye(adap, adap->mbox);
5150         return ret;
5151 }
5152
5153 /* EEH callbacks */
5154
5155 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5156                                          pci_channel_state_t state)
5157 {
5158         int i;
5159         struct adapter *adap = pci_get_drvdata(pdev);
5160
5161         if (!adap)
5162                 goto out;
5163
5164         rtnl_lock();
5165         adap->flags &= ~CXGB4_FW_OK;
5166         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5167         spin_lock(&adap->stats_lock);
5168         for_each_port(adap, i) {
5169                 struct net_device *dev = adap->port[i];
5170                 if (dev) {
5171                         netif_device_detach(dev);
5172                         netif_carrier_off(dev);
5173                 }
5174         }
5175         spin_unlock(&adap->stats_lock);
5176         disable_interrupts(adap);
5177         if (adap->flags & CXGB4_FULL_INIT_DONE)
5178                 cxgb_down(adap);
5179         rtnl_unlock();
5180         if ((adap->flags & CXGB4_DEV_ENABLED)) {
5181                 pci_disable_device(pdev);
5182                 adap->flags &= ~CXGB4_DEV_ENABLED;
5183         }
5184 out:    return state == pci_channel_io_perm_failure ?
5185                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5186 }
5187
5188 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5189 {
5190         int i, ret;
5191         struct fw_caps_config_cmd c;
5192         struct adapter *adap = pci_get_drvdata(pdev);
5193
5194         if (!adap) {
5195                 pci_restore_state(pdev);
5196                 pci_save_state(pdev);
5197                 return PCI_ERS_RESULT_RECOVERED;
5198         }
5199
5200         if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5201                 if (pci_enable_device(pdev)) {
5202                         dev_err(&pdev->dev, "Cannot reenable PCI "
5203                                             "device after reset\n");
5204                         return PCI_ERS_RESULT_DISCONNECT;
5205                 }
5206                 adap->flags |= CXGB4_DEV_ENABLED;
5207         }
5208
5209         pci_set_master(pdev);
5210         pci_restore_state(pdev);
5211         pci_save_state(pdev);
5212
5213         if (t4_wait_dev_ready(adap->regs) < 0)
5214                 return PCI_ERS_RESULT_DISCONNECT;
5215         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5216                 return PCI_ERS_RESULT_DISCONNECT;
5217         adap->flags |= CXGB4_FW_OK;
5218         if (adap_init1(adap, &c))
5219                 return PCI_ERS_RESULT_DISCONNECT;
5220
5221         for_each_port(adap, i) {
5222                 struct port_info *pi = adap2pinfo(adap, i);
5223                 u8 vivld = 0, vin = 0;
5224
5225                 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5226                                   NULL, NULL, &vivld, &vin);
5227                 if (ret < 0)
5228                         return PCI_ERS_RESULT_DISCONNECT;
5229                 pi->viid = ret;
5230                 pi->xact_addr_filt = -1;
5231                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5232                  * save the returned values.
5233                  */
5234                 if (adap->params.viid_smt_extn_support) {
5235                         pi->vivld = vivld;
5236                         pi->vin = vin;
5237                 } else {
5238                         /* Retrieve the values from VIID */
5239                         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5240                         pi->vin = FW_VIID_VIN_G(pi->viid);
5241                 }
5242         }
5243
5244         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5245                      adap->params.b_wnd);
5246         setup_memwin(adap);
5247         if (cxgb_up(adap))
5248                 return PCI_ERS_RESULT_DISCONNECT;
5249         return PCI_ERS_RESULT_RECOVERED;
5250 }
5251
5252 static void eeh_resume(struct pci_dev *pdev)
5253 {
5254         int i;
5255         struct adapter *adap = pci_get_drvdata(pdev);
5256
5257         if (!adap)
5258                 return;
5259
5260         rtnl_lock();
5261         for_each_port(adap, i) {
5262                 struct net_device *dev = adap->port[i];
5263                 if (dev) {
5264                         if (netif_running(dev)) {
5265                                 link_start(dev);
5266                                 cxgb_set_rxmode(dev);
5267                         }
5268                         netif_device_attach(dev);
5269                 }
5270         }
5271         rtnl_unlock();
5272 }
5273
5274 static void eeh_reset_prepare(struct pci_dev *pdev)
5275 {
5276         struct adapter *adapter = pci_get_drvdata(pdev);
5277         int i;
5278
5279         if (adapter->pf != 4)
5280                 return;
5281
5282         adapter->flags &= ~CXGB4_FW_OK;
5283
5284         notify_ulds(adapter, CXGB4_STATE_DOWN);
5285
5286         for_each_port(adapter, i)
5287                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5288                         cxgb_close(adapter->port[i]);
5289
5290         disable_interrupts(adapter);
5291         cxgb4_free_mps_ref_entries(adapter);
5292
5293         adap_free_hma_mem(adapter);
5294
5295         if (adapter->flags & CXGB4_FULL_INIT_DONE)
5296                 cxgb_down(adapter);
5297 }
5298
5299 static void eeh_reset_done(struct pci_dev *pdev)
5300 {
5301         struct adapter *adapter = pci_get_drvdata(pdev);
5302         int err, i;
5303
5304         if (adapter->pf != 4)
5305                 return;
5306
5307         err = t4_wait_dev_ready(adapter->regs);
5308         if (err < 0) {
5309                 dev_err(adapter->pdev_dev,
5310                         "Device not ready, err %d", err);
5311                 return;
5312         }
5313
5314         setup_memwin(adapter);
5315
5316         err = adap_init0(adapter, 1);
5317         if (err) {
5318                 dev_err(adapter->pdev_dev,
5319                         "Adapter init failed, err %d", err);
5320                 return;
5321         }
5322
5323         setup_memwin_rdma(adapter);
5324
5325         if (adapter->flags & CXGB4_FW_OK) {
5326                 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5327                 if (err) {
5328                         dev_err(adapter->pdev_dev,
5329                                 "Port init failed, err %d", err);
5330                         return;
5331                 }
5332         }
5333
5334         err = cfg_queues(adapter);
5335         if (err) {
5336                 dev_err(adapter->pdev_dev,
5337                         "Config queues failed, err %d", err);
5338                 return;
5339         }
5340
5341         cxgb4_init_mps_ref_entries(adapter);
5342
5343         err = setup_fw_sge_queues(adapter);
5344         if (err) {
5345                 dev_err(adapter->pdev_dev,
5346                         "FW sge queue allocation failed, err %d", err);
5347                 return;
5348         }
5349
5350         for_each_port(adapter, i)
5351                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5352                         cxgb_open(adapter->port[i]);
5353 }
5354
5355 static const struct pci_error_handlers cxgb4_eeh = {
5356         .error_detected = eeh_err_detected,
5357         .slot_reset     = eeh_slot_reset,
5358         .resume         = eeh_resume,
5359         .reset_prepare  = eeh_reset_prepare,
5360         .reset_done     = eeh_reset_done,
5361 };
5362
5363 /* Return true if the Link Configuration supports "High Speeds" (those greater
5364  * than 1Gb/s).
5365  */
5366 static inline bool is_x_10g_port(const struct link_config *lc)
5367 {
5368         unsigned int speeds, high_speeds;
5369
5370         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5371         high_speeds = speeds &
5372                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5373
5374         return high_speeds != 0;
5375 }
5376
5377 /* Perform default configuration of DMA queues depending on the number and type
5378  * of ports we found and the number of available CPUs.  Most settings can be
5379  * modified by the admin prior to actual use.
5380  */
5381 static int cfg_queues(struct adapter *adap)
5382 {
5383         u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5384         u32 i, n10g = 0, qidx = 0, n1g = 0;
5385         u32 ncpus = num_online_cpus();
5386         u32 niqflint, neq, num_ulds;
5387         struct sge *s = &adap->sge;
5388         u32 q10g = 0, q1g;
5389
5390         /* Reduce memory usage in kdump environment, disable all offload. */
5391         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5392                 adap->params.offload = 0;
5393                 adap->params.crypto = 0;
5394                 adap->params.ethofld = 0;
5395         }
5396
5397         /* Calculate the number of Ethernet Queue Sets available based on
5398          * resources provisioned for us.  We always have an Asynchronous
5399          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5400          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5401          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5402          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5403          *
5404          * Note that we should also take into account all of the various
5405          * Offload Queues.  But, in any situation where we're operating in
5406          * a Resource Constrained Provisioning environment, doing any Offload
5407          * at all is problematic ...
5408          */
5409         niqflint = adap->params.pfres.niqflint - 1;
5410         if (!(adap->flags & CXGB4_USING_MSIX))
5411                 niqflint--;
5412         neq = adap->params.pfres.neq / 2;
5413         avail_qsets = min(niqflint, neq);
5414
5415         if (avail_qsets < adap->params.nports) {
5416                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5417                         avail_qsets, adap->params.nports);
5418                 return -ENOMEM;
5419         }
5420
5421         /* Count the number of 10Gb/s or better ports */
5422         for_each_port(adap, i)
5423                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5424
5425         avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5426
5427         /* We default to 1 queue per non-10G port and up to # of cores queues
5428          * per 10G port.
5429          */
5430         if (n10g)
5431                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5432
5433         n1g = adap->params.nports - n10g;
5434 #ifdef CONFIG_CHELSIO_T4_DCB
5435         /* For Data Center Bridging support we need to be able to support up
5436          * to 8 Traffic Priorities; each of which will be assigned to its
5437          * own TX Queue in order to prevent Head-Of-Line Blocking.
5438          */
5439         q1g = 8;
5440         if (adap->params.nports * 8 > avail_eth_qsets) {
5441                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5442                         avail_eth_qsets, adap->params.nports * 8);
5443                 return -ENOMEM;
5444         }
5445
5446         if (adap->params.nports * ncpus < avail_eth_qsets)
5447                 q10g = max(8U, ncpus);
5448         else
5449                 q10g = max(8U, q10g);
5450
5451         while ((q10g * n10g) > (avail_eth_qsets - n1g * q1g))
5452                 q10g--;
5453
5454 #else /* !CONFIG_CHELSIO_T4_DCB */
5455         q1g = 1;
5456         q10g = min(q10g, ncpus);
5457 #endif /* !CONFIG_CHELSIO_T4_DCB */
5458         if (is_kdump_kernel()) {
5459                 q10g = 1;
5460                 q1g = 1;
5461         }
5462
5463         for_each_port(adap, i) {
5464                 struct port_info *pi = adap2pinfo(adap, i);
5465
5466                 pi->first_qset = qidx;
5467                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5468                 qidx += pi->nqsets;
5469         }
5470
5471         s->ethqsets = qidx;
5472         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5473         avail_qsets -= qidx;
5474
5475         if (is_uld(adap)) {
5476                 /* For offload we use 1 queue/channel if all ports are up to 1G,
5477                  * otherwise we divide all available queues amongst the channels
5478                  * capped by the number of available cores.
5479                  */
5480                 num_ulds = adap->num_uld + adap->num_ofld_uld;
5481                 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5482                 avail_uld_qsets = roundup(i, adap->params.nports);
5483                 if (avail_qsets < num_ulds * adap->params.nports) {
5484                         adap->params.offload = 0;
5485                         adap->params.crypto = 0;
5486                         s->ofldqsets = 0;
5487                 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5488                         s->ofldqsets = adap->params.nports;
5489                 } else {
5490                         s->ofldqsets = avail_uld_qsets;
5491                 }
5492
5493                 avail_qsets -= num_ulds * s->ofldqsets;
5494         }
5495
5496         /* ETHOFLD Queues used for QoS offload should follow same
5497          * allocation scheme as normal Ethernet Queues.
5498          */
5499         if (is_ethofld(adap)) {
5500                 if (avail_qsets < s->max_ethqsets) {
5501                         adap->params.ethofld = 0;
5502                         s->eoqsets = 0;
5503                 } else {
5504                         s->eoqsets = s->max_ethqsets;
5505                 }
5506                 avail_qsets -= s->eoqsets;
5507         }
5508
5509         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5510                 struct sge_eth_rxq *r = &s->ethrxq[i];
5511
5512                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5513                 r->fl.size = 72;
5514         }
5515
5516         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5517                 s->ethtxq[i].q.size = 1024;
5518
5519         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5520                 s->ctrlq[i].q.size = 512;
5521
5522         if (!is_t4(adap->params.chip))
5523                 s->ptptxq.q.size = 8;
5524
5525         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5526         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5527
5528         return 0;
5529 }
5530
5531 /*
5532  * Reduce the number of Ethernet queues across all ports to at most n.
5533  * n provides at least one queue per port.
5534  */
5535 static void reduce_ethqs(struct adapter *adap, int n)
5536 {
5537         int i;
5538         struct port_info *pi;
5539
5540         while (n < adap->sge.ethqsets)
5541                 for_each_port(adap, i) {
5542                         pi = adap2pinfo(adap, i);
5543                         if (pi->nqsets > 1) {
5544                                 pi->nqsets--;
5545                                 adap->sge.ethqsets--;
5546                                 if (adap->sge.ethqsets <= n)
5547                                         break;
5548                         }
5549                 }
5550
5551         n = 0;
5552         for_each_port(adap, i) {
5553                 pi = adap2pinfo(adap, i);
5554                 pi->first_qset = n;
5555                 n += pi->nqsets;
5556         }
5557 }
5558
5559 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5560 {
5561         struct msix_info *msix_info;
5562
5563         msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5564         if (!msix_info)
5565                 return -ENOMEM;
5566
5567         adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5568                                             sizeof(long), GFP_KERNEL);
5569         if (!adap->msix_bmap.msix_bmap) {
5570                 kfree(msix_info);
5571                 return -ENOMEM;
5572         }
5573
5574         spin_lock_init(&adap->msix_bmap.lock);
5575         adap->msix_bmap.mapsize = num_vec;
5576
5577         adap->msix_info = msix_info;
5578         return 0;
5579 }
5580
5581 static void free_msix_info(struct adapter *adap)
5582 {
5583         kfree(adap->msix_bmap.msix_bmap);
5584         kfree(adap->msix_info);
5585 }
5586
5587 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5588 {
5589         struct msix_bmap *bmap = &adap->msix_bmap;
5590         unsigned int msix_idx;
5591         unsigned long flags;
5592
5593         spin_lock_irqsave(&bmap->lock, flags);
5594         msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5595         if (msix_idx < bmap->mapsize) {
5596                 __set_bit(msix_idx, bmap->msix_bmap);
5597         } else {
5598                 spin_unlock_irqrestore(&bmap->lock, flags);
5599                 return -ENOSPC;
5600         }
5601
5602         spin_unlock_irqrestore(&bmap->lock, flags);
5603         return msix_idx;
5604 }
5605
5606 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5607                                  unsigned int msix_idx)
5608 {
5609         struct msix_bmap *bmap = &adap->msix_bmap;
5610         unsigned long flags;
5611
5612         spin_lock_irqsave(&bmap->lock, flags);
5613         __clear_bit(msix_idx, bmap->msix_bmap);
5614         spin_unlock_irqrestore(&bmap->lock, flags);
5615 }
5616
5617 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5618 #define EXTRA_VECS 2
5619
5620 static int enable_msix(struct adapter *adap)
5621 {
5622         u32 eth_need, uld_need = 0, ethofld_need = 0;
5623         u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
5624         u8 num_uld = 0, nchan = adap->params.nports;
5625         u32 i, want, need, num_vec;
5626         struct sge *s = &adap->sge;
5627         struct msix_entry *entries;
5628         struct port_info *pi;
5629         int allocated, ret;
5630
5631         want = s->max_ethqsets;
5632 #ifdef CONFIG_CHELSIO_T4_DCB
5633         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5634          * each port.
5635          */
5636         need = 8 * nchan;
5637 #else
5638         need = nchan;
5639 #endif
5640         eth_need = need;
5641         if (is_uld(adap)) {
5642                 num_uld = adap->num_ofld_uld + adap->num_uld;
5643                 want += num_uld * s->ofldqsets;
5644                 uld_need = num_uld * nchan;
5645                 need += uld_need;
5646         }
5647
5648         if (is_ethofld(adap)) {
5649                 want += s->eoqsets;
5650                 ethofld_need = eth_need;
5651                 need += ethofld_need;
5652         }
5653
5654         want += EXTRA_VECS;
5655         need += EXTRA_VECS;
5656
5657         entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5658         if (!entries)
5659                 return -ENOMEM;
5660
5661         for (i = 0; i < want; i++)
5662                 entries[i].entry = i;
5663
5664         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5665         if (allocated < 0) {
5666                 /* Disable offload and attempt to get vectors for NIC
5667                  * only mode.
5668                  */
5669                 want = s->max_ethqsets + EXTRA_VECS;
5670                 need = eth_need + EXTRA_VECS;
5671                 allocated = pci_enable_msix_range(adap->pdev, entries,
5672                                                   need, want);
5673                 if (allocated < 0) {
5674                         dev_info(adap->pdev_dev,
5675                                  "Disabling MSI-X due to insufficient MSI-X vectors\n");
5676                         ret = allocated;
5677                         goto out_free;
5678                 }
5679
5680                 dev_info(adap->pdev_dev,
5681                          "Disabling offload due to insufficient MSI-X vectors\n");
5682                 adap->params.offload = 0;
5683                 adap->params.crypto = 0;
5684                 adap->params.ethofld = 0;
5685                 s->ofldqsets = 0;
5686                 s->eoqsets = 0;
5687                 uld_need = 0;
5688                 ethofld_need = 0;
5689         }
5690
5691         num_vec = allocated;
5692         if (num_vec < want) {
5693                 /* Distribute available vectors to the various queue groups.
5694                  * Every group gets its minimum requirement and NIC gets top
5695                  * priority for leftovers.
5696                  */
5697                 ethqsets = eth_need;
5698                 if (is_uld(adap))
5699                         ofldqsets = nchan;
5700                 if (is_ethofld(adap))
5701                         eoqsets = ethofld_need;
5702
5703                 num_vec -= need;
5704                 while (num_vec) {
5705                         if (num_vec < eth_need + ethofld_need ||
5706                             ethqsets > s->max_ethqsets)
5707                                 break;
5708
5709                         for_each_port(adap, i) {
5710                                 pi = adap2pinfo(adap, i);
5711                                 if (pi->nqsets < 2)
5712                                         continue;
5713
5714                                 ethqsets++;
5715                                 num_vec--;
5716                                 if (ethofld_need) {
5717                                         eoqsets++;
5718                                         num_vec--;
5719                                 }
5720                         }
5721                 }
5722
5723                 if (is_uld(adap)) {
5724                         while (num_vec) {
5725                                 if (num_vec < uld_need ||
5726                                     ofldqsets > s->ofldqsets)
5727                                         break;
5728
5729                                 ofldqsets++;
5730                                 num_vec -= uld_need;
5731                         }
5732                 }
5733         } else {
5734                 ethqsets = s->max_ethqsets;
5735                 if (is_uld(adap))
5736                         ofldqsets = s->ofldqsets;
5737                 if (is_ethofld(adap))
5738                         eoqsets = s->eoqsets;
5739         }
5740
5741         if (ethqsets < s->max_ethqsets) {
5742                 s->max_ethqsets = ethqsets;
5743                 reduce_ethqs(adap, ethqsets);
5744         }
5745
5746         if (is_uld(adap)) {
5747                 s->ofldqsets = ofldqsets;
5748                 s->nqs_per_uld = s->ofldqsets;
5749         }
5750
5751         if (is_ethofld(adap))
5752                 s->eoqsets = eoqsets;
5753
5754         /* map for msix */
5755         ret = alloc_msix_info(adap, allocated);
5756         if (ret)
5757                 goto out_disable_msix;
5758
5759         for (i = 0; i < allocated; i++) {
5760                 adap->msix_info[i].vec = entries[i].vector;
5761                 adap->msix_info[i].idx = i;
5762         }
5763
5764         dev_info(adap->pdev_dev,
5765                  "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5766                  allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
5767
5768         kfree(entries);
5769         return 0;
5770
5771 out_disable_msix:
5772         pci_disable_msix(adap->pdev);
5773
5774 out_free:
5775         kfree(entries);
5776         return ret;
5777 }
5778
5779 #undef EXTRA_VECS
5780
5781 static int init_rss(struct adapter *adap)
5782 {
5783         unsigned int i;
5784         int err;
5785
5786         err = t4_init_rss_mode(adap, adap->mbox);
5787         if (err)
5788                 return err;
5789
5790         for_each_port(adap, i) {
5791                 struct port_info *pi = adap2pinfo(adap, i);
5792
5793                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5794                 if (!pi->rss)
5795                         return -ENOMEM;
5796         }
5797         return 0;
5798 }
5799
5800 /* Dump basic information about the adapter */
5801 static void print_adapter_info(struct adapter *adapter)
5802 {
5803         /* Hardware/Firmware/etc. Version/Revision IDs */
5804         t4_dump_version_info(adapter);
5805
5806         /* Software/Hardware configuration */
5807         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5808                  is_offload(adapter) ? "R" : "",
5809                  ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5810                   (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5811                  is_offload(adapter) ? "Offload" : "non-Offload");
5812 }
5813
5814 static void print_port_info(const struct net_device *dev)
5815 {
5816         char buf[80];
5817         char *bufp = buf;
5818         const struct port_info *pi = netdev_priv(dev);
5819         const struct adapter *adap = pi->adapter;
5820
5821         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5822                 bufp += sprintf(bufp, "100M/");
5823         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5824                 bufp += sprintf(bufp, "1G/");
5825         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5826                 bufp += sprintf(bufp, "10G/");
5827         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5828                 bufp += sprintf(bufp, "25G/");
5829         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5830                 bufp += sprintf(bufp, "40G/");
5831         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5832                 bufp += sprintf(bufp, "50G/");
5833         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5834                 bufp += sprintf(bufp, "100G/");
5835         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5836                 bufp += sprintf(bufp, "200G/");
5837         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5838                 bufp += sprintf(bufp, "400G/");
5839         if (bufp != buf)
5840                 --bufp;
5841         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5842
5843         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5844                     dev->name, adap->params.vpd.id, adap->name, buf);
5845 }
5846
5847 /*
5848  * Free the following resources:
5849  * - memory used for tables
5850  * - MSI/MSI-X
5851  * - net devices
5852  * - resources FW is holding for us
5853  */
5854 static void free_some_resources(struct adapter *adapter)
5855 {
5856         unsigned int i;
5857
5858         kvfree(adapter->smt);
5859         kvfree(adapter->l2t);
5860         kvfree(adapter->srq);
5861         t4_cleanup_sched(adapter);
5862         kvfree(adapter->tids.tid_tab);
5863         cxgb4_cleanup_tc_matchall(adapter);
5864         cxgb4_cleanup_tc_mqprio(adapter);
5865         cxgb4_cleanup_tc_flower(adapter);
5866         cxgb4_cleanup_tc_u32(adapter);
5867         kfree(adapter->sge.egr_map);
5868         kfree(adapter->sge.ingr_map);
5869         kfree(adapter->sge.starving_fl);
5870         kfree(adapter->sge.txq_maperr);
5871 #ifdef CONFIG_DEBUG_FS
5872         kfree(adapter->sge.blocked_fl);
5873 #endif
5874         disable_msi(adapter);
5875
5876         for_each_port(adapter, i)
5877                 if (adapter->port[i]) {
5878                         struct port_info *pi = adap2pinfo(adapter, i);
5879
5880                         if (pi->viid != 0)
5881                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5882                                            0, pi->viid);
5883                         kfree(adap2pinfo(adapter, i)->rss);
5884                         free_netdev(adapter->port[i]);
5885                 }
5886         if (adapter->flags & CXGB4_FW_OK)
5887                 t4_fw_bye(adapter, adapter->pf);
5888 }
5889
5890 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5891                    NETIF_F_GSO_UDP_L4)
5892 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5893                    NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5894 #define SEGMENT_SIZE 128
5895
5896 static int t4_get_chip_type(struct adapter *adap, int ver)
5897 {
5898         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5899
5900         switch (ver) {
5901         case CHELSIO_T4:
5902                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5903         case CHELSIO_T5:
5904                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5905         case CHELSIO_T6:
5906                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5907         default:
5908                 break;
5909         }
5910         return -EINVAL;
5911 }
5912
5913 #ifdef CONFIG_PCI_IOV
5914 static void cxgb4_mgmt_setup(struct net_device *dev)
5915 {
5916         dev->type = ARPHRD_NONE;
5917         dev->mtu = 0;
5918         dev->hard_header_len = 0;
5919         dev->addr_len = 0;
5920         dev->tx_queue_len = 0;
5921         dev->flags |= IFF_NOARP;
5922         dev->priv_flags |= IFF_NO_QUEUE;
5923
5924         /* Initialize the device structure. */
5925         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5926         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5927 }
5928
5929 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5930 {
5931         struct adapter *adap = pci_get_drvdata(pdev);
5932         int err = 0;
5933         int current_vfs = pci_num_vf(pdev);
5934         u32 pcie_fw;
5935
5936         pcie_fw = readl(adap->regs + PCIE_FW_A);
5937         /* Check if fw is initialized */
5938         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5939                 dev_warn(&pdev->dev, "Device not initialized\n");
5940                 return -EOPNOTSUPP;
5941         }
5942
5943         /* If any of the VF's is already assigned to Guest OS, then
5944          * SRIOV for the same cannot be modified
5945          */
5946         if (current_vfs && pci_vfs_assigned(pdev)) {
5947                 dev_err(&pdev->dev,
5948                         "Cannot modify SR-IOV while VFs are assigned\n");
5949                 return current_vfs;
5950         }
5951         /* Note that the upper-level code ensures that we're never called with
5952          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5953          * it never hurts to code defensively.
5954          */
5955         if (num_vfs != 0 && current_vfs != 0)
5956                 return -EBUSY;
5957
5958         /* Nothing to do for no change. */
5959         if (num_vfs == current_vfs)
5960                 return num_vfs;
5961
5962         /* Disable SRIOV when zero is passed. */
5963         if (!num_vfs) {
5964                 pci_disable_sriov(pdev);
5965                 /* free VF Management Interface */
5966                 unregister_netdev(adap->port[0]);
5967                 free_netdev(adap->port[0]);
5968                 adap->port[0] = NULL;
5969
5970                 /* free VF resources */
5971                 adap->num_vfs = 0;
5972                 kfree(adap->vfinfo);
5973                 adap->vfinfo = NULL;
5974                 return 0;
5975         }
5976
5977         if (!current_vfs) {
5978                 struct fw_pfvf_cmd port_cmd, port_rpl;
5979                 struct net_device *netdev;
5980                 unsigned int pmask, port;
5981                 struct pci_dev *pbridge;
5982                 struct port_info *pi;
5983                 char name[IFNAMSIZ];
5984                 u32 devcap2;
5985                 u16 flags;
5986
5987                 /* If we want to instantiate Virtual Functions, then our
5988                  * parent bridge's PCI-E needs to support Alternative Routing
5989                  * ID (ARI) because our VFs will show up at function offset 8
5990                  * and above.
5991                  */
5992                 pbridge = pdev->bus->self;
5993                 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5994                 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5995
5996                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5997                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5998                         /* Our parent bridge does not support ARI so issue a
5999                          * warning and skip instantiating the VFs.  They
6000                          * won't be reachable.
6001                          */
6002                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6003                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6004                                  PCI_FUNC(pbridge->devfn));
6005                         return -ENOTSUPP;
6006                 }
6007                 memset(&port_cmd, 0, sizeof(port_cmd));
6008                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6009                                                  FW_CMD_REQUEST_F |
6010                                                  FW_CMD_READ_F |
6011                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
6012                                                  FW_PFVF_CMD_VFN_V(0));
6013                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6014                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6015                                  &port_rpl);
6016                 if (err)
6017                         return err;
6018                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6019                 port = ffs(pmask) - 1;
6020                 /* Allocate VF Management Interface. */
6021                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6022                          adap->pf);
6023                 netdev = alloc_netdev(sizeof(struct port_info),
6024                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6025                 if (!netdev)
6026                         return -ENOMEM;
6027
6028                 pi = netdev_priv(netdev);
6029                 pi->adapter = adap;
6030                 pi->lport = port;
6031                 pi->tx_chan = port;
6032                 SET_NETDEV_DEV(netdev, &pdev->dev);
6033
6034                 adap->port[0] = netdev;
6035                 pi->port_id = 0;
6036
6037                 err = register_netdev(adap->port[0]);
6038                 if (err) {
6039                         pr_info("Unable to register VF mgmt netdev %s\n", name);
6040                         free_netdev(adap->port[0]);
6041                         adap->port[0] = NULL;
6042                         return err;
6043                 }
6044                 /* Allocate and set up VF Information. */
6045                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6046                                        sizeof(struct vf_info), GFP_KERNEL);
6047                 if (!adap->vfinfo) {
6048                         unregister_netdev(adap->port[0]);
6049                         free_netdev(adap->port[0]);
6050                         adap->port[0] = NULL;
6051                         return -ENOMEM;
6052                 }
6053                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6054         }
6055         /* Instantiate the requested number of VFs. */
6056         err = pci_enable_sriov(pdev, num_vfs);
6057         if (err) {
6058                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6059                 if (!current_vfs) {
6060                         unregister_netdev(adap->port[0]);
6061                         free_netdev(adap->port[0]);
6062                         adap->port[0] = NULL;
6063                         kfree(adap->vfinfo);
6064                         adap->vfinfo = NULL;
6065                 }
6066                 return err;
6067         }
6068
6069         adap->num_vfs = num_vfs;
6070         return num_vfs;
6071 }
6072 #endif /* CONFIG_PCI_IOV */
6073
6074 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6075 {
6076         struct net_device *netdev;
6077         struct adapter *adapter;
6078         static int adap_idx = 1;
6079         int s_qpp, qpp, num_seg;
6080         struct port_info *pi;
6081         bool highdma = false;
6082         enum chip_type chip;
6083         void __iomem *regs;
6084         int func, chip_ver;
6085         u16 device_id;
6086         int i, err;
6087         u32 whoami;
6088
6089         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6090
6091         err = pci_request_regions(pdev, KBUILD_MODNAME);
6092         if (err) {
6093                 /* Just info, some other driver may have claimed the device. */
6094                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6095                 return err;
6096         }
6097
6098         err = pci_enable_device(pdev);
6099         if (err) {
6100                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6101                 goto out_release_regions;
6102         }
6103
6104         regs = pci_ioremap_bar(pdev, 0);
6105         if (!regs) {
6106                 dev_err(&pdev->dev, "cannot map device registers\n");
6107                 err = -ENOMEM;
6108                 goto out_disable_device;
6109         }
6110
6111         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6112         if (!adapter) {
6113                 err = -ENOMEM;
6114                 goto out_unmap_bar0;
6115         }
6116
6117         adapter->regs = regs;
6118         err = t4_wait_dev_ready(regs);
6119         if (err < 0)
6120                 goto out_free_adapter;
6121
6122         /* We control everything through one PF */
6123         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6124         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6125         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6126         if ((int)chip < 0) {
6127                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6128                 err = chip;
6129                 goto out_free_adapter;
6130         }
6131         chip_ver = CHELSIO_CHIP_VERSION(chip);
6132         func = chip_ver <= CHELSIO_T5 ?
6133                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6134
6135         adapter->pdev = pdev;
6136         adapter->pdev_dev = &pdev->dev;
6137         adapter->name = pci_name(pdev);
6138         adapter->mbox = func;
6139         adapter->pf = func;
6140         adapter->params.chip = chip;
6141         adapter->adap_idx = adap_idx;
6142         adapter->msg_enable = DFLT_MSG_ENABLE;
6143         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6144                                     (sizeof(struct mbox_cmd) *
6145                                      T4_OS_LOG_MBOX_CMDS),
6146                                     GFP_KERNEL);
6147         if (!adapter->mbox_log) {
6148                 err = -ENOMEM;
6149                 goto out_free_adapter;
6150         }
6151         spin_lock_init(&adapter->mbox_lock);
6152         INIT_LIST_HEAD(&adapter->mlist.list);
6153         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6154         pci_set_drvdata(pdev, adapter);
6155
6156         if (func != ent->driver_data) {
6157                 pci_disable_device(pdev);
6158                 pci_save_state(pdev);        /* to restore SR-IOV later */
6159                 return 0;
6160         }
6161
6162         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6163                 highdma = true;
6164                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6165                 if (err) {
6166                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6167                                 "coherent allocations\n");
6168                         goto out_free_adapter;
6169                 }
6170         } else {
6171                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6172                 if (err) {
6173                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6174                         goto out_free_adapter;
6175                 }
6176         }
6177
6178         pci_enable_pcie_error_reporting(pdev);
6179         pci_set_master(pdev);
6180         pci_save_state(pdev);
6181         adap_idx++;
6182         adapter->workq = create_singlethread_workqueue("cxgb4");
6183         if (!adapter->workq) {
6184                 err = -ENOMEM;
6185                 goto out_free_adapter;
6186         }
6187
6188         /* PCI device has been enabled */
6189         adapter->flags |= CXGB4_DEV_ENABLED;
6190         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6191
6192         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6193          * Ingress Packet Data to Free List Buffers in order to allow for
6194          * chipset performance optimizations between the Root Complex and
6195          * Memory Controllers.  (Messages to the associated Ingress Queue
6196          * notifying new Packet Placement in the Free Lists Buffers will be
6197          * send without the Relaxed Ordering Attribute thus guaranteeing that
6198          * all preceding PCIe Transaction Layer Packets will be processed
6199          * first.)  But some Root Complexes have various issues with Upstream
6200          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6201          * The PCIe devices which under the Root Complexes will be cleared the
6202          * Relaxed Ordering bit in the configuration space, So we check our
6203          * PCIe configuration space to see if it's flagged with advice against
6204          * using Relaxed Ordering.
6205          */
6206         if (!pcie_relaxed_ordering_enabled(pdev))
6207                 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6208
6209         spin_lock_init(&adapter->stats_lock);
6210         spin_lock_init(&adapter->tid_release_lock);
6211         spin_lock_init(&adapter->win0_lock);
6212
6213         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6214         INIT_WORK(&adapter->db_full_task, process_db_full);
6215         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6216         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6217
6218         err = t4_prep_adapter(adapter);
6219         if (err)
6220                 goto out_free_adapter;
6221
6222         if (is_kdump_kernel()) {
6223                 /* Collect hardware state and append to /proc/vmcore */
6224                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6225                 if (err) {
6226                         dev_warn(adapter->pdev_dev,
6227                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
6228                                  err);
6229                         err = 0;
6230                 }
6231         }
6232
6233         if (!is_t4(adapter->params.chip)) {
6234                 s_qpp = (QUEUESPERPAGEPF0_S +
6235                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6236                         adapter->pf);
6237                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6238                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6239                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6240
6241                 /* Each segment size is 128B. Write coalescing is enabled only
6242                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6243                  * queue is less no of segments that can be accommodated in
6244                  * a page size.
6245                  */
6246                 if (qpp > num_seg) {
6247                         dev_err(&pdev->dev,
6248                                 "Incorrect number of egress queues per page\n");
6249                         err = -EINVAL;
6250                         goto out_free_adapter;
6251                 }
6252                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6253                 pci_resource_len(pdev, 2));
6254                 if (!adapter->bar2) {
6255                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6256                         err = -ENOMEM;
6257                         goto out_free_adapter;
6258                 }
6259         }
6260
6261         setup_memwin(adapter);
6262         err = adap_init0(adapter, 0);
6263 #ifdef CONFIG_DEBUG_FS
6264         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6265 #endif
6266         setup_memwin_rdma(adapter);
6267         if (err)
6268                 goto out_unmap_bar;
6269
6270         /* configure SGE_STAT_CFG_A to read WC stats */
6271         if (!is_t4(adapter->params.chip))
6272                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6273                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6274                               T6_STATMODE_V(0)));
6275
6276         /* Initialize hash mac addr list */
6277         INIT_LIST_HEAD(&adapter->mac_hlist);
6278
6279         for_each_port(adapter, i) {
6280                 /* For supporting MQPRIO Offload, need some extra
6281                  * queues for each ETHOFLD TIDs. Keep it equal to
6282                  * MAX_ATIDs for now. Once we connect to firmware
6283                  * later and query the EOTID params, we'll come to
6284                  * know the actual # of EOTIDs supported.
6285                  */
6286                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6287                                            MAX_ETH_QSETS + MAX_ATIDS);
6288                 if (!netdev) {
6289                         err = -ENOMEM;
6290                         goto out_free_dev;
6291                 }
6292
6293                 SET_NETDEV_DEV(netdev, &pdev->dev);
6294
6295                 adapter->port[i] = netdev;
6296                 pi = netdev_priv(netdev);
6297                 pi->adapter = adapter;
6298                 pi->xact_addr_filt = -1;
6299                 pi->port_id = i;
6300                 netdev->irq = pdev->irq;
6301
6302                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6303                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6304                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6305                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6306                         NETIF_F_HW_TC;
6307
6308                 if (chip_ver > CHELSIO_T5) {
6309                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6310                                                    NETIF_F_IPV6_CSUM |
6311                                                    NETIF_F_RXCSUM |
6312                                                    NETIF_F_GSO_UDP_TUNNEL |
6313                                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
6314                                                    NETIF_F_TSO | NETIF_F_TSO6;
6315
6316                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6317                                                NETIF_F_GSO_UDP_TUNNEL_CSUM |
6318                                                NETIF_F_HW_TLS_RECORD;
6319                 }
6320
6321                 if (highdma)
6322                         netdev->hw_features |= NETIF_F_HIGHDMA;
6323                 netdev->features |= netdev->hw_features;
6324                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6325
6326                 netdev->priv_flags |= IFF_UNICAST_FLT;
6327
6328                 /* MTU range: 81 - 9600 */
6329                 netdev->min_mtu = 81;              /* accommodate SACK */
6330                 netdev->max_mtu = MAX_MTU;
6331
6332                 netdev->netdev_ops = &cxgb4_netdev_ops;
6333 #ifdef CONFIG_CHELSIO_T4_DCB
6334                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6335                 cxgb4_dcb_state_init(netdev);
6336                 cxgb4_dcb_version_init(netdev);
6337 #endif
6338                 cxgb4_set_ethtool_ops(netdev);
6339         }
6340
6341         cxgb4_init_ethtool_dump(adapter);
6342
6343         pci_set_drvdata(pdev, adapter);
6344
6345         if (adapter->flags & CXGB4_FW_OK) {
6346                 err = t4_port_init(adapter, func, func, 0);
6347                 if (err)
6348                         goto out_free_dev;
6349         } else if (adapter->params.nports == 1) {
6350                 /* If we don't have a connection to the firmware -- possibly
6351                  * because of an error -- grab the raw VPD parameters so we
6352                  * can set the proper MAC Address on the debug network
6353                  * interface that we've created.
6354                  */
6355                 u8 hw_addr[ETH_ALEN];
6356                 u8 *na = adapter->params.vpd.na;
6357
6358                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6359                 if (!err) {
6360                         for (i = 0; i < ETH_ALEN; i++)
6361                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6362                                               hex2val(na[2 * i + 1]));
6363                         t4_set_hw_addr(adapter, 0, hw_addr);
6364                 }
6365         }
6366
6367         if (!(adapter->flags & CXGB4_FW_OK))
6368                 goto fw_attach_fail;
6369
6370         /* Configure queues and allocate tables now, they can be needed as
6371          * soon as the first register_netdev completes.
6372          */
6373         err = cfg_queues(adapter);
6374         if (err)
6375                 goto out_free_dev;
6376
6377         adapter->smt = t4_init_smt();
6378         if (!adapter->smt) {
6379                 /* We tolerate a lack of SMT, giving up some functionality */
6380                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6381         }
6382
6383         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6384         if (!adapter->l2t) {
6385                 /* We tolerate a lack of L2T, giving up some functionality */
6386                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6387                 adapter->params.offload = 0;
6388         }
6389
6390 #if IS_ENABLED(CONFIG_IPV6)
6391         if (chip_ver <= CHELSIO_T5 &&
6392             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6393                 /* CLIP functionality is not present in hardware,
6394                  * hence disable all offload features
6395                  */
6396                 dev_warn(&pdev->dev,
6397                          "CLIP not enabled in hardware, continuing\n");
6398                 adapter->params.offload = 0;
6399         } else {
6400                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6401                                                   adapter->clipt_end);
6402                 if (!adapter->clipt) {
6403                         /* We tolerate a lack of clip_table, giving up
6404                          * some functionality
6405                          */
6406                         dev_warn(&pdev->dev,
6407                                  "could not allocate Clip table, continuing\n");
6408                         adapter->params.offload = 0;
6409                 }
6410         }
6411 #endif
6412
6413         for_each_port(adapter, i) {
6414                 pi = adap2pinfo(adapter, i);
6415                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6416                 if (!pi->sched_tbl)
6417                         dev_warn(&pdev->dev,
6418                                  "could not activate scheduling on port %d\n",
6419                                  i);
6420         }
6421
6422         if (tid_init(&adapter->tids) < 0) {
6423                 dev_warn(&pdev->dev, "could not allocate TID table, "
6424                          "continuing\n");
6425                 adapter->params.offload = 0;
6426         } else {
6427                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6428                 if (!adapter->tc_u32)
6429                         dev_warn(&pdev->dev,
6430                                  "could not offload tc u32, continuing\n");
6431
6432                 if (cxgb4_init_tc_flower(adapter))
6433                         dev_warn(&pdev->dev,
6434                                  "could not offload tc flower, continuing\n");
6435
6436                 if (cxgb4_init_tc_mqprio(adapter))
6437                         dev_warn(&pdev->dev,
6438                                  "could not offload tc mqprio, continuing\n");
6439
6440                 if (cxgb4_init_tc_matchall(adapter))
6441                         dev_warn(&pdev->dev,
6442                                  "could not offload tc matchall, continuing\n");
6443         }
6444
6445         if (is_offload(adapter) || is_hashfilter(adapter)) {
6446                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6447                         u32 hash_base, hash_reg;
6448
6449                         if (chip_ver <= CHELSIO_T5) {
6450                                 hash_reg = LE_DB_TID_HASHBASE_A;
6451                                 hash_base = t4_read_reg(adapter, hash_reg);
6452                                 adapter->tids.hash_base = hash_base / 4;
6453                         } else {
6454                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6455                                 hash_base = t4_read_reg(adapter, hash_reg);
6456                                 adapter->tids.hash_base = hash_base;
6457                         }
6458                 }
6459         }
6460
6461         /* See what interrupts we'll be using */
6462         if (msi > 1 && enable_msix(adapter) == 0)
6463                 adapter->flags |= CXGB4_USING_MSIX;
6464         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6465                 adapter->flags |= CXGB4_USING_MSI;
6466                 if (msi > 1)
6467                         free_msix_info(adapter);
6468         }
6469
6470         /* check for PCI Express bandwidth capabiltites */
6471         pcie_print_link_status(pdev);
6472
6473         cxgb4_init_mps_ref_entries(adapter);
6474
6475         err = init_rss(adapter);
6476         if (err)
6477                 goto out_free_dev;
6478
6479         err = setup_non_data_intr(adapter);
6480         if (err) {
6481                 dev_err(adapter->pdev_dev,
6482                         "Non Data interrupt allocation failed, err: %d\n", err);
6483                 goto out_free_dev;
6484         }
6485
6486         err = setup_fw_sge_queues(adapter);
6487         if (err) {
6488                 dev_err(adapter->pdev_dev,
6489                         "FW sge queue allocation failed, err %d", err);
6490                 goto out_free_dev;
6491         }
6492
6493 fw_attach_fail:
6494         /*
6495          * The card is now ready to go.  If any errors occur during device
6496          * registration we do not fail the whole card but rather proceed only
6497          * with the ports we manage to register successfully.  However we must
6498          * register at least one net device.
6499          */
6500         for_each_port(adapter, i) {
6501                 pi = adap2pinfo(adapter, i);
6502                 adapter->port[i]->dev_port = pi->lport;
6503                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6504                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6505
6506                 netif_carrier_off(adapter->port[i]);
6507
6508                 err = register_netdev(adapter->port[i]);
6509                 if (err)
6510                         break;
6511                 adapter->chan_map[pi->tx_chan] = i;
6512                 print_port_info(adapter->port[i]);
6513         }
6514         if (i == 0) {
6515                 dev_err(&pdev->dev, "could not register any net devices\n");
6516                 goto out_free_dev;
6517         }
6518         if (err) {
6519                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6520                 err = 0;
6521         }
6522
6523         if (cxgb4_debugfs_root) {
6524                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6525                                                            cxgb4_debugfs_root);
6526                 setup_debugfs(adapter);
6527         }
6528
6529         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6530         pdev->needs_freset = 1;
6531
6532         if (is_uld(adapter)) {
6533                 mutex_lock(&uld_mutex);
6534                 list_add_tail(&adapter->list_node, &adapter_list);
6535                 mutex_unlock(&uld_mutex);
6536         }
6537
6538         if (!is_t4(adapter->params.chip))
6539                 cxgb4_ptp_init(adapter);
6540
6541         if (IS_REACHABLE(CONFIG_THERMAL) &&
6542             !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6543                 cxgb4_thermal_init(adapter);
6544
6545         print_adapter_info(adapter);
6546         return 0;
6547
6548  out_free_dev:
6549         t4_free_sge_resources(adapter);
6550         free_some_resources(adapter);
6551         if (adapter->flags & CXGB4_USING_MSIX)
6552                 free_msix_info(adapter);
6553         if (adapter->num_uld || adapter->num_ofld_uld)
6554                 t4_uld_mem_free(adapter);
6555  out_unmap_bar:
6556         if (!is_t4(adapter->params.chip))
6557                 iounmap(adapter->bar2);
6558  out_free_adapter:
6559         if (adapter->workq)
6560                 destroy_workqueue(adapter->workq);
6561
6562         kfree(adapter->mbox_log);
6563         kfree(adapter);
6564  out_unmap_bar0:
6565         iounmap(regs);
6566  out_disable_device:
6567         pci_disable_pcie_error_reporting(pdev);
6568         pci_disable_device(pdev);
6569  out_release_regions:
6570         pci_release_regions(pdev);
6571         return err;
6572 }
6573
6574 static void remove_one(struct pci_dev *pdev)
6575 {
6576         struct adapter *adapter = pci_get_drvdata(pdev);
6577         struct hash_mac_addr *entry, *tmp;
6578
6579         if (!adapter) {
6580                 pci_release_regions(pdev);
6581                 return;
6582         }
6583
6584         /* If we allocated filters, free up state associated with any
6585          * valid filters ...
6586          */
6587         clear_all_filters(adapter);
6588
6589         adapter->flags |= CXGB4_SHUTTING_DOWN;
6590
6591         if (adapter->pf == 4) {
6592                 int i;
6593
6594                 /* Tear down per-adapter Work Queue first since it can contain
6595                  * references to our adapter data structure.
6596                  */
6597                 destroy_workqueue(adapter->workq);
6598
6599                 if (is_uld(adapter)) {
6600                         detach_ulds(adapter);
6601                         t4_uld_clean_up(adapter);
6602                 }
6603
6604                 adap_free_hma_mem(adapter);
6605
6606                 disable_interrupts(adapter);
6607
6608                 cxgb4_free_mps_ref_entries(adapter);
6609
6610                 for_each_port(adapter, i)
6611                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6612                                 unregister_netdev(adapter->port[i]);
6613
6614                 debugfs_remove_recursive(adapter->debugfs_root);
6615
6616                 if (!is_t4(adapter->params.chip))
6617                         cxgb4_ptp_stop(adapter);
6618                 if (IS_REACHABLE(CONFIG_THERMAL))
6619                         cxgb4_thermal_remove(adapter);
6620
6621                 if (adapter->flags & CXGB4_FULL_INIT_DONE)
6622                         cxgb_down(adapter);
6623
6624                 if (adapter->flags & CXGB4_USING_MSIX)
6625                         free_msix_info(adapter);
6626                 if (adapter->num_uld || adapter->num_ofld_uld)
6627                         t4_uld_mem_free(adapter);
6628                 free_some_resources(adapter);
6629                 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6630                                          list) {
6631                         list_del(&entry->list);
6632                         kfree(entry);
6633                 }
6634
6635 #if IS_ENABLED(CONFIG_IPV6)
6636                 t4_cleanup_clip_tbl(adapter);
6637 #endif
6638                 if (!is_t4(adapter->params.chip))
6639                         iounmap(adapter->bar2);
6640         }
6641 #ifdef CONFIG_PCI_IOV
6642         else {
6643                 cxgb4_iov_configure(adapter->pdev, 0);
6644         }
6645 #endif
6646         iounmap(adapter->regs);
6647         pci_disable_pcie_error_reporting(pdev);
6648         if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6649                 pci_disable_device(pdev);
6650                 adapter->flags &= ~CXGB4_DEV_ENABLED;
6651         }
6652         pci_release_regions(pdev);
6653         kfree(adapter->mbox_log);
6654         synchronize_rcu();
6655         kfree(adapter);
6656 }
6657
6658 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6659  * delivery.  This is essentially a stripped down version of the PCI remove()
6660  * function where we do the minimal amount of work necessary to shutdown any
6661  * further activity.
6662  */
6663 static void shutdown_one(struct pci_dev *pdev)
6664 {
6665         struct adapter *adapter = pci_get_drvdata(pdev);
6666
6667         /* As with remove_one() above (see extended comment), we only want do
6668          * do cleanup on PCI Devices which went all the way through init_one()
6669          * ...
6670          */
6671         if (!adapter) {
6672                 pci_release_regions(pdev);
6673                 return;
6674         }
6675
6676         adapter->flags |= CXGB4_SHUTTING_DOWN;
6677
6678         if (adapter->pf == 4) {
6679                 int i;
6680
6681                 for_each_port(adapter, i)
6682                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6683                                 cxgb_close(adapter->port[i]);
6684
6685                 if (is_uld(adapter)) {
6686                         detach_ulds(adapter);
6687                         t4_uld_clean_up(adapter);
6688                 }
6689
6690                 disable_interrupts(adapter);
6691                 disable_msi(adapter);
6692
6693                 t4_sge_stop(adapter);
6694                 if (adapter->flags & CXGB4_FW_OK)
6695                         t4_fw_bye(adapter, adapter->mbox);
6696         }
6697 }
6698
6699 static struct pci_driver cxgb4_driver = {
6700         .name     = KBUILD_MODNAME,
6701         .id_table = cxgb4_pci_tbl,
6702         .probe    = init_one,
6703         .remove   = remove_one,
6704         .shutdown = shutdown_one,
6705 #ifdef CONFIG_PCI_IOV
6706         .sriov_configure = cxgb4_iov_configure,
6707 #endif
6708         .err_handler = &cxgb4_eeh,
6709 };
6710
6711 static int __init cxgb4_init_module(void)
6712 {
6713         int ret;
6714
6715         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6716
6717         ret = pci_register_driver(&cxgb4_driver);
6718         if (ret < 0)
6719                 goto err_pci;
6720
6721 #if IS_ENABLED(CONFIG_IPV6)
6722         if (!inet6addr_registered) {
6723                 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6724                 if (ret)
6725                         pci_unregister_driver(&cxgb4_driver);
6726                 else
6727                         inet6addr_registered = true;
6728         }
6729 #endif
6730
6731         if (ret == 0)
6732                 return ret;
6733
6734 err_pci:
6735         debugfs_remove(cxgb4_debugfs_root);
6736
6737         return ret;
6738 }
6739
6740 static void __exit cxgb4_cleanup_module(void)
6741 {
6742 #if IS_ENABLED(CONFIG_IPV6)
6743         if (inet6addr_registered) {
6744                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6745                 inet6addr_registered = false;
6746         }
6747 #endif
6748         pci_unregister_driver(&cxgb4_driver);
6749         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6750 }
6751
6752 module_init(cxgb4_init_module);
6753 module_exit(cxgb4_cleanup_module);