OSDN Git Service

cxgb4: Fix stack out-of-bounds read due to wrong size to t4_record_mbox()
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 /**
228  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *      @adapter: the adapter
230  *      @cmd: the Firmware Mailbox Command or Reply
231  *      @size: command length in bytes
232  *      @access: the time (ms) needed to access the Firmware Mailbox
233  *      @execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236                            const __be64 *cmd, unsigned int size,
237                            int access, int execute)
238 {
239         struct mbox_cmd_log *log = adapter->mbox_log;
240         struct mbox_cmd *entry;
241         int i;
242
243         entry = mbox_cmd_log_entry(log, log->cursor++);
244         if (log->cursor == log->size)
245                 log->cursor = 0;
246
247         for (i = 0; i < size / 8; i++)
248                 entry->cmd[i] = be64_to_cpu(cmd[i]);
249         while (i < MBOX_LEN / 8)
250                 entry->cmd[i++] = 0;
251         entry->timestamp = jiffies;
252         entry->seqno = log->seqno++;
253         entry->access = access;
254         entry->execute = execute;
255 }
256
257 /**
258  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *      @adap: the adapter
260  *      @mbox: index of the mailbox to use
261  *      @cmd: the command to write
262  *      @size: command length in bytes
263  *      @rpl: where to optionally store the reply
264  *      @sleep_ok: if true we may sleep while awaiting command completion
265  *      @timeout: time to wait for command to finish before timing out
266  *
267  *      Sends the given command to FW through the selected mailbox and waits
268  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *      store the FW's reply to the command.  The command and its optional
270  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *      the response.  If sleeping is allowed we use progressive backoff
273  *      otherwise we spin.
274  *
275  *      The return value is 0 on success or a negative errno on failure.  A
276  *      failure can happen either because we are not able to execute the
277  *      command or FW executes it but signals an error.  In the latter case
278  *      the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281                             int size, void *rpl, bool sleep_ok, int timeout)
282 {
283         static const int delay[] = {
284                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285         };
286
287         struct mbox_list entry;
288         u16 access = 0;
289         u16 execute = 0;
290         u32 v;
291         u64 res;
292         int i, ms, delay_idx, ret;
293         const __be64 *p = cmd;
294         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296         __be64 cmd_rpl[MBOX_LEN / 8];
297         u32 pcie_fw;
298
299         if ((size & 15) || size > MBOX_LEN)
300                 return -EINVAL;
301
302         /*
303          * If the device is off-line, as in EEH, commands will time out.
304          * Fail them early so we don't waste time waiting.
305          */
306         if (adap->pdev->error_state != pci_channel_io_normal)
307                 return -EIO;
308
309         /* If we have a negative timeout, that implies that we can't sleep. */
310         if (timeout < 0) {
311                 sleep_ok = false;
312                 timeout = -timeout;
313         }
314
315         /* Queue ourselves onto the mailbox access list.  When our entry is at
316          * the front of the list, we have rights to access the mailbox.  So we
317          * wait [for a while] till we're at the front [or bail out with an
318          * EBUSY] ...
319          */
320         spin_lock(&adap->mbox_lock);
321         list_add_tail(&entry.list, &adap->mlist.list);
322         spin_unlock(&adap->mbox_lock);
323
324         delay_idx = 0;
325         ms = delay[0];
326
327         for (i = 0; ; i += ms) {
328                 /* If we've waited too long, return a busy indication.  This
329                  * really ought to be based on our initial position in the
330                  * mailbox access list but this is a start.  We very rearely
331                  * contend on access to the mailbox ...
332                  */
333                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335                         spin_lock(&adap->mbox_lock);
336                         list_del(&entry.list);
337                         spin_unlock(&adap->mbox_lock);
338                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339                         t4_record_mbox(adap, cmd, size, access, ret);
340                         return ret;
341                 }
342
343                 /* If we're at the head, break out and start the mailbox
344                  * protocol.
345                  */
346                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
347                                      list) == &entry)
348                         break;
349
350                 /* Delay for a bit before checking again ... */
351                 if (sleep_ok) {
352                         ms = delay[delay_idx];  /* last element may repeat */
353                         if (delay_idx < ARRAY_SIZE(delay) - 1)
354                                 delay_idx++;
355                         msleep(ms);
356                 } else {
357                         mdelay(ms);
358                 }
359         }
360
361         /* Loop trying to get ownership of the mailbox.  Return an error
362          * if we can't gain ownership.
363          */
364         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         if (v != MBOX_OWNER_DRV) {
368                 spin_lock(&adap->mbox_lock);
369                 list_del(&entry.list);
370                 spin_unlock(&adap->mbox_lock);
371                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372                 t4_record_mbox(adap, cmd, size, access, ret);
373                 return ret;
374         }
375
376         /* Copy in the new mailbox command and send it on its way ... */
377         t4_record_mbox(adap, cmd, size, access, 0);
378         for (i = 0; i < size; i += 8)
379                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380
381         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382         t4_read_reg(adap, ctl_reg);          /* flush write */
383
384         delay_idx = 0;
385         ms = delay[0];
386
387         for (i = 0;
388              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389              i < timeout;
390              i += ms) {
391                 if (sleep_ok) {
392                         ms = delay[delay_idx];  /* last element may repeat */
393                         if (delay_idx < ARRAY_SIZE(delay) - 1)
394                                 delay_idx++;
395                         msleep(ms);
396                 } else
397                         mdelay(ms);
398
399                 v = t4_read_reg(adap, ctl_reg);
400                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401                         if (!(v & MBMSGVALID_F)) {
402                                 t4_write_reg(adap, ctl_reg, 0);
403                                 continue;
404                         }
405
406                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407                         res = be64_to_cpu(cmd_rpl[0]);
408
409                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410                                 fw_asrt(adap, data_reg);
411                                 res = FW_CMD_RETVAL_V(EIO);
412                         } else if (rpl) {
413                                 memcpy(rpl, cmd_rpl, size);
414                         }
415
416                         t4_write_reg(adap, ctl_reg, 0);
417
418                         execute = i + ms;
419                         t4_record_mbox(adap, cmd_rpl,
420                                        MBOX_LEN, access, execute);
421                         spin_lock(&adap->mbox_lock);
422                         list_del(&entry.list);
423                         spin_unlock(&adap->mbox_lock);
424                         return -FW_CMD_RETVAL_G((int)res);
425                 }
426         }
427
428         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429         t4_record_mbox(adap, cmd, size, access, ret);
430         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431                 *(const u8 *)cmd, mbox);
432         t4_report_fw_error(adap);
433         spin_lock(&adap->mbox_lock);
434         list_del(&entry.list);
435         spin_unlock(&adap->mbox_lock);
436         t4_fatal_err(adap);
437         return ret;
438 }
439
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441                     void *rpl, bool sleep_ok)
442 {
443         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444                                        FW_CMD_MAX_TIMEOUT);
445 }
446
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449         u32 edc_ecc_err_addr_reg;
450         u32 rdata_reg;
451
452         if (is_t4(adap->params.chip)) {
453                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454                 return 0;
455         }
456         if (idx != 0 && idx != 1) {
457                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458                 return 0;
459         }
460
461         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463
464         CH_WARN(adap,
465                 "edc%d err addr 0x%x: 0x%x.\n",
466                 idx, edc_ecc_err_addr_reg,
467                 t4_read_reg(adap, edc_ecc_err_addr_reg));
468         CH_WARN(adap,
469                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470                 rdata_reg,
471                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
472                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480
481         return 0;
482 }
483
484 /**
485  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *      @adap: the adapter
487  *      @win: PCI-E Memory Window to use
488  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *      @addr: address within indicated memory type
490  *      @len: amount of memory to transfer
491  *      @hbuf: host memory buffer
492  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *      firmware memory address and host buffer must be aligned on 32-bit
496  *      boudaries; the length may be arbitrary.  The memory is transferred as
497  *      a raw byte sequence from/to the firmware's memory.  If this memory
498  *      contains data structures which contain multi-byte integers, it's the
499  *      caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502                  u32 len, void *hbuf, int dir)
503 {
504         u32 pos, offset, resid, memoffset;
505         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506         u32 *buf;
507
508         /* Argument sanity checks ...
509          */
510         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511                 return -EINVAL;
512         buf = (u32 *)hbuf;
513
514         /* It's convenient to be able to handle lengths which aren't a
515          * multiple of 32-bits because we often end up transferring files to
516          * the firmware.  So we'll handle that by normalizing the length here
517          * and then handling any residual transfer at the end.
518          */
519         resid = len & 0x3;
520         len -= resid;
521
522         /* Offset into the region of memory which is being accessed
523          * MEM_EDC0 = 0
524          * MEM_EDC1 = 1
525          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527          */
528         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529         if (mtype != MEM_MC1)
530                 memoffset = (mtype * (edc_size * 1024 * 1024));
531         else {
532                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533                                                       MA_EXT_MEMORY0_BAR_A));
534                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535         }
536
537         /* Determine the PCIE_MEM_ACCESS_OFFSET */
538         addr = addr + memoffset;
539
540         /* Each PCI-E Memory Window is programmed with a window size -- or
541          * "aperture" -- which controls the granularity of its mapping onto
542          * adapter memory.  We need to grab that aperture in order to know
543          * how to use the specified window.  The window is also programmed
544          * with the base address of the Memory Window in BAR0's address
545          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546          * the address is relative to BAR0.
547          */
548         mem_reg = t4_read_reg(adap,
549                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550                                                   win));
551         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553         if (is_t4(adap->params.chip))
554                 mem_base -= adap->t4_bar0;
555         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556
557         /* Calculate our initial PCI-E Memory Window Position and Offset into
558          * that Window.
559          */
560         pos = addr & ~(mem_aperture-1);
561         offset = addr - pos;
562
563         /* Set up initial PCI-E Memory Window to cover the start of our
564          * transfer.  (Read it back to ensure that changes propagate before we
565          * attempt to use the new value.)
566          */
567         t4_write_reg(adap,
568                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569                      pos | win_pf);
570         t4_read_reg(adap,
571                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572
573         /* Transfer data to/from the adapter as long as there's an integral
574          * number of 32-bit transfers to complete.
575          *
576          * A note on Endianness issues:
577          *
578          * The "register" reads and writes below from/to the PCI-E Memory
579          * Window invoke the standard adapter Big-Endian to PCI-E Link
580          * Little-Endian "swizzel."  As a result, if we have the following
581          * data in adapter memory:
582          *
583          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584          *     Address:      i+0  i+1  i+2  i+3
585          *
586          * Then a read of the adapter memory via the PCI-E Memory Window
587          * will yield:
588          *
589          *     x = readl(i)
590          *         31                  0
591          *         [ b3 | b2 | b1 | b0 ]
592          *
593          * If this value is stored into local memory on a Little-Endian system
594          * it will show up correctly in local memory as:
595          *
596          *     ( ..., b0, b1, b2, b3, ... )
597          *
598          * But on a Big-Endian system, the store will show up in memory
599          * incorrectly swizzled as:
600          *
601          *     ( ..., b3, b2, b1, b0, ... )
602          *
603          * So we need to account for this in the reads and writes to the
604          * PCI-E Memory Window below by undoing the register read/write
605          * swizzels.
606          */
607         while (len > 0) {
608                 if (dir == T4_MEMORY_READ)
609                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610                                                 mem_base + offset));
611                 else
612                         t4_write_reg(adap, mem_base + offset,
613                                      (__force u32)cpu_to_le32(*buf++));
614                 offset += sizeof(__be32);
615                 len -= sizeof(__be32);
616
617                 /* If we've reached the end of our current window aperture,
618                  * move the PCI-E Memory Window on to the next.  Note that
619                  * doing this here after "len" may be 0 allows us to set up
620                  * the PCI-E Memory Window for a possible final residual
621                  * transfer below ...
622                  */
623                 if (offset == mem_aperture) {
624                         pos += mem_aperture;
625                         offset = 0;
626                         t4_write_reg(adap,
627                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628                                                     win), pos | win_pf);
629                         t4_read_reg(adap,
630                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631                                                     win));
632                 }
633         }
634
635         /* If the original transfer had a length which wasn't a multiple of
636          * 32-bits, now's where we need to finish off the transfer of the
637          * residual amount.  The PCI-E Memory Window has already been moved
638          * above (if necessary) to cover this final transfer.
639          */
640         if (resid) {
641                 union {
642                         u32 word;
643                         char byte[4];
644                 } last;
645                 unsigned char *bp;
646                 int i;
647
648                 if (dir == T4_MEMORY_READ) {
649                         last.word = le32_to_cpu(
650                                         (__force __le32)t4_read_reg(adap,
651                                                 mem_base + offset));
652                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653                                 bp[i] = last.byte[i];
654                 } else {
655                         last.word = *buf;
656                         for (i = resid; i < 4; i++)
657                                 last.byte[i] = 0;
658                         t4_write_reg(adap, mem_base + offset,
659                                      (__force u32)cpu_to_le32(last.word));
660                 }
661         }
662
663         return 0;
664 }
665
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673         u32 val, ldst_addrspace;
674
675         /* If fw_attach != 0, construct and send the Firmware LDST Command to
676          * retrieve the specified PCI-E Configuration Space register.
677          */
678         struct fw_ldst_cmd ldst_cmd;
679         int ret;
680
681         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684                                                FW_CMD_REQUEST_F |
685                                                FW_CMD_READ_F |
686                                                ldst_addrspace);
687         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689         ldst_cmd.u.pcie.ctrl_to_fn =
690                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691         ldst_cmd.u.pcie.r = reg;
692
693         /* If the LDST Command succeeds, return the result, otherwise
694          * fall through to reading it directly ourselves ...
695          */
696         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697                          &ldst_cmd);
698         if (ret == 0)
699                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700         else
701                 /* Read the desired Configuration Space register via the PCI-E
702                  * Backdoor mechanism.
703                  */
704                 t4_hw_pci_read_cfg4(adap, reg, &val);
705         return val;
706 }
707
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713                          u32 memwin_base)
714 {
715         u32 ret;
716
717         if (is_t4(adap->params.chip)) {
718                 u32 bar0;
719
720                 /* Truncation intentional: we only read the bottom 32-bits of
721                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722                  * mechanism to read BAR0 instead of using
723                  * pci_resource_start() because we could be operating from
724                  * within a Virtual Machine which is trapping our accesses to
725                  * our Configuration Space and we need to set up the PCI-E
726                  * Memory Window decoders with the actual addresses which will
727                  * be coming across the PCI-E link.
728                  */
729                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
730                 bar0 &= pci_mask;
731                 adap->t4_bar0 = bar0;
732
733                 ret = bar0 + memwin_base;
734         } else {
735                 /* For T5, only relative offset inside the PCIe BAR is passed */
736                 ret = memwin_base;
737         }
738         return ret;
739 }
740
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754         t4_write_reg(adap,
755                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756                      memwin_base | BIR_V(0) |
757                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758         t4_read_reg(adap,
759                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761
762 /**
763  *      t4_get_regs_len - return the size of the chips register set
764  *      @adapter: the adapter
765  *
766  *      Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771
772         switch (chip_version) {
773         case CHELSIO_T4:
774                 return T4_REGMAP_SIZE;
775
776         case CHELSIO_T5:
777         case CHELSIO_T6:
778                 return T5_REGMAP_SIZE;
779         }
780
781         dev_err(adapter->pdev_dev,
782                 "Unsupported chip version %d\n", chip_version);
783         return 0;
784 }
785
786 /**
787  *      t4_get_regs - read chip registers into provided buffer
788  *      @adap: the adapter
789  *      @buf: register buffer
790  *      @buf_size: size (in bytes) of register buffer
791  *
792  *      If the provided register buffer isn't large enough for the chip's
793  *      full register range, the register dump will be truncated to the
794  *      register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798         static const unsigned int t4_reg_ranges[] = {
799                 0x1008, 0x1108,
800                 0x1180, 0x1184,
801                 0x1190, 0x1194,
802                 0x11a0, 0x11a4,
803                 0x11b0, 0x11b4,
804                 0x11fc, 0x123c,
805                 0x1300, 0x173c,
806                 0x1800, 0x18fc,
807                 0x3000, 0x30d8,
808                 0x30e0, 0x30e4,
809                 0x30ec, 0x5910,
810                 0x5920, 0x5924,
811                 0x5960, 0x5960,
812                 0x5968, 0x5968,
813                 0x5970, 0x5970,
814                 0x5978, 0x5978,
815                 0x5980, 0x5980,
816                 0x5988, 0x5988,
817                 0x5990, 0x5990,
818                 0x5998, 0x5998,
819                 0x59a0, 0x59d4,
820                 0x5a00, 0x5ae0,
821                 0x5ae8, 0x5ae8,
822                 0x5af0, 0x5af0,
823                 0x5af8, 0x5af8,
824                 0x6000, 0x6098,
825                 0x6100, 0x6150,
826                 0x6200, 0x6208,
827                 0x6240, 0x6248,
828                 0x6280, 0x62b0,
829                 0x62c0, 0x6338,
830                 0x6370, 0x638c,
831                 0x6400, 0x643c,
832                 0x6500, 0x6524,
833                 0x6a00, 0x6a04,
834                 0x6a14, 0x6a38,
835                 0x6a60, 0x6a70,
836                 0x6a78, 0x6a78,
837                 0x6b00, 0x6b0c,
838                 0x6b1c, 0x6b84,
839                 0x6bf0, 0x6bf8,
840                 0x6c00, 0x6c0c,
841                 0x6c1c, 0x6c84,
842                 0x6cf0, 0x6cf8,
843                 0x6d00, 0x6d0c,
844                 0x6d1c, 0x6d84,
845                 0x6df0, 0x6df8,
846                 0x6e00, 0x6e0c,
847                 0x6e1c, 0x6e84,
848                 0x6ef0, 0x6ef8,
849                 0x6f00, 0x6f0c,
850                 0x6f1c, 0x6f84,
851                 0x6ff0, 0x6ff8,
852                 0x7000, 0x700c,
853                 0x701c, 0x7084,
854                 0x70f0, 0x70f8,
855                 0x7100, 0x710c,
856                 0x711c, 0x7184,
857                 0x71f0, 0x71f8,
858                 0x7200, 0x720c,
859                 0x721c, 0x7284,
860                 0x72f0, 0x72f8,
861                 0x7300, 0x730c,
862                 0x731c, 0x7384,
863                 0x73f0, 0x73f8,
864                 0x7400, 0x7450,
865                 0x7500, 0x7530,
866                 0x7600, 0x760c,
867                 0x7614, 0x761c,
868                 0x7680, 0x76cc,
869                 0x7700, 0x7798,
870                 0x77c0, 0x77fc,
871                 0x7900, 0x79fc,
872                 0x7b00, 0x7b58,
873                 0x7b60, 0x7b84,
874                 0x7b8c, 0x7c38,
875                 0x7d00, 0x7d38,
876                 0x7d40, 0x7d80,
877                 0x7d8c, 0x7ddc,
878                 0x7de4, 0x7e04,
879                 0x7e10, 0x7e1c,
880                 0x7e24, 0x7e38,
881                 0x7e40, 0x7e44,
882                 0x7e4c, 0x7e78,
883                 0x7e80, 0x7ea4,
884                 0x7eac, 0x7edc,
885                 0x7ee8, 0x7efc,
886                 0x8dc0, 0x8e04,
887                 0x8e10, 0x8e1c,
888                 0x8e30, 0x8e78,
889                 0x8ea0, 0x8eb8,
890                 0x8ec0, 0x8f6c,
891                 0x8fc0, 0x9008,
892                 0x9010, 0x9058,
893                 0x9060, 0x9060,
894                 0x9068, 0x9074,
895                 0x90fc, 0x90fc,
896                 0x9400, 0x9408,
897                 0x9410, 0x9458,
898                 0x9600, 0x9600,
899                 0x9608, 0x9638,
900                 0x9640, 0x96bc,
901                 0x9800, 0x9808,
902                 0x9820, 0x983c,
903                 0x9850, 0x9864,
904                 0x9c00, 0x9c6c,
905                 0x9c80, 0x9cec,
906                 0x9d00, 0x9d6c,
907                 0x9d80, 0x9dec,
908                 0x9e00, 0x9e6c,
909                 0x9e80, 0x9eec,
910                 0x9f00, 0x9f6c,
911                 0x9f80, 0x9fec,
912                 0xd004, 0xd004,
913                 0xd010, 0xd03c,
914                 0xdfc0, 0xdfe0,
915                 0xe000, 0xea7c,
916                 0xf000, 0x11190,
917                 0x19040, 0x1906c,
918                 0x19078, 0x19080,
919                 0x1908c, 0x190e4,
920                 0x190f0, 0x190f8,
921                 0x19100, 0x19110,
922                 0x19120, 0x19124,
923                 0x19150, 0x19194,
924                 0x1919c, 0x191b0,
925                 0x191d0, 0x191e8,
926                 0x19238, 0x1924c,
927                 0x193f8, 0x1943c,
928                 0x1944c, 0x19474,
929                 0x19490, 0x194e0,
930                 0x194f0, 0x194f8,
931                 0x19800, 0x19c08,
932                 0x19c10, 0x19c90,
933                 0x19ca0, 0x19ce4,
934                 0x19cf0, 0x19d40,
935                 0x19d50, 0x19d94,
936                 0x19da0, 0x19de8,
937                 0x19df0, 0x19e40,
938                 0x19e50, 0x19e90,
939                 0x19ea0, 0x19f4c,
940                 0x1a000, 0x1a004,
941                 0x1a010, 0x1a06c,
942                 0x1a0b0, 0x1a0e4,
943                 0x1a0ec, 0x1a0f4,
944                 0x1a100, 0x1a108,
945                 0x1a114, 0x1a120,
946                 0x1a128, 0x1a130,
947                 0x1a138, 0x1a138,
948                 0x1a190, 0x1a1c4,
949                 0x1a1fc, 0x1a1fc,
950                 0x1e040, 0x1e04c,
951                 0x1e284, 0x1e28c,
952                 0x1e2c0, 0x1e2c0,
953                 0x1e2e0, 0x1e2e0,
954                 0x1e300, 0x1e384,
955                 0x1e3c0, 0x1e3c8,
956                 0x1e440, 0x1e44c,
957                 0x1e684, 0x1e68c,
958                 0x1e6c0, 0x1e6c0,
959                 0x1e6e0, 0x1e6e0,
960                 0x1e700, 0x1e784,
961                 0x1e7c0, 0x1e7c8,
962                 0x1e840, 0x1e84c,
963                 0x1ea84, 0x1ea8c,
964                 0x1eac0, 0x1eac0,
965                 0x1eae0, 0x1eae0,
966                 0x1eb00, 0x1eb84,
967                 0x1ebc0, 0x1ebc8,
968                 0x1ec40, 0x1ec4c,
969                 0x1ee84, 0x1ee8c,
970                 0x1eec0, 0x1eec0,
971                 0x1eee0, 0x1eee0,
972                 0x1ef00, 0x1ef84,
973                 0x1efc0, 0x1efc8,
974                 0x1f040, 0x1f04c,
975                 0x1f284, 0x1f28c,
976                 0x1f2c0, 0x1f2c0,
977                 0x1f2e0, 0x1f2e0,
978                 0x1f300, 0x1f384,
979                 0x1f3c0, 0x1f3c8,
980                 0x1f440, 0x1f44c,
981                 0x1f684, 0x1f68c,
982                 0x1f6c0, 0x1f6c0,
983                 0x1f6e0, 0x1f6e0,
984                 0x1f700, 0x1f784,
985                 0x1f7c0, 0x1f7c8,
986                 0x1f840, 0x1f84c,
987                 0x1fa84, 0x1fa8c,
988                 0x1fac0, 0x1fac0,
989                 0x1fae0, 0x1fae0,
990                 0x1fb00, 0x1fb84,
991                 0x1fbc0, 0x1fbc8,
992                 0x1fc40, 0x1fc4c,
993                 0x1fe84, 0x1fe8c,
994                 0x1fec0, 0x1fec0,
995                 0x1fee0, 0x1fee0,
996                 0x1ff00, 0x1ff84,
997                 0x1ffc0, 0x1ffc8,
998                 0x20000, 0x2002c,
999                 0x20100, 0x2013c,
1000                 0x20190, 0x201a0,
1001                 0x201a8, 0x201b8,
1002                 0x201c4, 0x201c8,
1003                 0x20200, 0x20318,
1004                 0x20400, 0x204b4,
1005                 0x204c0, 0x20528,
1006                 0x20540, 0x20614,
1007                 0x21000, 0x21040,
1008                 0x2104c, 0x21060,
1009                 0x210c0, 0x210ec,
1010                 0x21200, 0x21268,
1011                 0x21270, 0x21284,
1012                 0x212fc, 0x21388,
1013                 0x21400, 0x21404,
1014                 0x21500, 0x21500,
1015                 0x21510, 0x21518,
1016                 0x2152c, 0x21530,
1017                 0x2153c, 0x2153c,
1018                 0x21550, 0x21554,
1019                 0x21600, 0x21600,
1020                 0x21608, 0x2161c,
1021                 0x21624, 0x21628,
1022                 0x21630, 0x21634,
1023                 0x2163c, 0x2163c,
1024                 0x21700, 0x2171c,
1025                 0x21780, 0x2178c,
1026                 0x21800, 0x21818,
1027                 0x21820, 0x21828,
1028                 0x21830, 0x21848,
1029                 0x21850, 0x21854,
1030                 0x21860, 0x21868,
1031                 0x21870, 0x21870,
1032                 0x21878, 0x21898,
1033                 0x218a0, 0x218a8,
1034                 0x218b0, 0x218c8,
1035                 0x218d0, 0x218d4,
1036                 0x218e0, 0x218e8,
1037                 0x218f0, 0x218f0,
1038                 0x218f8, 0x21a18,
1039                 0x21a20, 0x21a28,
1040                 0x21a30, 0x21a48,
1041                 0x21a50, 0x21a54,
1042                 0x21a60, 0x21a68,
1043                 0x21a70, 0x21a70,
1044                 0x21a78, 0x21a98,
1045                 0x21aa0, 0x21aa8,
1046                 0x21ab0, 0x21ac8,
1047                 0x21ad0, 0x21ad4,
1048                 0x21ae0, 0x21ae8,
1049                 0x21af0, 0x21af0,
1050                 0x21af8, 0x21c18,
1051                 0x21c20, 0x21c20,
1052                 0x21c28, 0x21c30,
1053                 0x21c38, 0x21c38,
1054                 0x21c80, 0x21c98,
1055                 0x21ca0, 0x21ca8,
1056                 0x21cb0, 0x21cc8,
1057                 0x21cd0, 0x21cd4,
1058                 0x21ce0, 0x21ce8,
1059                 0x21cf0, 0x21cf0,
1060                 0x21cf8, 0x21d7c,
1061                 0x21e00, 0x21e04,
1062                 0x22000, 0x2202c,
1063                 0x22100, 0x2213c,
1064                 0x22190, 0x221a0,
1065                 0x221a8, 0x221b8,
1066                 0x221c4, 0x221c8,
1067                 0x22200, 0x22318,
1068                 0x22400, 0x224b4,
1069                 0x224c0, 0x22528,
1070                 0x22540, 0x22614,
1071                 0x23000, 0x23040,
1072                 0x2304c, 0x23060,
1073                 0x230c0, 0x230ec,
1074                 0x23200, 0x23268,
1075                 0x23270, 0x23284,
1076                 0x232fc, 0x23388,
1077                 0x23400, 0x23404,
1078                 0x23500, 0x23500,
1079                 0x23510, 0x23518,
1080                 0x2352c, 0x23530,
1081                 0x2353c, 0x2353c,
1082                 0x23550, 0x23554,
1083                 0x23600, 0x23600,
1084                 0x23608, 0x2361c,
1085                 0x23624, 0x23628,
1086                 0x23630, 0x23634,
1087                 0x2363c, 0x2363c,
1088                 0x23700, 0x2371c,
1089                 0x23780, 0x2378c,
1090                 0x23800, 0x23818,
1091                 0x23820, 0x23828,
1092                 0x23830, 0x23848,
1093                 0x23850, 0x23854,
1094                 0x23860, 0x23868,
1095                 0x23870, 0x23870,
1096                 0x23878, 0x23898,
1097                 0x238a0, 0x238a8,
1098                 0x238b0, 0x238c8,
1099                 0x238d0, 0x238d4,
1100                 0x238e0, 0x238e8,
1101                 0x238f0, 0x238f0,
1102                 0x238f8, 0x23a18,
1103                 0x23a20, 0x23a28,
1104                 0x23a30, 0x23a48,
1105                 0x23a50, 0x23a54,
1106                 0x23a60, 0x23a68,
1107                 0x23a70, 0x23a70,
1108                 0x23a78, 0x23a98,
1109                 0x23aa0, 0x23aa8,
1110                 0x23ab0, 0x23ac8,
1111                 0x23ad0, 0x23ad4,
1112                 0x23ae0, 0x23ae8,
1113                 0x23af0, 0x23af0,
1114                 0x23af8, 0x23c18,
1115                 0x23c20, 0x23c20,
1116                 0x23c28, 0x23c30,
1117                 0x23c38, 0x23c38,
1118                 0x23c80, 0x23c98,
1119                 0x23ca0, 0x23ca8,
1120                 0x23cb0, 0x23cc8,
1121                 0x23cd0, 0x23cd4,
1122                 0x23ce0, 0x23ce8,
1123                 0x23cf0, 0x23cf0,
1124                 0x23cf8, 0x23d7c,
1125                 0x23e00, 0x23e04,
1126                 0x24000, 0x2402c,
1127                 0x24100, 0x2413c,
1128                 0x24190, 0x241a0,
1129                 0x241a8, 0x241b8,
1130                 0x241c4, 0x241c8,
1131                 0x24200, 0x24318,
1132                 0x24400, 0x244b4,
1133                 0x244c0, 0x24528,
1134                 0x24540, 0x24614,
1135                 0x25000, 0x25040,
1136                 0x2504c, 0x25060,
1137                 0x250c0, 0x250ec,
1138                 0x25200, 0x25268,
1139                 0x25270, 0x25284,
1140                 0x252fc, 0x25388,
1141                 0x25400, 0x25404,
1142                 0x25500, 0x25500,
1143                 0x25510, 0x25518,
1144                 0x2552c, 0x25530,
1145                 0x2553c, 0x2553c,
1146                 0x25550, 0x25554,
1147                 0x25600, 0x25600,
1148                 0x25608, 0x2561c,
1149                 0x25624, 0x25628,
1150                 0x25630, 0x25634,
1151                 0x2563c, 0x2563c,
1152                 0x25700, 0x2571c,
1153                 0x25780, 0x2578c,
1154                 0x25800, 0x25818,
1155                 0x25820, 0x25828,
1156                 0x25830, 0x25848,
1157                 0x25850, 0x25854,
1158                 0x25860, 0x25868,
1159                 0x25870, 0x25870,
1160                 0x25878, 0x25898,
1161                 0x258a0, 0x258a8,
1162                 0x258b0, 0x258c8,
1163                 0x258d0, 0x258d4,
1164                 0x258e0, 0x258e8,
1165                 0x258f0, 0x258f0,
1166                 0x258f8, 0x25a18,
1167                 0x25a20, 0x25a28,
1168                 0x25a30, 0x25a48,
1169                 0x25a50, 0x25a54,
1170                 0x25a60, 0x25a68,
1171                 0x25a70, 0x25a70,
1172                 0x25a78, 0x25a98,
1173                 0x25aa0, 0x25aa8,
1174                 0x25ab0, 0x25ac8,
1175                 0x25ad0, 0x25ad4,
1176                 0x25ae0, 0x25ae8,
1177                 0x25af0, 0x25af0,
1178                 0x25af8, 0x25c18,
1179                 0x25c20, 0x25c20,
1180                 0x25c28, 0x25c30,
1181                 0x25c38, 0x25c38,
1182                 0x25c80, 0x25c98,
1183                 0x25ca0, 0x25ca8,
1184                 0x25cb0, 0x25cc8,
1185                 0x25cd0, 0x25cd4,
1186                 0x25ce0, 0x25ce8,
1187                 0x25cf0, 0x25cf0,
1188                 0x25cf8, 0x25d7c,
1189                 0x25e00, 0x25e04,
1190                 0x26000, 0x2602c,
1191                 0x26100, 0x2613c,
1192                 0x26190, 0x261a0,
1193                 0x261a8, 0x261b8,
1194                 0x261c4, 0x261c8,
1195                 0x26200, 0x26318,
1196                 0x26400, 0x264b4,
1197                 0x264c0, 0x26528,
1198                 0x26540, 0x26614,
1199                 0x27000, 0x27040,
1200                 0x2704c, 0x27060,
1201                 0x270c0, 0x270ec,
1202                 0x27200, 0x27268,
1203                 0x27270, 0x27284,
1204                 0x272fc, 0x27388,
1205                 0x27400, 0x27404,
1206                 0x27500, 0x27500,
1207                 0x27510, 0x27518,
1208                 0x2752c, 0x27530,
1209                 0x2753c, 0x2753c,
1210                 0x27550, 0x27554,
1211                 0x27600, 0x27600,
1212                 0x27608, 0x2761c,
1213                 0x27624, 0x27628,
1214                 0x27630, 0x27634,
1215                 0x2763c, 0x2763c,
1216                 0x27700, 0x2771c,
1217                 0x27780, 0x2778c,
1218                 0x27800, 0x27818,
1219                 0x27820, 0x27828,
1220                 0x27830, 0x27848,
1221                 0x27850, 0x27854,
1222                 0x27860, 0x27868,
1223                 0x27870, 0x27870,
1224                 0x27878, 0x27898,
1225                 0x278a0, 0x278a8,
1226                 0x278b0, 0x278c8,
1227                 0x278d0, 0x278d4,
1228                 0x278e0, 0x278e8,
1229                 0x278f0, 0x278f0,
1230                 0x278f8, 0x27a18,
1231                 0x27a20, 0x27a28,
1232                 0x27a30, 0x27a48,
1233                 0x27a50, 0x27a54,
1234                 0x27a60, 0x27a68,
1235                 0x27a70, 0x27a70,
1236                 0x27a78, 0x27a98,
1237                 0x27aa0, 0x27aa8,
1238                 0x27ab0, 0x27ac8,
1239                 0x27ad0, 0x27ad4,
1240                 0x27ae0, 0x27ae8,
1241                 0x27af0, 0x27af0,
1242                 0x27af8, 0x27c18,
1243                 0x27c20, 0x27c20,
1244                 0x27c28, 0x27c30,
1245                 0x27c38, 0x27c38,
1246                 0x27c80, 0x27c98,
1247                 0x27ca0, 0x27ca8,
1248                 0x27cb0, 0x27cc8,
1249                 0x27cd0, 0x27cd4,
1250                 0x27ce0, 0x27ce8,
1251                 0x27cf0, 0x27cf0,
1252                 0x27cf8, 0x27d7c,
1253                 0x27e00, 0x27e04,
1254         };
1255
1256         static const unsigned int t5_reg_ranges[] = {
1257                 0x1008, 0x10c0,
1258                 0x10cc, 0x10f8,
1259                 0x1100, 0x1100,
1260                 0x110c, 0x1148,
1261                 0x1180, 0x1184,
1262                 0x1190, 0x1194,
1263                 0x11a0, 0x11a4,
1264                 0x11b0, 0x11b4,
1265                 0x11fc, 0x123c,
1266                 0x1280, 0x173c,
1267                 0x1800, 0x18fc,
1268                 0x3000, 0x3028,
1269                 0x3060, 0x30b0,
1270                 0x30b8, 0x30d8,
1271                 0x30e0, 0x30fc,
1272                 0x3140, 0x357c,
1273                 0x35a8, 0x35cc,
1274                 0x35ec, 0x35ec,
1275                 0x3600, 0x5624,
1276                 0x56cc, 0x56ec,
1277                 0x56f4, 0x5720,
1278                 0x5728, 0x575c,
1279                 0x580c, 0x5814,
1280                 0x5890, 0x589c,
1281                 0x58a4, 0x58ac,
1282                 0x58b8, 0x58bc,
1283                 0x5940, 0x59c8,
1284                 0x59d0, 0x59dc,
1285                 0x59fc, 0x5a18,
1286                 0x5a60, 0x5a70,
1287                 0x5a80, 0x5a9c,
1288                 0x5b94, 0x5bfc,
1289                 0x6000, 0x6020,
1290                 0x6028, 0x6040,
1291                 0x6058, 0x609c,
1292                 0x60a8, 0x614c,
1293                 0x7700, 0x7798,
1294                 0x77c0, 0x78fc,
1295                 0x7b00, 0x7b58,
1296                 0x7b60, 0x7b84,
1297                 0x7b8c, 0x7c54,
1298                 0x7d00, 0x7d38,
1299                 0x7d40, 0x7d80,
1300                 0x7d8c, 0x7ddc,
1301                 0x7de4, 0x7e04,
1302                 0x7e10, 0x7e1c,
1303                 0x7e24, 0x7e38,
1304                 0x7e40, 0x7e44,
1305                 0x7e4c, 0x7e78,
1306                 0x7e80, 0x7edc,
1307                 0x7ee8, 0x7efc,
1308                 0x8dc0, 0x8de0,
1309                 0x8df8, 0x8e04,
1310                 0x8e10, 0x8e84,
1311                 0x8ea0, 0x8f84,
1312                 0x8fc0, 0x9058,
1313                 0x9060, 0x9060,
1314                 0x9068, 0x90f8,
1315                 0x9400, 0x9408,
1316                 0x9410, 0x9470,
1317                 0x9600, 0x9600,
1318                 0x9608, 0x9638,
1319                 0x9640, 0x96f4,
1320                 0x9800, 0x9808,
1321                 0x9820, 0x983c,
1322                 0x9850, 0x9864,
1323                 0x9c00, 0x9c6c,
1324                 0x9c80, 0x9cec,
1325                 0x9d00, 0x9d6c,
1326                 0x9d80, 0x9dec,
1327                 0x9e00, 0x9e6c,
1328                 0x9e80, 0x9eec,
1329                 0x9f00, 0x9f6c,
1330                 0x9f80, 0xa020,
1331                 0xd004, 0xd004,
1332                 0xd010, 0xd03c,
1333                 0xdfc0, 0xdfe0,
1334                 0xe000, 0x1106c,
1335                 0x11074, 0x11088,
1336                 0x1109c, 0x1117c,
1337                 0x11190, 0x11204,
1338                 0x19040, 0x1906c,
1339                 0x19078, 0x19080,
1340                 0x1908c, 0x190e8,
1341                 0x190f0, 0x190f8,
1342                 0x19100, 0x19110,
1343                 0x19120, 0x19124,
1344                 0x19150, 0x19194,
1345                 0x1919c, 0x191b0,
1346                 0x191d0, 0x191e8,
1347                 0x19238, 0x19290,
1348                 0x193f8, 0x19428,
1349                 0x19430, 0x19444,
1350                 0x1944c, 0x1946c,
1351                 0x19474, 0x19474,
1352                 0x19490, 0x194cc,
1353                 0x194f0, 0x194f8,
1354                 0x19c00, 0x19c08,
1355                 0x19c10, 0x19c60,
1356                 0x19c94, 0x19ce4,
1357                 0x19cf0, 0x19d40,
1358                 0x19d50, 0x19d94,
1359                 0x19da0, 0x19de8,
1360                 0x19df0, 0x19e10,
1361                 0x19e50, 0x19e90,
1362                 0x19ea0, 0x19f24,
1363                 0x19f34, 0x19f34,
1364                 0x19f40, 0x19f50,
1365                 0x19f90, 0x19fb4,
1366                 0x19fc4, 0x19fe4,
1367                 0x1a000, 0x1a004,
1368                 0x1a010, 0x1a06c,
1369                 0x1a0b0, 0x1a0e4,
1370                 0x1a0ec, 0x1a0f8,
1371                 0x1a100, 0x1a108,
1372                 0x1a114, 0x1a120,
1373                 0x1a128, 0x1a130,
1374                 0x1a138, 0x1a138,
1375                 0x1a190, 0x1a1c4,
1376                 0x1a1fc, 0x1a1fc,
1377                 0x1e008, 0x1e00c,
1378                 0x1e040, 0x1e044,
1379                 0x1e04c, 0x1e04c,
1380                 0x1e284, 0x1e290,
1381                 0x1e2c0, 0x1e2c0,
1382                 0x1e2e0, 0x1e2e0,
1383                 0x1e300, 0x1e384,
1384                 0x1e3c0, 0x1e3c8,
1385                 0x1e408, 0x1e40c,
1386                 0x1e440, 0x1e444,
1387                 0x1e44c, 0x1e44c,
1388                 0x1e684, 0x1e690,
1389                 0x1e6c0, 0x1e6c0,
1390                 0x1e6e0, 0x1e6e0,
1391                 0x1e700, 0x1e784,
1392                 0x1e7c0, 0x1e7c8,
1393                 0x1e808, 0x1e80c,
1394                 0x1e840, 0x1e844,
1395                 0x1e84c, 0x1e84c,
1396                 0x1ea84, 0x1ea90,
1397                 0x1eac0, 0x1eac0,
1398                 0x1eae0, 0x1eae0,
1399                 0x1eb00, 0x1eb84,
1400                 0x1ebc0, 0x1ebc8,
1401                 0x1ec08, 0x1ec0c,
1402                 0x1ec40, 0x1ec44,
1403                 0x1ec4c, 0x1ec4c,
1404                 0x1ee84, 0x1ee90,
1405                 0x1eec0, 0x1eec0,
1406                 0x1eee0, 0x1eee0,
1407                 0x1ef00, 0x1ef84,
1408                 0x1efc0, 0x1efc8,
1409                 0x1f008, 0x1f00c,
1410                 0x1f040, 0x1f044,
1411                 0x1f04c, 0x1f04c,
1412                 0x1f284, 0x1f290,
1413                 0x1f2c0, 0x1f2c0,
1414                 0x1f2e0, 0x1f2e0,
1415                 0x1f300, 0x1f384,
1416                 0x1f3c0, 0x1f3c8,
1417                 0x1f408, 0x1f40c,
1418                 0x1f440, 0x1f444,
1419                 0x1f44c, 0x1f44c,
1420                 0x1f684, 0x1f690,
1421                 0x1f6c0, 0x1f6c0,
1422                 0x1f6e0, 0x1f6e0,
1423                 0x1f700, 0x1f784,
1424                 0x1f7c0, 0x1f7c8,
1425                 0x1f808, 0x1f80c,
1426                 0x1f840, 0x1f844,
1427                 0x1f84c, 0x1f84c,
1428                 0x1fa84, 0x1fa90,
1429                 0x1fac0, 0x1fac0,
1430                 0x1fae0, 0x1fae0,
1431                 0x1fb00, 0x1fb84,
1432                 0x1fbc0, 0x1fbc8,
1433                 0x1fc08, 0x1fc0c,
1434                 0x1fc40, 0x1fc44,
1435                 0x1fc4c, 0x1fc4c,
1436                 0x1fe84, 0x1fe90,
1437                 0x1fec0, 0x1fec0,
1438                 0x1fee0, 0x1fee0,
1439                 0x1ff00, 0x1ff84,
1440                 0x1ffc0, 0x1ffc8,
1441                 0x30000, 0x30030,
1442                 0x30038, 0x30038,
1443                 0x30040, 0x30040,
1444                 0x30100, 0x30144,
1445                 0x30190, 0x301a0,
1446                 0x301a8, 0x301b8,
1447                 0x301c4, 0x301c8,
1448                 0x301d0, 0x301d0,
1449                 0x30200, 0x30318,
1450                 0x30400, 0x304b4,
1451                 0x304c0, 0x3052c,
1452                 0x30540, 0x3061c,
1453                 0x30800, 0x30828,
1454                 0x30834, 0x30834,
1455                 0x308c0, 0x30908,
1456                 0x30910, 0x309ac,
1457                 0x30a00, 0x30a14,
1458                 0x30a1c, 0x30a2c,
1459                 0x30a44, 0x30a50,
1460                 0x30a74, 0x30a74,
1461                 0x30a7c, 0x30afc,
1462                 0x30b08, 0x30c24,
1463                 0x30d00, 0x30d00,
1464                 0x30d08, 0x30d14,
1465                 0x30d1c, 0x30d20,
1466                 0x30d3c, 0x30d3c,
1467                 0x30d48, 0x30d50,
1468                 0x31200, 0x3120c,
1469                 0x31220, 0x31220,
1470                 0x31240, 0x31240,
1471                 0x31600, 0x3160c,
1472                 0x31a00, 0x31a1c,
1473                 0x31e00, 0x31e20,
1474                 0x31e38, 0x31e3c,
1475                 0x31e80, 0x31e80,
1476                 0x31e88, 0x31ea8,
1477                 0x31eb0, 0x31eb4,
1478                 0x31ec8, 0x31ed4,
1479                 0x31fb8, 0x32004,
1480                 0x32200, 0x32200,
1481                 0x32208, 0x32240,
1482                 0x32248, 0x32280,
1483                 0x32288, 0x322c0,
1484                 0x322c8, 0x322fc,
1485                 0x32600, 0x32630,
1486                 0x32a00, 0x32abc,
1487                 0x32b00, 0x32b10,
1488                 0x32b20, 0x32b30,
1489                 0x32b40, 0x32b50,
1490                 0x32b60, 0x32b70,
1491                 0x33000, 0x33028,
1492                 0x33030, 0x33048,
1493                 0x33060, 0x33068,
1494                 0x33070, 0x3309c,
1495                 0x330f0, 0x33128,
1496                 0x33130, 0x33148,
1497                 0x33160, 0x33168,
1498                 0x33170, 0x3319c,
1499                 0x331f0, 0x33238,
1500                 0x33240, 0x33240,
1501                 0x33248, 0x33250,
1502                 0x3325c, 0x33264,
1503                 0x33270, 0x332b8,
1504                 0x332c0, 0x332e4,
1505                 0x332f8, 0x33338,
1506                 0x33340, 0x33340,
1507                 0x33348, 0x33350,
1508                 0x3335c, 0x33364,
1509                 0x33370, 0x333b8,
1510                 0x333c0, 0x333e4,
1511                 0x333f8, 0x33428,
1512                 0x33430, 0x33448,
1513                 0x33460, 0x33468,
1514                 0x33470, 0x3349c,
1515                 0x334f0, 0x33528,
1516                 0x33530, 0x33548,
1517                 0x33560, 0x33568,
1518                 0x33570, 0x3359c,
1519                 0x335f0, 0x33638,
1520                 0x33640, 0x33640,
1521                 0x33648, 0x33650,
1522                 0x3365c, 0x33664,
1523                 0x33670, 0x336b8,
1524                 0x336c0, 0x336e4,
1525                 0x336f8, 0x33738,
1526                 0x33740, 0x33740,
1527                 0x33748, 0x33750,
1528                 0x3375c, 0x33764,
1529                 0x33770, 0x337b8,
1530                 0x337c0, 0x337e4,
1531                 0x337f8, 0x337fc,
1532                 0x33814, 0x33814,
1533                 0x3382c, 0x3382c,
1534                 0x33880, 0x3388c,
1535                 0x338e8, 0x338ec,
1536                 0x33900, 0x33928,
1537                 0x33930, 0x33948,
1538                 0x33960, 0x33968,
1539                 0x33970, 0x3399c,
1540                 0x339f0, 0x33a38,
1541                 0x33a40, 0x33a40,
1542                 0x33a48, 0x33a50,
1543                 0x33a5c, 0x33a64,
1544                 0x33a70, 0x33ab8,
1545                 0x33ac0, 0x33ae4,
1546                 0x33af8, 0x33b10,
1547                 0x33b28, 0x33b28,
1548                 0x33b3c, 0x33b50,
1549                 0x33bf0, 0x33c10,
1550                 0x33c28, 0x33c28,
1551                 0x33c3c, 0x33c50,
1552                 0x33cf0, 0x33cfc,
1553                 0x34000, 0x34030,
1554                 0x34038, 0x34038,
1555                 0x34040, 0x34040,
1556                 0x34100, 0x34144,
1557                 0x34190, 0x341a0,
1558                 0x341a8, 0x341b8,
1559                 0x341c4, 0x341c8,
1560                 0x341d0, 0x341d0,
1561                 0x34200, 0x34318,
1562                 0x34400, 0x344b4,
1563                 0x344c0, 0x3452c,
1564                 0x34540, 0x3461c,
1565                 0x34800, 0x34828,
1566                 0x34834, 0x34834,
1567                 0x348c0, 0x34908,
1568                 0x34910, 0x349ac,
1569                 0x34a00, 0x34a14,
1570                 0x34a1c, 0x34a2c,
1571                 0x34a44, 0x34a50,
1572                 0x34a74, 0x34a74,
1573                 0x34a7c, 0x34afc,
1574                 0x34b08, 0x34c24,
1575                 0x34d00, 0x34d00,
1576                 0x34d08, 0x34d14,
1577                 0x34d1c, 0x34d20,
1578                 0x34d3c, 0x34d3c,
1579                 0x34d48, 0x34d50,
1580                 0x35200, 0x3520c,
1581                 0x35220, 0x35220,
1582                 0x35240, 0x35240,
1583                 0x35600, 0x3560c,
1584                 0x35a00, 0x35a1c,
1585                 0x35e00, 0x35e20,
1586                 0x35e38, 0x35e3c,
1587                 0x35e80, 0x35e80,
1588                 0x35e88, 0x35ea8,
1589                 0x35eb0, 0x35eb4,
1590                 0x35ec8, 0x35ed4,
1591                 0x35fb8, 0x36004,
1592                 0x36200, 0x36200,
1593                 0x36208, 0x36240,
1594                 0x36248, 0x36280,
1595                 0x36288, 0x362c0,
1596                 0x362c8, 0x362fc,
1597                 0x36600, 0x36630,
1598                 0x36a00, 0x36abc,
1599                 0x36b00, 0x36b10,
1600                 0x36b20, 0x36b30,
1601                 0x36b40, 0x36b50,
1602                 0x36b60, 0x36b70,
1603                 0x37000, 0x37028,
1604                 0x37030, 0x37048,
1605                 0x37060, 0x37068,
1606                 0x37070, 0x3709c,
1607                 0x370f0, 0x37128,
1608                 0x37130, 0x37148,
1609                 0x37160, 0x37168,
1610                 0x37170, 0x3719c,
1611                 0x371f0, 0x37238,
1612                 0x37240, 0x37240,
1613                 0x37248, 0x37250,
1614                 0x3725c, 0x37264,
1615                 0x37270, 0x372b8,
1616                 0x372c0, 0x372e4,
1617                 0x372f8, 0x37338,
1618                 0x37340, 0x37340,
1619                 0x37348, 0x37350,
1620                 0x3735c, 0x37364,
1621                 0x37370, 0x373b8,
1622                 0x373c0, 0x373e4,
1623                 0x373f8, 0x37428,
1624                 0x37430, 0x37448,
1625                 0x37460, 0x37468,
1626                 0x37470, 0x3749c,
1627                 0x374f0, 0x37528,
1628                 0x37530, 0x37548,
1629                 0x37560, 0x37568,
1630                 0x37570, 0x3759c,
1631                 0x375f0, 0x37638,
1632                 0x37640, 0x37640,
1633                 0x37648, 0x37650,
1634                 0x3765c, 0x37664,
1635                 0x37670, 0x376b8,
1636                 0x376c0, 0x376e4,
1637                 0x376f8, 0x37738,
1638                 0x37740, 0x37740,
1639                 0x37748, 0x37750,
1640                 0x3775c, 0x37764,
1641                 0x37770, 0x377b8,
1642                 0x377c0, 0x377e4,
1643                 0x377f8, 0x377fc,
1644                 0x37814, 0x37814,
1645                 0x3782c, 0x3782c,
1646                 0x37880, 0x3788c,
1647                 0x378e8, 0x378ec,
1648                 0x37900, 0x37928,
1649                 0x37930, 0x37948,
1650                 0x37960, 0x37968,
1651                 0x37970, 0x3799c,
1652                 0x379f0, 0x37a38,
1653                 0x37a40, 0x37a40,
1654                 0x37a48, 0x37a50,
1655                 0x37a5c, 0x37a64,
1656                 0x37a70, 0x37ab8,
1657                 0x37ac0, 0x37ae4,
1658                 0x37af8, 0x37b10,
1659                 0x37b28, 0x37b28,
1660                 0x37b3c, 0x37b50,
1661                 0x37bf0, 0x37c10,
1662                 0x37c28, 0x37c28,
1663                 0x37c3c, 0x37c50,
1664                 0x37cf0, 0x37cfc,
1665                 0x38000, 0x38030,
1666                 0x38038, 0x38038,
1667                 0x38040, 0x38040,
1668                 0x38100, 0x38144,
1669                 0x38190, 0x381a0,
1670                 0x381a8, 0x381b8,
1671                 0x381c4, 0x381c8,
1672                 0x381d0, 0x381d0,
1673                 0x38200, 0x38318,
1674                 0x38400, 0x384b4,
1675                 0x384c0, 0x3852c,
1676                 0x38540, 0x3861c,
1677                 0x38800, 0x38828,
1678                 0x38834, 0x38834,
1679                 0x388c0, 0x38908,
1680                 0x38910, 0x389ac,
1681                 0x38a00, 0x38a14,
1682                 0x38a1c, 0x38a2c,
1683                 0x38a44, 0x38a50,
1684                 0x38a74, 0x38a74,
1685                 0x38a7c, 0x38afc,
1686                 0x38b08, 0x38c24,
1687                 0x38d00, 0x38d00,
1688                 0x38d08, 0x38d14,
1689                 0x38d1c, 0x38d20,
1690                 0x38d3c, 0x38d3c,
1691                 0x38d48, 0x38d50,
1692                 0x39200, 0x3920c,
1693                 0x39220, 0x39220,
1694                 0x39240, 0x39240,
1695                 0x39600, 0x3960c,
1696                 0x39a00, 0x39a1c,
1697                 0x39e00, 0x39e20,
1698                 0x39e38, 0x39e3c,
1699                 0x39e80, 0x39e80,
1700                 0x39e88, 0x39ea8,
1701                 0x39eb0, 0x39eb4,
1702                 0x39ec8, 0x39ed4,
1703                 0x39fb8, 0x3a004,
1704                 0x3a200, 0x3a200,
1705                 0x3a208, 0x3a240,
1706                 0x3a248, 0x3a280,
1707                 0x3a288, 0x3a2c0,
1708                 0x3a2c8, 0x3a2fc,
1709                 0x3a600, 0x3a630,
1710                 0x3aa00, 0x3aabc,
1711                 0x3ab00, 0x3ab10,
1712                 0x3ab20, 0x3ab30,
1713                 0x3ab40, 0x3ab50,
1714                 0x3ab60, 0x3ab70,
1715                 0x3b000, 0x3b028,
1716                 0x3b030, 0x3b048,
1717                 0x3b060, 0x3b068,
1718                 0x3b070, 0x3b09c,
1719                 0x3b0f0, 0x3b128,
1720                 0x3b130, 0x3b148,
1721                 0x3b160, 0x3b168,
1722                 0x3b170, 0x3b19c,
1723                 0x3b1f0, 0x3b238,
1724                 0x3b240, 0x3b240,
1725                 0x3b248, 0x3b250,
1726                 0x3b25c, 0x3b264,
1727                 0x3b270, 0x3b2b8,
1728                 0x3b2c0, 0x3b2e4,
1729                 0x3b2f8, 0x3b338,
1730                 0x3b340, 0x3b340,
1731                 0x3b348, 0x3b350,
1732                 0x3b35c, 0x3b364,
1733                 0x3b370, 0x3b3b8,
1734                 0x3b3c0, 0x3b3e4,
1735                 0x3b3f8, 0x3b428,
1736                 0x3b430, 0x3b448,
1737                 0x3b460, 0x3b468,
1738                 0x3b470, 0x3b49c,
1739                 0x3b4f0, 0x3b528,
1740                 0x3b530, 0x3b548,
1741                 0x3b560, 0x3b568,
1742                 0x3b570, 0x3b59c,
1743                 0x3b5f0, 0x3b638,
1744                 0x3b640, 0x3b640,
1745                 0x3b648, 0x3b650,
1746                 0x3b65c, 0x3b664,
1747                 0x3b670, 0x3b6b8,
1748                 0x3b6c0, 0x3b6e4,
1749                 0x3b6f8, 0x3b738,
1750                 0x3b740, 0x3b740,
1751                 0x3b748, 0x3b750,
1752                 0x3b75c, 0x3b764,
1753                 0x3b770, 0x3b7b8,
1754                 0x3b7c0, 0x3b7e4,
1755                 0x3b7f8, 0x3b7fc,
1756                 0x3b814, 0x3b814,
1757                 0x3b82c, 0x3b82c,
1758                 0x3b880, 0x3b88c,
1759                 0x3b8e8, 0x3b8ec,
1760                 0x3b900, 0x3b928,
1761                 0x3b930, 0x3b948,
1762                 0x3b960, 0x3b968,
1763                 0x3b970, 0x3b99c,
1764                 0x3b9f0, 0x3ba38,
1765                 0x3ba40, 0x3ba40,
1766                 0x3ba48, 0x3ba50,
1767                 0x3ba5c, 0x3ba64,
1768                 0x3ba70, 0x3bab8,
1769                 0x3bac0, 0x3bae4,
1770                 0x3baf8, 0x3bb10,
1771                 0x3bb28, 0x3bb28,
1772                 0x3bb3c, 0x3bb50,
1773                 0x3bbf0, 0x3bc10,
1774                 0x3bc28, 0x3bc28,
1775                 0x3bc3c, 0x3bc50,
1776                 0x3bcf0, 0x3bcfc,
1777                 0x3c000, 0x3c030,
1778                 0x3c038, 0x3c038,
1779                 0x3c040, 0x3c040,
1780                 0x3c100, 0x3c144,
1781                 0x3c190, 0x3c1a0,
1782                 0x3c1a8, 0x3c1b8,
1783                 0x3c1c4, 0x3c1c8,
1784                 0x3c1d0, 0x3c1d0,
1785                 0x3c200, 0x3c318,
1786                 0x3c400, 0x3c4b4,
1787                 0x3c4c0, 0x3c52c,
1788                 0x3c540, 0x3c61c,
1789                 0x3c800, 0x3c828,
1790                 0x3c834, 0x3c834,
1791                 0x3c8c0, 0x3c908,
1792                 0x3c910, 0x3c9ac,
1793                 0x3ca00, 0x3ca14,
1794                 0x3ca1c, 0x3ca2c,
1795                 0x3ca44, 0x3ca50,
1796                 0x3ca74, 0x3ca74,
1797                 0x3ca7c, 0x3cafc,
1798                 0x3cb08, 0x3cc24,
1799                 0x3cd00, 0x3cd00,
1800                 0x3cd08, 0x3cd14,
1801                 0x3cd1c, 0x3cd20,
1802                 0x3cd3c, 0x3cd3c,
1803                 0x3cd48, 0x3cd50,
1804                 0x3d200, 0x3d20c,
1805                 0x3d220, 0x3d220,
1806                 0x3d240, 0x3d240,
1807                 0x3d600, 0x3d60c,
1808                 0x3da00, 0x3da1c,
1809                 0x3de00, 0x3de20,
1810                 0x3de38, 0x3de3c,
1811                 0x3de80, 0x3de80,
1812                 0x3de88, 0x3dea8,
1813                 0x3deb0, 0x3deb4,
1814                 0x3dec8, 0x3ded4,
1815                 0x3dfb8, 0x3e004,
1816                 0x3e200, 0x3e200,
1817                 0x3e208, 0x3e240,
1818                 0x3e248, 0x3e280,
1819                 0x3e288, 0x3e2c0,
1820                 0x3e2c8, 0x3e2fc,
1821                 0x3e600, 0x3e630,
1822                 0x3ea00, 0x3eabc,
1823                 0x3eb00, 0x3eb10,
1824                 0x3eb20, 0x3eb30,
1825                 0x3eb40, 0x3eb50,
1826                 0x3eb60, 0x3eb70,
1827                 0x3f000, 0x3f028,
1828                 0x3f030, 0x3f048,
1829                 0x3f060, 0x3f068,
1830                 0x3f070, 0x3f09c,
1831                 0x3f0f0, 0x3f128,
1832                 0x3f130, 0x3f148,
1833                 0x3f160, 0x3f168,
1834                 0x3f170, 0x3f19c,
1835                 0x3f1f0, 0x3f238,
1836                 0x3f240, 0x3f240,
1837                 0x3f248, 0x3f250,
1838                 0x3f25c, 0x3f264,
1839                 0x3f270, 0x3f2b8,
1840                 0x3f2c0, 0x3f2e4,
1841                 0x3f2f8, 0x3f338,
1842                 0x3f340, 0x3f340,
1843                 0x3f348, 0x3f350,
1844                 0x3f35c, 0x3f364,
1845                 0x3f370, 0x3f3b8,
1846                 0x3f3c0, 0x3f3e4,
1847                 0x3f3f8, 0x3f428,
1848                 0x3f430, 0x3f448,
1849                 0x3f460, 0x3f468,
1850                 0x3f470, 0x3f49c,
1851                 0x3f4f0, 0x3f528,
1852                 0x3f530, 0x3f548,
1853                 0x3f560, 0x3f568,
1854                 0x3f570, 0x3f59c,
1855                 0x3f5f0, 0x3f638,
1856                 0x3f640, 0x3f640,
1857                 0x3f648, 0x3f650,
1858                 0x3f65c, 0x3f664,
1859                 0x3f670, 0x3f6b8,
1860                 0x3f6c0, 0x3f6e4,
1861                 0x3f6f8, 0x3f738,
1862                 0x3f740, 0x3f740,
1863                 0x3f748, 0x3f750,
1864                 0x3f75c, 0x3f764,
1865                 0x3f770, 0x3f7b8,
1866                 0x3f7c0, 0x3f7e4,
1867                 0x3f7f8, 0x3f7fc,
1868                 0x3f814, 0x3f814,
1869                 0x3f82c, 0x3f82c,
1870                 0x3f880, 0x3f88c,
1871                 0x3f8e8, 0x3f8ec,
1872                 0x3f900, 0x3f928,
1873                 0x3f930, 0x3f948,
1874                 0x3f960, 0x3f968,
1875                 0x3f970, 0x3f99c,
1876                 0x3f9f0, 0x3fa38,
1877                 0x3fa40, 0x3fa40,
1878                 0x3fa48, 0x3fa50,
1879                 0x3fa5c, 0x3fa64,
1880                 0x3fa70, 0x3fab8,
1881                 0x3fac0, 0x3fae4,
1882                 0x3faf8, 0x3fb10,
1883                 0x3fb28, 0x3fb28,
1884                 0x3fb3c, 0x3fb50,
1885                 0x3fbf0, 0x3fc10,
1886                 0x3fc28, 0x3fc28,
1887                 0x3fc3c, 0x3fc50,
1888                 0x3fcf0, 0x3fcfc,
1889                 0x40000, 0x4000c,
1890                 0x40040, 0x40050,
1891                 0x40060, 0x40068,
1892                 0x4007c, 0x4008c,
1893                 0x40094, 0x400b0,
1894                 0x400c0, 0x40144,
1895                 0x40180, 0x4018c,
1896                 0x40200, 0x40254,
1897                 0x40260, 0x40264,
1898                 0x40270, 0x40288,
1899                 0x40290, 0x40298,
1900                 0x402ac, 0x402c8,
1901                 0x402d0, 0x402e0,
1902                 0x402f0, 0x402f0,
1903                 0x40300, 0x4033c,
1904                 0x403f8, 0x403fc,
1905                 0x41304, 0x413c4,
1906                 0x41400, 0x4140c,
1907                 0x41414, 0x4141c,
1908                 0x41480, 0x414d0,
1909                 0x44000, 0x44054,
1910                 0x4405c, 0x44078,
1911                 0x440c0, 0x44174,
1912                 0x44180, 0x441ac,
1913                 0x441b4, 0x441b8,
1914                 0x441c0, 0x44254,
1915                 0x4425c, 0x44278,
1916                 0x442c0, 0x44374,
1917                 0x44380, 0x443ac,
1918                 0x443b4, 0x443b8,
1919                 0x443c0, 0x44454,
1920                 0x4445c, 0x44478,
1921                 0x444c0, 0x44574,
1922                 0x44580, 0x445ac,
1923                 0x445b4, 0x445b8,
1924                 0x445c0, 0x44654,
1925                 0x4465c, 0x44678,
1926                 0x446c0, 0x44774,
1927                 0x44780, 0x447ac,
1928                 0x447b4, 0x447b8,
1929                 0x447c0, 0x44854,
1930                 0x4485c, 0x44878,
1931                 0x448c0, 0x44974,
1932                 0x44980, 0x449ac,
1933                 0x449b4, 0x449b8,
1934                 0x449c0, 0x449fc,
1935                 0x45000, 0x45004,
1936                 0x45010, 0x45030,
1937                 0x45040, 0x45060,
1938                 0x45068, 0x45068,
1939                 0x45080, 0x45084,
1940                 0x450a0, 0x450b0,
1941                 0x45200, 0x45204,
1942                 0x45210, 0x45230,
1943                 0x45240, 0x45260,
1944                 0x45268, 0x45268,
1945                 0x45280, 0x45284,
1946                 0x452a0, 0x452b0,
1947                 0x460c0, 0x460e4,
1948                 0x47000, 0x4703c,
1949                 0x47044, 0x4708c,
1950                 0x47200, 0x47250,
1951                 0x47400, 0x47408,
1952                 0x47414, 0x47420,
1953                 0x47600, 0x47618,
1954                 0x47800, 0x47814,
1955                 0x48000, 0x4800c,
1956                 0x48040, 0x48050,
1957                 0x48060, 0x48068,
1958                 0x4807c, 0x4808c,
1959                 0x48094, 0x480b0,
1960                 0x480c0, 0x48144,
1961                 0x48180, 0x4818c,
1962                 0x48200, 0x48254,
1963                 0x48260, 0x48264,
1964                 0x48270, 0x48288,
1965                 0x48290, 0x48298,
1966                 0x482ac, 0x482c8,
1967                 0x482d0, 0x482e0,
1968                 0x482f0, 0x482f0,
1969                 0x48300, 0x4833c,
1970                 0x483f8, 0x483fc,
1971                 0x49304, 0x493c4,
1972                 0x49400, 0x4940c,
1973                 0x49414, 0x4941c,
1974                 0x49480, 0x494d0,
1975                 0x4c000, 0x4c054,
1976                 0x4c05c, 0x4c078,
1977                 0x4c0c0, 0x4c174,
1978                 0x4c180, 0x4c1ac,
1979                 0x4c1b4, 0x4c1b8,
1980                 0x4c1c0, 0x4c254,
1981                 0x4c25c, 0x4c278,
1982                 0x4c2c0, 0x4c374,
1983                 0x4c380, 0x4c3ac,
1984                 0x4c3b4, 0x4c3b8,
1985                 0x4c3c0, 0x4c454,
1986                 0x4c45c, 0x4c478,
1987                 0x4c4c0, 0x4c574,
1988                 0x4c580, 0x4c5ac,
1989                 0x4c5b4, 0x4c5b8,
1990                 0x4c5c0, 0x4c654,
1991                 0x4c65c, 0x4c678,
1992                 0x4c6c0, 0x4c774,
1993                 0x4c780, 0x4c7ac,
1994                 0x4c7b4, 0x4c7b8,
1995                 0x4c7c0, 0x4c854,
1996                 0x4c85c, 0x4c878,
1997                 0x4c8c0, 0x4c974,
1998                 0x4c980, 0x4c9ac,
1999                 0x4c9b4, 0x4c9b8,
2000                 0x4c9c0, 0x4c9fc,
2001                 0x4d000, 0x4d004,
2002                 0x4d010, 0x4d030,
2003                 0x4d040, 0x4d060,
2004                 0x4d068, 0x4d068,
2005                 0x4d080, 0x4d084,
2006                 0x4d0a0, 0x4d0b0,
2007                 0x4d200, 0x4d204,
2008                 0x4d210, 0x4d230,
2009                 0x4d240, 0x4d260,
2010                 0x4d268, 0x4d268,
2011                 0x4d280, 0x4d284,
2012                 0x4d2a0, 0x4d2b0,
2013                 0x4e0c0, 0x4e0e4,
2014                 0x4f000, 0x4f03c,
2015                 0x4f044, 0x4f08c,
2016                 0x4f200, 0x4f250,
2017                 0x4f400, 0x4f408,
2018                 0x4f414, 0x4f420,
2019                 0x4f600, 0x4f618,
2020                 0x4f800, 0x4f814,
2021                 0x50000, 0x50084,
2022                 0x50090, 0x500cc,
2023                 0x50400, 0x50400,
2024                 0x50800, 0x50884,
2025                 0x50890, 0x508cc,
2026                 0x50c00, 0x50c00,
2027                 0x51000, 0x5101c,
2028                 0x51300, 0x51308,
2029         };
2030
2031         static const unsigned int t6_reg_ranges[] = {
2032                 0x1008, 0x101c,
2033                 0x1024, 0x10a8,
2034                 0x10b4, 0x10f8,
2035                 0x1100, 0x1114,
2036                 0x111c, 0x112c,
2037                 0x1138, 0x113c,
2038                 0x1144, 0x114c,
2039                 0x1180, 0x1184,
2040                 0x1190, 0x1194,
2041                 0x11a0, 0x11a4,
2042                 0x11b0, 0x11b4,
2043                 0x11fc, 0x1258,
2044                 0x1280, 0x12d4,
2045                 0x12d9, 0x12d9,
2046                 0x12de, 0x12de,
2047                 0x12e3, 0x12e3,
2048                 0x12e8, 0x133c,
2049                 0x1800, 0x18fc,
2050                 0x3000, 0x302c,
2051                 0x3060, 0x30b0,
2052                 0x30b8, 0x30d8,
2053                 0x30e0, 0x30fc,
2054                 0x3140, 0x357c,
2055                 0x35a8, 0x35cc,
2056                 0x35ec, 0x35ec,
2057                 0x3600, 0x5624,
2058                 0x56cc, 0x56ec,
2059                 0x56f4, 0x5720,
2060                 0x5728, 0x575c,
2061                 0x580c, 0x5814,
2062                 0x5890, 0x589c,
2063                 0x58a4, 0x58ac,
2064                 0x58b8, 0x58bc,
2065                 0x5940, 0x595c,
2066                 0x5980, 0x598c,
2067                 0x59b0, 0x59c8,
2068                 0x59d0, 0x59dc,
2069                 0x59fc, 0x5a18,
2070                 0x5a60, 0x5a6c,
2071                 0x5a80, 0x5a8c,
2072                 0x5a94, 0x5a9c,
2073                 0x5b94, 0x5bfc,
2074                 0x5c10, 0x5e48,
2075                 0x5e50, 0x5e94,
2076                 0x5ea0, 0x5eb0,
2077                 0x5ec0, 0x5ec0,
2078                 0x5ec8, 0x5ed0,
2079                 0x6000, 0x6020,
2080                 0x6028, 0x6040,
2081                 0x6058, 0x609c,
2082                 0x60a8, 0x619c,
2083                 0x7700, 0x7798,
2084                 0x77c0, 0x7880,
2085                 0x78cc, 0x78fc,
2086                 0x7b00, 0x7b58,
2087                 0x7b60, 0x7b84,
2088                 0x7b8c, 0x7c54,
2089                 0x7d00, 0x7d38,
2090                 0x7d40, 0x7d84,
2091                 0x7d8c, 0x7ddc,
2092                 0x7de4, 0x7e04,
2093                 0x7e10, 0x7e1c,
2094                 0x7e24, 0x7e38,
2095                 0x7e40, 0x7e44,
2096                 0x7e4c, 0x7e78,
2097                 0x7e80, 0x7edc,
2098                 0x7ee8, 0x7efc,
2099                 0x8dc0, 0x8de4,
2100                 0x8df8, 0x8e04,
2101                 0x8e10, 0x8e84,
2102                 0x8ea0, 0x8f88,
2103                 0x8fb8, 0x9058,
2104                 0x9060, 0x9060,
2105                 0x9068, 0x90f8,
2106                 0x9100, 0x9124,
2107                 0x9400, 0x9470,
2108                 0x9600, 0x9600,
2109                 0x9608, 0x9638,
2110                 0x9640, 0x9704,
2111                 0x9710, 0x971c,
2112                 0x9800, 0x9808,
2113                 0x9820, 0x983c,
2114                 0x9850, 0x9864,
2115                 0x9c00, 0x9c6c,
2116                 0x9c80, 0x9cec,
2117                 0x9d00, 0x9d6c,
2118                 0x9d80, 0x9dec,
2119                 0x9e00, 0x9e6c,
2120                 0x9e80, 0x9eec,
2121                 0x9f00, 0x9f6c,
2122                 0x9f80, 0xa020,
2123                 0xd004, 0xd03c,
2124                 0xd100, 0xd118,
2125                 0xd200, 0xd214,
2126                 0xd220, 0xd234,
2127                 0xd240, 0xd254,
2128                 0xd260, 0xd274,
2129                 0xd280, 0xd294,
2130                 0xd2a0, 0xd2b4,
2131                 0xd2c0, 0xd2d4,
2132                 0xd2e0, 0xd2f4,
2133                 0xd300, 0xd31c,
2134                 0xdfc0, 0xdfe0,
2135                 0xe000, 0xf008,
2136                 0x11000, 0x11014,
2137                 0x11048, 0x1106c,
2138                 0x11074, 0x11088,
2139                 0x11098, 0x11120,
2140                 0x1112c, 0x1117c,
2141                 0x11190, 0x112e0,
2142                 0x11300, 0x1130c,
2143                 0x12000, 0x1206c,
2144                 0x19040, 0x1906c,
2145                 0x19078, 0x19080,
2146                 0x1908c, 0x190e8,
2147                 0x190f0, 0x190f8,
2148                 0x19100, 0x19110,
2149                 0x19120, 0x19124,
2150                 0x19150, 0x19194,
2151                 0x1919c, 0x191b0,
2152                 0x191d0, 0x191e8,
2153                 0x19238, 0x19290,
2154                 0x192a4, 0x192b0,
2155                 0x192bc, 0x192bc,
2156                 0x19348, 0x1934c,
2157                 0x193f8, 0x19418,
2158                 0x19420, 0x19428,
2159                 0x19430, 0x19444,
2160                 0x1944c, 0x1946c,
2161                 0x19474, 0x19474,
2162                 0x19490, 0x194cc,
2163                 0x194f0, 0x194f8,
2164                 0x19c00, 0x19c48,
2165                 0x19c50, 0x19c80,
2166                 0x19c94, 0x19c98,
2167                 0x19ca0, 0x19cbc,
2168                 0x19ce4, 0x19ce4,
2169                 0x19cf0, 0x19cf8,
2170                 0x19d00, 0x19d28,
2171                 0x19d50, 0x19d78,
2172                 0x19d94, 0x19d98,
2173                 0x19da0, 0x19dc8,
2174                 0x19df0, 0x19e10,
2175                 0x19e50, 0x19e6c,
2176                 0x19ea0, 0x19ebc,
2177                 0x19ec4, 0x19ef4,
2178                 0x19f04, 0x19f2c,
2179                 0x19f34, 0x19f34,
2180                 0x19f40, 0x19f50,
2181                 0x19f90, 0x19fac,
2182                 0x19fc4, 0x19fc8,
2183                 0x19fd0, 0x19fe4,
2184                 0x1a000, 0x1a004,
2185                 0x1a010, 0x1a06c,
2186                 0x1a0b0, 0x1a0e4,
2187                 0x1a0ec, 0x1a0f8,
2188                 0x1a100, 0x1a108,
2189                 0x1a114, 0x1a120,
2190                 0x1a128, 0x1a130,
2191                 0x1a138, 0x1a138,
2192                 0x1a190, 0x1a1c4,
2193                 0x1a1fc, 0x1a1fc,
2194                 0x1e008, 0x1e00c,
2195                 0x1e040, 0x1e044,
2196                 0x1e04c, 0x1e04c,
2197                 0x1e284, 0x1e290,
2198                 0x1e2c0, 0x1e2c0,
2199                 0x1e2e0, 0x1e2e0,
2200                 0x1e300, 0x1e384,
2201                 0x1e3c0, 0x1e3c8,
2202                 0x1e408, 0x1e40c,
2203                 0x1e440, 0x1e444,
2204                 0x1e44c, 0x1e44c,
2205                 0x1e684, 0x1e690,
2206                 0x1e6c0, 0x1e6c0,
2207                 0x1e6e0, 0x1e6e0,
2208                 0x1e700, 0x1e784,
2209                 0x1e7c0, 0x1e7c8,
2210                 0x1e808, 0x1e80c,
2211                 0x1e840, 0x1e844,
2212                 0x1e84c, 0x1e84c,
2213                 0x1ea84, 0x1ea90,
2214                 0x1eac0, 0x1eac0,
2215                 0x1eae0, 0x1eae0,
2216                 0x1eb00, 0x1eb84,
2217                 0x1ebc0, 0x1ebc8,
2218                 0x1ec08, 0x1ec0c,
2219                 0x1ec40, 0x1ec44,
2220                 0x1ec4c, 0x1ec4c,
2221                 0x1ee84, 0x1ee90,
2222                 0x1eec0, 0x1eec0,
2223                 0x1eee0, 0x1eee0,
2224                 0x1ef00, 0x1ef84,
2225                 0x1efc0, 0x1efc8,
2226                 0x1f008, 0x1f00c,
2227                 0x1f040, 0x1f044,
2228                 0x1f04c, 0x1f04c,
2229                 0x1f284, 0x1f290,
2230                 0x1f2c0, 0x1f2c0,
2231                 0x1f2e0, 0x1f2e0,
2232                 0x1f300, 0x1f384,
2233                 0x1f3c0, 0x1f3c8,
2234                 0x1f408, 0x1f40c,
2235                 0x1f440, 0x1f444,
2236                 0x1f44c, 0x1f44c,
2237                 0x1f684, 0x1f690,
2238                 0x1f6c0, 0x1f6c0,
2239                 0x1f6e0, 0x1f6e0,
2240                 0x1f700, 0x1f784,
2241                 0x1f7c0, 0x1f7c8,
2242                 0x1f808, 0x1f80c,
2243                 0x1f840, 0x1f844,
2244                 0x1f84c, 0x1f84c,
2245                 0x1fa84, 0x1fa90,
2246                 0x1fac0, 0x1fac0,
2247                 0x1fae0, 0x1fae0,
2248                 0x1fb00, 0x1fb84,
2249                 0x1fbc0, 0x1fbc8,
2250                 0x1fc08, 0x1fc0c,
2251                 0x1fc40, 0x1fc44,
2252                 0x1fc4c, 0x1fc4c,
2253                 0x1fe84, 0x1fe90,
2254                 0x1fec0, 0x1fec0,
2255                 0x1fee0, 0x1fee0,
2256                 0x1ff00, 0x1ff84,
2257                 0x1ffc0, 0x1ffc8,
2258                 0x30000, 0x30030,
2259                 0x30038, 0x30038,
2260                 0x30040, 0x30040,
2261                 0x30048, 0x30048,
2262                 0x30050, 0x30050,
2263                 0x3005c, 0x30060,
2264                 0x30068, 0x30068,
2265                 0x30070, 0x30070,
2266                 0x30100, 0x30168,
2267                 0x30190, 0x301a0,
2268                 0x301a8, 0x301b8,
2269                 0x301c4, 0x301c8,
2270                 0x301d0, 0x301d0,
2271                 0x30200, 0x30320,
2272                 0x30400, 0x304b4,
2273                 0x304c0, 0x3052c,
2274                 0x30540, 0x3061c,
2275                 0x30800, 0x308a0,
2276                 0x308c0, 0x30908,
2277                 0x30910, 0x309b8,
2278                 0x30a00, 0x30a04,
2279                 0x30a0c, 0x30a14,
2280                 0x30a1c, 0x30a2c,
2281                 0x30a44, 0x30a50,
2282                 0x30a74, 0x30a74,
2283                 0x30a7c, 0x30afc,
2284                 0x30b08, 0x30c24,
2285                 0x30d00, 0x30d14,
2286                 0x30d1c, 0x30d3c,
2287                 0x30d44, 0x30d4c,
2288                 0x30d54, 0x30d74,
2289                 0x30d7c, 0x30d7c,
2290                 0x30de0, 0x30de0,
2291                 0x30e00, 0x30ed4,
2292                 0x30f00, 0x30fa4,
2293                 0x30fc0, 0x30fc4,
2294                 0x31000, 0x31004,
2295                 0x31080, 0x310fc,
2296                 0x31208, 0x31220,
2297                 0x3123c, 0x31254,
2298                 0x31300, 0x31300,
2299                 0x31308, 0x3131c,
2300                 0x31338, 0x3133c,
2301                 0x31380, 0x31380,
2302                 0x31388, 0x313a8,
2303                 0x313b4, 0x313b4,
2304                 0x31400, 0x31420,
2305                 0x31438, 0x3143c,
2306                 0x31480, 0x31480,
2307                 0x314a8, 0x314a8,
2308                 0x314b0, 0x314b4,
2309                 0x314c8, 0x314d4,
2310                 0x31a40, 0x31a4c,
2311                 0x31af0, 0x31b20,
2312                 0x31b38, 0x31b3c,
2313                 0x31b80, 0x31b80,
2314                 0x31ba8, 0x31ba8,
2315                 0x31bb0, 0x31bb4,
2316                 0x31bc8, 0x31bd4,
2317                 0x32140, 0x3218c,
2318                 0x321f0, 0x321f4,
2319                 0x32200, 0x32200,
2320                 0x32218, 0x32218,
2321                 0x32400, 0x32400,
2322                 0x32408, 0x3241c,
2323                 0x32618, 0x32620,
2324                 0x32664, 0x32664,
2325                 0x326a8, 0x326a8,
2326                 0x326ec, 0x326ec,
2327                 0x32a00, 0x32abc,
2328                 0x32b00, 0x32b38,
2329                 0x32b40, 0x32b58,
2330                 0x32b60, 0x32b78,
2331                 0x32c00, 0x32c00,
2332                 0x32c08, 0x32c3c,
2333                 0x32e00, 0x32e2c,
2334                 0x32f00, 0x32f2c,
2335                 0x33000, 0x3302c,
2336                 0x33034, 0x33050,
2337                 0x33058, 0x33058,
2338                 0x33060, 0x3308c,
2339                 0x3309c, 0x330ac,
2340                 0x330c0, 0x330c0,
2341                 0x330c8, 0x330d0,
2342                 0x330d8, 0x330e0,
2343                 0x330ec, 0x3312c,
2344                 0x33134, 0x33150,
2345                 0x33158, 0x33158,
2346                 0x33160, 0x3318c,
2347                 0x3319c, 0x331ac,
2348                 0x331c0, 0x331c0,
2349                 0x331c8, 0x331d0,
2350                 0x331d8, 0x331e0,
2351                 0x331ec, 0x33290,
2352                 0x33298, 0x332c4,
2353                 0x332e4, 0x33390,
2354                 0x33398, 0x333c4,
2355                 0x333e4, 0x3342c,
2356                 0x33434, 0x33450,
2357                 0x33458, 0x33458,
2358                 0x33460, 0x3348c,
2359                 0x3349c, 0x334ac,
2360                 0x334c0, 0x334c0,
2361                 0x334c8, 0x334d0,
2362                 0x334d8, 0x334e0,
2363                 0x334ec, 0x3352c,
2364                 0x33534, 0x33550,
2365                 0x33558, 0x33558,
2366                 0x33560, 0x3358c,
2367                 0x3359c, 0x335ac,
2368                 0x335c0, 0x335c0,
2369                 0x335c8, 0x335d0,
2370                 0x335d8, 0x335e0,
2371                 0x335ec, 0x33690,
2372                 0x33698, 0x336c4,
2373                 0x336e4, 0x33790,
2374                 0x33798, 0x337c4,
2375                 0x337e4, 0x337fc,
2376                 0x33814, 0x33814,
2377                 0x33854, 0x33868,
2378                 0x33880, 0x3388c,
2379                 0x338c0, 0x338d0,
2380                 0x338e8, 0x338ec,
2381                 0x33900, 0x3392c,
2382                 0x33934, 0x33950,
2383                 0x33958, 0x33958,
2384                 0x33960, 0x3398c,
2385                 0x3399c, 0x339ac,
2386                 0x339c0, 0x339c0,
2387                 0x339c8, 0x339d0,
2388                 0x339d8, 0x339e0,
2389                 0x339ec, 0x33a90,
2390                 0x33a98, 0x33ac4,
2391                 0x33ae4, 0x33b10,
2392                 0x33b24, 0x33b28,
2393                 0x33b38, 0x33b50,
2394                 0x33bf0, 0x33c10,
2395                 0x33c24, 0x33c28,
2396                 0x33c38, 0x33c50,
2397                 0x33cf0, 0x33cfc,
2398                 0x34000, 0x34030,
2399                 0x34038, 0x34038,
2400                 0x34040, 0x34040,
2401                 0x34048, 0x34048,
2402                 0x34050, 0x34050,
2403                 0x3405c, 0x34060,
2404                 0x34068, 0x34068,
2405                 0x34070, 0x34070,
2406                 0x34100, 0x34168,
2407                 0x34190, 0x341a0,
2408                 0x341a8, 0x341b8,
2409                 0x341c4, 0x341c8,
2410                 0x341d0, 0x341d0,
2411                 0x34200, 0x34320,
2412                 0x34400, 0x344b4,
2413                 0x344c0, 0x3452c,
2414                 0x34540, 0x3461c,
2415                 0x34800, 0x348a0,
2416                 0x348c0, 0x34908,
2417                 0x34910, 0x349b8,
2418                 0x34a00, 0x34a04,
2419                 0x34a0c, 0x34a14,
2420                 0x34a1c, 0x34a2c,
2421                 0x34a44, 0x34a50,
2422                 0x34a74, 0x34a74,
2423                 0x34a7c, 0x34afc,
2424                 0x34b08, 0x34c24,
2425                 0x34d00, 0x34d14,
2426                 0x34d1c, 0x34d3c,
2427                 0x34d44, 0x34d4c,
2428                 0x34d54, 0x34d74,
2429                 0x34d7c, 0x34d7c,
2430                 0x34de0, 0x34de0,
2431                 0x34e00, 0x34ed4,
2432                 0x34f00, 0x34fa4,
2433                 0x34fc0, 0x34fc4,
2434                 0x35000, 0x35004,
2435                 0x35080, 0x350fc,
2436                 0x35208, 0x35220,
2437                 0x3523c, 0x35254,
2438                 0x35300, 0x35300,
2439                 0x35308, 0x3531c,
2440                 0x35338, 0x3533c,
2441                 0x35380, 0x35380,
2442                 0x35388, 0x353a8,
2443                 0x353b4, 0x353b4,
2444                 0x35400, 0x35420,
2445                 0x35438, 0x3543c,
2446                 0x35480, 0x35480,
2447                 0x354a8, 0x354a8,
2448                 0x354b0, 0x354b4,
2449                 0x354c8, 0x354d4,
2450                 0x35a40, 0x35a4c,
2451                 0x35af0, 0x35b20,
2452                 0x35b38, 0x35b3c,
2453                 0x35b80, 0x35b80,
2454                 0x35ba8, 0x35ba8,
2455                 0x35bb0, 0x35bb4,
2456                 0x35bc8, 0x35bd4,
2457                 0x36140, 0x3618c,
2458                 0x361f0, 0x361f4,
2459                 0x36200, 0x36200,
2460                 0x36218, 0x36218,
2461                 0x36400, 0x36400,
2462                 0x36408, 0x3641c,
2463                 0x36618, 0x36620,
2464                 0x36664, 0x36664,
2465                 0x366a8, 0x366a8,
2466                 0x366ec, 0x366ec,
2467                 0x36a00, 0x36abc,
2468                 0x36b00, 0x36b38,
2469                 0x36b40, 0x36b58,
2470                 0x36b60, 0x36b78,
2471                 0x36c00, 0x36c00,
2472                 0x36c08, 0x36c3c,
2473                 0x36e00, 0x36e2c,
2474                 0x36f00, 0x36f2c,
2475                 0x37000, 0x3702c,
2476                 0x37034, 0x37050,
2477                 0x37058, 0x37058,
2478                 0x37060, 0x3708c,
2479                 0x3709c, 0x370ac,
2480                 0x370c0, 0x370c0,
2481                 0x370c8, 0x370d0,
2482                 0x370d8, 0x370e0,
2483                 0x370ec, 0x3712c,
2484                 0x37134, 0x37150,
2485                 0x37158, 0x37158,
2486                 0x37160, 0x3718c,
2487                 0x3719c, 0x371ac,
2488                 0x371c0, 0x371c0,
2489                 0x371c8, 0x371d0,
2490                 0x371d8, 0x371e0,
2491                 0x371ec, 0x37290,
2492                 0x37298, 0x372c4,
2493                 0x372e4, 0x37390,
2494                 0x37398, 0x373c4,
2495                 0x373e4, 0x3742c,
2496                 0x37434, 0x37450,
2497                 0x37458, 0x37458,
2498                 0x37460, 0x3748c,
2499                 0x3749c, 0x374ac,
2500                 0x374c0, 0x374c0,
2501                 0x374c8, 0x374d0,
2502                 0x374d8, 0x374e0,
2503                 0x374ec, 0x3752c,
2504                 0x37534, 0x37550,
2505                 0x37558, 0x37558,
2506                 0x37560, 0x3758c,
2507                 0x3759c, 0x375ac,
2508                 0x375c0, 0x375c0,
2509                 0x375c8, 0x375d0,
2510                 0x375d8, 0x375e0,
2511                 0x375ec, 0x37690,
2512                 0x37698, 0x376c4,
2513                 0x376e4, 0x37790,
2514                 0x37798, 0x377c4,
2515                 0x377e4, 0x377fc,
2516                 0x37814, 0x37814,
2517                 0x37854, 0x37868,
2518                 0x37880, 0x3788c,
2519                 0x378c0, 0x378d0,
2520                 0x378e8, 0x378ec,
2521                 0x37900, 0x3792c,
2522                 0x37934, 0x37950,
2523                 0x37958, 0x37958,
2524                 0x37960, 0x3798c,
2525                 0x3799c, 0x379ac,
2526                 0x379c0, 0x379c0,
2527                 0x379c8, 0x379d0,
2528                 0x379d8, 0x379e0,
2529                 0x379ec, 0x37a90,
2530                 0x37a98, 0x37ac4,
2531                 0x37ae4, 0x37b10,
2532                 0x37b24, 0x37b28,
2533                 0x37b38, 0x37b50,
2534                 0x37bf0, 0x37c10,
2535                 0x37c24, 0x37c28,
2536                 0x37c38, 0x37c50,
2537                 0x37cf0, 0x37cfc,
2538                 0x40040, 0x40040,
2539                 0x40080, 0x40084,
2540                 0x40100, 0x40100,
2541                 0x40140, 0x401bc,
2542                 0x40200, 0x40214,
2543                 0x40228, 0x40228,
2544                 0x40240, 0x40258,
2545                 0x40280, 0x40280,
2546                 0x40304, 0x40304,
2547                 0x40330, 0x4033c,
2548                 0x41304, 0x413b8,
2549                 0x413c0, 0x413c8,
2550                 0x413d0, 0x413dc,
2551                 0x413f0, 0x413f0,
2552                 0x41400, 0x4140c,
2553                 0x41414, 0x4141c,
2554                 0x41480, 0x414d0,
2555                 0x44000, 0x4407c,
2556                 0x440c0, 0x441ac,
2557                 0x441b4, 0x4427c,
2558                 0x442c0, 0x443ac,
2559                 0x443b4, 0x4447c,
2560                 0x444c0, 0x445ac,
2561                 0x445b4, 0x4467c,
2562                 0x446c0, 0x447ac,
2563                 0x447b4, 0x4487c,
2564                 0x448c0, 0x449ac,
2565                 0x449b4, 0x44a7c,
2566                 0x44ac0, 0x44bac,
2567                 0x44bb4, 0x44c7c,
2568                 0x44cc0, 0x44dac,
2569                 0x44db4, 0x44e7c,
2570                 0x44ec0, 0x44fac,
2571                 0x44fb4, 0x4507c,
2572                 0x450c0, 0x451ac,
2573                 0x451b4, 0x451fc,
2574                 0x45800, 0x45804,
2575                 0x45810, 0x45830,
2576                 0x45840, 0x45860,
2577                 0x45868, 0x45868,
2578                 0x45880, 0x45884,
2579                 0x458a0, 0x458b0,
2580                 0x45a00, 0x45a04,
2581                 0x45a10, 0x45a30,
2582                 0x45a40, 0x45a60,
2583                 0x45a68, 0x45a68,
2584                 0x45a80, 0x45a84,
2585                 0x45aa0, 0x45ab0,
2586                 0x460c0, 0x460e4,
2587                 0x47000, 0x4703c,
2588                 0x47044, 0x4708c,
2589                 0x47200, 0x47250,
2590                 0x47400, 0x47408,
2591                 0x47414, 0x47420,
2592                 0x47600, 0x47618,
2593                 0x47800, 0x47814,
2594                 0x47820, 0x4782c,
2595                 0x50000, 0x50084,
2596                 0x50090, 0x500cc,
2597                 0x50300, 0x50384,
2598                 0x50400, 0x50400,
2599                 0x50800, 0x50884,
2600                 0x50890, 0x508cc,
2601                 0x50b00, 0x50b84,
2602                 0x50c00, 0x50c00,
2603                 0x51000, 0x51020,
2604                 0x51028, 0x510b0,
2605                 0x51300, 0x51324,
2606         };
2607
2608         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2609         const unsigned int *reg_ranges;
2610         int reg_ranges_size, range;
2611         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2612
2613         /* Select the right set of register ranges to dump depending on the
2614          * adapter chip type.
2615          */
2616         switch (chip_version) {
2617         case CHELSIO_T4:
2618                 reg_ranges = t4_reg_ranges;
2619                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2620                 break;
2621
2622         case CHELSIO_T5:
2623                 reg_ranges = t5_reg_ranges;
2624                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2625                 break;
2626
2627         case CHELSIO_T6:
2628                 reg_ranges = t6_reg_ranges;
2629                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2630                 break;
2631
2632         default:
2633                 dev_err(adap->pdev_dev,
2634                         "Unsupported chip version %d\n", chip_version);
2635                 return;
2636         }
2637
2638         /* Clear the register buffer and insert the appropriate register
2639          * values selected by the above register ranges.
2640          */
2641         memset(buf, 0, buf_size);
2642         for (range = 0; range < reg_ranges_size; range += 2) {
2643                 unsigned int reg = reg_ranges[range];
2644                 unsigned int last_reg = reg_ranges[range + 1];
2645                 u32 *bufp = (u32 *)((char *)buf + reg);
2646
2647                 /* Iterate across the register range filling in the register
2648                  * buffer but don't write past the end of the register buffer.
2649                  */
2650                 while (reg <= last_reg && bufp < buf_end) {
2651                         *bufp++ = t4_read_reg(adap, reg);
2652                         reg += sizeof(u32);
2653                 }
2654         }
2655 }
2656
2657 #define EEPROM_STAT_ADDR   0x7bfc
2658 #define VPD_SIZE           0x800
2659 #define VPD_BASE           0x400
2660 #define VPD_BASE_OLD       0
2661 #define VPD_LEN            1024
2662 #define CHELSIO_VPD_UNIQUE_ID 0x82
2663
2664 /**
2665  *      t4_seeprom_wp - enable/disable EEPROM write protection
2666  *      @adapter: the adapter
2667  *      @enable: whether to enable or disable write protection
2668  *
2669  *      Enables or disables write protection on the serial EEPROM.
2670  */
2671 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2672 {
2673         unsigned int v = enable ? 0xc : 0;
2674         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2675         return ret < 0 ? ret : 0;
2676 }
2677
2678 /**
2679  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2680  *      @adapter: adapter to read
2681  *      @p: where to store the parameters
2682  *
2683  *      Reads card parameters stored in VPD EEPROM.
2684  */
2685 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2686 {
2687         int i, ret = 0, addr;
2688         int ec, sn, pn, na;
2689         u8 *vpd, csum;
2690         unsigned int vpdr_len, kw_offset, id_len;
2691
2692         vpd = vmalloc(VPD_LEN);
2693         if (!vpd)
2694                 return -ENOMEM;
2695
2696         /* We have two VPD data structures stored in the adapter VPD area.
2697          * By default, Linux calculates the size of the VPD area by traversing
2698          * the first VPD area at offset 0x0, so we need to tell the OS what
2699          * our real VPD size is.
2700          */
2701         ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2702         if (ret < 0)
2703                 goto out;
2704
2705         /* Card information normally starts at VPD_BASE but early cards had
2706          * it at 0.
2707          */
2708         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2709         if (ret < 0)
2710                 goto out;
2711
2712         /* The VPD shall have a unique identifier specified by the PCI SIG.
2713          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2714          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2715          * is expected to automatically put this entry at the
2716          * beginning of the VPD.
2717          */
2718         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2719
2720         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2721         if (ret < 0)
2722                 goto out;
2723
2724         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2725                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2726                 ret = -EINVAL;
2727                 goto out;
2728         }
2729
2730         id_len = pci_vpd_lrdt_size(vpd);
2731         if (id_len > ID_LEN)
2732                 id_len = ID_LEN;
2733
2734         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2735         if (i < 0) {
2736                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2737                 ret = -EINVAL;
2738                 goto out;
2739         }
2740
2741         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2742         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2743         if (vpdr_len + kw_offset > VPD_LEN) {
2744                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2745                 ret = -EINVAL;
2746                 goto out;
2747         }
2748
2749 #define FIND_VPD_KW(var, name) do { \
2750         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2751         if (var < 0) { \
2752                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2753                 ret = -EINVAL; \
2754                 goto out; \
2755         } \
2756         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2757 } while (0)
2758
2759         FIND_VPD_KW(i, "RV");
2760         for (csum = 0; i >= 0; i--)
2761                 csum += vpd[i];
2762
2763         if (csum) {
2764                 dev_err(adapter->pdev_dev,
2765                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2766                 ret = -EINVAL;
2767                 goto out;
2768         }
2769
2770         FIND_VPD_KW(ec, "EC");
2771         FIND_VPD_KW(sn, "SN");
2772         FIND_VPD_KW(pn, "PN");
2773         FIND_VPD_KW(na, "NA");
2774 #undef FIND_VPD_KW
2775
2776         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2777         strim(p->id);
2778         memcpy(p->ec, vpd + ec, EC_LEN);
2779         strim(p->ec);
2780         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2781         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2782         strim(p->sn);
2783         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2784         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2785         strim(p->pn);
2786         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2787         strim((char *)p->na);
2788
2789 out:
2790         vfree(vpd);
2791         return ret < 0 ? ret : 0;
2792 }
2793
2794 /**
2795  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2796  *      @adapter: adapter to read
2797  *      @p: where to store the parameters
2798  *
2799  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2800  *      Clock.  This can only be called after a connection to the firmware
2801  *      is established.
2802  */
2803 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2804 {
2805         u32 cclk_param, cclk_val;
2806         int ret;
2807
2808         /* Grab the raw VPD parameters.
2809          */
2810         ret = t4_get_raw_vpd_params(adapter, p);
2811         if (ret)
2812                 return ret;
2813
2814         /* Ask firmware for the Core Clock since it knows how to translate the
2815          * Reference Clock ('V2') VPD field into a Core Clock value ...
2816          */
2817         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2818                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2819         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2820                               1, &cclk_param, &cclk_val);
2821
2822         if (ret)
2823                 return ret;
2824         p->cclk = cclk_val;
2825
2826         return 0;
2827 }
2828
2829 /* serial flash and firmware constants */
2830 enum {
2831         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2832
2833         /* flash command opcodes */
2834         SF_PROG_PAGE    = 2,          /* program page */
2835         SF_WR_DISABLE   = 4,          /* disable writes */
2836         SF_RD_STATUS    = 5,          /* read status register */
2837         SF_WR_ENABLE    = 6,          /* enable writes */
2838         SF_RD_DATA_FAST = 0xb,        /* read flash */
2839         SF_RD_ID        = 0x9f,       /* read ID */
2840         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2841
2842         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2843 };
2844
2845 /**
2846  *      sf1_read - read data from the serial flash
2847  *      @adapter: the adapter
2848  *      @byte_cnt: number of bytes to read
2849  *      @cont: whether another operation will be chained
2850  *      @lock: whether to lock SF for PL access only
2851  *      @valp: where to store the read data
2852  *
2853  *      Reads up to 4 bytes of data from the serial flash.  The location of
2854  *      the read needs to be specified prior to calling this by issuing the
2855  *      appropriate commands to the serial flash.
2856  */
2857 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2858                     int lock, u32 *valp)
2859 {
2860         int ret;
2861
2862         if (!byte_cnt || byte_cnt > 4)
2863                 return -EINVAL;
2864         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2865                 return -EBUSY;
2866         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2867                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2868         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2869         if (!ret)
2870                 *valp = t4_read_reg(adapter, SF_DATA_A);
2871         return ret;
2872 }
2873
2874 /**
2875  *      sf1_write - write data to the serial flash
2876  *      @adapter: the adapter
2877  *      @byte_cnt: number of bytes to write
2878  *      @cont: whether another operation will be chained
2879  *      @lock: whether to lock SF for PL access only
2880  *      @val: value to write
2881  *
2882  *      Writes up to 4 bytes of data to the serial flash.  The location of
2883  *      the write needs to be specified prior to calling this by issuing the
2884  *      appropriate commands to the serial flash.
2885  */
2886 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2887                      int lock, u32 val)
2888 {
2889         if (!byte_cnt || byte_cnt > 4)
2890                 return -EINVAL;
2891         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2892                 return -EBUSY;
2893         t4_write_reg(adapter, SF_DATA_A, val);
2894         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2895                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2896         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2897 }
2898
2899 /**
2900  *      flash_wait_op - wait for a flash operation to complete
2901  *      @adapter: the adapter
2902  *      @attempts: max number of polls of the status register
2903  *      @delay: delay between polls in ms
2904  *
2905  *      Wait for a flash operation to complete by polling the status register.
2906  */
2907 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2908 {
2909         int ret;
2910         u32 status;
2911
2912         while (1) {
2913                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2914                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2915                         return ret;
2916                 if (!(status & 1))
2917                         return 0;
2918                 if (--attempts == 0)
2919                         return -EAGAIN;
2920                 if (delay)
2921                         msleep(delay);
2922         }
2923 }
2924
2925 /**
2926  *      t4_read_flash - read words from serial flash
2927  *      @adapter: the adapter
2928  *      @addr: the start address for the read
2929  *      @nwords: how many 32-bit words to read
2930  *      @data: where to store the read data
2931  *      @byte_oriented: whether to store data as bytes or as words
2932  *
2933  *      Read the specified number of 32-bit words from the serial flash.
2934  *      If @byte_oriented is set the read data is stored as a byte array
2935  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2936  *      natural endianness.
2937  */
2938 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2939                   unsigned int nwords, u32 *data, int byte_oriented)
2940 {
2941         int ret;
2942
2943         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2944                 return -EINVAL;
2945
2946         addr = swab32(addr) | SF_RD_DATA_FAST;
2947
2948         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2949             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2950                 return ret;
2951
2952         for ( ; nwords; nwords--, data++) {
2953                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2954                 if (nwords == 1)
2955                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2956                 if (ret)
2957                         return ret;
2958                 if (byte_oriented)
2959                         *data = (__force __u32)(cpu_to_be32(*data));
2960         }
2961         return 0;
2962 }
2963
2964 /**
2965  *      t4_write_flash - write up to a page of data to the serial flash
2966  *      @adapter: the adapter
2967  *      @addr: the start address to write
2968  *      @n: length of data to write in bytes
2969  *      @data: the data to write
2970  *
2971  *      Writes up to a page of data (256 bytes) to the serial flash starting
2972  *      at the given address.  All the data must be written to the same page.
2973  */
2974 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2975                           unsigned int n, const u8 *data)
2976 {
2977         int ret;
2978         u32 buf[64];
2979         unsigned int i, c, left, val, offset = addr & 0xff;
2980
2981         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2982                 return -EINVAL;
2983
2984         val = swab32(addr) | SF_PROG_PAGE;
2985
2986         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2987             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2988                 goto unlock;
2989
2990         for (left = n; left; left -= c) {
2991                 c = min(left, 4U);
2992                 for (val = 0, i = 0; i < c; ++i)
2993                         val = (val << 8) + *data++;
2994
2995                 ret = sf1_write(adapter, c, c != left, 1, val);
2996                 if (ret)
2997                         goto unlock;
2998         }
2999         ret = flash_wait_op(adapter, 8, 1);
3000         if (ret)
3001                 goto unlock;
3002
3003         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3004
3005         /* Read the page to verify the write succeeded */
3006         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3007         if (ret)
3008                 return ret;
3009
3010         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3011                 dev_err(adapter->pdev_dev,
3012                         "failed to correctly write the flash page at %#x\n",
3013                         addr);
3014                 return -EIO;
3015         }
3016         return 0;
3017
3018 unlock:
3019         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3020         return ret;
3021 }
3022
3023 /**
3024  *      t4_get_fw_version - read the firmware version
3025  *      @adapter: the adapter
3026  *      @vers: where to place the version
3027  *
3028  *      Reads the FW version from flash.
3029  */
3030 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3031 {
3032         return t4_read_flash(adapter, FLASH_FW_START +
3033                              offsetof(struct fw_hdr, fw_ver), 1,
3034                              vers, 0);
3035 }
3036
3037 /**
3038  *      t4_get_bs_version - read the firmware bootstrap version
3039  *      @adapter: the adapter
3040  *      @vers: where to place the version
3041  *
3042  *      Reads the FW Bootstrap version from flash.
3043  */
3044 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3045 {
3046         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3047                              offsetof(struct fw_hdr, fw_ver), 1,
3048                              vers, 0);
3049 }
3050
3051 /**
3052  *      t4_get_tp_version - read the TP microcode version
3053  *      @adapter: the adapter
3054  *      @vers: where to place the version
3055  *
3056  *      Reads the TP microcode version from flash.
3057  */
3058 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3059 {
3060         return t4_read_flash(adapter, FLASH_FW_START +
3061                              offsetof(struct fw_hdr, tp_microcode_ver),
3062                              1, vers, 0);
3063 }
3064
3065 /**
3066  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3067  *      @adapter: the adapter
3068  *      @vers: where to place the version
3069  *
3070  *      Reads the Expansion ROM header from FLASH and returns the version
3071  *      number (if present) through the @vers return value pointer.  We return
3072  *      this in the Firmware Version Format since it's convenient.  Return
3073  *      0 on success, -ENOENT if no Expansion ROM is present.
3074  */
3075 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3076 {
3077         struct exprom_header {
3078                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3079                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3080         } *hdr;
3081         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3082                                            sizeof(u32))];
3083         int ret;
3084
3085         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3086                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3087                             0);
3088         if (ret)
3089                 return ret;
3090
3091         hdr = (struct exprom_header *)exprom_header_buf;
3092         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3093                 return -ENOENT;
3094
3095         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3096                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3097                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3098                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3099         return 0;
3100 }
3101
3102 /**
3103  *      t4_check_fw_version - check if the FW is supported with this driver
3104  *      @adap: the adapter
3105  *
3106  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3107  *      if there's exact match, a negative error if the version could not be
3108  *      read or there's a major version mismatch
3109  */
3110 int t4_check_fw_version(struct adapter *adap)
3111 {
3112         int i, ret, major, minor, micro;
3113         int exp_major, exp_minor, exp_micro;
3114         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3115
3116         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3117         /* Try multiple times before returning error */
3118         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3119                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3120
3121         if (ret)
3122                 return ret;
3123
3124         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3125         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3126         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3127
3128         switch (chip_version) {
3129         case CHELSIO_T4:
3130                 exp_major = T4FW_MIN_VERSION_MAJOR;
3131                 exp_minor = T4FW_MIN_VERSION_MINOR;
3132                 exp_micro = T4FW_MIN_VERSION_MICRO;
3133                 break;
3134         case CHELSIO_T5:
3135                 exp_major = T5FW_MIN_VERSION_MAJOR;
3136                 exp_minor = T5FW_MIN_VERSION_MINOR;
3137                 exp_micro = T5FW_MIN_VERSION_MICRO;
3138                 break;
3139         case CHELSIO_T6:
3140                 exp_major = T6FW_MIN_VERSION_MAJOR;
3141                 exp_minor = T6FW_MIN_VERSION_MINOR;
3142                 exp_micro = T6FW_MIN_VERSION_MICRO;
3143                 break;
3144         default:
3145                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3146                         adap->chip);
3147                 return -EINVAL;
3148         }
3149
3150         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3151             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3152                 dev_err(adap->pdev_dev,
3153                         "Card has firmware version %u.%u.%u, minimum "
3154                         "supported firmware is %u.%u.%u.\n", major, minor,
3155                         micro, exp_major, exp_minor, exp_micro);
3156                 return -EFAULT;
3157         }
3158         return 0;
3159 }
3160
3161 /* Is the given firmware API compatible with the one the driver was compiled
3162  * with?
3163  */
3164 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3165 {
3166
3167         /* short circuit if it's the exact same firmware version */
3168         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3169                 return 1;
3170
3171 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3172         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3173             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3174                 return 1;
3175 #undef SAME_INTF
3176
3177         return 0;
3178 }
3179
3180 /* The firmware in the filesystem is usable, but should it be installed?
3181  * This routine explains itself in detail if it indicates the filesystem
3182  * firmware should be installed.
3183  */
3184 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3185                                 int k, int c)
3186 {
3187         const char *reason;
3188
3189         if (!card_fw_usable) {
3190                 reason = "incompatible or unusable";
3191                 goto install;
3192         }
3193
3194         if (k > c) {
3195                 reason = "older than the version supported with this driver";
3196                 goto install;
3197         }
3198
3199         return 0;
3200
3201 install:
3202         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3203                 "installing firmware %u.%u.%u.%u on card.\n",
3204                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3205                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3206                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3207                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3208
3209         return 1;
3210 }
3211
3212 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3213                const u8 *fw_data, unsigned int fw_size,
3214                struct fw_hdr *card_fw, enum dev_state state,
3215                int *reset)
3216 {
3217         int ret, card_fw_usable, fs_fw_usable;
3218         const struct fw_hdr *fs_fw;
3219         const struct fw_hdr *drv_fw;
3220
3221         drv_fw = &fw_info->fw_hdr;
3222
3223         /* Read the header of the firmware on the card */
3224         ret = -t4_read_flash(adap, FLASH_FW_START,
3225                             sizeof(*card_fw) / sizeof(uint32_t),
3226                             (uint32_t *)card_fw, 1);
3227         if (ret == 0) {
3228                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3229         } else {
3230                 dev_err(adap->pdev_dev,
3231                         "Unable to read card's firmware header: %d\n", ret);
3232                 card_fw_usable = 0;
3233         }
3234
3235         if (fw_data != NULL) {
3236                 fs_fw = (const void *)fw_data;
3237                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3238         } else {
3239                 fs_fw = NULL;
3240                 fs_fw_usable = 0;
3241         }
3242
3243         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3244             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3245                 /* Common case: the firmware on the card is an exact match and
3246                  * the filesystem one is an exact match too, or the filesystem
3247                  * one is absent/incompatible.
3248                  */
3249         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3250                    should_install_fs_fw(adap, card_fw_usable,
3251                                         be32_to_cpu(fs_fw->fw_ver),
3252                                         be32_to_cpu(card_fw->fw_ver))) {
3253                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3254                                      fw_size, 0);
3255                 if (ret != 0) {
3256                         dev_err(adap->pdev_dev,
3257                                 "failed to install firmware: %d\n", ret);
3258                         goto bye;
3259                 }
3260
3261                 /* Installed successfully, update the cached header too. */
3262                 *card_fw = *fs_fw;
3263                 card_fw_usable = 1;
3264                 *reset = 0;     /* already reset as part of load_fw */
3265         }
3266
3267         if (!card_fw_usable) {
3268                 uint32_t d, c, k;
3269
3270                 d = be32_to_cpu(drv_fw->fw_ver);
3271                 c = be32_to_cpu(card_fw->fw_ver);
3272                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3273
3274                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3275                         "chip state %d, "
3276                         "driver compiled with %d.%d.%d.%d, "
3277                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3278                         state,
3279                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3280                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3281                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3282                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3283                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3284                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3285                 ret = EINVAL;
3286                 goto bye;
3287         }
3288
3289         /* We're using whatever's on the card and it's known to be good. */
3290         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3291         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3292
3293 bye:
3294         return ret;
3295 }
3296
3297 /**
3298  *      t4_flash_erase_sectors - erase a range of flash sectors
3299  *      @adapter: the adapter
3300  *      @start: the first sector to erase
3301  *      @end: the last sector to erase
3302  *
3303  *      Erases the sectors in the given inclusive range.
3304  */
3305 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3306 {
3307         int ret = 0;
3308
3309         if (end >= adapter->params.sf_nsec)
3310                 return -EINVAL;
3311
3312         while (start <= end) {
3313                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3314                     (ret = sf1_write(adapter, 4, 0, 1,
3315                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3316                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3317                         dev_err(adapter->pdev_dev,
3318                                 "erase of flash sector %d failed, error %d\n",
3319                                 start, ret);
3320                         break;
3321                 }
3322                 start++;
3323         }
3324         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3325         return ret;
3326 }
3327
3328 /**
3329  *      t4_flash_cfg_addr - return the address of the flash configuration file
3330  *      @adapter: the adapter
3331  *
3332  *      Return the address within the flash where the Firmware Configuration
3333  *      File is stored.
3334  */
3335 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3336 {
3337         if (adapter->params.sf_size == 0x100000)
3338                 return FLASH_FPGA_CFG_START;
3339         else
3340                 return FLASH_CFG_START;
3341 }
3342
3343 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3344  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3345  * and emit an error message for mismatched firmware to save our caller the
3346  * effort ...
3347  */
3348 static bool t4_fw_matches_chip(const struct adapter *adap,
3349                                const struct fw_hdr *hdr)
3350 {
3351         /* The expression below will return FALSE for any unsupported adapter
3352          * which will keep us "honest" in the future ...
3353          */
3354         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3355             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3356             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3357                 return true;
3358
3359         dev_err(adap->pdev_dev,
3360                 "FW image (%d) is not suitable for this adapter (%d)\n",
3361                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3362         return false;
3363 }
3364
3365 /**
3366  *      t4_load_fw - download firmware
3367  *      @adap: the adapter
3368  *      @fw_data: the firmware image to write
3369  *      @size: image size
3370  *
3371  *      Write the supplied firmware image to the card's serial flash.
3372  */
3373 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3374 {
3375         u32 csum;
3376         int ret, addr;
3377         unsigned int i;
3378         u8 first_page[SF_PAGE_SIZE];
3379         const __be32 *p = (const __be32 *)fw_data;
3380         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3381         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3382         unsigned int fw_img_start = adap->params.sf_fw_start;
3383         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3384
3385         if (!size) {
3386                 dev_err(adap->pdev_dev, "FW image has no data\n");
3387                 return -EINVAL;
3388         }
3389         if (size & 511) {
3390                 dev_err(adap->pdev_dev,
3391                         "FW image size not multiple of 512 bytes\n");
3392                 return -EINVAL;
3393         }
3394         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3395                 dev_err(adap->pdev_dev,
3396                         "FW image size differs from size in FW header\n");
3397                 return -EINVAL;
3398         }
3399         if (size > FW_MAX_SIZE) {
3400                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3401                         FW_MAX_SIZE);
3402                 return -EFBIG;
3403         }
3404         if (!t4_fw_matches_chip(adap, hdr))
3405                 return -EINVAL;
3406
3407         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3408                 csum += be32_to_cpu(p[i]);
3409
3410         if (csum != 0xffffffff) {
3411                 dev_err(adap->pdev_dev,
3412                         "corrupted firmware image, checksum %#x\n", csum);
3413                 return -EINVAL;
3414         }
3415
3416         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3417         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3418         if (ret)
3419                 goto out;
3420
3421         /*
3422          * We write the correct version at the end so the driver can see a bad
3423          * version if the FW write fails.  Start by writing a copy of the
3424          * first page with a bad version.
3425          */
3426         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3427         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3428         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3429         if (ret)
3430                 goto out;
3431
3432         addr = fw_img_start;
3433         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3434                 addr += SF_PAGE_SIZE;
3435                 fw_data += SF_PAGE_SIZE;
3436                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3437                 if (ret)
3438                         goto out;
3439         }
3440
3441         ret = t4_write_flash(adap,
3442                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3443                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3444 out:
3445         if (ret)
3446                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3447                         ret);
3448         else
3449                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3450         return ret;
3451 }
3452
3453 /**
3454  *      t4_phy_fw_ver - return current PHY firmware version
3455  *      @adap: the adapter
3456  *      @phy_fw_ver: return value buffer for PHY firmware version
3457  *
3458  *      Returns the current version of external PHY firmware on the
3459  *      adapter.
3460  */
3461 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3462 {
3463         u32 param, val;
3464         int ret;
3465
3466         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3467                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3468                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3469                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3470         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3471                               &param, &val);
3472         if (ret < 0)
3473                 return ret;
3474         *phy_fw_ver = val;
3475         return 0;
3476 }
3477
3478 /**
3479  *      t4_load_phy_fw - download port PHY firmware
3480  *      @adap: the adapter
3481  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3482  *      @win_lock: the lock to use to guard the memory copy
3483  *      @phy_fw_version: function to check PHY firmware versions
3484  *      @phy_fw_data: the PHY firmware image to write
3485  *      @phy_fw_size: image size
3486  *
3487  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3488  *      @phy_fw_version is supplied, then it will be used to determine if
3489  *      it's necessary to perform the transfer by comparing the version
3490  *      of any existing adapter PHY firmware with that of the passed in
3491  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3492  *      around the call to t4_memory_rw() which transfers the PHY firmware
3493  *      to the adapter.
3494  *
3495  *      A negative error number will be returned if an error occurs.  If
3496  *      version number support is available and there's no need to upgrade
3497  *      the firmware, 0 will be returned.  If firmware is successfully
3498  *      transferred to the adapter, 1 will be retured.
3499  *
3500  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3501  *      a result, a RESET of the adapter would cause that RAM to lose its
3502  *      contents.  Thus, loading PHY firmware on such adapters must happen
3503  *      after any FW_RESET_CMDs ...
3504  */
3505 int t4_load_phy_fw(struct adapter *adap,
3506                    int win, spinlock_t *win_lock,
3507                    int (*phy_fw_version)(const u8 *, size_t),
3508                    const u8 *phy_fw_data, size_t phy_fw_size)
3509 {
3510         unsigned long mtype = 0, maddr = 0;
3511         u32 param, val;
3512         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3513         int ret;
3514
3515         /* If we have version number support, then check to see if the adapter
3516          * already has up-to-date PHY firmware loaded.
3517          */
3518          if (phy_fw_version) {
3519                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3520                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3521                 if (ret < 0)
3522                         return ret;
3523
3524                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3525                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3526                                 "version %#x\n", cur_phy_fw_ver);
3527                         return 0;
3528                 }
3529         }
3530
3531         /* Ask the firmware where it wants us to copy the PHY firmware image.
3532          * The size of the file requires a special version of the READ coommand
3533          * which will pass the file size via the values field in PARAMS_CMD and
3534          * retrieve the return value from firmware and place it in the same
3535          * buffer values
3536          */
3537         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3538                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3539                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3540                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3541         val = phy_fw_size;
3542         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3543                                  &param, &val, 1, true);
3544         if (ret < 0)
3545                 return ret;
3546         mtype = val >> 8;
3547         maddr = (val & 0xff) << 16;
3548
3549         /* Copy the supplied PHY Firmware image to the adapter memory location
3550          * allocated by the adapter firmware.
3551          */
3552         if (win_lock)
3553                 spin_lock_bh(win_lock);
3554         ret = t4_memory_rw(adap, win, mtype, maddr,
3555                            phy_fw_size, (__be32 *)phy_fw_data,
3556                            T4_MEMORY_WRITE);
3557         if (win_lock)
3558                 spin_unlock_bh(win_lock);
3559         if (ret)
3560                 return ret;
3561
3562         /* Tell the firmware that the PHY firmware image has been written to
3563          * RAM and it can now start copying it over to the PHYs.  The chip
3564          * firmware will RESET the affected PHYs as part of this operation
3565          * leaving them running the new PHY firmware image.
3566          */
3567         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3568                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3569                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3570                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3571         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3572                                     &param, &val, 30000);
3573
3574         /* If we have version number support, then check to see that the new
3575          * firmware got loaded properly.
3576          */
3577         if (phy_fw_version) {
3578                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3579                 if (ret < 0)
3580                         return ret;
3581
3582                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3583                         CH_WARN(adap, "PHY Firmware did not update: "
3584                                 "version on adapter %#x, "
3585                                 "version flashed %#x\n",
3586                                 cur_phy_fw_ver, new_phy_fw_vers);
3587                         return -ENXIO;
3588                 }
3589         }
3590
3591         return 1;
3592 }
3593
3594 /**
3595  *      t4_fwcache - firmware cache operation
3596  *      @adap: the adapter
3597  *      @op  : the operation (flush or flush and invalidate)
3598  */
3599 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3600 {
3601         struct fw_params_cmd c;
3602
3603         memset(&c, 0, sizeof(c));
3604         c.op_to_vfn =
3605                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3606                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3607                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3608                             FW_PARAMS_CMD_VFN_V(0));
3609         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3610         c.param[0].mnem =
3611                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3612                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3613         c.param[0].val = (__force __be32)op;
3614
3615         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3616 }
3617
3618 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3619                         unsigned int *pif_req_wrptr,
3620                         unsigned int *pif_rsp_wrptr)
3621 {
3622         int i, j;
3623         u32 cfg, val, req, rsp;
3624
3625         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3626         if (cfg & LADBGEN_F)
3627                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3628
3629         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3630         req = POLADBGWRPTR_G(val);
3631         rsp = PILADBGWRPTR_G(val);
3632         if (pif_req_wrptr)
3633                 *pif_req_wrptr = req;
3634         if (pif_rsp_wrptr)
3635                 *pif_rsp_wrptr = rsp;
3636
3637         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3638                 for (j = 0; j < 6; j++) {
3639                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3640                                      PILADBGRDPTR_V(rsp));
3641                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3642                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3643                         req++;
3644                         rsp++;
3645                 }
3646                 req = (req + 2) & POLADBGRDPTR_M;
3647                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3648         }
3649         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3650 }
3651
3652 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3653 {
3654         u32 cfg;
3655         int i, j, idx;
3656
3657         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3658         if (cfg & LADBGEN_F)
3659                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3660
3661         for (i = 0; i < CIM_MALA_SIZE; i++) {
3662                 for (j = 0; j < 5; j++) {
3663                         idx = 8 * i + j;
3664                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3665                                      PILADBGRDPTR_V(idx));
3666                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3667                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3668                 }
3669         }
3670         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3671 }
3672
3673 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3674 {
3675         unsigned int i, j;
3676
3677         for (i = 0; i < 8; i++) {
3678                 u32 *p = la_buf + i;
3679
3680                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3681                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3682                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3683                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3684                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3685         }
3686 }
3687
3688 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3689                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3690                      FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3691                      FW_PORT_CAP_ANEG)
3692
3693 /**
3694  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3695  *      @phy: the PHY to setup
3696  *      @mac: the MAC to setup
3697  *      @lc: the requested link configuration
3698  *
3699  *      Set up a port's MAC and PHY according to a desired link configuration.
3700  *      - If the PHY can auto-negotiate first decide what to advertise, then
3701  *        enable/disable auto-negotiation as desired, and reset.
3702  *      - If the PHY does not auto-negotiate just reset it.
3703  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3704  *        otherwise do it later based on the outcome of auto-negotiation.
3705  */
3706 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3707                   struct link_config *lc)
3708 {
3709         struct fw_port_cmd c;
3710         unsigned int mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3711         unsigned int fc = 0, fec = 0, fw_fec = 0;
3712
3713         lc->link_ok = 0;
3714         if (lc->requested_fc & PAUSE_RX)
3715                 fc |= FW_PORT_CAP_FC_RX;
3716         if (lc->requested_fc & PAUSE_TX)
3717                 fc |= FW_PORT_CAP_FC_TX;
3718
3719         fec = lc->requested_fec & FEC_AUTO ? lc->auto_fec : lc->requested_fec;
3720
3721         if (fec & FEC_RS)
3722                 fw_fec |= FW_PORT_CAP_FEC_RS;
3723         if (fec & FEC_BASER_RS)
3724                 fw_fec |= FW_PORT_CAP_FEC_BASER_RS;
3725
3726         memset(&c, 0, sizeof(c));
3727         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3728                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3729                                      FW_PORT_CMD_PORTID_V(port));
3730         c.action_to_len16 =
3731                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3732                             FW_LEN16(c));
3733
3734         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3735                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3736                                              fc | fw_fec);
3737                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3738         } else if (lc->autoneg == AUTONEG_DISABLE) {
3739                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc |
3740                                              fw_fec | mdi);
3741                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3742         } else
3743                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc |
3744                                              fw_fec | mdi);
3745
3746         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3747 }
3748
3749 /**
3750  *      t4_restart_aneg - restart autonegotiation
3751  *      @adap: the adapter
3752  *      @mbox: mbox to use for the FW command
3753  *      @port: the port id
3754  *
3755  *      Restarts autonegotiation for the selected port.
3756  */
3757 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3758 {
3759         struct fw_port_cmd c;
3760
3761         memset(&c, 0, sizeof(c));
3762         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3763                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3764                                      FW_PORT_CMD_PORTID_V(port));
3765         c.action_to_len16 =
3766                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3767                             FW_LEN16(c));
3768         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3769         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3770 }
3771
3772 typedef void (*int_handler_t)(struct adapter *adap);
3773
3774 struct intr_info {
3775         unsigned int mask;       /* bits to check in interrupt status */
3776         const char *msg;         /* message to print or NULL */
3777         short stat_idx;          /* stat counter to increment or -1 */
3778         unsigned short fatal;    /* whether the condition reported is fatal */
3779         int_handler_t int_handler; /* platform-specific int handler */
3780 };
3781
3782 /**
3783  *      t4_handle_intr_status - table driven interrupt handler
3784  *      @adapter: the adapter that generated the interrupt
3785  *      @reg: the interrupt status register to process
3786  *      @acts: table of interrupt actions
3787  *
3788  *      A table driven interrupt handler that applies a set of masks to an
3789  *      interrupt status word and performs the corresponding actions if the
3790  *      interrupts described by the mask have occurred.  The actions include
3791  *      optionally emitting a warning or alert message.  The table is terminated
3792  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3793  *      conditions.
3794  */
3795 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3796                                  const struct intr_info *acts)
3797 {
3798         int fatal = 0;
3799         unsigned int mask = 0;
3800         unsigned int status = t4_read_reg(adapter, reg);
3801
3802         for ( ; acts->mask; ++acts) {
3803                 if (!(status & acts->mask))
3804                         continue;
3805                 if (acts->fatal) {
3806                         fatal++;
3807                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3808                                   status & acts->mask);
3809                 } else if (acts->msg && printk_ratelimit())
3810                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3811                                  status & acts->mask);
3812                 if (acts->int_handler)
3813                         acts->int_handler(adapter);
3814                 mask |= acts->mask;
3815         }
3816         status &= mask;
3817         if (status)                           /* clear processed interrupts */
3818                 t4_write_reg(adapter, reg, status);
3819         return fatal;
3820 }
3821
3822 /*
3823  * Interrupt handler for the PCIE module.
3824  */
3825 static void pcie_intr_handler(struct adapter *adapter)
3826 {
3827         static const struct intr_info sysbus_intr_info[] = {
3828                 { RNPP_F, "RXNP array parity error", -1, 1 },
3829                 { RPCP_F, "RXPC array parity error", -1, 1 },
3830                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3831                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3832                 { RFTP_F, "RXFT array parity error", -1, 1 },
3833                 { 0 }
3834         };
3835         static const struct intr_info pcie_port_intr_info[] = {
3836                 { TPCP_F, "TXPC array parity error", -1, 1 },
3837                 { TNPP_F, "TXNP array parity error", -1, 1 },
3838                 { TFTP_F, "TXFT array parity error", -1, 1 },
3839                 { TCAP_F, "TXCA array parity error", -1, 1 },
3840                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3841                 { RCAP_F, "RXCA array parity error", -1, 1 },
3842                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3843                 { RDPE_F, "Rx data parity error", -1, 1 },
3844                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3845                 { 0 }
3846         };
3847         static const struct intr_info pcie_intr_info[] = {
3848                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3849                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3850                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3851                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3852                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3853                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3854                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3855                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3856                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3857                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3858                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3859                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3860                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3861                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3862                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3863                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3864                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3865                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3866                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3867                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3868                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3869                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3870                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3871                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3872                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3873                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3874                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3875                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3876                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3877                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3878                   -1, 0 },
3879                 { 0 }
3880         };
3881
3882         static struct intr_info t5_pcie_intr_info[] = {
3883                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3884                   -1, 1 },
3885                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3886                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3887                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3888                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3889                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3890                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3891                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3892                   -1, 1 },
3893                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3894                   -1, 1 },
3895                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3896                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3897                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3898                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3899                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3900                   -1, 1 },
3901                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3902                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3903                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3904                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3905                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3906                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3907                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3908                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3909                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3910                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3911                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3912                   -1, 1 },
3913                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3914                   -1, 1 },
3915                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3916                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3917                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3918                 { READRSPERR_F, "Outbound read error", -1, 0 },
3919                 { 0 }
3920         };
3921
3922         int fat;
3923
3924         if (is_t4(adapter->params.chip))
3925                 fat = t4_handle_intr_status(adapter,
3926                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3927                                 sysbus_intr_info) +
3928                         t4_handle_intr_status(adapter,
3929                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3930                                         pcie_port_intr_info) +
3931                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3932                                               pcie_intr_info);
3933         else
3934                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3935                                             t5_pcie_intr_info);
3936
3937         if (fat)
3938                 t4_fatal_err(adapter);
3939 }
3940
3941 /*
3942  * TP interrupt handler.
3943  */
3944 static void tp_intr_handler(struct adapter *adapter)
3945 {
3946         static const struct intr_info tp_intr_info[] = {
3947                 { 0x3fffffff, "TP parity error", -1, 1 },
3948                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3949                 { 0 }
3950         };
3951
3952         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3953                 t4_fatal_err(adapter);
3954 }
3955
3956 /*
3957  * SGE interrupt handler.
3958  */
3959 static void sge_intr_handler(struct adapter *adapter)
3960 {
3961         u64 v;
3962         u32 err;
3963
3964         static const struct intr_info sge_intr_info[] = {
3965                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3966                   "SGE received CPL exceeding IQE size", -1, 1 },
3967                 { ERR_INVALID_CIDX_INC_F,
3968                   "SGE GTS CIDX increment too large", -1, 0 },
3969                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3970                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3971                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3972                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3973                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3974                   0 },
3975                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3976                   0 },
3977                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3978                   0 },
3979                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3980                   0 },
3981                 { ERR_ING_CTXT_PRIO_F,
3982                   "SGE too many priority ingress contexts", -1, 0 },
3983                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3984                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3985                 { 0 }
3986         };
3987
3988         static struct intr_info t4t5_sge_intr_info[] = {
3989                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3990                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3991                 { ERR_EGR_CTXT_PRIO_F,
3992                   "SGE too many priority egress contexts", -1, 0 },
3993                 { 0 }
3994         };
3995
3996         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3997                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3998         if (v) {
3999                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4000                                 (unsigned long long)v);
4001                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4002                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4003         }
4004
4005         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4006         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4007                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4008                                            t4t5_sge_intr_info);
4009
4010         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4011         if (err & ERROR_QID_VALID_F) {
4012                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4013                         ERROR_QID_G(err));
4014                 if (err & UNCAPTURED_ERROR_F)
4015                         dev_err(adapter->pdev_dev,
4016                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4017                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4018                              UNCAPTURED_ERROR_F);
4019         }
4020
4021         if (v != 0)
4022                 t4_fatal_err(adapter);
4023 }
4024
4025 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4026                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4027 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4028                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4029
4030 /*
4031  * CIM interrupt handler.
4032  */
4033 static void cim_intr_handler(struct adapter *adapter)
4034 {
4035         static const struct intr_info cim_intr_info[] = {
4036                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4037                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4038                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4039                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4040                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4041                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4042                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4043                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4044                 { 0 }
4045         };
4046         static const struct intr_info cim_upintr_info[] = {
4047                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4048                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4049                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4050                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4051                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4052                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4053                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4054                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4055                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4056                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4057                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4058                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4059                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4060                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4061                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4062                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4063                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4064                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4065                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4066                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4067                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4068                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4069                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4070                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4071                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4072                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4073                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4074                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4075                 { 0 }
4076         };
4077
4078         u32 val, fw_err;
4079         int fat;
4080
4081         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4082         if (fw_err & PCIE_FW_ERR_F)
4083                 t4_report_fw_error(adapter);
4084
4085         /* When the Firmware detects an internal error which normally
4086          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4087          * in order to make sure the Host sees the Firmware Crash.  So
4088          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4089          * ignore the Timer0 interrupt.
4090          */
4091
4092         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4093         if (val & TIMER0INT_F)
4094                 if (!(fw_err & PCIE_FW_ERR_F) ||
4095                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4096                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4097                                      TIMER0INT_F);
4098
4099         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4100                                     cim_intr_info) +
4101               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4102                                     cim_upintr_info);
4103         if (fat)
4104                 t4_fatal_err(adapter);
4105 }
4106
4107 /*
4108  * ULP RX interrupt handler.
4109  */
4110 static void ulprx_intr_handler(struct adapter *adapter)
4111 {
4112         static const struct intr_info ulprx_intr_info[] = {
4113                 { 0x1800000, "ULPRX context error", -1, 1 },
4114                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4115                 { 0 }
4116         };
4117
4118         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4119                 t4_fatal_err(adapter);
4120 }
4121
4122 /*
4123  * ULP TX interrupt handler.
4124  */
4125 static void ulptx_intr_handler(struct adapter *adapter)
4126 {
4127         static const struct intr_info ulptx_intr_info[] = {
4128                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4129                   0 },
4130                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4131                   0 },
4132                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4133                   0 },
4134                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4135                   0 },
4136                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4137                 { 0 }
4138         };
4139
4140         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4141                 t4_fatal_err(adapter);
4142 }
4143
4144 /*
4145  * PM TX interrupt handler.
4146  */
4147 static void pmtx_intr_handler(struct adapter *adapter)
4148 {
4149         static const struct intr_info pmtx_intr_info[] = {
4150                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4151                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4152                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4153                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4154                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4155                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4156                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4157                   -1, 1 },
4158                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4159                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4160                 { 0 }
4161         };
4162
4163         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4164                 t4_fatal_err(adapter);
4165 }
4166
4167 /*
4168  * PM RX interrupt handler.
4169  */
4170 static void pmrx_intr_handler(struct adapter *adapter)
4171 {
4172         static const struct intr_info pmrx_intr_info[] = {
4173                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4174                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4175                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4176                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4177                   -1, 1 },
4178                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4179                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4180                 { 0 }
4181         };
4182
4183         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4184                 t4_fatal_err(adapter);
4185 }
4186
4187 /*
4188  * CPL switch interrupt handler.
4189  */
4190 static void cplsw_intr_handler(struct adapter *adapter)
4191 {
4192         static const struct intr_info cplsw_intr_info[] = {
4193                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4194                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4195                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4196                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4197                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4198                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4199                 { 0 }
4200         };
4201
4202         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4203                 t4_fatal_err(adapter);
4204 }
4205
4206 /*
4207  * LE interrupt handler.
4208  */
4209 static void le_intr_handler(struct adapter *adap)
4210 {
4211         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4212         static const struct intr_info le_intr_info[] = {
4213                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4214                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4215                 { PARITYERR_F, "LE parity error", -1, 1 },
4216                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4217                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4218                 { 0 }
4219         };
4220
4221         static struct intr_info t6_le_intr_info[] = {
4222                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4223                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4224                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4225                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4226                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4227                 { 0 }
4228         };
4229
4230         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4231                                   (chip <= CHELSIO_T5) ?
4232                                   le_intr_info : t6_le_intr_info))
4233                 t4_fatal_err(adap);
4234 }
4235
4236 /*
4237  * MPS interrupt handler.
4238  */
4239 static void mps_intr_handler(struct adapter *adapter)
4240 {
4241         static const struct intr_info mps_rx_intr_info[] = {
4242                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4243                 { 0 }
4244         };
4245         static const struct intr_info mps_tx_intr_info[] = {
4246                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4247                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4248                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4249                   -1, 1 },
4250                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4251                   -1, 1 },
4252                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4253                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4254                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4255                 { 0 }
4256         };
4257         static const struct intr_info mps_trc_intr_info[] = {
4258                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4259                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4260                   -1, 1 },
4261                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4262                 { 0 }
4263         };
4264         static const struct intr_info mps_stat_sram_intr_info[] = {
4265                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4266                 { 0 }
4267         };
4268         static const struct intr_info mps_stat_tx_intr_info[] = {
4269                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4270                 { 0 }
4271         };
4272         static const struct intr_info mps_stat_rx_intr_info[] = {
4273                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4274                 { 0 }
4275         };
4276         static const struct intr_info mps_cls_intr_info[] = {
4277                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4278                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4279                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4280                 { 0 }
4281         };
4282
4283         int fat;
4284
4285         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4286                                     mps_rx_intr_info) +
4287               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4288                                     mps_tx_intr_info) +
4289               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4290                                     mps_trc_intr_info) +
4291               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4292                                     mps_stat_sram_intr_info) +
4293               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4294                                     mps_stat_tx_intr_info) +
4295               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4296                                     mps_stat_rx_intr_info) +
4297               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4298                                     mps_cls_intr_info);
4299
4300         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4301         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4302         if (fat)
4303                 t4_fatal_err(adapter);
4304 }
4305
4306 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4307                       ECC_UE_INT_CAUSE_F)
4308
4309 /*
4310  * EDC/MC interrupt handler.
4311  */
4312 static void mem_intr_handler(struct adapter *adapter, int idx)
4313 {
4314         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4315
4316         unsigned int addr, cnt_addr, v;
4317
4318         if (idx <= MEM_EDC1) {
4319                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4320                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4321         } else if (idx == MEM_MC) {
4322                 if (is_t4(adapter->params.chip)) {
4323                         addr = MC_INT_CAUSE_A;
4324                         cnt_addr = MC_ECC_STATUS_A;
4325                 } else {
4326                         addr = MC_P_INT_CAUSE_A;
4327                         cnt_addr = MC_P_ECC_STATUS_A;
4328                 }
4329         } else {
4330                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4331                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4332         }
4333
4334         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4335         if (v & PERR_INT_CAUSE_F)
4336                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4337                           name[idx]);
4338         if (v & ECC_CE_INT_CAUSE_F) {
4339                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4340
4341                 t4_edc_err_read(adapter, idx);
4342
4343                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4344                 if (printk_ratelimit())
4345                         dev_warn(adapter->pdev_dev,
4346                                  "%u %s correctable ECC data error%s\n",
4347                                  cnt, name[idx], cnt > 1 ? "s" : "");
4348         }
4349         if (v & ECC_UE_INT_CAUSE_F)
4350                 dev_alert(adapter->pdev_dev,
4351                           "%s uncorrectable ECC data error\n", name[idx]);
4352
4353         t4_write_reg(adapter, addr, v);
4354         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4355                 t4_fatal_err(adapter);
4356 }
4357
4358 /*
4359  * MA interrupt handler.
4360  */
4361 static void ma_intr_handler(struct adapter *adap)
4362 {
4363         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4364
4365         if (status & MEM_PERR_INT_CAUSE_F) {
4366                 dev_alert(adap->pdev_dev,
4367                           "MA parity error, parity status %#x\n",
4368                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4369                 if (is_t5(adap->params.chip))
4370                         dev_alert(adap->pdev_dev,
4371                                   "MA parity error, parity status %#x\n",
4372                                   t4_read_reg(adap,
4373                                               MA_PARITY_ERROR_STATUS2_A));
4374         }
4375         if (status & MEM_WRAP_INT_CAUSE_F) {
4376                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4377                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4378                           "client %u to address %#x\n",
4379                           MEM_WRAP_CLIENT_NUM_G(v),
4380                           MEM_WRAP_ADDRESS_G(v) << 4);
4381         }
4382         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4383         t4_fatal_err(adap);
4384 }
4385
4386 /*
4387  * SMB interrupt handler.
4388  */
4389 static void smb_intr_handler(struct adapter *adap)
4390 {
4391         static const struct intr_info smb_intr_info[] = {
4392                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4393                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4394                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4395                 { 0 }
4396         };
4397
4398         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4399                 t4_fatal_err(adap);
4400 }
4401
4402 /*
4403  * NC-SI interrupt handler.
4404  */
4405 static void ncsi_intr_handler(struct adapter *adap)
4406 {
4407         static const struct intr_info ncsi_intr_info[] = {
4408                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4409                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4410                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4411                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4412                 { 0 }
4413         };
4414
4415         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4416                 t4_fatal_err(adap);
4417 }
4418
4419 /*
4420  * XGMAC interrupt handler.
4421  */
4422 static void xgmac_intr_handler(struct adapter *adap, int port)
4423 {
4424         u32 v, int_cause_reg;
4425
4426         if (is_t4(adap->params.chip))
4427                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4428         else
4429                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4430
4431         v = t4_read_reg(adap, int_cause_reg);
4432
4433         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4434         if (!v)
4435                 return;
4436
4437         if (v & TXFIFO_PRTY_ERR_F)
4438                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4439                           port);
4440         if (v & RXFIFO_PRTY_ERR_F)
4441                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4442                           port);
4443         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4444         t4_fatal_err(adap);
4445 }
4446
4447 /*
4448  * PL interrupt handler.
4449  */
4450 static void pl_intr_handler(struct adapter *adap)
4451 {
4452         static const struct intr_info pl_intr_info[] = {
4453                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4454                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4455                 { 0 }
4456         };
4457
4458         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4459                 t4_fatal_err(adap);
4460 }
4461
4462 #define PF_INTR_MASK (PFSW_F)
4463 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4464                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4465                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4466
4467 /**
4468  *      t4_slow_intr_handler - control path interrupt handler
4469  *      @adapter: the adapter
4470  *
4471  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4472  *      The designation 'slow' is because it involves register reads, while
4473  *      data interrupts typically don't involve any MMIOs.
4474  */
4475 int t4_slow_intr_handler(struct adapter *adapter)
4476 {
4477         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4478
4479         if (!(cause & GLBL_INTR_MASK))
4480                 return 0;
4481         if (cause & CIM_F)
4482                 cim_intr_handler(adapter);
4483         if (cause & MPS_F)
4484                 mps_intr_handler(adapter);
4485         if (cause & NCSI_F)
4486                 ncsi_intr_handler(adapter);
4487         if (cause & PL_F)
4488                 pl_intr_handler(adapter);
4489         if (cause & SMB_F)
4490                 smb_intr_handler(adapter);
4491         if (cause & XGMAC0_F)
4492                 xgmac_intr_handler(adapter, 0);
4493         if (cause & XGMAC1_F)
4494                 xgmac_intr_handler(adapter, 1);
4495         if (cause & XGMAC_KR0_F)
4496                 xgmac_intr_handler(adapter, 2);
4497         if (cause & XGMAC_KR1_F)
4498                 xgmac_intr_handler(adapter, 3);
4499         if (cause & PCIE_F)
4500                 pcie_intr_handler(adapter);
4501         if (cause & MC_F)
4502                 mem_intr_handler(adapter, MEM_MC);
4503         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4504                 mem_intr_handler(adapter, MEM_MC1);
4505         if (cause & EDC0_F)
4506                 mem_intr_handler(adapter, MEM_EDC0);
4507         if (cause & EDC1_F)
4508                 mem_intr_handler(adapter, MEM_EDC1);
4509         if (cause & LE_F)
4510                 le_intr_handler(adapter);
4511         if (cause & TP_F)
4512                 tp_intr_handler(adapter);
4513         if (cause & MA_F)
4514                 ma_intr_handler(adapter);
4515         if (cause & PM_TX_F)
4516                 pmtx_intr_handler(adapter);
4517         if (cause & PM_RX_F)
4518                 pmrx_intr_handler(adapter);
4519         if (cause & ULP_RX_F)
4520                 ulprx_intr_handler(adapter);
4521         if (cause & CPL_SWITCH_F)
4522                 cplsw_intr_handler(adapter);
4523         if (cause & SGE_F)
4524                 sge_intr_handler(adapter);
4525         if (cause & ULP_TX_F)
4526                 ulptx_intr_handler(adapter);
4527
4528         /* Clear the interrupts just processed for which we are the master. */
4529         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4530         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4531         return 1;
4532 }
4533
4534 /**
4535  *      t4_intr_enable - enable interrupts
4536  *      @adapter: the adapter whose interrupts should be enabled
4537  *
4538  *      Enable PF-specific interrupts for the calling function and the top-level
4539  *      interrupt concentrator for global interrupts.  Interrupts are already
4540  *      enabled at each module, here we just enable the roots of the interrupt
4541  *      hierarchies.
4542  *
4543  *      Note: this function should be called only when the driver manages
4544  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4545  *      function at a time should be doing this.
4546  */
4547 void t4_intr_enable(struct adapter *adapter)
4548 {
4549         u32 val = 0;
4550         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4551         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4552                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4553
4554         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4555                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4556         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4557                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4558                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4559                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4560                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4561                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4562                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4563         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4564         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4565 }
4566
4567 /**
4568  *      t4_intr_disable - disable interrupts
4569  *      @adapter: the adapter whose interrupts should be disabled
4570  *
4571  *      Disable interrupts.  We only disable the top-level interrupt
4572  *      concentrators.  The caller must be a PCI function managing global
4573  *      interrupts.
4574  */
4575 void t4_intr_disable(struct adapter *adapter)
4576 {
4577         u32 whoami, pf;
4578
4579         if (pci_channel_offline(adapter->pdev))
4580                 return;
4581
4582         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4583         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4584                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4585
4586         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4587         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4588 }
4589
4590 /**
4591  *      t4_config_rss_range - configure a portion of the RSS mapping table
4592  *      @adapter: the adapter
4593  *      @mbox: mbox to use for the FW command
4594  *      @viid: virtual interface whose RSS subtable is to be written
4595  *      @start: start entry in the table to write
4596  *      @n: how many table entries to write
4597  *      @rspq: values for the response queue lookup table
4598  *      @nrspq: number of values in @rspq
4599  *
4600  *      Programs the selected part of the VI's RSS mapping table with the
4601  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4602  *      until the full table range is populated.
4603  *
4604  *      The caller must ensure the values in @rspq are in the range allowed for
4605  *      @viid.
4606  */
4607 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4608                         int start, int n, const u16 *rspq, unsigned int nrspq)
4609 {
4610         int ret;
4611         const u16 *rsp = rspq;
4612         const u16 *rsp_end = rspq + nrspq;
4613         struct fw_rss_ind_tbl_cmd cmd;
4614
4615         memset(&cmd, 0, sizeof(cmd));
4616         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4617                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4618                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4619         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4620
4621         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4622         while (n > 0) {
4623                 int nq = min(n, 32);
4624                 __be32 *qp = &cmd.iq0_to_iq2;
4625
4626                 cmd.niqid = cpu_to_be16(nq);
4627                 cmd.startidx = cpu_to_be16(start);
4628
4629                 start += nq;
4630                 n -= nq;
4631
4632                 while (nq > 0) {
4633                         unsigned int v;
4634
4635                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4636                         if (++rsp >= rsp_end)
4637                                 rsp = rspq;
4638                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4639                         if (++rsp >= rsp_end)
4640                                 rsp = rspq;
4641                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4642                         if (++rsp >= rsp_end)
4643                                 rsp = rspq;
4644
4645                         *qp++ = cpu_to_be32(v);
4646                         nq -= 3;
4647                 }
4648
4649                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4650                 if (ret)
4651                         return ret;
4652         }
4653         return 0;
4654 }
4655
4656 /**
4657  *      t4_config_glbl_rss - configure the global RSS mode
4658  *      @adapter: the adapter
4659  *      @mbox: mbox to use for the FW command
4660  *      @mode: global RSS mode
4661  *      @flags: mode-specific flags
4662  *
4663  *      Sets the global RSS mode.
4664  */
4665 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4666                        unsigned int flags)
4667 {
4668         struct fw_rss_glb_config_cmd c;
4669
4670         memset(&c, 0, sizeof(c));
4671         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4672                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4673         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4674         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4675                 c.u.manual.mode_pkd =
4676                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4677         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4678                 c.u.basicvirtual.mode_pkd =
4679                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4680                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4681         } else
4682                 return -EINVAL;
4683         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4684 }
4685
4686 /**
4687  *      t4_config_vi_rss - configure per VI RSS settings
4688  *      @adapter: the adapter
4689  *      @mbox: mbox to use for the FW command
4690  *      @viid: the VI id
4691  *      @flags: RSS flags
4692  *      @defq: id of the default RSS queue for the VI.
4693  *
4694  *      Configures VI-specific RSS properties.
4695  */
4696 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4697                      unsigned int flags, unsigned int defq)
4698 {
4699         struct fw_rss_vi_config_cmd c;
4700
4701         memset(&c, 0, sizeof(c));
4702         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4703                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4704                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4705         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4706         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4707                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4708         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4709 }
4710
4711 /* Read an RSS table row */
4712 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4713 {
4714         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4715         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4716                                    5, 0, val);
4717 }
4718
4719 /**
4720  *      t4_read_rss - read the contents of the RSS mapping table
4721  *      @adapter: the adapter
4722  *      @map: holds the contents of the RSS mapping table
4723  *
4724  *      Reads the contents of the RSS hash->queue mapping table.
4725  */
4726 int t4_read_rss(struct adapter *adapter, u16 *map)
4727 {
4728         u32 val;
4729         int i, ret;
4730
4731         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4732                 ret = rd_rss_row(adapter, i, &val);
4733                 if (ret)
4734                         return ret;
4735                 *map++ = LKPTBLQUEUE0_G(val);
4736                 *map++ = LKPTBLQUEUE1_G(val);
4737         }
4738         return 0;
4739 }
4740
4741 static unsigned int t4_use_ldst(struct adapter *adap)
4742 {
4743         return (adap->flags & FW_OK) || !adap->use_bd;
4744 }
4745
4746 /**
4747  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4748  *      @adap: the adapter
4749  *      @vals: where the indirect register values are stored/written
4750  *      @nregs: how many indirect registers to read/write
4751  *      @start_idx: index of first indirect register to read/write
4752  *      @rw: Read (1) or Write (0)
4753  *
4754  *      Access TP PIO registers through LDST
4755  */
4756 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4757                             unsigned int start_index, unsigned int rw)
4758 {
4759         int ret, i;
4760         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4761         struct fw_ldst_cmd c;
4762
4763         for (i = 0 ; i < nregs; i++) {
4764                 memset(&c, 0, sizeof(c));
4765                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4766                                                 FW_CMD_REQUEST_F |
4767                                                 (rw ? FW_CMD_READ_F :
4768                                                       FW_CMD_WRITE_F) |
4769                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4770                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4771
4772                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4773                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4774                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4775                 if (!ret && rw)
4776                         vals[i] = be32_to_cpu(c.u.addrval.val);
4777         }
4778 }
4779
4780 /**
4781  *      t4_read_rss_key - read the global RSS key
4782  *      @adap: the adapter
4783  *      @key: 10-entry array holding the 320-bit RSS key
4784  *
4785  *      Reads the global 320-bit RSS key.
4786  */
4787 void t4_read_rss_key(struct adapter *adap, u32 *key)
4788 {
4789         if (t4_use_ldst(adap))
4790                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4791         else
4792                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4793                                  TP_RSS_SECRET_KEY0_A);
4794 }
4795
4796 /**
4797  *      t4_write_rss_key - program one of the RSS keys
4798  *      @adap: the adapter
4799  *      @key: 10-entry array holding the 320-bit RSS key
4800  *      @idx: which RSS key to write
4801  *
4802  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4803  *      0..15 the corresponding entry in the RSS key table is written,
4804  *      otherwise the global RSS key is written.
4805  */
4806 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4807 {
4808         u8 rss_key_addr_cnt = 16;
4809         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4810
4811         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4812          * allows access to key addresses 16-63 by using KeyWrAddrX
4813          * as index[5:4](upper 2) into key table
4814          */
4815         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4816             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4817                 rss_key_addr_cnt = 32;
4818
4819         if (t4_use_ldst(adap))
4820                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4821         else
4822                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4823                                   TP_RSS_SECRET_KEY0_A);
4824
4825         if (idx >= 0 && idx < rss_key_addr_cnt) {
4826                 if (rss_key_addr_cnt > 16)
4827                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4828                                      KEYWRADDRX_V(idx >> 4) |
4829                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4830                 else
4831                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4832                                      KEYWRADDR_V(idx) | KEYWREN_F);
4833         }
4834 }
4835
4836 /**
4837  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4838  *      @adapter: the adapter
4839  *      @index: the entry in the PF RSS table to read
4840  *      @valp: where to store the returned value
4841  *
4842  *      Reads the PF RSS Configuration Table at the specified index and returns
4843  *      the value found there.
4844  */
4845 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4846                            u32 *valp)
4847 {
4848         if (t4_use_ldst(adapter))
4849                 t4_fw_tp_pio_rw(adapter, valp, 1,
4850                                 TP_RSS_PF0_CONFIG_A + index, 1);
4851         else
4852                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4853                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4854 }
4855
4856 /**
4857  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4858  *      @adapter: the adapter
4859  *      @index: the entry in the VF RSS table to read
4860  *      @vfl: where to store the returned VFL
4861  *      @vfh: where to store the returned VFH
4862  *
4863  *      Reads the VF RSS Configuration Table at the specified index and returns
4864  *      the (VFL, VFH) values found there.
4865  */
4866 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4867                            u32 *vfl, u32 *vfh)
4868 {
4869         u32 vrt, mask, data;
4870
4871         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4872                 mask = VFWRADDR_V(VFWRADDR_M);
4873                 data = VFWRADDR_V(index);
4874         } else {
4875                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4876                  data = T6_VFWRADDR_V(index);
4877         }
4878
4879         /* Request that the index'th VF Table values be read into VFL/VFH.
4880          */
4881         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4882         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4883         vrt |= data | VFRDEN_F;
4884         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4885
4886         /* Grab the VFL/VFH values ...
4887          */
4888         if (t4_use_ldst(adapter)) {
4889                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4890                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4891         } else {
4892                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4893                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4894                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4895                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4896         }
4897 }
4898
4899 /**
4900  *      t4_read_rss_pf_map - read PF RSS Map
4901  *      @adapter: the adapter
4902  *
4903  *      Reads the PF RSS Map register and returns its value.
4904  */
4905 u32 t4_read_rss_pf_map(struct adapter *adapter)
4906 {
4907         u32 pfmap;
4908
4909         if (t4_use_ldst(adapter))
4910                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4911         else
4912                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4913                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4914         return pfmap;
4915 }
4916
4917 /**
4918  *      t4_read_rss_pf_mask - read PF RSS Mask
4919  *      @adapter: the adapter
4920  *
4921  *      Reads the PF RSS Mask register and returns its value.
4922  */
4923 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4924 {
4925         u32 pfmask;
4926
4927         if (t4_use_ldst(adapter))
4928                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4929         else
4930                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4931                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4932         return pfmask;
4933 }
4934
4935 /**
4936  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4937  *      @adap: the adapter
4938  *      @v4: holds the TCP/IP counter values
4939  *      @v6: holds the TCP/IPv6 counter values
4940  *
4941  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4942  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4943  */
4944 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4945                          struct tp_tcp_stats *v6)
4946 {
4947         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4948
4949 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4950 #define STAT(x)     val[STAT_IDX(x)]
4951 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4952
4953         if (v4) {
4954                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4955                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4956                 v4->tcp_out_rsts = STAT(OUT_RST);
4957                 v4->tcp_in_segs  = STAT64(IN_SEG);
4958                 v4->tcp_out_segs = STAT64(OUT_SEG);
4959                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4960         }
4961         if (v6) {
4962                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4963                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4964                 v6->tcp_out_rsts = STAT(OUT_RST);
4965                 v6->tcp_in_segs  = STAT64(IN_SEG);
4966                 v6->tcp_out_segs = STAT64(OUT_SEG);
4967                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4968         }
4969 #undef STAT64
4970 #undef STAT
4971 #undef STAT_IDX
4972 }
4973
4974 /**
4975  *      t4_tp_get_err_stats - read TP's error MIB counters
4976  *      @adap: the adapter
4977  *      @st: holds the counter values
4978  *
4979  *      Returns the values of TP's error counters.
4980  */
4981 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4982 {
4983         int nchan = adap->params.arch.nchan;
4984
4985         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4986                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4987         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4988                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4989         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4990                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4991         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4992                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4993         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4994                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4995         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4996                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4997         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4998                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4999         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5000                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
5001
5002         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5003                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
5004 }
5005
5006 /**
5007  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5008  *      @adap: the adapter
5009  *      @st: holds the counter values
5010  *
5011  *      Returns the values of TP's CPL counters.
5012  */
5013 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5014 {
5015         int nchan = adap->params.arch.nchan;
5016
5017         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
5018                          nchan, TP_MIB_CPL_IN_REQ_0_A);
5019         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
5020                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
5021
5022 }
5023
5024 /**
5025  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5026  *      @adap: the adapter
5027  *      @st: holds the counter values
5028  *
5029  *      Returns the values of TP's RDMA counters.
5030  */
5031 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5032 {
5033         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5034                          2, TP_MIB_RQE_DFR_PKT_A);
5035 }
5036
5037 /**
5038  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5039  *      @adap: the adapter
5040  *      @idx: the port index
5041  *      @st: holds the counter values
5042  *
5043  *      Returns the values of TP's FCoE counters for the selected port.
5044  */
5045 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5046                        struct tp_fcoe_stats *st)
5047 {
5048         u32 val[2];
5049
5050         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5051                          1, TP_MIB_FCOE_DDP_0_A + idx);
5052         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5053                          1, TP_MIB_FCOE_DROP_0_A + idx);
5054         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5055                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5056         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5057 }
5058
5059 /**
5060  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5061  *      @adap: the adapter
5062  *      @st: holds the counter values
5063  *
5064  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5065  */
5066 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5067 {
5068         u32 val[4];
5069
5070         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5071                          TP_MIB_USM_PKTS_A);
5072         st->frames = val[0];
5073         st->drops = val[1];
5074         st->octets = ((u64)val[2] << 32) | val[3];
5075 }
5076
5077 /**
5078  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5079  *      @adap: the adapter
5080  *      @mtus: where to store the MTU values
5081  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5082  *
5083  *      Reads the HW path MTU table.
5084  */
5085 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5086 {
5087         u32 v;
5088         int i;
5089
5090         for (i = 0; i < NMTUS; ++i) {
5091                 t4_write_reg(adap, TP_MTU_TABLE_A,
5092                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5093                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5094                 mtus[i] = MTUVALUE_G(v);
5095                 if (mtu_log)
5096                         mtu_log[i] = MTUWIDTH_G(v);
5097         }
5098 }
5099
5100 /**
5101  *      t4_read_cong_tbl - reads the congestion control table
5102  *      @adap: the adapter
5103  *      @incr: where to store the alpha values
5104  *
5105  *      Reads the additive increments programmed into the HW congestion
5106  *      control table.
5107  */
5108 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5109 {
5110         unsigned int mtu, w;
5111
5112         for (mtu = 0; mtu < NMTUS; ++mtu)
5113                 for (w = 0; w < NCCTRL_WIN; ++w) {
5114                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5115                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5116                         incr[mtu][w] = (u16)t4_read_reg(adap,
5117                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5118                 }
5119 }
5120
5121 /**
5122  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5123  *      @adap: the adapter
5124  *      @addr: the indirect TP register address
5125  *      @mask: specifies the field within the register to modify
5126  *      @val: new value for the field
5127  *
5128  *      Sets a field of an indirect TP register to the given value.
5129  */
5130 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5131                             unsigned int mask, unsigned int val)
5132 {
5133         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5134         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5135         t4_write_reg(adap, TP_PIO_DATA_A, val);
5136 }
5137
5138 /**
5139  *      init_cong_ctrl - initialize congestion control parameters
5140  *      @a: the alpha values for congestion control
5141  *      @b: the beta values for congestion control
5142  *
5143  *      Initialize the congestion control parameters.
5144  */
5145 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5146 {
5147         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5148         a[9] = 2;
5149         a[10] = 3;
5150         a[11] = 4;
5151         a[12] = 5;
5152         a[13] = 6;
5153         a[14] = 7;
5154         a[15] = 8;
5155         a[16] = 9;
5156         a[17] = 10;
5157         a[18] = 14;
5158         a[19] = 17;
5159         a[20] = 21;
5160         a[21] = 25;
5161         a[22] = 30;
5162         a[23] = 35;
5163         a[24] = 45;
5164         a[25] = 60;
5165         a[26] = 80;
5166         a[27] = 100;
5167         a[28] = 200;
5168         a[29] = 300;
5169         a[30] = 400;
5170         a[31] = 500;
5171
5172         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5173         b[9] = b[10] = 1;
5174         b[11] = b[12] = 2;
5175         b[13] = b[14] = b[15] = b[16] = 3;
5176         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5177         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5178         b[28] = b[29] = 6;
5179         b[30] = b[31] = 7;
5180 }
5181
5182 /* The minimum additive increment value for the congestion control table */
5183 #define CC_MIN_INCR 2U
5184
5185 /**
5186  *      t4_load_mtus - write the MTU and congestion control HW tables
5187  *      @adap: the adapter
5188  *      @mtus: the values for the MTU table
5189  *      @alpha: the values for the congestion control alpha parameter
5190  *      @beta: the values for the congestion control beta parameter
5191  *
5192  *      Write the HW MTU table with the supplied MTUs and the high-speed
5193  *      congestion control table with the supplied alpha, beta, and MTUs.
5194  *      We write the two tables together because the additive increments
5195  *      depend on the MTUs.
5196  */
5197 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5198                   const unsigned short *alpha, const unsigned short *beta)
5199 {
5200         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5201                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5202                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5203                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5204         };
5205
5206         unsigned int i, w;
5207
5208         for (i = 0; i < NMTUS; ++i) {
5209                 unsigned int mtu = mtus[i];
5210                 unsigned int log2 = fls(mtu);
5211
5212                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5213                         log2--;
5214                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5215                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5216
5217                 for (w = 0; w < NCCTRL_WIN; ++w) {
5218                         unsigned int inc;
5219
5220                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5221                                   CC_MIN_INCR);
5222
5223                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5224                                      (w << 16) | (beta[w] << 13) | inc);
5225                 }
5226         }
5227 }
5228
5229 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5230  * clocks.  The formula is
5231  *
5232  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5233  *
5234  * which is equivalent to
5235  *
5236  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5237  */
5238 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5239 {
5240         u64 v = bytes256 * adap->params.vpd.cclk;
5241
5242         return v * 62 + v / 2;
5243 }
5244
5245 /**
5246  *      t4_get_chan_txrate - get the current per channel Tx rates
5247  *      @adap: the adapter
5248  *      @nic_rate: rates for NIC traffic
5249  *      @ofld_rate: rates for offloaded traffic
5250  *
5251  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5252  *      for each channel.
5253  */
5254 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5255 {
5256         u32 v;
5257
5258         v = t4_read_reg(adap, TP_TX_TRATE_A);
5259         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5260         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5261         if (adap->params.arch.nchan == NCHAN) {
5262                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5263                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5264         }
5265
5266         v = t4_read_reg(adap, TP_TX_ORATE_A);
5267         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5268         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5269         if (adap->params.arch.nchan == NCHAN) {
5270                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5271                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5272         }
5273 }
5274
5275 /**
5276  *      t4_set_trace_filter - configure one of the tracing filters
5277  *      @adap: the adapter
5278  *      @tp: the desired trace filter parameters
5279  *      @idx: which filter to configure
5280  *      @enable: whether to enable or disable the filter
5281  *
5282  *      Configures one of the tracing filters available in HW.  If @enable is
5283  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5284  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5285  */
5286 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5287                         int idx, int enable)
5288 {
5289         int i, ofst = idx * 4;
5290         u32 data_reg, mask_reg, cfg;
5291         u32 multitrc = TRCMULTIFILTER_F;
5292
5293         if (!enable) {
5294                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5295                 return 0;
5296         }
5297
5298         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5299         if (cfg & TRCMULTIFILTER_F) {
5300                 /* If multiple tracers are enabled, then maximum
5301                  * capture size is 2.5KB (FIFO size of a single channel)
5302                  * minus 2 flits for CPL_TRACE_PKT header.
5303                  */
5304                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5305                         return -EINVAL;
5306         } else {
5307                 /* If multiple tracers are disabled, to avoid deadlocks
5308                  * maximum packet capture size of 9600 bytes is recommended.
5309                  * Also in this mode, only trace0 can be enabled and running.
5310                  */
5311                 multitrc = 0;
5312                 if (tp->snap_len > 9600 || idx)
5313                         return -EINVAL;
5314         }
5315
5316         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5317             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5318             tp->min_len > TFMINPKTSIZE_M)
5319                 return -EINVAL;
5320
5321         /* stop the tracer we'll be changing */
5322         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5323
5324         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5325         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5326         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5327
5328         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5329                 t4_write_reg(adap, data_reg, tp->data[i]);
5330                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5331         }
5332         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5333                      TFCAPTUREMAX_V(tp->snap_len) |
5334                      TFMINPKTSIZE_V(tp->min_len));
5335         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5336                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5337                      (is_t4(adap->params.chip) ?
5338                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5339                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5340                      T5_TFINVERTMATCH_V(tp->invert)));
5341
5342         return 0;
5343 }
5344
5345 /**
5346  *      t4_get_trace_filter - query one of the tracing filters
5347  *      @adap: the adapter
5348  *      @tp: the current trace filter parameters
5349  *      @idx: which trace filter to query
5350  *      @enabled: non-zero if the filter is enabled
5351  *
5352  *      Returns the current settings of one of the HW tracing filters.
5353  */
5354 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5355                          int *enabled)
5356 {
5357         u32 ctla, ctlb;
5358         int i, ofst = idx * 4;
5359         u32 data_reg, mask_reg;
5360
5361         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5362         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5363
5364         if (is_t4(adap->params.chip)) {
5365                 *enabled = !!(ctla & TFEN_F);
5366                 tp->port =  TFPORT_G(ctla);
5367                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5368         } else {
5369                 *enabled = !!(ctla & T5_TFEN_F);
5370                 tp->port = T5_TFPORT_G(ctla);
5371                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5372         }
5373         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5374         tp->min_len = TFMINPKTSIZE_G(ctlb);
5375         tp->skip_ofst = TFOFFSET_G(ctla);
5376         tp->skip_len = TFLENGTH_G(ctla);
5377
5378         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5379         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5380         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5381
5382         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5383                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5384                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5385         }
5386 }
5387
5388 /**
5389  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5390  *      @adap: the adapter
5391  *      @cnt: where to store the count statistics
5392  *      @cycles: where to store the cycle statistics
5393  *
5394  *      Returns performance statistics from PMTX.
5395  */
5396 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5397 {
5398         int i;
5399         u32 data[2];
5400
5401         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5402                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5403                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5404                 if (is_t4(adap->params.chip)) {
5405                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5406                 } else {
5407                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5408                                          PM_TX_DBG_DATA_A, data, 2,
5409                                          PM_TX_DBG_STAT_MSB_A);
5410                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5411                 }
5412         }
5413 }
5414
5415 /**
5416  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5417  *      @adap: the adapter
5418  *      @cnt: where to store the count statistics
5419  *      @cycles: where to store the cycle statistics
5420  *
5421  *      Returns performance statistics from PMRX.
5422  */
5423 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5424 {
5425         int i;
5426         u32 data[2];
5427
5428         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5429                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5430                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5431                 if (is_t4(adap->params.chip)) {
5432                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5433                 } else {
5434                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5435                                          PM_RX_DBG_DATA_A, data, 2,
5436                                          PM_RX_DBG_STAT_MSB_A);
5437                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5438                 }
5439         }
5440 }
5441
5442 /**
5443  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5444  *      @adap: the adapter
5445  *      @pidx: the port index
5446  *
5447  *      Computes and returns a bitmap indicating which MPS buffer groups are
5448  *      associated with the given Port.  Bit i is set if buffer group i is
5449  *      used by the Port.
5450  */
5451 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5452                                               int pidx)
5453 {
5454         unsigned int chip_version, nports;
5455
5456         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5457         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5458
5459         switch (chip_version) {
5460         case CHELSIO_T4:
5461         case CHELSIO_T5:
5462                 switch (nports) {
5463                 case 1: return 0xf;
5464                 case 2: return 3 << (2 * pidx);
5465                 case 4: return 1 << pidx;
5466                 }
5467                 break;
5468
5469         case CHELSIO_T6:
5470                 switch (nports) {
5471                 case 2: return 1 << (2 * pidx);
5472                 }
5473                 break;
5474         }
5475
5476         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5477                 chip_version, nports);
5478
5479         return 0;
5480 }
5481
5482 /**
5483  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5484  *      @adapter: the adapter
5485  *      @pidx: the port index
5486  *
5487  *      Returns a bitmap indicating which MPS buffer groups are associated
5488  *      with the given Port.  Bit i is set if buffer group i is used by the
5489  *      Port.
5490  */
5491 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5492 {
5493         u8 *mps_bg_map;
5494         unsigned int nports;
5495
5496         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5497         if (pidx >= nports) {
5498                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5499                         pidx, nports);
5500                 return 0;
5501         }
5502
5503         /* If we've already retrieved/computed this, just return the result.
5504          */
5505         mps_bg_map = adapter->params.mps_bg_map;
5506         if (mps_bg_map[pidx])
5507                 return mps_bg_map[pidx];
5508
5509         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
5510          * If we're talking to such Firmware, let it tell us.  If the new
5511          * API isn't supported, revert back to old hardcoded way.  The value
5512          * obtained from Firmware is encoded in below format:
5513          *
5514          * val = (( MPSBGMAP[Port 3] << 24 ) |
5515          *        ( MPSBGMAP[Port 2] << 16 ) |
5516          *        ( MPSBGMAP[Port 1] <<  8 ) |
5517          *        ( MPSBGMAP[Port 0] <<  0 ))
5518          */
5519         if (adapter->flags & FW_OK) {
5520                 u32 param, val;
5521                 int ret;
5522
5523                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5524                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5525                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5526                                          0, 1, &param, &val);
5527                 if (!ret) {
5528                         int p;
5529
5530                         /* Store the BG Map for all of the Ports in order to
5531                          * avoid more calls to the Firmware in the future.
5532                          */
5533                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5534                                 mps_bg_map[p] = val & 0xff;
5535
5536                         return mps_bg_map[pidx];
5537                 }
5538         }
5539
5540         /* Either we're not talking to the Firmware or we're dealing with
5541          * older Firmware which doesn't support the new API to get the MPS
5542          * Buffer Group Map.  Fall back to computing it ourselves.
5543          */
5544         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5545         return mps_bg_map[pidx];
5546 }
5547
5548 /**
5549  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
5550  *      @adapter: the adapter
5551  *      @pidx: the port index
5552  *
5553  *      Returns a bitmap indicating which TP Ingress Channels are associated
5554  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
5555  *      the Port.
5556  */
5557 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
5558 {
5559         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
5560         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5561
5562         if (pidx >= nports) {
5563                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
5564                          pidx, nports);
5565                 return 0;
5566         }
5567
5568         switch (chip_version) {
5569         case CHELSIO_T4:
5570         case CHELSIO_T5:
5571                 /* Note that this happens to be the same values as the MPS
5572                  * Buffer Group Map for these Chips.  But we replicate the code
5573                  * here because they're really separate concepts.
5574                  */
5575                 switch (nports) {
5576                 case 1: return 0xf;
5577                 case 2: return 3 << (2 * pidx);
5578                 case 4: return 1 << pidx;
5579                 }
5580                 break;
5581
5582         case CHELSIO_T6:
5583                 switch (nports) {
5584                 case 2: return 1 << pidx;
5585                 }
5586                 break;
5587         }
5588
5589         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
5590                 chip_version, nports);
5591         return 0;
5592 }
5593
5594 /**
5595  *      t4_get_port_type_description - return Port Type string description
5596  *      @port_type: firmware Port Type enumeration
5597  */
5598 const char *t4_get_port_type_description(enum fw_port_type port_type)
5599 {
5600         static const char *const port_type_description[] = {
5601                 "Fiber_XFI",
5602                 "Fiber_XAUI",
5603                 "BT_SGMII",
5604                 "BT_XFI",
5605                 "BT_XAUI",
5606                 "KX4",
5607                 "CX4",
5608                 "KX",
5609                 "KR",
5610                 "SFP",
5611                 "BP_AP",
5612                 "BP4_AP",
5613                 "QSFP_10G",
5614                 "QSA",
5615                 "QSFP",
5616                 "BP40_BA",
5617                 "KR4_100G",
5618                 "CR4_QSFP",
5619                 "CR_QSFP",
5620                 "CR2_QSFP",
5621                 "SFP28",
5622                 "KR_SFP28",
5623         };
5624
5625         if (port_type < ARRAY_SIZE(port_type_description))
5626                 return port_type_description[port_type];
5627         return "UNKNOWN";
5628 }
5629
5630 /**
5631  *      t4_get_port_stats_offset - collect port stats relative to a previous
5632  *                                 snapshot
5633  *      @adap: The adapter
5634  *      @idx: The port
5635  *      @stats: Current stats to fill
5636  *      @offset: Previous stats snapshot
5637  */
5638 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5639                               struct port_stats *stats,
5640                               struct port_stats *offset)
5641 {
5642         u64 *s, *o;
5643         int i;
5644
5645         t4_get_port_stats(adap, idx, stats);
5646         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5647                         i < (sizeof(struct port_stats) / sizeof(u64));
5648                         i++, s++, o++)
5649                 *s -= *o;
5650 }
5651
5652 /**
5653  *      t4_get_port_stats - collect port statistics
5654  *      @adap: the adapter
5655  *      @idx: the port index
5656  *      @p: the stats structure to fill
5657  *
5658  *      Collect statistics related to the given port from HW.
5659  */
5660 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5661 {
5662         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5663         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
5664
5665 #define GET_STAT(name) \
5666         t4_read_reg64(adap, \
5667         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5668         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5669 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5670
5671         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5672         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5673         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5674         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5675         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5676         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5677         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5678         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5679         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5680         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5681         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5682         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5683         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5684         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5685         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5686         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5687         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5688         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5689         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5690         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5691         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5692         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5693         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5694
5695         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5696                 if (stat_ctl & COUNTPAUSESTATTX_F) {
5697                         p->tx_frames -= p->tx_pause;
5698                         p->tx_octets -= p->tx_pause * 64;
5699                 }
5700                 if (stat_ctl & COUNTPAUSEMCTX_F)
5701                         p->tx_mcast_frames -= p->tx_pause;
5702         }
5703         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5704         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5705         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5706         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5707         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5708         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5709         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5710         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5711         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5712         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5713         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5714         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5715         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5716         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5717         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5718         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5719         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5720         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5721         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5722         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5723         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5724         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5725         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5726         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5727         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5728         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5729         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5730
5731         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5732                 if (stat_ctl & COUNTPAUSESTATRX_F) {
5733                         p->rx_frames -= p->rx_pause;
5734                         p->rx_octets -= p->rx_pause * 64;
5735                 }
5736                 if (stat_ctl & COUNTPAUSEMCRX_F)
5737                         p->rx_mcast_frames -= p->rx_pause;
5738         }
5739
5740         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5741         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5742         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5743         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5744         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5745         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5746         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5747         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5748
5749 #undef GET_STAT
5750 #undef GET_STAT_COM
5751 }
5752
5753 /**
5754  *      t4_get_lb_stats - collect loopback port statistics
5755  *      @adap: the adapter
5756  *      @idx: the loopback port index
5757  *      @p: the stats structure to fill
5758  *
5759  *      Return HW statistics for the given loopback port.
5760  */
5761 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5762 {
5763         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5764
5765 #define GET_STAT(name) \
5766         t4_read_reg64(adap, \
5767         (is_t4(adap->params.chip) ? \
5768         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5769         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5770 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5771
5772         p->octets           = GET_STAT(BYTES);
5773         p->frames           = GET_STAT(FRAMES);
5774         p->bcast_frames     = GET_STAT(BCAST);
5775         p->mcast_frames     = GET_STAT(MCAST);
5776         p->ucast_frames     = GET_STAT(UCAST);
5777         p->error_frames     = GET_STAT(ERROR);
5778
5779         p->frames_64        = GET_STAT(64B);
5780         p->frames_65_127    = GET_STAT(65B_127B);
5781         p->frames_128_255   = GET_STAT(128B_255B);
5782         p->frames_256_511   = GET_STAT(256B_511B);
5783         p->frames_512_1023  = GET_STAT(512B_1023B);
5784         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5785         p->frames_1519_max  = GET_STAT(1519B_MAX);
5786         p->drop             = GET_STAT(DROP_FRAMES);
5787
5788         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5789         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5790         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5791         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5792         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5793         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5794         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5795         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5796
5797 #undef GET_STAT
5798 #undef GET_STAT_COM
5799 }
5800
5801 /*     t4_mk_filtdelwr - create a delete filter WR
5802  *     @ftid: the filter ID
5803  *     @wr: the filter work request to populate
5804  *     @qid: ingress queue to receive the delete notification
5805  *
5806  *     Creates a filter work request to delete the supplied filter.  If @qid is
5807  *     negative the delete notification is suppressed.
5808  */
5809 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5810 {
5811         memset(wr, 0, sizeof(*wr));
5812         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5813         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5814         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5815                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5816         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5817         if (qid >= 0)
5818                 wr->rx_chan_rx_rpl_iq =
5819                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5820 }
5821
5822 #define INIT_CMD(var, cmd, rd_wr) do { \
5823         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5824                                         FW_CMD_REQUEST_F | \
5825                                         FW_CMD_##rd_wr##_F); \
5826         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5827 } while (0)
5828
5829 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5830                           u32 addr, u32 val)
5831 {
5832         u32 ldst_addrspace;
5833         struct fw_ldst_cmd c;
5834
5835         memset(&c, 0, sizeof(c));
5836         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5837         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5838                                         FW_CMD_REQUEST_F |
5839                                         FW_CMD_WRITE_F |
5840                                         ldst_addrspace);
5841         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5842         c.u.addrval.addr = cpu_to_be32(addr);
5843         c.u.addrval.val = cpu_to_be32(val);
5844
5845         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5846 }
5847
5848 /**
5849  *      t4_mdio_rd - read a PHY register through MDIO
5850  *      @adap: the adapter
5851  *      @mbox: mailbox to use for the FW command
5852  *      @phy_addr: the PHY address
5853  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5854  *      @reg: the register to read
5855  *      @valp: where to store the value
5856  *
5857  *      Issues a FW command through the given mailbox to read a PHY register.
5858  */
5859 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5860                unsigned int mmd, unsigned int reg, u16 *valp)
5861 {
5862         int ret;
5863         u32 ldst_addrspace;
5864         struct fw_ldst_cmd c;
5865
5866         memset(&c, 0, sizeof(c));
5867         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5868         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5869                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5870                                         ldst_addrspace);
5871         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5872         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5873                                          FW_LDST_CMD_MMD_V(mmd));
5874         c.u.mdio.raddr = cpu_to_be16(reg);
5875
5876         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5877         if (ret == 0)
5878                 *valp = be16_to_cpu(c.u.mdio.rval);
5879         return ret;
5880 }
5881
5882 /**
5883  *      t4_mdio_wr - write a PHY register through MDIO
5884  *      @adap: the adapter
5885  *      @mbox: mailbox to use for the FW command
5886  *      @phy_addr: the PHY address
5887  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5888  *      @reg: the register to write
5889  *      @valp: value to write
5890  *
5891  *      Issues a FW command through the given mailbox to write a PHY register.
5892  */
5893 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5894                unsigned int mmd, unsigned int reg, u16 val)
5895 {
5896         u32 ldst_addrspace;
5897         struct fw_ldst_cmd c;
5898
5899         memset(&c, 0, sizeof(c));
5900         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5901         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5902                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5903                                         ldst_addrspace);
5904         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5905         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5906                                          FW_LDST_CMD_MMD_V(mmd));
5907         c.u.mdio.raddr = cpu_to_be16(reg);
5908         c.u.mdio.rval = cpu_to_be16(val);
5909
5910         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5911 }
5912
5913 /**
5914  *      t4_sge_decode_idma_state - decode the idma state
5915  *      @adap: the adapter
5916  *      @state: the state idma is stuck in
5917  */
5918 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5919 {
5920         static const char * const t4_decode[] = {
5921                 "IDMA_IDLE",
5922                 "IDMA_PUSH_MORE_CPL_FIFO",
5923                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5924                 "Not used",
5925                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5926                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5927                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5928                 "IDMA_SEND_FIFO_TO_IMSG",
5929                 "IDMA_FL_REQ_DATA_FL_PREP",
5930                 "IDMA_FL_REQ_DATA_FL",
5931                 "IDMA_FL_DROP",
5932                 "IDMA_FL_H_REQ_HEADER_FL",
5933                 "IDMA_FL_H_SEND_PCIEHDR",
5934                 "IDMA_FL_H_PUSH_CPL_FIFO",
5935                 "IDMA_FL_H_SEND_CPL",
5936                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5937                 "IDMA_FL_H_SEND_IP_HDR",
5938                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5939                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5940                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5941                 "IDMA_FL_D_SEND_PCIEHDR",
5942                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5943                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5944                 "IDMA_FL_SEND_PCIEHDR",
5945                 "IDMA_FL_PUSH_CPL_FIFO",
5946                 "IDMA_FL_SEND_CPL",
5947                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5948                 "IDMA_FL_SEND_PAYLOAD",
5949                 "IDMA_FL_REQ_NEXT_DATA_FL",
5950                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5951                 "IDMA_FL_SEND_PADDING",
5952                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5953                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5954                 "IDMA_FL_REQ_DATAFL_DONE",
5955                 "IDMA_FL_REQ_HEADERFL_DONE",
5956         };
5957         static const char * const t5_decode[] = {
5958                 "IDMA_IDLE",
5959                 "IDMA_ALMOST_IDLE",
5960                 "IDMA_PUSH_MORE_CPL_FIFO",
5961                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5962                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5963                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5964                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5965                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5966                 "IDMA_SEND_FIFO_TO_IMSG",
5967                 "IDMA_FL_REQ_DATA_FL",
5968                 "IDMA_FL_DROP",
5969                 "IDMA_FL_DROP_SEND_INC",
5970                 "IDMA_FL_H_REQ_HEADER_FL",
5971                 "IDMA_FL_H_SEND_PCIEHDR",
5972                 "IDMA_FL_H_PUSH_CPL_FIFO",
5973                 "IDMA_FL_H_SEND_CPL",
5974                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5975                 "IDMA_FL_H_SEND_IP_HDR",
5976                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5977                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5978                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5979                 "IDMA_FL_D_SEND_PCIEHDR",
5980                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5981                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5982                 "IDMA_FL_SEND_PCIEHDR",
5983                 "IDMA_FL_PUSH_CPL_FIFO",
5984                 "IDMA_FL_SEND_CPL",
5985                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5986                 "IDMA_FL_SEND_PAYLOAD",
5987                 "IDMA_FL_REQ_NEXT_DATA_FL",
5988                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5989                 "IDMA_FL_SEND_PADDING",
5990                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5991         };
5992         static const char * const t6_decode[] = {
5993                 "IDMA_IDLE",
5994                 "IDMA_PUSH_MORE_CPL_FIFO",
5995                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5996                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5997                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5998                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5999                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6000                 "IDMA_FL_REQ_DATA_FL",
6001                 "IDMA_FL_DROP",
6002                 "IDMA_FL_DROP_SEND_INC",
6003                 "IDMA_FL_H_REQ_HEADER_FL",
6004                 "IDMA_FL_H_SEND_PCIEHDR",
6005                 "IDMA_FL_H_PUSH_CPL_FIFO",
6006                 "IDMA_FL_H_SEND_CPL",
6007                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6008                 "IDMA_FL_H_SEND_IP_HDR",
6009                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6010                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6011                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6012                 "IDMA_FL_D_SEND_PCIEHDR",
6013                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6014                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6015                 "IDMA_FL_SEND_PCIEHDR",
6016                 "IDMA_FL_PUSH_CPL_FIFO",
6017                 "IDMA_FL_SEND_CPL",
6018                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6019                 "IDMA_FL_SEND_PAYLOAD",
6020                 "IDMA_FL_REQ_NEXT_DATA_FL",
6021                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6022                 "IDMA_FL_SEND_PADDING",
6023                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6024         };
6025         static const u32 sge_regs[] = {
6026                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6027                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6028                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6029         };
6030         const char **sge_idma_decode;
6031         int sge_idma_decode_nstates;
6032         int i;
6033         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6034
6035         /* Select the right set of decode strings to dump depending on the
6036          * adapter chip type.
6037          */
6038         switch (chip_version) {
6039         case CHELSIO_T4:
6040                 sge_idma_decode = (const char **)t4_decode;
6041                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6042                 break;
6043
6044         case CHELSIO_T5:
6045                 sge_idma_decode = (const char **)t5_decode;
6046                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6047                 break;
6048
6049         case CHELSIO_T6:
6050                 sge_idma_decode = (const char **)t6_decode;
6051                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6052                 break;
6053
6054         default:
6055                 dev_err(adapter->pdev_dev,
6056                         "Unsupported chip version %d\n", chip_version);
6057                 return;
6058         }
6059
6060         if (is_t4(adapter->params.chip)) {
6061                 sge_idma_decode = (const char **)t4_decode;
6062                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6063         } else {
6064                 sge_idma_decode = (const char **)t5_decode;
6065                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6066         }
6067
6068         if (state < sge_idma_decode_nstates)
6069                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6070         else
6071                 CH_WARN(adapter, "idma state %d unknown\n", state);
6072
6073         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6074                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6075                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6076 }
6077
6078 /**
6079  *      t4_sge_ctxt_flush - flush the SGE context cache
6080  *      @adap: the adapter
6081  *      @mbox: mailbox to use for the FW command
6082  *
6083  *      Issues a FW command through the given mailbox to flush the
6084  *      SGE context cache.
6085  */
6086 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6087 {
6088         int ret;
6089         u32 ldst_addrspace;
6090         struct fw_ldst_cmd c;
6091
6092         memset(&c, 0, sizeof(c));
6093         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6094         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6095                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6096                                         ldst_addrspace);
6097         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6098         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6099
6100         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6101         return ret;
6102 }
6103
6104 /**
6105  *      t4_fw_hello - establish communication with FW
6106  *      @adap: the adapter
6107  *      @mbox: mailbox to use for the FW command
6108  *      @evt_mbox: mailbox to receive async FW events
6109  *      @master: specifies the caller's willingness to be the device master
6110  *      @state: returns the current device state (if non-NULL)
6111  *
6112  *      Issues a command to establish communication with FW.  Returns either
6113  *      an error (negative integer) or the mailbox of the Master PF.
6114  */
6115 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6116                 enum dev_master master, enum dev_state *state)
6117 {
6118         int ret;
6119         struct fw_hello_cmd c;
6120         u32 v;
6121         unsigned int master_mbox;
6122         int retries = FW_CMD_HELLO_RETRIES;
6123
6124 retry:
6125         memset(&c, 0, sizeof(c));
6126         INIT_CMD(c, HELLO, WRITE);
6127         c.err_to_clearinit = cpu_to_be32(
6128                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6129                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6130                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6131                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6132                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6133                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6134                 FW_HELLO_CMD_CLEARINIT_F);
6135
6136         /*
6137          * Issue the HELLO command to the firmware.  If it's not successful
6138          * but indicates that we got a "busy" or "timeout" condition, retry
6139          * the HELLO until we exhaust our retry limit.  If we do exceed our
6140          * retry limit, check to see if the firmware left us any error
6141          * information and report that if so.
6142          */
6143         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6144         if (ret < 0) {
6145                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6146                         goto retry;
6147                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6148                         t4_report_fw_error(adap);
6149                 return ret;
6150         }
6151
6152         v = be32_to_cpu(c.err_to_clearinit);
6153         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6154         if (state) {
6155                 if (v & FW_HELLO_CMD_ERR_F)
6156                         *state = DEV_STATE_ERR;
6157                 else if (v & FW_HELLO_CMD_INIT_F)
6158                         *state = DEV_STATE_INIT;
6159                 else
6160                         *state = DEV_STATE_UNINIT;
6161         }
6162
6163         /*
6164          * If we're not the Master PF then we need to wait around for the
6165          * Master PF Driver to finish setting up the adapter.
6166          *
6167          * Note that we also do this wait if we're a non-Master-capable PF and
6168          * there is no current Master PF; a Master PF may show up momentarily
6169          * and we wouldn't want to fail pointlessly.  (This can happen when an
6170          * OS loads lots of different drivers rapidly at the same time).  In
6171          * this case, the Master PF returned by the firmware will be
6172          * PCIE_FW_MASTER_M so the test below will work ...
6173          */
6174         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6175             master_mbox != mbox) {
6176                 int waiting = FW_CMD_HELLO_TIMEOUT;
6177
6178                 /*
6179                  * Wait for the firmware to either indicate an error or
6180                  * initialized state.  If we see either of these we bail out
6181                  * and report the issue to the caller.  If we exhaust the
6182                  * "hello timeout" and we haven't exhausted our retries, try
6183                  * again.  Otherwise bail with a timeout error.
6184                  */
6185                 for (;;) {
6186                         u32 pcie_fw;
6187
6188                         msleep(50);
6189                         waiting -= 50;
6190
6191                         /*
6192                          * If neither Error nor Initialialized are indicated
6193                          * by the firmware keep waiting till we exaust our
6194                          * timeout ... and then retry if we haven't exhausted
6195                          * our retries ...
6196                          */
6197                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6198                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6199                                 if (waiting <= 0) {
6200                                         if (retries-- > 0)
6201                                                 goto retry;
6202
6203                                         return -ETIMEDOUT;
6204                                 }
6205                                 continue;
6206                         }
6207
6208                         /*
6209                          * We either have an Error or Initialized condition
6210                          * report errors preferentially.
6211                          */
6212                         if (state) {
6213                                 if (pcie_fw & PCIE_FW_ERR_F)
6214                                         *state = DEV_STATE_ERR;
6215                                 else if (pcie_fw & PCIE_FW_INIT_F)
6216                                         *state = DEV_STATE_INIT;
6217                         }
6218
6219                         /*
6220                          * If we arrived before a Master PF was selected and
6221                          * there's not a valid Master PF, grab its identity
6222                          * for our caller.
6223                          */
6224                         if (master_mbox == PCIE_FW_MASTER_M &&
6225                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6226                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6227                         break;
6228                 }
6229         }
6230
6231         return master_mbox;
6232 }
6233
6234 /**
6235  *      t4_fw_bye - end communication with FW
6236  *      @adap: the adapter
6237  *      @mbox: mailbox to use for the FW command
6238  *
6239  *      Issues a command to terminate communication with FW.
6240  */
6241 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6242 {
6243         struct fw_bye_cmd c;
6244
6245         memset(&c, 0, sizeof(c));
6246         INIT_CMD(c, BYE, WRITE);
6247         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6248 }
6249
6250 /**
6251  *      t4_init_cmd - ask FW to initialize the device
6252  *      @adap: the adapter
6253  *      @mbox: mailbox to use for the FW command
6254  *
6255  *      Issues a command to FW to partially initialize the device.  This
6256  *      performs initialization that generally doesn't depend on user input.
6257  */
6258 int t4_early_init(struct adapter *adap, unsigned int mbox)
6259 {
6260         struct fw_initialize_cmd c;
6261
6262         memset(&c, 0, sizeof(c));
6263         INIT_CMD(c, INITIALIZE, WRITE);
6264         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6265 }
6266
6267 /**
6268  *      t4_fw_reset - issue a reset to FW
6269  *      @adap: the adapter
6270  *      @mbox: mailbox to use for the FW command
6271  *      @reset: specifies the type of reset to perform
6272  *
6273  *      Issues a reset command of the specified type to FW.
6274  */
6275 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6276 {
6277         struct fw_reset_cmd c;
6278
6279         memset(&c, 0, sizeof(c));
6280         INIT_CMD(c, RESET, WRITE);
6281         c.val = cpu_to_be32(reset);
6282         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6283 }
6284
6285 /**
6286  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6287  *      @adap: the adapter
6288  *      @mbox: mailbox to use for the FW RESET command (if desired)
6289  *      @force: force uP into RESET even if FW RESET command fails
6290  *
6291  *      Issues a RESET command to firmware (if desired) with a HALT indication
6292  *      and then puts the microprocessor into RESET state.  The RESET command
6293  *      will only be issued if a legitimate mailbox is provided (mbox <=
6294  *      PCIE_FW_MASTER_M).
6295  *
6296  *      This is generally used in order for the host to safely manipulate the
6297  *      adapter without fear of conflicting with whatever the firmware might
6298  *      be doing.  The only way out of this state is to RESTART the firmware
6299  *      ...
6300  */
6301 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6302 {
6303         int ret = 0;
6304
6305         /*
6306          * If a legitimate mailbox is provided, issue a RESET command
6307          * with a HALT indication.
6308          */
6309         if (mbox <= PCIE_FW_MASTER_M) {
6310                 struct fw_reset_cmd c;
6311
6312                 memset(&c, 0, sizeof(c));
6313                 INIT_CMD(c, RESET, WRITE);
6314                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6315                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6316                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6317         }
6318
6319         /*
6320          * Normally we won't complete the operation if the firmware RESET
6321          * command fails but if our caller insists we'll go ahead and put the
6322          * uP into RESET.  This can be useful if the firmware is hung or even
6323          * missing ...  We'll have to take the risk of putting the uP into
6324          * RESET without the cooperation of firmware in that case.
6325          *
6326          * We also force the firmware's HALT flag to be on in case we bypassed
6327          * the firmware RESET command above or we're dealing with old firmware
6328          * which doesn't have the HALT capability.  This will serve as a flag
6329          * for the incoming firmware to know that it's coming out of a HALT
6330          * rather than a RESET ... if it's new enough to understand that ...
6331          */
6332         if (ret == 0 || force) {
6333                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6334                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6335                                  PCIE_FW_HALT_F);
6336         }
6337
6338         /*
6339          * And we always return the result of the firmware RESET command
6340          * even when we force the uP into RESET ...
6341          */
6342         return ret;
6343 }
6344
6345 /**
6346  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6347  *      @adap: the adapter
6348  *      @reset: if we want to do a RESET to restart things
6349  *
6350  *      Restart firmware previously halted by t4_fw_halt().  On successful
6351  *      return the previous PF Master remains as the new PF Master and there
6352  *      is no need to issue a new HELLO command, etc.
6353  *
6354  *      We do this in two ways:
6355  *
6356  *       1. If we're dealing with newer firmware we'll simply want to take
6357  *          the chip's microprocessor out of RESET.  This will cause the
6358  *          firmware to start up from its start vector.  And then we'll loop
6359  *          until the firmware indicates it's started again (PCIE_FW.HALT
6360  *          reset to 0) or we timeout.
6361  *
6362  *       2. If we're dealing with older firmware then we'll need to RESET
6363  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6364  *          flag and automatically RESET itself on startup.
6365  */
6366 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6367 {
6368         if (reset) {
6369                 /*
6370                  * Since we're directing the RESET instead of the firmware
6371                  * doing it automatically, we need to clear the PCIE_FW.HALT
6372                  * bit.
6373                  */
6374                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6375
6376                 /*
6377                  * If we've been given a valid mailbox, first try to get the
6378                  * firmware to do the RESET.  If that works, great and we can
6379                  * return success.  Otherwise, if we haven't been given a
6380                  * valid mailbox or the RESET command failed, fall back to
6381                  * hitting the chip with a hammer.
6382                  */
6383                 if (mbox <= PCIE_FW_MASTER_M) {
6384                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6385                         msleep(100);
6386                         if (t4_fw_reset(adap, mbox,
6387                                         PIORST_F | PIORSTMODE_F) == 0)
6388                                 return 0;
6389                 }
6390
6391                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6392                 msleep(2000);
6393         } else {
6394                 int ms;
6395
6396                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6397                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6398                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6399                                 return 0;
6400                         msleep(100);
6401                         ms += 100;
6402                 }
6403                 return -ETIMEDOUT;
6404         }
6405         return 0;
6406 }
6407
6408 /**
6409  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6410  *      @adap: the adapter
6411  *      @mbox: mailbox to use for the FW RESET command (if desired)
6412  *      @fw_data: the firmware image to write
6413  *      @size: image size
6414  *      @force: force upgrade even if firmware doesn't cooperate
6415  *
6416  *      Perform all of the steps necessary for upgrading an adapter's
6417  *      firmware image.  Normally this requires the cooperation of the
6418  *      existing firmware in order to halt all existing activities
6419  *      but if an invalid mailbox token is passed in we skip that step
6420  *      (though we'll still put the adapter microprocessor into RESET in
6421  *      that case).
6422  *
6423  *      On successful return the new firmware will have been loaded and
6424  *      the adapter will have been fully RESET losing all previous setup
6425  *      state.  On unsuccessful return the adapter may be completely hosed ...
6426  *      positive errno indicates that the adapter is ~probably~ intact, a
6427  *      negative errno indicates that things are looking bad ...
6428  */
6429 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6430                   const u8 *fw_data, unsigned int size, int force)
6431 {
6432         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6433         int reset, ret;
6434
6435         if (!t4_fw_matches_chip(adap, fw_hdr))
6436                 return -EINVAL;
6437
6438         /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6439          * wont be sent when we are flashing FW.
6440          */
6441         adap->flags &= ~FW_OK;
6442
6443         ret = t4_fw_halt(adap, mbox, force);
6444         if (ret < 0 && !force)
6445                 goto out;
6446
6447         ret = t4_load_fw(adap, fw_data, size);
6448         if (ret < 0)
6449                 goto out;
6450
6451         /*
6452          * Older versions of the firmware don't understand the new
6453          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6454          * restart.  So for newly loaded older firmware we'll have to do the
6455          * RESET for it so it starts up on a clean slate.  We can tell if
6456          * the newly loaded firmware will handle this right by checking
6457          * its header flags to see if it advertises the capability.
6458          */
6459         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6460         ret = t4_fw_restart(adap, mbox, reset);
6461
6462         /* Grab potentially new Firmware Device Log parameters so we can see
6463          * how healthy the new Firmware is.  It's okay to contact the new
6464          * Firmware for these parameters even though, as far as it's
6465          * concerned, we've never said "HELLO" to it ...
6466          */
6467         (void)t4_init_devlog_params(adap);
6468 out:
6469         adap->flags |= FW_OK;
6470         return ret;
6471 }
6472
6473 /**
6474  *      t4_fl_pkt_align - return the fl packet alignment
6475  *      @adap: the adapter
6476  *
6477  *      T4 has a single field to specify the packing and padding boundary.
6478  *      T5 onwards has separate fields for this and hence the alignment for
6479  *      next packet offset is maximum of these two.
6480  *
6481  */
6482 int t4_fl_pkt_align(struct adapter *adap)
6483 {
6484         u32 sge_control, sge_control2;
6485         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6486
6487         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6488
6489         /* T4 uses a single control field to specify both the PCIe Padding and
6490          * Packing Boundary.  T5 introduced the ability to specify these
6491          * separately.  The actual Ingress Packet Data alignment boundary
6492          * within Packed Buffer Mode is the maximum of these two
6493          * specifications.  (Note that it makes no real practical sense to
6494          * have the Pading Boudary be larger than the Packing Boundary but you
6495          * could set the chip up that way and, in fact, legacy T4 code would
6496          * end doing this because it would initialize the Padding Boundary and
6497          * leave the Packing Boundary initialized to 0 (16 bytes).)
6498          * Padding Boundary values in T6 starts from 8B,
6499          * where as it is 32B for T4 and T5.
6500          */
6501         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6502                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6503         else
6504                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6505
6506         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6507
6508         fl_align = ingpadboundary;
6509         if (!is_t4(adap->params.chip)) {
6510                 /* T5 has a weird interpretation of one of the PCIe Packing
6511                  * Boundary values.  No idea why ...
6512                  */
6513                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6514                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6515                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6516                         ingpackboundary = 16;
6517                 else
6518                         ingpackboundary = 1 << (ingpackboundary +
6519                                                 INGPACKBOUNDARY_SHIFT_X);
6520
6521                 fl_align = max(ingpadboundary, ingpackboundary);
6522         }
6523         return fl_align;
6524 }
6525
6526 /**
6527  *      t4_fixup_host_params - fix up host-dependent parameters
6528  *      @adap: the adapter
6529  *      @page_size: the host's Base Page Size
6530  *      @cache_line_size: the host's Cache Line Size
6531  *
6532  *      Various registers in T4 contain values which are dependent on the
6533  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6534  *      those registers with the appropriate values as passed in ...
6535  */
6536 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6537                          unsigned int cache_line_size)
6538 {
6539         unsigned int page_shift = fls(page_size) - 1;
6540         unsigned int sge_hps = page_shift - 10;
6541         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6542         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6543         unsigned int fl_align_log = fls(fl_align) - 1;
6544
6545         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6546                      HOSTPAGESIZEPF0_V(sge_hps) |
6547                      HOSTPAGESIZEPF1_V(sge_hps) |
6548                      HOSTPAGESIZEPF2_V(sge_hps) |
6549                      HOSTPAGESIZEPF3_V(sge_hps) |
6550                      HOSTPAGESIZEPF4_V(sge_hps) |
6551                      HOSTPAGESIZEPF5_V(sge_hps) |
6552                      HOSTPAGESIZEPF6_V(sge_hps) |
6553                      HOSTPAGESIZEPF7_V(sge_hps));
6554
6555         if (is_t4(adap->params.chip)) {
6556                 t4_set_reg_field(adap, SGE_CONTROL_A,
6557                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6558                                  EGRSTATUSPAGESIZE_F,
6559                                  INGPADBOUNDARY_V(fl_align_log -
6560                                                   INGPADBOUNDARY_SHIFT_X) |
6561                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6562         } else {
6563                 unsigned int pack_align;
6564                 unsigned int ingpad, ingpack;
6565                 unsigned int pcie_cap;
6566
6567                 /* T5 introduced the separation of the Free List Padding and
6568                  * Packing Boundaries.  Thus, we can select a smaller Padding
6569                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6570                  * Bandwidth, and use a Packing Boundary which is large enough
6571                  * to avoid false sharing between CPUs, etc.
6572                  *
6573                  * For the PCI Link, the smaller the Padding Boundary the
6574                  * better.  For the Memory Controller, a smaller Padding
6575                  * Boundary is better until we cross under the Memory Line
6576                  * Size (the minimum unit of transfer to/from Memory).  If we
6577                  * have a Padding Boundary which is smaller than the Memory
6578                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6579                  * Memory Controller which is never good.
6580                  */
6581
6582                 /* We want the Packing Boundary to be based on the Cache Line
6583                  * Size in order to help avoid False Sharing performance
6584                  * issues between CPUs, etc.  We also want the Packing
6585                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
6586                  * get best performance when the Packing Boundary is a
6587                  * multiple of the Maximum Payload Size.
6588                  */
6589                 pack_align = fl_align;
6590                 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6591                 if (pcie_cap) {
6592                         unsigned int mps, mps_log;
6593                         u16 devctl;
6594
6595                         /* The PCIe Device Control Maximum Payload Size field
6596                          * [bits 7:5] encodes sizes as powers of 2 starting at
6597                          * 128 bytes.
6598                          */
6599                         pci_read_config_word(adap->pdev,
6600                                              pcie_cap + PCI_EXP_DEVCTL,
6601                                              &devctl);
6602                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6603                         mps = 1 << mps_log;
6604                         if (mps > pack_align)
6605                                 pack_align = mps;
6606                 }
6607
6608                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
6609                  * value for the Packing Boundary.  This corresponds to 16
6610                  * bytes instead of the expected 32 bytes.  So if we want 32
6611                  * bytes, the best we can really do is 64 bytes ...
6612                  */
6613                 if (pack_align <= 16) {
6614                         ingpack = INGPACKBOUNDARY_16B_X;
6615                         fl_align = 16;
6616                 } else if (pack_align == 32) {
6617                         ingpack = INGPACKBOUNDARY_64B_X;
6618                         fl_align = 64;
6619                 } else {
6620                         unsigned int pack_align_log = fls(pack_align) - 1;
6621
6622                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6623                         fl_align = pack_align;
6624                 }
6625
6626                 /* Use the smallest Ingress Padding which isn't smaller than
6627                  * the Memory Controller Read/Write Size.  We'll take that as
6628                  * being 8 bytes since we don't know of any system with a
6629                  * wider Memory Controller Bus Width.
6630                  */
6631                 if (is_t5(adap->params.chip))
6632                         ingpad = INGPADBOUNDARY_32B_X;
6633                 else
6634                         ingpad = T6_INGPADBOUNDARY_8B_X;
6635
6636                 t4_set_reg_field(adap, SGE_CONTROL_A,
6637                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6638                                  EGRSTATUSPAGESIZE_F,
6639                                  INGPADBOUNDARY_V(ingpad) |
6640                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6641                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6642                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6643                                  INGPACKBOUNDARY_V(ingpack));
6644         }
6645         /*
6646          * Adjust various SGE Free List Host Buffer Sizes.
6647          *
6648          * This is something of a crock since we're using fixed indices into
6649          * the array which are also known by the sge.c code and the T4
6650          * Firmware Configuration File.  We need to come up with a much better
6651          * approach to managing this array.  For now, the first four entries
6652          * are:
6653          *
6654          *   0: Host Page Size
6655          *   1: 64KB
6656          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6657          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6658          *
6659          * For the single-MTU buffers in unpacked mode we need to include
6660          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6661          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6662          * Padding boundary.  All of these are accommodated in the Factory
6663          * Default Firmware Configuration File but we need to adjust it for
6664          * this host's cache line size.
6665          */
6666         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6667         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6668                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6669                      & ~(fl_align-1));
6670         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6671                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6672                      & ~(fl_align-1));
6673
6674         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6675
6676         return 0;
6677 }
6678
6679 /**
6680  *      t4_fw_initialize - ask FW to initialize the device
6681  *      @adap: the adapter
6682  *      @mbox: mailbox to use for the FW command
6683  *
6684  *      Issues a command to FW to partially initialize the device.  This
6685  *      performs initialization that generally doesn't depend on user input.
6686  */
6687 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6688 {
6689         struct fw_initialize_cmd c;
6690
6691         memset(&c, 0, sizeof(c));
6692         INIT_CMD(c, INITIALIZE, WRITE);
6693         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6694 }
6695
6696 /**
6697  *      t4_query_params_rw - query FW or device parameters
6698  *      @adap: the adapter
6699  *      @mbox: mailbox to use for the FW command
6700  *      @pf: the PF
6701  *      @vf: the VF
6702  *      @nparams: the number of parameters
6703  *      @params: the parameter names
6704  *      @val: the parameter values
6705  *      @rw: Write and read flag
6706  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
6707  *
6708  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6709  *      queried at once.
6710  */
6711 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6712                        unsigned int vf, unsigned int nparams, const u32 *params,
6713                        u32 *val, int rw, bool sleep_ok)
6714 {
6715         int i, ret;
6716         struct fw_params_cmd c;
6717         __be32 *p = &c.param[0].mnem;
6718
6719         if (nparams > 7)
6720                 return -EINVAL;
6721
6722         memset(&c, 0, sizeof(c));
6723         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6724                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6725                                   FW_PARAMS_CMD_PFN_V(pf) |
6726                                   FW_PARAMS_CMD_VFN_V(vf));
6727         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6728
6729         for (i = 0; i < nparams; i++) {
6730                 *p++ = cpu_to_be32(*params++);
6731                 if (rw)
6732                         *p = cpu_to_be32(*(val + i));
6733                 p++;
6734         }
6735
6736         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6737         if (ret == 0)
6738                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6739                         *val++ = be32_to_cpu(*p);
6740         return ret;
6741 }
6742
6743 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6744                     unsigned int vf, unsigned int nparams, const u32 *params,
6745                     u32 *val)
6746 {
6747         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
6748                                   true);
6749 }
6750
6751 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
6752                        unsigned int vf, unsigned int nparams, const u32 *params,
6753                        u32 *val)
6754 {
6755         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
6756                                   false);
6757 }
6758
6759 /**
6760  *      t4_set_params_timeout - sets FW or device parameters
6761  *      @adap: the adapter
6762  *      @mbox: mailbox to use for the FW command
6763  *      @pf: the PF
6764  *      @vf: the VF
6765  *      @nparams: the number of parameters
6766  *      @params: the parameter names
6767  *      @val: the parameter values
6768  *      @timeout: the timeout time
6769  *
6770  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6771  *      specified at once.
6772  */
6773 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6774                           unsigned int pf, unsigned int vf,
6775                           unsigned int nparams, const u32 *params,
6776                           const u32 *val, int timeout)
6777 {
6778         struct fw_params_cmd c;
6779         __be32 *p = &c.param[0].mnem;
6780
6781         if (nparams > 7)
6782                 return -EINVAL;
6783
6784         memset(&c, 0, sizeof(c));
6785         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6786                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6787                                   FW_PARAMS_CMD_PFN_V(pf) |
6788                                   FW_PARAMS_CMD_VFN_V(vf));
6789         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6790
6791         while (nparams--) {
6792                 *p++ = cpu_to_be32(*params++);
6793                 *p++ = cpu_to_be32(*val++);
6794         }
6795
6796         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6797 }
6798
6799 /**
6800  *      t4_set_params - sets FW or device parameters
6801  *      @adap: the adapter
6802  *      @mbox: mailbox to use for the FW command
6803  *      @pf: the PF
6804  *      @vf: the VF
6805  *      @nparams: the number of parameters
6806  *      @params: the parameter names
6807  *      @val: the parameter values
6808  *
6809  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6810  *      specified at once.
6811  */
6812 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6813                   unsigned int vf, unsigned int nparams, const u32 *params,
6814                   const u32 *val)
6815 {
6816         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6817                                      FW_CMD_MAX_TIMEOUT);
6818 }
6819
6820 /**
6821  *      t4_cfg_pfvf - configure PF/VF resource limits
6822  *      @adap: the adapter
6823  *      @mbox: mailbox to use for the FW command
6824  *      @pf: the PF being configured
6825  *      @vf: the VF being configured
6826  *      @txq: the max number of egress queues
6827  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6828  *      @rxqi: the max number of interrupt-capable ingress queues
6829  *      @rxq: the max number of interruptless ingress queues
6830  *      @tc: the PCI traffic class
6831  *      @vi: the max number of virtual interfaces
6832  *      @cmask: the channel access rights mask for the PF/VF
6833  *      @pmask: the port access rights mask for the PF/VF
6834  *      @nexact: the maximum number of exact MPS filters
6835  *      @rcaps: read capabilities
6836  *      @wxcaps: write/execute capabilities
6837  *
6838  *      Configures resource limits and capabilities for a physical or virtual
6839  *      function.
6840  */
6841 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6842                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6843                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6844                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6845                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6846 {
6847         struct fw_pfvf_cmd c;
6848
6849         memset(&c, 0, sizeof(c));
6850         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6851                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6852                                   FW_PFVF_CMD_VFN_V(vf));
6853         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6854         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6855                                      FW_PFVF_CMD_NIQ_V(rxq));
6856         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6857                                     FW_PFVF_CMD_PMASK_V(pmask) |
6858                                     FW_PFVF_CMD_NEQ_V(txq));
6859         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6860                                       FW_PFVF_CMD_NVI_V(vi) |
6861                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6862         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6863                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6864                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6865         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6866 }
6867
6868 /**
6869  *      t4_alloc_vi - allocate a virtual interface
6870  *      @adap: the adapter
6871  *      @mbox: mailbox to use for the FW command
6872  *      @port: physical port associated with the VI
6873  *      @pf: the PF owning the VI
6874  *      @vf: the VF owning the VI
6875  *      @nmac: number of MAC addresses needed (1 to 5)
6876  *      @mac: the MAC addresses of the VI
6877  *      @rss_size: size of RSS table slice associated with this VI
6878  *
6879  *      Allocates a virtual interface for the given physical port.  If @mac is
6880  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6881  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6882  *      stored consecutively so the space needed is @nmac * 6 bytes.
6883  *      Returns a negative error number or the non-negative VI id.
6884  */
6885 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6886                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6887                 unsigned int *rss_size)
6888 {
6889         int ret;
6890         struct fw_vi_cmd c;
6891
6892         memset(&c, 0, sizeof(c));
6893         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6894                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6895                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6896         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6897         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6898         c.nmac = nmac - 1;
6899
6900         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6901         if (ret)
6902                 return ret;
6903
6904         if (mac) {
6905                 memcpy(mac, c.mac, sizeof(c.mac));
6906                 switch (nmac) {
6907                 case 5:
6908                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6909                 case 4:
6910                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6911                 case 3:
6912                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6913                 case 2:
6914                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6915                 }
6916         }
6917         if (rss_size)
6918                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6919         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6920 }
6921
6922 /**
6923  *      t4_free_vi - free a virtual interface
6924  *      @adap: the adapter
6925  *      @mbox: mailbox to use for the FW command
6926  *      @pf: the PF owning the VI
6927  *      @vf: the VF owning the VI
6928  *      @viid: virtual interface identifiler
6929  *
6930  *      Free a previously allocated virtual interface.
6931  */
6932 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6933                unsigned int vf, unsigned int viid)
6934 {
6935         struct fw_vi_cmd c;
6936
6937         memset(&c, 0, sizeof(c));
6938         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6939                                   FW_CMD_REQUEST_F |
6940                                   FW_CMD_EXEC_F |
6941                                   FW_VI_CMD_PFN_V(pf) |
6942                                   FW_VI_CMD_VFN_V(vf));
6943         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6944         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6945
6946         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6947 }
6948
6949 /**
6950  *      t4_set_rxmode - set Rx properties of a virtual interface
6951  *      @adap: the adapter
6952  *      @mbox: mailbox to use for the FW command
6953  *      @viid: the VI id
6954  *      @mtu: the new MTU or -1
6955  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6956  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6957  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6958  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6959  *      @sleep_ok: if true we may sleep while awaiting command completion
6960  *
6961  *      Sets Rx properties of a virtual interface.
6962  */
6963 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6964                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6965                   bool sleep_ok)
6966 {
6967         struct fw_vi_rxmode_cmd c;
6968
6969         /* convert to FW values */
6970         if (mtu < 0)
6971                 mtu = FW_RXMODE_MTU_NO_CHG;
6972         if (promisc < 0)
6973                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6974         if (all_multi < 0)
6975                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6976         if (bcast < 0)
6977                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6978         if (vlanex < 0)
6979                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6980
6981         memset(&c, 0, sizeof(c));
6982         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6983                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6984                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6985         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6986         c.mtu_to_vlanexen =
6987                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6988                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6989                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6990                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6991                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6992         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6993 }
6994
6995 /**
6996  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6997  *      @adap: the adapter
6998  *      @mbox: mailbox to use for the FW command
6999  *      @viid: the VI id
7000  *      @free: if true any existing filters for this VI id are first removed
7001  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7002  *      @addr: the MAC address(es)
7003  *      @idx: where to store the index of each allocated filter
7004  *      @hash: pointer to hash address filter bitmap
7005  *      @sleep_ok: call is allowed to sleep
7006  *
7007  *      Allocates an exact-match filter for each of the supplied addresses and
7008  *      sets it to the corresponding address.  If @idx is not %NULL it should
7009  *      have at least @naddr entries, each of which will be set to the index of
7010  *      the filter allocated for the corresponding MAC address.  If a filter
7011  *      could not be allocated for an address its index is set to 0xffff.
7012  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7013  *      are hashed and update the hash filter bitmap pointed at by @hash.
7014  *
7015  *      Returns a negative error number or the number of filters allocated.
7016  */
7017 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7018                       unsigned int viid, bool free, unsigned int naddr,
7019                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7020 {
7021         int offset, ret = 0;
7022         struct fw_vi_mac_cmd c;
7023         unsigned int nfilters = 0;
7024         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7025         unsigned int rem = naddr;
7026
7027         if (naddr > max_naddr)
7028                 return -EINVAL;
7029
7030         for (offset = 0; offset < naddr ; /**/) {
7031                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7032                                          rem : ARRAY_SIZE(c.u.exact));
7033                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7034                                                      u.exact[fw_naddr]), 16);
7035                 struct fw_vi_mac_exact *p;
7036                 int i;
7037
7038                 memset(&c, 0, sizeof(c));
7039                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7040                                            FW_CMD_REQUEST_F |
7041                                            FW_CMD_WRITE_F |
7042                                            FW_CMD_EXEC_V(free) |
7043                                            FW_VI_MAC_CMD_VIID_V(viid));
7044                 c.freemacs_to_len16 =
7045                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7046                                     FW_CMD_LEN16_V(len16));
7047
7048                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7049                         p->valid_to_idx =
7050                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7051                                             FW_VI_MAC_CMD_IDX_V(
7052                                                     FW_VI_MAC_ADD_MAC));
7053                         memcpy(p->macaddr, addr[offset + i],
7054                                sizeof(p->macaddr));
7055                 }
7056
7057                 /* It's okay if we run out of space in our MAC address arena.
7058                  * Some of the addresses we submit may get stored so we need
7059                  * to run through the reply to see what the results were ...
7060                  */
7061                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7062                 if (ret && ret != -FW_ENOMEM)
7063                         break;
7064
7065                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7066                         u16 index = FW_VI_MAC_CMD_IDX_G(
7067                                         be16_to_cpu(p->valid_to_idx));
7068
7069                         if (idx)
7070                                 idx[offset + i] = (index >= max_naddr ?
7071                                                    0xffff : index);
7072                         if (index < max_naddr)
7073                                 nfilters++;
7074                         else if (hash)
7075                                 *hash |= (1ULL <<
7076                                           hash_mac_addr(addr[offset + i]));
7077                 }
7078
7079                 free = false;
7080                 offset += fw_naddr;
7081                 rem -= fw_naddr;
7082         }
7083
7084         if (ret == 0 || ret == -FW_ENOMEM)
7085                 ret = nfilters;
7086         return ret;
7087 }
7088
7089 /**
7090  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
7091  *      @adap: the adapter
7092  *      @mbox: mailbox to use for the FW command
7093  *      @viid: the VI id
7094  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7095  *      @addr: the MAC address(es)
7096  *      @sleep_ok: call is allowed to sleep
7097  *
7098  *      Frees the exact-match filter for each of the supplied addresses
7099  *
7100  *      Returns a negative error number or the number of filters freed.
7101  */
7102 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7103                      unsigned int viid, unsigned int naddr,
7104                      const u8 **addr, bool sleep_ok)
7105 {
7106         int offset, ret = 0;
7107         struct fw_vi_mac_cmd c;
7108         unsigned int nfilters = 0;
7109         unsigned int max_naddr = is_t4(adap->params.chip) ?
7110                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
7111                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7112         unsigned int rem = naddr;
7113
7114         if (naddr > max_naddr)
7115                 return -EINVAL;
7116
7117         for (offset = 0; offset < (int)naddr ; /**/) {
7118                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7119                                          ? rem
7120                                          : ARRAY_SIZE(c.u.exact));
7121                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7122                                                      u.exact[fw_naddr]), 16);
7123                 struct fw_vi_mac_exact *p;
7124                 int i;
7125
7126                 memset(&c, 0, sizeof(c));
7127                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7128                                      FW_CMD_REQUEST_F |
7129                                      FW_CMD_WRITE_F |
7130                                      FW_CMD_EXEC_V(0) |
7131                                      FW_VI_MAC_CMD_VIID_V(viid));
7132                 c.freemacs_to_len16 =
7133                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7134                                             FW_CMD_LEN16_V(len16));
7135
7136                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7137                         p->valid_to_idx = cpu_to_be16(
7138                                 FW_VI_MAC_CMD_VALID_F |
7139                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7140                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7141                 }
7142
7143                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7144                 if (ret)
7145                         break;
7146
7147                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7148                         u16 index = FW_VI_MAC_CMD_IDX_G(
7149                                                 be16_to_cpu(p->valid_to_idx));
7150
7151                         if (index < max_naddr)
7152                                 nfilters++;
7153                 }
7154
7155                 offset += fw_naddr;
7156                 rem -= fw_naddr;
7157         }
7158
7159         if (ret == 0)
7160                 ret = nfilters;
7161         return ret;
7162 }
7163
7164 /**
7165  *      t4_change_mac - modifies the exact-match filter for a MAC address
7166  *      @adap: the adapter
7167  *      @mbox: mailbox to use for the FW command
7168  *      @viid: the VI id
7169  *      @idx: index of existing filter for old value of MAC address, or -1
7170  *      @addr: the new MAC address value
7171  *      @persist: whether a new MAC allocation should be persistent
7172  *      @add_smt: if true also add the address to the HW SMT
7173  *
7174  *      Modifies an exact-match filter and sets it to the new MAC address.
7175  *      Note that in general it is not possible to modify the value of a given
7176  *      filter so the generic way to modify an address filter is to free the one
7177  *      being used by the old address value and allocate a new filter for the
7178  *      new address value.  @idx can be -1 if the address is a new addition.
7179  *
7180  *      Returns a negative error number or the index of the filter with the new
7181  *      MAC value.
7182  */
7183 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7184                   int idx, const u8 *addr, bool persist, bool add_smt)
7185 {
7186         int ret, mode;
7187         struct fw_vi_mac_cmd c;
7188         struct fw_vi_mac_exact *p = c.u.exact;
7189         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7190
7191         if (idx < 0)                             /* new allocation */
7192                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7193         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7194
7195         memset(&c, 0, sizeof(c));
7196         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7197                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7198                                    FW_VI_MAC_CMD_VIID_V(viid));
7199         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7200         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7201                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7202                                       FW_VI_MAC_CMD_IDX_V(idx));
7203         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7204
7205         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7206         if (ret == 0) {
7207                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7208                 if (ret >= max_mac_addr)
7209                         ret = -ENOMEM;
7210         }
7211         return ret;
7212 }
7213
7214 /**
7215  *      t4_set_addr_hash - program the MAC inexact-match hash filter
7216  *      @adap: the adapter
7217  *      @mbox: mailbox to use for the FW command
7218  *      @viid: the VI id
7219  *      @ucast: whether the hash filter should also match unicast addresses
7220  *      @vec: the value to be written to the hash filter
7221  *      @sleep_ok: call is allowed to sleep
7222  *
7223  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
7224  */
7225 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7226                      bool ucast, u64 vec, bool sleep_ok)
7227 {
7228         struct fw_vi_mac_cmd c;
7229
7230         memset(&c, 0, sizeof(c));
7231         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7232                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7233                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7234         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7235                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7236                                           FW_CMD_LEN16_V(1));
7237         c.u.hash.hashvec = cpu_to_be64(vec);
7238         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7239 }
7240
7241 /**
7242  *      t4_enable_vi_params - enable/disable a virtual interface
7243  *      @adap: the adapter
7244  *      @mbox: mailbox to use for the FW command
7245  *      @viid: the VI id
7246  *      @rx_en: 1=enable Rx, 0=disable Rx
7247  *      @tx_en: 1=enable Tx, 0=disable Tx
7248  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7249  *
7250  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7251  *      only makes sense when enabling a Virtual Interface ...
7252  */
7253 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7254                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7255 {
7256         struct fw_vi_enable_cmd c;
7257
7258         memset(&c, 0, sizeof(c));
7259         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7260                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7261                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7262         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7263                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7264                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7265                                      FW_LEN16(c));
7266         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7267 }
7268
7269 /**
7270  *      t4_enable_vi - enable/disable a virtual interface
7271  *      @adap: the adapter
7272  *      @mbox: mailbox to use for the FW command
7273  *      @viid: the VI id
7274  *      @rx_en: 1=enable Rx, 0=disable Rx
7275  *      @tx_en: 1=enable Tx, 0=disable Tx
7276  *
7277  *      Enables/disables a virtual interface.
7278  */
7279 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7280                  bool rx_en, bool tx_en)
7281 {
7282         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7283 }
7284
7285 /**
7286  *      t4_identify_port - identify a VI's port by blinking its LED
7287  *      @adap: the adapter
7288  *      @mbox: mailbox to use for the FW command
7289  *      @viid: the VI id
7290  *      @nblinks: how many times to blink LED at 2.5 Hz
7291  *
7292  *      Identifies a VI's port by blinking its LED.
7293  */
7294 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7295                      unsigned int nblinks)
7296 {
7297         struct fw_vi_enable_cmd c;
7298
7299         memset(&c, 0, sizeof(c));
7300         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7301                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7302                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7303         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7304         c.blinkdur = cpu_to_be16(nblinks);
7305         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7306 }
7307
7308 /**
7309  *      t4_iq_stop - stop an ingress queue and its FLs
7310  *      @adap: the adapter
7311  *      @mbox: mailbox to use for the FW command
7312  *      @pf: the PF owning the queues
7313  *      @vf: the VF owning the queues
7314  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7315  *      @iqid: ingress queue id
7316  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7317  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7318  *
7319  *      Stops an ingress queue and its associated FLs, if any.  This causes
7320  *      any current or future data/messages destined for these queues to be
7321  *      tossed.
7322  */
7323 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7324                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7325                unsigned int fl0id, unsigned int fl1id)
7326 {
7327         struct fw_iq_cmd c;
7328
7329         memset(&c, 0, sizeof(c));
7330         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7331                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7332                                   FW_IQ_CMD_VFN_V(vf));
7333         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7334         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7335         c.iqid = cpu_to_be16(iqid);
7336         c.fl0id = cpu_to_be16(fl0id);
7337         c.fl1id = cpu_to_be16(fl1id);
7338         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7339 }
7340
7341 /**
7342  *      t4_iq_free - free an ingress queue and its FLs
7343  *      @adap: the adapter
7344  *      @mbox: mailbox to use for the FW command
7345  *      @pf: the PF owning the queues
7346  *      @vf: the VF owning the queues
7347  *      @iqtype: the ingress queue type
7348  *      @iqid: ingress queue id
7349  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7350  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7351  *
7352  *      Frees an ingress queue and its associated FLs, if any.
7353  */
7354 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7355                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7356                unsigned int fl0id, unsigned int fl1id)
7357 {
7358         struct fw_iq_cmd c;
7359
7360         memset(&c, 0, sizeof(c));
7361         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7362                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7363                                   FW_IQ_CMD_VFN_V(vf));
7364         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7365         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7366         c.iqid = cpu_to_be16(iqid);
7367         c.fl0id = cpu_to_be16(fl0id);
7368         c.fl1id = cpu_to_be16(fl1id);
7369         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7370 }
7371
7372 /**
7373  *      t4_eth_eq_free - free an Ethernet egress queue
7374  *      @adap: the adapter
7375  *      @mbox: mailbox to use for the FW command
7376  *      @pf: the PF owning the queue
7377  *      @vf: the VF owning the queue
7378  *      @eqid: egress queue id
7379  *
7380  *      Frees an Ethernet egress queue.
7381  */
7382 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7383                    unsigned int vf, unsigned int eqid)
7384 {
7385         struct fw_eq_eth_cmd c;
7386
7387         memset(&c, 0, sizeof(c));
7388         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7389                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7390                                   FW_EQ_ETH_CMD_PFN_V(pf) |
7391                                   FW_EQ_ETH_CMD_VFN_V(vf));
7392         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7393         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7394         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7395 }
7396
7397 /**
7398  *      t4_ctrl_eq_free - free a control egress queue
7399  *      @adap: the adapter
7400  *      @mbox: mailbox to use for the FW command
7401  *      @pf: the PF owning the queue
7402  *      @vf: the VF owning the queue
7403  *      @eqid: egress queue id
7404  *
7405  *      Frees a control egress queue.
7406  */
7407 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7408                     unsigned int vf, unsigned int eqid)
7409 {
7410         struct fw_eq_ctrl_cmd c;
7411
7412         memset(&c, 0, sizeof(c));
7413         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7414                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7415                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
7416                                   FW_EQ_CTRL_CMD_VFN_V(vf));
7417         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7418         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7419         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7420 }
7421
7422 /**
7423  *      t4_ofld_eq_free - free an offload egress queue
7424  *      @adap: the adapter
7425  *      @mbox: mailbox to use for the FW command
7426  *      @pf: the PF owning the queue
7427  *      @vf: the VF owning the queue
7428  *      @eqid: egress queue id
7429  *
7430  *      Frees a control egress queue.
7431  */
7432 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7433                     unsigned int vf, unsigned int eqid)
7434 {
7435         struct fw_eq_ofld_cmd c;
7436
7437         memset(&c, 0, sizeof(c));
7438         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7439                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7440                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
7441                                   FW_EQ_OFLD_CMD_VFN_V(vf));
7442         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7443         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7444         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7445 }
7446
7447 /**
7448  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7449  *      @adap: the adapter
7450  *      @link_down_rc: Link Down Reason Code
7451  *
7452  *      Returns a string representation of the Link Down Reason Code.
7453  */
7454 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7455 {
7456         static const char * const reason[] = {
7457                 "Link Down",
7458                 "Remote Fault",
7459                 "Auto-negotiation Failure",
7460                 "Reserved",
7461                 "Insufficient Airflow",
7462                 "Unable To Determine Reason",
7463                 "No RX Signal Detected",
7464                 "Reserved",
7465         };
7466
7467         if (link_down_rc >= ARRAY_SIZE(reason))
7468                 return "Bad Reason Code";
7469
7470         return reason[link_down_rc];
7471 }
7472
7473 /**
7474  *      t4_handle_get_port_info - process a FW reply message
7475  *      @pi: the port info
7476  *      @rpl: start of the FW message
7477  *
7478  *      Processes a GET_PORT_INFO FW reply message.
7479  */
7480 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7481 {
7482         const struct fw_port_cmd *p = (const void *)rpl;
7483         struct adapter *adap = pi->adapter;
7484
7485         /* link/module state change message */
7486         int speed = 0, fc = 0;
7487         struct link_config *lc;
7488         u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7489         int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7490         u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7491
7492         if (stat & FW_PORT_CMD_RXPAUSE_F)
7493                 fc |= PAUSE_RX;
7494         if (stat & FW_PORT_CMD_TXPAUSE_F)
7495                 fc |= PAUSE_TX;
7496         if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7497                 speed = 100;
7498         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7499                 speed = 1000;
7500         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7501                 speed = 10000;
7502         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7503                 speed = 25000;
7504         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7505                 speed = 40000;
7506         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7507                 speed = 100000;
7508
7509         lc = &pi->link_cfg;
7510
7511         if (mod != pi->mod_type) {
7512                 pi->mod_type = mod;
7513                 t4_os_portmod_changed(adap, pi->port_id);
7514         }
7515         if (link_ok != lc->link_ok || speed != lc->speed ||
7516             fc != lc->fc) {     /* something changed */
7517                 if (!link_ok && lc->link_ok) {
7518                         unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7519
7520                         lc->link_down_rc = rc;
7521                         dev_warn(adap->pdev_dev,
7522                                  "Port %d link down, reason: %s\n",
7523                                  pi->port_id, t4_link_down_rc_str(rc));
7524                 }
7525                 lc->link_ok = link_ok;
7526                 lc->speed = speed;
7527                 lc->fc = fc;
7528                 lc->supported = be16_to_cpu(p->u.info.pcap);
7529                 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7530
7531                 t4_os_link_changed(adap, pi->port_id, link_ok);
7532         }
7533 }
7534
7535 /**
7536  *      t4_update_port_info - retrieve and update port information if changed
7537  *      @pi: the port_info
7538  *
7539  *      We issue a Get Port Information Command to the Firmware and, if
7540  *      successful, we check to see if anything is different from what we
7541  *      last recorded and update things accordingly.
7542  */
7543 int t4_update_port_info(struct port_info *pi)
7544 {
7545         struct fw_port_cmd port_cmd;
7546         int ret;
7547
7548         memset(&port_cmd, 0, sizeof(port_cmd));
7549         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7550                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
7551                                             FW_PORT_CMD_PORTID_V(pi->port_id));
7552         port_cmd.action_to_len16 = cpu_to_be32(
7553                 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7554                 FW_LEN16(port_cmd));
7555         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
7556                          &port_cmd, sizeof(port_cmd), &port_cmd);
7557         if (ret)
7558                 return ret;
7559
7560         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
7561         return 0;
7562 }
7563
7564 /**
7565  *      t4_handle_fw_rpl - process a FW reply message
7566  *      @adap: the adapter
7567  *      @rpl: start of the FW message
7568  *
7569  *      Processes a FW message, such as link state change messages.
7570  */
7571 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7572 {
7573         u8 opcode = *(const u8 *)rpl;
7574
7575         /* This might be a port command ... this simplifies the following
7576          * conditionals ...  We can get away with pre-dereferencing
7577          * action_to_len16 because it's in the first 16 bytes and all messages
7578          * will be at least that long.
7579          */
7580         const struct fw_port_cmd *p = (const void *)rpl;
7581         unsigned int action =
7582                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7583
7584         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7585                 int i;
7586                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7587                 struct port_info *pi = NULL;
7588
7589                 for_each_port(adap, i) {
7590                         pi = adap2pinfo(adap, i);
7591                         if (pi->tx_chan == chan)
7592                                 break;
7593                 }
7594
7595                 t4_handle_get_port_info(pi, rpl);
7596         } else {
7597                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7598                 return -EINVAL;
7599         }
7600         return 0;
7601 }
7602
7603 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7604 {
7605         u16 val;
7606
7607         if (pci_is_pcie(adapter->pdev)) {
7608                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7609                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7610                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7611         }
7612 }
7613
7614 /**
7615  *      init_link_config - initialize a link's SW state
7616  *      @lc: structure holding the link state
7617  *      @caps: link capabilities
7618  *
7619  *      Initializes the SW state maintained for each link, including the link's
7620  *      capabilities and default speed/flow-control/autonegotiation settings.
7621  */
7622 static void init_link_config(struct link_config *lc, unsigned int pcaps,
7623                              unsigned int acaps)
7624 {
7625         lc->supported = pcaps;
7626         lc->lp_advertising = 0;
7627         lc->requested_speed = 0;
7628         lc->speed = 0;
7629         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7630         lc->auto_fec = 0;
7631
7632         /* For Forward Error Control, we default to whatever the Firmware
7633          * tells us the Link is currently advertising.
7634          */
7635         if (acaps & FW_PORT_CAP_FEC_RS)
7636                 lc->auto_fec |= FEC_RS;
7637         if (acaps & FW_PORT_CAP_FEC_BASER_RS)
7638                 lc->auto_fec |= FEC_BASER_RS;
7639         lc->requested_fec = FEC_AUTO;
7640         lc->fec = lc->auto_fec;
7641
7642         if (lc->supported & FW_PORT_CAP_ANEG) {
7643                 lc->advertising = lc->supported & ADVERT_MASK;
7644                 lc->autoneg = AUTONEG_ENABLE;
7645                 lc->requested_fc |= PAUSE_AUTONEG;
7646         } else {
7647                 lc->advertising = 0;
7648                 lc->autoneg = AUTONEG_DISABLE;
7649         }
7650 }
7651
7652 #define CIM_PF_NOACCESS 0xeeeeeeee
7653
7654 int t4_wait_dev_ready(void __iomem *regs)
7655 {
7656         u32 whoami;
7657
7658         whoami = readl(regs + PL_WHOAMI_A);
7659         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7660                 return 0;
7661
7662         msleep(500);
7663         whoami = readl(regs + PL_WHOAMI_A);
7664         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7665 }
7666
7667 struct flash_desc {
7668         u32 vendor_and_model_id;
7669         u32 size_mb;
7670 };
7671
7672 static int get_flash_params(struct adapter *adap)
7673 {
7674         /* Table for non-Numonix supported flash parts.  Numonix parts are left
7675          * to the preexisting code.  All flash parts have 64KB sectors.
7676          */
7677         static struct flash_desc supported_flash[] = {
7678                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7679         };
7680
7681         int ret;
7682         u32 info;
7683
7684         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7685         if (!ret)
7686                 ret = sf1_read(adap, 3, 0, 1, &info);
7687         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7688         if (ret)
7689                 return ret;
7690
7691         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7692                 if (supported_flash[ret].vendor_and_model_id == info) {
7693                         adap->params.sf_size = supported_flash[ret].size_mb;
7694                         adap->params.sf_nsec =
7695                                 adap->params.sf_size / SF_SEC_SIZE;
7696                         return 0;
7697                 }
7698
7699         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7700                 return -EINVAL;
7701         info >>= 16;                           /* log2 of size */
7702         if (info >= 0x14 && info < 0x18)
7703                 adap->params.sf_nsec = 1 << (info - 16);
7704         else if (info == 0x18)
7705                 adap->params.sf_nsec = 64;
7706         else
7707                 return -EINVAL;
7708         adap->params.sf_size = 1 << info;
7709         adap->params.sf_fw_start =
7710                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7711
7712         if (adap->params.sf_size < FLASH_MIN_SIZE)
7713                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7714                          adap->params.sf_size, FLASH_MIN_SIZE);
7715         return 0;
7716 }
7717
7718 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7719 {
7720         u16 val;
7721         u32 pcie_cap;
7722
7723         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7724         if (pcie_cap) {
7725                 pci_read_config_word(adapter->pdev,
7726                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7727                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7728                 val |= range;
7729                 pci_write_config_word(adapter->pdev,
7730                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7731         }
7732 }
7733
7734 /**
7735  *      t4_prep_adapter - prepare SW and HW for operation
7736  *      @adapter: the adapter
7737  *      @reset: if true perform a HW reset
7738  *
7739  *      Initialize adapter SW state for the various HW modules, set initial
7740  *      values for some adapter tunables, take PHYs out of reset, and
7741  *      initialize the MDIO interface.
7742  */
7743 int t4_prep_adapter(struct adapter *adapter)
7744 {
7745         int ret, ver;
7746         uint16_t device_id;
7747         u32 pl_rev;
7748
7749         get_pci_mode(adapter, &adapter->params.pci);
7750         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7751
7752         ret = get_flash_params(adapter);
7753         if (ret < 0) {
7754                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7755                 return ret;
7756         }
7757
7758         /* Retrieve adapter's device ID
7759          */
7760         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7761         ver = device_id >> 12;
7762         adapter->params.chip = 0;
7763         switch (ver) {
7764         case CHELSIO_T4:
7765                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7766                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7767                 adapter->params.arch.mps_tcam_size =
7768                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7769                 adapter->params.arch.mps_rplc_size = 128;
7770                 adapter->params.arch.nchan = NCHAN;
7771                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7772                 adapter->params.arch.vfcount = 128;
7773                 /* Congestion map is for 4 channels so that
7774                  * MPS can have 4 priority per port.
7775                  */
7776                 adapter->params.arch.cng_ch_bits_log = 2;
7777                 break;
7778         case CHELSIO_T5:
7779                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7780                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7781                 adapter->params.arch.mps_tcam_size =
7782                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7783                 adapter->params.arch.mps_rplc_size = 128;
7784                 adapter->params.arch.nchan = NCHAN;
7785                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7786                 adapter->params.arch.vfcount = 128;
7787                 adapter->params.arch.cng_ch_bits_log = 2;
7788                 break;
7789         case CHELSIO_T6:
7790                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7791                 adapter->params.arch.sge_fl_db = 0;
7792                 adapter->params.arch.mps_tcam_size =
7793                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7794                 adapter->params.arch.mps_rplc_size = 256;
7795                 adapter->params.arch.nchan = 2;
7796                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7797                 adapter->params.arch.vfcount = 256;
7798                 /* Congestion map will be for 2 channels so that
7799                  * MPS can have 8 priority per port.
7800                  */
7801                 adapter->params.arch.cng_ch_bits_log = 3;
7802                 break;
7803         default:
7804                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7805                         device_id);
7806                 return -EINVAL;
7807         }
7808
7809         adapter->params.cim_la_size = CIMLA_SIZE;
7810         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7811
7812         /*
7813          * Default port for debugging in case we can't reach FW.
7814          */
7815         adapter->params.nports = 1;
7816         adapter->params.portvec = 1;
7817         adapter->params.vpd.cclk = 50000;
7818
7819         /* Set pci completion timeout value to 4 seconds. */
7820         set_pcie_completion_timeout(adapter, 0xd);
7821         return 0;
7822 }
7823
7824 /**
7825  *      t4_shutdown_adapter - shut down adapter, host & wire
7826  *      @adapter: the adapter
7827  *
7828  *      Perform an emergency shutdown of the adapter and stop it from
7829  *      continuing any further communication on the ports or DMA to the
7830  *      host.  This is typically used when the adapter and/or firmware
7831  *      have crashed and we want to prevent any further accidental
7832  *      communication with the rest of the world.  This will also force
7833  *      the port Link Status to go down -- if register writes work --
7834  *      which should help our peers figure out that we're down.
7835  */
7836 int t4_shutdown_adapter(struct adapter *adapter)
7837 {
7838         int port;
7839
7840         t4_intr_disable(adapter);
7841         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
7842         for_each_port(adapter, port) {
7843                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
7844                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
7845                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
7846
7847                 t4_write_reg(adapter, a_port_cfg,
7848                              t4_read_reg(adapter, a_port_cfg)
7849                              & ~SIGNAL_DET_V(1));
7850         }
7851         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
7852
7853         return 0;
7854 }
7855
7856 /**
7857  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7858  *      @adapter: the adapter
7859  *      @qid: the Queue ID
7860  *      @qtype: the Ingress or Egress type for @qid
7861  *      @user: true if this request is for a user mode queue
7862  *      @pbar2_qoffset: BAR2 Queue Offset
7863  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7864  *
7865  *      Returns the BAR2 SGE Queue Registers information associated with the
7866  *      indicated Absolute Queue ID.  These are passed back in return value
7867  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7868  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7869  *
7870  *      This may return an error which indicates that BAR2 SGE Queue
7871  *      registers aren't available.  If an error is not returned, then the
7872  *      following values are returned:
7873  *
7874  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7875  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7876  *
7877  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7878  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7879  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7880  *      then these "Inferred Queue ID" register may not be used.
7881  */
7882 int t4_bar2_sge_qregs(struct adapter *adapter,
7883                       unsigned int qid,
7884                       enum t4_bar2_qtype qtype,
7885                       int user,
7886                       u64 *pbar2_qoffset,
7887                       unsigned int *pbar2_qid)
7888 {
7889         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7890         u64 bar2_page_offset, bar2_qoffset;
7891         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7892
7893         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7894         if (!user && is_t4(adapter->params.chip))
7895                 return -EINVAL;
7896
7897         /* Get our SGE Page Size parameters.
7898          */
7899         page_shift = adapter->params.sge.hps + 10;
7900         page_size = 1 << page_shift;
7901
7902         /* Get the right Queues per Page parameters for our Queue.
7903          */
7904         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7905                      ? adapter->params.sge.eq_qpp
7906                      : adapter->params.sge.iq_qpp);
7907         qpp_mask = (1 << qpp_shift) - 1;
7908
7909         /*  Calculate the basics of the BAR2 SGE Queue register area:
7910          *  o The BAR2 page the Queue registers will be in.
7911          *  o The BAR2 Queue ID.
7912          *  o The BAR2 Queue ID Offset into the BAR2 page.
7913          */
7914         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7915         bar2_qid = qid & qpp_mask;
7916         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7917
7918         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7919          * hardware will infer the Absolute Queue ID simply from the writes to
7920          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7921          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7922          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7923          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7924          * from the BAR2 Page and BAR2 Queue ID.
7925          *
7926          * One important censequence of this is that some BAR2 SGE registers
7927          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7928          * there.  But other registers synthesize the SGE Queue ID purely
7929          * from the writes to the registers -- the Write Combined Doorbell
7930          * Buffer is a good example.  These BAR2 SGE Registers are only
7931          * available for those BAR2 SGE Register areas where the SGE Absolute
7932          * Queue ID can be inferred from simple writes.
7933          */
7934         bar2_qoffset = bar2_page_offset;
7935         bar2_qinferred = (bar2_qid_offset < page_size);
7936         if (bar2_qinferred) {
7937                 bar2_qoffset += bar2_qid_offset;
7938                 bar2_qid = 0;
7939         }
7940
7941         *pbar2_qoffset = bar2_qoffset;
7942         *pbar2_qid = bar2_qid;
7943         return 0;
7944 }
7945
7946 /**
7947  *      t4_init_devlog_params - initialize adapter->params.devlog
7948  *      @adap: the adapter
7949  *
7950  *      Initialize various fields of the adapter's Firmware Device Log
7951  *      Parameters structure.
7952  */
7953 int t4_init_devlog_params(struct adapter *adap)
7954 {
7955         struct devlog_params *dparams = &adap->params.devlog;
7956         u32 pf_dparams;
7957         unsigned int devlog_meminfo;
7958         struct fw_devlog_cmd devlog_cmd;
7959         int ret;
7960
7961         /* If we're dealing with newer firmware, the Device Log Paramerters
7962          * are stored in a designated register which allows us to access the
7963          * Device Log even if we can't talk to the firmware.
7964          */
7965         pf_dparams =
7966                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7967         if (pf_dparams) {
7968                 unsigned int nentries, nentries128;
7969
7970                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7971                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7972
7973                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7974                 nentries = (nentries128 + 1) * 128;
7975                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7976
7977                 return 0;
7978         }
7979
7980         /* Otherwise, ask the firmware for it's Device Log Parameters.
7981          */
7982         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7983         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7984                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7985         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7986         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7987                          &devlog_cmd);
7988         if (ret)
7989                 return ret;
7990
7991         devlog_meminfo =
7992                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7993         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7994         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7995         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7996
7997         return 0;
7998 }
7999
8000 /**
8001  *      t4_init_sge_params - initialize adap->params.sge
8002  *      @adapter: the adapter
8003  *
8004  *      Initialize various fields of the adapter's SGE Parameters structure.
8005  */
8006 int t4_init_sge_params(struct adapter *adapter)
8007 {
8008         struct sge_params *sge_params = &adapter->params.sge;
8009         u32 hps, qpp;
8010         unsigned int s_hps, s_qpp;
8011
8012         /* Extract the SGE Page Size for our PF.
8013          */
8014         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8015         s_hps = (HOSTPAGESIZEPF0_S +
8016                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8017         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8018
8019         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8020          */
8021         s_qpp = (QUEUESPERPAGEPF0_S +
8022                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8023         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8024         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8025         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8026         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8027
8028         return 0;
8029 }
8030
8031 /**
8032  *      t4_init_tp_params - initialize adap->params.tp
8033  *      @adap: the adapter
8034  *
8035  *      Initialize various fields of the adapter's TP Parameters structure.
8036  */
8037 int t4_init_tp_params(struct adapter *adap)
8038 {
8039         int chan;
8040         u32 v;
8041
8042         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8043         adap->params.tp.tre = TIMERRESOLUTION_G(v);
8044         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8045
8046         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8047         for (chan = 0; chan < NCHAN; chan++)
8048                 adap->params.tp.tx_modq[chan] = chan;
8049
8050         /* Cache the adapter's Compressed Filter Mode and global Incress
8051          * Configuration.
8052          */
8053         if (t4_use_ldst(adap)) {
8054                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
8055                                 TP_VLAN_PRI_MAP_A, 1);
8056                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
8057                                 TP_INGRESS_CONFIG_A, 1);
8058         } else {
8059                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8060                                  &adap->params.tp.vlan_pri_map, 1,
8061                                  TP_VLAN_PRI_MAP_A);
8062                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8063                                  &adap->params.tp.ingress_config, 1,
8064                                  TP_INGRESS_CONFIG_A);
8065         }
8066         /* For T6, cache the adapter's compressed error vector
8067          * and passing outer header info for encapsulated packets.
8068          */
8069         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8070                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8071                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8072         }
8073
8074         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8075          * shift positions of several elements of the Compressed Filter Tuple
8076          * for this adapter which we need frequently ...
8077          */
8078         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8079         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8080         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8081         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8082                                                                PROTOCOL_F);
8083
8084         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8085          * represents the presence of an Outer VLAN instead of a VNIC ID.
8086          */
8087         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8088                 adap->params.tp.vnic_shift = -1;
8089
8090         return 0;
8091 }
8092
8093 /**
8094  *      t4_filter_field_shift - calculate filter field shift
8095  *      @adap: the adapter
8096  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8097  *
8098  *      Return the shift position of a filter field within the Compressed
8099  *      Filter Tuple.  The filter field is specified via its selection bit
8100  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8101  */
8102 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8103 {
8104         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8105         unsigned int sel;
8106         int field_shift;
8107
8108         if ((filter_mode & filter_sel) == 0)
8109                 return -1;
8110
8111         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8112                 switch (filter_mode & sel) {
8113                 case FCOE_F:
8114                         field_shift += FT_FCOE_W;
8115                         break;
8116                 case PORT_F:
8117                         field_shift += FT_PORT_W;
8118                         break;
8119                 case VNIC_ID_F:
8120                         field_shift += FT_VNIC_ID_W;
8121                         break;
8122                 case VLAN_F:
8123                         field_shift += FT_VLAN_W;
8124                         break;
8125                 case TOS_F:
8126                         field_shift += FT_TOS_W;
8127                         break;
8128                 case PROTOCOL_F:
8129                         field_shift += FT_PROTOCOL_W;
8130                         break;
8131                 case ETHERTYPE_F:
8132                         field_shift += FT_ETHERTYPE_W;
8133                         break;
8134                 case MACMATCH_F:
8135                         field_shift += FT_MACMATCH_W;
8136                         break;
8137                 case MPSHITTYPE_F:
8138                         field_shift += FT_MPSHITTYPE_W;
8139                         break;
8140                 case FRAGMENTATION_F:
8141                         field_shift += FT_FRAGMENTATION_W;
8142                         break;
8143                 }
8144         }
8145         return field_shift;
8146 }
8147
8148 int t4_init_rss_mode(struct adapter *adap, int mbox)
8149 {
8150         int i, ret;
8151         struct fw_rss_vi_config_cmd rvc;
8152
8153         memset(&rvc, 0, sizeof(rvc));
8154
8155         for_each_port(adap, i) {
8156                 struct port_info *p = adap2pinfo(adap, i);
8157
8158                 rvc.op_to_viid =
8159                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8160                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
8161                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8162                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8163                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8164                 if (ret)
8165                         return ret;
8166                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8167         }
8168         return 0;
8169 }
8170
8171 /**
8172  *      t4_init_portinfo - allocate a virtual interface amd initialize port_info
8173  *      @pi: the port_info
8174  *      @mbox: mailbox to use for the FW command
8175  *      @port: physical port associated with the VI
8176  *      @pf: the PF owning the VI
8177  *      @vf: the VF owning the VI
8178  *      @mac: the MAC address of the VI
8179  *
8180  *      Allocates a virtual interface for the given physical port.  If @mac is
8181  *      not %NULL it contains the MAC address of the VI as assigned by FW.
8182  *      @mac should be large enough to hold an Ethernet address.
8183  *      Returns < 0 on error.
8184  */
8185 int t4_init_portinfo(struct port_info *pi, int mbox,
8186                      int port, int pf, int vf, u8 mac[])
8187 {
8188         int ret;
8189         struct fw_port_cmd c;
8190         unsigned int rss_size;
8191
8192         memset(&c, 0, sizeof(c));
8193         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8194                                      FW_CMD_REQUEST_F | FW_CMD_READ_F |
8195                                      FW_PORT_CMD_PORTID_V(port));
8196         c.action_to_len16 = cpu_to_be32(
8197                 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
8198                 FW_LEN16(c));
8199         ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
8200         if (ret)
8201                 return ret;
8202
8203         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8204         if (ret < 0)
8205                 return ret;
8206
8207         pi->viid = ret;
8208         pi->tx_chan = port;
8209         pi->lport = port;
8210         pi->rss_size = rss_size;
8211
8212         ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8213         pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
8214                 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
8215         pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
8216         pi->mod_type = FW_PORT_MOD_TYPE_NA;
8217
8218         init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap),
8219                          be16_to_cpu(c.u.info.acap));
8220         return 0;
8221 }
8222
8223 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8224 {
8225         u8 addr[6];
8226         int ret, i, j = 0;
8227
8228         for_each_port(adap, i) {
8229                 struct port_info *pi = adap2pinfo(adap, i);
8230
8231                 while ((adap->params.portvec & (1 << j)) == 0)
8232                         j++;
8233
8234                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
8235                 if (ret)
8236                         return ret;
8237
8238                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
8239                 j++;
8240         }
8241         return 0;
8242 }
8243
8244 /**
8245  *      t4_read_cimq_cfg - read CIM queue configuration
8246  *      @adap: the adapter
8247  *      @base: holds the queue base addresses in bytes
8248  *      @size: holds the queue sizes in bytes
8249  *      @thres: holds the queue full thresholds in bytes
8250  *
8251  *      Returns the current configuration of the CIM queues, starting with
8252  *      the IBQs, then the OBQs.
8253  */
8254 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8255 {
8256         unsigned int i, v;
8257         int cim_num_obq = is_t4(adap->params.chip) ?
8258                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8259
8260         for (i = 0; i < CIM_NUM_IBQ; i++) {
8261                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8262                              QUENUMSELECT_V(i));
8263                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8264                 /* value is in 256-byte units */
8265                 *base++ = CIMQBASE_G(v) * 256;
8266                 *size++ = CIMQSIZE_G(v) * 256;
8267                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8268         }
8269         for (i = 0; i < cim_num_obq; i++) {
8270                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8271                              QUENUMSELECT_V(i));
8272                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8273                 /* value is in 256-byte units */
8274                 *base++ = CIMQBASE_G(v) * 256;
8275                 *size++ = CIMQSIZE_G(v) * 256;
8276         }
8277 }
8278
8279 /**
8280  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
8281  *      @adap: the adapter
8282  *      @qid: the queue index
8283  *      @data: where to store the queue contents
8284  *      @n: capacity of @data in 32-bit words
8285  *
8286  *      Reads the contents of the selected CIM queue starting at address 0 up
8287  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8288  *      error and the number of 32-bit words actually read on success.
8289  */
8290 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8291 {
8292         int i, err, attempts;
8293         unsigned int addr;
8294         const unsigned int nwords = CIM_IBQ_SIZE * 4;
8295
8296         if (qid > 5 || (n & 3))
8297                 return -EINVAL;
8298
8299         addr = qid * nwords;
8300         if (n > nwords)
8301                 n = nwords;
8302
8303         /* It might take 3-10ms before the IBQ debug read access is allowed.
8304          * Wait for 1 Sec with a delay of 1 usec.
8305          */
8306         attempts = 1000000;
8307
8308         for (i = 0; i < n; i++, addr++) {
8309                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8310                              IBQDBGEN_F);
8311                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8312                                       attempts, 1);
8313                 if (err)
8314                         return err;
8315                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8316         }
8317         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
8318         return i;
8319 }
8320
8321 /**
8322  *      t4_read_cim_obq - read the contents of a CIM outbound queue
8323  *      @adap: the adapter
8324  *      @qid: the queue index
8325  *      @data: where to store the queue contents
8326  *      @n: capacity of @data in 32-bit words
8327  *
8328  *      Reads the contents of the selected CIM queue starting at address 0 up
8329  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8330  *      error and the number of 32-bit words actually read on success.
8331  */
8332 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8333 {
8334         int i, err;
8335         unsigned int addr, v, nwords;
8336         int cim_num_obq = is_t4(adap->params.chip) ?
8337                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8338
8339         if ((qid > (cim_num_obq - 1)) || (n & 3))
8340                 return -EINVAL;
8341
8342         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8343                      QUENUMSELECT_V(qid));
8344         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8345
8346         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
8347         nwords = CIMQSIZE_G(v) * 64;  /* same */
8348         if (n > nwords)
8349                 n = nwords;
8350
8351         for (i = 0; i < n; i++, addr++) {
8352                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8353                              OBQDBGEN_F);
8354                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8355                                       2, 1);
8356                 if (err)
8357                         return err;
8358                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8359         }
8360         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
8361         return i;
8362 }
8363
8364 /**
8365  *      t4_cim_read - read a block from CIM internal address space
8366  *      @adap: the adapter
8367  *      @addr: the start address within the CIM address space
8368  *      @n: number of words to read
8369  *      @valp: where to store the result
8370  *
8371  *      Reads a block of 4-byte words from the CIM intenal address space.
8372  */
8373 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8374                 unsigned int *valp)
8375 {
8376         int ret = 0;
8377
8378         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8379                 return -EBUSY;
8380
8381         for ( ; !ret && n--; addr += 4) {
8382                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8383                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8384                                       0, 5, 2);
8385                 if (!ret)
8386                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8387         }
8388         return ret;
8389 }
8390
8391 /**
8392  *      t4_cim_write - write a block into CIM internal address space
8393  *      @adap: the adapter
8394  *      @addr: the start address within the CIM address space
8395  *      @n: number of words to write
8396  *      @valp: set of values to write
8397  *
8398  *      Writes a block of 4-byte words into the CIM intenal address space.
8399  */
8400 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8401                  const unsigned int *valp)
8402 {
8403         int ret = 0;
8404
8405         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8406                 return -EBUSY;
8407
8408         for ( ; !ret && n--; addr += 4) {
8409                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8410                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8411                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8412                                       0, 5, 2);
8413         }
8414         return ret;
8415 }
8416
8417 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8418                          unsigned int val)
8419 {
8420         return t4_cim_write(adap, addr, 1, &val);
8421 }
8422
8423 /**
8424  *      t4_cim_read_la - read CIM LA capture buffer
8425  *      @adap: the adapter
8426  *      @la_buf: where to store the LA data
8427  *      @wrptr: the HW write pointer within the capture buffer
8428  *
8429  *      Reads the contents of the CIM LA buffer with the most recent entry at
8430  *      the end of the returned data and with the entry at @wrptr first.
8431  *      We try to leave the LA in the running state we find it in.
8432  */
8433 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8434 {
8435         int i, ret;
8436         unsigned int cfg, val, idx;
8437
8438         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8439         if (ret)
8440                 return ret;
8441
8442         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
8443                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8444                 if (ret)
8445                         return ret;
8446         }
8447
8448         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8449         if (ret)
8450                 goto restart;
8451
8452         idx = UPDBGLAWRPTR_G(val);
8453         if (wrptr)
8454                 *wrptr = idx;
8455
8456         for (i = 0; i < adap->params.cim_la_size; i++) {
8457                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8458                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8459                 if (ret)
8460                         break;
8461                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8462                 if (ret)
8463                         break;
8464                 if (val & UPDBGLARDEN_F) {
8465                         ret = -ETIMEDOUT;
8466                         break;
8467                 }
8468                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8469                 if (ret)
8470                         break;
8471
8472                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8473                  * identify the 32-bit portion of the full 312-bit data
8474                  */
8475                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
8476                         idx = (idx & 0xff0) + 0x10;
8477                 else
8478                         idx++;
8479                 /* address can't exceed 0xfff */
8480                 idx &= UPDBGLARDPTR_M;
8481         }
8482 restart:
8483         if (cfg & UPDBGLAEN_F) {
8484                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8485                                       cfg & ~UPDBGLARDEN_F);
8486                 if (!ret)
8487                         ret = r;
8488         }
8489         return ret;
8490 }
8491
8492 /**
8493  *      t4_tp_read_la - read TP LA capture buffer
8494  *      @adap: the adapter
8495  *      @la_buf: where to store the LA data
8496  *      @wrptr: the HW write pointer within the capture buffer
8497  *
8498  *      Reads the contents of the TP LA buffer with the most recent entry at
8499  *      the end of the returned data and with the entry at @wrptr first.
8500  *      We leave the LA in the running state we find it in.
8501  */
8502 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8503 {
8504         bool last_incomplete;
8505         unsigned int i, cfg, val, idx;
8506
8507         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8508         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
8509                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8510                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8511
8512         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8513         idx = DBGLAWPTR_G(val);
8514         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8515         if (last_incomplete)
8516                 idx = (idx + 1) & DBGLARPTR_M;
8517         if (wrptr)
8518                 *wrptr = idx;
8519
8520         val &= 0xffff;
8521         val &= ~DBGLARPTR_V(DBGLARPTR_M);
8522         val |= adap->params.tp.la_mask;
8523
8524         for (i = 0; i < TPLA_SIZE; i++) {
8525                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8526                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8527                 idx = (idx + 1) & DBGLARPTR_M;
8528         }
8529
8530         /* Wipe out last entry if it isn't valid */
8531         if (last_incomplete)
8532                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8533
8534         if (cfg & DBGLAENABLE_F)                    /* restore running state */
8535                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8536                              cfg | adap->params.tp.la_mask);
8537 }
8538
8539 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8540  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8541  * state for more than the Warning Threshold then we'll issue a warning about
8542  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8543  * appears to be hung every Warning Repeat second till the situation clears.
8544  * If the situation clears, we'll note that as well.
8545  */
8546 #define SGE_IDMA_WARN_THRESH 1
8547 #define SGE_IDMA_WARN_REPEAT 300
8548
8549 /**
8550  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8551  *      @adapter: the adapter
8552  *      @idma: the adapter IDMA Monitor state
8553  *
8554  *      Initialize the state of an SGE Ingress DMA Monitor.
8555  */
8556 void t4_idma_monitor_init(struct adapter *adapter,
8557                           struct sge_idma_monitor_state *idma)
8558 {
8559         /* Initialize the state variables for detecting an SGE Ingress DMA
8560          * hang.  The SGE has internal counters which count up on each clock
8561          * tick whenever the SGE finds its Ingress DMA State Engines in the
8562          * same state they were on the previous clock tick.  The clock used is
8563          * the Core Clock so we have a limit on the maximum "time" they can
8564          * record; typically a very small number of seconds.  For instance,
8565          * with a 600MHz Core Clock, we can only count up to a bit more than
8566          * 7s.  So we'll synthesize a larger counter in order to not run the
8567          * risk of having the "timers" overflow and give us the flexibility to
8568          * maintain a Hung SGE State Machine of our own which operates across
8569          * a longer time frame.
8570          */
8571         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8572         idma->idma_stalled[0] = 0;
8573         idma->idma_stalled[1] = 0;
8574 }
8575
8576 /**
8577  *      t4_idma_monitor - monitor SGE Ingress DMA state
8578  *      @adapter: the adapter
8579  *      @idma: the adapter IDMA Monitor state
8580  *      @hz: number of ticks/second
8581  *      @ticks: number of ticks since the last IDMA Monitor call
8582  */
8583 void t4_idma_monitor(struct adapter *adapter,
8584                      struct sge_idma_monitor_state *idma,
8585                      int hz, int ticks)
8586 {
8587         int i, idma_same_state_cnt[2];
8588
8589          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8590           * are counters inside the SGE which count up on each clock when the
8591           * SGE finds its Ingress DMA State Engines in the same states they
8592           * were in the previous clock.  The counters will peg out at
8593           * 0xffffffff without wrapping around so once they pass the 1s
8594           * threshold they'll stay above that till the IDMA state changes.
8595           */
8596         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8597         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8598         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8599
8600         for (i = 0; i < 2; i++) {
8601                 u32 debug0, debug11;
8602
8603                 /* If the Ingress DMA Same State Counter ("timer") is less
8604                  * than 1s, then we can reset our synthesized Stall Timer and
8605                  * continue.  If we have previously emitted warnings about a
8606                  * potential stalled Ingress Queue, issue a note indicating
8607                  * that the Ingress Queue has resumed forward progress.
8608                  */
8609                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8610                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8611                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8612                                          "resumed after %d seconds\n",
8613                                          i, idma->idma_qid[i],
8614                                          idma->idma_stalled[i] / hz);
8615                         idma->idma_stalled[i] = 0;
8616                         continue;
8617                 }
8618
8619                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8620                  * domain.  The first time we get here it'll be because we
8621                  * passed the 1s Threshold; each additional time it'll be
8622                  * because the RX Timer Callback is being fired on its regular
8623                  * schedule.
8624                  *
8625                  * If the stall is below our Potential Hung Ingress Queue
8626                  * Warning Threshold, continue.
8627                  */
8628                 if (idma->idma_stalled[i] == 0) {
8629                         idma->idma_stalled[i] = hz;
8630                         idma->idma_warn[i] = 0;
8631                 } else {
8632                         idma->idma_stalled[i] += ticks;
8633                         idma->idma_warn[i] -= ticks;
8634                 }
8635
8636                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8637                         continue;
8638
8639                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8640                  */
8641                 if (idma->idma_warn[i] > 0)
8642                         continue;
8643                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8644
8645                 /* Read and save the SGE IDMA State and Queue ID information.
8646                  * We do this every time in case it changes across time ...
8647                  * can't be too careful ...
8648                  */
8649                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8650                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8651                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8652
8653                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8654                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8655                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8656
8657                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8658                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8659                          i, idma->idma_qid[i], idma->idma_state[i],
8660                          idma->idma_stalled[i] / hz,
8661                          debug0, debug11);
8662                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8663         }
8664 }
8665
8666 /**
8667  *      t4_set_vf_mac - Set MAC address for the specified VF
8668  *      @adapter: The adapter
8669  *      @vf: one of the VFs instantiated by the specified PF
8670  *      @naddr: the number of MAC addresses
8671  *      @addr: the MAC address(es) to be set to the specified VF
8672  */
8673 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8674                       unsigned int naddr, u8 *addr)
8675 {
8676         struct fw_acl_mac_cmd cmd;
8677
8678         memset(&cmd, 0, sizeof(cmd));
8679         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8680                                     FW_CMD_REQUEST_F |
8681                                     FW_CMD_WRITE_F |
8682                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8683                                     FW_ACL_MAC_CMD_VFN_V(vf));
8684
8685         /* Note: Do not enable the ACL */
8686         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8687         cmd.nmac = naddr;
8688
8689         switch (adapter->pf) {
8690         case 3:
8691                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8692                 break;
8693         case 2:
8694                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8695                 break;
8696         case 1:
8697                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8698                 break;
8699         case 0:
8700                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8701                 break;
8702         }
8703
8704         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8705 }
8706
8707 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8708                     int rateunit, int ratemode, int channel, int class,
8709                     int minrate, int maxrate, int weight, int pktsize)
8710 {
8711         struct fw_sched_cmd cmd;
8712
8713         memset(&cmd, 0, sizeof(cmd));
8714         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8715                                       FW_CMD_REQUEST_F |
8716                                       FW_CMD_WRITE_F);
8717         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8718
8719         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8720         cmd.u.params.type = type;
8721         cmd.u.params.level = level;
8722         cmd.u.params.mode = mode;
8723         cmd.u.params.ch = channel;
8724         cmd.u.params.cl = class;
8725         cmd.u.params.unit = rateunit;
8726         cmd.u.params.rate = ratemode;
8727         cmd.u.params.min = cpu_to_be32(minrate);
8728         cmd.u.params.max = cpu_to_be32(maxrate);
8729         cmd.u.params.weight = cpu_to_be16(weight);
8730         cmd.u.params.pktsize = cpu_to_be16(pktsize);
8731
8732         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8733                                NULL, 1);
8734 }