OSDN Git Service

Merge remote-tracking branches 'asoc/topic/simple', 'asoc/topic/sirf', 'asoc/topic...
[uclinux-h8/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60
61 #include <asm/cacheflush.h>
62
63 #include "fec.h"
64
65 static void set_multicast_list(struct net_device *ndev);
66
67 #if defined(CONFIG_ARM)
68 #define FEC_ALIGNMENT   0xf
69 #else
70 #define FEC_ALIGNMENT   0x3
71 #endif
72
73 #define DRIVER_NAME     "fec"
74
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE    (1 << 5)
77 #define FEC_ENET_RSEM_V 0x84
78 #define FEC_ENET_RSFL_V 16
79 #define FEC_ENET_RAEM_V 0x8
80 #define FEC_ENET_RAFL_V 0x8
81 #define FEC_ENET_OPD_V  0xFFF0
82
83 /* Controller is ENET-MAC */
84 #define FEC_QUIRK_ENET_MAC              (1 << 0)
85 /* Controller needs driver to swap frame */
86 #define FEC_QUIRK_SWAP_FRAME            (1 << 1)
87 /* Controller uses gasket */
88 #define FEC_QUIRK_USE_GASKET            (1 << 2)
89 /* Controller has GBIT support */
90 #define FEC_QUIRK_HAS_GBIT              (1 << 3)
91 /* Controller has extend desc buffer */
92 #define FEC_QUIRK_HAS_BUFDESC_EX        (1 << 4)
93 /* Controller has hardware checksum support */
94 #define FEC_QUIRK_HAS_CSUM              (1 << 5)
95 /* Controller has hardware vlan support */
96 #define FEC_QUIRK_HAS_VLAN              (1 << 6)
97 /* ENET IP errata ERR006358
98  *
99  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
100  * detected as not set during a prior frame transmission, then the
101  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
102  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
103  * frames not being transmitted until there is a 0-to-1 transition on
104  * ENET_TDAR[TDAR].
105  */
106 #define FEC_QUIRK_ERR006358            (1 << 7)
107
108 static struct platform_device_id fec_devtype[] = {
109         {
110                 /* keep it for coldfire */
111                 .name = DRIVER_NAME,
112                 .driver_data = 0,
113         }, {
114                 .name = "imx25-fec",
115                 .driver_data = FEC_QUIRK_USE_GASKET,
116         }, {
117                 .name = "imx27-fec",
118                 .driver_data = 0,
119         }, {
120                 .name = "imx28-fec",
121                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
122         }, {
123                 .name = "imx6q-fec",
124                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
127         }, {
128                 .name = "mvf600-fec",
129                 .driver_data = FEC_QUIRK_ENET_MAC,
130         }, {
131                 /* sentinel */
132         }
133 };
134 MODULE_DEVICE_TABLE(platform, fec_devtype);
135
136 enum imx_fec_type {
137         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
138         IMX27_FEC,      /* runs on i.mx27/35/51 */
139         IMX28_FEC,
140         IMX6Q_FEC,
141         MVF600_FEC,
142 };
143
144 static const struct of_device_id fec_dt_ids[] = {
145         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
146         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
147         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
148         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
149         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
150         { /* sentinel */ }
151 };
152 MODULE_DEVICE_TABLE(of, fec_dt_ids);
153
154 static unsigned char macaddr[ETH_ALEN];
155 module_param_array(macaddr, byte, NULL, 0);
156 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
157
158 #if defined(CONFIG_M5272)
159 /*
160  * Some hardware gets it MAC address out of local flash memory.
161  * if this is non-zero then assume it is the address to get MAC from.
162  */
163 #if defined(CONFIG_NETtel)
164 #define FEC_FLASHMAC    0xf0006006
165 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
166 #define FEC_FLASHMAC    0xf0006000
167 #elif defined(CONFIG_CANCam)
168 #define FEC_FLASHMAC    0xf0020000
169 #elif defined (CONFIG_M5272C3)
170 #define FEC_FLASHMAC    (0xffe04000 + 4)
171 #elif defined(CONFIG_MOD5272)
172 #define FEC_FLASHMAC    0xffc0406b
173 #else
174 #define FEC_FLASHMAC    0
175 #endif
176 #endif /* CONFIG_M5272 */
177
178 /* Interrupt events/masks. */
179 #define FEC_ENET_HBERR  ((uint)0x80000000)      /* Heartbeat error */
180 #define FEC_ENET_BABR   ((uint)0x40000000)      /* Babbling receiver */
181 #define FEC_ENET_BABT   ((uint)0x20000000)      /* Babbling transmitter */
182 #define FEC_ENET_GRA    ((uint)0x10000000)      /* Graceful stop complete */
183 #define FEC_ENET_TXF    ((uint)0x08000000)      /* Full frame transmitted */
184 #define FEC_ENET_TXB    ((uint)0x04000000)      /* A buffer was transmitted */
185 #define FEC_ENET_RXF    ((uint)0x02000000)      /* Full frame received */
186 #define FEC_ENET_RXB    ((uint)0x01000000)      /* A buffer was received */
187 #define FEC_ENET_MII    ((uint)0x00800000)      /* MII interrupt */
188 #define FEC_ENET_EBERR  ((uint)0x00400000)      /* SDMA bus error */
189
190 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
191 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
192
193 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
194  */
195 #define PKT_MAXBUF_SIZE         1522
196 #define PKT_MINBUF_SIZE         64
197 #define PKT_MAXBLR_SIZE         1536
198
199 /* FEC receive acceleration */
200 #define FEC_RACC_IPDIS          (1 << 1)
201 #define FEC_RACC_PRODIS         (1 << 2)
202 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
203
204 /*
205  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
206  * size bits. Other FEC hardware does not, so we need to take that into
207  * account when setting it.
208  */
209 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
210     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
211 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
212 #else
213 #define OPT_FRAME_SIZE  0
214 #endif
215
216 /* FEC MII MMFR bits definition */
217 #define FEC_MMFR_ST             (1 << 30)
218 #define FEC_MMFR_OP_READ        (2 << 28)
219 #define FEC_MMFR_OP_WRITE       (1 << 28)
220 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
221 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
222 #define FEC_MMFR_TA             (2 << 16)
223 #define FEC_MMFR_DATA(v)        (v & 0xffff)
224
225 #define FEC_MII_TIMEOUT         30000 /* us */
226
227 /* Transmitter timeout */
228 #define TX_TIMEOUT (2 * HZ)
229
230 #define FEC_PAUSE_FLAG_AUTONEG  0x1
231 #define FEC_PAUSE_FLAG_ENABLE   0x2
232
233 #define TSO_HEADER_SIZE         128
234 /* Max number of allowed TCP segments for software TSO */
235 #define FEC_MAX_TSO_SEGS        100
236 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
237
238 #define IS_TSO_HEADER(txq, addr) \
239         ((addr >= txq->tso_hdrs_dma) && \
240         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
241
242 static int mii_cnt;
243
244 static inline
245 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
246 {
247         struct bufdesc *new_bd = bdp + 1;
248         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
249         struct bufdesc_ex *ex_base;
250         struct bufdesc *base;
251         int ring_size;
252
253         if (bdp >= fep->tx_bd_base) {
254                 base = fep->tx_bd_base;
255                 ring_size = fep->tx_ring_size;
256                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
257         } else {
258                 base = fep->rx_bd_base;
259                 ring_size = fep->rx_ring_size;
260                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
261         }
262
263         if (fep->bufdesc_ex)
264                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
265                         ex_base : ex_new_bd);
266         else
267                 return (new_bd >= (base + ring_size)) ?
268                         base : new_bd;
269 }
270
271 static inline
272 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
273 {
274         struct bufdesc *new_bd = bdp - 1;
275         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
276         struct bufdesc_ex *ex_base;
277         struct bufdesc *base;
278         int ring_size;
279
280         if (bdp >= fep->tx_bd_base) {
281                 base = fep->tx_bd_base;
282                 ring_size = fep->tx_ring_size;
283                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
284         } else {
285                 base = fep->rx_bd_base;
286                 ring_size = fep->rx_ring_size;
287                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
288         }
289
290         if (fep->bufdesc_ex)
291                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
292                         (ex_new_bd + ring_size) : ex_new_bd);
293         else
294                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
295 }
296
297 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
298                                 struct fec_enet_private *fep)
299 {
300         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
301 }
302
303 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
304 {
305         int entries;
306
307         entries = ((const char *)fep->dirty_tx -
308                         (const char *)fep->cur_tx) / fep->bufdesc_size - 1;
309
310         return entries > 0 ? entries : entries + fep->tx_ring_size;
311 }
312
313 static void *swap_buffer(void *bufaddr, int len)
314 {
315         int i;
316         unsigned int *buf = bufaddr;
317
318         for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
319                 *buf = cpu_to_be32(*buf);
320
321         return bufaddr;
322 }
323
324 static void fec_dump(struct net_device *ndev)
325 {
326         struct fec_enet_private *fep = netdev_priv(ndev);
327         struct bufdesc *bdp = fep->tx_bd_base;
328         unsigned int index = 0;
329
330         netdev_info(ndev, "TX ring dump\n");
331         pr_info("Nr     SC     addr       len  SKB\n");
332
333         do {
334                 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335                         index,
336                         bdp == fep->cur_tx ? 'S' : ' ',
337                         bdp == fep->dirty_tx ? 'H' : ' ',
338                         bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339                         fep->tx_skbuff[index]);
340                 bdp = fec_enet_get_nextdesc(bdp, fep);
341                 index++;
342         } while (bdp != fep->tx_bd_base);
343 }
344
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353         /* Only run for packets requiring a checksum. */
354         if (skb->ip_summed != CHECKSUM_PARTIAL)
355                 return 0;
356
357         if (unlikely(skb_cow_head(skb, 0)))
358                 return -1;
359
360         if (is_ipv4_pkt(skb))
361                 ip_hdr(skb)->check = 0;
362         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363
364         return 0;
365 }
366
367 static int
368 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
369 {
370         struct fec_enet_private *fep = netdev_priv(ndev);
371         const struct platform_device_id *id_entry =
372                                 platform_get_device_id(fep->pdev);
373         struct bufdesc *bdp = fep->cur_tx;
374         struct bufdesc_ex *ebdp;
375         int nr_frags = skb_shinfo(skb)->nr_frags;
376         int frag, frag_len;
377         unsigned short status;
378         unsigned int estatus = 0;
379         skb_frag_t *this_frag;
380         unsigned int index;
381         void *bufaddr;
382         dma_addr_t addr;
383         int i;
384
385         for (frag = 0; frag < nr_frags; frag++) {
386                 this_frag = &skb_shinfo(skb)->frags[frag];
387                 bdp = fec_enet_get_nextdesc(bdp, fep);
388                 ebdp = (struct bufdesc_ex *)bdp;
389
390                 status = bdp->cbd_sc;
391                 status &= ~BD_ENET_TX_STATS;
392                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
393                 frag_len = skb_shinfo(skb)->frags[frag].size;
394
395                 /* Handle the last BD specially */
396                 if (frag == nr_frags - 1) {
397                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
398                         if (fep->bufdesc_ex) {
399                                 estatus |= BD_ENET_TX_INT;
400                                 if (unlikely(skb_shinfo(skb)->tx_flags &
401                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
402                                         estatus |= BD_ENET_TX_TS;
403                         }
404                 }
405
406                 if (fep->bufdesc_ex) {
407                         if (skb->ip_summed == CHECKSUM_PARTIAL)
408                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
409                         ebdp->cbd_bdu = 0;
410                         ebdp->cbd_esc = estatus;
411                 }
412
413                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
414
415                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
416                 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
417                         id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
418                         memcpy(fep->tx_bounce[index], bufaddr, frag_len);
419                         bufaddr = fep->tx_bounce[index];
420
421                         if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
422                                 swap_buffer(bufaddr, frag_len);
423                 }
424
425                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
426                                       DMA_TO_DEVICE);
427                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
428                         dev_kfree_skb_any(skb);
429                         if (net_ratelimit())
430                                 netdev_err(ndev, "Tx DMA memory map failed\n");
431                         goto dma_mapping_error;
432                 }
433
434                 bdp->cbd_bufaddr = addr;
435                 bdp->cbd_datlen = frag_len;
436                 bdp->cbd_sc = status;
437         }
438
439         fep->cur_tx = bdp;
440
441         return 0;
442
443 dma_mapping_error:
444         bdp = fep->cur_tx;
445         for (i = 0; i < frag; i++) {
446                 bdp = fec_enet_get_nextdesc(bdp, fep);
447                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
448                                 bdp->cbd_datlen, DMA_TO_DEVICE);
449         }
450         return NETDEV_TX_OK;
451 }
452
453 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
454 {
455         struct fec_enet_private *fep = netdev_priv(ndev);
456         const struct platform_device_id *id_entry =
457                                 platform_get_device_id(fep->pdev);
458         int nr_frags = skb_shinfo(skb)->nr_frags;
459         struct bufdesc *bdp, *last_bdp;
460         void *bufaddr;
461         dma_addr_t addr;
462         unsigned short status;
463         unsigned short buflen;
464         unsigned int estatus = 0;
465         unsigned int index;
466         int entries_free;
467         int ret;
468
469         entries_free = fec_enet_get_free_txdesc_num(fep);
470         if (entries_free < MAX_SKB_FRAGS + 1) {
471                 dev_kfree_skb_any(skb);
472                 if (net_ratelimit())
473                         netdev_err(ndev, "NOT enough BD for SG!\n");
474                 return NETDEV_TX_OK;
475         }
476
477         /* Protocol checksum off-load for TCP and UDP. */
478         if (fec_enet_clear_csum(skb, ndev)) {
479                 dev_kfree_skb_any(skb);
480                 return NETDEV_TX_OK;
481         }
482
483         /* Fill in a Tx ring entry */
484         bdp = fep->cur_tx;
485         status = bdp->cbd_sc;
486         status &= ~BD_ENET_TX_STATS;
487
488         /* Set buffer length and buffer pointer */
489         bufaddr = skb->data;
490         buflen = skb_headlen(skb);
491
492         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
493         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
494                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
495                 memcpy(fep->tx_bounce[index], skb->data, buflen);
496                 bufaddr = fep->tx_bounce[index];
497
498                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
499                         swap_buffer(bufaddr, buflen);
500         }
501
502         /* Push the data cache so the CPM does not get stale memory data. */
503         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504         if (dma_mapping_error(&fep->pdev->dev, addr)) {
505                 dev_kfree_skb_any(skb);
506                 if (net_ratelimit())
507                         netdev_err(ndev, "Tx DMA memory map failed\n");
508                 return NETDEV_TX_OK;
509         }
510
511         if (nr_frags) {
512                 ret = fec_enet_txq_submit_frag_skb(skb, ndev);
513                 if (ret)
514                         return ret;
515         } else {
516                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517                 if (fep->bufdesc_ex) {
518                         estatus = BD_ENET_TX_INT;
519                         if (unlikely(skb_shinfo(skb)->tx_flags &
520                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521                                 estatus |= BD_ENET_TX_TS;
522                 }
523         }
524
525         if (fep->bufdesc_ex) {
526
527                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528
529                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530                         fep->hwts_tx_en))
531                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532
533                 if (skb->ip_summed == CHECKSUM_PARTIAL)
534                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
535
536                 ebdp->cbd_bdu = 0;
537                 ebdp->cbd_esc = estatus;
538         }
539
540         last_bdp = fep->cur_tx;
541         index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
542         /* Save skb pointer */
543         fep->tx_skbuff[index] = skb;
544
545         bdp->cbd_datlen = buflen;
546         bdp->cbd_bufaddr = addr;
547
548         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
549          * it's the last BD of the frame, and to put the CRC on the end.
550          */
551         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
552         bdp->cbd_sc = status;
553
554         /* If this was the last BD in the ring, start at the beginning again. */
555         bdp = fec_enet_get_nextdesc(last_bdp, fep);
556
557         skb_tx_timestamp(skb);
558
559         fep->cur_tx = bdp;
560
561         /* Trigger transmission start */
562         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
563
564         return 0;
565 }
566
567 static int
568 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
569                         struct bufdesc *bdp, int index, char *data,
570                         int size, bool last_tcp, bool is_last)
571 {
572         struct fec_enet_private *fep = netdev_priv(ndev);
573         const struct platform_device_id *id_entry =
574                                 platform_get_device_id(fep->pdev);
575         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
576         unsigned short status;
577         unsigned int estatus = 0;
578         dma_addr_t addr;
579
580         status = bdp->cbd_sc;
581         status &= ~BD_ENET_TX_STATS;
582
583         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
584
585         if (((unsigned long) data) & FEC_ALIGNMENT ||
586                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
587                 memcpy(fep->tx_bounce[index], data, size);
588                 data = fep->tx_bounce[index];
589
590                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
591                         swap_buffer(data, size);
592         }
593
594         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
595         if (dma_mapping_error(&fep->pdev->dev, addr)) {
596                 dev_kfree_skb_any(skb);
597                 if (net_ratelimit())
598                         netdev_err(ndev, "Tx DMA memory map failed\n");
599                 return NETDEV_TX_BUSY;
600         }
601
602         bdp->cbd_datlen = size;
603         bdp->cbd_bufaddr = addr;
604
605         if (fep->bufdesc_ex) {
606                 if (skb->ip_summed == CHECKSUM_PARTIAL)
607                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
608                 ebdp->cbd_bdu = 0;
609                 ebdp->cbd_esc = estatus;
610         }
611
612         /* Handle the last BD specially */
613         if (last_tcp)
614                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
615         if (is_last) {
616                 status |= BD_ENET_TX_INTR;
617                 if (fep->bufdesc_ex)
618                         ebdp->cbd_esc |= BD_ENET_TX_INT;
619         }
620
621         bdp->cbd_sc = status;
622
623         return 0;
624 }
625
626 static int
627 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
628                         struct bufdesc *bdp, int index)
629 {
630         struct fec_enet_private *fep = netdev_priv(ndev);
631         const struct platform_device_id *id_entry =
632                                 platform_get_device_id(fep->pdev);
633         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
634         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
635         void *bufaddr;
636         unsigned long dmabuf;
637         unsigned short status;
638         unsigned int estatus = 0;
639
640         status = bdp->cbd_sc;
641         status &= ~BD_ENET_TX_STATS;
642         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
643
644         bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
645         dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
646         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
647                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
648                 memcpy(fep->tx_bounce[index], skb->data, hdr_len);
649                 bufaddr = fep->tx_bounce[index];
650
651                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
652                         swap_buffer(bufaddr, hdr_len);
653
654                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
655                                         hdr_len, DMA_TO_DEVICE);
656                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
657                         dev_kfree_skb_any(skb);
658                         if (net_ratelimit())
659                                 netdev_err(ndev, "Tx DMA memory map failed\n");
660                         return NETDEV_TX_BUSY;
661                 }
662         }
663
664         bdp->cbd_bufaddr = dmabuf;
665         bdp->cbd_datlen = hdr_len;
666
667         if (fep->bufdesc_ex) {
668                 if (skb->ip_summed == CHECKSUM_PARTIAL)
669                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670                 ebdp->cbd_bdu = 0;
671                 ebdp->cbd_esc = estatus;
672         }
673
674         bdp->cbd_sc = status;
675
676         return 0;
677 }
678
679 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
680 {
681         struct fec_enet_private *fep = netdev_priv(ndev);
682         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
683         int total_len, data_left;
684         struct bufdesc *bdp = fep->cur_tx;
685         struct tso_t tso;
686         unsigned int index = 0;
687         int ret;
688
689         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
690                 dev_kfree_skb_any(skb);
691                 if (net_ratelimit())
692                         netdev_err(ndev, "NOT enough BD for TSO!\n");
693                 return NETDEV_TX_OK;
694         }
695
696         /* Protocol checksum off-load for TCP and UDP. */
697         if (fec_enet_clear_csum(skb, ndev)) {
698                 dev_kfree_skb_any(skb);
699                 return NETDEV_TX_OK;
700         }
701
702         /* Initialize the TSO handler, and prepare the first payload */
703         tso_start(skb, &tso);
704
705         total_len = skb->len - hdr_len;
706         while (total_len > 0) {
707                 char *hdr;
708
709                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
710                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
711                 total_len -= data_left;
712
713                 /* prepare packet headers: MAC + IP + TCP */
714                 hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
715                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
716                 ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
717                 if (ret)
718                         goto err_release;
719
720                 while (data_left > 0) {
721                         int size;
722
723                         size = min_t(int, tso.size, data_left);
724                         bdp = fec_enet_get_nextdesc(bdp, fep);
725                         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
726                         ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
727                                                         size, size == data_left,
728                                                         total_len == 0);
729                         if (ret)
730                                 goto err_release;
731
732                         data_left -= size;
733                         tso_build_data(skb, &tso, size);
734                 }
735
736                 bdp = fec_enet_get_nextdesc(bdp, fep);
737         }
738
739         /* Save skb pointer */
740         fep->tx_skbuff[index] = skb;
741
742         skb_tx_timestamp(skb);
743         fep->cur_tx = bdp;
744
745         /* Trigger transmission start */
746         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
747
748         return 0;
749
750 err_release:
751         /* TODO: Release all used data descriptors for TSO */
752         return ret;
753 }
754
755 static netdev_tx_t
756 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
757 {
758         struct fec_enet_private *fep = netdev_priv(ndev);
759         int entries_free;
760         int ret;
761
762         if (skb_is_gso(skb))
763                 ret = fec_enet_txq_submit_tso(skb, ndev);
764         else
765                 ret = fec_enet_txq_submit_skb(skb, ndev);
766         if (ret)
767                 return ret;
768
769         entries_free = fec_enet_get_free_txdesc_num(fep);
770         if (entries_free <= fep->tx_stop_threshold)
771                 netif_stop_queue(ndev);
772
773         return NETDEV_TX_OK;
774 }
775
776 /* Init RX & TX buffer descriptors
777  */
778 static void fec_enet_bd_init(struct net_device *dev)
779 {
780         struct fec_enet_private *fep = netdev_priv(dev);
781         struct bufdesc *bdp;
782         unsigned int i;
783
784         /* Initialize the receive buffer descriptors. */
785         bdp = fep->rx_bd_base;
786         for (i = 0; i < fep->rx_ring_size; i++) {
787
788                 /* Initialize the BD for every fragment in the page. */
789                 if (bdp->cbd_bufaddr)
790                         bdp->cbd_sc = BD_ENET_RX_EMPTY;
791                 else
792                         bdp->cbd_sc = 0;
793                 bdp = fec_enet_get_nextdesc(bdp, fep);
794         }
795
796         /* Set the last buffer to wrap */
797         bdp = fec_enet_get_prevdesc(bdp, fep);
798         bdp->cbd_sc |= BD_SC_WRAP;
799
800         fep->cur_rx = fep->rx_bd_base;
801
802         /* ...and the same for transmit */
803         bdp = fep->tx_bd_base;
804         fep->cur_tx = bdp;
805         for (i = 0; i < fep->tx_ring_size; i++) {
806
807                 /* Initialize the BD for every fragment in the page. */
808                 bdp->cbd_sc = 0;
809                 if (fep->tx_skbuff[i]) {
810                         dev_kfree_skb_any(fep->tx_skbuff[i]);
811                         fep->tx_skbuff[i] = NULL;
812                 }
813                 bdp->cbd_bufaddr = 0;
814                 bdp = fec_enet_get_nextdesc(bdp, fep);
815         }
816
817         /* Set the last buffer to wrap */
818         bdp = fec_enet_get_prevdesc(bdp, fep);
819         bdp->cbd_sc |= BD_SC_WRAP;
820         fep->dirty_tx = bdp;
821 }
822
823 /*
824  * This function is called to start or restart the FEC during a link
825  * change, transmit timeout, or to reconfigure the FEC.  The network
826  * packet processing for this device must be stopped before this call.
827  */
828 static void
829 fec_restart(struct net_device *ndev)
830 {
831         struct fec_enet_private *fep = netdev_priv(ndev);
832         const struct platform_device_id *id_entry =
833                                 platform_get_device_id(fep->pdev);
834         int i;
835         u32 val;
836         u32 temp_mac[2];
837         u32 rcntl = OPT_FRAME_SIZE | 0x04;
838         u32 ecntl = 0x2; /* ETHEREN */
839
840         /* Whack a reset.  We should wait for this. */
841         writel(1, fep->hwp + FEC_ECNTRL);
842         udelay(10);
843
844         /*
845          * enet-mac reset will reset mac address registers too,
846          * so need to reconfigure it.
847          */
848         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
849                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
850                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
851                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
852         }
853
854         /* Clear any outstanding interrupt. */
855         writel(0xffc00000, fep->hwp + FEC_IEVENT);
856
857         /* Set maximum receive buffer size. */
858         writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
859
860         fec_enet_bd_init(ndev);
861
862         /* Set receive and transmit descriptor base. */
863         writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
864         if (fep->bufdesc_ex)
865                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
866                         * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
867         else
868                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
869                         * fep->rx_ring_size,    fep->hwp + FEC_X_DES_START);
870
871
872         for (i = 0; i <= TX_RING_MOD_MASK; i++) {
873                 if (fep->tx_skbuff[i]) {
874                         dev_kfree_skb_any(fep->tx_skbuff[i]);
875                         fep->tx_skbuff[i] = NULL;
876                 }
877         }
878
879         /* Enable MII mode */
880         if (fep->full_duplex == DUPLEX_FULL) {
881                 /* FD enable */
882                 writel(0x04, fep->hwp + FEC_X_CNTRL);
883         } else {
884                 /* No Rcv on Xmit */
885                 rcntl |= 0x02;
886                 writel(0x0, fep->hwp + FEC_X_CNTRL);
887         }
888
889         /* Set MII speed */
890         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
891
892 #if !defined(CONFIG_M5272)
893         /* set RX checksum */
894         val = readl(fep->hwp + FEC_RACC);
895         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
896                 val |= FEC_RACC_OPTIONS;
897         else
898                 val &= ~FEC_RACC_OPTIONS;
899         writel(val, fep->hwp + FEC_RACC);
900 #endif
901
902         /*
903          * The phy interface and speed need to get configured
904          * differently on enet-mac.
905          */
906         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
907                 /* Enable flow control and length check */
908                 rcntl |= 0x40000000 | 0x00000020;
909
910                 /* RGMII, RMII or MII */
911                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
912                         rcntl |= (1 << 6);
913                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
914                         rcntl |= (1 << 8);
915                 else
916                         rcntl &= ~(1 << 8);
917
918                 /* 1G, 100M or 10M */
919                 if (fep->phy_dev) {
920                         if (fep->phy_dev->speed == SPEED_1000)
921                                 ecntl |= (1 << 5);
922                         else if (fep->phy_dev->speed == SPEED_100)
923                                 rcntl &= ~(1 << 9);
924                         else
925                                 rcntl |= (1 << 9);
926                 }
927         } else {
928 #ifdef FEC_MIIGSK_ENR
929                 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
930                         u32 cfgr;
931                         /* disable the gasket and wait */
932                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
933                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
934                                 udelay(1);
935
936                         /*
937                          * configure the gasket:
938                          *   RMII, 50 MHz, no loopback, no echo
939                          *   MII, 25 MHz, no loopback, no echo
940                          */
941                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
942                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
943                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
944                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
945                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
946
947                         /* re-enable the gasket */
948                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
949                 }
950 #endif
951         }
952
953 #if !defined(CONFIG_M5272)
954         /* enable pause frame*/
955         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
956             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
957              fep->phy_dev && fep->phy_dev->pause)) {
958                 rcntl |= FEC_ENET_FCE;
959
960                 /* set FIFO threshold parameter to reduce overrun */
961                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
962                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
963                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
964                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
965
966                 /* OPD */
967                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
968         } else {
969                 rcntl &= ~FEC_ENET_FCE;
970         }
971 #endif /* !defined(CONFIG_M5272) */
972
973         writel(rcntl, fep->hwp + FEC_R_CNTRL);
974
975         /* Setup multicast filter. */
976         set_multicast_list(ndev);
977 #ifndef CONFIG_M5272
978         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
979         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
980 #endif
981
982         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
983                 /* enable ENET endian swap */
984                 ecntl |= (1 << 8);
985                 /* enable ENET store and forward mode */
986                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
987         }
988
989         if (fep->bufdesc_ex)
990                 ecntl |= (1 << 4);
991
992 #ifndef CONFIG_M5272
993         /* Enable the MIB statistic event counters */
994         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
995 #endif
996
997         /* And last, enable the transmit and receive processing */
998         writel(ecntl, fep->hwp + FEC_ECNTRL);
999         writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1000
1001         if (fep->bufdesc_ex)
1002                 fec_ptp_start_cyclecounter(ndev);
1003
1004         /* Enable interrupts we wish to service */
1005         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1006 }
1007
1008 static void
1009 fec_stop(struct net_device *ndev)
1010 {
1011         struct fec_enet_private *fep = netdev_priv(ndev);
1012         const struct platform_device_id *id_entry =
1013                                 platform_get_device_id(fep->pdev);
1014         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1015
1016         /* We cannot expect a graceful transmit stop without link !!! */
1017         if (fep->link) {
1018                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1019                 udelay(10);
1020                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1021                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1022         }
1023
1024         /* Whack a reset.  We should wait for this. */
1025         writel(1, fep->hwp + FEC_ECNTRL);
1026         udelay(10);
1027         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1028         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1029
1030         /* We have to keep ENET enabled to have MII interrupt stay working */
1031         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1032                 writel(2, fep->hwp + FEC_ECNTRL);
1033                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1034         }
1035 }
1036
1037
1038 static void
1039 fec_timeout(struct net_device *ndev)
1040 {
1041         struct fec_enet_private *fep = netdev_priv(ndev);
1042
1043         fec_dump(ndev);
1044
1045         ndev->stats.tx_errors++;
1046
1047         schedule_work(&fep->tx_timeout_work);
1048 }
1049
1050 static void fec_enet_timeout_work(struct work_struct *work)
1051 {
1052         struct fec_enet_private *fep =
1053                 container_of(work, struct fec_enet_private, tx_timeout_work);
1054         struct net_device *ndev = fep->netdev;
1055
1056         rtnl_lock();
1057         if (netif_device_present(ndev) || netif_running(ndev)) {
1058                 napi_disable(&fep->napi);
1059                 netif_tx_lock_bh(ndev);
1060                 fec_restart(ndev);
1061                 netif_wake_queue(ndev);
1062                 netif_tx_unlock_bh(ndev);
1063                 napi_enable(&fep->napi);
1064         }
1065         rtnl_unlock();
1066 }
1067
1068 static void
1069 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1070         struct skb_shared_hwtstamps *hwtstamps)
1071 {
1072         unsigned long flags;
1073         u64 ns;
1074
1075         spin_lock_irqsave(&fep->tmreg_lock, flags);
1076         ns = timecounter_cyc2time(&fep->tc, ts);
1077         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1078
1079         memset(hwtstamps, 0, sizeof(*hwtstamps));
1080         hwtstamps->hwtstamp = ns_to_ktime(ns);
1081 }
1082
1083 static void
1084 fec_enet_tx(struct net_device *ndev)
1085 {
1086         struct  fec_enet_private *fep;
1087         struct bufdesc *bdp;
1088         unsigned short status;
1089         struct  sk_buff *skb;
1090         int     index = 0;
1091         int     entries_free;
1092
1093         fep = netdev_priv(ndev);
1094         bdp = fep->dirty_tx;
1095
1096         /* get next bdp of dirty_tx */
1097         bdp = fec_enet_get_nextdesc(bdp, fep);
1098
1099         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1100
1101                 /* current queue is empty */
1102                 if (bdp == fep->cur_tx)
1103                         break;
1104
1105                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1106
1107                 skb = fep->tx_skbuff[index];
1108                 fep->tx_skbuff[index] = NULL;
1109                 if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1110                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1111                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1112                 bdp->cbd_bufaddr = 0;
1113                 if (!skb) {
1114                         bdp = fec_enet_get_nextdesc(bdp, fep);
1115                         continue;
1116                 }
1117
1118                 /* Check for errors. */
1119                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1120                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1121                                    BD_ENET_TX_CSL)) {
1122                         ndev->stats.tx_errors++;
1123                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1124                                 ndev->stats.tx_heartbeat_errors++;
1125                         if (status & BD_ENET_TX_LC)  /* Late collision */
1126                                 ndev->stats.tx_window_errors++;
1127                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1128                                 ndev->stats.tx_aborted_errors++;
1129                         if (status & BD_ENET_TX_UN)  /* Underrun */
1130                                 ndev->stats.tx_fifo_errors++;
1131                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1132                                 ndev->stats.tx_carrier_errors++;
1133                 } else {
1134                         ndev->stats.tx_packets++;
1135                         ndev->stats.tx_bytes += skb->len;
1136                 }
1137
1138                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1139                         fep->bufdesc_ex) {
1140                         struct skb_shared_hwtstamps shhwtstamps;
1141                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1142
1143                         fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1144                         skb_tstamp_tx(skb, &shhwtstamps);
1145                 }
1146
1147                 /* Deferred means some collisions occurred during transmit,
1148                  * but we eventually sent the packet OK.
1149                  */
1150                 if (status & BD_ENET_TX_DEF)
1151                         ndev->stats.collisions++;
1152
1153                 /* Free the sk buffer associated with this last transmit */
1154                 dev_kfree_skb_any(skb);
1155
1156                 fep->dirty_tx = bdp;
1157
1158                 /* Update pointer to next buffer descriptor to be transmitted */
1159                 bdp = fec_enet_get_nextdesc(bdp, fep);
1160
1161                 /* Since we have freed up a buffer, the ring is no longer full
1162                  */
1163                 if (netif_queue_stopped(ndev)) {
1164                         entries_free = fec_enet_get_free_txdesc_num(fep);
1165                         if (entries_free >= fep->tx_wake_threshold)
1166                                 netif_wake_queue(ndev);
1167                 }
1168         }
1169
1170         /* ERR006538: Keep the transmitter going */
1171         if (bdp != fep->cur_tx && readl(fep->hwp + FEC_X_DES_ACTIVE) == 0)
1172                 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1173 }
1174
1175 /* During a receive, the cur_rx points to the current incoming buffer.
1176  * When we update through the ring, if the next incoming buffer has
1177  * not been given to the system, we just set the empty indicator,
1178  * effectively tossing the packet.
1179  */
1180 static int
1181 fec_enet_rx(struct net_device *ndev, int budget)
1182 {
1183         struct fec_enet_private *fep = netdev_priv(ndev);
1184         const struct platform_device_id *id_entry =
1185                                 platform_get_device_id(fep->pdev);
1186         struct bufdesc *bdp;
1187         unsigned short status;
1188         struct  sk_buff *skb;
1189         ushort  pkt_len;
1190         __u8 *data;
1191         int     pkt_received = 0;
1192         struct  bufdesc_ex *ebdp = NULL;
1193         bool    vlan_packet_rcvd = false;
1194         u16     vlan_tag;
1195         int     index = 0;
1196
1197 #ifdef CONFIG_M532x
1198         flush_cache_all();
1199 #endif
1200
1201         /* First, grab all of the stats for the incoming packet.
1202          * These get messed up if we get called due to a busy condition.
1203          */
1204         bdp = fep->cur_rx;
1205
1206         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1207
1208                 if (pkt_received >= budget)
1209                         break;
1210                 pkt_received++;
1211
1212                 /* Since we have allocated space to hold a complete frame,
1213                  * the last indicator should be set.
1214                  */
1215                 if ((status & BD_ENET_RX_LAST) == 0)
1216                         netdev_err(ndev, "rcv is not +last\n");
1217
1218                 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1219
1220                 /* Check for errors. */
1221                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1222                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1223                         ndev->stats.rx_errors++;
1224                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1225                                 /* Frame too long or too short. */
1226                                 ndev->stats.rx_length_errors++;
1227                         }
1228                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1229                                 ndev->stats.rx_frame_errors++;
1230                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1231                                 ndev->stats.rx_crc_errors++;
1232                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1233                                 ndev->stats.rx_fifo_errors++;
1234                 }
1235
1236                 /* Report late collisions as a frame error.
1237                  * On this error, the BD is closed, but we don't know what we
1238                  * have in the buffer.  So, just drop this frame on the floor.
1239                  */
1240                 if (status & BD_ENET_RX_CL) {
1241                         ndev->stats.rx_errors++;
1242                         ndev->stats.rx_frame_errors++;
1243                         goto rx_processing_done;
1244                 }
1245
1246                 /* Process the incoming frame. */
1247                 ndev->stats.rx_packets++;
1248                 pkt_len = bdp->cbd_datlen;
1249                 ndev->stats.rx_bytes += pkt_len;
1250
1251                 index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1252                 data = fep->rx_skbuff[index]->data;
1253                 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1254                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1255
1256                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1257                         swap_buffer(data, pkt_len);
1258
1259                 /* Extract the enhanced buffer descriptor */
1260                 ebdp = NULL;
1261                 if (fep->bufdesc_ex)
1262                         ebdp = (struct bufdesc_ex *)bdp;
1263
1264                 /* If this is a VLAN packet remove the VLAN Tag */
1265                 vlan_packet_rcvd = false;
1266                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1267                     fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1268                         /* Push and remove the vlan tag */
1269                         struct vlan_hdr *vlan_header =
1270                                         (struct vlan_hdr *) (data + ETH_HLEN);
1271                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1272                         pkt_len -= VLAN_HLEN;
1273
1274                         vlan_packet_rcvd = true;
1275                 }
1276
1277                 /* This does 16 byte alignment, exactly what we need.
1278                  * The packet length includes FCS, but we don't want to
1279                  * include that when passing upstream as it messes up
1280                  * bridging applications.
1281                  */
1282                 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1283
1284                 if (unlikely(!skb)) {
1285                         ndev->stats.rx_dropped++;
1286                 } else {
1287                         int payload_offset = (2 * ETH_ALEN);
1288                         skb_reserve(skb, NET_IP_ALIGN);
1289                         skb_put(skb, pkt_len - 4);      /* Make room */
1290
1291                         /* Extract the frame data without the VLAN header. */
1292                         skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1293                         if (vlan_packet_rcvd)
1294                                 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1295                         skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1296                                                        data + payload_offset,
1297                                                        pkt_len - 4 - (2 * ETH_ALEN));
1298
1299                         skb->protocol = eth_type_trans(skb, ndev);
1300
1301                         /* Get receive timestamp from the skb */
1302                         if (fep->hwts_rx_en && fep->bufdesc_ex)
1303                                 fec_enet_hwtstamp(fep, ebdp->ts,
1304                                                   skb_hwtstamps(skb));
1305
1306                         if (fep->bufdesc_ex &&
1307                             (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1308                                 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1309                                         /* don't check it */
1310                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1311                                 } else {
1312                                         skb_checksum_none_assert(skb);
1313                                 }
1314                         }
1315
1316                         /* Handle received VLAN packets */
1317                         if (vlan_packet_rcvd)
1318                                 __vlan_hwaccel_put_tag(skb,
1319                                                        htons(ETH_P_8021Q),
1320                                                        vlan_tag);
1321
1322                         napi_gro_receive(&fep->napi, skb);
1323                 }
1324
1325                 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1326                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1327 rx_processing_done:
1328                 /* Clear the status flags for this buffer */
1329                 status &= ~BD_ENET_RX_STATS;
1330
1331                 /* Mark the buffer empty */
1332                 status |= BD_ENET_RX_EMPTY;
1333                 bdp->cbd_sc = status;
1334
1335                 if (fep->bufdesc_ex) {
1336                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1337
1338                         ebdp->cbd_esc = BD_ENET_RX_INT;
1339                         ebdp->cbd_prot = 0;
1340                         ebdp->cbd_bdu = 0;
1341                 }
1342
1343                 /* Update BD pointer to next entry */
1344                 bdp = fec_enet_get_nextdesc(bdp, fep);
1345
1346                 /* Doing this here will keep the FEC running while we process
1347                  * incoming frames.  On a heavily loaded network, we should be
1348                  * able to keep up at the expense of system resources.
1349                  */
1350                 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1351         }
1352         fep->cur_rx = bdp;
1353
1354         return pkt_received;
1355 }
1356
1357 static irqreturn_t
1358 fec_enet_interrupt(int irq, void *dev_id)
1359 {
1360         struct net_device *ndev = dev_id;
1361         struct fec_enet_private *fep = netdev_priv(ndev);
1362         const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1363         uint int_events;
1364         irqreturn_t ret = IRQ_NONE;
1365
1366         int_events = readl(fep->hwp + FEC_IEVENT);
1367         writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1368
1369         if (int_events & napi_mask) {
1370                 ret = IRQ_HANDLED;
1371
1372                 /* Disable the NAPI interrupts */
1373                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1374                 napi_schedule(&fep->napi);
1375         }
1376
1377         if (int_events & FEC_ENET_MII) {
1378                 ret = IRQ_HANDLED;
1379                 complete(&fep->mdio_done);
1380         }
1381
1382         return ret;
1383 }
1384
1385 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1386 {
1387         struct net_device *ndev = napi->dev;
1388         struct fec_enet_private *fep = netdev_priv(ndev);
1389         int pkts;
1390
1391         /*
1392          * Clear any pending transmit or receive interrupts before
1393          * processing the rings to avoid racing with the hardware.
1394          */
1395         writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1396
1397         pkts = fec_enet_rx(ndev, budget);
1398
1399         fec_enet_tx(ndev);
1400
1401         if (pkts < budget) {
1402                 napi_complete(napi);
1403                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404         }
1405         return pkts;
1406 }
1407
1408 /* ------------------------------------------------------------------------- */
1409 static void fec_get_mac(struct net_device *ndev)
1410 {
1411         struct fec_enet_private *fep = netdev_priv(ndev);
1412         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1413         unsigned char *iap, tmpaddr[ETH_ALEN];
1414
1415         /*
1416          * try to get mac address in following order:
1417          *
1418          * 1) module parameter via kernel command line in form
1419          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1420          */
1421         iap = macaddr;
1422
1423         /*
1424          * 2) from device tree data
1425          */
1426         if (!is_valid_ether_addr(iap)) {
1427                 struct device_node *np = fep->pdev->dev.of_node;
1428                 if (np) {
1429                         const char *mac = of_get_mac_address(np);
1430                         if (mac)
1431                                 iap = (unsigned char *) mac;
1432                 }
1433         }
1434
1435         /*
1436          * 3) from flash or fuse (via platform data)
1437          */
1438         if (!is_valid_ether_addr(iap)) {
1439 #ifdef CONFIG_M5272
1440                 if (FEC_FLASHMAC)
1441                         iap = (unsigned char *)FEC_FLASHMAC;
1442 #else
1443                 if (pdata)
1444                         iap = (unsigned char *)&pdata->mac;
1445 #endif
1446         }
1447
1448         /*
1449          * 4) FEC mac registers set by bootloader
1450          */
1451         if (!is_valid_ether_addr(iap)) {
1452                 *((__be32 *) &tmpaddr[0]) =
1453                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1454                 *((__be16 *) &tmpaddr[4]) =
1455                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1456                 iap = &tmpaddr[0];
1457         }
1458
1459         /*
1460          * 5) random mac address
1461          */
1462         if (!is_valid_ether_addr(iap)) {
1463                 /* Report it and use a random ethernet address instead */
1464                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1465                 eth_hw_addr_random(ndev);
1466                 netdev_info(ndev, "Using random MAC address: %pM\n",
1467                             ndev->dev_addr);
1468                 return;
1469         }
1470
1471         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1472
1473         /* Adjust MAC if using macaddr */
1474         if (iap == macaddr)
1475                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1476 }
1477
1478 /* ------------------------------------------------------------------------- */
1479
1480 /*
1481  * Phy section
1482  */
1483 static void fec_enet_adjust_link(struct net_device *ndev)
1484 {
1485         struct fec_enet_private *fep = netdev_priv(ndev);
1486         struct phy_device *phy_dev = fep->phy_dev;
1487         int status_change = 0;
1488
1489         /* Prevent a state halted on mii error */
1490         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1491                 phy_dev->state = PHY_RESUMING;
1492                 return;
1493         }
1494
1495         /*
1496          * If the netdev is down, or is going down, we're not interested
1497          * in link state events, so just mark our idea of the link as down
1498          * and ignore the event.
1499          */
1500         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1501                 fep->link = 0;
1502         } else if (phy_dev->link) {
1503                 if (!fep->link) {
1504                         fep->link = phy_dev->link;
1505                         status_change = 1;
1506                 }
1507
1508                 if (fep->full_duplex != phy_dev->duplex) {
1509                         fep->full_duplex = phy_dev->duplex;
1510                         status_change = 1;
1511                 }
1512
1513                 if (phy_dev->speed != fep->speed) {
1514                         fep->speed = phy_dev->speed;
1515                         status_change = 1;
1516                 }
1517
1518                 /* if any of the above changed restart the FEC */
1519                 if (status_change) {
1520                         napi_disable(&fep->napi);
1521                         netif_tx_lock_bh(ndev);
1522                         fec_restart(ndev);
1523                         netif_wake_queue(ndev);
1524                         netif_tx_unlock_bh(ndev);
1525                         napi_enable(&fep->napi);
1526                 }
1527         } else {
1528                 if (fep->link) {
1529                         napi_disable(&fep->napi);
1530                         netif_tx_lock_bh(ndev);
1531                         fec_stop(ndev);
1532                         netif_tx_unlock_bh(ndev);
1533                         napi_enable(&fep->napi);
1534                         fep->link = phy_dev->link;
1535                         status_change = 1;
1536                 }
1537         }
1538
1539         if (status_change)
1540                 phy_print_status(phy_dev);
1541 }
1542
1543 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1544 {
1545         struct fec_enet_private *fep = bus->priv;
1546         unsigned long time_left;
1547
1548         fep->mii_timeout = 0;
1549         init_completion(&fep->mdio_done);
1550
1551         /* start a read op */
1552         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1553                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1554                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1555
1556         /* wait for end of transfer */
1557         time_left = wait_for_completion_timeout(&fep->mdio_done,
1558                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1559         if (time_left == 0) {
1560                 fep->mii_timeout = 1;
1561                 netdev_err(fep->netdev, "MDIO read timeout\n");
1562                 return -ETIMEDOUT;
1563         }
1564
1565         /* return value */
1566         return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1567 }
1568
1569 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1570                            u16 value)
1571 {
1572         struct fec_enet_private *fep = bus->priv;
1573         unsigned long time_left;
1574
1575         fep->mii_timeout = 0;
1576         init_completion(&fep->mdio_done);
1577
1578         /* start a write op */
1579         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1580                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1581                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1582                 fep->hwp + FEC_MII_DATA);
1583
1584         /* wait for end of transfer */
1585         time_left = wait_for_completion_timeout(&fep->mdio_done,
1586                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1587         if (time_left == 0) {
1588                 fep->mii_timeout = 1;
1589                 netdev_err(fep->netdev, "MDIO write timeout\n");
1590                 return -ETIMEDOUT;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1597 {
1598         struct fec_enet_private *fep = netdev_priv(ndev);
1599         int ret;
1600
1601         if (enable) {
1602                 ret = clk_prepare_enable(fep->clk_ahb);
1603                 if (ret)
1604                         return ret;
1605                 ret = clk_prepare_enable(fep->clk_ipg);
1606                 if (ret)
1607                         goto failed_clk_ipg;
1608                 if (fep->clk_enet_out) {
1609                         ret = clk_prepare_enable(fep->clk_enet_out);
1610                         if (ret)
1611                                 goto failed_clk_enet_out;
1612                 }
1613                 if (fep->clk_ptp) {
1614                         mutex_lock(&fep->ptp_clk_mutex);
1615                         ret = clk_prepare_enable(fep->clk_ptp);
1616                         if (ret) {
1617                                 mutex_unlock(&fep->ptp_clk_mutex);
1618                                 goto failed_clk_ptp;
1619                         } else {
1620                                 fep->ptp_clk_on = true;
1621                         }
1622                         mutex_unlock(&fep->ptp_clk_mutex);
1623                 }
1624         } else {
1625                 clk_disable_unprepare(fep->clk_ahb);
1626                 clk_disable_unprepare(fep->clk_ipg);
1627                 if (fep->clk_enet_out)
1628                         clk_disable_unprepare(fep->clk_enet_out);
1629                 if (fep->clk_ptp) {
1630                         mutex_lock(&fep->ptp_clk_mutex);
1631                         clk_disable_unprepare(fep->clk_ptp);
1632                         fep->ptp_clk_on = false;
1633                         mutex_unlock(&fep->ptp_clk_mutex);
1634                 }
1635         }
1636
1637         return 0;
1638 failed_clk_ptp:
1639         if (fep->clk_enet_out)
1640                 clk_disable_unprepare(fep->clk_enet_out);
1641 failed_clk_enet_out:
1642                 clk_disable_unprepare(fep->clk_ipg);
1643 failed_clk_ipg:
1644                 clk_disable_unprepare(fep->clk_ahb);
1645
1646         return ret;
1647 }
1648
1649 static int fec_enet_mii_probe(struct net_device *ndev)
1650 {
1651         struct fec_enet_private *fep = netdev_priv(ndev);
1652         const struct platform_device_id *id_entry =
1653                                 platform_get_device_id(fep->pdev);
1654         struct phy_device *phy_dev = NULL;
1655         char mdio_bus_id[MII_BUS_ID_SIZE];
1656         char phy_name[MII_BUS_ID_SIZE + 3];
1657         int phy_id;
1658         int dev_id = fep->dev_id;
1659
1660         fep->phy_dev = NULL;
1661
1662         if (fep->phy_node) {
1663                 phy_dev = of_phy_connect(ndev, fep->phy_node,
1664                                          &fec_enet_adjust_link, 0,
1665                                          fep->phy_interface);
1666         } else {
1667                 /* check for attached phy */
1668                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1669                         if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1670                                 continue;
1671                         if (fep->mii_bus->phy_map[phy_id] == NULL)
1672                                 continue;
1673                         if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1674                                 continue;
1675                         if (dev_id--)
1676                                 continue;
1677                         strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1678                         break;
1679                 }
1680
1681                 if (phy_id >= PHY_MAX_ADDR) {
1682                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1683                         strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1684                         phy_id = 0;
1685                 }
1686
1687                 snprintf(phy_name, sizeof(phy_name),
1688                          PHY_ID_FMT, mdio_bus_id, phy_id);
1689                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1690                                       fep->phy_interface);
1691         }
1692
1693         if (IS_ERR(phy_dev)) {
1694                 netdev_err(ndev, "could not attach to PHY\n");
1695                 return PTR_ERR(phy_dev);
1696         }
1697
1698         /* mask with MAC supported features */
1699         if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1700                 phy_dev->supported &= PHY_GBIT_FEATURES;
1701                 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1702 #if !defined(CONFIG_M5272)
1703                 phy_dev->supported |= SUPPORTED_Pause;
1704 #endif
1705         }
1706         else
1707                 phy_dev->supported &= PHY_BASIC_FEATURES;
1708
1709         phy_dev->advertising = phy_dev->supported;
1710
1711         fep->phy_dev = phy_dev;
1712         fep->link = 0;
1713         fep->full_duplex = 0;
1714
1715         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1716                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1717                     fep->phy_dev->irq);
1718
1719         return 0;
1720 }
1721
1722 static int fec_enet_mii_init(struct platform_device *pdev)
1723 {
1724         static struct mii_bus *fec0_mii_bus;
1725         struct net_device *ndev = platform_get_drvdata(pdev);
1726         struct fec_enet_private *fep = netdev_priv(ndev);
1727         const struct platform_device_id *id_entry =
1728                                 platform_get_device_id(fep->pdev);
1729         struct device_node *node;
1730         int err = -ENXIO, i;
1731
1732         /*
1733          * The dual fec interfaces are not equivalent with enet-mac.
1734          * Here are the differences:
1735          *
1736          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1737          *  - fec0 acts as the 1588 time master while fec1 is slave
1738          *  - external phys can only be configured by fec0
1739          *
1740          * That is to say fec1 can not work independently. It only works
1741          * when fec0 is working. The reason behind this design is that the
1742          * second interface is added primarily for Switch mode.
1743          *
1744          * Because of the last point above, both phys are attached on fec0
1745          * mdio interface in board design, and need to be configured by
1746          * fec0 mii_bus.
1747          */
1748         if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1749                 /* fec1 uses fec0 mii_bus */
1750                 if (mii_cnt && fec0_mii_bus) {
1751                         fep->mii_bus = fec0_mii_bus;
1752                         mii_cnt++;
1753                         return 0;
1754                 }
1755                 return -ENOENT;
1756         }
1757
1758         fep->mii_timeout = 0;
1759
1760         /*
1761          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1762          *
1763          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1764          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1765          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1766          * document.
1767          */
1768         fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1769         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1770                 fep->phy_speed--;
1771         fep->phy_speed <<= 1;
1772         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1773
1774         fep->mii_bus = mdiobus_alloc();
1775         if (fep->mii_bus == NULL) {
1776                 err = -ENOMEM;
1777                 goto err_out;
1778         }
1779
1780         fep->mii_bus->name = "fec_enet_mii_bus";
1781         fep->mii_bus->read = fec_enet_mdio_read;
1782         fep->mii_bus->write = fec_enet_mdio_write;
1783         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1784                 pdev->name, fep->dev_id + 1);
1785         fep->mii_bus->priv = fep;
1786         fep->mii_bus->parent = &pdev->dev;
1787
1788         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1789         if (!fep->mii_bus->irq) {
1790                 err = -ENOMEM;
1791                 goto err_out_free_mdiobus;
1792         }
1793
1794         for (i = 0; i < PHY_MAX_ADDR; i++)
1795                 fep->mii_bus->irq[i] = PHY_POLL;
1796
1797         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
1798         if (node) {
1799                 err = of_mdiobus_register(fep->mii_bus, node);
1800                 of_node_put(node);
1801         } else {
1802                 err = mdiobus_register(fep->mii_bus);
1803         }
1804
1805         if (err)
1806                 goto err_out_free_mdio_irq;
1807
1808         mii_cnt++;
1809
1810         /* save fec0 mii_bus */
1811         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1812                 fec0_mii_bus = fep->mii_bus;
1813
1814         return 0;
1815
1816 err_out_free_mdio_irq:
1817         kfree(fep->mii_bus->irq);
1818 err_out_free_mdiobus:
1819         mdiobus_free(fep->mii_bus);
1820 err_out:
1821         return err;
1822 }
1823
1824 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1825 {
1826         if (--mii_cnt == 0) {
1827                 mdiobus_unregister(fep->mii_bus);
1828                 kfree(fep->mii_bus->irq);
1829                 mdiobus_free(fep->mii_bus);
1830         }
1831 }
1832
1833 static int fec_enet_get_settings(struct net_device *ndev,
1834                                   struct ethtool_cmd *cmd)
1835 {
1836         struct fec_enet_private *fep = netdev_priv(ndev);
1837         struct phy_device *phydev = fep->phy_dev;
1838
1839         if (!phydev)
1840                 return -ENODEV;
1841
1842         return phy_ethtool_gset(phydev, cmd);
1843 }
1844
1845 static int fec_enet_set_settings(struct net_device *ndev,
1846                                  struct ethtool_cmd *cmd)
1847 {
1848         struct fec_enet_private *fep = netdev_priv(ndev);
1849         struct phy_device *phydev = fep->phy_dev;
1850
1851         if (!phydev)
1852                 return -ENODEV;
1853
1854         return phy_ethtool_sset(phydev, cmd);
1855 }
1856
1857 static void fec_enet_get_drvinfo(struct net_device *ndev,
1858                                  struct ethtool_drvinfo *info)
1859 {
1860         struct fec_enet_private *fep = netdev_priv(ndev);
1861
1862         strlcpy(info->driver, fep->pdev->dev.driver->name,
1863                 sizeof(info->driver));
1864         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1865         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1866 }
1867
1868 static int fec_enet_get_ts_info(struct net_device *ndev,
1869                                 struct ethtool_ts_info *info)
1870 {
1871         struct fec_enet_private *fep = netdev_priv(ndev);
1872
1873         if (fep->bufdesc_ex) {
1874
1875                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1876                                         SOF_TIMESTAMPING_RX_SOFTWARE |
1877                                         SOF_TIMESTAMPING_SOFTWARE |
1878                                         SOF_TIMESTAMPING_TX_HARDWARE |
1879                                         SOF_TIMESTAMPING_RX_HARDWARE |
1880                                         SOF_TIMESTAMPING_RAW_HARDWARE;
1881                 if (fep->ptp_clock)
1882                         info->phc_index = ptp_clock_index(fep->ptp_clock);
1883                 else
1884                         info->phc_index = -1;
1885
1886                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1887                                  (1 << HWTSTAMP_TX_ON);
1888
1889                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1890                                    (1 << HWTSTAMP_FILTER_ALL);
1891                 return 0;
1892         } else {
1893                 return ethtool_op_get_ts_info(ndev, info);
1894         }
1895 }
1896
1897 #if !defined(CONFIG_M5272)
1898
1899 static void fec_enet_get_pauseparam(struct net_device *ndev,
1900                                     struct ethtool_pauseparam *pause)
1901 {
1902         struct fec_enet_private *fep = netdev_priv(ndev);
1903
1904         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1905         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1906         pause->rx_pause = pause->tx_pause;
1907 }
1908
1909 static int fec_enet_set_pauseparam(struct net_device *ndev,
1910                                    struct ethtool_pauseparam *pause)
1911 {
1912         struct fec_enet_private *fep = netdev_priv(ndev);
1913
1914         if (!fep->phy_dev)
1915                 return -ENODEV;
1916
1917         if (pause->tx_pause != pause->rx_pause) {
1918                 netdev_info(ndev,
1919                         "hardware only support enable/disable both tx and rx");
1920                 return -EINVAL;
1921         }
1922
1923         fep->pause_flag = 0;
1924
1925         /* tx pause must be same as rx pause */
1926         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1927         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1928
1929         if (pause->rx_pause || pause->autoneg) {
1930                 fep->phy_dev->supported |= ADVERTISED_Pause;
1931                 fep->phy_dev->advertising |= ADVERTISED_Pause;
1932         } else {
1933                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1934                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1935         }
1936
1937         if (pause->autoneg) {
1938                 if (netif_running(ndev))
1939                         fec_stop(ndev);
1940                 phy_start_aneg(fep->phy_dev);
1941         }
1942         if (netif_running(ndev)) {
1943                 napi_disable(&fep->napi);
1944                 netif_tx_lock_bh(ndev);
1945                 fec_restart(ndev);
1946                 netif_wake_queue(ndev);
1947                 netif_tx_unlock_bh(ndev);
1948                 napi_enable(&fep->napi);
1949         }
1950
1951         return 0;
1952 }
1953
1954 static const struct fec_stat {
1955         char name[ETH_GSTRING_LEN];
1956         u16 offset;
1957 } fec_stats[] = {
1958         /* RMON TX */
1959         { "tx_dropped", RMON_T_DROP },
1960         { "tx_packets", RMON_T_PACKETS },
1961         { "tx_broadcast", RMON_T_BC_PKT },
1962         { "tx_multicast", RMON_T_MC_PKT },
1963         { "tx_crc_errors", RMON_T_CRC_ALIGN },
1964         { "tx_undersize", RMON_T_UNDERSIZE },
1965         { "tx_oversize", RMON_T_OVERSIZE },
1966         { "tx_fragment", RMON_T_FRAG },
1967         { "tx_jabber", RMON_T_JAB },
1968         { "tx_collision", RMON_T_COL },
1969         { "tx_64byte", RMON_T_P64 },
1970         { "tx_65to127byte", RMON_T_P65TO127 },
1971         { "tx_128to255byte", RMON_T_P128TO255 },
1972         { "tx_256to511byte", RMON_T_P256TO511 },
1973         { "tx_512to1023byte", RMON_T_P512TO1023 },
1974         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1975         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1976         { "tx_octets", RMON_T_OCTETS },
1977
1978         /* IEEE TX */
1979         { "IEEE_tx_drop", IEEE_T_DROP },
1980         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1981         { "IEEE_tx_1col", IEEE_T_1COL },
1982         { "IEEE_tx_mcol", IEEE_T_MCOL },
1983         { "IEEE_tx_def", IEEE_T_DEF },
1984         { "IEEE_tx_lcol", IEEE_T_LCOL },
1985         { "IEEE_tx_excol", IEEE_T_EXCOL },
1986         { "IEEE_tx_macerr", IEEE_T_MACERR },
1987         { "IEEE_tx_cserr", IEEE_T_CSERR },
1988         { "IEEE_tx_sqe", IEEE_T_SQE },
1989         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1990         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1991
1992         /* RMON RX */
1993         { "rx_packets", RMON_R_PACKETS },
1994         { "rx_broadcast", RMON_R_BC_PKT },
1995         { "rx_multicast", RMON_R_MC_PKT },
1996         { "rx_crc_errors", RMON_R_CRC_ALIGN },
1997         { "rx_undersize", RMON_R_UNDERSIZE },
1998         { "rx_oversize", RMON_R_OVERSIZE },
1999         { "rx_fragment", RMON_R_FRAG },
2000         { "rx_jabber", RMON_R_JAB },
2001         { "rx_64byte", RMON_R_P64 },
2002         { "rx_65to127byte", RMON_R_P65TO127 },
2003         { "rx_128to255byte", RMON_R_P128TO255 },
2004         { "rx_256to511byte", RMON_R_P256TO511 },
2005         { "rx_512to1023byte", RMON_R_P512TO1023 },
2006         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2007         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2008         { "rx_octets", RMON_R_OCTETS },
2009
2010         /* IEEE RX */
2011         { "IEEE_rx_drop", IEEE_R_DROP },
2012         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2013         { "IEEE_rx_crc", IEEE_R_CRC },
2014         { "IEEE_rx_align", IEEE_R_ALIGN },
2015         { "IEEE_rx_macerr", IEEE_R_MACERR },
2016         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2017         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2018 };
2019
2020 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2021         struct ethtool_stats *stats, u64 *data)
2022 {
2023         struct fec_enet_private *fep = netdev_priv(dev);
2024         int i;
2025
2026         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2027                 data[i] = readl(fep->hwp + fec_stats[i].offset);
2028 }
2029
2030 static void fec_enet_get_strings(struct net_device *netdev,
2031         u32 stringset, u8 *data)
2032 {
2033         int i;
2034         switch (stringset) {
2035         case ETH_SS_STATS:
2036                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2037                         memcpy(data + i * ETH_GSTRING_LEN,
2038                                 fec_stats[i].name, ETH_GSTRING_LEN);
2039                 break;
2040         }
2041 }
2042
2043 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2044 {
2045         switch (sset) {
2046         case ETH_SS_STATS:
2047                 return ARRAY_SIZE(fec_stats);
2048         default:
2049                 return -EOPNOTSUPP;
2050         }
2051 }
2052 #endif /* !defined(CONFIG_M5272) */
2053
2054 static int fec_enet_nway_reset(struct net_device *dev)
2055 {
2056         struct fec_enet_private *fep = netdev_priv(dev);
2057         struct phy_device *phydev = fep->phy_dev;
2058
2059         if (!phydev)
2060                 return -ENODEV;
2061
2062         return genphy_restart_aneg(phydev);
2063 }
2064
2065 static const struct ethtool_ops fec_enet_ethtool_ops = {
2066         .get_settings           = fec_enet_get_settings,
2067         .set_settings           = fec_enet_set_settings,
2068         .get_drvinfo            = fec_enet_get_drvinfo,
2069         .nway_reset             = fec_enet_nway_reset,
2070         .get_link               = ethtool_op_get_link,
2071 #ifndef CONFIG_M5272
2072         .get_pauseparam         = fec_enet_get_pauseparam,
2073         .set_pauseparam         = fec_enet_set_pauseparam,
2074         .get_strings            = fec_enet_get_strings,
2075         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2076         .get_sset_count         = fec_enet_get_sset_count,
2077 #endif
2078         .get_ts_info            = fec_enet_get_ts_info,
2079 };
2080
2081 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2082 {
2083         struct fec_enet_private *fep = netdev_priv(ndev);
2084         struct phy_device *phydev = fep->phy_dev;
2085
2086         if (!netif_running(ndev))
2087                 return -EINVAL;
2088
2089         if (!phydev)
2090                 return -ENODEV;
2091
2092         if (fep->bufdesc_ex) {
2093                 if (cmd == SIOCSHWTSTAMP)
2094                         return fec_ptp_set(ndev, rq);
2095                 if (cmd == SIOCGHWTSTAMP)
2096                         return fec_ptp_get(ndev, rq);
2097         }
2098
2099         return phy_mii_ioctl(phydev, rq, cmd);
2100 }
2101
2102 static void fec_enet_free_buffers(struct net_device *ndev)
2103 {
2104         struct fec_enet_private *fep = netdev_priv(ndev);
2105         unsigned int i;
2106         struct sk_buff *skb;
2107         struct bufdesc  *bdp;
2108
2109         bdp = fep->rx_bd_base;
2110         for (i = 0; i < fep->rx_ring_size; i++) {
2111                 skb = fep->rx_skbuff[i];
2112                 fep->rx_skbuff[i] = NULL;
2113                 if (skb) {
2114                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2115                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2116                         dev_kfree_skb(skb);
2117                 }
2118                 bdp = fec_enet_get_nextdesc(bdp, fep);
2119         }
2120
2121         bdp = fep->tx_bd_base;
2122         for (i = 0; i < fep->tx_ring_size; i++) {
2123                 kfree(fep->tx_bounce[i]);
2124                 fep->tx_bounce[i] = NULL;
2125                 skb = fep->tx_skbuff[i];
2126                 fep->tx_skbuff[i] = NULL;
2127                 dev_kfree_skb(skb);
2128         }
2129 }
2130
2131 static int fec_enet_alloc_buffers(struct net_device *ndev)
2132 {
2133         struct fec_enet_private *fep = netdev_priv(ndev);
2134         unsigned int i;
2135         struct sk_buff *skb;
2136         struct bufdesc  *bdp;
2137
2138         bdp = fep->rx_bd_base;
2139         for (i = 0; i < fep->rx_ring_size; i++) {
2140                 dma_addr_t addr;
2141
2142                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2143                 if (!skb)
2144                         goto err_alloc;
2145
2146                 addr = dma_map_single(&fep->pdev->dev, skb->data,
2147                                 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2148                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
2149                         dev_kfree_skb(skb);
2150                         if (net_ratelimit())
2151                                 netdev_err(ndev, "Rx DMA memory map failed\n");
2152                         goto err_alloc;
2153                 }
2154
2155                 fep->rx_skbuff[i] = skb;
2156                 bdp->cbd_bufaddr = addr;
2157                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2158
2159                 if (fep->bufdesc_ex) {
2160                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2161                         ebdp->cbd_esc = BD_ENET_RX_INT;
2162                 }
2163
2164                 bdp = fec_enet_get_nextdesc(bdp, fep);
2165         }
2166
2167         /* Set the last buffer to wrap. */
2168         bdp = fec_enet_get_prevdesc(bdp, fep);
2169         bdp->cbd_sc |= BD_SC_WRAP;
2170
2171         bdp = fep->tx_bd_base;
2172         for (i = 0; i < fep->tx_ring_size; i++) {
2173                 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2174                 if (!fep->tx_bounce[i])
2175                         goto err_alloc;
2176
2177                 bdp->cbd_sc = 0;
2178                 bdp->cbd_bufaddr = 0;
2179
2180                 if (fep->bufdesc_ex) {
2181                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2182                         ebdp->cbd_esc = BD_ENET_TX_INT;
2183                 }
2184
2185                 bdp = fec_enet_get_nextdesc(bdp, fep);
2186         }
2187
2188         /* Set the last buffer to wrap. */
2189         bdp = fec_enet_get_prevdesc(bdp, fep);
2190         bdp->cbd_sc |= BD_SC_WRAP;
2191
2192         return 0;
2193
2194  err_alloc:
2195         fec_enet_free_buffers(ndev);
2196         return -ENOMEM;
2197 }
2198
2199 static int
2200 fec_enet_open(struct net_device *ndev)
2201 {
2202         struct fec_enet_private *fep = netdev_priv(ndev);
2203         int ret;
2204
2205         pinctrl_pm_select_default_state(&fep->pdev->dev);
2206         ret = fec_enet_clk_enable(ndev, true);
2207         if (ret)
2208                 return ret;
2209
2210         /* I should reset the ring buffers here, but I don't yet know
2211          * a simple way to do that.
2212          */
2213
2214         ret = fec_enet_alloc_buffers(ndev);
2215         if (ret)
2216                 return ret;
2217
2218         /* Probe and connect to PHY when open the interface */
2219         ret = fec_enet_mii_probe(ndev);
2220         if (ret) {
2221                 fec_enet_free_buffers(ndev);
2222                 return ret;
2223         }
2224
2225         fec_restart(ndev);
2226         napi_enable(&fep->napi);
2227         phy_start(fep->phy_dev);
2228         netif_start_queue(ndev);
2229         return 0;
2230 }
2231
2232 static int
2233 fec_enet_close(struct net_device *ndev)
2234 {
2235         struct fec_enet_private *fep = netdev_priv(ndev);
2236
2237         phy_stop(fep->phy_dev);
2238
2239         if (netif_device_present(ndev)) {
2240                 napi_disable(&fep->napi);
2241                 netif_tx_disable(ndev);
2242                 fec_stop(ndev);
2243         }
2244
2245         phy_disconnect(fep->phy_dev);
2246         fep->phy_dev = NULL;
2247
2248         fec_enet_clk_enable(ndev, false);
2249         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2250         fec_enet_free_buffers(ndev);
2251
2252         return 0;
2253 }
2254
2255 /* Set or clear the multicast filter for this adaptor.
2256  * Skeleton taken from sunlance driver.
2257  * The CPM Ethernet implementation allows Multicast as well as individual
2258  * MAC address filtering.  Some of the drivers check to make sure it is
2259  * a group multicast address, and discard those that are not.  I guess I
2260  * will do the same for now, but just remove the test if you want
2261  * individual filtering as well (do the upper net layers want or support
2262  * this kind of feature?).
2263  */
2264
2265 #define HASH_BITS       6               /* #bits in hash */
2266 #define CRC32_POLY      0xEDB88320
2267
2268 static void set_multicast_list(struct net_device *ndev)
2269 {
2270         struct fec_enet_private *fep = netdev_priv(ndev);
2271         struct netdev_hw_addr *ha;
2272         unsigned int i, bit, data, crc, tmp;
2273         unsigned char hash;
2274
2275         if (ndev->flags & IFF_PROMISC) {
2276                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2277                 tmp |= 0x8;
2278                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2279                 return;
2280         }
2281
2282         tmp = readl(fep->hwp + FEC_R_CNTRL);
2283         tmp &= ~0x8;
2284         writel(tmp, fep->hwp + FEC_R_CNTRL);
2285
2286         if (ndev->flags & IFF_ALLMULTI) {
2287                 /* Catch all multicast addresses, so set the
2288                  * filter to all 1's
2289                  */
2290                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2291                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2292
2293                 return;
2294         }
2295
2296         /* Clear filter and add the addresses in hash register
2297          */
2298         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2299         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2300
2301         netdev_for_each_mc_addr(ha, ndev) {
2302                 /* calculate crc32 value of mac address */
2303                 crc = 0xffffffff;
2304
2305                 for (i = 0; i < ndev->addr_len; i++) {
2306                         data = ha->addr[i];
2307                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2308                                 crc = (crc >> 1) ^
2309                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2310                         }
2311                 }
2312
2313                 /* only upper 6 bits (HASH_BITS) are used
2314                  * which point to specific bit in he hash registers
2315                  */
2316                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2317
2318                 if (hash > 31) {
2319                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2320                         tmp |= 1 << (hash - 32);
2321                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2322                 } else {
2323                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2324                         tmp |= 1 << hash;
2325                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2326                 }
2327         }
2328 }
2329
2330 /* Set a MAC change in hardware. */
2331 static int
2332 fec_set_mac_address(struct net_device *ndev, void *p)
2333 {
2334         struct fec_enet_private *fep = netdev_priv(ndev);
2335         struct sockaddr *addr = p;
2336
2337         if (addr) {
2338                 if (!is_valid_ether_addr(addr->sa_data))
2339                         return -EADDRNOTAVAIL;
2340                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2341         }
2342
2343         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2344                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2345                 fep->hwp + FEC_ADDR_LOW);
2346         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2347                 fep->hwp + FEC_ADDR_HIGH);
2348         return 0;
2349 }
2350
2351 #ifdef CONFIG_NET_POLL_CONTROLLER
2352 /**
2353  * fec_poll_controller - FEC Poll controller function
2354  * @dev: The FEC network adapter
2355  *
2356  * Polled functionality used by netconsole and others in non interrupt mode
2357  *
2358  */
2359 static void fec_poll_controller(struct net_device *dev)
2360 {
2361         int i;
2362         struct fec_enet_private *fep = netdev_priv(dev);
2363
2364         for (i = 0; i < FEC_IRQ_NUM; i++) {
2365                 if (fep->irq[i] > 0) {
2366                         disable_irq(fep->irq[i]);
2367                         fec_enet_interrupt(fep->irq[i], dev);
2368                         enable_irq(fep->irq[i]);
2369                 }
2370         }
2371 }
2372 #endif
2373
2374 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2375
2376 static int fec_set_features(struct net_device *netdev,
2377         netdev_features_t features)
2378 {
2379         struct fec_enet_private *fep = netdev_priv(netdev);
2380         netdev_features_t changed = features ^ netdev->features;
2381
2382         /* Quiesce the device if necessary */
2383         if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2384                 napi_disable(&fep->napi);
2385                 netif_tx_lock_bh(netdev);
2386                 fec_stop(netdev);
2387         }
2388
2389         netdev->features = features;
2390
2391         /* Receive checksum has been changed */
2392         if (changed & NETIF_F_RXCSUM) {
2393                 if (features & NETIF_F_RXCSUM)
2394                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2395                 else
2396                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2397         }
2398
2399         /* Resume the device after updates */
2400         if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2401                 fec_restart(netdev);
2402                 netif_wake_queue(netdev);
2403                 netif_tx_unlock_bh(netdev);
2404                 napi_enable(&fep->napi);
2405         }
2406
2407         return 0;
2408 }
2409
2410 static const struct net_device_ops fec_netdev_ops = {
2411         .ndo_open               = fec_enet_open,
2412         .ndo_stop               = fec_enet_close,
2413         .ndo_start_xmit         = fec_enet_start_xmit,
2414         .ndo_set_rx_mode        = set_multicast_list,
2415         .ndo_change_mtu         = eth_change_mtu,
2416         .ndo_validate_addr      = eth_validate_addr,
2417         .ndo_tx_timeout         = fec_timeout,
2418         .ndo_set_mac_address    = fec_set_mac_address,
2419         .ndo_do_ioctl           = fec_enet_ioctl,
2420 #ifdef CONFIG_NET_POLL_CONTROLLER
2421         .ndo_poll_controller    = fec_poll_controller,
2422 #endif
2423         .ndo_set_features       = fec_set_features,
2424 };
2425
2426  /*
2427   * XXX:  We need to clean up on failure exits here.
2428   *
2429   */
2430 static int fec_enet_init(struct net_device *ndev)
2431 {
2432         struct fec_enet_private *fep = netdev_priv(ndev);
2433         const struct platform_device_id *id_entry =
2434                                 platform_get_device_id(fep->pdev);
2435         struct bufdesc *cbd_base;
2436         int bd_size;
2437
2438         /* init the tx & rx ring size */
2439         fep->tx_ring_size = TX_RING_SIZE;
2440         fep->rx_ring_size = RX_RING_SIZE;
2441
2442         fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2443         fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2444
2445         if (fep->bufdesc_ex)
2446                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2447         else
2448                 fep->bufdesc_size = sizeof(struct bufdesc);
2449         bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2450                         fep->bufdesc_size;
2451
2452         /* Allocate memory for buffer descriptors. */
2453         cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2454                                       GFP_KERNEL);
2455         if (!cbd_base)
2456                 return -ENOMEM;
2457
2458         fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2459                                                 &fep->tso_hdrs_dma, GFP_KERNEL);
2460         if (!fep->tso_hdrs) {
2461                 dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2462                 return -ENOMEM;
2463         }
2464
2465         memset(cbd_base, 0, PAGE_SIZE);
2466
2467         fep->netdev = ndev;
2468
2469         /* Get the Ethernet address */
2470         fec_get_mac(ndev);
2471         /* make sure MAC we just acquired is programmed into the hw */
2472         fec_set_mac_address(ndev, NULL);
2473
2474         /* Set receive and transmit descriptor base. */
2475         fep->rx_bd_base = cbd_base;
2476         if (fep->bufdesc_ex)
2477                 fep->tx_bd_base = (struct bufdesc *)
2478                         (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2479         else
2480                 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2481
2482         /* The FEC Ethernet specific entries in the device structure */
2483         ndev->watchdog_timeo = TX_TIMEOUT;
2484         ndev->netdev_ops = &fec_netdev_ops;
2485         ndev->ethtool_ops = &fec_enet_ethtool_ops;
2486
2487         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2488         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2489
2490         if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2491                 /* enable hw VLAN support */
2492                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2493
2494         if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2495                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2496
2497                 /* enable hw accelerator */
2498                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2499                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2500                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2501         }
2502
2503         ndev->hw_features = ndev->features;
2504
2505         fec_restart(ndev);
2506
2507         return 0;
2508 }
2509
2510 #ifdef CONFIG_OF
2511 static void fec_reset_phy(struct platform_device *pdev)
2512 {
2513         int err, phy_reset;
2514         int msec = 1;
2515         struct device_node *np = pdev->dev.of_node;
2516
2517         if (!np)
2518                 return;
2519
2520         of_property_read_u32(np, "phy-reset-duration", &msec);
2521         /* A sane reset duration should not be longer than 1s */
2522         if (msec > 1000)
2523                 msec = 1;
2524
2525         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2526         if (!gpio_is_valid(phy_reset))
2527                 return;
2528
2529         err = devm_gpio_request_one(&pdev->dev, phy_reset,
2530                                     GPIOF_OUT_INIT_LOW, "phy-reset");
2531         if (err) {
2532                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2533                 return;
2534         }
2535         msleep(msec);
2536         gpio_set_value(phy_reset, 1);
2537 }
2538 #else /* CONFIG_OF */
2539 static void fec_reset_phy(struct platform_device *pdev)
2540 {
2541         /*
2542          * In case of platform probe, the reset has been done
2543          * by machine code.
2544          */
2545 }
2546 #endif /* CONFIG_OF */
2547
2548 static int
2549 fec_probe(struct platform_device *pdev)
2550 {
2551         struct fec_enet_private *fep;
2552         struct fec_platform_data *pdata;
2553         struct net_device *ndev;
2554         int i, irq, ret = 0;
2555         struct resource *r;
2556         const struct of_device_id *of_id;
2557         static int dev_id;
2558         struct device_node *np = pdev->dev.of_node, *phy_node;
2559
2560         of_id = of_match_device(fec_dt_ids, &pdev->dev);
2561         if (of_id)
2562                 pdev->id_entry = of_id->data;
2563
2564         /* Init network device */
2565         ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2566         if (!ndev)
2567                 return -ENOMEM;
2568
2569         SET_NETDEV_DEV(ndev, &pdev->dev);
2570
2571         /* setup board info structure */
2572         fep = netdev_priv(ndev);
2573
2574 #if !defined(CONFIG_M5272)
2575         /* default enable pause frame auto negotiation */
2576         if (pdev->id_entry &&
2577             (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2578                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2579 #endif
2580
2581         /* Select default pin state */
2582         pinctrl_pm_select_default_state(&pdev->dev);
2583
2584         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2585         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2586         if (IS_ERR(fep->hwp)) {
2587                 ret = PTR_ERR(fep->hwp);
2588                 goto failed_ioremap;
2589         }
2590
2591         fep->pdev = pdev;
2592         fep->dev_id = dev_id++;
2593
2594         fep->bufdesc_ex = 0;
2595
2596         platform_set_drvdata(pdev, ndev);
2597
2598         phy_node = of_parse_phandle(np, "phy-handle", 0);
2599         if (!phy_node && of_phy_is_fixed_link(np)) {
2600                 ret = of_phy_register_fixed_link(np);
2601                 if (ret < 0) {
2602                         dev_err(&pdev->dev,
2603                                 "broken fixed-link specification\n");
2604                         goto failed_phy;
2605                 }
2606                 phy_node = of_node_get(np);
2607         }
2608         fep->phy_node = phy_node;
2609
2610         ret = of_get_phy_mode(pdev->dev.of_node);
2611         if (ret < 0) {
2612                 pdata = dev_get_platdata(&pdev->dev);
2613                 if (pdata)
2614                         fep->phy_interface = pdata->phy;
2615                 else
2616                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
2617         } else {
2618                 fep->phy_interface = ret;
2619         }
2620
2621         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2622         if (IS_ERR(fep->clk_ipg)) {
2623                 ret = PTR_ERR(fep->clk_ipg);
2624                 goto failed_clk;
2625         }
2626
2627         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2628         if (IS_ERR(fep->clk_ahb)) {
2629                 ret = PTR_ERR(fep->clk_ahb);
2630                 goto failed_clk;
2631         }
2632
2633         /* enet_out is optional, depends on board */
2634         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2635         if (IS_ERR(fep->clk_enet_out))
2636                 fep->clk_enet_out = NULL;
2637
2638         fep->ptp_clk_on = false;
2639         mutex_init(&fep->ptp_clk_mutex);
2640         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2641         fep->bufdesc_ex =
2642                 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2643         if (IS_ERR(fep->clk_ptp)) {
2644                 fep->clk_ptp = NULL;
2645                 fep->bufdesc_ex = 0;
2646         }
2647
2648         ret = fec_enet_clk_enable(ndev, true);
2649         if (ret)
2650                 goto failed_clk;
2651
2652         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2653         if (!IS_ERR(fep->reg_phy)) {
2654                 ret = regulator_enable(fep->reg_phy);
2655                 if (ret) {
2656                         dev_err(&pdev->dev,
2657                                 "Failed to enable phy regulator: %d\n", ret);
2658                         goto failed_regulator;
2659                 }
2660         } else {
2661                 fep->reg_phy = NULL;
2662         }
2663
2664         fec_reset_phy(pdev);
2665
2666         if (fep->bufdesc_ex)
2667                 fec_ptp_init(pdev);
2668
2669         ret = fec_enet_init(ndev);
2670         if (ret)
2671                 goto failed_init;
2672
2673         for (i = 0; i < FEC_IRQ_NUM; i++) {
2674                 irq = platform_get_irq(pdev, i);
2675                 if (irq < 0) {
2676                         if (i)
2677                                 break;
2678                         ret = irq;
2679                         goto failed_irq;
2680                 }
2681                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2682                                        0, pdev->name, ndev);
2683                 if (ret)
2684                         goto failed_irq;
2685         }
2686
2687         ret = fec_enet_mii_init(pdev);
2688         if (ret)
2689                 goto failed_mii_init;
2690
2691         /* Carrier starts down, phylib will bring it up */
2692         netif_carrier_off(ndev);
2693         fec_enet_clk_enable(ndev, false);
2694         pinctrl_pm_select_sleep_state(&pdev->dev);
2695
2696         ret = register_netdev(ndev);
2697         if (ret)
2698                 goto failed_register;
2699
2700         if (fep->bufdesc_ex && fep->ptp_clock)
2701                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2702
2703         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
2704         return 0;
2705
2706 failed_register:
2707         fec_enet_mii_remove(fep);
2708 failed_mii_init:
2709 failed_irq:
2710 failed_init:
2711         if (fep->reg_phy)
2712                 regulator_disable(fep->reg_phy);
2713 failed_regulator:
2714         fec_enet_clk_enable(ndev, false);
2715 failed_clk:
2716 failed_phy:
2717         of_node_put(phy_node);
2718 failed_ioremap:
2719         free_netdev(ndev);
2720
2721         return ret;
2722 }
2723
2724 static int
2725 fec_drv_remove(struct platform_device *pdev)
2726 {
2727         struct net_device *ndev = platform_get_drvdata(pdev);
2728         struct fec_enet_private *fep = netdev_priv(ndev);
2729
2730         cancel_delayed_work_sync(&fep->time_keep);
2731         cancel_work_sync(&fep->tx_timeout_work);
2732         unregister_netdev(ndev);
2733         fec_enet_mii_remove(fep);
2734         if (fep->reg_phy)
2735                 regulator_disable(fep->reg_phy);
2736         if (fep->ptp_clock)
2737                 ptp_clock_unregister(fep->ptp_clock);
2738         fec_enet_clk_enable(ndev, false);
2739         of_node_put(fep->phy_node);
2740         free_netdev(ndev);
2741
2742         return 0;
2743 }
2744
2745 static int __maybe_unused fec_suspend(struct device *dev)
2746 {
2747         struct net_device *ndev = dev_get_drvdata(dev);
2748         struct fec_enet_private *fep = netdev_priv(ndev);
2749
2750         rtnl_lock();
2751         if (netif_running(ndev)) {
2752                 phy_stop(fep->phy_dev);
2753                 napi_disable(&fep->napi);
2754                 netif_tx_lock_bh(ndev);
2755                 netif_device_detach(ndev);
2756                 netif_tx_unlock_bh(ndev);
2757                 fec_stop(ndev);
2758         }
2759         rtnl_unlock();
2760
2761         fec_enet_clk_enable(ndev, false);
2762         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2763
2764         if (fep->reg_phy)
2765                 regulator_disable(fep->reg_phy);
2766
2767         return 0;
2768 }
2769
2770 static int __maybe_unused fec_resume(struct device *dev)
2771 {
2772         struct net_device *ndev = dev_get_drvdata(dev);
2773         struct fec_enet_private *fep = netdev_priv(ndev);
2774         int ret;
2775
2776         if (fep->reg_phy) {
2777                 ret = regulator_enable(fep->reg_phy);
2778                 if (ret)
2779                         return ret;
2780         }
2781
2782         pinctrl_pm_select_default_state(&fep->pdev->dev);
2783         ret = fec_enet_clk_enable(ndev, true);
2784         if (ret)
2785                 goto failed_clk;
2786
2787         rtnl_lock();
2788         if (netif_running(ndev)) {
2789                 fec_restart(ndev);
2790                 netif_tx_lock_bh(ndev);
2791                 netif_device_attach(ndev);
2792                 netif_tx_unlock_bh(ndev);
2793                 napi_enable(&fep->napi);
2794                 phy_start(fep->phy_dev);
2795         }
2796         rtnl_unlock();
2797
2798         return 0;
2799
2800 failed_clk:
2801         if (fep->reg_phy)
2802                 regulator_disable(fep->reg_phy);
2803         return ret;
2804 }
2805
2806 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2807
2808 static struct platform_driver fec_driver = {
2809         .driver = {
2810                 .name   = DRIVER_NAME,
2811                 .owner  = THIS_MODULE,
2812                 .pm     = &fec_pm_ops,
2813                 .of_match_table = fec_dt_ids,
2814         },
2815         .id_table = fec_devtype,
2816         .probe  = fec_probe,
2817         .remove = fec_drv_remove,
2818 };
2819
2820 module_platform_driver(fec_driver);
2821
2822 MODULE_ALIAS("platform:"DRIVER_NAME);
2823 MODULE_LICENSE("GPL");