OSDN Git Service

SCSI: Fix NULL pointer dereference in runtime PM
[uclinux-h8/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120                                     dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145                                int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149                                   const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157                             dma_addr_t buf)
158 {
159         u32 lstatus;
160
161         bdp->bufPtr = cpu_to_be32(buf);
162
163         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165                 lstatus |= BD_LFLAG(RXBD_WRAP);
166
167         gfar_wmb();
168
169         bdp->lstatus = cpu_to_be32(lstatus);
170 }
171
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174         struct gfar_private *priv = netdev_priv(ndev);
175         struct gfar __iomem *regs = priv->gfargrp[0].regs;
176         struct gfar_priv_tx_q *tx_queue = NULL;
177         struct gfar_priv_rx_q *rx_queue = NULL;
178         struct txbd8 *txbdp;
179         struct rxbd8 *rxbdp;
180         u32 __iomem *rfbptr;
181         int i, j;
182         dma_addr_t bufaddr;
183
184         for (i = 0; i < priv->num_tx_queues; i++) {
185                 tx_queue = priv->tx_queue[i];
186                 /* Initialize some variables in our dev structure */
187                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
189                 tx_queue->cur_tx = tx_queue->tx_bd_base;
190                 tx_queue->skb_curtx = 0;
191                 tx_queue->skb_dirtytx = 0;
192
193                 /* Initialize Transmit Descriptor Ring */
194                 txbdp = tx_queue->tx_bd_base;
195                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
196                         txbdp->lstatus = 0;
197                         txbdp->bufPtr = 0;
198                         txbdp++;
199                 }
200
201                 /* Set the last descriptor in the ring to indicate wrap */
202                 txbdp--;
203                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204                                             TXBD_WRAP);
205         }
206
207         rfbptr = &regs->rfbptr0;
208         for (i = 0; i < priv->num_rx_queues; i++) {
209                 rx_queue = priv->rx_queue[i];
210                 rx_queue->cur_rx = rx_queue->rx_bd_base;
211                 rx_queue->skb_currx = 0;
212                 rxbdp = rx_queue->rx_bd_base;
213
214                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
215                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
216
217                         if (skb) {
218                                 bufaddr = be32_to_cpu(rxbdp->bufPtr);
219                         } else {
220                                 skb = gfar_new_skb(ndev, &bufaddr);
221                                 if (!skb) {
222                                         netdev_err(ndev, "Can't allocate RX buffers\n");
223                                         return -ENOMEM;
224                                 }
225                                 rx_queue->rx_skbuff[j] = skb;
226                         }
227
228                         gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229                         rxbdp++;
230                 }
231
232                 rx_queue->rfbptr = rfbptr;
233                 rfbptr += 2;
234         }
235
236         return 0;
237 }
238
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241         void *vaddr;
242         dma_addr_t addr;
243         int i, j, k;
244         struct gfar_private *priv = netdev_priv(ndev);
245         struct device *dev = priv->dev;
246         struct gfar_priv_tx_q *tx_queue = NULL;
247         struct gfar_priv_rx_q *rx_queue = NULL;
248
249         priv->total_tx_ring_size = 0;
250         for (i = 0; i < priv->num_tx_queues; i++)
251                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252
253         priv->total_rx_ring_size = 0;
254         for (i = 0; i < priv->num_rx_queues; i++)
255                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256
257         /* Allocate memory for the buffer descriptors */
258         vaddr = dma_alloc_coherent(dev,
259                                    (priv->total_tx_ring_size *
260                                     sizeof(struct txbd8)) +
261                                    (priv->total_rx_ring_size *
262                                     sizeof(struct rxbd8)),
263                                    &addr, GFP_KERNEL);
264         if (!vaddr)
265                 return -ENOMEM;
266
267         for (i = 0; i < priv->num_tx_queues; i++) {
268                 tx_queue = priv->tx_queue[i];
269                 tx_queue->tx_bd_base = vaddr;
270                 tx_queue->tx_bd_dma_base = addr;
271                 tx_queue->dev = ndev;
272                 /* enet DMA only understands physical addresses */
273                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275         }
276
277         /* Start the rx descriptor ring where the tx ring leaves off */
278         for (i = 0; i < priv->num_rx_queues; i++) {
279                 rx_queue = priv->rx_queue[i];
280                 rx_queue->rx_bd_base = vaddr;
281                 rx_queue->rx_bd_dma_base = addr;
282                 rx_queue->dev = ndev;
283                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285         }
286
287         /* Setup the skbuff rings */
288         for (i = 0; i < priv->num_tx_queues; i++) {
289                 tx_queue = priv->tx_queue[i];
290                 tx_queue->tx_skbuff =
291                         kmalloc_array(tx_queue->tx_ring_size,
292                                       sizeof(*tx_queue->tx_skbuff),
293                                       GFP_KERNEL);
294                 if (!tx_queue->tx_skbuff)
295                         goto cleanup;
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff =
304                         kmalloc_array(rx_queue->rx_ring_size,
305                                       sizeof(*rx_queue->rx_skbuff),
306                                       GFP_KERNEL);
307                 if (!rx_queue->rx_skbuff)
308                         goto cleanup;
309
310                 for (j = 0; j < rx_queue->rx_ring_size; j++)
311                         rx_queue->rx_skbuff[j] = NULL;
312         }
313
314         if (gfar_init_bds(ndev))
315                 goto cleanup;
316
317         return 0;
318
319 cleanup:
320         free_skb_resources(priv);
321         return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326         struct gfar __iomem *regs = priv->gfargrp[0].regs;
327         u32 __iomem *baddr;
328         int i;
329
330         baddr = &regs->tbase0;
331         for (i = 0; i < priv->num_tx_queues; i++) {
332                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333                 baddr += 2;
334         }
335
336         baddr = &regs->rbase0;
337         for (i = 0; i < priv->num_rx_queues; i++) {
338                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339                 baddr += 2;
340         }
341 }
342
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 __iomem *baddr;
347         int i;
348
349         baddr = &regs->rqprm0;
350         for (i = 0; i < priv->num_rx_queues; i++) {
351                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353                 baddr++;
354         }
355 }
356
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359         int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360
361         /* set this when rx hw offload (TOE) functions are being used */
362         priv->uses_rxfcb = 0;
363
364         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365                 priv->uses_rxfcb = 1;
366
367         if (priv->hwts_rx_en)
368                 priv->uses_rxfcb = 1;
369
370         if (priv->uses_rxfcb)
371                 frame_size += GMAC_FCB_LEN;
372
373         frame_size += priv->padding;
374
375         frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376                      INCREMENTAL_BUFFER_SIZE;
377
378         priv->rx_buffer_size = frame_size;
379 }
380
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383         struct gfar __iomem *regs = priv->gfargrp[0].regs;
384         u32 rctrl = 0;
385
386         if (priv->rx_filer_enable) {
387                 rctrl |= RCTRL_FILREN;
388                 /* Program the RIR0 reg with the required distribution */
389                 if (priv->poll_mode == GFAR_SQ_POLLING)
390                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391                 else /* GFAR_MQ_POLLING */
392                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393         }
394
395         /* Restore PROMISC mode */
396         if (priv->ndev->flags & IFF_PROMISC)
397                 rctrl |= RCTRL_PROM;
398
399         if (priv->ndev->features & NETIF_F_RXCSUM)
400                 rctrl |= RCTRL_CHECKSUMMING;
401
402         if (priv->extended_hash)
403                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404
405         if (priv->padding) {
406                 rctrl &= ~RCTRL_PAL_MASK;
407                 rctrl |= RCTRL_PADDING(priv->padding);
408         }
409
410         /* Enable HW time stamping if requested from user space */
411         if (priv->hwts_rx_en)
412                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413
414         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416
417         /* Clear the LFC bit */
418         gfar_write(&regs->rctrl, rctrl);
419         /* Init flow control threshold values */
420         gfar_init_rqprm(priv);
421         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422         rctrl |= RCTRL_LFC;
423
424         /* Init rctrl based on our settings */
425         gfar_write(&regs->rctrl, rctrl);
426 }
427
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430         struct gfar __iomem *regs = priv->gfargrp[0].regs;
431         u32 tctrl = 0;
432
433         if (priv->ndev->features & NETIF_F_IP_CSUM)
434                 tctrl |= TCTRL_INIT_CSUM;
435
436         if (priv->prio_sched_en)
437                 tctrl |= TCTRL_TXSCHED_PRIO;
438         else {
439                 tctrl |= TCTRL_TXSCHED_WRRS;
440                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442         }
443
444         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445                 tctrl |= TCTRL_VLINS;
446
447         gfar_write(&regs->tctrl, tctrl);
448 }
449
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451                                unsigned long tx_mask, unsigned long rx_mask)
452 {
453         struct gfar __iomem *regs = priv->gfargrp[0].regs;
454         u32 __iomem *baddr;
455
456         if (priv->mode == MQ_MG_MODE) {
457                 int i = 0;
458
459                 baddr = &regs->txic0;
460                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461                         gfar_write(baddr + i, 0);
462                         if (likely(priv->tx_queue[i]->txcoalescing))
463                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
464                 }
465
466                 baddr = &regs->rxic0;
467                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468                         gfar_write(baddr + i, 0);
469                         if (likely(priv->rx_queue[i]->rxcoalescing))
470                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471                 }
472         } else {
473                 /* Backward compatible case -- even if we enable
474                  * multiple queues, there's only single reg to program
475                  */
476                 gfar_write(&regs->txic, 0);
477                 if (likely(priv->tx_queue[0]->txcoalescing))
478                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479
480                 gfar_write(&regs->rxic, 0);
481                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
482                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483         }
484 }
485
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488         gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493         struct gfar_private *priv = netdev_priv(dev);
494         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495         unsigned long tx_packets = 0, tx_bytes = 0;
496         int i;
497
498         for (i = 0; i < priv->num_rx_queues; i++) {
499                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
500                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
501                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502         }
503
504         dev->stats.rx_packets = rx_packets;
505         dev->stats.rx_bytes   = rx_bytes;
506         dev->stats.rx_dropped = rx_dropped;
507
508         for (i = 0; i < priv->num_tx_queues; i++) {
509                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
511         }
512
513         dev->stats.tx_bytes   = tx_bytes;
514         dev->stats.tx_packets = tx_packets;
515
516         return &dev->stats;
517 }
518
519 static int gfar_set_mac_addr(struct net_device *dev, void *p)
520 {
521         eth_mac_addr(dev, p);
522
523         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
524
525         return 0;
526 }
527
528 static const struct net_device_ops gfar_netdev_ops = {
529         .ndo_open = gfar_enet_open,
530         .ndo_start_xmit = gfar_start_xmit,
531         .ndo_stop = gfar_close,
532         .ndo_change_mtu = gfar_change_mtu,
533         .ndo_set_features = gfar_set_features,
534         .ndo_set_rx_mode = gfar_set_multi,
535         .ndo_tx_timeout = gfar_timeout,
536         .ndo_do_ioctl = gfar_ioctl,
537         .ndo_get_stats = gfar_get_stats,
538         .ndo_set_mac_address = gfar_set_mac_addr,
539         .ndo_validate_addr = eth_validate_addr,
540 #ifdef CONFIG_NET_POLL_CONTROLLER
541         .ndo_poll_controller = gfar_netpoll,
542 #endif
543 };
544
545 static void gfar_ints_disable(struct gfar_private *priv)
546 {
547         int i;
548         for (i = 0; i < priv->num_grps; i++) {
549                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
550                 /* Clear IEVENT */
551                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
552
553                 /* Initialize IMASK */
554                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
555         }
556 }
557
558 static void gfar_ints_enable(struct gfar_private *priv)
559 {
560         int i;
561         for (i = 0; i < priv->num_grps; i++) {
562                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
563                 /* Unmask the interrupts we look for */
564                 gfar_write(&regs->imask, IMASK_DEFAULT);
565         }
566 }
567
568 static void lock_tx_qs(struct gfar_private *priv)
569 {
570         int i;
571
572         for (i = 0; i < priv->num_tx_queues; i++)
573                 spin_lock(&priv->tx_queue[i]->txlock);
574 }
575
576 static void unlock_tx_qs(struct gfar_private *priv)
577 {
578         int i;
579
580         for (i = 0; i < priv->num_tx_queues; i++)
581                 spin_unlock(&priv->tx_queue[i]->txlock);
582 }
583
584 static int gfar_alloc_tx_queues(struct gfar_private *priv)
585 {
586         int i;
587
588         for (i = 0; i < priv->num_tx_queues; i++) {
589                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
590                                             GFP_KERNEL);
591                 if (!priv->tx_queue[i])
592                         return -ENOMEM;
593
594                 priv->tx_queue[i]->tx_skbuff = NULL;
595                 priv->tx_queue[i]->qindex = i;
596                 priv->tx_queue[i]->dev = priv->ndev;
597                 spin_lock_init(&(priv->tx_queue[i]->txlock));
598         }
599         return 0;
600 }
601
602 static int gfar_alloc_rx_queues(struct gfar_private *priv)
603 {
604         int i;
605
606         for (i = 0; i < priv->num_rx_queues; i++) {
607                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
608                                             GFP_KERNEL);
609                 if (!priv->rx_queue[i])
610                         return -ENOMEM;
611
612                 priv->rx_queue[i]->rx_skbuff = NULL;
613                 priv->rx_queue[i]->qindex = i;
614                 priv->rx_queue[i]->dev = priv->ndev;
615         }
616         return 0;
617 }
618
619 static void gfar_free_tx_queues(struct gfar_private *priv)
620 {
621         int i;
622
623         for (i = 0; i < priv->num_tx_queues; i++)
624                 kfree(priv->tx_queue[i]);
625 }
626
627 static void gfar_free_rx_queues(struct gfar_private *priv)
628 {
629         int i;
630
631         for (i = 0; i < priv->num_rx_queues; i++)
632                 kfree(priv->rx_queue[i]);
633 }
634
635 static void unmap_group_regs(struct gfar_private *priv)
636 {
637         int i;
638
639         for (i = 0; i < MAXGROUPS; i++)
640                 if (priv->gfargrp[i].regs)
641                         iounmap(priv->gfargrp[i].regs);
642 }
643
644 static void free_gfar_dev(struct gfar_private *priv)
645 {
646         int i, j;
647
648         for (i = 0; i < priv->num_grps; i++)
649                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
650                         kfree(priv->gfargrp[i].irqinfo[j]);
651                         priv->gfargrp[i].irqinfo[j] = NULL;
652                 }
653
654         free_netdev(priv->ndev);
655 }
656
657 static void disable_napi(struct gfar_private *priv)
658 {
659         int i;
660
661         for (i = 0; i < priv->num_grps; i++) {
662                 napi_disable(&priv->gfargrp[i].napi_rx);
663                 napi_disable(&priv->gfargrp[i].napi_tx);
664         }
665 }
666
667 static void enable_napi(struct gfar_private *priv)
668 {
669         int i;
670
671         for (i = 0; i < priv->num_grps; i++) {
672                 napi_enable(&priv->gfargrp[i].napi_rx);
673                 napi_enable(&priv->gfargrp[i].napi_tx);
674         }
675 }
676
677 static int gfar_parse_group(struct device_node *np,
678                             struct gfar_private *priv, const char *model)
679 {
680         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
681         int i;
682
683         for (i = 0; i < GFAR_NUM_IRQS; i++) {
684                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
685                                           GFP_KERNEL);
686                 if (!grp->irqinfo[i])
687                         return -ENOMEM;
688         }
689
690         grp->regs = of_iomap(np, 0);
691         if (!grp->regs)
692                 return -ENOMEM;
693
694         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
695
696         /* If we aren't the FEC we have multiple interrupts */
697         if (model && strcasecmp(model, "FEC")) {
698                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
699                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
700                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
701                     gfar_irq(grp, RX)->irq == NO_IRQ ||
702                     gfar_irq(grp, ER)->irq == NO_IRQ)
703                         return -EINVAL;
704         }
705
706         grp->priv = priv;
707         spin_lock_init(&grp->grplock);
708         if (priv->mode == MQ_MG_MODE) {
709                 u32 rxq_mask, txq_mask;
710                 int ret;
711
712                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
713                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
714
715                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
716                 if (!ret) {
717                         grp->rx_bit_map = rxq_mask ?
718                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
719                 }
720
721                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
722                 if (!ret) {
723                         grp->tx_bit_map = txq_mask ?
724                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
725                 }
726
727                 if (priv->poll_mode == GFAR_SQ_POLLING) {
728                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
729                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
730                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
731                 }
732         } else {
733                 grp->rx_bit_map = 0xFF;
734                 grp->tx_bit_map = 0xFF;
735         }
736
737         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
738          * right to left, so we need to revert the 8 bits to get the q index
739          */
740         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
741         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
742
743         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
744          * also assign queues to groups
745          */
746         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
747                 if (!grp->rx_queue)
748                         grp->rx_queue = priv->rx_queue[i];
749                 grp->num_rx_queues++;
750                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
751                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
752                 priv->rx_queue[i]->grp = grp;
753         }
754
755         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
756                 if (!grp->tx_queue)
757                         grp->tx_queue = priv->tx_queue[i];
758                 grp->num_tx_queues++;
759                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
760                 priv->tqueue |= (TQUEUE_EN0 >> i);
761                 priv->tx_queue[i]->grp = grp;
762         }
763
764         priv->num_grps++;
765
766         return 0;
767 }
768
769 static int gfar_of_group_count(struct device_node *np)
770 {
771         struct device_node *child;
772         int num = 0;
773
774         for_each_available_child_of_node(np, child)
775                 if (!of_node_cmp(child->name, "queue-group"))
776                         num++;
777
778         return num;
779 }
780
781 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
782 {
783         const char *model;
784         const char *ctype;
785         const void *mac_addr;
786         int err = 0, i;
787         struct net_device *dev = NULL;
788         struct gfar_private *priv = NULL;
789         struct device_node *np = ofdev->dev.of_node;
790         struct device_node *child = NULL;
791         struct property *stash;
792         u32 stash_len = 0;
793         u32 stash_idx = 0;
794         unsigned int num_tx_qs, num_rx_qs;
795         unsigned short mode, poll_mode;
796
797         if (!np)
798                 return -ENODEV;
799
800         if (of_device_is_compatible(np, "fsl,etsec2")) {
801                 mode = MQ_MG_MODE;
802                 poll_mode = GFAR_SQ_POLLING;
803         } else {
804                 mode = SQ_SG_MODE;
805                 poll_mode = GFAR_SQ_POLLING;
806         }
807
808         if (mode == SQ_SG_MODE) {
809                 num_tx_qs = 1;
810                 num_rx_qs = 1;
811         } else { /* MQ_MG_MODE */
812                 /* get the actual number of supported groups */
813                 unsigned int num_grps = gfar_of_group_count(np);
814
815                 if (num_grps == 0 || num_grps > MAXGROUPS) {
816                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
817                                 num_grps);
818                         pr_err("Cannot do alloc_etherdev, aborting\n");
819                         return -EINVAL;
820                 }
821
822                 if (poll_mode == GFAR_SQ_POLLING) {
823                         num_tx_qs = num_grps; /* one txq per int group */
824                         num_rx_qs = num_grps; /* one rxq per int group */
825                 } else { /* GFAR_MQ_POLLING */
826                         u32 tx_queues, rx_queues;
827                         int ret;
828
829                         /* parse the num of HW tx and rx queues */
830                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
831                                                    &tx_queues);
832                         num_tx_qs = ret ? 1 : tx_queues;
833
834                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
835                                                    &rx_queues);
836                         num_rx_qs = ret ? 1 : rx_queues;
837                 }
838         }
839
840         if (num_tx_qs > MAX_TX_QS) {
841                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
842                        num_tx_qs, MAX_TX_QS);
843                 pr_err("Cannot do alloc_etherdev, aborting\n");
844                 return -EINVAL;
845         }
846
847         if (num_rx_qs > MAX_RX_QS) {
848                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
849                        num_rx_qs, MAX_RX_QS);
850                 pr_err("Cannot do alloc_etherdev, aborting\n");
851                 return -EINVAL;
852         }
853
854         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
855         dev = *pdev;
856         if (NULL == dev)
857                 return -ENOMEM;
858
859         priv = netdev_priv(dev);
860         priv->ndev = dev;
861
862         priv->mode = mode;
863         priv->poll_mode = poll_mode;
864
865         priv->num_tx_queues = num_tx_qs;
866         netif_set_real_num_rx_queues(dev, num_rx_qs);
867         priv->num_rx_queues = num_rx_qs;
868
869         err = gfar_alloc_tx_queues(priv);
870         if (err)
871                 goto tx_alloc_failed;
872
873         err = gfar_alloc_rx_queues(priv);
874         if (err)
875                 goto rx_alloc_failed;
876
877         err = of_property_read_string(np, "model", &model);
878         if (err) {
879                 pr_err("Device model property missing, aborting\n");
880                 goto rx_alloc_failed;
881         }
882
883         /* Init Rx queue filer rule set linked list */
884         INIT_LIST_HEAD(&priv->rx_list.list);
885         priv->rx_list.count = 0;
886         mutex_init(&priv->rx_queue_access);
887
888         for (i = 0; i < MAXGROUPS; i++)
889                 priv->gfargrp[i].regs = NULL;
890
891         /* Parse and initialize group specific information */
892         if (priv->mode == MQ_MG_MODE) {
893                 for_each_available_child_of_node(np, child) {
894                         if (of_node_cmp(child->name, "queue-group"))
895                                 continue;
896
897                         err = gfar_parse_group(child, priv, model);
898                         if (err)
899                                 goto err_grp_init;
900                 }
901         } else { /* SQ_SG_MODE */
902                 err = gfar_parse_group(np, priv, model);
903                 if (err)
904                         goto err_grp_init;
905         }
906
907         stash = of_find_property(np, "bd-stash", NULL);
908
909         if (stash) {
910                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
911                 priv->bd_stash_en = 1;
912         }
913
914         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
915
916         if (err == 0)
917                 priv->rx_stash_size = stash_len;
918
919         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
920
921         if (err == 0)
922                 priv->rx_stash_index = stash_idx;
923
924         if (stash_len || stash_idx)
925                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
926
927         mac_addr = of_get_mac_address(np);
928
929         if (mac_addr)
930                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
931
932         if (model && !strcasecmp(model, "TSEC"))
933                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
934                                      FSL_GIANFAR_DEV_HAS_COALESCE |
935                                      FSL_GIANFAR_DEV_HAS_RMON |
936                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
937
938         if (model && !strcasecmp(model, "eTSEC"))
939                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
940                                      FSL_GIANFAR_DEV_HAS_COALESCE |
941                                      FSL_GIANFAR_DEV_HAS_RMON |
942                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
943                                      FSL_GIANFAR_DEV_HAS_CSUM |
944                                      FSL_GIANFAR_DEV_HAS_VLAN |
945                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
946                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
947                                      FSL_GIANFAR_DEV_HAS_TIMER;
948
949         err = of_property_read_string(np, "phy-connection-type", &ctype);
950
951         /* We only care about rgmii-id.  The rest are autodetected */
952         if (err == 0 && !strcmp(ctype, "rgmii-id"))
953                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
954         else
955                 priv->interface = PHY_INTERFACE_MODE_MII;
956
957         if (of_find_property(np, "fsl,magic-packet", NULL))
958                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
959
960         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
961
962         /* In the case of a fixed PHY, the DT node associated
963          * to the PHY is the Ethernet MAC DT node.
964          */
965         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
966                 err = of_phy_register_fixed_link(np);
967                 if (err)
968                         goto err_grp_init;
969
970                 priv->phy_node = of_node_get(np);
971         }
972
973         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
974         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
975
976         return 0;
977
978 err_grp_init:
979         unmap_group_regs(priv);
980 rx_alloc_failed:
981         gfar_free_rx_queues(priv);
982 tx_alloc_failed:
983         gfar_free_tx_queues(priv);
984         free_gfar_dev(priv);
985         return err;
986 }
987
988 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
989 {
990         struct hwtstamp_config config;
991         struct gfar_private *priv = netdev_priv(netdev);
992
993         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
994                 return -EFAULT;
995
996         /* reserved for future extensions */
997         if (config.flags)
998                 return -EINVAL;
999
1000         switch (config.tx_type) {
1001         case HWTSTAMP_TX_OFF:
1002                 priv->hwts_tx_en = 0;
1003                 break;
1004         case HWTSTAMP_TX_ON:
1005                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1006                         return -ERANGE;
1007                 priv->hwts_tx_en = 1;
1008                 break;
1009         default:
1010                 return -ERANGE;
1011         }
1012
1013         switch (config.rx_filter) {
1014         case HWTSTAMP_FILTER_NONE:
1015                 if (priv->hwts_rx_en) {
1016                         priv->hwts_rx_en = 0;
1017                         reset_gfar(netdev);
1018                 }
1019                 break;
1020         default:
1021                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1022                         return -ERANGE;
1023                 if (!priv->hwts_rx_en) {
1024                         priv->hwts_rx_en = 1;
1025                         reset_gfar(netdev);
1026                 }
1027                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1028                 break;
1029         }
1030
1031         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1032                 -EFAULT : 0;
1033 }
1034
1035 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1036 {
1037         struct hwtstamp_config config;
1038         struct gfar_private *priv = netdev_priv(netdev);
1039
1040         config.flags = 0;
1041         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1042         config.rx_filter = (priv->hwts_rx_en ?
1043                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1044
1045         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1046                 -EFAULT : 0;
1047 }
1048
1049 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1050 {
1051         struct gfar_private *priv = netdev_priv(dev);
1052
1053         if (!netif_running(dev))
1054                 return -EINVAL;
1055
1056         if (cmd == SIOCSHWTSTAMP)
1057                 return gfar_hwtstamp_set(dev, rq);
1058         if (cmd == SIOCGHWTSTAMP)
1059                 return gfar_hwtstamp_get(dev, rq);
1060
1061         if (!priv->phydev)
1062                 return -ENODEV;
1063
1064         return phy_mii_ioctl(priv->phydev, rq, cmd);
1065 }
1066
1067 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1068                                    u32 class)
1069 {
1070         u32 rqfpr = FPR_FILER_MASK;
1071         u32 rqfcr = 0x0;
1072
1073         rqfar--;
1074         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1075         priv->ftp_rqfpr[rqfar] = rqfpr;
1076         priv->ftp_rqfcr[rqfar] = rqfcr;
1077         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1078
1079         rqfar--;
1080         rqfcr = RQFCR_CMP_NOMATCH;
1081         priv->ftp_rqfpr[rqfar] = rqfpr;
1082         priv->ftp_rqfcr[rqfar] = rqfcr;
1083         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1084
1085         rqfar--;
1086         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1087         rqfpr = class;
1088         priv->ftp_rqfcr[rqfar] = rqfcr;
1089         priv->ftp_rqfpr[rqfar] = rqfpr;
1090         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1091
1092         rqfar--;
1093         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1094         rqfpr = class;
1095         priv->ftp_rqfcr[rqfar] = rqfcr;
1096         priv->ftp_rqfpr[rqfar] = rqfpr;
1097         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1098
1099         return rqfar;
1100 }
1101
1102 static void gfar_init_filer_table(struct gfar_private *priv)
1103 {
1104         int i = 0x0;
1105         u32 rqfar = MAX_FILER_IDX;
1106         u32 rqfcr = 0x0;
1107         u32 rqfpr = FPR_FILER_MASK;
1108
1109         /* Default rule */
1110         rqfcr = RQFCR_CMP_MATCH;
1111         priv->ftp_rqfcr[rqfar] = rqfcr;
1112         priv->ftp_rqfpr[rqfar] = rqfpr;
1113         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1114
1115         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1116         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1117         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1118         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1119         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1120         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1121
1122         /* cur_filer_idx indicated the first non-masked rule */
1123         priv->cur_filer_idx = rqfar;
1124
1125         /* Rest are masked rules */
1126         rqfcr = RQFCR_CMP_NOMATCH;
1127         for (i = 0; i < rqfar; i++) {
1128                 priv->ftp_rqfcr[i] = rqfcr;
1129                 priv->ftp_rqfpr[i] = rqfpr;
1130                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1131         }
1132 }
1133
1134 #ifdef CONFIG_PPC
1135 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1136 {
1137         unsigned int pvr = mfspr(SPRN_PVR);
1138         unsigned int svr = mfspr(SPRN_SVR);
1139         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1140         unsigned int rev = svr & 0xffff;
1141
1142         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1143         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1144             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1145                 priv->errata |= GFAR_ERRATA_74;
1146
1147         /* MPC8313 and MPC837x all rev */
1148         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1149             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1150                 priv->errata |= GFAR_ERRATA_76;
1151
1152         /* MPC8313 Rev < 2.0 */
1153         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1154                 priv->errata |= GFAR_ERRATA_12;
1155 }
1156
1157 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1158 {
1159         unsigned int svr = mfspr(SPRN_SVR);
1160
1161         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1162                 priv->errata |= GFAR_ERRATA_12;
1163         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1164             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1165                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1166 }
1167 #endif
1168
1169 static void gfar_detect_errata(struct gfar_private *priv)
1170 {
1171         struct device *dev = &priv->ofdev->dev;
1172
1173         /* no plans to fix */
1174         priv->errata |= GFAR_ERRATA_A002;
1175
1176 #ifdef CONFIG_PPC
1177         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1178                 __gfar_detect_errata_85xx(priv);
1179         else /* non-mpc85xx parts, i.e. e300 core based */
1180                 __gfar_detect_errata_83xx(priv);
1181 #endif
1182
1183         if (priv->errata)
1184                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1185                          priv->errata);
1186 }
1187
1188 void gfar_mac_reset(struct gfar_private *priv)
1189 {
1190         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1191         u32 tempval;
1192
1193         /* Reset MAC layer */
1194         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1195
1196         /* We need to delay at least 3 TX clocks */
1197         udelay(3);
1198
1199         /* the soft reset bit is not self-resetting, so we need to
1200          * clear it before resuming normal operation
1201          */
1202         gfar_write(&regs->maccfg1, 0);
1203
1204         udelay(3);
1205
1206         /* Compute rx_buff_size based on config flags */
1207         gfar_rx_buff_size_config(priv);
1208
1209         /* Initialize the max receive frame/buffer lengths */
1210         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1211         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1212
1213         /* Initialize the Minimum Frame Length Register */
1214         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1215
1216         /* Initialize MACCFG2. */
1217         tempval = MACCFG2_INIT_SETTINGS;
1218
1219         /* If the mtu is larger than the max size for standard
1220          * ethernet frames (ie, a jumbo frame), then set maccfg2
1221          * to allow huge frames, and to check the length
1222          */
1223         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1224             gfar_has_errata(priv, GFAR_ERRATA_74))
1225                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1226
1227         gfar_write(&regs->maccfg2, tempval);
1228
1229         /* Clear mac addr hash registers */
1230         gfar_write(&regs->igaddr0, 0);
1231         gfar_write(&regs->igaddr1, 0);
1232         gfar_write(&regs->igaddr2, 0);
1233         gfar_write(&regs->igaddr3, 0);
1234         gfar_write(&regs->igaddr4, 0);
1235         gfar_write(&regs->igaddr5, 0);
1236         gfar_write(&regs->igaddr6, 0);
1237         gfar_write(&regs->igaddr7, 0);
1238
1239         gfar_write(&regs->gaddr0, 0);
1240         gfar_write(&regs->gaddr1, 0);
1241         gfar_write(&regs->gaddr2, 0);
1242         gfar_write(&regs->gaddr3, 0);
1243         gfar_write(&regs->gaddr4, 0);
1244         gfar_write(&regs->gaddr5, 0);
1245         gfar_write(&regs->gaddr6, 0);
1246         gfar_write(&regs->gaddr7, 0);
1247
1248         if (priv->extended_hash)
1249                 gfar_clear_exact_match(priv->ndev);
1250
1251         gfar_mac_rx_config(priv);
1252
1253         gfar_mac_tx_config(priv);
1254
1255         gfar_set_mac_address(priv->ndev);
1256
1257         gfar_set_multi(priv->ndev);
1258
1259         /* clear ievent and imask before configuring coalescing */
1260         gfar_ints_disable(priv);
1261
1262         /* Configure the coalescing support */
1263         gfar_configure_coalescing_all(priv);
1264 }
1265
1266 static void gfar_hw_init(struct gfar_private *priv)
1267 {
1268         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269         u32 attrs;
1270
1271         /* Stop the DMA engine now, in case it was running before
1272          * (The firmware could have used it, and left it running).
1273          */
1274         gfar_halt(priv);
1275
1276         gfar_mac_reset(priv);
1277
1278         /* Zero out the rmon mib registers if it has them */
1279         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1280                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1281
1282                 /* Mask off the CAM interrupts */
1283                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1284                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1285         }
1286
1287         /* Initialize ECNTRL */
1288         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1289
1290         /* Set the extraction length and index */
1291         attrs = ATTRELI_EL(priv->rx_stash_size) |
1292                 ATTRELI_EI(priv->rx_stash_index);
1293
1294         gfar_write(&regs->attreli, attrs);
1295
1296         /* Start with defaults, and add stashing
1297          * depending on driver parameters
1298          */
1299         attrs = ATTR_INIT_SETTINGS;
1300
1301         if (priv->bd_stash_en)
1302                 attrs |= ATTR_BDSTASH;
1303
1304         if (priv->rx_stash_size != 0)
1305                 attrs |= ATTR_BUFSTASH;
1306
1307         gfar_write(&regs->attr, attrs);
1308
1309         /* FIFO configs */
1310         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1311         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1312         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1313
1314         /* Program the interrupt steering regs, only for MG devices */
1315         if (priv->num_grps > 1)
1316                 gfar_write_isrg(priv);
1317 }
1318
1319 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1320 {
1321         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322
1323         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1324                 priv->extended_hash = 1;
1325                 priv->hash_width = 9;
1326
1327                 priv->hash_regs[0] = &regs->igaddr0;
1328                 priv->hash_regs[1] = &regs->igaddr1;
1329                 priv->hash_regs[2] = &regs->igaddr2;
1330                 priv->hash_regs[3] = &regs->igaddr3;
1331                 priv->hash_regs[4] = &regs->igaddr4;
1332                 priv->hash_regs[5] = &regs->igaddr5;
1333                 priv->hash_regs[6] = &regs->igaddr6;
1334                 priv->hash_regs[7] = &regs->igaddr7;
1335                 priv->hash_regs[8] = &regs->gaddr0;
1336                 priv->hash_regs[9] = &regs->gaddr1;
1337                 priv->hash_regs[10] = &regs->gaddr2;
1338                 priv->hash_regs[11] = &regs->gaddr3;
1339                 priv->hash_regs[12] = &regs->gaddr4;
1340                 priv->hash_regs[13] = &regs->gaddr5;
1341                 priv->hash_regs[14] = &regs->gaddr6;
1342                 priv->hash_regs[15] = &regs->gaddr7;
1343
1344         } else {
1345                 priv->extended_hash = 0;
1346                 priv->hash_width = 8;
1347
1348                 priv->hash_regs[0] = &regs->gaddr0;
1349                 priv->hash_regs[1] = &regs->gaddr1;
1350                 priv->hash_regs[2] = &regs->gaddr2;
1351                 priv->hash_regs[3] = &regs->gaddr3;
1352                 priv->hash_regs[4] = &regs->gaddr4;
1353                 priv->hash_regs[5] = &regs->gaddr5;
1354                 priv->hash_regs[6] = &regs->gaddr6;
1355                 priv->hash_regs[7] = &regs->gaddr7;
1356         }
1357 }
1358
1359 /* Set up the ethernet device structure, private data,
1360  * and anything else we need before we start
1361  */
1362 static int gfar_probe(struct platform_device *ofdev)
1363 {
1364         struct net_device *dev = NULL;
1365         struct gfar_private *priv = NULL;
1366         int err = 0, i;
1367
1368         err = gfar_of_init(ofdev, &dev);
1369
1370         if (err)
1371                 return err;
1372
1373         priv = netdev_priv(dev);
1374         priv->ndev = dev;
1375         priv->ofdev = ofdev;
1376         priv->dev = &ofdev->dev;
1377         SET_NETDEV_DEV(dev, &ofdev->dev);
1378
1379         spin_lock_init(&priv->bflock);
1380         INIT_WORK(&priv->reset_task, gfar_reset_task);
1381
1382         platform_set_drvdata(ofdev, priv);
1383
1384         gfar_detect_errata(priv);
1385
1386         /* Set the dev->base_addr to the gfar reg region */
1387         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1388
1389         /* Fill in the dev structure */
1390         dev->watchdog_timeo = TX_TIMEOUT;
1391         dev->mtu = 1500;
1392         dev->netdev_ops = &gfar_netdev_ops;
1393         dev->ethtool_ops = &gfar_ethtool_ops;
1394
1395         /* Register for napi ...We are registering NAPI for each grp */
1396         for (i = 0; i < priv->num_grps; i++) {
1397                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1398                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1399                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1400                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1401                                        gfar_poll_tx_sq, 2);
1402                 } else {
1403                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1404                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1405                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1406                                        gfar_poll_tx, 2);
1407                 }
1408         }
1409
1410         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1411                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1412                                    NETIF_F_RXCSUM;
1413                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1414                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1415         }
1416
1417         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1418                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1419                                     NETIF_F_HW_VLAN_CTAG_RX;
1420                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1421         }
1422
1423         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1424
1425         gfar_init_addr_hash_table(priv);
1426
1427         /* Insert receive time stamps into padding alignment bytes */
1428         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1429                 priv->padding = 8;
1430
1431         if (dev->features & NETIF_F_IP_CSUM ||
1432             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1433                 dev->needed_headroom = GMAC_FCB_LEN;
1434
1435         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1436
1437         /* Initializing some of the rx/tx queue level parameters */
1438         for (i = 0; i < priv->num_tx_queues; i++) {
1439                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1440                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1441                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1442                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1443         }
1444
1445         for (i = 0; i < priv->num_rx_queues; i++) {
1446                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1447                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1448                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1449         }
1450
1451         /* always enable rx filer */
1452         priv->rx_filer_enable = 1;
1453         /* Enable most messages by default */
1454         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1455         /* use pritority h/w tx queue scheduling for single queue devices */
1456         if (priv->num_tx_queues == 1)
1457                 priv->prio_sched_en = 1;
1458
1459         set_bit(GFAR_DOWN, &priv->state);
1460
1461         gfar_hw_init(priv);
1462
1463         /* Carrier starts down, phylib will bring it up */
1464         netif_carrier_off(dev);
1465
1466         err = register_netdev(dev);
1467
1468         if (err) {
1469                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1470                 goto register_fail;
1471         }
1472
1473         device_init_wakeup(&dev->dev,
1474                            priv->device_flags &
1475                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1476
1477         /* fill out IRQ number and name fields */
1478         for (i = 0; i < priv->num_grps; i++) {
1479                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1480                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1481                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1482                                 dev->name, "_g", '0' + i, "_tx");
1483                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1484                                 dev->name, "_g", '0' + i, "_rx");
1485                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1486                                 dev->name, "_g", '0' + i, "_er");
1487                 } else
1488                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1489         }
1490
1491         /* Initialize the filer table */
1492         gfar_init_filer_table(priv);
1493
1494         /* Print out the device info */
1495         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1496
1497         /* Even more device info helps when determining which kernel
1498          * provided which set of benchmarks.
1499          */
1500         netdev_info(dev, "Running with NAPI enabled\n");
1501         for (i = 0; i < priv->num_rx_queues; i++)
1502                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1503                             i, priv->rx_queue[i]->rx_ring_size);
1504         for (i = 0; i < priv->num_tx_queues; i++)
1505                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1506                             i, priv->tx_queue[i]->tx_ring_size);
1507
1508         return 0;
1509
1510 register_fail:
1511         unmap_group_regs(priv);
1512         gfar_free_rx_queues(priv);
1513         gfar_free_tx_queues(priv);
1514         of_node_put(priv->phy_node);
1515         of_node_put(priv->tbi_node);
1516         free_gfar_dev(priv);
1517         return err;
1518 }
1519
1520 static int gfar_remove(struct platform_device *ofdev)
1521 {
1522         struct gfar_private *priv = platform_get_drvdata(ofdev);
1523
1524         of_node_put(priv->phy_node);
1525         of_node_put(priv->tbi_node);
1526
1527         unregister_netdev(priv->ndev);
1528         unmap_group_regs(priv);
1529         gfar_free_rx_queues(priv);
1530         gfar_free_tx_queues(priv);
1531         free_gfar_dev(priv);
1532
1533         return 0;
1534 }
1535
1536 #ifdef CONFIG_PM
1537
1538 static int gfar_suspend(struct device *dev)
1539 {
1540         struct gfar_private *priv = dev_get_drvdata(dev);
1541         struct net_device *ndev = priv->ndev;
1542         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1543         unsigned long flags;
1544         u32 tempval;
1545
1546         int magic_packet = priv->wol_en &&
1547                            (priv->device_flags &
1548                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1549
1550         netif_device_detach(ndev);
1551
1552         if (netif_running(ndev)) {
1553
1554                 local_irq_save(flags);
1555                 lock_tx_qs(priv);
1556
1557                 gfar_halt_nodisable(priv);
1558
1559                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1560                 tempval = gfar_read(&regs->maccfg1);
1561
1562                 tempval &= ~MACCFG1_TX_EN;
1563
1564                 if (!magic_packet)
1565                         tempval &= ~MACCFG1_RX_EN;
1566
1567                 gfar_write(&regs->maccfg1, tempval);
1568
1569                 unlock_tx_qs(priv);
1570                 local_irq_restore(flags);
1571
1572                 disable_napi(priv);
1573
1574                 if (magic_packet) {
1575                         /* Enable interrupt on Magic Packet */
1576                         gfar_write(&regs->imask, IMASK_MAG);
1577
1578                         /* Enable Magic Packet mode */
1579                         tempval = gfar_read(&regs->maccfg2);
1580                         tempval |= MACCFG2_MPEN;
1581                         gfar_write(&regs->maccfg2, tempval);
1582                 } else {
1583                         phy_stop(priv->phydev);
1584                 }
1585         }
1586
1587         return 0;
1588 }
1589
1590 static int gfar_resume(struct device *dev)
1591 {
1592         struct gfar_private *priv = dev_get_drvdata(dev);
1593         struct net_device *ndev = priv->ndev;
1594         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1595         unsigned long flags;
1596         u32 tempval;
1597         int magic_packet = priv->wol_en &&
1598                            (priv->device_flags &
1599                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1600
1601         if (!netif_running(ndev)) {
1602                 netif_device_attach(ndev);
1603                 return 0;
1604         }
1605
1606         if (!magic_packet && priv->phydev)
1607                 phy_start(priv->phydev);
1608
1609         /* Disable Magic Packet mode, in case something
1610          * else woke us up.
1611          */
1612         local_irq_save(flags);
1613         lock_tx_qs(priv);
1614
1615         tempval = gfar_read(&regs->maccfg2);
1616         tempval &= ~MACCFG2_MPEN;
1617         gfar_write(&regs->maccfg2, tempval);
1618
1619         gfar_start(priv);
1620
1621         unlock_tx_qs(priv);
1622         local_irq_restore(flags);
1623
1624         netif_device_attach(ndev);
1625
1626         enable_napi(priv);
1627
1628         return 0;
1629 }
1630
1631 static int gfar_restore(struct device *dev)
1632 {
1633         struct gfar_private *priv = dev_get_drvdata(dev);
1634         struct net_device *ndev = priv->ndev;
1635
1636         if (!netif_running(ndev)) {
1637                 netif_device_attach(ndev);
1638
1639                 return 0;
1640         }
1641
1642         if (gfar_init_bds(ndev)) {
1643                 free_skb_resources(priv);
1644                 return -ENOMEM;
1645         }
1646
1647         gfar_mac_reset(priv);
1648
1649         gfar_init_tx_rx_base(priv);
1650
1651         gfar_start(priv);
1652
1653         priv->oldlink = 0;
1654         priv->oldspeed = 0;
1655         priv->oldduplex = -1;
1656
1657         if (priv->phydev)
1658                 phy_start(priv->phydev);
1659
1660         netif_device_attach(ndev);
1661         enable_napi(priv);
1662
1663         return 0;
1664 }
1665
1666 static struct dev_pm_ops gfar_pm_ops = {
1667         .suspend = gfar_suspend,
1668         .resume = gfar_resume,
1669         .freeze = gfar_suspend,
1670         .thaw = gfar_resume,
1671         .restore = gfar_restore,
1672 };
1673
1674 #define GFAR_PM_OPS (&gfar_pm_ops)
1675
1676 #else
1677
1678 #define GFAR_PM_OPS NULL
1679
1680 #endif
1681
1682 /* Reads the controller's registers to determine what interface
1683  * connects it to the PHY.
1684  */
1685 static phy_interface_t gfar_get_interface(struct net_device *dev)
1686 {
1687         struct gfar_private *priv = netdev_priv(dev);
1688         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1689         u32 ecntrl;
1690
1691         ecntrl = gfar_read(&regs->ecntrl);
1692
1693         if (ecntrl & ECNTRL_SGMII_MODE)
1694                 return PHY_INTERFACE_MODE_SGMII;
1695
1696         if (ecntrl & ECNTRL_TBI_MODE) {
1697                 if (ecntrl & ECNTRL_REDUCED_MODE)
1698                         return PHY_INTERFACE_MODE_RTBI;
1699                 else
1700                         return PHY_INTERFACE_MODE_TBI;
1701         }
1702
1703         if (ecntrl & ECNTRL_REDUCED_MODE) {
1704                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1705                         return PHY_INTERFACE_MODE_RMII;
1706                 }
1707                 else {
1708                         phy_interface_t interface = priv->interface;
1709
1710                         /* This isn't autodetected right now, so it must
1711                          * be set by the device tree or platform code.
1712                          */
1713                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1714                                 return PHY_INTERFACE_MODE_RGMII_ID;
1715
1716                         return PHY_INTERFACE_MODE_RGMII;
1717                 }
1718         }
1719
1720         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1721                 return PHY_INTERFACE_MODE_GMII;
1722
1723         return PHY_INTERFACE_MODE_MII;
1724 }
1725
1726
1727 /* Initializes driver's PHY state, and attaches to the PHY.
1728  * Returns 0 on success.
1729  */
1730 static int init_phy(struct net_device *dev)
1731 {
1732         struct gfar_private *priv = netdev_priv(dev);
1733         uint gigabit_support =
1734                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1735                 GFAR_SUPPORTED_GBIT : 0;
1736         phy_interface_t interface;
1737
1738         priv->oldlink = 0;
1739         priv->oldspeed = 0;
1740         priv->oldduplex = -1;
1741
1742         interface = gfar_get_interface(dev);
1743
1744         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1745                                       interface);
1746         if (!priv->phydev) {
1747                 dev_err(&dev->dev, "could not attach to PHY\n");
1748                 return -ENODEV;
1749         }
1750
1751         if (interface == PHY_INTERFACE_MODE_SGMII)
1752                 gfar_configure_serdes(dev);
1753
1754         /* Remove any features not supported by the controller */
1755         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1756         priv->phydev->advertising = priv->phydev->supported;
1757
1758         /* Add support for flow control, but don't advertise it by default */
1759         priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1760
1761         return 0;
1762 }
1763
1764 /* Initialize TBI PHY interface for communicating with the
1765  * SERDES lynx PHY on the chip.  We communicate with this PHY
1766  * through the MDIO bus on each controller, treating it as a
1767  * "normal" PHY at the address found in the TBIPA register.  We assume
1768  * that the TBIPA register is valid.  Either the MDIO bus code will set
1769  * it to a value that doesn't conflict with other PHYs on the bus, or the
1770  * value doesn't matter, as there are no other PHYs on the bus.
1771  */
1772 static void gfar_configure_serdes(struct net_device *dev)
1773 {
1774         struct gfar_private *priv = netdev_priv(dev);
1775         struct phy_device *tbiphy;
1776
1777         if (!priv->tbi_node) {
1778                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1779                                     "device tree specify a tbi-handle\n");
1780                 return;
1781         }
1782
1783         tbiphy = of_phy_find_device(priv->tbi_node);
1784         if (!tbiphy) {
1785                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1786                 return;
1787         }
1788
1789         /* If the link is already up, we must already be ok, and don't need to
1790          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1791          * everything for us?  Resetting it takes the link down and requires
1792          * several seconds for it to come back.
1793          */
1794         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1795                 return;
1796
1797         /* Single clk mode, mii mode off(for serdes communication) */
1798         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1799
1800         phy_write(tbiphy, MII_ADVERTISE,
1801                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1802                   ADVERTISE_1000XPSE_ASYM);
1803
1804         phy_write(tbiphy, MII_BMCR,
1805                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1806                   BMCR_SPEED1000);
1807 }
1808
1809 static int __gfar_is_rx_idle(struct gfar_private *priv)
1810 {
1811         u32 res;
1812
1813         /* Normaly TSEC should not hang on GRS commands, so we should
1814          * actually wait for IEVENT_GRSC flag.
1815          */
1816         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1817                 return 0;
1818
1819         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1820          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1821          * and the Rx can be safely reset.
1822          */
1823         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1824         res &= 0x7f807f80;
1825         if ((res & 0xffff) == (res >> 16))
1826                 return 1;
1827
1828         return 0;
1829 }
1830
1831 /* Halt the receive and transmit queues */
1832 static void gfar_halt_nodisable(struct gfar_private *priv)
1833 {
1834         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1835         u32 tempval;
1836         unsigned int timeout;
1837         int stopped;
1838
1839         gfar_ints_disable(priv);
1840
1841         if (gfar_is_dma_stopped(priv))
1842                 return;
1843
1844         /* Stop the DMA, and wait for it to stop */
1845         tempval = gfar_read(&regs->dmactrl);
1846         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1847         gfar_write(&regs->dmactrl, tempval);
1848
1849 retry:
1850         timeout = 1000;
1851         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1852                 cpu_relax();
1853                 timeout--;
1854         }
1855
1856         if (!timeout)
1857                 stopped = gfar_is_dma_stopped(priv);
1858
1859         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1860             !__gfar_is_rx_idle(priv))
1861                 goto retry;
1862 }
1863
1864 /* Halt the receive and transmit queues */
1865 void gfar_halt(struct gfar_private *priv)
1866 {
1867         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1868         u32 tempval;
1869
1870         /* Dissable the Rx/Tx hw queues */
1871         gfar_write(&regs->rqueue, 0);
1872         gfar_write(&regs->tqueue, 0);
1873
1874         mdelay(10);
1875
1876         gfar_halt_nodisable(priv);
1877
1878         /* Disable Rx/Tx DMA */
1879         tempval = gfar_read(&regs->maccfg1);
1880         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1881         gfar_write(&regs->maccfg1, tempval);
1882 }
1883
1884 void stop_gfar(struct net_device *dev)
1885 {
1886         struct gfar_private *priv = netdev_priv(dev);
1887
1888         netif_tx_stop_all_queues(dev);
1889
1890         smp_mb__before_atomic();
1891         set_bit(GFAR_DOWN, &priv->state);
1892         smp_mb__after_atomic();
1893
1894         disable_napi(priv);
1895
1896         /* disable ints and gracefully shut down Rx/Tx DMA */
1897         gfar_halt(priv);
1898
1899         phy_stop(priv->phydev);
1900
1901         free_skb_resources(priv);
1902 }
1903
1904 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1905 {
1906         struct txbd8 *txbdp;
1907         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1908         int i, j;
1909
1910         txbdp = tx_queue->tx_bd_base;
1911
1912         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1913                 if (!tx_queue->tx_skbuff[i])
1914                         continue;
1915
1916                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1917                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1918                 txbdp->lstatus = 0;
1919                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1920                      j++) {
1921                         txbdp++;
1922                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1923                                        be16_to_cpu(txbdp->length),
1924                                        DMA_TO_DEVICE);
1925                 }
1926                 txbdp++;
1927                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1928                 tx_queue->tx_skbuff[i] = NULL;
1929         }
1930         kfree(tx_queue->tx_skbuff);
1931         tx_queue->tx_skbuff = NULL;
1932 }
1933
1934 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1935 {
1936         struct rxbd8 *rxbdp;
1937         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1938         int i;
1939
1940         rxbdp = rx_queue->rx_bd_base;
1941
1942         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1943                 if (rx_queue->rx_skbuff[i]) {
1944                         dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1945                                          priv->rx_buffer_size,
1946                                          DMA_FROM_DEVICE);
1947                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1948                         rx_queue->rx_skbuff[i] = NULL;
1949                 }
1950                 rxbdp->lstatus = 0;
1951                 rxbdp->bufPtr = 0;
1952                 rxbdp++;
1953         }
1954         kfree(rx_queue->rx_skbuff);
1955         rx_queue->rx_skbuff = NULL;
1956 }
1957
1958 /* If there are any tx skbs or rx skbs still around, free them.
1959  * Then free tx_skbuff and rx_skbuff
1960  */
1961 static void free_skb_resources(struct gfar_private *priv)
1962 {
1963         struct gfar_priv_tx_q *tx_queue = NULL;
1964         struct gfar_priv_rx_q *rx_queue = NULL;
1965         int i;
1966
1967         /* Go through all the buffer descriptors and free their data buffers */
1968         for (i = 0; i < priv->num_tx_queues; i++) {
1969                 struct netdev_queue *txq;
1970
1971                 tx_queue = priv->tx_queue[i];
1972                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1973                 if (tx_queue->tx_skbuff)
1974                         free_skb_tx_queue(tx_queue);
1975                 netdev_tx_reset_queue(txq);
1976         }
1977
1978         for (i = 0; i < priv->num_rx_queues; i++) {
1979                 rx_queue = priv->rx_queue[i];
1980                 if (rx_queue->rx_skbuff)
1981                         free_skb_rx_queue(rx_queue);
1982         }
1983
1984         dma_free_coherent(priv->dev,
1985                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1986                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1987                           priv->tx_queue[0]->tx_bd_base,
1988                           priv->tx_queue[0]->tx_bd_dma_base);
1989 }
1990
1991 void gfar_start(struct gfar_private *priv)
1992 {
1993         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1994         u32 tempval;
1995         int i = 0;
1996
1997         /* Enable Rx/Tx hw queues */
1998         gfar_write(&regs->rqueue, priv->rqueue);
1999         gfar_write(&regs->tqueue, priv->tqueue);
2000
2001         /* Initialize DMACTRL to have WWR and WOP */
2002         tempval = gfar_read(&regs->dmactrl);
2003         tempval |= DMACTRL_INIT_SETTINGS;
2004         gfar_write(&regs->dmactrl, tempval);
2005
2006         /* Make sure we aren't stopped */
2007         tempval = gfar_read(&regs->dmactrl);
2008         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2009         gfar_write(&regs->dmactrl, tempval);
2010
2011         for (i = 0; i < priv->num_grps; i++) {
2012                 regs = priv->gfargrp[i].regs;
2013                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2014                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2015                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2016         }
2017
2018         /* Enable Rx/Tx DMA */
2019         tempval = gfar_read(&regs->maccfg1);
2020         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2021         gfar_write(&regs->maccfg1, tempval);
2022
2023         gfar_ints_enable(priv);
2024
2025         priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2026 }
2027
2028 static void free_grp_irqs(struct gfar_priv_grp *grp)
2029 {
2030         free_irq(gfar_irq(grp, TX)->irq, grp);
2031         free_irq(gfar_irq(grp, RX)->irq, grp);
2032         free_irq(gfar_irq(grp, ER)->irq, grp);
2033 }
2034
2035 static int register_grp_irqs(struct gfar_priv_grp *grp)
2036 {
2037         struct gfar_private *priv = grp->priv;
2038         struct net_device *dev = priv->ndev;
2039         int err;
2040
2041         /* If the device has multiple interrupts, register for
2042          * them.  Otherwise, only register for the one
2043          */
2044         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2045                 /* Install our interrupt handlers for Error,
2046                  * Transmit, and Receive
2047                  */
2048                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2049                                   gfar_irq(grp, ER)->name, grp);
2050                 if (err < 0) {
2051                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2052                                   gfar_irq(grp, ER)->irq);
2053
2054                         goto err_irq_fail;
2055                 }
2056                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2057                                   gfar_irq(grp, TX)->name, grp);
2058                 if (err < 0) {
2059                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2060                                   gfar_irq(grp, TX)->irq);
2061                         goto tx_irq_fail;
2062                 }
2063                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2064                                   gfar_irq(grp, RX)->name, grp);
2065                 if (err < 0) {
2066                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2067                                   gfar_irq(grp, RX)->irq);
2068                         goto rx_irq_fail;
2069                 }
2070         } else {
2071                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2072                                   gfar_irq(grp, TX)->name, grp);
2073                 if (err < 0) {
2074                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2075                                   gfar_irq(grp, TX)->irq);
2076                         goto err_irq_fail;
2077                 }
2078         }
2079
2080         return 0;
2081
2082 rx_irq_fail:
2083         free_irq(gfar_irq(grp, TX)->irq, grp);
2084 tx_irq_fail:
2085         free_irq(gfar_irq(grp, ER)->irq, grp);
2086 err_irq_fail:
2087         return err;
2088
2089 }
2090
2091 static void gfar_free_irq(struct gfar_private *priv)
2092 {
2093         int i;
2094
2095         /* Free the IRQs */
2096         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2097                 for (i = 0; i < priv->num_grps; i++)
2098                         free_grp_irqs(&priv->gfargrp[i]);
2099         } else {
2100                 for (i = 0; i < priv->num_grps; i++)
2101                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2102                                  &priv->gfargrp[i]);
2103         }
2104 }
2105
2106 static int gfar_request_irq(struct gfar_private *priv)
2107 {
2108         int err, i, j;
2109
2110         for (i = 0; i < priv->num_grps; i++) {
2111                 err = register_grp_irqs(&priv->gfargrp[i]);
2112                 if (err) {
2113                         for (j = 0; j < i; j++)
2114                                 free_grp_irqs(&priv->gfargrp[j]);
2115                         return err;
2116                 }
2117         }
2118
2119         return 0;
2120 }
2121
2122 /* Bring the controller up and running */
2123 int startup_gfar(struct net_device *ndev)
2124 {
2125         struct gfar_private *priv = netdev_priv(ndev);
2126         int err;
2127
2128         gfar_mac_reset(priv);
2129
2130         err = gfar_alloc_skb_resources(ndev);
2131         if (err)
2132                 return err;
2133
2134         gfar_init_tx_rx_base(priv);
2135
2136         smp_mb__before_atomic();
2137         clear_bit(GFAR_DOWN, &priv->state);
2138         smp_mb__after_atomic();
2139
2140         /* Start Rx/Tx DMA and enable the interrupts */
2141         gfar_start(priv);
2142
2143         phy_start(priv->phydev);
2144
2145         enable_napi(priv);
2146
2147         netif_tx_wake_all_queues(ndev);
2148
2149         return 0;
2150 }
2151
2152 /* Called when something needs to use the ethernet device
2153  * Returns 0 for success.
2154  */
2155 static int gfar_enet_open(struct net_device *dev)
2156 {
2157         struct gfar_private *priv = netdev_priv(dev);
2158         int err;
2159
2160         err = init_phy(dev);
2161         if (err)
2162                 return err;
2163
2164         err = gfar_request_irq(priv);
2165         if (err)
2166                 return err;
2167
2168         err = startup_gfar(dev);
2169         if (err)
2170                 return err;
2171
2172         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2173
2174         return err;
2175 }
2176
2177 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2178 {
2179         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2180
2181         memset(fcb, 0, GMAC_FCB_LEN);
2182
2183         return fcb;
2184 }
2185
2186 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2187                                     int fcb_length)
2188 {
2189         /* If we're here, it's a IP packet with a TCP or UDP
2190          * payload.  We set it to checksum, using a pseudo-header
2191          * we provide
2192          */
2193         u8 flags = TXFCB_DEFAULT;
2194
2195         /* Tell the controller what the protocol is
2196          * And provide the already calculated phcs
2197          */
2198         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2199                 flags |= TXFCB_UDP;
2200                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2201         } else
2202                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2203
2204         /* l3os is the distance between the start of the
2205          * frame (skb->data) and the start of the IP hdr.
2206          * l4os is the distance between the start of the
2207          * l3 hdr and the l4 hdr
2208          */
2209         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2210         fcb->l4os = skb_network_header_len(skb);
2211
2212         fcb->flags = flags;
2213 }
2214
2215 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2216 {
2217         fcb->flags |= TXFCB_VLN;
2218         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2219 }
2220
2221 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2222                                       struct txbd8 *base, int ring_size)
2223 {
2224         struct txbd8 *new_bd = bdp + stride;
2225
2226         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2227 }
2228
2229 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2230                                       int ring_size)
2231 {
2232         return skip_txbd(bdp, 1, base, ring_size);
2233 }
2234
2235 /* eTSEC12: csum generation not supported for some fcb offsets */
2236 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2237                                        unsigned long fcb_addr)
2238 {
2239         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2240                (fcb_addr % 0x20) > 0x18);
2241 }
2242
2243 /* eTSEC76: csum generation for frames larger than 2500 may
2244  * cause excess delays before start of transmission
2245  */
2246 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2247                                        unsigned int len)
2248 {
2249         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2250                (len > 2500));
2251 }
2252
2253 /* This is called by the kernel when a frame is ready for transmission.
2254  * It is pointed to by the dev->hard_start_xmit function pointer
2255  */
2256 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2257 {
2258         struct gfar_private *priv = netdev_priv(dev);
2259         struct gfar_priv_tx_q *tx_queue = NULL;
2260         struct netdev_queue *txq;
2261         struct gfar __iomem *regs = NULL;
2262         struct txfcb *fcb = NULL;
2263         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2264         u32 lstatus;
2265         int i, rq = 0;
2266         int do_tstamp, do_csum, do_vlan;
2267         u32 bufaddr;
2268         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2269
2270         rq = skb->queue_mapping;
2271         tx_queue = priv->tx_queue[rq];
2272         txq = netdev_get_tx_queue(dev, rq);
2273         base = tx_queue->tx_bd_base;
2274         regs = tx_queue->grp->regs;
2275
2276         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2277         do_vlan = skb_vlan_tag_present(skb);
2278         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2279                     priv->hwts_tx_en;
2280
2281         if (do_csum || do_vlan)
2282                 fcb_len = GMAC_FCB_LEN;
2283
2284         /* check if time stamp should be generated */
2285         if (unlikely(do_tstamp))
2286                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2287
2288         /* make space for additional header when fcb is needed */
2289         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2290                 struct sk_buff *skb_new;
2291
2292                 skb_new = skb_realloc_headroom(skb, fcb_len);
2293                 if (!skb_new) {
2294                         dev->stats.tx_errors++;
2295                         dev_kfree_skb_any(skb);
2296                         return NETDEV_TX_OK;
2297                 }
2298
2299                 if (skb->sk)
2300                         skb_set_owner_w(skb_new, skb->sk);
2301                 dev_consume_skb_any(skb);
2302                 skb = skb_new;
2303         }
2304
2305         /* total number of fragments in the SKB */
2306         nr_frags = skb_shinfo(skb)->nr_frags;
2307
2308         /* calculate the required number of TxBDs for this skb */
2309         if (unlikely(do_tstamp))
2310                 nr_txbds = nr_frags + 2;
2311         else
2312                 nr_txbds = nr_frags + 1;
2313
2314         /* check if there is space to queue this packet */
2315         if (nr_txbds > tx_queue->num_txbdfree) {
2316                 /* no space, stop the queue */
2317                 netif_tx_stop_queue(txq);
2318                 dev->stats.tx_fifo_errors++;
2319                 return NETDEV_TX_BUSY;
2320         }
2321
2322         /* Update transmit stats */
2323         bytes_sent = skb->len;
2324         tx_queue->stats.tx_bytes += bytes_sent;
2325         /* keep Tx bytes on wire for BQL accounting */
2326         GFAR_CB(skb)->bytes_sent = bytes_sent;
2327         tx_queue->stats.tx_packets++;
2328
2329         txbdp = txbdp_start = tx_queue->cur_tx;
2330         lstatus = be32_to_cpu(txbdp->lstatus);
2331
2332         /* Time stamp insertion requires one additional TxBD */
2333         if (unlikely(do_tstamp))
2334                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2335                                                  tx_queue->tx_ring_size);
2336
2337         if (nr_frags == 0) {
2338                 if (unlikely(do_tstamp)) {
2339                         u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2340
2341                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2342                         txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2343                 } else {
2344                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2345                 }
2346         } else {
2347                 /* Place the fragment addresses and lengths into the TxBDs */
2348                 for (i = 0; i < nr_frags; i++) {
2349                         unsigned int frag_len;
2350                         /* Point at the next BD, wrapping as needed */
2351                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2352
2353                         frag_len = skb_shinfo(skb)->frags[i].size;
2354
2355                         lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2356                                   BD_LFLAG(TXBD_READY);
2357
2358                         /* Handle the last BD specially */
2359                         if (i == nr_frags - 1)
2360                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2361
2362                         bufaddr = skb_frag_dma_map(priv->dev,
2363                                                    &skb_shinfo(skb)->frags[i],
2364                                                    0,
2365                                                    frag_len,
2366                                                    DMA_TO_DEVICE);
2367                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2368                                 goto dma_map_err;
2369
2370                         /* set the TxBD length and buffer pointer */
2371                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2372                         txbdp->lstatus = cpu_to_be32(lstatus);
2373                 }
2374
2375                 lstatus = be32_to_cpu(txbdp_start->lstatus);
2376         }
2377
2378         /* Add TxPAL between FCB and frame if required */
2379         if (unlikely(do_tstamp)) {
2380                 skb_push(skb, GMAC_TXPAL_LEN);
2381                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2382         }
2383
2384         /* Add TxFCB if required */
2385         if (fcb_len) {
2386                 fcb = gfar_add_fcb(skb);
2387                 lstatus |= BD_LFLAG(TXBD_TOE);
2388         }
2389
2390         /* Set up checksumming */
2391         if (do_csum) {
2392                 gfar_tx_checksum(skb, fcb, fcb_len);
2393
2394                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2395                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2396                         __skb_pull(skb, GMAC_FCB_LEN);
2397                         skb_checksum_help(skb);
2398                         if (do_vlan || do_tstamp) {
2399                                 /* put back a new fcb for vlan/tstamp TOE */
2400                                 fcb = gfar_add_fcb(skb);
2401                         } else {
2402                                 /* Tx TOE not used */
2403                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2404                                 fcb = NULL;
2405                         }
2406                 }
2407         }
2408
2409         if (do_vlan)
2410                 gfar_tx_vlan(skb, fcb);
2411
2412         /* Setup tx hardware time stamping if requested */
2413         if (unlikely(do_tstamp)) {
2414                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2415                 fcb->ptp = 1;
2416         }
2417
2418         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2419                                  DMA_TO_DEVICE);
2420         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2421                 goto dma_map_err;
2422
2423         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2424
2425         /* If time stamping is requested one additional TxBD must be set up. The
2426          * first TxBD points to the FCB and must have a data length of
2427          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2428          * the full frame length.
2429          */
2430         if (unlikely(do_tstamp)) {
2431                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2432
2433                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2434                 bufaddr += fcb_len;
2435                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2436                               (skb_headlen(skb) - fcb_len);
2437
2438                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2439                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2440                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2441         } else {
2442                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2443         }
2444
2445         netdev_tx_sent_queue(txq, bytes_sent);
2446
2447         gfar_wmb();
2448
2449         txbdp_start->lstatus = cpu_to_be32(lstatus);
2450
2451         gfar_wmb(); /* force lstatus write before tx_skbuff */
2452
2453         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2454
2455         /* Update the current skb pointer to the next entry we will use
2456          * (wrapping if necessary)
2457          */
2458         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2459                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2460
2461         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2462
2463         /* We can work in parallel with gfar_clean_tx_ring(), except
2464          * when modifying num_txbdfree. Note that we didn't grab the lock
2465          * when we were reading the num_txbdfree and checking for available
2466          * space, that's because outside of this function it can only grow.
2467          */
2468         spin_lock_bh(&tx_queue->txlock);
2469         /* reduce TxBD free count */
2470         tx_queue->num_txbdfree -= (nr_txbds);
2471         spin_unlock_bh(&tx_queue->txlock);
2472
2473         /* If the next BD still needs to be cleaned up, then the bds
2474          * are full.  We need to tell the kernel to stop sending us stuff.
2475          */
2476         if (!tx_queue->num_txbdfree) {
2477                 netif_tx_stop_queue(txq);
2478
2479                 dev->stats.tx_fifo_errors++;
2480         }
2481
2482         /* Tell the DMA to go go go */
2483         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2484
2485         return NETDEV_TX_OK;
2486
2487 dma_map_err:
2488         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2489         if (do_tstamp)
2490                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2491         for (i = 0; i < nr_frags; i++) {
2492                 lstatus = be32_to_cpu(txbdp->lstatus);
2493                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2494                         break;
2495
2496                 lstatus &= ~BD_LFLAG(TXBD_READY);
2497                 txbdp->lstatus = cpu_to_be32(lstatus);
2498                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2499                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2500                                DMA_TO_DEVICE);
2501                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2502         }
2503         gfar_wmb();
2504         dev_kfree_skb_any(skb);
2505         return NETDEV_TX_OK;
2506 }
2507
2508 /* Stops the kernel queue, and halts the controller */
2509 static int gfar_close(struct net_device *dev)
2510 {
2511         struct gfar_private *priv = netdev_priv(dev);
2512
2513         cancel_work_sync(&priv->reset_task);
2514         stop_gfar(dev);
2515
2516         /* Disconnect from the PHY */
2517         phy_disconnect(priv->phydev);
2518         priv->phydev = NULL;
2519
2520         gfar_free_irq(priv);
2521
2522         return 0;
2523 }
2524
2525 /* Changes the mac address if the controller is not running. */
2526 static int gfar_set_mac_address(struct net_device *dev)
2527 {
2528         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2529
2530         return 0;
2531 }
2532
2533 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2534 {
2535         struct gfar_private *priv = netdev_priv(dev);
2536         int frame_size = new_mtu + ETH_HLEN;
2537
2538         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2539                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2540                 return -EINVAL;
2541         }
2542
2543         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2544                 cpu_relax();
2545
2546         if (dev->flags & IFF_UP)
2547                 stop_gfar(dev);
2548
2549         dev->mtu = new_mtu;
2550
2551         if (dev->flags & IFF_UP)
2552                 startup_gfar(dev);
2553
2554         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2555
2556         return 0;
2557 }
2558
2559 void reset_gfar(struct net_device *ndev)
2560 {
2561         struct gfar_private *priv = netdev_priv(ndev);
2562
2563         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2564                 cpu_relax();
2565
2566         stop_gfar(ndev);
2567         startup_gfar(ndev);
2568
2569         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2570 }
2571
2572 /* gfar_reset_task gets scheduled when a packet has not been
2573  * transmitted after a set amount of time.
2574  * For now, assume that clearing out all the structures, and
2575  * starting over will fix the problem.
2576  */
2577 static void gfar_reset_task(struct work_struct *work)
2578 {
2579         struct gfar_private *priv = container_of(work, struct gfar_private,
2580                                                  reset_task);
2581         reset_gfar(priv->ndev);
2582 }
2583
2584 static void gfar_timeout(struct net_device *dev)
2585 {
2586         struct gfar_private *priv = netdev_priv(dev);
2587
2588         dev->stats.tx_errors++;
2589         schedule_work(&priv->reset_task);
2590 }
2591
2592 static void gfar_align_skb(struct sk_buff *skb)
2593 {
2594         /* We need the data buffer to be aligned properly.  We will reserve
2595          * as many bytes as needed to align the data properly
2596          */
2597         skb_reserve(skb, RXBUF_ALIGNMENT -
2598                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2599 }
2600
2601 /* Interrupt Handler for Transmit complete */
2602 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2603 {
2604         struct net_device *dev = tx_queue->dev;
2605         struct netdev_queue *txq;
2606         struct gfar_private *priv = netdev_priv(dev);
2607         struct txbd8 *bdp, *next = NULL;
2608         struct txbd8 *lbdp = NULL;
2609         struct txbd8 *base = tx_queue->tx_bd_base;
2610         struct sk_buff *skb;
2611         int skb_dirtytx;
2612         int tx_ring_size = tx_queue->tx_ring_size;
2613         int frags = 0, nr_txbds = 0;
2614         int i;
2615         int howmany = 0;
2616         int tqi = tx_queue->qindex;
2617         unsigned int bytes_sent = 0;
2618         u32 lstatus;
2619         size_t buflen;
2620
2621         txq = netdev_get_tx_queue(dev, tqi);
2622         bdp = tx_queue->dirty_tx;
2623         skb_dirtytx = tx_queue->skb_dirtytx;
2624
2625         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2626
2627                 frags = skb_shinfo(skb)->nr_frags;
2628
2629                 /* When time stamping, one additional TxBD must be freed.
2630                  * Also, we need to dma_unmap_single() the TxPAL.
2631                  */
2632                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2633                         nr_txbds = frags + 2;
2634                 else
2635                         nr_txbds = frags + 1;
2636
2637                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2638
2639                 lstatus = be32_to_cpu(lbdp->lstatus);
2640
2641                 /* Only clean completed frames */
2642                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2643                     (lstatus & BD_LENGTH_MASK))
2644                         break;
2645
2646                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2647                         next = next_txbd(bdp, base, tx_ring_size);
2648                         buflen = be16_to_cpu(next->length) +
2649                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2650                 } else
2651                         buflen = be16_to_cpu(bdp->length);
2652
2653                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2654                                  buflen, DMA_TO_DEVICE);
2655
2656                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2657                         struct skb_shared_hwtstamps shhwtstamps;
2658                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2659
2660                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2661                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2662                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2663                         skb_tstamp_tx(skb, &shhwtstamps);
2664                         gfar_clear_txbd_status(bdp);
2665                         bdp = next;
2666                 }
2667
2668                 gfar_clear_txbd_status(bdp);
2669                 bdp = next_txbd(bdp, base, tx_ring_size);
2670
2671                 for (i = 0; i < frags; i++) {
2672                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2673                                        be16_to_cpu(bdp->length),
2674                                        DMA_TO_DEVICE);
2675                         gfar_clear_txbd_status(bdp);
2676                         bdp = next_txbd(bdp, base, tx_ring_size);
2677                 }
2678
2679                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2680
2681                 dev_kfree_skb_any(skb);
2682
2683                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2684
2685                 skb_dirtytx = (skb_dirtytx + 1) &
2686                               TX_RING_MOD_MASK(tx_ring_size);
2687
2688                 howmany++;
2689                 spin_lock(&tx_queue->txlock);
2690                 tx_queue->num_txbdfree += nr_txbds;
2691                 spin_unlock(&tx_queue->txlock);
2692         }
2693
2694         /* If we freed a buffer, we can restart transmission, if necessary */
2695         if (tx_queue->num_txbdfree &&
2696             netif_tx_queue_stopped(txq) &&
2697             !(test_bit(GFAR_DOWN, &priv->state)))
2698                 netif_wake_subqueue(priv->ndev, tqi);
2699
2700         /* Update dirty indicators */
2701         tx_queue->skb_dirtytx = skb_dirtytx;
2702         tx_queue->dirty_tx = bdp;
2703
2704         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2705 }
2706
2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2708 {
2709         struct gfar_private *priv = netdev_priv(dev);
2710         struct sk_buff *skb;
2711
2712         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2713         if (!skb)
2714                 return NULL;
2715
2716         gfar_align_skb(skb);
2717
2718         return skb;
2719 }
2720
2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2722 {
2723         struct gfar_private *priv = netdev_priv(dev);
2724         struct sk_buff *skb;
2725         dma_addr_t addr;
2726
2727         skb = gfar_alloc_skb(dev);
2728         if (!skb)
2729                 return NULL;
2730
2731         addr = dma_map_single(priv->dev, skb->data,
2732                               priv->rx_buffer_size, DMA_FROM_DEVICE);
2733         if (unlikely(dma_mapping_error(priv->dev, addr))) {
2734                 dev_kfree_skb_any(skb);
2735                 return NULL;
2736         }
2737
2738         *bufaddr = addr;
2739         return skb;
2740 }
2741
2742 static inline void count_errors(unsigned short status, struct net_device *dev)
2743 {
2744         struct gfar_private *priv = netdev_priv(dev);
2745         struct net_device_stats *stats = &dev->stats;
2746         struct gfar_extra_stats *estats = &priv->extra_stats;
2747
2748         /* If the packet was truncated, none of the other errors matter */
2749         if (status & RXBD_TRUNCATED) {
2750                 stats->rx_length_errors++;
2751
2752                 atomic64_inc(&estats->rx_trunc);
2753
2754                 return;
2755         }
2756         /* Count the errors, if there were any */
2757         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2758                 stats->rx_length_errors++;
2759
2760                 if (status & RXBD_LARGE)
2761                         atomic64_inc(&estats->rx_large);
2762                 else
2763                         atomic64_inc(&estats->rx_short);
2764         }
2765         if (status & RXBD_NONOCTET) {
2766                 stats->rx_frame_errors++;
2767                 atomic64_inc(&estats->rx_nonoctet);
2768         }
2769         if (status & RXBD_CRCERR) {
2770                 atomic64_inc(&estats->rx_crcerr);
2771                 stats->rx_crc_errors++;
2772         }
2773         if (status & RXBD_OVERRUN) {
2774                 atomic64_inc(&estats->rx_overrun);
2775                 stats->rx_crc_errors++;
2776         }
2777 }
2778
2779 irqreturn_t gfar_receive(int irq, void *grp_id)
2780 {
2781         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2782         unsigned long flags;
2783         u32 imask;
2784
2785         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2786                 spin_lock_irqsave(&grp->grplock, flags);
2787                 imask = gfar_read(&grp->regs->imask);
2788                 imask &= IMASK_RX_DISABLED;
2789                 gfar_write(&grp->regs->imask, imask);
2790                 spin_unlock_irqrestore(&grp->grplock, flags);
2791                 __napi_schedule(&grp->napi_rx);
2792         } else {
2793                 /* Clear IEVENT, so interrupts aren't called again
2794                  * because of the packets that have already arrived.
2795                  */
2796                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2797         }
2798
2799         return IRQ_HANDLED;
2800 }
2801
2802 /* Interrupt Handler for Transmit complete */
2803 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2804 {
2805         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2806         unsigned long flags;
2807         u32 imask;
2808
2809         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2810                 spin_lock_irqsave(&grp->grplock, flags);
2811                 imask = gfar_read(&grp->regs->imask);
2812                 imask &= IMASK_TX_DISABLED;
2813                 gfar_write(&grp->regs->imask, imask);
2814                 spin_unlock_irqrestore(&grp->grplock, flags);
2815                 __napi_schedule(&grp->napi_tx);
2816         } else {
2817                 /* Clear IEVENT, so interrupts aren't called again
2818                  * because of the packets that have already arrived.
2819                  */
2820                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2821         }
2822
2823         return IRQ_HANDLED;
2824 }
2825
2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2827 {
2828         /* If valid headers were found, and valid sums
2829          * were verified, then we tell the kernel that no
2830          * checksumming is necessary.  Otherwise, it is [FIXME]
2831          */
2832         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2833             (RXFCB_CIP | RXFCB_CTU))
2834                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2835         else
2836                 skb_checksum_none_assert(skb);
2837 }
2838
2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2841                                int amount_pull, struct napi_struct *napi)
2842 {
2843         struct gfar_private *priv = netdev_priv(dev);
2844         struct rxfcb *fcb = NULL;
2845
2846         /* fcb is at the beginning if exists */
2847         fcb = (struct rxfcb *)skb->data;
2848
2849         /* Remove the FCB from the skb
2850          * Remove the padded bytes, if there are any
2851          */
2852         if (amount_pull) {
2853                 skb_record_rx_queue(skb, fcb->rq);
2854                 skb_pull(skb, amount_pull);
2855         }
2856
2857         /* Get receive timestamp from the skb */
2858         if (priv->hwts_rx_en) {
2859                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2860                 u64 *ns = (u64 *) skb->data;
2861
2862                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2863                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2864         }
2865
2866         if (priv->padding)
2867                 skb_pull(skb, priv->padding);
2868
2869         if (dev->features & NETIF_F_RXCSUM)
2870                 gfar_rx_checksum(skb, fcb);
2871
2872         /* Tell the skb what kind of packet this is */
2873         skb->protocol = eth_type_trans(skb, dev);
2874
2875         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2876          * Even if vlan rx accel is disabled, on some chips
2877          * RXFCB_VLN is pseudo randomly set.
2878          */
2879         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2880             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2881                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2882                                        be16_to_cpu(fcb->vlctl));
2883
2884         /* Send the packet up the stack */
2885         napi_gro_receive(napi, skb);
2886
2887 }
2888
2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2890  * until the budget/quota has been reached. Returns the number
2891  * of frames handled
2892  */
2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2894 {
2895         struct net_device *dev = rx_queue->dev;
2896         struct rxbd8 *bdp, *base;
2897         struct sk_buff *skb;
2898         int pkt_len;
2899         int amount_pull;
2900         int howmany = 0;
2901         struct gfar_private *priv = netdev_priv(dev);
2902
2903         /* Get the first full descriptor */
2904         bdp = rx_queue->cur_rx;
2905         base = rx_queue->rx_bd_base;
2906
2907         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2908
2909         while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2910                 struct sk_buff *newskb;
2911                 dma_addr_t bufaddr;
2912
2913                 rmb();
2914
2915                 /* Add another skb for the future */
2916                 newskb = gfar_new_skb(dev, &bufaddr);
2917
2918                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2919
2920                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2921                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2922
2923                 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2924                              be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2925                         bdp->status = cpu_to_be16(RXBD_LARGE);
2926
2927                 /* We drop the frame if we failed to allocate a new buffer */
2928                 if (unlikely(!newskb ||
2929                              !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2930                              be16_to_cpu(bdp->status) & RXBD_ERR)) {
2931                         count_errors(be16_to_cpu(bdp->status), dev);
2932
2933                         if (unlikely(!newskb)) {
2934                                 newskb = skb;
2935                                 bufaddr = be32_to_cpu(bdp->bufPtr);
2936                         } else if (skb)
2937                                 dev_kfree_skb(skb);
2938                 } else {
2939                         /* Increment the number of packets */
2940                         rx_queue->stats.rx_packets++;
2941                         howmany++;
2942
2943                         if (likely(skb)) {
2944                                 pkt_len = be16_to_cpu(bdp->length) -
2945                                           ETH_FCS_LEN;
2946                                 /* Remove the FCS from the packet length */
2947                                 skb_put(skb, pkt_len);
2948                                 rx_queue->stats.rx_bytes += pkt_len;
2949                                 skb_record_rx_queue(skb, rx_queue->qindex);
2950                                 gfar_process_frame(dev, skb, amount_pull,
2951                                                    &rx_queue->grp->napi_rx);
2952
2953                         } else {
2954                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2955                                 rx_queue->stats.rx_dropped++;
2956                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2957                         }
2958
2959                 }
2960
2961                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2962
2963                 /* Setup the new bdp */
2964                 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2965
2966                 /* Update Last Free RxBD pointer for LFC */
2967                 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2968                         gfar_write(rx_queue->rfbptr, (u32)bdp);
2969
2970                 /* Update to the next pointer */
2971                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2972
2973                 /* update to point at the next skb */
2974                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2975                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2976         }
2977
2978         /* Update the current rxbd pointer to be the next one */
2979         rx_queue->cur_rx = bdp;
2980
2981         return howmany;
2982 }
2983
2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2985 {
2986         struct gfar_priv_grp *gfargrp =
2987                 container_of(napi, struct gfar_priv_grp, napi_rx);
2988         struct gfar __iomem *regs = gfargrp->regs;
2989         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2990         int work_done = 0;
2991
2992         /* Clear IEVENT, so interrupts aren't called again
2993          * because of the packets that have already arrived
2994          */
2995         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2996
2997         work_done = gfar_clean_rx_ring(rx_queue, budget);
2998
2999         if (work_done < budget) {
3000                 u32 imask;
3001                 napi_complete(napi);
3002                 /* Clear the halt bit in RSTAT */
3003                 gfar_write(&regs->rstat, gfargrp->rstat);
3004
3005                 spin_lock_irq(&gfargrp->grplock);
3006                 imask = gfar_read(&regs->imask);
3007                 imask |= IMASK_RX_DEFAULT;
3008                 gfar_write(&regs->imask, imask);
3009                 spin_unlock_irq(&gfargrp->grplock);
3010         }
3011
3012         return work_done;
3013 }
3014
3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3016 {
3017         struct gfar_priv_grp *gfargrp =
3018                 container_of(napi, struct gfar_priv_grp, napi_tx);
3019         struct gfar __iomem *regs = gfargrp->regs;
3020         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3021         u32 imask;
3022
3023         /* Clear IEVENT, so interrupts aren't called again
3024          * because of the packets that have already arrived
3025          */
3026         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3027
3028         /* run Tx cleanup to completion */
3029         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3030                 gfar_clean_tx_ring(tx_queue);
3031
3032         napi_complete(napi);
3033
3034         spin_lock_irq(&gfargrp->grplock);
3035         imask = gfar_read(&regs->imask);
3036         imask |= IMASK_TX_DEFAULT;
3037         gfar_write(&regs->imask, imask);
3038         spin_unlock_irq(&gfargrp->grplock);
3039
3040         return 0;
3041 }
3042
3043 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3044 {
3045         struct gfar_priv_grp *gfargrp =
3046                 container_of(napi, struct gfar_priv_grp, napi_rx);
3047         struct gfar_private *priv = gfargrp->priv;
3048         struct gfar __iomem *regs = gfargrp->regs;
3049         struct gfar_priv_rx_q *rx_queue = NULL;
3050         int work_done = 0, work_done_per_q = 0;
3051         int i, budget_per_q = 0;
3052         unsigned long rstat_rxf;
3053         int num_act_queues;
3054
3055         /* Clear IEVENT, so interrupts aren't called again
3056          * because of the packets that have already arrived
3057          */
3058         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3059
3060         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3061
3062         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3063         if (num_act_queues)
3064                 budget_per_q = budget/num_act_queues;
3065
3066         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3067                 /* skip queue if not active */
3068                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3069                         continue;
3070
3071                 rx_queue = priv->rx_queue[i];
3072                 work_done_per_q =
3073                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3074                 work_done += work_done_per_q;
3075
3076                 /* finished processing this queue */
3077                 if (work_done_per_q < budget_per_q) {
3078                         /* clear active queue hw indication */
3079                         gfar_write(&regs->rstat,
3080                                    RSTAT_CLEAR_RXF0 >> i);
3081                         num_act_queues--;
3082
3083                         if (!num_act_queues)
3084                                 break;
3085                 }
3086         }
3087
3088         if (!num_act_queues) {
3089                 u32 imask;
3090                 napi_complete(napi);
3091
3092                 /* Clear the halt bit in RSTAT */
3093                 gfar_write(&regs->rstat, gfargrp->rstat);
3094
3095                 spin_lock_irq(&gfargrp->grplock);
3096                 imask = gfar_read(&regs->imask);
3097                 imask |= IMASK_RX_DEFAULT;
3098                 gfar_write(&regs->imask, imask);
3099                 spin_unlock_irq(&gfargrp->grplock);
3100         }
3101
3102         return work_done;
3103 }
3104
3105 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3106 {
3107         struct gfar_priv_grp *gfargrp =
3108                 container_of(napi, struct gfar_priv_grp, napi_tx);
3109         struct gfar_private *priv = gfargrp->priv;
3110         struct gfar __iomem *regs = gfargrp->regs;
3111         struct gfar_priv_tx_q *tx_queue = NULL;
3112         int has_tx_work = 0;
3113         int i;
3114
3115         /* Clear IEVENT, so interrupts aren't called again
3116          * because of the packets that have already arrived
3117          */
3118         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3119
3120         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3121                 tx_queue = priv->tx_queue[i];
3122                 /* run Tx cleanup to completion */
3123                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3124                         gfar_clean_tx_ring(tx_queue);
3125                         has_tx_work = 1;
3126                 }
3127         }
3128
3129         if (!has_tx_work) {
3130                 u32 imask;
3131                 napi_complete(napi);
3132
3133                 spin_lock_irq(&gfargrp->grplock);
3134                 imask = gfar_read(&regs->imask);
3135                 imask |= IMASK_TX_DEFAULT;
3136                 gfar_write(&regs->imask, imask);
3137                 spin_unlock_irq(&gfargrp->grplock);
3138         }
3139
3140         return 0;
3141 }
3142
3143
3144 #ifdef CONFIG_NET_POLL_CONTROLLER
3145 /* Polling 'interrupt' - used by things like netconsole to send skbs
3146  * without having to re-enable interrupts. It's not called while
3147  * the interrupt routine is executing.
3148  */
3149 static void gfar_netpoll(struct net_device *dev)
3150 {
3151         struct gfar_private *priv = netdev_priv(dev);
3152         int i;
3153
3154         /* If the device has multiple interrupts, run tx/rx */
3155         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3156                 for (i = 0; i < priv->num_grps; i++) {
3157                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3158
3159                         disable_irq(gfar_irq(grp, TX)->irq);
3160                         disable_irq(gfar_irq(grp, RX)->irq);
3161                         disable_irq(gfar_irq(grp, ER)->irq);
3162                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3163                         enable_irq(gfar_irq(grp, ER)->irq);
3164                         enable_irq(gfar_irq(grp, RX)->irq);
3165                         enable_irq(gfar_irq(grp, TX)->irq);
3166                 }
3167         } else {
3168                 for (i = 0; i < priv->num_grps; i++) {
3169                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3170
3171                         disable_irq(gfar_irq(grp, TX)->irq);
3172                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3173                         enable_irq(gfar_irq(grp, TX)->irq);
3174                 }
3175         }
3176 }
3177 #endif
3178
3179 /* The interrupt handler for devices with one interrupt */
3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3181 {
3182         struct gfar_priv_grp *gfargrp = grp_id;
3183
3184         /* Save ievent for future reference */
3185         u32 events = gfar_read(&gfargrp->regs->ievent);
3186
3187         /* Check for reception */
3188         if (events & IEVENT_RX_MASK)
3189                 gfar_receive(irq, grp_id);
3190
3191         /* Check for transmit completion */
3192         if (events & IEVENT_TX_MASK)
3193                 gfar_transmit(irq, grp_id);
3194
3195         /* Check for errors */
3196         if (events & IEVENT_ERR_MASK)
3197                 gfar_error(irq, grp_id);
3198
3199         return IRQ_HANDLED;
3200 }
3201
3202 /* Called every time the controller might need to be made
3203  * aware of new link state.  The PHY code conveys this
3204  * information through variables in the phydev structure, and this
3205  * function converts those variables into the appropriate
3206  * register values, and can bring down the device if needed.
3207  */
3208 static void adjust_link(struct net_device *dev)
3209 {
3210         struct gfar_private *priv = netdev_priv(dev);
3211         struct phy_device *phydev = priv->phydev;
3212
3213         if (unlikely(phydev->link != priv->oldlink ||
3214                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3215                                        phydev->speed != priv->oldspeed))))
3216                 gfar_update_link_state(priv);
3217 }
3218
3219 /* Update the hash table based on the current list of multicast
3220  * addresses we subscribe to.  Also, change the promiscuity of
3221  * the device based on the flags (this function is called
3222  * whenever dev->flags is changed
3223  */
3224 static void gfar_set_multi(struct net_device *dev)
3225 {
3226         struct netdev_hw_addr *ha;
3227         struct gfar_private *priv = netdev_priv(dev);
3228         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3229         u32 tempval;
3230
3231         if (dev->flags & IFF_PROMISC) {
3232                 /* Set RCTRL to PROM */
3233                 tempval = gfar_read(&regs->rctrl);
3234                 tempval |= RCTRL_PROM;
3235                 gfar_write(&regs->rctrl, tempval);
3236         } else {
3237                 /* Set RCTRL to not PROM */
3238                 tempval = gfar_read(&regs->rctrl);
3239                 tempval &= ~(RCTRL_PROM);
3240                 gfar_write(&regs->rctrl, tempval);
3241         }
3242
3243         if (dev->flags & IFF_ALLMULTI) {
3244                 /* Set the hash to rx all multicast frames */
3245                 gfar_write(&regs->igaddr0, 0xffffffff);
3246                 gfar_write(&regs->igaddr1, 0xffffffff);
3247                 gfar_write(&regs->igaddr2, 0xffffffff);
3248                 gfar_write(&regs->igaddr3, 0xffffffff);
3249                 gfar_write(&regs->igaddr4, 0xffffffff);
3250                 gfar_write(&regs->igaddr5, 0xffffffff);
3251                 gfar_write(&regs->igaddr6, 0xffffffff);
3252                 gfar_write(&regs->igaddr7, 0xffffffff);
3253                 gfar_write(&regs->gaddr0, 0xffffffff);
3254                 gfar_write(&regs->gaddr1, 0xffffffff);
3255                 gfar_write(&regs->gaddr2, 0xffffffff);
3256                 gfar_write(&regs->gaddr3, 0xffffffff);
3257                 gfar_write(&regs->gaddr4, 0xffffffff);
3258                 gfar_write(&regs->gaddr5, 0xffffffff);
3259                 gfar_write(&regs->gaddr6, 0xffffffff);
3260                 gfar_write(&regs->gaddr7, 0xffffffff);
3261         } else {
3262                 int em_num;
3263                 int idx;
3264
3265                 /* zero out the hash */
3266                 gfar_write(&regs->igaddr0, 0x0);
3267                 gfar_write(&regs->igaddr1, 0x0);
3268                 gfar_write(&regs->igaddr2, 0x0);
3269                 gfar_write(&regs->igaddr3, 0x0);
3270                 gfar_write(&regs->igaddr4, 0x0);
3271                 gfar_write(&regs->igaddr5, 0x0);
3272                 gfar_write(&regs->igaddr6, 0x0);
3273                 gfar_write(&regs->igaddr7, 0x0);
3274                 gfar_write(&regs->gaddr0, 0x0);
3275                 gfar_write(&regs->gaddr1, 0x0);
3276                 gfar_write(&regs->gaddr2, 0x0);
3277                 gfar_write(&regs->gaddr3, 0x0);
3278                 gfar_write(&regs->gaddr4, 0x0);
3279                 gfar_write(&regs->gaddr5, 0x0);
3280                 gfar_write(&regs->gaddr6, 0x0);
3281                 gfar_write(&regs->gaddr7, 0x0);
3282
3283                 /* If we have extended hash tables, we need to
3284                  * clear the exact match registers to prepare for
3285                  * setting them
3286                  */
3287                 if (priv->extended_hash) {
3288                         em_num = GFAR_EM_NUM + 1;
3289                         gfar_clear_exact_match(dev);
3290                         idx = 1;
3291                 } else {
3292                         idx = 0;
3293                         em_num = 0;
3294                 }
3295
3296                 if (netdev_mc_empty(dev))
3297                         return;
3298
3299                 /* Parse the list, and set the appropriate bits */
3300                 netdev_for_each_mc_addr(ha, dev) {
3301                         if (idx < em_num) {
3302                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3303                                 idx++;
3304                         } else
3305                                 gfar_set_hash_for_addr(dev, ha->addr);
3306                 }
3307         }
3308 }
3309
3310
3311 /* Clears each of the exact match registers to zero, so they
3312  * don't interfere with normal reception
3313  */
3314 static void gfar_clear_exact_match(struct net_device *dev)
3315 {
3316         int idx;
3317         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3318
3319         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3320                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3321 }
3322
3323 /* Set the appropriate hash bit for the given addr */
3324 /* The algorithm works like so:
3325  * 1) Take the Destination Address (ie the multicast address), and
3326  * do a CRC on it (little endian), and reverse the bits of the
3327  * result.
3328  * 2) Use the 8 most significant bits as a hash into a 256-entry
3329  * table.  The table is controlled through 8 32-bit registers:
3330  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3331  * gaddr7.  This means that the 3 most significant bits in the
3332  * hash index which gaddr register to use, and the 5 other bits
3333  * indicate which bit (assuming an IBM numbering scheme, which
3334  * for PowerPC (tm) is usually the case) in the register holds
3335  * the entry.
3336  */
3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3338 {
3339         u32 tempval;
3340         struct gfar_private *priv = netdev_priv(dev);
3341         u32 result = ether_crc(ETH_ALEN, addr);
3342         int width = priv->hash_width;
3343         u8 whichbit = (result >> (32 - width)) & 0x1f;
3344         u8 whichreg = result >> (32 - width + 5);
3345         u32 value = (1 << (31-whichbit));
3346
3347         tempval = gfar_read(priv->hash_regs[whichreg]);
3348         tempval |= value;
3349         gfar_write(priv->hash_regs[whichreg], tempval);
3350 }
3351
3352
3353 /* There are multiple MAC Address register pairs on some controllers
3354  * This function sets the numth pair to a given address
3355  */
3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3357                                   const u8 *addr)
3358 {
3359         struct gfar_private *priv = netdev_priv(dev);
3360         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3361         u32 tempval;
3362         u32 __iomem *macptr = &regs->macstnaddr1;
3363
3364         macptr += num*2;
3365
3366         /* For a station address of 0x12345678ABCD in transmission
3367          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3368          * MACnADDR2 is set to 0x34120000.
3369          */
3370         tempval = (addr[5] << 24) | (addr[4] << 16) |
3371                   (addr[3] << 8)  |  addr[2];
3372
3373         gfar_write(macptr, tempval);
3374
3375         tempval = (addr[1] << 24) | (addr[0] << 16);
3376
3377         gfar_write(macptr+1, tempval);
3378 }
3379
3380 /* GFAR error interrupt handler */
3381 static irqreturn_t gfar_error(int irq, void *grp_id)
3382 {
3383         struct gfar_priv_grp *gfargrp = grp_id;
3384         struct gfar __iomem *regs = gfargrp->regs;
3385         struct gfar_private *priv= gfargrp->priv;
3386         struct net_device *dev = priv->ndev;
3387
3388         /* Save ievent for future reference */
3389         u32 events = gfar_read(&regs->ievent);
3390
3391         /* Clear IEVENT */
3392         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3393
3394         /* Magic Packet is not an error. */
3395         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3396             (events & IEVENT_MAG))
3397                 events &= ~IEVENT_MAG;
3398
3399         /* Hmm... */
3400         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3401                 netdev_dbg(dev,
3402                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3403                            events, gfar_read(&regs->imask));
3404
3405         /* Update the error counters */
3406         if (events & IEVENT_TXE) {
3407                 dev->stats.tx_errors++;
3408
3409                 if (events & IEVENT_LC)
3410                         dev->stats.tx_window_errors++;
3411                 if (events & IEVENT_CRL)
3412                         dev->stats.tx_aborted_errors++;
3413                 if (events & IEVENT_XFUN) {
3414                         netif_dbg(priv, tx_err, dev,
3415                                   "TX FIFO underrun, packet dropped\n");
3416                         dev->stats.tx_dropped++;
3417                         atomic64_inc(&priv->extra_stats.tx_underrun);
3418
3419                         schedule_work(&priv->reset_task);
3420                 }
3421                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3422         }
3423         if (events & IEVENT_BSY) {
3424                 dev->stats.rx_errors++;
3425                 atomic64_inc(&priv->extra_stats.rx_bsy);
3426
3427                 gfar_receive(irq, grp_id);
3428
3429                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3430                           gfar_read(&regs->rstat));
3431         }
3432         if (events & IEVENT_BABR) {
3433                 dev->stats.rx_errors++;
3434                 atomic64_inc(&priv->extra_stats.rx_babr);
3435
3436                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3437         }
3438         if (events & IEVENT_EBERR) {
3439                 atomic64_inc(&priv->extra_stats.eberr);
3440                 netif_dbg(priv, rx_err, dev, "bus error\n");
3441         }
3442         if (events & IEVENT_RXC)
3443                 netif_dbg(priv, rx_status, dev, "control frame\n");
3444
3445         if (events & IEVENT_BABT) {
3446                 atomic64_inc(&priv->extra_stats.tx_babt);
3447                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3448         }
3449         return IRQ_HANDLED;
3450 }
3451
3452 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3453 {
3454         struct phy_device *phydev = priv->phydev;
3455         u32 val = 0;
3456
3457         if (!phydev->duplex)
3458                 return val;
3459
3460         if (!priv->pause_aneg_en) {
3461                 if (priv->tx_pause_en)
3462                         val |= MACCFG1_TX_FLOW;
3463                 if (priv->rx_pause_en)
3464                         val |= MACCFG1_RX_FLOW;
3465         } else {
3466                 u16 lcl_adv, rmt_adv;
3467                 u8 flowctrl;
3468                 /* get link partner capabilities */
3469                 rmt_adv = 0;
3470                 if (phydev->pause)
3471                         rmt_adv = LPA_PAUSE_CAP;
3472                 if (phydev->asym_pause)
3473                         rmt_adv |= LPA_PAUSE_ASYM;
3474
3475                 lcl_adv = 0;
3476                 if (phydev->advertising & ADVERTISED_Pause)
3477                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3478                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3479                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3480
3481                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3482                 if (flowctrl & FLOW_CTRL_TX)
3483                         val |= MACCFG1_TX_FLOW;
3484                 if (flowctrl & FLOW_CTRL_RX)
3485                         val |= MACCFG1_RX_FLOW;
3486         }
3487
3488         return val;
3489 }
3490
3491 static noinline void gfar_update_link_state(struct gfar_private *priv)
3492 {
3493         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3494         struct phy_device *phydev = priv->phydev;
3495         struct gfar_priv_rx_q *rx_queue = NULL;
3496         int i;
3497         struct rxbd8 *bdp;
3498
3499         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3500                 return;
3501
3502         if (phydev->link) {
3503                 u32 tempval1 = gfar_read(&regs->maccfg1);
3504                 u32 tempval = gfar_read(&regs->maccfg2);
3505                 u32 ecntrl = gfar_read(&regs->ecntrl);
3506                 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3507
3508                 if (phydev->duplex != priv->oldduplex) {
3509                         if (!(phydev->duplex))
3510                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3511                         else
3512                                 tempval |= MACCFG2_FULL_DUPLEX;
3513
3514                         priv->oldduplex = phydev->duplex;
3515                 }
3516
3517                 if (phydev->speed != priv->oldspeed) {
3518                         switch (phydev->speed) {
3519                         case 1000:
3520                                 tempval =
3521                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3522
3523                                 ecntrl &= ~(ECNTRL_R100);
3524                                 break;
3525                         case 100:
3526                         case 10:
3527                                 tempval =
3528                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3529
3530                                 /* Reduced mode distinguishes
3531                                  * between 10 and 100
3532                                  */
3533                                 if (phydev->speed == SPEED_100)
3534                                         ecntrl |= ECNTRL_R100;
3535                                 else
3536                                         ecntrl &= ~(ECNTRL_R100);
3537                                 break;
3538                         default:
3539                                 netif_warn(priv, link, priv->ndev,
3540                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3541                                            phydev->speed);
3542                                 break;
3543                         }
3544
3545                         priv->oldspeed = phydev->speed;
3546                 }
3547
3548                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3549                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3550
3551                 /* Turn last free buffer recording on */
3552                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3553                         for (i = 0; i < priv->num_rx_queues; i++) {
3554                                 rx_queue = priv->rx_queue[i];
3555                                 bdp = rx_queue->cur_rx;
3556                                 /* skip to previous bd */
3557                                 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3558                                               rx_queue->rx_bd_base,
3559                                               rx_queue->rx_ring_size);
3560
3561                                 if (rx_queue->rfbptr)
3562                                         gfar_write(rx_queue->rfbptr, (u32)bdp);
3563                         }
3564
3565                         priv->tx_actual_en = 1;
3566                 }
3567
3568                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3569                         priv->tx_actual_en = 0;
3570
3571                 gfar_write(&regs->maccfg1, tempval1);
3572                 gfar_write(&regs->maccfg2, tempval);
3573                 gfar_write(&regs->ecntrl, ecntrl);
3574
3575                 if (!priv->oldlink)
3576                         priv->oldlink = 1;
3577
3578         } else if (priv->oldlink) {
3579                 priv->oldlink = 0;
3580                 priv->oldspeed = 0;
3581                 priv->oldduplex = -1;
3582         }
3583
3584         if (netif_msg_link(priv))
3585                 phy_print_status(phydev);
3586 }
3587
3588 static const struct of_device_id gfar_match[] =
3589 {
3590         {
3591                 .type = "network",
3592                 .compatible = "gianfar",
3593         },
3594         {
3595                 .compatible = "fsl,etsec2",
3596         },
3597         {},
3598 };
3599 MODULE_DEVICE_TABLE(of, gfar_match);
3600
3601 /* Structure for a device driver */
3602 static struct platform_driver gfar_driver = {
3603         .driver = {
3604                 .name = "fsl-gianfar",
3605                 .pm = GFAR_PM_OPS,
3606                 .of_match_table = gfar_match,
3607         },
3608         .probe = gfar_probe,
3609         .remove = gfar_remove,
3610 };
3611
3612 module_platform_driver(gfar_driver);