OSDN Git Service

Merge tag 'net-next-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev...
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34
35 #define hns3_set_field(origin, shift, val)      ((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37
38 #define hns3_rl_err(fmt, ...)                                           \
39         do {                                                            \
40                 if (net_ratelimit())                                    \
41                         netdev_err(fmt, ##__VA_ARGS__);                 \
42         } while (0)
43
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48                         "Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58
59 #define HNS3_INNER_VLAN_TAG     1
60 #define HNS3_OUTER_VLAN_TAG     2
61
62 #define HNS3_MIN_TX_LEN         33U
63
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89         /* required last entry */
90         {0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96         struct hns3_enet_tqp_vector *tqp_vector = vector;
97
98         napi_schedule_irqoff(&tqp_vector->napi);
99
100         return IRQ_HANDLED;
101 }
102
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105         struct hns3_enet_tqp_vector *tqp_vectors;
106         unsigned int i;
107
108         for (i = 0; i < priv->vector_num; i++) {
109                 tqp_vectors = &priv->tqp_vector[i];
110
111                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112                         continue;
113
114                 /* clear the affinity mask */
115                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116
117                 /* release the irq resource */
118                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
119                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120         }
121 }
122
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125         struct hns3_enet_tqp_vector *tqp_vectors;
126         int txrx_int_idx = 0;
127         int rx_int_idx = 0;
128         int tx_int_idx = 0;
129         unsigned int i;
130         int ret;
131
132         for (i = 0; i < priv->vector_num; i++) {
133                 tqp_vectors = &priv->tqp_vector[i];
134
135                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136                         continue;
137
138                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140                                  "%s-%s-%s-%d", hns3_driver_name,
141                                  pci_name(priv->ae_handle->pdev),
142                                  "TxRx", txrx_int_idx++);
143                         txrx_int_idx++;
144                 } else if (tqp_vectors->rx_group.ring) {
145                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146                                  "%s-%s-%s-%d", hns3_driver_name,
147                                  pci_name(priv->ae_handle->pdev),
148                                  "Rx", rx_int_idx++);
149                 } else if (tqp_vectors->tx_group.ring) {
150                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151                                  "%s-%s-%s-%d", hns3_driver_name,
152                                  pci_name(priv->ae_handle->pdev),
153                                  "Tx", tx_int_idx++);
154                 } else {
155                         /* Skip this unused q_vector */
156                         continue;
157                 }
158
159                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160
161                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163                                   tqp_vectors->name, tqp_vectors);
164                 if (ret) {
165                         netdev_err(priv->netdev, "request irq(%d) fail\n",
166                                    tqp_vectors->vector_irq);
167                         hns3_nic_uninit_irq(priv);
168                         return ret;
169                 }
170
171                 irq_set_affinity_hint(tqp_vectors->vector_irq,
172                                       &tqp_vectors->affinity_mask);
173
174                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175         }
176
177         return 0;
178 }
179
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181                                  u32 mask_en)
182 {
183         writel(mask_en, tqp_vector->mask_addr);
184 }
185
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188         napi_enable(&tqp_vector->napi);
189         enable_irq(tqp_vector->vector_irq);
190
191         /* enable vector */
192         hns3_mask_vector_irq(tqp_vector, 1);
193 }
194
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197         /* disable vector */
198         hns3_mask_vector_irq(tqp_vector, 0);
199
200         disable_irq(tqp_vector->vector_irq);
201         napi_disable(&tqp_vector->napi);
202 }
203
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205                                  u32 rl_value)
206 {
207         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208
209         /* this defines the configuration for RL (Interrupt Rate Limiter).
210          * Rl defines rate of interrupts i.e. number of interrupts-per-second
211          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212          */
213         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
214             !tqp_vector->rx_group.coal.adapt_enable)
215                 /* According to the hardware, the range of rl_reg is
216                  * 0-59 and the unit is 4.
217                  */
218                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
219
220         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
221 }
222
223 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224                                     u32 gl_value)
225 {
226         u32 new_val;
227
228         if (tqp_vector->rx_group.coal.unit_1us)
229                 new_val = gl_value | HNS3_INT_GL_1US;
230         else
231                 new_val = hns3_gl_usec_to_reg(gl_value);
232
233         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
234 }
235
236 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
237                                     u32 gl_value)
238 {
239         u32 new_val;
240
241         if (tqp_vector->tx_group.coal.unit_1us)
242                 new_val = gl_value | HNS3_INT_GL_1US;
243         else
244                 new_val = hns3_gl_usec_to_reg(gl_value);
245
246         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
247 }
248
249 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
250                                     u32 ql_value)
251 {
252         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
253 }
254
255 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
256                                     u32 ql_value)
257 {
258         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
259 }
260
261 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
262                                       struct hns3_nic_priv *priv)
263 {
264         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
265         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
266         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
267
268         /* initialize the configuration for interrupt coalescing.
269          * 1. GL (Interrupt Gap Limiter)
270          * 2. RL (Interrupt Rate Limiter)
271          * 3. QL (Interrupt Quantity Limiter)
272          *
273          * Default: enable interrupt coalescing self-adaptive and GL
274          */
275         tx_coal->adapt_enable = 1;
276         rx_coal->adapt_enable = 1;
277
278         tx_coal->int_gl = HNS3_INT_GL_50K;
279         rx_coal->int_gl = HNS3_INT_GL_50K;
280
281         rx_coal->flow_level = HNS3_FLOW_LOW;
282         tx_coal->flow_level = HNS3_FLOW_LOW;
283
284         /* device version above V3(include V3), GL can configure 1us
285          * unit, so uses 1us unit.
286          */
287         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
288                 tx_coal->unit_1us = 1;
289                 rx_coal->unit_1us = 1;
290         }
291
292         if (ae_dev->dev_specs.int_ql_max) {
293                 tx_coal->ql_enable = 1;
294                 rx_coal->ql_enable = 1;
295                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
296                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
298                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299         }
300 }
301
302 static void
303 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
304                              struct hns3_nic_priv *priv)
305 {
306         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
307         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
308         struct hnae3_handle *h = priv->ae_handle;
309
310         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
311         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
312         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
313
314         if (tx_coal->ql_enable)
315                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
316
317         if (rx_coal->ql_enable)
318                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
319 }
320
321 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
322 {
323         struct hnae3_handle *h = hns3_get_handle(netdev);
324         struct hnae3_knic_private_info *kinfo = &h->kinfo;
325         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
326         unsigned int queue_size = kinfo->num_tqps;
327         int i, ret;
328
329         if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
330                 netdev_reset_tc(netdev);
331         } else {
332                 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
333                 if (ret) {
334                         netdev_err(netdev,
335                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
336                         return ret;
337                 }
338
339                 for (i = 0; i < HNAE3_MAX_TC; i++) {
340                         if (!test_bit(i, &tc_info->tc_en))
341                                 continue;
342
343                         netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
344                                             tc_info->tqp_offset[i]);
345                 }
346         }
347
348         ret = netif_set_real_num_tx_queues(netdev, queue_size);
349         if (ret) {
350                 netdev_err(netdev,
351                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
352                 return ret;
353         }
354
355         ret = netif_set_real_num_rx_queues(netdev, queue_size);
356         if (ret) {
357                 netdev_err(netdev,
358                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
359                 return ret;
360         }
361
362         return 0;
363 }
364
365 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
366 {
367         u16 alloc_tqps, max_rss_size, rss_size;
368
369         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
370         rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
371
372         return min_t(u16, rss_size, max_rss_size);
373 }
374
375 static void hns3_tqp_enable(struct hnae3_queue *tqp)
376 {
377         u32 rcb_reg;
378
379         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
380         rcb_reg |= BIT(HNS3_RING_EN_B);
381         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
382 }
383
384 static void hns3_tqp_disable(struct hnae3_queue *tqp)
385 {
386         u32 rcb_reg;
387
388         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
389         rcb_reg &= ~BIT(HNS3_RING_EN_B);
390         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
391 }
392
393 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
394 {
395 #ifdef CONFIG_RFS_ACCEL
396         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
397         netdev->rx_cpu_rmap = NULL;
398 #endif
399 }
400
401 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
402 {
403 #ifdef CONFIG_RFS_ACCEL
404         struct hns3_nic_priv *priv = netdev_priv(netdev);
405         struct hns3_enet_tqp_vector *tqp_vector;
406         int i, ret;
407
408         if (!netdev->rx_cpu_rmap) {
409                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
410                 if (!netdev->rx_cpu_rmap)
411                         return -ENOMEM;
412         }
413
414         for (i = 0; i < priv->vector_num; i++) {
415                 tqp_vector = &priv->tqp_vector[i];
416                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
417                                        tqp_vector->vector_irq);
418                 if (ret) {
419                         hns3_free_rx_cpu_rmap(netdev);
420                         return ret;
421                 }
422         }
423 #endif
424         return 0;
425 }
426
427 static int hns3_nic_net_up(struct net_device *netdev)
428 {
429         struct hns3_nic_priv *priv = netdev_priv(netdev);
430         struct hnae3_handle *h = priv->ae_handle;
431         int i, j;
432         int ret;
433
434         ret = hns3_nic_reset_all_ring(h);
435         if (ret)
436                 return ret;
437
438         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
439
440         /* enable the vectors */
441         for (i = 0; i < priv->vector_num; i++)
442                 hns3_vector_enable(&priv->tqp_vector[i]);
443
444         /* enable rcb */
445         for (j = 0; j < h->kinfo.num_tqps; j++)
446                 hns3_tqp_enable(h->kinfo.tqp[j]);
447
448         /* start the ae_dev */
449         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
450         if (ret) {
451                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
452                 while (j--)
453                         hns3_tqp_disable(h->kinfo.tqp[j]);
454
455                 for (j = i - 1; j >= 0; j--)
456                         hns3_vector_disable(&priv->tqp_vector[j]);
457         }
458
459         return ret;
460 }
461
462 static void hns3_config_xps(struct hns3_nic_priv *priv)
463 {
464         int i;
465
466         for (i = 0; i < priv->vector_num; i++) {
467                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
468                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
469
470                 while (ring) {
471                         int ret;
472
473                         ret = netif_set_xps_queue(priv->netdev,
474                                                   &tqp_vector->affinity_mask,
475                                                   ring->tqp->tqp_index);
476                         if (ret)
477                                 netdev_warn(priv->netdev,
478                                             "set xps queue failed: %d", ret);
479
480                         ring = ring->next;
481                 }
482         }
483 }
484
485 static int hns3_nic_net_open(struct net_device *netdev)
486 {
487         struct hns3_nic_priv *priv = netdev_priv(netdev);
488         struct hnae3_handle *h = hns3_get_handle(netdev);
489         struct hnae3_knic_private_info *kinfo;
490         int i, ret;
491
492         if (hns3_nic_resetting(netdev))
493                 return -EBUSY;
494
495         netif_carrier_off(netdev);
496
497         ret = hns3_nic_set_real_num_queue(netdev);
498         if (ret)
499                 return ret;
500
501         ret = hns3_nic_net_up(netdev);
502         if (ret) {
503                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
504                 return ret;
505         }
506
507         kinfo = &h->kinfo;
508         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
509                 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
510
511         if (h->ae_algo->ops->set_timer_task)
512                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
513
514         hns3_config_xps(priv);
515
516         netif_dbg(h, drv, netdev, "net open\n");
517
518         return 0;
519 }
520
521 static void hns3_reset_tx_queue(struct hnae3_handle *h)
522 {
523         struct net_device *ndev = h->kinfo.netdev;
524         struct hns3_nic_priv *priv = netdev_priv(ndev);
525         struct netdev_queue *dev_queue;
526         u32 i;
527
528         for (i = 0; i < h->kinfo.num_tqps; i++) {
529                 dev_queue = netdev_get_tx_queue(ndev,
530                                                 priv->ring[i].queue_index);
531                 netdev_tx_reset_queue(dev_queue);
532         }
533 }
534
535 static void hns3_nic_net_down(struct net_device *netdev)
536 {
537         struct hns3_nic_priv *priv = netdev_priv(netdev);
538         struct hnae3_handle *h = hns3_get_handle(netdev);
539         const struct hnae3_ae_ops *ops;
540         int i;
541
542         /* disable vectors */
543         for (i = 0; i < priv->vector_num; i++)
544                 hns3_vector_disable(&priv->tqp_vector[i]);
545
546         /* disable rcb */
547         for (i = 0; i < h->kinfo.num_tqps; i++)
548                 hns3_tqp_disable(h->kinfo.tqp[i]);
549
550         /* stop ae_dev */
551         ops = priv->ae_handle->ae_algo->ops;
552         if (ops->stop)
553                 ops->stop(priv->ae_handle);
554
555         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
556          * during reset process, because driver may not be able
557          * to disable the ring through firmware when downing the netdev.
558          */
559         if (!hns3_nic_resetting(netdev))
560                 hns3_clear_all_ring(priv->ae_handle, false);
561
562         hns3_reset_tx_queue(priv->ae_handle);
563 }
564
565 static int hns3_nic_net_stop(struct net_device *netdev)
566 {
567         struct hns3_nic_priv *priv = netdev_priv(netdev);
568         struct hnae3_handle *h = hns3_get_handle(netdev);
569
570         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
571                 return 0;
572
573         netif_dbg(h, drv, netdev, "net stop\n");
574
575         if (h->ae_algo->ops->set_timer_task)
576                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
577
578         netif_tx_stop_all_queues(netdev);
579         netif_carrier_off(netdev);
580
581         hns3_nic_net_down(netdev);
582
583         return 0;
584 }
585
586 static int hns3_nic_uc_sync(struct net_device *netdev,
587                             const unsigned char *addr)
588 {
589         struct hnae3_handle *h = hns3_get_handle(netdev);
590
591         if (h->ae_algo->ops->add_uc_addr)
592                 return h->ae_algo->ops->add_uc_addr(h, addr);
593
594         return 0;
595 }
596
597 static int hns3_nic_uc_unsync(struct net_device *netdev,
598                               const unsigned char *addr)
599 {
600         struct hnae3_handle *h = hns3_get_handle(netdev);
601
602         /* need ignore the request of removing device address, because
603          * we store the device address and other addresses of uc list
604          * in the function's mac filter list.
605          */
606         if (ether_addr_equal(addr, netdev->dev_addr))
607                 return 0;
608
609         if (h->ae_algo->ops->rm_uc_addr)
610                 return h->ae_algo->ops->rm_uc_addr(h, addr);
611
612         return 0;
613 }
614
615 static int hns3_nic_mc_sync(struct net_device *netdev,
616                             const unsigned char *addr)
617 {
618         struct hnae3_handle *h = hns3_get_handle(netdev);
619
620         if (h->ae_algo->ops->add_mc_addr)
621                 return h->ae_algo->ops->add_mc_addr(h, addr);
622
623         return 0;
624 }
625
626 static int hns3_nic_mc_unsync(struct net_device *netdev,
627                               const unsigned char *addr)
628 {
629         struct hnae3_handle *h = hns3_get_handle(netdev);
630
631         if (h->ae_algo->ops->rm_mc_addr)
632                 return h->ae_algo->ops->rm_mc_addr(h, addr);
633
634         return 0;
635 }
636
637 static u8 hns3_get_netdev_flags(struct net_device *netdev)
638 {
639         u8 flags = 0;
640
641         if (netdev->flags & IFF_PROMISC) {
642                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
643         } else {
644                 flags |= HNAE3_VLAN_FLTR;
645                 if (netdev->flags & IFF_ALLMULTI)
646                         flags |= HNAE3_USER_MPE;
647         }
648
649         return flags;
650 }
651
652 static void hns3_nic_set_rx_mode(struct net_device *netdev)
653 {
654         struct hnae3_handle *h = hns3_get_handle(netdev);
655         u8 new_flags;
656
657         new_flags = hns3_get_netdev_flags(netdev);
658
659         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
660         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
661
662         /* User mode Promisc mode enable and vlan filtering is disabled to
663          * let all packets in.
664          */
665         h->netdev_flags = new_flags;
666         hns3_request_update_promisc_mode(h);
667 }
668
669 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
670 {
671         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
672
673         if (ops->request_update_promisc_mode)
674                 ops->request_update_promisc_mode(handle);
675 }
676
677 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
678 {
679         struct hns3_nic_priv *priv = netdev_priv(netdev);
680         struct hnae3_handle *h = priv->ae_handle;
681         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
682         bool last_state;
683
684         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
685             h->ae_algo->ops->enable_vlan_filter) {
686                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
687                 if (enable != last_state) {
688                         netdev_info(netdev,
689                                     "%s vlan filter\n",
690                                     enable ? "enable" : "disable");
691                         h->ae_algo->ops->enable_vlan_filter(h, enable);
692                 }
693         }
694 }
695
696 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
697                         u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
698 {
699         u32 l4_offset, hdr_len;
700         union l3_hdr_info l3;
701         union l4_hdr_info l4;
702         u32 l4_paylen;
703         int ret;
704
705         if (!skb_is_gso(skb))
706                 return 0;
707
708         ret = skb_cow_head(skb, 0);
709         if (unlikely(ret < 0))
710                 return ret;
711
712         l3.hdr = skb_network_header(skb);
713         l4.hdr = skb_transport_header(skb);
714
715         /* Software should clear the IPv4's checksum field when tso is
716          * needed.
717          */
718         if (l3.v4->version == 4)
719                 l3.v4->check = 0;
720
721         /* tunnel packet */
722         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
723                                          SKB_GSO_GRE_CSUM |
724                                          SKB_GSO_UDP_TUNNEL |
725                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
726                 /* reset l3&l4 pointers from outer to inner headers */
727                 l3.hdr = skb_inner_network_header(skb);
728                 l4.hdr = skb_inner_transport_header(skb);
729
730                 /* Software should clear the IPv4's checksum field when
731                  * tso is needed.
732                  */
733                 if (l3.v4->version == 4)
734                         l3.v4->check = 0;
735         }
736
737         /* normal or tunnel packet */
738         l4_offset = l4.hdr - skb->data;
739
740         /* remove payload length from inner pseudo checksum when tso */
741         l4_paylen = skb->len - l4_offset;
742
743         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
744                 hdr_len = sizeof(*l4.udp) + l4_offset;
745                 csum_replace_by_diff(&l4.udp->check,
746                                      (__force __wsum)htonl(l4_paylen));
747         } else {
748                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
749                 csum_replace_by_diff(&l4.tcp->check,
750                                      (__force __wsum)htonl(l4_paylen));
751         }
752
753         *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
754
755         /* find the txbd field values */
756         *paylen_fdop_ol4cs = skb->len - hdr_len;
757         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
758
759         /* offload outer UDP header checksum */
760         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
761                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
762
763         /* get MSS for TSO */
764         *mss = skb_shinfo(skb)->gso_size;
765
766         trace_hns3_tso(skb);
767
768         return 0;
769 }
770
771 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
772                                 u8 *il4_proto)
773 {
774         union l3_hdr_info l3;
775         unsigned char *l4_hdr;
776         unsigned char *exthdr;
777         u8 l4_proto_tmp;
778         __be16 frag_off;
779
780         /* find outer header point */
781         l3.hdr = skb_network_header(skb);
782         l4_hdr = skb_transport_header(skb);
783
784         if (skb->protocol == htons(ETH_P_IPV6)) {
785                 exthdr = l3.hdr + sizeof(*l3.v6);
786                 l4_proto_tmp = l3.v6->nexthdr;
787                 if (l4_hdr != exthdr)
788                         ipv6_skip_exthdr(skb, exthdr - skb->data,
789                                          &l4_proto_tmp, &frag_off);
790         } else if (skb->protocol == htons(ETH_P_IP)) {
791                 l4_proto_tmp = l3.v4->protocol;
792         } else {
793                 return -EINVAL;
794         }
795
796         *ol4_proto = l4_proto_tmp;
797
798         /* tunnel packet */
799         if (!skb->encapsulation) {
800                 *il4_proto = 0;
801                 return 0;
802         }
803
804         /* find inner header point */
805         l3.hdr = skb_inner_network_header(skb);
806         l4_hdr = skb_inner_transport_header(skb);
807
808         if (l3.v6->version == 6) {
809                 exthdr = l3.hdr + sizeof(*l3.v6);
810                 l4_proto_tmp = l3.v6->nexthdr;
811                 if (l4_hdr != exthdr)
812                         ipv6_skip_exthdr(skb, exthdr - skb->data,
813                                          &l4_proto_tmp, &frag_off);
814         } else if (l3.v4->version == 4) {
815                 l4_proto_tmp = l3.v4->protocol;
816         }
817
818         *il4_proto = l4_proto_tmp;
819
820         return 0;
821 }
822
823 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
824  * and it is udp packet, which has a dest port as the IANA assigned.
825  * the hardware is expected to do the checksum offload, but the
826  * hardware will not do the checksum offload when udp dest port is
827  * 4789 or 6081.
828  */
829 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
830 {
831         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
832         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
833         union l4_hdr_info l4;
834
835         /* device version above V3(include V3), the hardware can
836          * do this checksum offload.
837          */
838         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
839                 return false;
840
841         l4.hdr = skb_transport_header(skb);
842
843         if (!(!skb->encapsulation &&
844               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
845               l4.udp->dest == htons(GENEVE_UDP_PORT))))
846                 return false;
847
848         skb_checksum_help(skb);
849
850         return true;
851 }
852
853 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
854                                   u32 *ol_type_vlan_len_msec)
855 {
856         u32 l2_len, l3_len, l4_len;
857         unsigned char *il2_hdr;
858         union l3_hdr_info l3;
859         union l4_hdr_info l4;
860
861         l3.hdr = skb_network_header(skb);
862         l4.hdr = skb_transport_header(skb);
863
864         /* compute OL2 header size, defined in 2 Bytes */
865         l2_len = l3.hdr - skb->data;
866         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
867
868         /* compute OL3 header size, defined in 4 Bytes */
869         l3_len = l4.hdr - l3.hdr;
870         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
871
872         il2_hdr = skb_inner_mac_header(skb);
873         /* compute OL4 header size, defined in 4 Bytes */
874         l4_len = il2_hdr - l4.hdr;
875         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
876
877         /* define outer network header type */
878         if (skb->protocol == htons(ETH_P_IP)) {
879                 if (skb_is_gso(skb))
880                         hns3_set_field(*ol_type_vlan_len_msec,
881                                        HNS3_TXD_OL3T_S,
882                                        HNS3_OL3T_IPV4_CSUM);
883                 else
884                         hns3_set_field(*ol_type_vlan_len_msec,
885                                        HNS3_TXD_OL3T_S,
886                                        HNS3_OL3T_IPV4_NO_CSUM);
887         } else if (skb->protocol == htons(ETH_P_IPV6)) {
888                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
889                                HNS3_OL3T_IPV6);
890         }
891
892         if (ol4_proto == IPPROTO_UDP)
893                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
894                                HNS3_TUN_MAC_IN_UDP);
895         else if (ol4_proto == IPPROTO_GRE)
896                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
897                                HNS3_TUN_NVGRE);
898 }
899
900 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
901                            u8 il4_proto, u32 *type_cs_vlan_tso,
902                            u32 *ol_type_vlan_len_msec)
903 {
904         unsigned char *l2_hdr = skb->data;
905         u32 l4_proto = ol4_proto;
906         union l4_hdr_info l4;
907         union l3_hdr_info l3;
908         u32 l2_len, l3_len;
909
910         l4.hdr = skb_transport_header(skb);
911         l3.hdr = skb_network_header(skb);
912
913         /* handle encapsulation skb */
914         if (skb->encapsulation) {
915                 /* If this is a not UDP/GRE encapsulation skb */
916                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
917                         /* drop the skb tunnel packet if hardware don't support,
918                          * because hardware can't calculate csum when TSO.
919                          */
920                         if (skb_is_gso(skb))
921                                 return -EDOM;
922
923                         /* the stack computes the IP header already,
924                          * driver calculate l4 checksum when not TSO.
925                          */
926                         skb_checksum_help(skb);
927                         return 0;
928                 }
929
930                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
931
932                 /* switch to inner header */
933                 l2_hdr = skb_inner_mac_header(skb);
934                 l3.hdr = skb_inner_network_header(skb);
935                 l4.hdr = skb_inner_transport_header(skb);
936                 l4_proto = il4_proto;
937         }
938
939         if (l3.v4->version == 4) {
940                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
941                                HNS3_L3T_IPV4);
942
943                 /* the stack computes the IP header already, the only time we
944                  * need the hardware to recompute it is in the case of TSO.
945                  */
946                 if (skb_is_gso(skb))
947                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
948         } else if (l3.v6->version == 6) {
949                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
950                                HNS3_L3T_IPV6);
951         }
952
953         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
954         l2_len = l3.hdr - l2_hdr;
955         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
956
957         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
958         l3_len = l4.hdr - l3.hdr;
959         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
960
961         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
962         switch (l4_proto) {
963         case IPPROTO_TCP:
964                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
965                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
966                                HNS3_L4T_TCP);
967                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
968                                l4.tcp->doff);
969                 break;
970         case IPPROTO_UDP:
971                 if (hns3_tunnel_csum_bug(skb))
972                         break;
973
974                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
975                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
976                                HNS3_L4T_UDP);
977                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
978                                (sizeof(struct udphdr) >> 2));
979                 break;
980         case IPPROTO_SCTP:
981                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
982                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
983                                HNS3_L4T_SCTP);
984                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
985                                (sizeof(struct sctphdr) >> 2));
986                 break;
987         default:
988                 /* drop the skb tunnel packet if hardware don't support,
989                  * because hardware can't calculate csum when TSO.
990                  */
991                 if (skb_is_gso(skb))
992                         return -EDOM;
993
994                 /* the stack computes the IP header already,
995                  * driver calculate l4 checksum when not TSO.
996                  */
997                 skb_checksum_help(skb);
998                 return 0;
999         }
1000
1001         return 0;
1002 }
1003
1004 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1005                              struct sk_buff *skb)
1006 {
1007         struct hnae3_handle *handle = tx_ring->tqp->handle;
1008         struct hnae3_ae_dev *ae_dev;
1009         struct vlan_ethhdr *vhdr;
1010         int rc;
1011
1012         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1013               skb_vlan_tag_present(skb)))
1014                 return 0;
1015
1016         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1017          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1018          * will cause RAS error.
1019          */
1020         ae_dev = pci_get_drvdata(handle->pdev);
1021         if (unlikely(skb_vlan_tagged_multi(skb) &&
1022                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1023                      handle->port_base_vlan_state ==
1024                      HNAE3_PORT_BASE_VLAN_ENABLE))
1025                 return -EINVAL;
1026
1027         if (skb->protocol == htons(ETH_P_8021Q) &&
1028             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1029                 /* When HW VLAN acceleration is turned off, and the stack
1030                  * sets the protocol to 802.1q, the driver just need to
1031                  * set the protocol to the encapsulated ethertype.
1032                  */
1033                 skb->protocol = vlan_get_protocol(skb);
1034                 return 0;
1035         }
1036
1037         if (skb_vlan_tag_present(skb)) {
1038                 /* Based on hw strategy, use out_vtag in two layer tag case,
1039                  * and use inner_vtag in one tag case.
1040                  */
1041                 if (skb->protocol == htons(ETH_P_8021Q) &&
1042                     handle->port_base_vlan_state ==
1043                     HNAE3_PORT_BASE_VLAN_DISABLE)
1044                         rc = HNS3_OUTER_VLAN_TAG;
1045                 else
1046                         rc = HNS3_INNER_VLAN_TAG;
1047
1048                 skb->protocol = vlan_get_protocol(skb);
1049                 return rc;
1050         }
1051
1052         rc = skb_cow_head(skb, 0);
1053         if (unlikely(rc < 0))
1054                 return rc;
1055
1056         vhdr = (struct vlan_ethhdr *)skb->data;
1057         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1058                                          & VLAN_PRIO_MASK);
1059
1060         skb->protocol = vlan_get_protocol(skb);
1061         return 0;
1062 }
1063
1064 /* check if the hardware is capable of checksum offloading */
1065 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1066 {
1067         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1068
1069         /* Kindly note, due to backward compatibility of the TX descriptor,
1070          * HW checksum of the non-IP packets and GSO packets is handled at
1071          * different place in the following code
1072          */
1073         if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1074             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1075                 return false;
1076
1077         return true;
1078 }
1079
1080 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1081                               struct sk_buff *skb, struct hns3_desc *desc,
1082                               struct hns3_desc_cb *desc_cb)
1083 {
1084         u32 ol_type_vlan_len_msec = 0;
1085         u32 paylen_ol4cs = skb->len;
1086         u32 type_cs_vlan_tso = 0;
1087         u16 mss_hw_csum = 0;
1088         u16 inner_vtag = 0;
1089         u16 out_vtag = 0;
1090         int ret;
1091
1092         ret = hns3_handle_vtags(ring, skb);
1093         if (unlikely(ret < 0)) {
1094                 u64_stats_update_begin(&ring->syncp);
1095                 ring->stats.tx_vlan_err++;
1096                 u64_stats_update_end(&ring->syncp);
1097                 return ret;
1098         } else if (ret == HNS3_INNER_VLAN_TAG) {
1099                 inner_vtag = skb_vlan_tag_get(skb);
1100                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1101                                 VLAN_PRIO_MASK;
1102                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1103         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1104                 out_vtag = skb_vlan_tag_get(skb);
1105                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1106                                 VLAN_PRIO_MASK;
1107                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1108                                1);
1109         }
1110
1111         desc_cb->send_bytes = skb->len;
1112
1113         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1114                 u8 ol4_proto, il4_proto;
1115
1116                 if (hns3_check_hw_tx_csum(skb)) {
1117                         /* set checksum start and offset, defined in 2 Bytes */
1118                         hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1119                                        skb_checksum_start_offset(skb) >> 1);
1120                         hns3_set_field(ol_type_vlan_len_msec,
1121                                        HNS3_TXD_CSUM_OFFSET_S,
1122                                        skb->csum_offset >> 1);
1123                         mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1124                         goto out_hw_tx_csum;
1125                 }
1126
1127                 skb_reset_mac_len(skb);
1128
1129                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1130                 if (unlikely(ret < 0)) {
1131                         u64_stats_update_begin(&ring->syncp);
1132                         ring->stats.tx_l4_proto_err++;
1133                         u64_stats_update_end(&ring->syncp);
1134                         return ret;
1135                 }
1136
1137                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1138                                       &type_cs_vlan_tso,
1139                                       &ol_type_vlan_len_msec);
1140                 if (unlikely(ret < 0)) {
1141                         u64_stats_update_begin(&ring->syncp);
1142                         ring->stats.tx_l2l3l4_err++;
1143                         u64_stats_update_end(&ring->syncp);
1144                         return ret;
1145                 }
1146
1147                 ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1148                                    &type_cs_vlan_tso, &desc_cb->send_bytes);
1149                 if (unlikely(ret < 0)) {
1150                         u64_stats_update_begin(&ring->syncp);
1151                         ring->stats.tx_tso_err++;
1152                         u64_stats_update_end(&ring->syncp);
1153                         return ret;
1154                 }
1155         }
1156
1157 out_hw_tx_csum:
1158         /* Set txbd */
1159         desc->tx.ol_type_vlan_len_msec =
1160                 cpu_to_le32(ol_type_vlan_len_msec);
1161         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1162         desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1163         desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1164         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1165         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1166
1167         return 0;
1168 }
1169
1170 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1171                           unsigned int size, enum hns_desc_type type)
1172 {
1173 #define HNS3_LIKELY_BD_NUM      1
1174
1175         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1176         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1177         struct device *dev = ring_to_dev(ring);
1178         skb_frag_t *frag;
1179         unsigned int frag_buf_num;
1180         int k, sizeoflast;
1181         dma_addr_t dma;
1182
1183         if (type == DESC_TYPE_FRAGLIST_SKB ||
1184             type == DESC_TYPE_SKB) {
1185                 struct sk_buff *skb = (struct sk_buff *)priv;
1186
1187                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1188         } else {
1189                 frag = (skb_frag_t *)priv;
1190                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1191         }
1192
1193         if (unlikely(dma_mapping_error(dev, dma))) {
1194                 u64_stats_update_begin(&ring->syncp);
1195                 ring->stats.sw_err_cnt++;
1196                 u64_stats_update_end(&ring->syncp);
1197                 return -ENOMEM;
1198         }
1199
1200         desc_cb->priv = priv;
1201         desc_cb->length = size;
1202         desc_cb->dma = dma;
1203         desc_cb->type = type;
1204
1205         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1206                 desc->addr = cpu_to_le64(dma);
1207                 desc->tx.send_size = cpu_to_le16(size);
1208                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1209                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1210
1211                 trace_hns3_tx_desc(ring, ring->next_to_use);
1212                 ring_ptr_move_fw(ring, next_to_use);
1213                 return HNS3_LIKELY_BD_NUM;
1214         }
1215
1216         frag_buf_num = hns3_tx_bd_count(size);
1217         sizeoflast = size % HNS3_MAX_BD_SIZE;
1218         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1219
1220         /* When frag size is bigger than hardware limit, split this frag */
1221         for (k = 0; k < frag_buf_num; k++) {
1222                 /* now, fill the descriptor */
1223                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1224                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1225                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1226                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1227                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1228
1229                 trace_hns3_tx_desc(ring, ring->next_to_use);
1230                 /* move ring pointer to next */
1231                 ring_ptr_move_fw(ring, next_to_use);
1232
1233                 desc = &ring->desc[ring->next_to_use];
1234         }
1235
1236         return frag_buf_num;
1237 }
1238
1239 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1240                                     unsigned int bd_num)
1241 {
1242         unsigned int size;
1243         int i;
1244
1245         size = skb_headlen(skb);
1246         while (size > HNS3_MAX_BD_SIZE) {
1247                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1248                 size -= HNS3_MAX_BD_SIZE;
1249
1250                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1251                         return bd_num;
1252         }
1253
1254         if (size) {
1255                 bd_size[bd_num++] = size;
1256                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1257                         return bd_num;
1258         }
1259
1260         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1261                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1262                 size = skb_frag_size(frag);
1263                 if (!size)
1264                         continue;
1265
1266                 while (size > HNS3_MAX_BD_SIZE) {
1267                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1268                         size -= HNS3_MAX_BD_SIZE;
1269
1270                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1271                                 return bd_num;
1272                 }
1273
1274                 bd_size[bd_num++] = size;
1275                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1276                         return bd_num;
1277         }
1278
1279         return bd_num;
1280 }
1281
1282 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1283                                    u8 max_non_tso_bd_num, unsigned int bd_num,
1284                                    unsigned int recursion_level)
1285 {
1286 #define HNS3_MAX_RECURSION_LEVEL        24
1287
1288         struct sk_buff *frag_skb;
1289
1290         /* If the total len is within the max bd limit */
1291         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1292                    !skb_has_frag_list(skb) &&
1293                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1294                 return skb_shinfo(skb)->nr_frags + 1U;
1295
1296         if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1297                 return UINT_MAX;
1298
1299         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1300         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1301                 return bd_num;
1302
1303         skb_walk_frags(skb, frag_skb) {
1304                 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1305                                         bd_num, recursion_level + 1);
1306                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1307                         return bd_num;
1308         }
1309
1310         return bd_num;
1311 }
1312
1313 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1314 {
1315         if (!skb->encapsulation)
1316                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1317
1318         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1319 }
1320
1321 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1322  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1323  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1324  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1325  * than MSS except the last max_non_tso_bd_num - 1 frags.
1326  */
1327 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1328                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1329 {
1330         unsigned int tot_len = 0;
1331         int i;
1332
1333         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1334                 tot_len += bd_size[i];
1335
1336         /* ensure the first max_non_tso_bd_num frags is greater than
1337          * mss + header
1338          */
1339         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1340             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1341                 return true;
1342
1343         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1344          * than mss except the last one.
1345          */
1346         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1347                 tot_len -= bd_size[i];
1348                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1349
1350                 if (tot_len < skb_shinfo(skb)->gso_size)
1351                         return true;
1352         }
1353
1354         return false;
1355 }
1356
1357 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1358 {
1359         int i;
1360
1361         for (i = 0; i < MAX_SKB_FRAGS; i++)
1362                 size[i] = skb_frag_size(&shinfo->frags[i]);
1363 }
1364
1365 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1366                               struct sk_buff *skb,
1367                               u8 max_non_tso_bd_num,
1368                               unsigned int bd_num)
1369 {
1370         /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1371          * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1372          */
1373         if (bd_num == UINT_MAX) {
1374                 u64_stats_update_begin(&ring->syncp);
1375                 ring->stats.over_max_recursion++;
1376                 u64_stats_update_end(&ring->syncp);
1377                 return -ENOMEM;
1378         }
1379
1380         /* The skb->len has exceeded the hw limitation, linearization
1381          * will not help.
1382          */
1383         if (skb->len > HNS3_MAX_TSO_SIZE ||
1384             (!skb_is_gso(skb) && skb->len >
1385              HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1386                 u64_stats_update_begin(&ring->syncp);
1387                 ring->stats.hw_limitation++;
1388                 u64_stats_update_end(&ring->syncp);
1389                 return -ENOMEM;
1390         }
1391
1392         if (__skb_linearize(skb)) {
1393                 u64_stats_update_begin(&ring->syncp);
1394                 ring->stats.sw_err_cnt++;
1395                 u64_stats_update_end(&ring->syncp);
1396                 return -ENOMEM;
1397         }
1398
1399         return 0;
1400 }
1401
1402 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1403                                   struct net_device *netdev,
1404                                   struct sk_buff *skb)
1405 {
1406         struct hns3_nic_priv *priv = netdev_priv(netdev);
1407         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1408         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1409         unsigned int bd_num;
1410
1411         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1412         if (unlikely(bd_num > max_non_tso_bd_num)) {
1413                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1414                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1415                                               max_non_tso_bd_num)) {
1416                         trace_hns3_over_max_bd(skb);
1417                         goto out;
1418                 }
1419
1420                 if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1421                                        bd_num))
1422                         return -ENOMEM;
1423
1424                 bd_num = hns3_tx_bd_count(skb->len);
1425
1426                 u64_stats_update_begin(&ring->syncp);
1427                 ring->stats.tx_copy++;
1428                 u64_stats_update_end(&ring->syncp);
1429         }
1430
1431 out:
1432         if (likely(ring_space(ring) >= bd_num))
1433                 return bd_num;
1434
1435         netif_stop_subqueue(netdev, ring->queue_index);
1436         smp_mb(); /* Memory barrier before checking ring_space */
1437
1438         /* Start queue in case hns3_clean_tx_ring has just made room
1439          * available and has not seen the queue stopped state performed
1440          * by netif_stop_subqueue above.
1441          */
1442         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1443             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1444                 netif_start_subqueue(netdev, ring->queue_index);
1445                 return bd_num;
1446         }
1447
1448         u64_stats_update_begin(&ring->syncp);
1449         ring->stats.tx_busy++;
1450         u64_stats_update_end(&ring->syncp);
1451
1452         return -EBUSY;
1453 }
1454
1455 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1456 {
1457         struct device *dev = ring_to_dev(ring);
1458         unsigned int i;
1459
1460         for (i = 0; i < ring->desc_num; i++) {
1461                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1462
1463                 memset(desc, 0, sizeof(*desc));
1464
1465                 /* check if this is where we started */
1466                 if (ring->next_to_use == next_to_use_orig)
1467                         break;
1468
1469                 /* rollback one */
1470                 ring_ptr_move_bw(ring, next_to_use);
1471
1472                 if (!ring->desc_cb[ring->next_to_use].dma)
1473                         continue;
1474
1475                 /* unmap the descriptor dma address */
1476                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1477                     ring->desc_cb[ring->next_to_use].type ==
1478                     DESC_TYPE_FRAGLIST_SKB)
1479                         dma_unmap_single(dev,
1480                                          ring->desc_cb[ring->next_to_use].dma,
1481                                         ring->desc_cb[ring->next_to_use].length,
1482                                         DMA_TO_DEVICE);
1483                 else if (ring->desc_cb[ring->next_to_use].length)
1484                         dma_unmap_page(dev,
1485                                        ring->desc_cb[ring->next_to_use].dma,
1486                                        ring->desc_cb[ring->next_to_use].length,
1487                                        DMA_TO_DEVICE);
1488
1489                 ring->desc_cb[ring->next_to_use].length = 0;
1490                 ring->desc_cb[ring->next_to_use].dma = 0;
1491                 ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1492         }
1493 }
1494
1495 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1496                                  struct sk_buff *skb, enum hns_desc_type type)
1497 {
1498         unsigned int size = skb_headlen(skb);
1499         struct sk_buff *frag_skb;
1500         int i, ret, bd_num = 0;
1501
1502         if (size) {
1503                 ret = hns3_fill_desc(ring, skb, size, type);
1504                 if (unlikely(ret < 0))
1505                         return ret;
1506
1507                 bd_num += ret;
1508         }
1509
1510         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1511                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1512
1513                 size = skb_frag_size(frag);
1514                 if (!size)
1515                         continue;
1516
1517                 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1518                 if (unlikely(ret < 0))
1519                         return ret;
1520
1521                 bd_num += ret;
1522         }
1523
1524         skb_walk_frags(skb, frag_skb) {
1525                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1526                                             DESC_TYPE_FRAGLIST_SKB);
1527                 if (unlikely(ret < 0))
1528                         return ret;
1529
1530                 bd_num += ret;
1531         }
1532
1533         return bd_num;
1534 }
1535
1536 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1537                              bool doorbell)
1538 {
1539         ring->pending_buf += num;
1540
1541         if (!doorbell) {
1542                 u64_stats_update_begin(&ring->syncp);
1543                 ring->stats.tx_more++;
1544                 u64_stats_update_end(&ring->syncp);
1545                 return;
1546         }
1547
1548         if (!ring->pending_buf)
1549                 return;
1550
1551         writel(ring->pending_buf,
1552                ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1553         ring->pending_buf = 0;
1554         WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1555 }
1556
1557 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1558 {
1559         struct hns3_nic_priv *priv = netdev_priv(netdev);
1560         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1561         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1562         struct netdev_queue *dev_queue;
1563         int pre_ntu, next_to_use_head;
1564         bool doorbell;
1565         int ret;
1566
1567         /* Hardware can only handle short frames above 32 bytes */
1568         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1569                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1570
1571                 u64_stats_update_begin(&ring->syncp);
1572                 ring->stats.sw_err_cnt++;
1573                 u64_stats_update_end(&ring->syncp);
1574
1575                 return NETDEV_TX_OK;
1576         }
1577
1578         /* Prefetch the data used later */
1579         prefetch(skb->data);
1580
1581         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1582         if (unlikely(ret <= 0)) {
1583                 if (ret == -EBUSY) {
1584                         hns3_tx_doorbell(ring, 0, true);
1585                         return NETDEV_TX_BUSY;
1586                 }
1587
1588                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1589                 goto out_err_tx_ok;
1590         }
1591
1592         next_to_use_head = ring->next_to_use;
1593
1594         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
1595                                  desc_cb);
1596         if (unlikely(ret < 0))
1597                 goto fill_err;
1598
1599         /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1600          * zero, which is unlikely, and 'ret > 0' means how many tx desc
1601          * need to be notified to the hw.
1602          */
1603         ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1604         if (unlikely(ret <= 0))
1605                 goto fill_err;
1606
1607         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1608                                         (ring->desc_num - 1);
1609         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1610                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1611         trace_hns3_tx_desc(ring, pre_ntu);
1612
1613         /* Complete translate all packets */
1614         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1615         doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
1616                                           netdev_xmit_more());
1617         hns3_tx_doorbell(ring, ret, doorbell);
1618
1619         return NETDEV_TX_OK;
1620
1621 fill_err:
1622         hns3_clear_desc(ring, next_to_use_head);
1623
1624 out_err_tx_ok:
1625         dev_kfree_skb_any(skb);
1626         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1627         return NETDEV_TX_OK;
1628 }
1629
1630 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1631 {
1632         struct hnae3_handle *h = hns3_get_handle(netdev);
1633         struct sockaddr *mac_addr = p;
1634         int ret;
1635
1636         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1637                 return -EADDRNOTAVAIL;
1638
1639         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1640                 netdev_info(netdev, "already using mac address %pM\n",
1641                             mac_addr->sa_data);
1642                 return 0;
1643         }
1644
1645         /* For VF device, if there is a perm_addr, then the user will not
1646          * be allowed to change the address.
1647          */
1648         if (!hns3_is_phys_func(h->pdev) &&
1649             !is_zero_ether_addr(netdev->perm_addr)) {
1650                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1651                            netdev->perm_addr, mac_addr->sa_data);
1652                 return -EPERM;
1653         }
1654
1655         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1656         if (ret) {
1657                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1658                 return ret;
1659         }
1660
1661         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1662
1663         return 0;
1664 }
1665
1666 static int hns3_nic_do_ioctl(struct net_device *netdev,
1667                              struct ifreq *ifr, int cmd)
1668 {
1669         struct hnae3_handle *h = hns3_get_handle(netdev);
1670
1671         if (!netif_running(netdev))
1672                 return -EINVAL;
1673
1674         if (!h->ae_algo->ops->do_ioctl)
1675                 return -EOPNOTSUPP;
1676
1677         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1678 }
1679
1680 static int hns3_nic_set_features(struct net_device *netdev,
1681                                  netdev_features_t features)
1682 {
1683         netdev_features_t changed = netdev->features ^ features;
1684         struct hns3_nic_priv *priv = netdev_priv(netdev);
1685         struct hnae3_handle *h = priv->ae_handle;
1686         bool enable;
1687         int ret;
1688
1689         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1690                 enable = !!(features & NETIF_F_GRO_HW);
1691                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1692                 if (ret)
1693                         return ret;
1694         }
1695
1696         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1697             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1698                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1699                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1700                 if (ret)
1701                         return ret;
1702         }
1703
1704         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1705                 enable = !!(features & NETIF_F_NTUPLE);
1706                 h->ae_algo->ops->enable_fd(h, enable);
1707         }
1708
1709         if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1710             h->ae_algo->ops->cls_flower_active(h)) {
1711                 netdev_err(netdev,
1712                            "there are offloaded TC filters active, cannot disable HW TC offload");
1713                 return -EINVAL;
1714         }
1715
1716         netdev->features = features;
1717         return 0;
1718 }
1719
1720 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1721                                              struct net_device *dev,
1722                                              netdev_features_t features)
1723 {
1724 #define HNS3_MAX_HDR_LEN        480U
1725 #define HNS3_MAX_L4_HDR_LEN     60U
1726
1727         size_t len;
1728
1729         if (skb->ip_summed != CHECKSUM_PARTIAL)
1730                 return features;
1731
1732         if (skb->encapsulation)
1733                 len = skb_inner_transport_header(skb) - skb->data;
1734         else
1735                 len = skb_transport_header(skb) - skb->data;
1736
1737         /* Assume L4 is 60 byte as TCP is the only protocol with a
1738          * a flexible value, and it's max len is 60 bytes.
1739          */
1740         len += HNS3_MAX_L4_HDR_LEN;
1741
1742         /* Hardware only supports checksum on the skb with a max header
1743          * len of 480 bytes.
1744          */
1745         if (len > HNS3_MAX_HDR_LEN)
1746                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1747
1748         return features;
1749 }
1750
1751 static void hns3_nic_get_stats64(struct net_device *netdev,
1752                                  struct rtnl_link_stats64 *stats)
1753 {
1754         struct hns3_nic_priv *priv = netdev_priv(netdev);
1755         int queue_num = priv->ae_handle->kinfo.num_tqps;
1756         struct hnae3_handle *handle = priv->ae_handle;
1757         struct hns3_enet_ring *ring;
1758         u64 rx_length_errors = 0;
1759         u64 rx_crc_errors = 0;
1760         u64 rx_multicast = 0;
1761         unsigned int start;
1762         u64 tx_errors = 0;
1763         u64 rx_errors = 0;
1764         unsigned int idx;
1765         u64 tx_bytes = 0;
1766         u64 rx_bytes = 0;
1767         u64 tx_pkts = 0;
1768         u64 rx_pkts = 0;
1769         u64 tx_drop = 0;
1770         u64 rx_drop = 0;
1771
1772         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1773                 return;
1774
1775         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1776
1777         for (idx = 0; idx < queue_num; idx++) {
1778                 /* fetch the tx stats */
1779                 ring = &priv->ring[idx];
1780                 do {
1781                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1782                         tx_bytes += ring->stats.tx_bytes;
1783                         tx_pkts += ring->stats.tx_pkts;
1784                         tx_drop += ring->stats.sw_err_cnt;
1785                         tx_drop += ring->stats.tx_vlan_err;
1786                         tx_drop += ring->stats.tx_l4_proto_err;
1787                         tx_drop += ring->stats.tx_l2l3l4_err;
1788                         tx_drop += ring->stats.tx_tso_err;
1789                         tx_drop += ring->stats.over_max_recursion;
1790                         tx_drop += ring->stats.hw_limitation;
1791                         tx_errors += ring->stats.sw_err_cnt;
1792                         tx_errors += ring->stats.tx_vlan_err;
1793                         tx_errors += ring->stats.tx_l4_proto_err;
1794                         tx_errors += ring->stats.tx_l2l3l4_err;
1795                         tx_errors += ring->stats.tx_tso_err;
1796                         tx_errors += ring->stats.over_max_recursion;
1797                         tx_errors += ring->stats.hw_limitation;
1798                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1799
1800                 /* fetch the rx stats */
1801                 ring = &priv->ring[idx + queue_num];
1802                 do {
1803                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1804                         rx_bytes += ring->stats.rx_bytes;
1805                         rx_pkts += ring->stats.rx_pkts;
1806                         rx_drop += ring->stats.l2_err;
1807                         rx_errors += ring->stats.l2_err;
1808                         rx_errors += ring->stats.l3l4_csum_err;
1809                         rx_crc_errors += ring->stats.l2_err;
1810                         rx_multicast += ring->stats.rx_multicast;
1811                         rx_length_errors += ring->stats.err_pkt_len;
1812                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1813         }
1814
1815         stats->tx_bytes = tx_bytes;
1816         stats->tx_packets = tx_pkts;
1817         stats->rx_bytes = rx_bytes;
1818         stats->rx_packets = rx_pkts;
1819
1820         stats->rx_errors = rx_errors;
1821         stats->multicast = rx_multicast;
1822         stats->rx_length_errors = rx_length_errors;
1823         stats->rx_crc_errors = rx_crc_errors;
1824         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1825
1826         stats->tx_errors = tx_errors;
1827         stats->rx_dropped = rx_drop;
1828         stats->tx_dropped = tx_drop;
1829         stats->collisions = netdev->stats.collisions;
1830         stats->rx_over_errors = netdev->stats.rx_over_errors;
1831         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1832         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1833         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1834         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1835         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1836         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1837         stats->tx_window_errors = netdev->stats.tx_window_errors;
1838         stats->rx_compressed = netdev->stats.rx_compressed;
1839         stats->tx_compressed = netdev->stats.tx_compressed;
1840 }
1841
1842 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1843 {
1844         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1845         struct hnae3_knic_private_info *kinfo;
1846         u8 tc = mqprio_qopt->qopt.num_tc;
1847         u16 mode = mqprio_qopt->mode;
1848         u8 hw = mqprio_qopt->qopt.hw;
1849         struct hnae3_handle *h;
1850
1851         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1852                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1853                 return -EOPNOTSUPP;
1854
1855         if (tc > HNAE3_MAX_TC)
1856                 return -EINVAL;
1857
1858         if (!netdev)
1859                 return -EINVAL;
1860
1861         h = hns3_get_handle(netdev);
1862         kinfo = &h->kinfo;
1863
1864         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1865
1866         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1867                 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1868 }
1869
1870 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1871                                     struct flow_cls_offload *flow)
1872 {
1873         int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1874         struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1875
1876         switch (flow->command) {
1877         case FLOW_CLS_REPLACE:
1878                 if (h->ae_algo->ops->add_cls_flower)
1879                         return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1880                 break;
1881         case FLOW_CLS_DESTROY:
1882                 if (h->ae_algo->ops->del_cls_flower)
1883                         return h->ae_algo->ops->del_cls_flower(h, flow);
1884                 break;
1885         default:
1886                 break;
1887         }
1888
1889         return -EOPNOTSUPP;
1890 }
1891
1892 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1893                                   void *cb_priv)
1894 {
1895         struct hns3_nic_priv *priv = cb_priv;
1896
1897         if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1898                 return -EOPNOTSUPP;
1899
1900         switch (type) {
1901         case TC_SETUP_CLSFLOWER:
1902                 return hns3_setup_tc_cls_flower(priv, type_data);
1903         default:
1904                 return -EOPNOTSUPP;
1905         }
1906 }
1907
1908 static LIST_HEAD(hns3_block_cb_list);
1909
1910 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1911                              void *type_data)
1912 {
1913         struct hns3_nic_priv *priv = netdev_priv(dev);
1914         int ret;
1915
1916         switch (type) {
1917         case TC_SETUP_QDISC_MQPRIO:
1918                 ret = hns3_setup_tc(dev, type_data);
1919                 break;
1920         case TC_SETUP_BLOCK:
1921                 ret = flow_block_cb_setup_simple(type_data,
1922                                                  &hns3_block_cb_list,
1923                                                  hns3_setup_tc_block_cb,
1924                                                  priv, priv, true);
1925                 break;
1926         default:
1927                 return -EOPNOTSUPP;
1928         }
1929
1930         return ret;
1931 }
1932
1933 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1934                                 __be16 proto, u16 vid)
1935 {
1936         struct hnae3_handle *h = hns3_get_handle(netdev);
1937         int ret = -EIO;
1938
1939         if (h->ae_algo->ops->set_vlan_filter)
1940                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1941
1942         return ret;
1943 }
1944
1945 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1946                                  __be16 proto, u16 vid)
1947 {
1948         struct hnae3_handle *h = hns3_get_handle(netdev);
1949         int ret = -EIO;
1950
1951         if (h->ae_algo->ops->set_vlan_filter)
1952                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1953
1954         return ret;
1955 }
1956
1957 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1958                                 u8 qos, __be16 vlan_proto)
1959 {
1960         struct hnae3_handle *h = hns3_get_handle(netdev);
1961         int ret = -EIO;
1962
1963         netif_dbg(h, drv, netdev,
1964                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1965                   vf, vlan, qos, ntohs(vlan_proto));
1966
1967         if (h->ae_algo->ops->set_vf_vlan_filter)
1968                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1969                                                           qos, vlan_proto);
1970
1971         return ret;
1972 }
1973
1974 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1975 {
1976         struct hnae3_handle *handle = hns3_get_handle(netdev);
1977
1978         if (hns3_nic_resetting(netdev))
1979                 return -EBUSY;
1980
1981         if (!handle->ae_algo->ops->set_vf_spoofchk)
1982                 return -EOPNOTSUPP;
1983
1984         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1985 }
1986
1987 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1988 {
1989         struct hnae3_handle *handle = hns3_get_handle(netdev);
1990
1991         if (!handle->ae_algo->ops->set_vf_trust)
1992                 return -EOPNOTSUPP;
1993
1994         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1995 }
1996
1997 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1998 {
1999         struct hnae3_handle *h = hns3_get_handle(netdev);
2000         int ret;
2001
2002         if (hns3_nic_resetting(netdev))
2003                 return -EBUSY;
2004
2005         if (!h->ae_algo->ops->set_mtu)
2006                 return -EOPNOTSUPP;
2007
2008         netif_dbg(h, drv, netdev,
2009                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2010
2011         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2012         if (ret)
2013                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2014                            ret);
2015         else
2016                 netdev->mtu = new_mtu;
2017
2018         return ret;
2019 }
2020
2021 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2022 {
2023         struct hns3_nic_priv *priv = netdev_priv(ndev);
2024         struct hnae3_handle *h = hns3_get_handle(ndev);
2025         struct hns3_enet_ring *tx_ring;
2026         struct napi_struct *napi;
2027         int timeout_queue = 0;
2028         int hw_head, hw_tail;
2029         int fbd_num, fbd_oft;
2030         int ebd_num, ebd_oft;
2031         int bd_num, bd_err;
2032         int ring_en, tc;
2033         int i;
2034
2035         /* Find the stopped queue the same way the stack does */
2036         for (i = 0; i < ndev->num_tx_queues; i++) {
2037                 struct netdev_queue *q;
2038                 unsigned long trans_start;
2039
2040                 q = netdev_get_tx_queue(ndev, i);
2041                 trans_start = q->trans_start;
2042                 if (netif_xmit_stopped(q) &&
2043                     time_after(jiffies,
2044                                (trans_start + ndev->watchdog_timeo))) {
2045                         timeout_queue = i;
2046                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2047                                     q->state,
2048                                     jiffies_to_msecs(jiffies - trans_start));
2049                         break;
2050                 }
2051         }
2052
2053         if (i == ndev->num_tx_queues) {
2054                 netdev_info(ndev,
2055                             "no netdev TX timeout queue found, timeout count: %llu\n",
2056                             priv->tx_timeout_count);
2057                 return false;
2058         }
2059
2060         priv->tx_timeout_count++;
2061
2062         tx_ring = &priv->ring[timeout_queue];
2063         napi = &tx_ring->tqp_vector->napi;
2064
2065         netdev_info(ndev,
2066                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2067                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2068                     tx_ring->next_to_clean, napi->state);
2069
2070         netdev_info(ndev,
2071                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2072                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2073                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2074
2075         netdev_info(ndev,
2076                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2077                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2078                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2079
2080         /* When mac received many pause frames continuous, it's unable to send
2081          * packets, which may cause tx timeout
2082          */
2083         if (h->ae_algo->ops->get_mac_stats) {
2084                 struct hns3_mac_stats mac_stats;
2085
2086                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2087                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2088                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2089         }
2090
2091         hw_head = readl_relaxed(tx_ring->tqp->io_base +
2092                                 HNS3_RING_TX_RING_HEAD_REG);
2093         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2094                                 HNS3_RING_TX_RING_TAIL_REG);
2095         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2096                                 HNS3_RING_TX_RING_FBDNUM_REG);
2097         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2098                                 HNS3_RING_TX_RING_OFFSET_REG);
2099         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2100                                 HNS3_RING_TX_RING_EBDNUM_REG);
2101         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2102                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
2103         bd_num = readl_relaxed(tx_ring->tqp->io_base +
2104                                HNS3_RING_TX_RING_BD_NUM_REG);
2105         bd_err = readl_relaxed(tx_ring->tqp->io_base +
2106                                HNS3_RING_TX_RING_BD_ERR_REG);
2107         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2108         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2109
2110         netdev_info(ndev,
2111                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2112                     bd_num, hw_head, hw_tail, bd_err,
2113                     readl(tx_ring->tqp_vector->mask_addr));
2114         netdev_info(ndev,
2115                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2116                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2117
2118         return true;
2119 }
2120
2121 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2122 {
2123         struct hns3_nic_priv *priv = netdev_priv(ndev);
2124         struct hnae3_handle *h = priv->ae_handle;
2125
2126         if (!hns3_get_tx_timeo_queue_info(ndev))
2127                 return;
2128
2129         /* request the reset, and let the hclge to determine
2130          * which reset level should be done
2131          */
2132         if (h->ae_algo->ops->reset_event)
2133                 h->ae_algo->ops->reset_event(h->pdev, h);
2134 }
2135
2136 #ifdef CONFIG_RFS_ACCEL
2137 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2138                               u16 rxq_index, u32 flow_id)
2139 {
2140         struct hnae3_handle *h = hns3_get_handle(dev);
2141         struct flow_keys fkeys;
2142
2143         if (!h->ae_algo->ops->add_arfs_entry)
2144                 return -EOPNOTSUPP;
2145
2146         if (skb->encapsulation)
2147                 return -EPROTONOSUPPORT;
2148
2149         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2150                 return -EPROTONOSUPPORT;
2151
2152         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2153              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2154             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2155              fkeys.basic.ip_proto != IPPROTO_UDP))
2156                 return -EPROTONOSUPPORT;
2157
2158         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2159 }
2160 #endif
2161
2162 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2163                                   struct ifla_vf_info *ivf)
2164 {
2165         struct hnae3_handle *h = hns3_get_handle(ndev);
2166
2167         if (!h->ae_algo->ops->get_vf_config)
2168                 return -EOPNOTSUPP;
2169
2170         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2171 }
2172
2173 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2174                                       int link_state)
2175 {
2176         struct hnae3_handle *h = hns3_get_handle(ndev);
2177
2178         if (!h->ae_algo->ops->set_vf_link_state)
2179                 return -EOPNOTSUPP;
2180
2181         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2182 }
2183
2184 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2185                                 int min_tx_rate, int max_tx_rate)
2186 {
2187         struct hnae3_handle *h = hns3_get_handle(ndev);
2188
2189         if (!h->ae_algo->ops->set_vf_rate)
2190                 return -EOPNOTSUPP;
2191
2192         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2193                                             false);
2194 }
2195
2196 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2197 {
2198         struct hnae3_handle *h = hns3_get_handle(netdev);
2199
2200         if (!h->ae_algo->ops->set_vf_mac)
2201                 return -EOPNOTSUPP;
2202
2203         if (is_multicast_ether_addr(mac)) {
2204                 netdev_err(netdev,
2205                            "Invalid MAC:%pM specified. Could not set MAC\n",
2206                            mac);
2207                 return -EINVAL;
2208         }
2209
2210         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2211 }
2212
2213 static const struct net_device_ops hns3_nic_netdev_ops = {
2214         .ndo_open               = hns3_nic_net_open,
2215         .ndo_stop               = hns3_nic_net_stop,
2216         .ndo_start_xmit         = hns3_nic_net_xmit,
2217         .ndo_tx_timeout         = hns3_nic_net_timeout,
2218         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2219         .ndo_do_ioctl           = hns3_nic_do_ioctl,
2220         .ndo_change_mtu         = hns3_nic_change_mtu,
2221         .ndo_set_features       = hns3_nic_set_features,
2222         .ndo_features_check     = hns3_features_check,
2223         .ndo_get_stats64        = hns3_nic_get_stats64,
2224         .ndo_setup_tc           = hns3_nic_setup_tc,
2225         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2226         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2227         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2228         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2229         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2230         .ndo_set_vf_trust       = hns3_set_vf_trust,
2231 #ifdef CONFIG_RFS_ACCEL
2232         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2233 #endif
2234         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2235         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2236         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2237         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2238 };
2239
2240 bool hns3_is_phys_func(struct pci_dev *pdev)
2241 {
2242         u32 dev_id = pdev->device;
2243
2244         switch (dev_id) {
2245         case HNAE3_DEV_ID_GE:
2246         case HNAE3_DEV_ID_25GE:
2247         case HNAE3_DEV_ID_25GE_RDMA:
2248         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2249         case HNAE3_DEV_ID_50GE_RDMA:
2250         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2251         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2252         case HNAE3_DEV_ID_200G_RDMA:
2253                 return true;
2254         case HNAE3_DEV_ID_VF:
2255         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2256                 return false;
2257         default:
2258                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2259                          dev_id);
2260         }
2261
2262         return false;
2263 }
2264
2265 static void hns3_disable_sriov(struct pci_dev *pdev)
2266 {
2267         /* If our VFs are assigned we cannot shut down SR-IOV
2268          * without causing issues, so just leave the hardware
2269          * available but disabled
2270          */
2271         if (pci_vfs_assigned(pdev)) {
2272                 dev_warn(&pdev->dev,
2273                          "disabling driver while VFs are assigned\n");
2274                 return;
2275         }
2276
2277         pci_disable_sriov(pdev);
2278 }
2279
2280 /* hns3_probe - Device initialization routine
2281  * @pdev: PCI device information struct
2282  * @ent: entry in hns3_pci_tbl
2283  *
2284  * hns3_probe initializes a PF identified by a pci_dev structure.
2285  * The OS initialization, configuring of the PF private structure,
2286  * and a hardware reset occur.
2287  *
2288  * Returns 0 on success, negative on failure
2289  */
2290 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2291 {
2292         struct hnae3_ae_dev *ae_dev;
2293         int ret;
2294
2295         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2296         if (!ae_dev)
2297                 return -ENOMEM;
2298
2299         ae_dev->pdev = pdev;
2300         ae_dev->flag = ent->driver_data;
2301         pci_set_drvdata(pdev, ae_dev);
2302
2303         ret = hnae3_register_ae_dev(ae_dev);
2304         if (ret)
2305                 pci_set_drvdata(pdev, NULL);
2306
2307         return ret;
2308 }
2309
2310 /* hns3_remove - Device removal routine
2311  * @pdev: PCI device information struct
2312  */
2313 static void hns3_remove(struct pci_dev *pdev)
2314 {
2315         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2316
2317         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2318                 hns3_disable_sriov(pdev);
2319
2320         hnae3_unregister_ae_dev(ae_dev);
2321         pci_set_drvdata(pdev, NULL);
2322 }
2323
2324 /**
2325  * hns3_pci_sriov_configure
2326  * @pdev: pointer to a pci_dev structure
2327  * @num_vfs: number of VFs to allocate
2328  *
2329  * Enable or change the number of VFs. Called when the user updates the number
2330  * of VFs in sysfs.
2331  **/
2332 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2333 {
2334         int ret;
2335
2336         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2337                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2338                 return -EINVAL;
2339         }
2340
2341         if (num_vfs) {
2342                 ret = pci_enable_sriov(pdev, num_vfs);
2343                 if (ret)
2344                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2345                 else
2346                         return num_vfs;
2347         } else if (!pci_vfs_assigned(pdev)) {
2348                 pci_disable_sriov(pdev);
2349         } else {
2350                 dev_warn(&pdev->dev,
2351                          "Unable to free VFs because some are assigned to VMs.\n");
2352         }
2353
2354         return 0;
2355 }
2356
2357 static void hns3_shutdown(struct pci_dev *pdev)
2358 {
2359         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2360
2361         hnae3_unregister_ae_dev(ae_dev);
2362         pci_set_drvdata(pdev, NULL);
2363
2364         if (system_state == SYSTEM_POWER_OFF)
2365                 pci_set_power_state(pdev, PCI_D3hot);
2366 }
2367
2368 static int __maybe_unused hns3_suspend(struct device *dev)
2369 {
2370         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2371
2372         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2373                 dev_info(dev, "Begin to suspend.\n");
2374                 if (ae_dev->ops && ae_dev->ops->reset_prepare)
2375                         ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
2376         }
2377
2378         return 0;
2379 }
2380
2381 static int __maybe_unused hns3_resume(struct device *dev)
2382 {
2383         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2384
2385         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2386                 dev_info(dev, "Begin to resume.\n");
2387                 if (ae_dev->ops && ae_dev->ops->reset_done)
2388                         ae_dev->ops->reset_done(ae_dev);
2389         }
2390
2391         return 0;
2392 }
2393
2394 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2395                                             pci_channel_state_t state)
2396 {
2397         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2398         pci_ers_result_t ret;
2399
2400         dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2401
2402         if (state == pci_channel_io_perm_failure)
2403                 return PCI_ERS_RESULT_DISCONNECT;
2404
2405         if (!ae_dev || !ae_dev->ops) {
2406                 dev_err(&pdev->dev,
2407                         "Can't recover - error happened before device initialized\n");
2408                 return PCI_ERS_RESULT_NONE;
2409         }
2410
2411         if (ae_dev->ops->handle_hw_ras_error)
2412                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2413         else
2414                 return PCI_ERS_RESULT_NONE;
2415
2416         return ret;
2417 }
2418
2419 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2420 {
2421         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2422         const struct hnae3_ae_ops *ops;
2423         enum hnae3_reset_type reset_type;
2424         struct device *dev = &pdev->dev;
2425
2426         if (!ae_dev || !ae_dev->ops)
2427                 return PCI_ERS_RESULT_NONE;
2428
2429         ops = ae_dev->ops;
2430         /* request the reset */
2431         if (ops->reset_event && ops->get_reset_level &&
2432             ops->set_default_reset_request) {
2433                 if (ae_dev->hw_err_reset_req) {
2434                         reset_type = ops->get_reset_level(ae_dev,
2435                                                 &ae_dev->hw_err_reset_req);
2436                         ops->set_default_reset_request(ae_dev, reset_type);
2437                         dev_info(dev, "requesting reset due to PCI error\n");
2438                         ops->reset_event(pdev, NULL);
2439                 }
2440
2441                 return PCI_ERS_RESULT_RECOVERED;
2442         }
2443
2444         return PCI_ERS_RESULT_DISCONNECT;
2445 }
2446
2447 static void hns3_reset_prepare(struct pci_dev *pdev)
2448 {
2449         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2450
2451         dev_info(&pdev->dev, "FLR prepare\n");
2452         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
2453                 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
2454 }
2455
2456 static void hns3_reset_done(struct pci_dev *pdev)
2457 {
2458         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2459
2460         dev_info(&pdev->dev, "FLR done\n");
2461         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
2462                 ae_dev->ops->reset_done(ae_dev);
2463 }
2464
2465 static const struct pci_error_handlers hns3_err_handler = {
2466         .error_detected = hns3_error_detected,
2467         .slot_reset     = hns3_slot_reset,
2468         .reset_prepare  = hns3_reset_prepare,
2469         .reset_done     = hns3_reset_done,
2470 };
2471
2472 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
2473
2474 static struct pci_driver hns3_driver = {
2475         .name     = hns3_driver_name,
2476         .id_table = hns3_pci_tbl,
2477         .probe    = hns3_probe,
2478         .remove   = hns3_remove,
2479         .shutdown = hns3_shutdown,
2480         .driver.pm  = &hns3_pm_ops,
2481         .sriov_configure = hns3_pci_sriov_configure,
2482         .err_handler    = &hns3_err_handler,
2483 };
2484
2485 /* set default feature to hns3 */
2486 static void hns3_set_default_feature(struct net_device *netdev)
2487 {
2488         struct hnae3_handle *h = hns3_get_handle(netdev);
2489         struct pci_dev *pdev = h->pdev;
2490         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2491
2492         netdev->priv_flags |= IFF_UNICAST_FLT;
2493
2494         netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2495                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2496                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2497                 NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2498
2499         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2500
2501         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2502                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2503                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2504                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2505                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2506                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2507
2508         netdev->vlan_features |= NETIF_F_RXCSUM |
2509                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2510                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2511                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2512                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2513
2514         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2515                 NETIF_F_HW_VLAN_CTAG_RX |
2516                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2517                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2518                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2519                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2520
2521         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2522                 netdev->hw_features |= NETIF_F_GRO_HW;
2523                 netdev->features |= NETIF_F_GRO_HW;
2524
2525                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2526                         netdev->hw_features |= NETIF_F_NTUPLE;
2527                         netdev->features |= NETIF_F_NTUPLE;
2528                 }
2529         }
2530
2531         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2532                 netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2533                 netdev->features |= NETIF_F_GSO_UDP_L4;
2534                 netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2535                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2536         }
2537
2538         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2539                 netdev->hw_features |= NETIF_F_HW_CSUM;
2540                 netdev->features |= NETIF_F_HW_CSUM;
2541                 netdev->vlan_features |= NETIF_F_HW_CSUM;
2542                 netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2543         } else {
2544                 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2545                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2546                 netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2547                 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2548         }
2549
2550         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2551                 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2552                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2553                 netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2554                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2555         }
2556
2557         if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2558                 netdev->hw_features |= NETIF_F_HW_TC;
2559                 netdev->features |= NETIF_F_HW_TC;
2560         }
2561 }
2562
2563 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2564                              struct hns3_desc_cb *cb)
2565 {
2566         unsigned int order = hns3_page_order(ring);
2567         struct page *p;
2568
2569         p = dev_alloc_pages(order);
2570         if (!p)
2571                 return -ENOMEM;
2572
2573         cb->priv = p;
2574         cb->page_offset = 0;
2575         cb->reuse_flag = 0;
2576         cb->buf  = page_address(p);
2577         cb->length = hns3_page_size(ring);
2578         cb->type = DESC_TYPE_PAGE;
2579         page_ref_add(p, USHRT_MAX - 1);
2580         cb->pagecnt_bias = USHRT_MAX;
2581
2582         return 0;
2583 }
2584
2585 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2586                              struct hns3_desc_cb *cb, int budget)
2587 {
2588         if (cb->type == DESC_TYPE_SKB)
2589                 napi_consume_skb(cb->priv, budget);
2590         else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2591                 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2592         memset(cb, 0, sizeof(*cb));
2593 }
2594
2595 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2596 {
2597         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2598                                cb->length, ring_to_dma_dir(ring));
2599
2600         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2601                 return -EIO;
2602
2603         return 0;
2604 }
2605
2606 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2607                               struct hns3_desc_cb *cb)
2608 {
2609         if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2610                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2611                                  ring_to_dma_dir(ring));
2612         else if (cb->length)
2613                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2614                                ring_to_dma_dir(ring));
2615 }
2616
2617 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2618 {
2619         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2620         ring->desc[i].addr = 0;
2621 }
2622
2623 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2624                                     int budget)
2625 {
2626         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2627
2628         if (!ring->desc_cb[i].dma)
2629                 return;
2630
2631         hns3_buffer_detach(ring, i);
2632         hns3_free_buffer(ring, cb, budget);
2633 }
2634
2635 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2636 {
2637         int i;
2638
2639         for (i = 0; i < ring->desc_num; i++)
2640                 hns3_free_buffer_detach(ring, i, 0);
2641 }
2642
2643 /* free desc along with its attached buffer */
2644 static void hns3_free_desc(struct hns3_enet_ring *ring)
2645 {
2646         int size = ring->desc_num * sizeof(ring->desc[0]);
2647
2648         hns3_free_buffers(ring);
2649
2650         if (ring->desc) {
2651                 dma_free_coherent(ring_to_dev(ring), size,
2652                                   ring->desc, ring->desc_dma_addr);
2653                 ring->desc = NULL;
2654         }
2655 }
2656
2657 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2658 {
2659         int size = ring->desc_num * sizeof(ring->desc[0]);
2660
2661         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2662                                         &ring->desc_dma_addr, GFP_KERNEL);
2663         if (!ring->desc)
2664                 return -ENOMEM;
2665
2666         return 0;
2667 }
2668
2669 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2670                                    struct hns3_desc_cb *cb)
2671 {
2672         int ret;
2673
2674         ret = hns3_alloc_buffer(ring, cb);
2675         if (ret)
2676                 goto out;
2677
2678         ret = hns3_map_buffer(ring, cb);
2679         if (ret)
2680                 goto out_with_buf;
2681
2682         return 0;
2683
2684 out_with_buf:
2685         hns3_free_buffer(ring, cb, 0);
2686 out:
2687         return ret;
2688 }
2689
2690 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2691 {
2692         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2693
2694         if (ret)
2695                 return ret;
2696
2697         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2698
2699         return 0;
2700 }
2701
2702 /* Allocate memory for raw pkg, and map with dma */
2703 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2704 {
2705         int i, j, ret;
2706
2707         for (i = 0; i < ring->desc_num; i++) {
2708                 ret = hns3_alloc_and_attach_buffer(ring, i);
2709                 if (ret)
2710                         goto out_buffer_fail;
2711         }
2712
2713         return 0;
2714
2715 out_buffer_fail:
2716         for (j = i - 1; j >= 0; j--)
2717                 hns3_free_buffer_detach(ring, j, 0);
2718         return ret;
2719 }
2720
2721 /* detach a in-used buffer and replace with a reserved one */
2722 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2723                                 struct hns3_desc_cb *res_cb)
2724 {
2725         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2726         ring->desc_cb[i] = *res_cb;
2727         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2728         ring->desc[i].rx.bd_base_info = 0;
2729 }
2730
2731 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2732 {
2733         ring->desc_cb[i].reuse_flag = 0;
2734         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2735                                          ring->desc_cb[i].page_offset);
2736         ring->desc[i].rx.bd_base_info = 0;
2737
2738         dma_sync_single_for_device(ring_to_dev(ring),
2739                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2740                         hns3_buf_size(ring),
2741                         DMA_FROM_DEVICE);
2742 }
2743
2744 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2745                                   int *bytes, int *pkts, int budget)
2746 {
2747         /* pair with ring->last_to_use update in hns3_tx_doorbell(),
2748          * smp_store_release() is not used in hns3_tx_doorbell() because
2749          * the doorbell operation already have the needed barrier operation.
2750          */
2751         int ltu = smp_load_acquire(&ring->last_to_use);
2752         int ntc = ring->next_to_clean;
2753         struct hns3_desc_cb *desc_cb;
2754         bool reclaimed = false;
2755         struct hns3_desc *desc;
2756
2757         while (ltu != ntc) {
2758                 desc = &ring->desc[ntc];
2759
2760                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2761                                 BIT(HNS3_TXD_VLD_B))
2762                         break;
2763
2764                 desc_cb = &ring->desc_cb[ntc];
2765
2766                 if (desc_cb->type == DESC_TYPE_SKB) {
2767                         (*pkts)++;
2768                         (*bytes) += desc_cb->send_bytes;
2769                 }
2770
2771                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2772                 hns3_free_buffer_detach(ring, ntc, budget);
2773
2774                 if (++ntc == ring->desc_num)
2775                         ntc = 0;
2776
2777                 /* Issue prefetch for next Tx descriptor */
2778                 prefetch(&ring->desc_cb[ntc]);
2779                 reclaimed = true;
2780         }
2781
2782         if (unlikely(!reclaimed))
2783                 return false;
2784
2785         /* This smp_store_release() pairs with smp_load_acquire() in
2786          * ring_space called by hns3_nic_net_xmit.
2787          */
2788         smp_store_release(&ring->next_to_clean, ntc);
2789         return true;
2790 }
2791
2792 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2793 {
2794         struct net_device *netdev = ring_to_netdev(ring);
2795         struct hns3_nic_priv *priv = netdev_priv(netdev);
2796         struct netdev_queue *dev_queue;
2797         int bytes, pkts;
2798
2799         bytes = 0;
2800         pkts = 0;
2801
2802         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2803                 return;
2804
2805         ring->tqp_vector->tx_group.total_bytes += bytes;
2806         ring->tqp_vector->tx_group.total_packets += pkts;
2807
2808         u64_stats_update_begin(&ring->syncp);
2809         ring->stats.tx_bytes += bytes;
2810         ring->stats.tx_pkts += pkts;
2811         u64_stats_update_end(&ring->syncp);
2812
2813         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2814         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2815
2816         if (unlikely(netif_carrier_ok(netdev) &&
2817                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2818                 /* Make sure that anybody stopping the queue after this
2819                  * sees the new next_to_clean.
2820                  */
2821                 smp_mb();
2822                 if (netif_tx_queue_stopped(dev_queue) &&
2823                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2824                         netif_tx_wake_queue(dev_queue);
2825                         ring->stats.restart_queue++;
2826                 }
2827         }
2828 }
2829
2830 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2831 {
2832         int ntc = ring->next_to_clean;
2833         int ntu = ring->next_to_use;
2834
2835         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2836 }
2837
2838 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2839                                       int cleand_count)
2840 {
2841         struct hns3_desc_cb *desc_cb;
2842         struct hns3_desc_cb res_cbs;
2843         int i, ret;
2844
2845         for (i = 0; i < cleand_count; i++) {
2846                 desc_cb = &ring->desc_cb[ring->next_to_use];
2847                 if (desc_cb->reuse_flag) {
2848                         u64_stats_update_begin(&ring->syncp);
2849                         ring->stats.reuse_pg_cnt++;
2850                         u64_stats_update_end(&ring->syncp);
2851
2852                         hns3_reuse_buffer(ring, ring->next_to_use);
2853                 } else {
2854                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2855                         if (ret) {
2856                                 u64_stats_update_begin(&ring->syncp);
2857                                 ring->stats.sw_err_cnt++;
2858                                 u64_stats_update_end(&ring->syncp);
2859
2860                                 hns3_rl_err(ring_to_netdev(ring),
2861                                             "alloc rx buffer failed: %d\n",
2862                                             ret);
2863                                 break;
2864                         }
2865                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2866
2867                         u64_stats_update_begin(&ring->syncp);
2868                         ring->stats.non_reuse_pg++;
2869                         u64_stats_update_end(&ring->syncp);
2870                 }
2871
2872                 ring_ptr_move_fw(ring, next_to_use);
2873         }
2874
2875         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2876 }
2877
2878 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2879 {
2880         return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2881 }
2882
2883 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2884                                 struct hns3_enet_ring *ring, int pull_len,
2885                                 struct hns3_desc_cb *desc_cb)
2886 {
2887         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2888         int size = le16_to_cpu(desc->rx.size);
2889         u32 truesize = hns3_buf_size(ring);
2890
2891         desc_cb->pagecnt_bias--;
2892         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2893                         size - pull_len, truesize);
2894
2895         /* Avoid re-using remote and pfmemalloc pages, or the stack is still
2896          * using the page when page_offset rollback to zero, flag default
2897          * unreuse
2898          */
2899         if (!dev_page_is_reusable(desc_cb->priv) ||
2900             (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2901                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2902                 return;
2903         }
2904
2905         /* Move offset up to the next cache line */
2906         desc_cb->page_offset += truesize;
2907
2908         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2909                 desc_cb->reuse_flag = 1;
2910         } else if (hns3_can_reuse_page(desc_cb)) {
2911                 desc_cb->reuse_flag = 1;
2912                 desc_cb->page_offset = 0;
2913         } else if (desc_cb->pagecnt_bias) {
2914                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2915                 return;
2916         }
2917
2918         if (unlikely(!desc_cb->pagecnt_bias)) {
2919                 page_ref_add(desc_cb->priv, USHRT_MAX);
2920                 desc_cb->pagecnt_bias = USHRT_MAX;
2921         }
2922 }
2923
2924 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2925 {
2926         __be16 type = skb->protocol;
2927         struct tcphdr *th;
2928         int depth = 0;
2929
2930         while (eth_type_vlan(type)) {
2931                 struct vlan_hdr *vh;
2932
2933                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2934                         return -EFAULT;
2935
2936                 vh = (struct vlan_hdr *)(skb->data + depth);
2937                 type = vh->h_vlan_encapsulated_proto;
2938                 depth += VLAN_HLEN;
2939         }
2940
2941         skb_set_network_header(skb, depth);
2942
2943         if (type == htons(ETH_P_IP)) {
2944                 const struct iphdr *iph = ip_hdr(skb);
2945
2946                 depth += sizeof(struct iphdr);
2947                 skb_set_transport_header(skb, depth);
2948                 th = tcp_hdr(skb);
2949                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2950                                           iph->daddr, 0);
2951         } else if (type == htons(ETH_P_IPV6)) {
2952                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2953
2954                 depth += sizeof(struct ipv6hdr);
2955                 skb_set_transport_header(skb, depth);
2956                 th = tcp_hdr(skb);
2957                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2958                                           &iph->daddr, 0);
2959         } else {
2960                 hns3_rl_err(skb->dev,
2961                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2962                             be16_to_cpu(type), depth);
2963                 return -EFAULT;
2964         }
2965
2966         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2967         if (th->cwr)
2968                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2969
2970         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2971                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2972
2973         skb->csum_start = (unsigned char *)th - skb->head;
2974         skb->csum_offset = offsetof(struct tcphdr, check);
2975         skb->ip_summed = CHECKSUM_PARTIAL;
2976
2977         trace_hns3_gro(skb);
2978
2979         return 0;
2980 }
2981
2982 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2983                                    struct sk_buff *skb, u32 l234info)
2984 {
2985         u32 lo, hi;
2986
2987         u64_stats_update_begin(&ring->syncp);
2988         ring->stats.csum_complete++;
2989         u64_stats_update_end(&ring->syncp);
2990         skb->ip_summed = CHECKSUM_COMPLETE;
2991         lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2992                              HNS3_RXD_L2_CSUM_L_S);
2993         hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2994                              HNS3_RXD_L2_CSUM_H_S);
2995         skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2996 }
2997
2998 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2999                              u32 l234info, u32 bd_base_info, u32 ol_info)
3000 {
3001         struct net_device *netdev = ring_to_netdev(ring);
3002         int l3_type, l4_type;
3003         int ol4_type;
3004
3005         skb->ip_summed = CHECKSUM_NONE;
3006
3007         skb_checksum_none_assert(skb);
3008
3009         if (!(netdev->features & NETIF_F_RXCSUM))
3010                 return;
3011
3012         if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
3013                 hns3_checksum_complete(ring, skb, l234info);
3014                 return;
3015         }
3016
3017         /* check if hardware has done checksum */
3018         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3019                 return;
3020
3021         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3022                                  BIT(HNS3_RXD_OL3E_B) |
3023                                  BIT(HNS3_RXD_OL4E_B)))) {
3024                 u64_stats_update_begin(&ring->syncp);
3025                 ring->stats.l3l4_csum_err++;
3026                 u64_stats_update_end(&ring->syncp);
3027
3028                 return;
3029         }
3030
3031         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3032                                    HNS3_RXD_OL4ID_S);
3033         switch (ol4_type) {
3034         case HNS3_OL4_TYPE_MAC_IN_UDP:
3035         case HNS3_OL4_TYPE_NVGRE:
3036                 skb->csum_level = 1;
3037                 fallthrough;
3038         case HNS3_OL4_TYPE_NO_TUN:
3039                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3040                                           HNS3_RXD_L3ID_S);
3041                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3042                                           HNS3_RXD_L4ID_S);
3043                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3044                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3045                      l3_type == HNS3_L3_TYPE_IPV6) &&
3046                     (l4_type == HNS3_L4_TYPE_UDP ||
3047                      l4_type == HNS3_L4_TYPE_TCP ||
3048                      l4_type == HNS3_L4_TYPE_SCTP))
3049                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3050                 break;
3051         default:
3052                 break;
3053         }
3054 }
3055
3056 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3057 {
3058         if (skb_has_frag_list(skb))
3059                 napi_gro_flush(&ring->tqp_vector->napi, false);
3060
3061         napi_gro_receive(&ring->tqp_vector->napi, skb);
3062 }
3063
3064 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3065                                 struct hns3_desc *desc, u32 l234info,
3066                                 u16 *vlan_tag)
3067 {
3068         struct hnae3_handle *handle = ring->tqp->handle;
3069         struct pci_dev *pdev = ring->tqp->handle->pdev;
3070         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3071
3072         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3073                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3074                 if (!(*vlan_tag & VLAN_VID_MASK))
3075                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3076
3077                 return (*vlan_tag != 0);
3078         }
3079
3080 #define HNS3_STRP_OUTER_VLAN    0x1
3081 #define HNS3_STRP_INNER_VLAN    0x2
3082 #define HNS3_STRP_BOTH          0x3
3083
3084         /* Hardware always insert VLAN tag into RX descriptor when
3085          * remove the tag from packet, driver needs to determine
3086          * reporting which tag to stack.
3087          */
3088         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3089                                 HNS3_RXD_STRP_TAGP_S)) {
3090         case HNS3_STRP_OUTER_VLAN:
3091                 if (handle->port_base_vlan_state !=
3092                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3093                         return false;
3094
3095                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3096                 return true;
3097         case HNS3_STRP_INNER_VLAN:
3098                 if (handle->port_base_vlan_state !=
3099                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3100                         return false;
3101
3102                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3103                 return true;
3104         case HNS3_STRP_BOTH:
3105                 if (handle->port_base_vlan_state ==
3106                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3107                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3108                 else
3109                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3110
3111                 return true;
3112         default:
3113                 return false;
3114         }
3115 }
3116
3117 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3118 {
3119         ring->desc[ring->next_to_clean].rx.bd_base_info &=
3120                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3121         ring->next_to_clean += 1;
3122
3123         if (unlikely(ring->next_to_clean == ring->desc_num))
3124                 ring->next_to_clean = 0;
3125 }
3126
3127 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3128                           unsigned char *va)
3129 {
3130         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3131         struct net_device *netdev = ring_to_netdev(ring);
3132         struct sk_buff *skb;
3133
3134         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3135         skb = ring->skb;
3136         if (unlikely(!skb)) {
3137                 hns3_rl_err(netdev, "alloc rx skb fail\n");
3138
3139                 u64_stats_update_begin(&ring->syncp);
3140                 ring->stats.sw_err_cnt++;
3141                 u64_stats_update_end(&ring->syncp);
3142
3143                 return -ENOMEM;
3144         }
3145
3146         trace_hns3_rx_desc(ring);
3147         prefetchw(skb->data);
3148
3149         ring->pending_buf = 1;
3150         ring->frag_num = 0;
3151         ring->tail_skb = NULL;
3152         if (length <= HNS3_RX_HEAD_SIZE) {
3153                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3154
3155                 /* We can reuse buffer as-is, just make sure it is reusable */
3156                 if (dev_page_is_reusable(desc_cb->priv))
3157                         desc_cb->reuse_flag = 1;
3158                 else /* This page cannot be reused so discard it */
3159                         __page_frag_cache_drain(desc_cb->priv,
3160                                                 desc_cb->pagecnt_bias);
3161
3162                 hns3_rx_ring_move_fw(ring);
3163                 return 0;
3164         }
3165         u64_stats_update_begin(&ring->syncp);
3166         ring->stats.seg_pkt_cnt++;
3167         u64_stats_update_end(&ring->syncp);
3168
3169         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3170         __skb_put(skb, ring->pull_len);
3171         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3172                             desc_cb);
3173         hns3_rx_ring_move_fw(ring);
3174
3175         return 0;
3176 }
3177
3178 static int hns3_add_frag(struct hns3_enet_ring *ring)
3179 {
3180         struct sk_buff *skb = ring->skb;
3181         struct sk_buff *head_skb = skb;
3182         struct sk_buff *new_skb;
3183         struct hns3_desc_cb *desc_cb;
3184         struct hns3_desc *desc;
3185         u32 bd_base_info;
3186
3187         do {
3188                 desc = &ring->desc[ring->next_to_clean];
3189                 desc_cb = &ring->desc_cb[ring->next_to_clean];
3190                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3191                 /* make sure HW write desc complete */
3192                 dma_rmb();
3193                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3194                         return -ENXIO;
3195
3196                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3197                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3198                         if (unlikely(!new_skb)) {
3199                                 hns3_rl_err(ring_to_netdev(ring),
3200                                             "alloc rx fraglist skb fail\n");
3201                                 return -ENXIO;
3202                         }
3203                         ring->frag_num = 0;
3204
3205                         if (ring->tail_skb) {
3206                                 ring->tail_skb->next = new_skb;
3207                                 ring->tail_skb = new_skb;
3208                         } else {
3209                                 skb_shinfo(skb)->frag_list = new_skb;
3210                                 ring->tail_skb = new_skb;
3211                         }
3212                 }
3213
3214                 if (ring->tail_skb) {
3215                         head_skb->truesize += hns3_buf_size(ring);
3216                         head_skb->data_len += le16_to_cpu(desc->rx.size);
3217                         head_skb->len += le16_to_cpu(desc->rx.size);
3218                         skb = ring->tail_skb;
3219                 }
3220
3221                 dma_sync_single_for_cpu(ring_to_dev(ring),
3222                                 desc_cb->dma + desc_cb->page_offset,
3223                                 hns3_buf_size(ring),
3224                                 DMA_FROM_DEVICE);
3225
3226                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3227                 trace_hns3_rx_desc(ring);
3228                 hns3_rx_ring_move_fw(ring);
3229                 ring->pending_buf++;
3230         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3231
3232         return 0;
3233 }
3234
3235 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3236                                      struct sk_buff *skb, u32 l234info,
3237                                      u32 bd_base_info, u32 ol_info)
3238 {
3239         u32 l3_type;
3240
3241         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3242                                                     HNS3_RXD_GRO_SIZE_M,
3243                                                     HNS3_RXD_GRO_SIZE_S);
3244         /* if there is no HW GRO, do not set gro params */
3245         if (!skb_shinfo(skb)->gso_size) {
3246                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3247                 return 0;
3248         }
3249
3250         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3251                                                   HNS3_RXD_GRO_COUNT_M,
3252                                                   HNS3_RXD_GRO_COUNT_S);
3253
3254         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3255         if (l3_type == HNS3_L3_TYPE_IPV4)
3256                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3257         else if (l3_type == HNS3_L3_TYPE_IPV6)
3258                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3259         else
3260                 return -EFAULT;
3261
3262         return  hns3_gro_complete(skb, l234info);
3263 }
3264
3265 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3266                                      struct sk_buff *skb, u32 rss_hash)
3267 {
3268         struct hnae3_handle *handle = ring->tqp->handle;
3269         enum pkt_hash_types rss_type;
3270
3271         if (rss_hash)
3272                 rss_type = handle->kinfo.rss_type;
3273         else
3274                 rss_type = PKT_HASH_TYPE_NONE;
3275
3276         skb_set_hash(skb, rss_hash, rss_type);
3277 }
3278
3279 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3280 {
3281         struct net_device *netdev = ring_to_netdev(ring);
3282         enum hns3_pkt_l2t_type l2_frame_type;
3283         u32 bd_base_info, l234info, ol_info;
3284         struct hns3_desc *desc;
3285         unsigned int len;
3286         int pre_ntc, ret;
3287
3288         /* bdinfo handled below is only valid on the last BD of the
3289          * current packet, and ring->next_to_clean indicates the first
3290          * descriptor of next packet, so need - 1 below.
3291          */
3292         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3293                                         (ring->desc_num - 1);
3294         desc = &ring->desc[pre_ntc];
3295         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3296         l234info = le32_to_cpu(desc->rx.l234_info);
3297         ol_info = le32_to_cpu(desc->rx.ol_info);
3298
3299         /* Based on hw strategy, the tag offloaded will be stored at
3300          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3301          * in one layer tag case.
3302          */
3303         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3304                 u16 vlan_tag;
3305
3306                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3307                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3308                                                vlan_tag);
3309         }
3310
3311         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3312                                   BIT(HNS3_RXD_L2E_B))))) {
3313                 u64_stats_update_begin(&ring->syncp);
3314                 if (l234info & BIT(HNS3_RXD_L2E_B))
3315                         ring->stats.l2_err++;
3316                 else
3317                         ring->stats.err_pkt_len++;
3318                 u64_stats_update_end(&ring->syncp);
3319
3320                 return -EFAULT;
3321         }
3322
3323         len = skb->len;
3324
3325         /* Do update ip stack process */
3326         skb->protocol = eth_type_trans(skb, netdev);
3327
3328         /* This is needed in order to enable forwarding support */
3329         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3330                                         bd_base_info, ol_info);
3331         if (unlikely(ret)) {
3332                 u64_stats_update_begin(&ring->syncp);
3333                 ring->stats.rx_err_cnt++;
3334                 u64_stats_update_end(&ring->syncp);
3335                 return ret;
3336         }
3337
3338         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3339                                         HNS3_RXD_DMAC_S);
3340
3341         u64_stats_update_begin(&ring->syncp);
3342         ring->stats.rx_pkts++;
3343         ring->stats.rx_bytes += len;
3344
3345         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3346                 ring->stats.rx_multicast++;
3347
3348         u64_stats_update_end(&ring->syncp);
3349
3350         ring->tqp_vector->rx_group.total_bytes += len;
3351
3352         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3353         return 0;
3354 }
3355
3356 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3357 {
3358         struct sk_buff *skb = ring->skb;
3359         struct hns3_desc_cb *desc_cb;
3360         struct hns3_desc *desc;
3361         unsigned int length;
3362         u32 bd_base_info;
3363         int ret;
3364
3365         desc = &ring->desc[ring->next_to_clean];
3366         desc_cb = &ring->desc_cb[ring->next_to_clean];
3367
3368         prefetch(desc);
3369
3370         if (!skb) {
3371                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3372                 /* Check valid BD */
3373                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3374                         return -ENXIO;
3375
3376                 dma_rmb();
3377                 length = le16_to_cpu(desc->rx.size);
3378
3379                 ring->va = desc_cb->buf + desc_cb->page_offset;
3380
3381                 dma_sync_single_for_cpu(ring_to_dev(ring),
3382                                 desc_cb->dma + desc_cb->page_offset,
3383                                 hns3_buf_size(ring),
3384                                 DMA_FROM_DEVICE);
3385
3386                 /* Prefetch first cache line of first page.
3387                  * Idea is to cache few bytes of the header of the packet.
3388                  * Our L1 Cache line size is 64B so need to prefetch twice to make
3389                  * it 128B. But in actual we can have greater size of caches with
3390                  * 128B Level 1 cache lines. In such a case, single fetch would
3391                  * suffice to cache in the relevant part of the header.
3392                  */
3393                 net_prefetch(ring->va);
3394
3395                 ret = hns3_alloc_skb(ring, length, ring->va);
3396                 skb = ring->skb;
3397
3398                 if (ret < 0) /* alloc buffer fail */
3399                         return ret;
3400                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3401                         ret = hns3_add_frag(ring);
3402                         if (ret)
3403                                 return ret;
3404                 }
3405         } else {
3406                 ret = hns3_add_frag(ring);
3407                 if (ret)
3408                         return ret;
3409         }
3410
3411         /* As the head data may be changed when GRO enable, copy
3412          * the head data in after other data rx completed
3413          */
3414         if (skb->len > HNS3_RX_HEAD_SIZE)
3415                 memcpy(skb->data, ring->va,
3416                        ALIGN(ring->pull_len, sizeof(long)));
3417
3418         ret = hns3_handle_bdinfo(ring, skb);
3419         if (unlikely(ret)) {
3420                 dev_kfree_skb_any(skb);
3421                 return ret;
3422         }
3423
3424         skb_record_rx_queue(skb, ring->tqp->tqp_index);
3425         return 0;
3426 }
3427
3428 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3429                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3430 {
3431 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3432         int unused_count = hns3_desc_unused(ring);
3433         int recv_pkts = 0;
3434         int err;
3435
3436         unused_count -= ring->pending_buf;
3437
3438         while (recv_pkts < budget) {
3439                 /* Reuse or realloc buffers */
3440                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3441                         hns3_nic_alloc_rx_buffers(ring, unused_count);
3442                         unused_count = hns3_desc_unused(ring) -
3443                                         ring->pending_buf;
3444                 }
3445
3446                 /* Poll one pkt */
3447                 err = hns3_handle_rx_bd(ring);
3448                 /* Do not get FE for the packet or failed to alloc skb */
3449                 if (unlikely(!ring->skb || err == -ENXIO)) {
3450                         goto out;
3451                 } else if (likely(!err)) {
3452                         rx_fn(ring, ring->skb);
3453                         recv_pkts++;
3454                 }
3455
3456                 unused_count += ring->pending_buf;
3457                 ring->skb = NULL;
3458                 ring->pending_buf = 0;
3459         }
3460
3461 out:
3462         /* Make all data has been write before submit */
3463         if (unused_count > 0)
3464                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3465
3466         return recv_pkts;
3467 }
3468
3469 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3470 {
3471 #define HNS3_RX_LOW_BYTE_RATE 10000
3472 #define HNS3_RX_MID_BYTE_RATE 20000
3473 #define HNS3_RX_ULTRA_PACKET_RATE 40
3474
3475         enum hns3_flow_level_range new_flow_level;
3476         struct hns3_enet_tqp_vector *tqp_vector;
3477         int packets_per_msecs, bytes_per_msecs;
3478         u32 time_passed_ms;
3479
3480         tqp_vector = ring_group->ring->tqp_vector;
3481         time_passed_ms =
3482                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3483         if (!time_passed_ms)
3484                 return false;
3485
3486         do_div(ring_group->total_packets, time_passed_ms);
3487         packets_per_msecs = ring_group->total_packets;
3488
3489         do_div(ring_group->total_bytes, time_passed_ms);
3490         bytes_per_msecs = ring_group->total_bytes;
3491
3492         new_flow_level = ring_group->coal.flow_level;
3493
3494         /* Simple throttlerate management
3495          * 0-10MB/s   lower     (50000 ints/s)
3496          * 10-20MB/s   middle    (20000 ints/s)
3497          * 20-1249MB/s high      (18000 ints/s)
3498          * > 40000pps  ultra     (8000 ints/s)
3499          */
3500         switch (new_flow_level) {
3501         case HNS3_FLOW_LOW:
3502                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3503                         new_flow_level = HNS3_FLOW_MID;
3504                 break;
3505         case HNS3_FLOW_MID:
3506                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3507                         new_flow_level = HNS3_FLOW_HIGH;
3508                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3509                         new_flow_level = HNS3_FLOW_LOW;
3510                 break;
3511         case HNS3_FLOW_HIGH:
3512         case HNS3_FLOW_ULTRA:
3513         default:
3514                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3515                         new_flow_level = HNS3_FLOW_MID;
3516                 break;
3517         }
3518
3519         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3520             &tqp_vector->rx_group == ring_group)
3521                 new_flow_level = HNS3_FLOW_ULTRA;
3522
3523         ring_group->total_bytes = 0;
3524         ring_group->total_packets = 0;
3525         ring_group->coal.flow_level = new_flow_level;
3526
3527         return true;
3528 }
3529
3530 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3531 {
3532         struct hns3_enet_tqp_vector *tqp_vector;
3533         u16 new_int_gl;
3534
3535         if (!ring_group->ring)
3536                 return false;
3537
3538         tqp_vector = ring_group->ring->tqp_vector;
3539         if (!tqp_vector->last_jiffies)
3540                 return false;
3541
3542         if (ring_group->total_packets == 0) {
3543                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3544                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3545                 return true;
3546         }
3547
3548         if (!hns3_get_new_flow_lvl(ring_group))
3549                 return false;
3550
3551         new_int_gl = ring_group->coal.int_gl;
3552         switch (ring_group->coal.flow_level) {
3553         case HNS3_FLOW_LOW:
3554                 new_int_gl = HNS3_INT_GL_50K;
3555                 break;
3556         case HNS3_FLOW_MID:
3557                 new_int_gl = HNS3_INT_GL_20K;
3558                 break;
3559         case HNS3_FLOW_HIGH:
3560                 new_int_gl = HNS3_INT_GL_18K;
3561                 break;
3562         case HNS3_FLOW_ULTRA:
3563                 new_int_gl = HNS3_INT_GL_8K;
3564                 break;
3565         default:
3566                 break;
3567         }
3568
3569         if (new_int_gl != ring_group->coal.int_gl) {
3570                 ring_group->coal.int_gl = new_int_gl;
3571                 return true;
3572         }
3573         return false;
3574 }
3575
3576 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3577 {
3578         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3579         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3580         bool rx_update, tx_update;
3581
3582         /* update param every 1000ms */
3583         if (time_before(jiffies,
3584                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3585                 return;
3586
3587         if (rx_group->coal.adapt_enable) {
3588                 rx_update = hns3_get_new_int_gl(rx_group);
3589                 if (rx_update)
3590                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3591                                                        rx_group->coal.int_gl);
3592         }
3593
3594         if (tx_group->coal.adapt_enable) {
3595                 tx_update = hns3_get_new_int_gl(tx_group);
3596                 if (tx_update)
3597                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3598                                                        tx_group->coal.int_gl);
3599         }
3600
3601         tqp_vector->last_jiffies = jiffies;
3602 }
3603
3604 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3605 {
3606         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3607         struct hns3_enet_ring *ring;
3608         int rx_pkt_total = 0;
3609
3610         struct hns3_enet_tqp_vector *tqp_vector =
3611                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3612         bool clean_complete = true;
3613         int rx_budget = budget;
3614
3615         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3616                 napi_complete(napi);
3617                 return 0;
3618         }
3619
3620         /* Since the actual Tx work is minimal, we can give the Tx a larger
3621          * budget and be more aggressive about cleaning up the Tx descriptors.
3622          */
3623         hns3_for_each_ring(ring, tqp_vector->tx_group)
3624                 hns3_clean_tx_ring(ring, budget);
3625
3626         /* make sure rx ring budget not smaller than 1 */
3627         if (tqp_vector->num_tqps > 1)
3628                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3629
3630         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3631                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3632                                                     hns3_rx_skb);
3633                 if (rx_cleaned >= rx_budget)
3634                         clean_complete = false;
3635
3636                 rx_pkt_total += rx_cleaned;
3637         }
3638
3639         tqp_vector->rx_group.total_packets += rx_pkt_total;
3640
3641         if (!clean_complete)
3642                 return budget;
3643
3644         if (napi_complete(napi) &&
3645             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3646                 hns3_update_new_int_gl(tqp_vector);
3647                 hns3_mask_vector_irq(tqp_vector, 1);
3648         }
3649
3650         return rx_pkt_total;
3651 }
3652
3653 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3654                                       struct hnae3_ring_chain_node *head)
3655 {
3656         struct pci_dev *pdev = tqp_vector->handle->pdev;
3657         struct hnae3_ring_chain_node *cur_chain = head;
3658         struct hnae3_ring_chain_node *chain;
3659         struct hns3_enet_ring *tx_ring;
3660         struct hns3_enet_ring *rx_ring;
3661
3662         tx_ring = tqp_vector->tx_group.ring;
3663         if (tx_ring) {
3664                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3665                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3666                               HNAE3_RING_TYPE_TX);
3667                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3668                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3669
3670                 cur_chain->next = NULL;
3671
3672                 while (tx_ring->next) {
3673                         tx_ring = tx_ring->next;
3674
3675                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3676                                              GFP_KERNEL);
3677                         if (!chain)
3678                                 goto err_free_chain;
3679
3680                         cur_chain->next = chain;
3681                         chain->tqp_index = tx_ring->tqp->tqp_index;
3682                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3683                                       HNAE3_RING_TYPE_TX);
3684                         hnae3_set_field(chain->int_gl_idx,
3685                                         HNAE3_RING_GL_IDX_M,
3686                                         HNAE3_RING_GL_IDX_S,
3687                                         HNAE3_RING_GL_TX);
3688
3689                         cur_chain = chain;
3690                 }
3691         }
3692
3693         rx_ring = tqp_vector->rx_group.ring;
3694         if (!tx_ring && rx_ring) {
3695                 cur_chain->next = NULL;
3696                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3697                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3698                               HNAE3_RING_TYPE_RX);
3699                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3700                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3701
3702                 rx_ring = rx_ring->next;
3703         }
3704
3705         while (rx_ring) {
3706                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3707                 if (!chain)
3708                         goto err_free_chain;
3709
3710                 cur_chain->next = chain;
3711                 chain->tqp_index = rx_ring->tqp->tqp_index;
3712                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3713                               HNAE3_RING_TYPE_RX);
3714                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3715                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3716
3717                 cur_chain = chain;
3718
3719                 rx_ring = rx_ring->next;
3720         }
3721
3722         return 0;
3723
3724 err_free_chain:
3725         cur_chain = head->next;
3726         while (cur_chain) {
3727                 chain = cur_chain->next;
3728                 devm_kfree(&pdev->dev, cur_chain);
3729                 cur_chain = chain;
3730         }
3731         head->next = NULL;
3732
3733         return -ENOMEM;
3734 }
3735
3736 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3737                                         struct hnae3_ring_chain_node *head)
3738 {
3739         struct pci_dev *pdev = tqp_vector->handle->pdev;
3740         struct hnae3_ring_chain_node *chain_tmp, *chain;
3741
3742         chain = head->next;
3743
3744         while (chain) {
3745                 chain_tmp = chain->next;
3746                 devm_kfree(&pdev->dev, chain);
3747                 chain = chain_tmp;
3748         }
3749 }
3750
3751 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3752                                    struct hns3_enet_ring *ring)
3753 {
3754         ring->next = group->ring;
3755         group->ring = ring;
3756
3757         group->count++;
3758 }
3759
3760 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3761 {
3762         struct pci_dev *pdev = priv->ae_handle->pdev;
3763         struct hns3_enet_tqp_vector *tqp_vector;
3764         int num_vectors = priv->vector_num;
3765         int numa_node;
3766         int vector_i;
3767
3768         numa_node = dev_to_node(&pdev->dev);
3769
3770         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3771                 tqp_vector = &priv->tqp_vector[vector_i];
3772                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3773                                 &tqp_vector->affinity_mask);
3774         }
3775 }
3776
3777 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3778 {
3779         struct hnae3_handle *h = priv->ae_handle;
3780         struct hns3_enet_tqp_vector *tqp_vector;
3781         int ret;
3782         int i;
3783
3784         hns3_nic_set_cpumask(priv);
3785
3786         for (i = 0; i < priv->vector_num; i++) {
3787                 tqp_vector = &priv->tqp_vector[i];
3788                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
3789                 tqp_vector->num_tqps = 0;
3790         }
3791
3792         for (i = 0; i < h->kinfo.num_tqps; i++) {
3793                 u16 vector_i = i % priv->vector_num;
3794                 u16 tqp_num = h->kinfo.num_tqps;
3795
3796                 tqp_vector = &priv->tqp_vector[vector_i];
3797
3798                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3799                                        &priv->ring[i]);
3800
3801                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3802                                        &priv->ring[i + tqp_num]);
3803
3804                 priv->ring[i].tqp_vector = tqp_vector;
3805                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3806                 tqp_vector->num_tqps++;
3807         }
3808
3809         for (i = 0; i < priv->vector_num; i++) {
3810                 struct hnae3_ring_chain_node vector_ring_chain;
3811
3812                 tqp_vector = &priv->tqp_vector[i];
3813
3814                 tqp_vector->rx_group.total_bytes = 0;
3815                 tqp_vector->rx_group.total_packets = 0;
3816                 tqp_vector->tx_group.total_bytes = 0;
3817                 tqp_vector->tx_group.total_packets = 0;
3818                 tqp_vector->handle = h;
3819
3820                 ret = hns3_get_vector_ring_chain(tqp_vector,
3821                                                  &vector_ring_chain);
3822                 if (ret)
3823                         goto map_ring_fail;
3824
3825                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3826                         tqp_vector->vector_irq, &vector_ring_chain);
3827
3828                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3829
3830                 if (ret)
3831                         goto map_ring_fail;
3832
3833                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3834                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3835         }
3836
3837         return 0;
3838
3839 map_ring_fail:
3840         while (i--)
3841                 netif_napi_del(&priv->tqp_vector[i].napi);
3842
3843         return ret;
3844 }
3845
3846 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3847 {
3848         struct hnae3_handle *h = priv->ae_handle;
3849         struct hns3_enet_tqp_vector *tqp_vector;
3850         struct hnae3_vector_info *vector;
3851         struct pci_dev *pdev = h->pdev;
3852         u16 tqp_num = h->kinfo.num_tqps;
3853         u16 vector_num;
3854         int ret = 0;
3855         u16 i;
3856
3857         /* RSS size, cpu online and vector_num should be the same */
3858         /* Should consider 2p/4p later */
3859         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3860
3861         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3862                               GFP_KERNEL);
3863         if (!vector)
3864                 return -ENOMEM;
3865
3866         /* save the actual available vector number */
3867         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3868
3869         priv->vector_num = vector_num;
3870         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3871                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3872                              GFP_KERNEL);
3873         if (!priv->tqp_vector) {
3874                 ret = -ENOMEM;
3875                 goto out;
3876         }
3877
3878         for (i = 0; i < priv->vector_num; i++) {
3879                 tqp_vector = &priv->tqp_vector[i];
3880                 tqp_vector->idx = i;
3881                 tqp_vector->mask_addr = vector[i].io_addr;
3882                 tqp_vector->vector_irq = vector[i].vector;
3883                 hns3_vector_coalesce_init(tqp_vector, priv);
3884         }
3885
3886 out:
3887         devm_kfree(&pdev->dev, vector);
3888         return ret;
3889 }
3890
3891 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3892 {
3893         group->ring = NULL;
3894         group->count = 0;
3895 }
3896
3897 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3898 {
3899         struct hnae3_ring_chain_node vector_ring_chain;
3900         struct hnae3_handle *h = priv->ae_handle;
3901         struct hns3_enet_tqp_vector *tqp_vector;
3902         int i;
3903
3904         for (i = 0; i < priv->vector_num; i++) {
3905                 tqp_vector = &priv->tqp_vector[i];
3906
3907                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3908                         continue;
3909
3910                 /* Since the mapping can be overwritten, when fail to get the
3911                  * chain between vector and ring, we should go on to deal with
3912                  * the remaining options.
3913                  */
3914                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3915                         dev_warn(priv->dev, "failed to get ring chain\n");
3916
3917                 h->ae_algo->ops->unmap_ring_from_vector(h,
3918                         tqp_vector->vector_irq, &vector_ring_chain);
3919
3920                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3921
3922                 hns3_clear_ring_group(&tqp_vector->rx_group);
3923                 hns3_clear_ring_group(&tqp_vector->tx_group);
3924                 netif_napi_del(&priv->tqp_vector[i].napi);
3925         }
3926 }
3927
3928 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3929 {
3930         struct hnae3_handle *h = priv->ae_handle;
3931         struct pci_dev *pdev = h->pdev;
3932         int i, ret;
3933
3934         for (i = 0; i < priv->vector_num; i++) {
3935                 struct hns3_enet_tqp_vector *tqp_vector;
3936
3937                 tqp_vector = &priv->tqp_vector[i];
3938                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3939                 if (ret)
3940                         return;
3941         }
3942
3943         devm_kfree(&pdev->dev, priv->tqp_vector);
3944 }
3945
3946 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3947                               unsigned int ring_type)
3948 {
3949         int queue_num = priv->ae_handle->kinfo.num_tqps;
3950         struct hns3_enet_ring *ring;
3951         int desc_num;
3952
3953         if (ring_type == HNAE3_RING_TYPE_TX) {
3954                 ring = &priv->ring[q->tqp_index];
3955                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3956                 ring->queue_index = q->tqp_index;
3957         } else {
3958                 ring = &priv->ring[q->tqp_index + queue_num];
3959                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3960                 ring->queue_index = q->tqp_index;
3961         }
3962
3963         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3964
3965         ring->tqp = q;
3966         ring->desc = NULL;
3967         ring->desc_cb = NULL;
3968         ring->dev = priv->dev;
3969         ring->desc_dma_addr = 0;
3970         ring->buf_size = q->buf_size;
3971         ring->desc_num = desc_num;
3972         ring->next_to_use = 0;
3973         ring->next_to_clean = 0;
3974         ring->last_to_use = 0;
3975 }
3976
3977 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3978                                struct hns3_nic_priv *priv)
3979 {
3980         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3981         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3982 }
3983
3984 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3985 {
3986         struct hnae3_handle *h = priv->ae_handle;
3987         struct pci_dev *pdev = h->pdev;
3988         int i;
3989
3990         priv->ring = devm_kzalloc(&pdev->dev,
3991                                   array3_size(h->kinfo.num_tqps,
3992                                               sizeof(*priv->ring), 2),
3993                                   GFP_KERNEL);
3994         if (!priv->ring)
3995                 return -ENOMEM;
3996
3997         for (i = 0; i < h->kinfo.num_tqps; i++)
3998                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3999
4000         return 0;
4001 }
4002
4003 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4004 {
4005         if (!priv->ring)
4006                 return;
4007
4008         devm_kfree(priv->dev, priv->ring);
4009         priv->ring = NULL;
4010 }
4011
4012 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4013 {
4014         int ret;
4015
4016         if (ring->desc_num <= 0 || ring->buf_size <= 0)
4017                 return -EINVAL;
4018
4019         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4020                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
4021         if (!ring->desc_cb) {
4022                 ret = -ENOMEM;
4023                 goto out;
4024         }
4025
4026         ret = hns3_alloc_desc(ring);
4027         if (ret)
4028                 goto out_with_desc_cb;
4029
4030         if (!HNAE3_IS_TX_RING(ring)) {
4031                 ret = hns3_alloc_ring_buffers(ring);
4032                 if (ret)
4033                         goto out_with_desc;
4034         }
4035
4036         return 0;
4037
4038 out_with_desc:
4039         hns3_free_desc(ring);
4040 out_with_desc_cb:
4041         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4042         ring->desc_cb = NULL;
4043 out:
4044         return ret;
4045 }
4046
4047 void hns3_fini_ring(struct hns3_enet_ring *ring)
4048 {
4049         hns3_free_desc(ring);
4050         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4051         ring->desc_cb = NULL;
4052         ring->next_to_clean = 0;
4053         ring->next_to_use = 0;
4054         ring->last_to_use = 0;
4055         ring->pending_buf = 0;
4056         if (ring->skb) {
4057                 dev_kfree_skb_any(ring->skb);
4058                 ring->skb = NULL;
4059         }
4060 }
4061
4062 static int hns3_buf_size2type(u32 buf_size)
4063 {
4064         int bd_size_type;
4065
4066         switch (buf_size) {
4067         case 512:
4068                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
4069                 break;
4070         case 1024:
4071                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4072                 break;
4073         case 2048:
4074                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4075                 break;
4076         case 4096:
4077                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4078                 break;
4079         default:
4080                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4081         }
4082
4083         return bd_size_type;
4084 }
4085
4086 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4087 {
4088         dma_addr_t dma = ring->desc_dma_addr;
4089         struct hnae3_queue *q = ring->tqp;
4090
4091         if (!HNAE3_IS_TX_RING(ring)) {
4092                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4093                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4094                                (u32)((dma >> 31) >> 1));
4095
4096                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4097                                hns3_buf_size2type(ring->buf_size));
4098                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4099                                ring->desc_num / 8 - 1);
4100         } else {
4101                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4102                                (u32)dma);
4103                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4104                                (u32)((dma >> 31) >> 1));
4105
4106                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4107                                ring->desc_num / 8 - 1);
4108         }
4109 }
4110
4111 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4112 {
4113         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4114         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4115         int i;
4116
4117         for (i = 0; i < HNAE3_MAX_TC; i++) {
4118                 int j;
4119
4120                 if (!test_bit(i, &tc_info->tc_en))
4121                         continue;
4122
4123                 for (j = 0; j < tc_info->tqp_count[i]; j++) {
4124                         struct hnae3_queue *q;
4125
4126                         q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4127                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4128                 }
4129         }
4130 }
4131
4132 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4133 {
4134         struct hnae3_handle *h = priv->ae_handle;
4135         int ring_num = h->kinfo.num_tqps * 2;
4136         int i, j;
4137         int ret;
4138
4139         for (i = 0; i < ring_num; i++) {
4140                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
4141                 if (ret) {
4142                         dev_err(priv->dev,
4143                                 "Alloc ring memory fail! ret=%d\n", ret);
4144                         goto out_when_alloc_ring_memory;
4145                 }
4146
4147                 u64_stats_init(&priv->ring[i].syncp);
4148         }
4149
4150         return 0;
4151
4152 out_when_alloc_ring_memory:
4153         for (j = i - 1; j >= 0; j--)
4154                 hns3_fini_ring(&priv->ring[j]);
4155
4156         return -ENOMEM;
4157 }
4158
4159 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4160 {
4161         struct hnae3_handle *h = priv->ae_handle;
4162         int i;
4163
4164         for (i = 0; i < h->kinfo.num_tqps; i++) {
4165                 hns3_fini_ring(&priv->ring[i]);
4166                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4167         }
4168 }
4169
4170 /* Set mac addr if it is configured. or leave it to the AE driver */
4171 static int hns3_init_mac_addr(struct net_device *netdev)
4172 {
4173         struct hns3_nic_priv *priv = netdev_priv(netdev);
4174         struct hnae3_handle *h = priv->ae_handle;
4175         u8 mac_addr_temp[ETH_ALEN];
4176         int ret = 0;
4177
4178         if (h->ae_algo->ops->get_mac_addr)
4179                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4180
4181         /* Check if the MAC address is valid, if not get a random one */
4182         if (!is_valid_ether_addr(mac_addr_temp)) {
4183                 eth_hw_addr_random(netdev);
4184                 dev_warn(priv->dev, "using random MAC address %pM\n",
4185                          netdev->dev_addr);
4186         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4187                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4188                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4189         } else {
4190                 return 0;
4191         }
4192
4193         if (h->ae_algo->ops->set_mac_addr)
4194                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4195
4196         return ret;
4197 }
4198
4199 static int hns3_init_phy(struct net_device *netdev)
4200 {
4201         struct hnae3_handle *h = hns3_get_handle(netdev);
4202         int ret = 0;
4203
4204         if (h->ae_algo->ops->mac_connect_phy)
4205                 ret = h->ae_algo->ops->mac_connect_phy(h);
4206
4207         return ret;
4208 }
4209
4210 static void hns3_uninit_phy(struct net_device *netdev)
4211 {
4212         struct hnae3_handle *h = hns3_get_handle(netdev);
4213
4214         if (h->ae_algo->ops->mac_disconnect_phy)
4215                 h->ae_algo->ops->mac_disconnect_phy(h);
4216 }
4217
4218 static int hns3_client_start(struct hnae3_handle *handle)
4219 {
4220         if (!handle->ae_algo->ops->client_start)
4221                 return 0;
4222
4223         return handle->ae_algo->ops->client_start(handle);
4224 }
4225
4226 static void hns3_client_stop(struct hnae3_handle *handle)
4227 {
4228         if (!handle->ae_algo->ops->client_stop)
4229                 return;
4230
4231         handle->ae_algo->ops->client_stop(handle);
4232 }
4233
4234 static void hns3_info_show(struct hns3_nic_priv *priv)
4235 {
4236         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4237
4238         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4239         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4240         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4241         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4242         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4243         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4244         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4245         dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4246                  kinfo->tc_info.num_tc);
4247         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4248 }
4249
4250 static int hns3_client_init(struct hnae3_handle *handle)
4251 {
4252         struct pci_dev *pdev = handle->pdev;
4253         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4254         u16 alloc_tqps, max_rss_size;
4255         struct hns3_nic_priv *priv;
4256         struct net_device *netdev;
4257         int ret;
4258
4259         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4260                                                     &max_rss_size);
4261         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4262         if (!netdev)
4263                 return -ENOMEM;
4264
4265         priv = netdev_priv(netdev);
4266         priv->dev = &pdev->dev;
4267         priv->netdev = netdev;
4268         priv->ae_handle = handle;
4269         priv->tx_timeout_count = 0;
4270         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4271         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4272
4273         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4274
4275         handle->kinfo.netdev = netdev;
4276         handle->priv = (void *)priv;
4277
4278         hns3_init_mac_addr(netdev);
4279
4280         hns3_set_default_feature(netdev);
4281
4282         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4283         netdev->priv_flags |= IFF_UNICAST_FLT;
4284         netdev->netdev_ops = &hns3_nic_netdev_ops;
4285         SET_NETDEV_DEV(netdev, &pdev->dev);
4286         hns3_ethtool_set_ops(netdev);
4287
4288         /* Carrier off reporting is important to ethtool even BEFORE open */
4289         netif_carrier_off(netdev);
4290
4291         ret = hns3_get_ring_config(priv);
4292         if (ret) {
4293                 ret = -ENOMEM;
4294                 goto out_get_ring_cfg;
4295         }
4296
4297         ret = hns3_nic_alloc_vector_data(priv);
4298         if (ret) {
4299                 ret = -ENOMEM;
4300                 goto out_alloc_vector_data;
4301         }
4302
4303         ret = hns3_nic_init_vector_data(priv);
4304         if (ret) {
4305                 ret = -ENOMEM;
4306                 goto out_init_vector_data;
4307         }
4308
4309         ret = hns3_init_all_ring(priv);
4310         if (ret) {
4311                 ret = -ENOMEM;
4312                 goto out_init_ring;
4313         }
4314
4315         ret = hns3_init_phy(netdev);
4316         if (ret)
4317                 goto out_init_phy;
4318
4319         ret = register_netdev(netdev);
4320         if (ret) {
4321                 dev_err(priv->dev, "probe register netdev fail!\n");
4322                 goto out_reg_netdev_fail;
4323         }
4324
4325         /* the device can work without cpu rmap, only aRFS needs it */
4326         ret = hns3_set_rx_cpu_rmap(netdev);
4327         if (ret)
4328                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4329
4330         ret = hns3_nic_init_irq(priv);
4331         if (ret) {
4332                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4333                 hns3_free_rx_cpu_rmap(netdev);
4334                 goto out_init_irq_fail;
4335         }
4336
4337         ret = hns3_client_start(handle);
4338         if (ret) {
4339                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4340                 goto out_client_start;
4341         }
4342
4343         hns3_dcbnl_setup(handle);
4344
4345         hns3_dbg_init(handle);
4346
4347         netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4348
4349         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4350                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4351
4352         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4353
4354         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4355                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4356
4357         if (netif_msg_drv(handle))
4358                 hns3_info_show(priv);
4359
4360         return ret;
4361
4362 out_client_start:
4363         hns3_free_rx_cpu_rmap(netdev);
4364         hns3_nic_uninit_irq(priv);
4365 out_init_irq_fail:
4366         unregister_netdev(netdev);
4367 out_reg_netdev_fail:
4368         hns3_uninit_phy(netdev);
4369 out_init_phy:
4370         hns3_uninit_all_ring(priv);
4371 out_init_ring:
4372         hns3_nic_uninit_vector_data(priv);
4373 out_init_vector_data:
4374         hns3_nic_dealloc_vector_data(priv);
4375 out_alloc_vector_data:
4376         priv->ring = NULL;
4377 out_get_ring_cfg:
4378         priv->ae_handle = NULL;
4379         free_netdev(netdev);
4380         return ret;
4381 }
4382
4383 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4384 {
4385         struct net_device *netdev = handle->kinfo.netdev;
4386         struct hns3_nic_priv *priv = netdev_priv(netdev);
4387
4388         if (netdev->reg_state != NETREG_UNINITIALIZED)
4389                 unregister_netdev(netdev);
4390
4391         hns3_client_stop(handle);
4392
4393         hns3_uninit_phy(netdev);
4394
4395         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4396                 netdev_warn(netdev, "already uninitialized\n");
4397                 goto out_netdev_free;
4398         }
4399
4400         hns3_free_rx_cpu_rmap(netdev);
4401
4402         hns3_nic_uninit_irq(priv);
4403
4404         hns3_clear_all_ring(handle, true);
4405
4406         hns3_nic_uninit_vector_data(priv);
4407
4408         hns3_nic_dealloc_vector_data(priv);
4409
4410         hns3_uninit_all_ring(priv);
4411
4412         hns3_put_ring_config(priv);
4413
4414 out_netdev_free:
4415         hns3_dbg_uninit(handle);
4416         free_netdev(netdev);
4417 }
4418
4419 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4420 {
4421         struct net_device *netdev = handle->kinfo.netdev;
4422
4423         if (!netdev)
4424                 return;
4425
4426         if (linkup) {
4427                 netif_tx_wake_all_queues(netdev);
4428                 netif_carrier_on(netdev);
4429                 if (netif_msg_link(handle))
4430                         netdev_info(netdev, "link up\n");
4431         } else {
4432                 netif_carrier_off(netdev);
4433                 netif_tx_stop_all_queues(netdev);
4434                 if (netif_msg_link(handle))
4435                         netdev_info(netdev, "link down\n");
4436         }
4437 }
4438
4439 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4440 {
4441         while (ring->next_to_clean != ring->next_to_use) {
4442                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4443                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4444                 ring_ptr_move_fw(ring, next_to_clean);
4445         }
4446
4447         ring->pending_buf = 0;
4448 }
4449
4450 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4451 {
4452         struct hns3_desc_cb res_cbs;
4453         int ret;
4454
4455         while (ring->next_to_use != ring->next_to_clean) {
4456                 /* When a buffer is not reused, it's memory has been
4457                  * freed in hns3_handle_rx_bd or will be freed by
4458                  * stack, so we need to replace the buffer here.
4459                  */
4460                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4461                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4462                         if (ret) {
4463                                 u64_stats_update_begin(&ring->syncp);
4464                                 ring->stats.sw_err_cnt++;
4465                                 u64_stats_update_end(&ring->syncp);
4466                                 /* if alloc new buffer fail, exit directly
4467                                  * and reclear in up flow.
4468                                  */
4469                                 netdev_warn(ring_to_netdev(ring),
4470                                             "reserve buffer map failed, ret = %d\n",
4471                                             ret);
4472                                 return ret;
4473                         }
4474                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4475                 }
4476                 ring_ptr_move_fw(ring, next_to_use);
4477         }
4478
4479         /* Free the pending skb in rx ring */
4480         if (ring->skb) {
4481                 dev_kfree_skb_any(ring->skb);
4482                 ring->skb = NULL;
4483                 ring->pending_buf = 0;
4484         }
4485
4486         return 0;
4487 }
4488
4489 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4490 {
4491         while (ring->next_to_use != ring->next_to_clean) {
4492                 /* When a buffer is not reused, it's memory has been
4493                  * freed in hns3_handle_rx_bd or will be freed by
4494                  * stack, so only need to unmap the buffer here.
4495                  */
4496                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4497                         hns3_unmap_buffer(ring,
4498                                           &ring->desc_cb[ring->next_to_use]);
4499                         ring->desc_cb[ring->next_to_use].dma = 0;
4500                 }
4501
4502                 ring_ptr_move_fw(ring, next_to_use);
4503         }
4504 }
4505
4506 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4507 {
4508         struct net_device *ndev = h->kinfo.netdev;
4509         struct hns3_nic_priv *priv = netdev_priv(ndev);
4510         u32 i;
4511
4512         for (i = 0; i < h->kinfo.num_tqps; i++) {
4513                 struct hns3_enet_ring *ring;
4514
4515                 ring = &priv->ring[i];
4516                 hns3_clear_tx_ring(ring);
4517
4518                 ring = &priv->ring[i + h->kinfo.num_tqps];
4519                 /* Continue to clear other rings even if clearing some
4520                  * rings failed.
4521                  */
4522                 if (force)
4523                         hns3_force_clear_rx_ring(ring);
4524                 else
4525                         hns3_clear_rx_ring(ring);
4526         }
4527 }
4528
4529 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4530 {
4531         struct net_device *ndev = h->kinfo.netdev;
4532         struct hns3_nic_priv *priv = netdev_priv(ndev);
4533         struct hns3_enet_ring *rx_ring;
4534         int i, j;
4535         int ret;
4536
4537         ret = h->ae_algo->ops->reset_queue(h);
4538         if (ret)
4539                 return ret;
4540
4541         for (i = 0; i < h->kinfo.num_tqps; i++) {
4542                 hns3_init_ring_hw(&priv->ring[i]);
4543
4544                 /* We need to clear tx ring here because self test will
4545                  * use the ring and will not run down before up
4546                  */
4547                 hns3_clear_tx_ring(&priv->ring[i]);
4548                 priv->ring[i].next_to_clean = 0;
4549                 priv->ring[i].next_to_use = 0;
4550                 priv->ring[i].last_to_use = 0;
4551
4552                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4553                 hns3_init_ring_hw(rx_ring);
4554                 ret = hns3_clear_rx_ring(rx_ring);
4555                 if (ret)
4556                         return ret;
4557
4558                 /* We can not know the hardware head and tail when this
4559                  * function is called in reset flow, so we reuse all desc.
4560                  */
4561                 for (j = 0; j < rx_ring->desc_num; j++)
4562                         hns3_reuse_buffer(rx_ring, j);
4563
4564                 rx_ring->next_to_clean = 0;
4565                 rx_ring->next_to_use = 0;
4566         }
4567
4568         hns3_init_tx_ring_tc(priv);
4569
4570         return 0;
4571 }
4572
4573 static void hns3_store_coal(struct hns3_nic_priv *priv)
4574 {
4575         /* ethtool only support setting and querying one coal
4576          * configuration for now, so save the vector 0' coal
4577          * configuration here in order to restore it.
4578          */
4579         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4580                sizeof(struct hns3_enet_coalesce));
4581         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4582                sizeof(struct hns3_enet_coalesce));
4583 }
4584
4585 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4586 {
4587         u16 vector_num = priv->vector_num;
4588         int i;
4589
4590         for (i = 0; i < vector_num; i++) {
4591                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4592                        sizeof(struct hns3_enet_coalesce));
4593                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4594                        sizeof(struct hns3_enet_coalesce));
4595         }
4596 }
4597
4598 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4599 {
4600         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4601         struct net_device *ndev = kinfo->netdev;
4602         struct hns3_nic_priv *priv = netdev_priv(ndev);
4603
4604         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4605                 return 0;
4606
4607         if (!netif_running(ndev))
4608                 return 0;
4609
4610         return hns3_nic_net_stop(ndev);
4611 }
4612
4613 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4614 {
4615         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4616         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4617         int ret = 0;
4618
4619         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4620
4621         if (netif_running(kinfo->netdev)) {
4622                 ret = hns3_nic_net_open(kinfo->netdev);
4623                 if (ret) {
4624                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4625                         netdev_err(kinfo->netdev,
4626                                    "net up fail, ret=%d!\n", ret);
4627                         return ret;
4628                 }
4629         }
4630
4631         return ret;
4632 }
4633
4634 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4635 {
4636         struct net_device *netdev = handle->kinfo.netdev;
4637         struct hns3_nic_priv *priv = netdev_priv(netdev);
4638         int ret;
4639
4640         /* Carrier off reporting is important to ethtool even BEFORE open */
4641         netif_carrier_off(netdev);
4642
4643         ret = hns3_get_ring_config(priv);
4644         if (ret)
4645                 return ret;
4646
4647         ret = hns3_nic_alloc_vector_data(priv);
4648         if (ret)
4649                 goto err_put_ring;
4650
4651         hns3_restore_coal(priv);
4652
4653         ret = hns3_nic_init_vector_data(priv);
4654         if (ret)
4655                 goto err_dealloc_vector;
4656
4657         ret = hns3_init_all_ring(priv);
4658         if (ret)
4659                 goto err_uninit_vector;
4660
4661         /* the device can work without cpu rmap, only aRFS needs it */
4662         ret = hns3_set_rx_cpu_rmap(netdev);
4663         if (ret)
4664                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4665
4666         ret = hns3_nic_init_irq(priv);
4667         if (ret) {
4668                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4669                 hns3_free_rx_cpu_rmap(netdev);
4670                 goto err_init_irq_fail;
4671         }
4672
4673         if (!hns3_is_phys_func(handle->pdev))
4674                 hns3_init_mac_addr(netdev);
4675
4676         ret = hns3_client_start(handle);
4677         if (ret) {
4678                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4679                 goto err_client_start_fail;
4680         }
4681
4682         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4683
4684         return ret;
4685
4686 err_client_start_fail:
4687         hns3_free_rx_cpu_rmap(netdev);
4688         hns3_nic_uninit_irq(priv);
4689 err_init_irq_fail:
4690         hns3_uninit_all_ring(priv);
4691 err_uninit_vector:
4692         hns3_nic_uninit_vector_data(priv);
4693 err_dealloc_vector:
4694         hns3_nic_dealloc_vector_data(priv);
4695 err_put_ring:
4696         hns3_put_ring_config(priv);
4697
4698         return ret;
4699 }
4700
4701 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4702 {
4703         struct net_device *netdev = handle->kinfo.netdev;
4704         struct hns3_nic_priv *priv = netdev_priv(netdev);
4705
4706         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4707                 netdev_warn(netdev, "already uninitialized\n");
4708                 return 0;
4709         }
4710
4711         hns3_free_rx_cpu_rmap(netdev);
4712         hns3_nic_uninit_irq(priv);
4713         hns3_clear_all_ring(handle, true);
4714         hns3_reset_tx_queue(priv->ae_handle);
4715
4716         hns3_nic_uninit_vector_data(priv);
4717
4718         hns3_store_coal(priv);
4719
4720         hns3_nic_dealloc_vector_data(priv);
4721
4722         hns3_uninit_all_ring(priv);
4723
4724         hns3_put_ring_config(priv);
4725
4726         return 0;
4727 }
4728
4729 static int hns3_reset_notify(struct hnae3_handle *handle,
4730                              enum hnae3_reset_notify_type type)
4731 {
4732         int ret = 0;
4733
4734         switch (type) {
4735         case HNAE3_UP_CLIENT:
4736                 ret = hns3_reset_notify_up_enet(handle);
4737                 break;
4738         case HNAE3_DOWN_CLIENT:
4739                 ret = hns3_reset_notify_down_enet(handle);
4740                 break;
4741         case HNAE3_INIT_CLIENT:
4742                 ret = hns3_reset_notify_init_enet(handle);
4743                 break;
4744         case HNAE3_UNINIT_CLIENT:
4745                 ret = hns3_reset_notify_uninit_enet(handle);
4746                 break;
4747         default:
4748                 break;
4749         }
4750
4751         return ret;
4752 }
4753
4754 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4755                                 bool rxfh_configured)
4756 {
4757         int ret;
4758
4759         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4760                                                  rxfh_configured);
4761         if (ret) {
4762                 dev_err(&handle->pdev->dev,
4763                         "Change tqp num(%u) fail.\n", new_tqp_num);
4764                 return ret;
4765         }
4766
4767         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4768         if (ret)
4769                 return ret;
4770
4771         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4772         if (ret)
4773                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4774
4775         return ret;
4776 }
4777
4778 int hns3_set_channels(struct net_device *netdev,
4779                       struct ethtool_channels *ch)
4780 {
4781         struct hnae3_handle *h = hns3_get_handle(netdev);
4782         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4783         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4784         u32 new_tqp_num = ch->combined_count;
4785         u16 org_tqp_num;
4786         int ret;
4787
4788         if (hns3_nic_resetting(netdev))
4789                 return -EBUSY;
4790
4791         if (ch->rx_count || ch->tx_count)
4792                 return -EINVAL;
4793
4794         if (kinfo->tc_info.mqprio_active) {
4795                 dev_err(&netdev->dev,
4796                         "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4797                 return -EINVAL;
4798         }
4799
4800         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4801             new_tqp_num < 1) {
4802                 dev_err(&netdev->dev,
4803                         "Change tqps fail, the tqp range is from 1 to %u",
4804                         hns3_get_max_available_channels(h));
4805                 return -EINVAL;
4806         }
4807
4808         if (kinfo->rss_size == new_tqp_num)
4809                 return 0;
4810
4811         netif_dbg(h, drv, netdev,
4812                   "set channels: tqp_num=%u, rxfh=%d\n",
4813                   new_tqp_num, rxfh_configured);
4814
4815         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4816         if (ret)
4817                 return ret;
4818
4819         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4820         if (ret)
4821                 return ret;
4822
4823         org_tqp_num = h->kinfo.num_tqps;
4824         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4825         if (ret) {
4826                 int ret1;
4827
4828                 netdev_warn(netdev,
4829                             "Change channels fail, revert to old value\n");
4830                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4831                 if (ret1) {
4832                         netdev_err(netdev,
4833                                    "revert to old channel fail\n");
4834                         return ret1;
4835                 }
4836
4837                 return ret;
4838         }
4839
4840         return 0;
4841 }
4842
4843 static const struct hns3_hw_error_info hns3_hw_err[] = {
4844         { .type = HNAE3_PPU_POISON_ERROR,
4845           .msg = "PPU poison" },
4846         { .type = HNAE3_CMDQ_ECC_ERROR,
4847           .msg = "IMP CMDQ error" },
4848         { .type = HNAE3_IMP_RD_POISON_ERROR,
4849           .msg = "IMP RD poison" },
4850         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4851           .msg = "ROCEE AXI RESP error" },
4852 };
4853
4854 static void hns3_process_hw_error(struct hnae3_handle *handle,
4855                                   enum hnae3_hw_error_type type)
4856 {
4857         int i;
4858
4859         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4860                 if (hns3_hw_err[i].type == type) {
4861                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4862                                 hns3_hw_err[i].msg);
4863                         break;
4864                 }
4865         }
4866 }
4867
4868 static const struct hnae3_client_ops client_ops = {
4869         .init_instance = hns3_client_init,
4870         .uninit_instance = hns3_client_uninit,
4871         .link_status_change = hns3_link_status_change,
4872         .reset_notify = hns3_reset_notify,
4873         .process_hw_error = hns3_process_hw_error,
4874 };
4875
4876 /* hns3_init_module - Driver registration routine
4877  * hns3_init_module is the first routine called when the driver is
4878  * loaded. All it does is register with the PCI subsystem.
4879  */
4880 static int __init hns3_init_module(void)
4881 {
4882         int ret;
4883
4884         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4885         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4886
4887         client.type = HNAE3_CLIENT_KNIC;
4888         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4889                  hns3_driver_name);
4890
4891         client.ops = &client_ops;
4892
4893         INIT_LIST_HEAD(&client.node);
4894
4895         hns3_dbg_register_debugfs(hns3_driver_name);
4896
4897         ret = hnae3_register_client(&client);
4898         if (ret)
4899                 goto err_reg_client;
4900
4901         ret = pci_register_driver(&hns3_driver);
4902         if (ret)
4903                 goto err_reg_driver;
4904
4905         return ret;
4906
4907 err_reg_driver:
4908         hnae3_unregister_client(&client);
4909 err_reg_client:
4910         hns3_dbg_unregister_debugfs();
4911         return ret;
4912 }
4913 module_init(hns3_init_module);
4914
4915 /* hns3_exit_module - Driver exit cleanup routine
4916  * hns3_exit_module is called just before the driver is removed
4917  * from memory.
4918  */
4919 static void __exit hns3_exit_module(void)
4920 {
4921         pci_unregister_driver(&hns3_driver);
4922         hnae3_unregister_client(&client);
4923         hns3_dbg_unregister_debugfs();
4924 }
4925 module_exit(hns3_exit_module);
4926
4927 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4928 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4929 MODULE_LICENSE("GPL");
4930 MODULE_ALIAS("pci:hns-nic");