OSDN Git Service

Merge tag 'fixes-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34
35 #define hns3_set_field(origin, shift, val)      ((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37
38 #define hns3_rl_err(fmt, ...)                                           \
39         do {                                                            \
40                 if (net_ratelimit())                                    \
41                         netdev_err(fmt, ##__VA_ARGS__);                 \
42         } while (0)
43
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48                         "Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58
59 #define HNS3_INNER_VLAN_TAG     1
60 #define HNS3_OUTER_VLAN_TAG     2
61
62 #define HNS3_MIN_TX_LEN         33U
63
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89         /* required last entry */
90         {0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96         struct hns3_enet_tqp_vector *tqp_vector = vector;
97
98         napi_schedule_irqoff(&tqp_vector->napi);
99
100         return IRQ_HANDLED;
101 }
102
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105         struct hns3_enet_tqp_vector *tqp_vectors;
106         unsigned int i;
107
108         for (i = 0; i < priv->vector_num; i++) {
109                 tqp_vectors = &priv->tqp_vector[i];
110
111                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112                         continue;
113
114                 /* clear the affinity mask */
115                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116
117                 /* release the irq resource */
118                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
119                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120         }
121 }
122
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125         struct hns3_enet_tqp_vector *tqp_vectors;
126         int txrx_int_idx = 0;
127         int rx_int_idx = 0;
128         int tx_int_idx = 0;
129         unsigned int i;
130         int ret;
131
132         for (i = 0; i < priv->vector_num; i++) {
133                 tqp_vectors = &priv->tqp_vector[i];
134
135                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136                         continue;
137
138                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140                                  "%s-%s-%s-%d", hns3_driver_name,
141                                  pci_name(priv->ae_handle->pdev),
142                                  "TxRx", txrx_int_idx++);
143                         txrx_int_idx++;
144                 } else if (tqp_vectors->rx_group.ring) {
145                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146                                  "%s-%s-%s-%d", hns3_driver_name,
147                                  pci_name(priv->ae_handle->pdev),
148                                  "Rx", rx_int_idx++);
149                 } else if (tqp_vectors->tx_group.ring) {
150                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151                                  "%s-%s-%s-%d", hns3_driver_name,
152                                  pci_name(priv->ae_handle->pdev),
153                                  "Tx", tx_int_idx++);
154                 } else {
155                         /* Skip this unused q_vector */
156                         continue;
157                 }
158
159                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160
161                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163                                   tqp_vectors->name, tqp_vectors);
164                 if (ret) {
165                         netdev_err(priv->netdev, "request irq(%d) fail\n",
166                                    tqp_vectors->vector_irq);
167                         hns3_nic_uninit_irq(priv);
168                         return ret;
169                 }
170
171                 irq_set_affinity_hint(tqp_vectors->vector_irq,
172                                       &tqp_vectors->affinity_mask);
173
174                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175         }
176
177         return 0;
178 }
179
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181                                  u32 mask_en)
182 {
183         writel(mask_en, tqp_vector->mask_addr);
184 }
185
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188         napi_enable(&tqp_vector->napi);
189         enable_irq(tqp_vector->vector_irq);
190
191         /* enable vector */
192         hns3_mask_vector_irq(tqp_vector, 1);
193 }
194
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197         /* disable vector */
198         hns3_mask_vector_irq(tqp_vector, 0);
199
200         disable_irq(tqp_vector->vector_irq);
201         napi_disable(&tqp_vector->napi);
202 }
203
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205                                  u32 rl_value)
206 {
207         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208
209         /* this defines the configuration for RL (Interrupt Rate Limiter).
210          * Rl defines rate of interrupts i.e. number of interrupts-per-second
211          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212          */
213
214         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
215             !tqp_vector->rx_group.coal.adapt_enable)
216                 /* According to the hardware, the range of rl_reg is
217                  * 0-59 and the unit is 4.
218                  */
219                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220
221         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225                                     u32 gl_value)
226 {
227         u32 new_val;
228
229         if (tqp_vector->rx_group.coal.unit_1us)
230                 new_val = gl_value | HNS3_INT_GL_1US;
231         else
232                 new_val = hns3_gl_usec_to_reg(gl_value);
233
234         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 }
236
237 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
238                                     u32 gl_value)
239 {
240         u32 new_val;
241
242         if (tqp_vector->tx_group.coal.unit_1us)
243                 new_val = gl_value | HNS3_INT_GL_1US;
244         else
245                 new_val = hns3_gl_usec_to_reg(gl_value);
246
247         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 }
249
250 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
251                                     u32 ql_value)
252 {
253         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
254 }
255
256 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
257                                     u32 ql_value)
258 {
259         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
260 }
261
262 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
263                                       struct hns3_nic_priv *priv)
264 {
265         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
266         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
267         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
268
269         /* initialize the configuration for interrupt coalescing.
270          * 1. GL (Interrupt Gap Limiter)
271          * 2. RL (Interrupt Rate Limiter)
272          * 3. QL (Interrupt Quantity Limiter)
273          *
274          * Default: enable interrupt coalescing self-adaptive and GL
275          */
276         tx_coal->adapt_enable = 1;
277         rx_coal->adapt_enable = 1;
278
279         tx_coal->int_gl = HNS3_INT_GL_50K;
280         rx_coal->int_gl = HNS3_INT_GL_50K;
281
282         rx_coal->flow_level = HNS3_FLOW_LOW;
283         tx_coal->flow_level = HNS3_FLOW_LOW;
284
285         /* device version above V3(include V3), GL can configure 1us
286          * unit, so uses 1us unit.
287          */
288         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
289                 tx_coal->unit_1us = 1;
290                 rx_coal->unit_1us = 1;
291         }
292
293         if (ae_dev->dev_specs.int_ql_max) {
294                 tx_coal->ql_enable = 1;
295                 rx_coal->ql_enable = 1;
296                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
298                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
300         }
301 }
302
303 static void
304 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
305                              struct hns3_nic_priv *priv)
306 {
307         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
308         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309         struct hnae3_handle *h = priv->ae_handle;
310
311         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
312         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314
315         if (tx_coal->ql_enable)
316                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
317
318         if (rx_coal->ql_enable)
319                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 }
321
322 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
323 {
324         struct hnae3_handle *h = hns3_get_handle(netdev);
325         struct hnae3_knic_private_info *kinfo = &h->kinfo;
326         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
327         unsigned int queue_size = kinfo->num_tqps;
328         int i, ret;
329
330         if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
331                 netdev_reset_tc(netdev);
332         } else {
333                 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
334                 if (ret) {
335                         netdev_err(netdev,
336                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
337                         return ret;
338                 }
339
340                 for (i = 0; i < HNAE3_MAX_TC; i++) {
341                         if (!test_bit(i, &tc_info->tc_en))
342                                 continue;
343
344                         netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
345                                             tc_info->tqp_offset[i]);
346                 }
347         }
348
349         ret = netif_set_real_num_tx_queues(netdev, queue_size);
350         if (ret) {
351                 netdev_err(netdev,
352                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
353                 return ret;
354         }
355
356         ret = netif_set_real_num_rx_queues(netdev, queue_size);
357         if (ret) {
358                 netdev_err(netdev,
359                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
360                 return ret;
361         }
362
363         return 0;
364 }
365
366 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
367 {
368         u16 alloc_tqps, max_rss_size, rss_size;
369
370         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
371         rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
372
373         return min_t(u16, rss_size, max_rss_size);
374 }
375
376 static void hns3_tqp_enable(struct hnae3_queue *tqp)
377 {
378         u32 rcb_reg;
379
380         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
381         rcb_reg |= BIT(HNS3_RING_EN_B);
382         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
383 }
384
385 static void hns3_tqp_disable(struct hnae3_queue *tqp)
386 {
387         u32 rcb_reg;
388
389         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
390         rcb_reg &= ~BIT(HNS3_RING_EN_B);
391         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
392 }
393
394 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
395 {
396 #ifdef CONFIG_RFS_ACCEL
397         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
398         netdev->rx_cpu_rmap = NULL;
399 #endif
400 }
401
402 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
403 {
404 #ifdef CONFIG_RFS_ACCEL
405         struct hns3_nic_priv *priv = netdev_priv(netdev);
406         struct hns3_enet_tqp_vector *tqp_vector;
407         int i, ret;
408
409         if (!netdev->rx_cpu_rmap) {
410                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
411                 if (!netdev->rx_cpu_rmap)
412                         return -ENOMEM;
413         }
414
415         for (i = 0; i < priv->vector_num; i++) {
416                 tqp_vector = &priv->tqp_vector[i];
417                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
418                                        tqp_vector->vector_irq);
419                 if (ret) {
420                         hns3_free_rx_cpu_rmap(netdev);
421                         return ret;
422                 }
423         }
424 #endif
425         return 0;
426 }
427
428 static int hns3_nic_net_up(struct net_device *netdev)
429 {
430         struct hns3_nic_priv *priv = netdev_priv(netdev);
431         struct hnae3_handle *h = priv->ae_handle;
432         int i, j;
433         int ret;
434
435         ret = hns3_nic_reset_all_ring(h);
436         if (ret)
437                 return ret;
438
439         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
440
441         /* enable the vectors */
442         for (i = 0; i < priv->vector_num; i++)
443                 hns3_vector_enable(&priv->tqp_vector[i]);
444
445         /* enable rcb */
446         for (j = 0; j < h->kinfo.num_tqps; j++)
447                 hns3_tqp_enable(h->kinfo.tqp[j]);
448
449         /* start the ae_dev */
450         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
451         if (ret) {
452                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
453                 while (j--)
454                         hns3_tqp_disable(h->kinfo.tqp[j]);
455
456                 for (j = i - 1; j >= 0; j--)
457                         hns3_vector_disable(&priv->tqp_vector[j]);
458         }
459
460         return ret;
461 }
462
463 static void hns3_config_xps(struct hns3_nic_priv *priv)
464 {
465         int i;
466
467         for (i = 0; i < priv->vector_num; i++) {
468                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
469                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
470
471                 while (ring) {
472                         int ret;
473
474                         ret = netif_set_xps_queue(priv->netdev,
475                                                   &tqp_vector->affinity_mask,
476                                                   ring->tqp->tqp_index);
477                         if (ret)
478                                 netdev_warn(priv->netdev,
479                                             "set xps queue failed: %d", ret);
480
481                         ring = ring->next;
482                 }
483         }
484 }
485
486 static int hns3_nic_net_open(struct net_device *netdev)
487 {
488         struct hns3_nic_priv *priv = netdev_priv(netdev);
489         struct hnae3_handle *h = hns3_get_handle(netdev);
490         struct hnae3_knic_private_info *kinfo;
491         int i, ret;
492
493         if (hns3_nic_resetting(netdev))
494                 return -EBUSY;
495
496         netif_carrier_off(netdev);
497
498         ret = hns3_nic_set_real_num_queue(netdev);
499         if (ret)
500                 return ret;
501
502         ret = hns3_nic_net_up(netdev);
503         if (ret) {
504                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
505                 return ret;
506         }
507
508         kinfo = &h->kinfo;
509         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
510                 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
511
512         if (h->ae_algo->ops->set_timer_task)
513                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
514
515         hns3_config_xps(priv);
516
517         netif_dbg(h, drv, netdev, "net open\n");
518
519         return 0;
520 }
521
522 static void hns3_reset_tx_queue(struct hnae3_handle *h)
523 {
524         struct net_device *ndev = h->kinfo.netdev;
525         struct hns3_nic_priv *priv = netdev_priv(ndev);
526         struct netdev_queue *dev_queue;
527         u32 i;
528
529         for (i = 0; i < h->kinfo.num_tqps; i++) {
530                 dev_queue = netdev_get_tx_queue(ndev,
531                                                 priv->ring[i].queue_index);
532                 netdev_tx_reset_queue(dev_queue);
533         }
534 }
535
536 static void hns3_nic_net_down(struct net_device *netdev)
537 {
538         struct hns3_nic_priv *priv = netdev_priv(netdev);
539         struct hnae3_handle *h = hns3_get_handle(netdev);
540         const struct hnae3_ae_ops *ops;
541         int i;
542
543         /* disable vectors */
544         for (i = 0; i < priv->vector_num; i++)
545                 hns3_vector_disable(&priv->tqp_vector[i]);
546
547         /* disable rcb */
548         for (i = 0; i < h->kinfo.num_tqps; i++)
549                 hns3_tqp_disable(h->kinfo.tqp[i]);
550
551         /* stop ae_dev */
552         ops = priv->ae_handle->ae_algo->ops;
553         if (ops->stop)
554                 ops->stop(priv->ae_handle);
555
556         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
557          * during reset process, because driver may not be able
558          * to disable the ring through firmware when downing the netdev.
559          */
560         if (!hns3_nic_resetting(netdev))
561                 hns3_clear_all_ring(priv->ae_handle, false);
562
563         hns3_reset_tx_queue(priv->ae_handle);
564 }
565
566 static int hns3_nic_net_stop(struct net_device *netdev)
567 {
568         struct hns3_nic_priv *priv = netdev_priv(netdev);
569         struct hnae3_handle *h = hns3_get_handle(netdev);
570
571         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
572                 return 0;
573
574         netif_dbg(h, drv, netdev, "net stop\n");
575
576         if (h->ae_algo->ops->set_timer_task)
577                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
578
579         netif_tx_stop_all_queues(netdev);
580         netif_carrier_off(netdev);
581
582         hns3_nic_net_down(netdev);
583
584         return 0;
585 }
586
587 static int hns3_nic_uc_sync(struct net_device *netdev,
588                             const unsigned char *addr)
589 {
590         struct hnae3_handle *h = hns3_get_handle(netdev);
591
592         if (h->ae_algo->ops->add_uc_addr)
593                 return h->ae_algo->ops->add_uc_addr(h, addr);
594
595         return 0;
596 }
597
598 static int hns3_nic_uc_unsync(struct net_device *netdev,
599                               const unsigned char *addr)
600 {
601         struct hnae3_handle *h = hns3_get_handle(netdev);
602
603         /* need ignore the request of removing device address, because
604          * we store the device address and other addresses of uc list
605          * in the function's mac filter list.
606          */
607         if (ether_addr_equal(addr, netdev->dev_addr))
608                 return 0;
609
610         if (h->ae_algo->ops->rm_uc_addr)
611                 return h->ae_algo->ops->rm_uc_addr(h, addr);
612
613         return 0;
614 }
615
616 static int hns3_nic_mc_sync(struct net_device *netdev,
617                             const unsigned char *addr)
618 {
619         struct hnae3_handle *h = hns3_get_handle(netdev);
620
621         if (h->ae_algo->ops->add_mc_addr)
622                 return h->ae_algo->ops->add_mc_addr(h, addr);
623
624         return 0;
625 }
626
627 static int hns3_nic_mc_unsync(struct net_device *netdev,
628                               const unsigned char *addr)
629 {
630         struct hnae3_handle *h = hns3_get_handle(netdev);
631
632         if (h->ae_algo->ops->rm_mc_addr)
633                 return h->ae_algo->ops->rm_mc_addr(h, addr);
634
635         return 0;
636 }
637
638 static u8 hns3_get_netdev_flags(struct net_device *netdev)
639 {
640         u8 flags = 0;
641
642         if (netdev->flags & IFF_PROMISC) {
643                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
644         } else {
645                 flags |= HNAE3_VLAN_FLTR;
646                 if (netdev->flags & IFF_ALLMULTI)
647                         flags |= HNAE3_USER_MPE;
648         }
649
650         return flags;
651 }
652
653 static void hns3_nic_set_rx_mode(struct net_device *netdev)
654 {
655         struct hnae3_handle *h = hns3_get_handle(netdev);
656         u8 new_flags;
657
658         new_flags = hns3_get_netdev_flags(netdev);
659
660         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
661         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
662
663         /* User mode Promisc mode enable and vlan filtering is disabled to
664          * let all packets in.
665          */
666         h->netdev_flags = new_flags;
667         hns3_request_update_promisc_mode(h);
668 }
669
670 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
671 {
672         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
673
674         if (ops->request_update_promisc_mode)
675                 ops->request_update_promisc_mode(handle);
676 }
677
678 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
679 {
680         struct hns3_nic_priv *priv = netdev_priv(netdev);
681         struct hnae3_handle *h = priv->ae_handle;
682         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
683         bool last_state;
684
685         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
686             h->ae_algo->ops->enable_vlan_filter) {
687                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
688                 if (enable != last_state) {
689                         netdev_info(netdev,
690                                     "%s vlan filter\n",
691                                     enable ? "enable" : "disable");
692                         h->ae_algo->ops->enable_vlan_filter(h, enable);
693                 }
694         }
695 }
696
697 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
698                         u16 *mss, u32 *type_cs_vlan_tso)
699 {
700         u32 l4_offset, hdr_len;
701         union l3_hdr_info l3;
702         union l4_hdr_info l4;
703         u32 l4_paylen;
704         int ret;
705
706         if (!skb_is_gso(skb))
707                 return 0;
708
709         ret = skb_cow_head(skb, 0);
710         if (unlikely(ret < 0))
711                 return ret;
712
713         l3.hdr = skb_network_header(skb);
714         l4.hdr = skb_transport_header(skb);
715
716         /* Software should clear the IPv4's checksum field when tso is
717          * needed.
718          */
719         if (l3.v4->version == 4)
720                 l3.v4->check = 0;
721
722         /* tunnel packet */
723         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
724                                          SKB_GSO_GRE_CSUM |
725                                          SKB_GSO_UDP_TUNNEL |
726                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
727                 /* reset l3&l4 pointers from outer to inner headers */
728                 l3.hdr = skb_inner_network_header(skb);
729                 l4.hdr = skb_inner_transport_header(skb);
730
731                 /* Software should clear the IPv4's checksum field when
732                  * tso is needed.
733                  */
734                 if (l3.v4->version == 4)
735                         l3.v4->check = 0;
736         }
737
738         /* normal or tunnel packet */
739         l4_offset = l4.hdr - skb->data;
740
741         /* remove payload length from inner pseudo checksum when tso */
742         l4_paylen = skb->len - l4_offset;
743
744         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
745                 hdr_len = sizeof(*l4.udp) + l4_offset;
746                 csum_replace_by_diff(&l4.udp->check,
747                                      (__force __wsum)htonl(l4_paylen));
748         } else {
749                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
750                 csum_replace_by_diff(&l4.tcp->check,
751                                      (__force __wsum)htonl(l4_paylen));
752         }
753
754         /* find the txbd field values */
755         *paylen_fdop_ol4cs = skb->len - hdr_len;
756         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
757
758         /* offload outer UDP header checksum */
759         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
760                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
761
762         /* get MSS for TSO */
763         *mss = skb_shinfo(skb)->gso_size;
764
765         trace_hns3_tso(skb);
766
767         return 0;
768 }
769
770 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
771                                 u8 *il4_proto)
772 {
773         union l3_hdr_info l3;
774         unsigned char *l4_hdr;
775         unsigned char *exthdr;
776         u8 l4_proto_tmp;
777         __be16 frag_off;
778
779         /* find outer header point */
780         l3.hdr = skb_network_header(skb);
781         l4_hdr = skb_transport_header(skb);
782
783         if (skb->protocol == htons(ETH_P_IPV6)) {
784                 exthdr = l3.hdr + sizeof(*l3.v6);
785                 l4_proto_tmp = l3.v6->nexthdr;
786                 if (l4_hdr != exthdr)
787                         ipv6_skip_exthdr(skb, exthdr - skb->data,
788                                          &l4_proto_tmp, &frag_off);
789         } else if (skb->protocol == htons(ETH_P_IP)) {
790                 l4_proto_tmp = l3.v4->protocol;
791         } else {
792                 return -EINVAL;
793         }
794
795         *ol4_proto = l4_proto_tmp;
796
797         /* tunnel packet */
798         if (!skb->encapsulation) {
799                 *il4_proto = 0;
800                 return 0;
801         }
802
803         /* find inner header point */
804         l3.hdr = skb_inner_network_header(skb);
805         l4_hdr = skb_inner_transport_header(skb);
806
807         if (l3.v6->version == 6) {
808                 exthdr = l3.hdr + sizeof(*l3.v6);
809                 l4_proto_tmp = l3.v6->nexthdr;
810                 if (l4_hdr != exthdr)
811                         ipv6_skip_exthdr(skb, exthdr - skb->data,
812                                          &l4_proto_tmp, &frag_off);
813         } else if (l3.v4->version == 4) {
814                 l4_proto_tmp = l3.v4->protocol;
815         }
816
817         *il4_proto = l4_proto_tmp;
818
819         return 0;
820 }
821
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789 or 6081.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
831         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
832         union l4_hdr_info l4;
833
834         /* device version above V3(include V3), the hardware can
835          * do this checksum offload.
836          */
837         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
838                 return false;
839
840         l4.hdr = skb_transport_header(skb);
841
842         if (!(!skb->encapsulation &&
843               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
844               l4.udp->dest == htons(GENEVE_UDP_PORT))))
845                 return false;
846
847         skb_checksum_help(skb);
848
849         return true;
850 }
851
852 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
853                                   u32 *ol_type_vlan_len_msec)
854 {
855         u32 l2_len, l3_len, l4_len;
856         unsigned char *il2_hdr;
857         union l3_hdr_info l3;
858         union l4_hdr_info l4;
859
860         l3.hdr = skb_network_header(skb);
861         l4.hdr = skb_transport_header(skb);
862
863         /* compute OL2 header size, defined in 2 Bytes */
864         l2_len = l3.hdr - skb->data;
865         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
866
867         /* compute OL3 header size, defined in 4 Bytes */
868         l3_len = l4.hdr - l3.hdr;
869         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
870
871         il2_hdr = skb_inner_mac_header(skb);
872         /* compute OL4 header size, defined in 4 Bytes */
873         l4_len = il2_hdr - l4.hdr;
874         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
875
876         /* define outer network header type */
877         if (skb->protocol == htons(ETH_P_IP)) {
878                 if (skb_is_gso(skb))
879                         hns3_set_field(*ol_type_vlan_len_msec,
880                                        HNS3_TXD_OL3T_S,
881                                        HNS3_OL3T_IPV4_CSUM);
882                 else
883                         hns3_set_field(*ol_type_vlan_len_msec,
884                                        HNS3_TXD_OL3T_S,
885                                        HNS3_OL3T_IPV4_NO_CSUM);
886
887         } else if (skb->protocol == htons(ETH_P_IPV6)) {
888                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
889                                HNS3_OL3T_IPV6);
890         }
891
892         if (ol4_proto == IPPROTO_UDP)
893                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
894                                HNS3_TUN_MAC_IN_UDP);
895         else if (ol4_proto == IPPROTO_GRE)
896                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
897                                HNS3_TUN_NVGRE);
898 }
899
900 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
901                            u8 il4_proto, u32 *type_cs_vlan_tso,
902                            u32 *ol_type_vlan_len_msec)
903 {
904         unsigned char *l2_hdr = skb->data;
905         u32 l4_proto = ol4_proto;
906         union l4_hdr_info l4;
907         union l3_hdr_info l3;
908         u32 l2_len, l3_len;
909
910         l4.hdr = skb_transport_header(skb);
911         l3.hdr = skb_network_header(skb);
912
913         /* handle encapsulation skb */
914         if (skb->encapsulation) {
915                 /* If this is a not UDP/GRE encapsulation skb */
916                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
917                         /* drop the skb tunnel packet if hardware don't support,
918                          * because hardware can't calculate csum when TSO.
919                          */
920                         if (skb_is_gso(skb))
921                                 return -EDOM;
922
923                         /* the stack computes the IP header already,
924                          * driver calculate l4 checksum when not TSO.
925                          */
926                         skb_checksum_help(skb);
927                         return 0;
928                 }
929
930                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
931
932                 /* switch to inner header */
933                 l2_hdr = skb_inner_mac_header(skb);
934                 l3.hdr = skb_inner_network_header(skb);
935                 l4.hdr = skb_inner_transport_header(skb);
936                 l4_proto = il4_proto;
937         }
938
939         if (l3.v4->version == 4) {
940                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
941                                HNS3_L3T_IPV4);
942
943                 /* the stack computes the IP header already, the only time we
944                  * need the hardware to recompute it is in the case of TSO.
945                  */
946                 if (skb_is_gso(skb))
947                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
948         } else if (l3.v6->version == 6) {
949                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
950                                HNS3_L3T_IPV6);
951         }
952
953         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
954         l2_len = l3.hdr - l2_hdr;
955         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
956
957         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
958         l3_len = l4.hdr - l3.hdr;
959         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
960
961         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
962         switch (l4_proto) {
963         case IPPROTO_TCP:
964                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
965                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
966                                HNS3_L4T_TCP);
967                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
968                                l4.tcp->doff);
969                 break;
970         case IPPROTO_UDP:
971                 if (hns3_tunnel_csum_bug(skb))
972                         break;
973
974                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
975                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
976                                HNS3_L4T_UDP);
977                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
978                                (sizeof(struct udphdr) >> 2));
979                 break;
980         case IPPROTO_SCTP:
981                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
982                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
983                                HNS3_L4T_SCTP);
984                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
985                                (sizeof(struct sctphdr) >> 2));
986                 break;
987         default:
988                 /* drop the skb tunnel packet if hardware don't support,
989                  * because hardware can't calculate csum when TSO.
990                  */
991                 if (skb_is_gso(skb))
992                         return -EDOM;
993
994                 /* the stack computes the IP header already,
995                  * driver calculate l4 checksum when not TSO.
996                  */
997                 skb_checksum_help(skb);
998                 return 0;
999         }
1000
1001         return 0;
1002 }
1003
1004 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1005                              struct sk_buff *skb)
1006 {
1007         struct hnae3_handle *handle = tx_ring->tqp->handle;
1008         struct hnae3_ae_dev *ae_dev;
1009         struct vlan_ethhdr *vhdr;
1010         int rc;
1011
1012         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1013               skb_vlan_tag_present(skb)))
1014                 return 0;
1015
1016         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1017          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1018          * will cause RAS error.
1019          */
1020         ae_dev = pci_get_drvdata(handle->pdev);
1021         if (unlikely(skb_vlan_tagged_multi(skb) &&
1022                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1023                      handle->port_base_vlan_state ==
1024                      HNAE3_PORT_BASE_VLAN_ENABLE))
1025                 return -EINVAL;
1026
1027         if (skb->protocol == htons(ETH_P_8021Q) &&
1028             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1029                 /* When HW VLAN acceleration is turned off, and the stack
1030                  * sets the protocol to 802.1q, the driver just need to
1031                  * set the protocol to the encapsulated ethertype.
1032                  */
1033                 skb->protocol = vlan_get_protocol(skb);
1034                 return 0;
1035         }
1036
1037         if (skb_vlan_tag_present(skb)) {
1038                 /* Based on hw strategy, use out_vtag in two layer tag case,
1039                  * and use inner_vtag in one tag case.
1040                  */
1041                 if (skb->protocol == htons(ETH_P_8021Q) &&
1042                     handle->port_base_vlan_state ==
1043                     HNAE3_PORT_BASE_VLAN_DISABLE)
1044                         rc = HNS3_OUTER_VLAN_TAG;
1045                 else
1046                         rc = HNS3_INNER_VLAN_TAG;
1047
1048                 skb->protocol = vlan_get_protocol(skb);
1049                 return rc;
1050         }
1051
1052         rc = skb_cow_head(skb, 0);
1053         if (unlikely(rc < 0))
1054                 return rc;
1055
1056         vhdr = (struct vlan_ethhdr *)skb->data;
1057         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1058                                          & VLAN_PRIO_MASK);
1059
1060         skb->protocol = vlan_get_protocol(skb);
1061         return 0;
1062 }
1063
1064 /* check if the hardware is capable of checksum offloading */
1065 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1066 {
1067         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1068
1069         /* Kindly note, due to backward compatibility of the TX descriptor,
1070          * HW checksum of the non-IP packets and GSO packets is handled at
1071          * different place in the following code
1072          */
1073         if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1074             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1075                 return false;
1076
1077         return true;
1078 }
1079
1080 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1081                               struct sk_buff *skb, struct hns3_desc *desc)
1082 {
1083         u32 ol_type_vlan_len_msec = 0;
1084         u32 paylen_ol4cs = skb->len;
1085         u32 type_cs_vlan_tso = 0;
1086         u16 mss_hw_csum = 0;
1087         u16 inner_vtag = 0;
1088         u16 out_vtag = 0;
1089         int ret;
1090
1091         ret = hns3_handle_vtags(ring, skb);
1092         if (unlikely(ret < 0)) {
1093                 u64_stats_update_begin(&ring->syncp);
1094                 ring->stats.tx_vlan_err++;
1095                 u64_stats_update_end(&ring->syncp);
1096                 return ret;
1097         } else if (ret == HNS3_INNER_VLAN_TAG) {
1098                 inner_vtag = skb_vlan_tag_get(skb);
1099                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1100                                 VLAN_PRIO_MASK;
1101                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1102         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1103                 out_vtag = skb_vlan_tag_get(skb);
1104                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1105                                 VLAN_PRIO_MASK;
1106                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1107                                1);
1108         }
1109
1110         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1111                 u8 ol4_proto, il4_proto;
1112
1113                 if (hns3_check_hw_tx_csum(skb)) {
1114                         /* set checksum start and offset, defined in 2 Bytes */
1115                         hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1116                                        skb_checksum_start_offset(skb) >> 1);
1117                         hns3_set_field(ol_type_vlan_len_msec,
1118                                        HNS3_TXD_CSUM_OFFSET_S,
1119                                        skb->csum_offset >> 1);
1120                         mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1121                         goto out_hw_tx_csum;
1122                 }
1123
1124                 skb_reset_mac_len(skb);
1125
1126                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1127                 if (unlikely(ret < 0)) {
1128                         u64_stats_update_begin(&ring->syncp);
1129                         ring->stats.tx_l4_proto_err++;
1130                         u64_stats_update_end(&ring->syncp);
1131                         return ret;
1132                 }
1133
1134                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1135                                       &type_cs_vlan_tso,
1136                                       &ol_type_vlan_len_msec);
1137                 if (unlikely(ret < 0)) {
1138                         u64_stats_update_begin(&ring->syncp);
1139                         ring->stats.tx_l2l3l4_err++;
1140                         u64_stats_update_end(&ring->syncp);
1141                         return ret;
1142                 }
1143
1144                 ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1145                                    &type_cs_vlan_tso);
1146                 if (unlikely(ret < 0)) {
1147                         u64_stats_update_begin(&ring->syncp);
1148                         ring->stats.tx_tso_err++;
1149                         u64_stats_update_end(&ring->syncp);
1150                         return ret;
1151                 }
1152         }
1153
1154 out_hw_tx_csum:
1155         /* Set txbd */
1156         desc->tx.ol_type_vlan_len_msec =
1157                 cpu_to_le32(ol_type_vlan_len_msec);
1158         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1159         desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1160         desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1161         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1162         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1163
1164         return 0;
1165 }
1166
1167 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1168                           unsigned int size, enum hns_desc_type type)
1169 {
1170 #define HNS3_LIKELY_BD_NUM      1
1171
1172         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1173         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1174         struct device *dev = ring_to_dev(ring);
1175         skb_frag_t *frag;
1176         unsigned int frag_buf_num;
1177         int k, sizeoflast;
1178         dma_addr_t dma;
1179
1180         if (type == DESC_TYPE_FRAGLIST_SKB ||
1181             type == DESC_TYPE_SKB) {
1182                 struct sk_buff *skb = (struct sk_buff *)priv;
1183
1184                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1185         } else {
1186                 frag = (skb_frag_t *)priv;
1187                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1188         }
1189
1190         if (unlikely(dma_mapping_error(dev, dma))) {
1191                 u64_stats_update_begin(&ring->syncp);
1192                 ring->stats.sw_err_cnt++;
1193                 u64_stats_update_end(&ring->syncp);
1194                 return -ENOMEM;
1195         }
1196
1197         desc_cb->priv = priv;
1198         desc_cb->length = size;
1199         desc_cb->dma = dma;
1200         desc_cb->type = type;
1201
1202         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1203                 desc->addr = cpu_to_le64(dma);
1204                 desc->tx.send_size = cpu_to_le16(size);
1205                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1206                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1207
1208                 trace_hns3_tx_desc(ring, ring->next_to_use);
1209                 ring_ptr_move_fw(ring, next_to_use);
1210                 return HNS3_LIKELY_BD_NUM;
1211         }
1212
1213         frag_buf_num = hns3_tx_bd_count(size);
1214         sizeoflast = size % HNS3_MAX_BD_SIZE;
1215         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1216
1217         /* When frag size is bigger than hardware limit, split this frag */
1218         for (k = 0; k < frag_buf_num; k++) {
1219                 /* now, fill the descriptor */
1220                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1221                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1222                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1223                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1224                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1225
1226                 trace_hns3_tx_desc(ring, ring->next_to_use);
1227                 /* move ring pointer to next */
1228                 ring_ptr_move_fw(ring, next_to_use);
1229
1230                 desc = &ring->desc[ring->next_to_use];
1231         }
1232
1233         return frag_buf_num;
1234 }
1235
1236 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1237                                     unsigned int bd_num)
1238 {
1239         unsigned int size;
1240         int i;
1241
1242         size = skb_headlen(skb);
1243         while (size > HNS3_MAX_BD_SIZE) {
1244                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1245                 size -= HNS3_MAX_BD_SIZE;
1246
1247                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1248                         return bd_num;
1249         }
1250
1251         if (size) {
1252                 bd_size[bd_num++] = size;
1253                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1254                         return bd_num;
1255         }
1256
1257         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1258                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259                 size = skb_frag_size(frag);
1260                 if (!size)
1261                         continue;
1262
1263                 while (size > HNS3_MAX_BD_SIZE) {
1264                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1265                         size -= HNS3_MAX_BD_SIZE;
1266
1267                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1268                                 return bd_num;
1269                 }
1270
1271                 bd_size[bd_num++] = size;
1272                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1273                         return bd_num;
1274         }
1275
1276         return bd_num;
1277 }
1278
1279 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1280                                    u8 max_non_tso_bd_num)
1281 {
1282         struct sk_buff *frag_skb;
1283         unsigned int bd_num = 0;
1284
1285         /* If the total len is within the max bd limit */
1286         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1287                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1288                 return skb_shinfo(skb)->nr_frags + 1U;
1289
1290         /* The below case will always be linearized, return
1291          * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1292          */
1293         if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1294                      (!skb_is_gso(skb) && skb->len >
1295                       HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))))
1296                 return HNS3_MAX_TSO_BD_NUM + 1U;
1297
1298         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1299
1300         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1301                 return bd_num;
1302
1303         skb_walk_frags(skb, frag_skb) {
1304                 bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1305                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1306                         return bd_num;
1307         }
1308
1309         return bd_num;
1310 }
1311
1312 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1313 {
1314         if (!skb->encapsulation)
1315                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1316
1317         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1318 }
1319
1320 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1321  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1322  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1323  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1324  * than MSS except the last max_non_tso_bd_num - 1 frags.
1325  */
1326 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1327                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1328 {
1329         unsigned int tot_len = 0;
1330         int i;
1331
1332         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1333                 tot_len += bd_size[i];
1334
1335         /* ensure the first max_non_tso_bd_num frags is greater than
1336          * mss + header
1337          */
1338         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1339             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1340                 return true;
1341
1342         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1343          * than mss except the last one.
1344          */
1345         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1346                 tot_len -= bd_size[i];
1347                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1348
1349                 if (tot_len < skb_shinfo(skb)->gso_size)
1350                         return true;
1351         }
1352
1353         return false;
1354 }
1355
1356 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1357 {
1358         int i;
1359
1360         for (i = 0; i < MAX_SKB_FRAGS; i++)
1361                 size[i] = skb_frag_size(&shinfo->frags[i]);
1362 }
1363
1364 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1365                                   struct net_device *netdev,
1366                                   struct sk_buff *skb)
1367 {
1368         struct hns3_nic_priv *priv = netdev_priv(netdev);
1369         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1370         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1371         unsigned int bd_num;
1372
1373         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num);
1374         if (unlikely(bd_num > max_non_tso_bd_num)) {
1375                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1376                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1377                                               max_non_tso_bd_num)) {
1378                         trace_hns3_over_max_bd(skb);
1379                         goto out;
1380                 }
1381
1382                 if (__skb_linearize(skb))
1383                         return -ENOMEM;
1384
1385                 bd_num = hns3_tx_bd_count(skb->len);
1386                 if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1387                     (!skb_is_gso(skb) &&
1388                      bd_num > max_non_tso_bd_num)) {
1389                         trace_hns3_over_max_bd(skb);
1390                         return -ENOMEM;
1391                 }
1392
1393                 u64_stats_update_begin(&ring->syncp);
1394                 ring->stats.tx_copy++;
1395                 u64_stats_update_end(&ring->syncp);
1396         }
1397
1398 out:
1399         if (likely(ring_space(ring) >= bd_num))
1400                 return bd_num;
1401
1402         netif_stop_subqueue(netdev, ring->queue_index);
1403         smp_mb(); /* Memory barrier before checking ring_space */
1404
1405         /* Start queue in case hns3_clean_tx_ring has just made room
1406          * available and has not seen the queue stopped state performed
1407          * by netif_stop_subqueue above.
1408          */
1409         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1410             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1411                 netif_start_subqueue(netdev, ring->queue_index);
1412                 return bd_num;
1413         }
1414
1415         return -EBUSY;
1416 }
1417
1418 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1419 {
1420         struct device *dev = ring_to_dev(ring);
1421         unsigned int i;
1422
1423         for (i = 0; i < ring->desc_num; i++) {
1424                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1425
1426                 memset(desc, 0, sizeof(*desc));
1427
1428                 /* check if this is where we started */
1429                 if (ring->next_to_use == next_to_use_orig)
1430                         break;
1431
1432                 /* rollback one */
1433                 ring_ptr_move_bw(ring, next_to_use);
1434
1435                 if (!ring->desc_cb[ring->next_to_use].dma)
1436                         continue;
1437
1438                 /* unmap the descriptor dma address */
1439                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1440                     ring->desc_cb[ring->next_to_use].type ==
1441                     DESC_TYPE_FRAGLIST_SKB)
1442                         dma_unmap_single(dev,
1443                                          ring->desc_cb[ring->next_to_use].dma,
1444                                         ring->desc_cb[ring->next_to_use].length,
1445                                         DMA_TO_DEVICE);
1446                 else if (ring->desc_cb[ring->next_to_use].length)
1447                         dma_unmap_page(dev,
1448                                        ring->desc_cb[ring->next_to_use].dma,
1449                                        ring->desc_cb[ring->next_to_use].length,
1450                                        DMA_TO_DEVICE);
1451
1452                 ring->desc_cb[ring->next_to_use].length = 0;
1453                 ring->desc_cb[ring->next_to_use].dma = 0;
1454                 ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1455         }
1456 }
1457
1458 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1459                                  struct sk_buff *skb, enum hns_desc_type type)
1460 {
1461         unsigned int size = skb_headlen(skb);
1462         int i, ret, bd_num = 0;
1463
1464         if (size) {
1465                 ret = hns3_fill_desc(ring, skb, size, type);
1466                 if (unlikely(ret < 0))
1467                         return ret;
1468
1469                 bd_num += ret;
1470         }
1471
1472         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1473                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1474
1475                 size = skb_frag_size(frag);
1476                 if (!size)
1477                         continue;
1478
1479                 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1480                 if (unlikely(ret < 0))
1481                         return ret;
1482
1483                 bd_num += ret;
1484         }
1485
1486         return bd_num;
1487 }
1488
1489 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1490                              bool doorbell)
1491 {
1492         ring->pending_buf += num;
1493
1494         if (!doorbell) {
1495                 u64_stats_update_begin(&ring->syncp);
1496                 ring->stats.tx_more++;
1497                 u64_stats_update_end(&ring->syncp);
1498                 return;
1499         }
1500
1501         if (!ring->pending_buf)
1502                 return;
1503
1504         writel(ring->pending_buf,
1505                ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1506         ring->pending_buf = 0;
1507         WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1508 }
1509
1510 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1511 {
1512         struct hns3_nic_priv *priv = netdev_priv(netdev);
1513         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1514         struct netdev_queue *dev_queue;
1515         int pre_ntu, next_to_use_head;
1516         struct sk_buff *frag_skb;
1517         int bd_num = 0;
1518         bool doorbell;
1519         int ret;
1520
1521         /* Hardware can only handle short frames above 32 bytes */
1522         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1523                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1524                 return NETDEV_TX_OK;
1525         }
1526
1527         /* Prefetch the data used later */
1528         prefetch(skb->data);
1529
1530         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1531         if (unlikely(ret <= 0)) {
1532                 if (ret == -EBUSY) {
1533                         u64_stats_update_begin(&ring->syncp);
1534                         ring->stats.tx_busy++;
1535                         u64_stats_update_end(&ring->syncp);
1536                         hns3_tx_doorbell(ring, 0, true);
1537                         return NETDEV_TX_BUSY;
1538                 } else if (ret == -ENOMEM) {
1539                         u64_stats_update_begin(&ring->syncp);
1540                         ring->stats.sw_err_cnt++;
1541                         u64_stats_update_end(&ring->syncp);
1542                 }
1543
1544                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1545                 goto out_err_tx_ok;
1546         }
1547
1548         next_to_use_head = ring->next_to_use;
1549
1550         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1551         if (unlikely(ret < 0))
1552                 goto fill_err;
1553
1554         ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1555         if (unlikely(ret < 0))
1556                 goto fill_err;
1557
1558         bd_num += ret;
1559
1560         skb_walk_frags(skb, frag_skb) {
1561                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1562                                             DESC_TYPE_FRAGLIST_SKB);
1563                 if (unlikely(ret < 0))
1564                         goto fill_err;
1565
1566                 bd_num += ret;
1567         }
1568
1569         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1570                                         (ring->desc_num - 1);
1571         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1572                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1573         trace_hns3_tx_desc(ring, pre_ntu);
1574
1575         /* Complete translate all packets */
1576         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1577         doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1578                                           netdev_xmit_more());
1579         hns3_tx_doorbell(ring, bd_num, doorbell);
1580
1581         return NETDEV_TX_OK;
1582
1583 fill_err:
1584         hns3_clear_desc(ring, next_to_use_head);
1585
1586 out_err_tx_ok:
1587         dev_kfree_skb_any(skb);
1588         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1589         return NETDEV_TX_OK;
1590 }
1591
1592 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1593 {
1594         struct hnae3_handle *h = hns3_get_handle(netdev);
1595         struct sockaddr *mac_addr = p;
1596         int ret;
1597
1598         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1599                 return -EADDRNOTAVAIL;
1600
1601         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1602                 netdev_info(netdev, "already using mac address %pM\n",
1603                             mac_addr->sa_data);
1604                 return 0;
1605         }
1606
1607         /* For VF device, if there is a perm_addr, then the user will not
1608          * be allowed to change the address.
1609          */
1610         if (!hns3_is_phys_func(h->pdev) &&
1611             !is_zero_ether_addr(netdev->perm_addr)) {
1612                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1613                            netdev->perm_addr, mac_addr->sa_data);
1614                 return -EPERM;
1615         }
1616
1617         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1618         if (ret) {
1619                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1620                 return ret;
1621         }
1622
1623         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1624
1625         return 0;
1626 }
1627
1628 static int hns3_nic_do_ioctl(struct net_device *netdev,
1629                              struct ifreq *ifr, int cmd)
1630 {
1631         struct hnae3_handle *h = hns3_get_handle(netdev);
1632
1633         if (!netif_running(netdev))
1634                 return -EINVAL;
1635
1636         if (!h->ae_algo->ops->do_ioctl)
1637                 return -EOPNOTSUPP;
1638
1639         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1640 }
1641
1642 static int hns3_nic_set_features(struct net_device *netdev,
1643                                  netdev_features_t features)
1644 {
1645         netdev_features_t changed = netdev->features ^ features;
1646         struct hns3_nic_priv *priv = netdev_priv(netdev);
1647         struct hnae3_handle *h = priv->ae_handle;
1648         bool enable;
1649         int ret;
1650
1651         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1652                 enable = !!(features & NETIF_F_GRO_HW);
1653                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1654                 if (ret)
1655                         return ret;
1656         }
1657
1658         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1659             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1660                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1661                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1662                 if (ret)
1663                         return ret;
1664         }
1665
1666         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1667                 enable = !!(features & NETIF_F_NTUPLE);
1668                 h->ae_algo->ops->enable_fd(h, enable);
1669         }
1670
1671         if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1672             h->ae_algo->ops->cls_flower_active(h)) {
1673                 netdev_err(netdev,
1674                            "there are offloaded TC filters active, cannot disable HW TC offload");
1675                 return -EINVAL;
1676         }
1677
1678         netdev->features = features;
1679         return 0;
1680 }
1681
1682 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1683                                              struct net_device *dev,
1684                                              netdev_features_t features)
1685 {
1686 #define HNS3_MAX_HDR_LEN        480U
1687 #define HNS3_MAX_L4_HDR_LEN     60U
1688
1689         size_t len;
1690
1691         if (skb->ip_summed != CHECKSUM_PARTIAL)
1692                 return features;
1693
1694         if (skb->encapsulation)
1695                 len = skb_inner_transport_header(skb) - skb->data;
1696         else
1697                 len = skb_transport_header(skb) - skb->data;
1698
1699         /* Assume L4 is 60 byte as TCP is the only protocol with a
1700          * a flexible value, and it's max len is 60 bytes.
1701          */
1702         len += HNS3_MAX_L4_HDR_LEN;
1703
1704         /* Hardware only supports checksum on the skb with a max header
1705          * len of 480 bytes.
1706          */
1707         if (len > HNS3_MAX_HDR_LEN)
1708                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1709
1710         return features;
1711 }
1712
1713 static void hns3_nic_get_stats64(struct net_device *netdev,
1714                                  struct rtnl_link_stats64 *stats)
1715 {
1716         struct hns3_nic_priv *priv = netdev_priv(netdev);
1717         int queue_num = priv->ae_handle->kinfo.num_tqps;
1718         struct hnae3_handle *handle = priv->ae_handle;
1719         struct hns3_enet_ring *ring;
1720         u64 rx_length_errors = 0;
1721         u64 rx_crc_errors = 0;
1722         u64 rx_multicast = 0;
1723         unsigned int start;
1724         u64 tx_errors = 0;
1725         u64 rx_errors = 0;
1726         unsigned int idx;
1727         u64 tx_bytes = 0;
1728         u64 rx_bytes = 0;
1729         u64 tx_pkts = 0;
1730         u64 rx_pkts = 0;
1731         u64 tx_drop = 0;
1732         u64 rx_drop = 0;
1733
1734         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1735                 return;
1736
1737         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1738
1739         for (idx = 0; idx < queue_num; idx++) {
1740                 /* fetch the tx stats */
1741                 ring = &priv->ring[idx];
1742                 do {
1743                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1744                         tx_bytes += ring->stats.tx_bytes;
1745                         tx_pkts += ring->stats.tx_pkts;
1746                         tx_drop += ring->stats.sw_err_cnt;
1747                         tx_drop += ring->stats.tx_vlan_err;
1748                         tx_drop += ring->stats.tx_l4_proto_err;
1749                         tx_drop += ring->stats.tx_l2l3l4_err;
1750                         tx_drop += ring->stats.tx_tso_err;
1751                         tx_errors += ring->stats.sw_err_cnt;
1752                         tx_errors += ring->stats.tx_vlan_err;
1753                         tx_errors += ring->stats.tx_l4_proto_err;
1754                         tx_errors += ring->stats.tx_l2l3l4_err;
1755                         tx_errors += ring->stats.tx_tso_err;
1756                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1757
1758                 /* fetch the rx stats */
1759                 ring = &priv->ring[idx + queue_num];
1760                 do {
1761                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1762                         rx_bytes += ring->stats.rx_bytes;
1763                         rx_pkts += ring->stats.rx_pkts;
1764                         rx_drop += ring->stats.l2_err;
1765                         rx_errors += ring->stats.l2_err;
1766                         rx_errors += ring->stats.l3l4_csum_err;
1767                         rx_crc_errors += ring->stats.l2_err;
1768                         rx_multicast += ring->stats.rx_multicast;
1769                         rx_length_errors += ring->stats.err_pkt_len;
1770                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1771         }
1772
1773         stats->tx_bytes = tx_bytes;
1774         stats->tx_packets = tx_pkts;
1775         stats->rx_bytes = rx_bytes;
1776         stats->rx_packets = rx_pkts;
1777
1778         stats->rx_errors = rx_errors;
1779         stats->multicast = rx_multicast;
1780         stats->rx_length_errors = rx_length_errors;
1781         stats->rx_crc_errors = rx_crc_errors;
1782         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1783
1784         stats->tx_errors = tx_errors;
1785         stats->rx_dropped = rx_drop;
1786         stats->tx_dropped = tx_drop;
1787         stats->collisions = netdev->stats.collisions;
1788         stats->rx_over_errors = netdev->stats.rx_over_errors;
1789         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1790         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1791         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1792         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1793         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1794         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1795         stats->tx_window_errors = netdev->stats.tx_window_errors;
1796         stats->rx_compressed = netdev->stats.rx_compressed;
1797         stats->tx_compressed = netdev->stats.tx_compressed;
1798 }
1799
1800 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1801 {
1802         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1803         struct hnae3_knic_private_info *kinfo;
1804         u8 tc = mqprio_qopt->qopt.num_tc;
1805         u16 mode = mqprio_qopt->mode;
1806         u8 hw = mqprio_qopt->qopt.hw;
1807         struct hnae3_handle *h;
1808
1809         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1810                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1811                 return -EOPNOTSUPP;
1812
1813         if (tc > HNAE3_MAX_TC)
1814                 return -EINVAL;
1815
1816         if (!netdev)
1817                 return -EINVAL;
1818
1819         h = hns3_get_handle(netdev);
1820         kinfo = &h->kinfo;
1821
1822         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1823
1824         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1825                 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1826 }
1827
1828 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1829                                     struct flow_cls_offload *flow)
1830 {
1831         int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1832         struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1833
1834         switch (flow->command) {
1835         case FLOW_CLS_REPLACE:
1836                 if (h->ae_algo->ops->add_cls_flower)
1837                         return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1838                 break;
1839         case FLOW_CLS_DESTROY:
1840                 if (h->ae_algo->ops->del_cls_flower)
1841                         return h->ae_algo->ops->del_cls_flower(h, flow);
1842                 break;
1843         default:
1844                 break;
1845         }
1846
1847         return -EOPNOTSUPP;
1848 }
1849
1850 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1851                                   void *cb_priv)
1852 {
1853         struct hns3_nic_priv *priv = cb_priv;
1854
1855         if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1856                 return -EOPNOTSUPP;
1857
1858         switch (type) {
1859         case TC_SETUP_CLSFLOWER:
1860                 return hns3_setup_tc_cls_flower(priv, type_data);
1861         default:
1862                 return -EOPNOTSUPP;
1863         }
1864 }
1865
1866 static LIST_HEAD(hns3_block_cb_list);
1867
1868 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1869                              void *type_data)
1870 {
1871         struct hns3_nic_priv *priv = netdev_priv(dev);
1872         int ret;
1873
1874         switch (type) {
1875         case TC_SETUP_QDISC_MQPRIO:
1876                 ret = hns3_setup_tc(dev, type_data);
1877                 break;
1878         case TC_SETUP_BLOCK:
1879                 ret = flow_block_cb_setup_simple(type_data,
1880                                                  &hns3_block_cb_list,
1881                                                  hns3_setup_tc_block_cb,
1882                                                  priv, priv, true);
1883                 break;
1884         default:
1885                 return -EOPNOTSUPP;
1886         }
1887
1888         return ret;
1889 }
1890
1891 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1892                                 __be16 proto, u16 vid)
1893 {
1894         struct hnae3_handle *h = hns3_get_handle(netdev);
1895         int ret = -EIO;
1896
1897         if (h->ae_algo->ops->set_vlan_filter)
1898                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1899
1900         return ret;
1901 }
1902
1903 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1904                                  __be16 proto, u16 vid)
1905 {
1906         struct hnae3_handle *h = hns3_get_handle(netdev);
1907         int ret = -EIO;
1908
1909         if (h->ae_algo->ops->set_vlan_filter)
1910                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1911
1912         return ret;
1913 }
1914
1915 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1916                                 u8 qos, __be16 vlan_proto)
1917 {
1918         struct hnae3_handle *h = hns3_get_handle(netdev);
1919         int ret = -EIO;
1920
1921         netif_dbg(h, drv, netdev,
1922                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1923                   vf, vlan, qos, ntohs(vlan_proto));
1924
1925         if (h->ae_algo->ops->set_vf_vlan_filter)
1926                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1927                                                           qos, vlan_proto);
1928
1929         return ret;
1930 }
1931
1932 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1933 {
1934         struct hnae3_handle *handle = hns3_get_handle(netdev);
1935
1936         if (hns3_nic_resetting(netdev))
1937                 return -EBUSY;
1938
1939         if (!handle->ae_algo->ops->set_vf_spoofchk)
1940                 return -EOPNOTSUPP;
1941
1942         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1943 }
1944
1945 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1946 {
1947         struct hnae3_handle *handle = hns3_get_handle(netdev);
1948
1949         if (!handle->ae_algo->ops->set_vf_trust)
1950                 return -EOPNOTSUPP;
1951
1952         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1953 }
1954
1955 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1956 {
1957         struct hnae3_handle *h = hns3_get_handle(netdev);
1958         int ret;
1959
1960         if (hns3_nic_resetting(netdev))
1961                 return -EBUSY;
1962
1963         if (!h->ae_algo->ops->set_mtu)
1964                 return -EOPNOTSUPP;
1965
1966         netif_dbg(h, drv, netdev,
1967                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1968
1969         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1970         if (ret)
1971                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1972                            ret);
1973         else
1974                 netdev->mtu = new_mtu;
1975
1976         return ret;
1977 }
1978
1979 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1980 {
1981         struct hns3_nic_priv *priv = netdev_priv(ndev);
1982         struct hnae3_handle *h = hns3_get_handle(ndev);
1983         struct hns3_enet_ring *tx_ring;
1984         struct napi_struct *napi;
1985         int timeout_queue = 0;
1986         int hw_head, hw_tail;
1987         int fbd_num, fbd_oft;
1988         int ebd_num, ebd_oft;
1989         int bd_num, bd_err;
1990         int ring_en, tc;
1991         int i;
1992
1993         /* Find the stopped queue the same way the stack does */
1994         for (i = 0; i < ndev->num_tx_queues; i++) {
1995                 struct netdev_queue *q;
1996                 unsigned long trans_start;
1997
1998                 q = netdev_get_tx_queue(ndev, i);
1999                 trans_start = q->trans_start;
2000                 if (netif_xmit_stopped(q) &&
2001                     time_after(jiffies,
2002                                (trans_start + ndev->watchdog_timeo))) {
2003                         timeout_queue = i;
2004                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2005                                     q->state,
2006                                     jiffies_to_msecs(jiffies - trans_start));
2007                         break;
2008                 }
2009         }
2010
2011         if (i == ndev->num_tx_queues) {
2012                 netdev_info(ndev,
2013                             "no netdev TX timeout queue found, timeout count: %llu\n",
2014                             priv->tx_timeout_count);
2015                 return false;
2016         }
2017
2018         priv->tx_timeout_count++;
2019
2020         tx_ring = &priv->ring[timeout_queue];
2021         napi = &tx_ring->tqp_vector->napi;
2022
2023         netdev_info(ndev,
2024                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2025                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2026                     tx_ring->next_to_clean, napi->state);
2027
2028         netdev_info(ndev,
2029                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2030                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2031                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2032
2033         netdev_info(ndev,
2034                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2035                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2036                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2037
2038         /* When mac received many pause frames continuous, it's unable to send
2039          * packets, which may cause tx timeout
2040          */
2041         if (h->ae_algo->ops->get_mac_stats) {
2042                 struct hns3_mac_stats mac_stats;
2043
2044                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2045                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2046                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2047         }
2048
2049         hw_head = readl_relaxed(tx_ring->tqp->io_base +
2050                                 HNS3_RING_TX_RING_HEAD_REG);
2051         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2052                                 HNS3_RING_TX_RING_TAIL_REG);
2053         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2054                                 HNS3_RING_TX_RING_FBDNUM_REG);
2055         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2056                                 HNS3_RING_TX_RING_OFFSET_REG);
2057         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2058                                 HNS3_RING_TX_RING_EBDNUM_REG);
2059         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2060                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
2061         bd_num = readl_relaxed(tx_ring->tqp->io_base +
2062                                HNS3_RING_TX_RING_BD_NUM_REG);
2063         bd_err = readl_relaxed(tx_ring->tqp->io_base +
2064                                HNS3_RING_TX_RING_BD_ERR_REG);
2065         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2066         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2067
2068         netdev_info(ndev,
2069                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2070                     bd_num, hw_head, hw_tail, bd_err,
2071                     readl(tx_ring->tqp_vector->mask_addr));
2072         netdev_info(ndev,
2073                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2074                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2075
2076         return true;
2077 }
2078
2079 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2080 {
2081         struct hns3_nic_priv *priv = netdev_priv(ndev);
2082         struct hnae3_handle *h = priv->ae_handle;
2083
2084         if (!hns3_get_tx_timeo_queue_info(ndev))
2085                 return;
2086
2087         /* request the reset, and let the hclge to determine
2088          * which reset level should be done
2089          */
2090         if (h->ae_algo->ops->reset_event)
2091                 h->ae_algo->ops->reset_event(h->pdev, h);
2092 }
2093
2094 #ifdef CONFIG_RFS_ACCEL
2095 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2096                               u16 rxq_index, u32 flow_id)
2097 {
2098         struct hnae3_handle *h = hns3_get_handle(dev);
2099         struct flow_keys fkeys;
2100
2101         if (!h->ae_algo->ops->add_arfs_entry)
2102                 return -EOPNOTSUPP;
2103
2104         if (skb->encapsulation)
2105                 return -EPROTONOSUPPORT;
2106
2107         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2108                 return -EPROTONOSUPPORT;
2109
2110         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2111              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2112             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2113              fkeys.basic.ip_proto != IPPROTO_UDP))
2114                 return -EPROTONOSUPPORT;
2115
2116         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2117 }
2118 #endif
2119
2120 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2121                                   struct ifla_vf_info *ivf)
2122 {
2123         struct hnae3_handle *h = hns3_get_handle(ndev);
2124
2125         if (!h->ae_algo->ops->get_vf_config)
2126                 return -EOPNOTSUPP;
2127
2128         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2129 }
2130
2131 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2132                                       int link_state)
2133 {
2134         struct hnae3_handle *h = hns3_get_handle(ndev);
2135
2136         if (!h->ae_algo->ops->set_vf_link_state)
2137                 return -EOPNOTSUPP;
2138
2139         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2140 }
2141
2142 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2143                                 int min_tx_rate, int max_tx_rate)
2144 {
2145         struct hnae3_handle *h = hns3_get_handle(ndev);
2146
2147         if (!h->ae_algo->ops->set_vf_rate)
2148                 return -EOPNOTSUPP;
2149
2150         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2151                                             false);
2152 }
2153
2154 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2155 {
2156         struct hnae3_handle *h = hns3_get_handle(netdev);
2157
2158         if (!h->ae_algo->ops->set_vf_mac)
2159                 return -EOPNOTSUPP;
2160
2161         if (is_multicast_ether_addr(mac)) {
2162                 netdev_err(netdev,
2163                            "Invalid MAC:%pM specified. Could not set MAC\n",
2164                            mac);
2165                 return -EINVAL;
2166         }
2167
2168         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2169 }
2170
2171 static const struct net_device_ops hns3_nic_netdev_ops = {
2172         .ndo_open               = hns3_nic_net_open,
2173         .ndo_stop               = hns3_nic_net_stop,
2174         .ndo_start_xmit         = hns3_nic_net_xmit,
2175         .ndo_tx_timeout         = hns3_nic_net_timeout,
2176         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2177         .ndo_do_ioctl           = hns3_nic_do_ioctl,
2178         .ndo_change_mtu         = hns3_nic_change_mtu,
2179         .ndo_set_features       = hns3_nic_set_features,
2180         .ndo_features_check     = hns3_features_check,
2181         .ndo_get_stats64        = hns3_nic_get_stats64,
2182         .ndo_setup_tc           = hns3_nic_setup_tc,
2183         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2184         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2185         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2186         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2187         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2188         .ndo_set_vf_trust       = hns3_set_vf_trust,
2189 #ifdef CONFIG_RFS_ACCEL
2190         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2191 #endif
2192         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2193         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2194         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2195         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2196 };
2197
2198 bool hns3_is_phys_func(struct pci_dev *pdev)
2199 {
2200         u32 dev_id = pdev->device;
2201
2202         switch (dev_id) {
2203         case HNAE3_DEV_ID_GE:
2204         case HNAE3_DEV_ID_25GE:
2205         case HNAE3_DEV_ID_25GE_RDMA:
2206         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2207         case HNAE3_DEV_ID_50GE_RDMA:
2208         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2209         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2210         case HNAE3_DEV_ID_200G_RDMA:
2211                 return true;
2212         case HNAE3_DEV_ID_VF:
2213         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2214                 return false;
2215         default:
2216                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2217                          dev_id);
2218         }
2219
2220         return false;
2221 }
2222
2223 static void hns3_disable_sriov(struct pci_dev *pdev)
2224 {
2225         /* If our VFs are assigned we cannot shut down SR-IOV
2226          * without causing issues, so just leave the hardware
2227          * available but disabled
2228          */
2229         if (pci_vfs_assigned(pdev)) {
2230                 dev_warn(&pdev->dev,
2231                          "disabling driver while VFs are assigned\n");
2232                 return;
2233         }
2234
2235         pci_disable_sriov(pdev);
2236 }
2237
2238 /* hns3_probe - Device initialization routine
2239  * @pdev: PCI device information struct
2240  * @ent: entry in hns3_pci_tbl
2241  *
2242  * hns3_probe initializes a PF identified by a pci_dev structure.
2243  * The OS initialization, configuring of the PF private structure,
2244  * and a hardware reset occur.
2245  *
2246  * Returns 0 on success, negative on failure
2247  */
2248 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2249 {
2250         struct hnae3_ae_dev *ae_dev;
2251         int ret;
2252
2253         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2254         if (!ae_dev)
2255                 return -ENOMEM;
2256
2257         ae_dev->pdev = pdev;
2258         ae_dev->flag = ent->driver_data;
2259         pci_set_drvdata(pdev, ae_dev);
2260
2261         ret = hnae3_register_ae_dev(ae_dev);
2262         if (ret)
2263                 pci_set_drvdata(pdev, NULL);
2264
2265         return ret;
2266 }
2267
2268 /* hns3_remove - Device removal routine
2269  * @pdev: PCI device information struct
2270  */
2271 static void hns3_remove(struct pci_dev *pdev)
2272 {
2273         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2274
2275         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2276                 hns3_disable_sriov(pdev);
2277
2278         hnae3_unregister_ae_dev(ae_dev);
2279         pci_set_drvdata(pdev, NULL);
2280 }
2281
2282 /**
2283  * hns3_pci_sriov_configure
2284  * @pdev: pointer to a pci_dev structure
2285  * @num_vfs: number of VFs to allocate
2286  *
2287  * Enable or change the number of VFs. Called when the user updates the number
2288  * of VFs in sysfs.
2289  **/
2290 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2291 {
2292         int ret;
2293
2294         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2295                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2296                 return -EINVAL;
2297         }
2298
2299         if (num_vfs) {
2300                 ret = pci_enable_sriov(pdev, num_vfs);
2301                 if (ret)
2302                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2303                 else
2304                         return num_vfs;
2305         } else if (!pci_vfs_assigned(pdev)) {
2306                 pci_disable_sriov(pdev);
2307         } else {
2308                 dev_warn(&pdev->dev,
2309                          "Unable to free VFs because some are assigned to VMs.\n");
2310         }
2311
2312         return 0;
2313 }
2314
2315 static void hns3_shutdown(struct pci_dev *pdev)
2316 {
2317         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2318
2319         hnae3_unregister_ae_dev(ae_dev);
2320         pci_set_drvdata(pdev, NULL);
2321
2322         if (system_state == SYSTEM_POWER_OFF)
2323                 pci_set_power_state(pdev, PCI_D3hot);
2324 }
2325
2326 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2327                                             pci_channel_state_t state)
2328 {
2329         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2330         pci_ers_result_t ret;
2331
2332         dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2333
2334         if (state == pci_channel_io_perm_failure)
2335                 return PCI_ERS_RESULT_DISCONNECT;
2336
2337         if (!ae_dev || !ae_dev->ops) {
2338                 dev_err(&pdev->dev,
2339                         "Can't recover - error happened before device initialized\n");
2340                 return PCI_ERS_RESULT_NONE;
2341         }
2342
2343         if (ae_dev->ops->handle_hw_ras_error)
2344                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2345         else
2346                 return PCI_ERS_RESULT_NONE;
2347
2348         return ret;
2349 }
2350
2351 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2352 {
2353         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2354         const struct hnae3_ae_ops *ops;
2355         enum hnae3_reset_type reset_type;
2356         struct device *dev = &pdev->dev;
2357
2358         if (!ae_dev || !ae_dev->ops)
2359                 return PCI_ERS_RESULT_NONE;
2360
2361         ops = ae_dev->ops;
2362         /* request the reset */
2363         if (ops->reset_event && ops->get_reset_level &&
2364             ops->set_default_reset_request) {
2365                 if (ae_dev->hw_err_reset_req) {
2366                         reset_type = ops->get_reset_level(ae_dev,
2367                                                 &ae_dev->hw_err_reset_req);
2368                         ops->set_default_reset_request(ae_dev, reset_type);
2369                         dev_info(dev, "requesting reset due to PCI error\n");
2370                         ops->reset_event(pdev, NULL);
2371                 }
2372
2373                 return PCI_ERS_RESULT_RECOVERED;
2374         }
2375
2376         return PCI_ERS_RESULT_DISCONNECT;
2377 }
2378
2379 static void hns3_reset_prepare(struct pci_dev *pdev)
2380 {
2381         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2382
2383         dev_info(&pdev->dev, "FLR prepare\n");
2384         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2385                 ae_dev->ops->flr_prepare(ae_dev);
2386 }
2387
2388 static void hns3_reset_done(struct pci_dev *pdev)
2389 {
2390         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2391
2392         dev_info(&pdev->dev, "FLR done\n");
2393         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2394                 ae_dev->ops->flr_done(ae_dev);
2395 }
2396
2397 static const struct pci_error_handlers hns3_err_handler = {
2398         .error_detected = hns3_error_detected,
2399         .slot_reset     = hns3_slot_reset,
2400         .reset_prepare  = hns3_reset_prepare,
2401         .reset_done     = hns3_reset_done,
2402 };
2403
2404 static struct pci_driver hns3_driver = {
2405         .name     = hns3_driver_name,
2406         .id_table = hns3_pci_tbl,
2407         .probe    = hns3_probe,
2408         .remove   = hns3_remove,
2409         .shutdown = hns3_shutdown,
2410         .sriov_configure = hns3_pci_sriov_configure,
2411         .err_handler    = &hns3_err_handler,
2412 };
2413
2414 /* set default feature to hns3 */
2415 static void hns3_set_default_feature(struct net_device *netdev)
2416 {
2417         struct hnae3_handle *h = hns3_get_handle(netdev);
2418         struct pci_dev *pdev = h->pdev;
2419         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2420
2421         netdev->priv_flags |= IFF_UNICAST_FLT;
2422
2423         netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2424                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2425                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2426                 NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2427
2428         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2429
2430         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2431                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2432                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2433                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2434                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2435                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2436
2437         netdev->vlan_features |= NETIF_F_RXCSUM |
2438                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2439                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2440                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2441                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2442
2443         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2444                 NETIF_F_HW_VLAN_CTAG_RX |
2445                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2446                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2447                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2448                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2449
2450         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2451                 netdev->hw_features |= NETIF_F_GRO_HW;
2452                 netdev->features |= NETIF_F_GRO_HW;
2453
2454                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2455                         netdev->hw_features |= NETIF_F_NTUPLE;
2456                         netdev->features |= NETIF_F_NTUPLE;
2457                 }
2458         }
2459
2460         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2461                 netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2462                 netdev->features |= NETIF_F_GSO_UDP_L4;
2463                 netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2464                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2465         }
2466
2467         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2468                 netdev->hw_features |= NETIF_F_HW_CSUM;
2469                 netdev->features |= NETIF_F_HW_CSUM;
2470                 netdev->vlan_features |= NETIF_F_HW_CSUM;
2471                 netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2472         } else {
2473                 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2474                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2475                 netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2476                 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2477         }
2478
2479         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2480                 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2481                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2482                 netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2483                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2484         }
2485
2486         if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2487                 netdev->hw_features |= NETIF_F_HW_TC;
2488                 netdev->features |= NETIF_F_HW_TC;
2489         }
2490 }
2491
2492 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2493                              struct hns3_desc_cb *cb)
2494 {
2495         unsigned int order = hns3_page_order(ring);
2496         struct page *p;
2497
2498         p = dev_alloc_pages(order);
2499         if (!p)
2500                 return -ENOMEM;
2501
2502         cb->priv = p;
2503         cb->page_offset = 0;
2504         cb->reuse_flag = 0;
2505         cb->buf  = page_address(p);
2506         cb->length = hns3_page_size(ring);
2507         cb->type = DESC_TYPE_PAGE;
2508         page_ref_add(p, USHRT_MAX - 1);
2509         cb->pagecnt_bias = USHRT_MAX;
2510
2511         return 0;
2512 }
2513
2514 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2515                              struct hns3_desc_cb *cb, int budget)
2516 {
2517         if (cb->type == DESC_TYPE_SKB)
2518                 napi_consume_skb(cb->priv, budget);
2519         else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2520                 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2521         memset(cb, 0, sizeof(*cb));
2522 }
2523
2524 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2525 {
2526         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2527                                cb->length, ring_to_dma_dir(ring));
2528
2529         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2530                 return -EIO;
2531
2532         return 0;
2533 }
2534
2535 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2536                               struct hns3_desc_cb *cb)
2537 {
2538         if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2539                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2540                                  ring_to_dma_dir(ring));
2541         else if (cb->length)
2542                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2543                                ring_to_dma_dir(ring));
2544 }
2545
2546 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2547 {
2548         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2549         ring->desc[i].addr = 0;
2550 }
2551
2552 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2553                                     int budget)
2554 {
2555         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2556
2557         if (!ring->desc_cb[i].dma)
2558                 return;
2559
2560         hns3_buffer_detach(ring, i);
2561         hns3_free_buffer(ring, cb, budget);
2562 }
2563
2564 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2565 {
2566         int i;
2567
2568         for (i = 0; i < ring->desc_num; i++)
2569                 hns3_free_buffer_detach(ring, i, 0);
2570 }
2571
2572 /* free desc along with its attached buffer */
2573 static void hns3_free_desc(struct hns3_enet_ring *ring)
2574 {
2575         int size = ring->desc_num * sizeof(ring->desc[0]);
2576
2577         hns3_free_buffers(ring);
2578
2579         if (ring->desc) {
2580                 dma_free_coherent(ring_to_dev(ring), size,
2581                                   ring->desc, ring->desc_dma_addr);
2582                 ring->desc = NULL;
2583         }
2584 }
2585
2586 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2587 {
2588         int size = ring->desc_num * sizeof(ring->desc[0]);
2589
2590         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2591                                         &ring->desc_dma_addr, GFP_KERNEL);
2592         if (!ring->desc)
2593                 return -ENOMEM;
2594
2595         return 0;
2596 }
2597
2598 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2599                                    struct hns3_desc_cb *cb)
2600 {
2601         int ret;
2602
2603         ret = hns3_alloc_buffer(ring, cb);
2604         if (ret)
2605                 goto out;
2606
2607         ret = hns3_map_buffer(ring, cb);
2608         if (ret)
2609                 goto out_with_buf;
2610
2611         return 0;
2612
2613 out_with_buf:
2614         hns3_free_buffer(ring, cb, 0);
2615 out:
2616         return ret;
2617 }
2618
2619 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2620 {
2621         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2622
2623         if (ret)
2624                 return ret;
2625
2626         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2627
2628         return 0;
2629 }
2630
2631 /* Allocate memory for raw pkg, and map with dma */
2632 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2633 {
2634         int i, j, ret;
2635
2636         for (i = 0; i < ring->desc_num; i++) {
2637                 ret = hns3_alloc_and_attach_buffer(ring, i);
2638                 if (ret)
2639                         goto out_buffer_fail;
2640         }
2641
2642         return 0;
2643
2644 out_buffer_fail:
2645         for (j = i - 1; j >= 0; j--)
2646                 hns3_free_buffer_detach(ring, j, 0);
2647         return ret;
2648 }
2649
2650 /* detach a in-used buffer and replace with a reserved one */
2651 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2652                                 struct hns3_desc_cb *res_cb)
2653 {
2654         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2655         ring->desc_cb[i] = *res_cb;
2656         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2657         ring->desc[i].rx.bd_base_info = 0;
2658 }
2659
2660 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2661 {
2662         ring->desc_cb[i].reuse_flag = 0;
2663         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2664                                          ring->desc_cb[i].page_offset);
2665         ring->desc[i].rx.bd_base_info = 0;
2666
2667         dma_sync_single_for_device(ring_to_dev(ring),
2668                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2669                         hns3_buf_size(ring),
2670                         DMA_FROM_DEVICE);
2671 }
2672
2673 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2674                                   int *bytes, int *pkts, int budget)
2675 {
2676         /* pair with ring->last_to_use update in hns3_tx_doorbell(),
2677          * smp_store_release() is not used in hns3_tx_doorbell() because
2678          * the doorbell operation already have the needed barrier operation.
2679          */
2680         int ltu = smp_load_acquire(&ring->last_to_use);
2681         int ntc = ring->next_to_clean;
2682         struct hns3_desc_cb *desc_cb;
2683         bool reclaimed = false;
2684         struct hns3_desc *desc;
2685
2686         while (ltu != ntc) {
2687                 desc = &ring->desc[ntc];
2688
2689                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2690                                 BIT(HNS3_TXD_VLD_B))
2691                         break;
2692
2693                 desc_cb = &ring->desc_cb[ntc];
2694                 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2695                 (*bytes) += desc_cb->length;
2696                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2697                 hns3_free_buffer_detach(ring, ntc, budget);
2698
2699                 if (++ntc == ring->desc_num)
2700                         ntc = 0;
2701
2702                 /* Issue prefetch for next Tx descriptor */
2703                 prefetch(&ring->desc_cb[ntc]);
2704                 reclaimed = true;
2705         }
2706
2707         if (unlikely(!reclaimed))
2708                 return false;
2709
2710         /* This smp_store_release() pairs with smp_load_acquire() in
2711          * ring_space called by hns3_nic_net_xmit.
2712          */
2713         smp_store_release(&ring->next_to_clean, ntc);
2714         return true;
2715 }
2716
2717 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2718 {
2719         struct net_device *netdev = ring_to_netdev(ring);
2720         struct hns3_nic_priv *priv = netdev_priv(netdev);
2721         struct netdev_queue *dev_queue;
2722         int bytes, pkts;
2723
2724         bytes = 0;
2725         pkts = 0;
2726
2727         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2728                 return;
2729
2730         ring->tqp_vector->tx_group.total_bytes += bytes;
2731         ring->tqp_vector->tx_group.total_packets += pkts;
2732
2733         u64_stats_update_begin(&ring->syncp);
2734         ring->stats.tx_bytes += bytes;
2735         ring->stats.tx_pkts += pkts;
2736         u64_stats_update_end(&ring->syncp);
2737
2738         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2739         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2740
2741         if (unlikely(netif_carrier_ok(netdev) &&
2742                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2743                 /* Make sure that anybody stopping the queue after this
2744                  * sees the new next_to_clean.
2745                  */
2746                 smp_mb();
2747                 if (netif_tx_queue_stopped(dev_queue) &&
2748                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2749                         netif_tx_wake_queue(dev_queue);
2750                         ring->stats.restart_queue++;
2751                 }
2752         }
2753 }
2754
2755 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2756 {
2757         int ntc = ring->next_to_clean;
2758         int ntu = ring->next_to_use;
2759
2760         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2761 }
2762
2763 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2764                                       int cleand_count)
2765 {
2766         struct hns3_desc_cb *desc_cb;
2767         struct hns3_desc_cb res_cbs;
2768         int i, ret;
2769
2770         for (i = 0; i < cleand_count; i++) {
2771                 desc_cb = &ring->desc_cb[ring->next_to_use];
2772                 if (desc_cb->reuse_flag) {
2773                         u64_stats_update_begin(&ring->syncp);
2774                         ring->stats.reuse_pg_cnt++;
2775                         u64_stats_update_end(&ring->syncp);
2776
2777                         hns3_reuse_buffer(ring, ring->next_to_use);
2778                 } else {
2779                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2780                         if (ret) {
2781                                 u64_stats_update_begin(&ring->syncp);
2782                                 ring->stats.sw_err_cnt++;
2783                                 u64_stats_update_end(&ring->syncp);
2784
2785                                 hns3_rl_err(ring_to_netdev(ring),
2786                                             "alloc rx buffer failed: %d\n",
2787                                             ret);
2788                                 break;
2789                         }
2790                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2791
2792                         u64_stats_update_begin(&ring->syncp);
2793                         ring->stats.non_reuse_pg++;
2794                         u64_stats_update_end(&ring->syncp);
2795                 }
2796
2797                 ring_ptr_move_fw(ring, next_to_use);
2798         }
2799
2800         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2801 }
2802
2803 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2804 {
2805         return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2806 }
2807
2808 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2809                                 struct hns3_enet_ring *ring, int pull_len,
2810                                 struct hns3_desc_cb *desc_cb)
2811 {
2812         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2813         int size = le16_to_cpu(desc->rx.size);
2814         u32 truesize = hns3_buf_size(ring);
2815
2816         desc_cb->pagecnt_bias--;
2817         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2818                         size - pull_len, truesize);
2819
2820         /* Avoid re-using remote and pfmemalloc pages, or the stack is still
2821          * using the page when page_offset rollback to zero, flag default
2822          * unreuse
2823          */
2824         if (!dev_page_is_reusable(desc_cb->priv) ||
2825             (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2826                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2827                 return;
2828         }
2829
2830         /* Move offset up to the next cache line */
2831         desc_cb->page_offset += truesize;
2832
2833         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2834                 desc_cb->reuse_flag = 1;
2835         } else if (hns3_can_reuse_page(desc_cb)) {
2836                 desc_cb->reuse_flag = 1;
2837                 desc_cb->page_offset = 0;
2838         } else if (desc_cb->pagecnt_bias) {
2839                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2840                 return;
2841         }
2842
2843         if (unlikely(!desc_cb->pagecnt_bias)) {
2844                 page_ref_add(desc_cb->priv, USHRT_MAX);
2845                 desc_cb->pagecnt_bias = USHRT_MAX;
2846         }
2847 }
2848
2849 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2850 {
2851         __be16 type = skb->protocol;
2852         struct tcphdr *th;
2853         int depth = 0;
2854
2855         while (eth_type_vlan(type)) {
2856                 struct vlan_hdr *vh;
2857
2858                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2859                         return -EFAULT;
2860
2861                 vh = (struct vlan_hdr *)(skb->data + depth);
2862                 type = vh->h_vlan_encapsulated_proto;
2863                 depth += VLAN_HLEN;
2864         }
2865
2866         skb_set_network_header(skb, depth);
2867
2868         if (type == htons(ETH_P_IP)) {
2869                 const struct iphdr *iph = ip_hdr(skb);
2870
2871                 depth += sizeof(struct iphdr);
2872                 skb_set_transport_header(skb, depth);
2873                 th = tcp_hdr(skb);
2874                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2875                                           iph->daddr, 0);
2876         } else if (type == htons(ETH_P_IPV6)) {
2877                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2878
2879                 depth += sizeof(struct ipv6hdr);
2880                 skb_set_transport_header(skb, depth);
2881                 th = tcp_hdr(skb);
2882                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2883                                           &iph->daddr, 0);
2884         } else {
2885                 hns3_rl_err(skb->dev,
2886                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2887                             be16_to_cpu(type), depth);
2888                 return -EFAULT;
2889         }
2890
2891         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2892         if (th->cwr)
2893                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2894
2895         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2896                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2897
2898         skb->csum_start = (unsigned char *)th - skb->head;
2899         skb->csum_offset = offsetof(struct tcphdr, check);
2900         skb->ip_summed = CHECKSUM_PARTIAL;
2901
2902         trace_hns3_gro(skb);
2903
2904         return 0;
2905 }
2906
2907 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2908                                    struct sk_buff *skb, u32 l234info)
2909 {
2910         u32 lo, hi;
2911
2912         u64_stats_update_begin(&ring->syncp);
2913         ring->stats.csum_complete++;
2914         u64_stats_update_end(&ring->syncp);
2915         skb->ip_summed = CHECKSUM_COMPLETE;
2916         lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2917                              HNS3_RXD_L2_CSUM_L_S);
2918         hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2919                              HNS3_RXD_L2_CSUM_H_S);
2920         skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2921 }
2922
2923 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2924                              u32 l234info, u32 bd_base_info, u32 ol_info)
2925 {
2926         struct net_device *netdev = ring_to_netdev(ring);
2927         int l3_type, l4_type;
2928         int ol4_type;
2929
2930         skb->ip_summed = CHECKSUM_NONE;
2931
2932         skb_checksum_none_assert(skb);
2933
2934         if (!(netdev->features & NETIF_F_RXCSUM))
2935                 return;
2936
2937         if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
2938                 hns3_checksum_complete(ring, skb, l234info);
2939                 return;
2940         }
2941
2942         /* check if hardware has done checksum */
2943         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2944                 return;
2945
2946         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2947                                  BIT(HNS3_RXD_OL3E_B) |
2948                                  BIT(HNS3_RXD_OL4E_B)))) {
2949                 u64_stats_update_begin(&ring->syncp);
2950                 ring->stats.l3l4_csum_err++;
2951                 u64_stats_update_end(&ring->syncp);
2952
2953                 return;
2954         }
2955
2956         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2957                                    HNS3_RXD_OL4ID_S);
2958         switch (ol4_type) {
2959         case HNS3_OL4_TYPE_MAC_IN_UDP:
2960         case HNS3_OL4_TYPE_NVGRE:
2961                 skb->csum_level = 1;
2962                 fallthrough;
2963         case HNS3_OL4_TYPE_NO_TUN:
2964                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2965                                           HNS3_RXD_L3ID_S);
2966                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2967                                           HNS3_RXD_L4ID_S);
2968
2969                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2970                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2971                      l3_type == HNS3_L3_TYPE_IPV6) &&
2972                     (l4_type == HNS3_L4_TYPE_UDP ||
2973                      l4_type == HNS3_L4_TYPE_TCP ||
2974                      l4_type == HNS3_L4_TYPE_SCTP))
2975                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2976                 break;
2977         default:
2978                 break;
2979         }
2980 }
2981
2982 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2983 {
2984         if (skb_has_frag_list(skb))
2985                 napi_gro_flush(&ring->tqp_vector->napi, false);
2986
2987         napi_gro_receive(&ring->tqp_vector->napi, skb);
2988 }
2989
2990 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2991                                 struct hns3_desc *desc, u32 l234info,
2992                                 u16 *vlan_tag)
2993 {
2994         struct hnae3_handle *handle = ring->tqp->handle;
2995         struct pci_dev *pdev = ring->tqp->handle->pdev;
2996         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2997
2998         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2999                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3000                 if (!(*vlan_tag & VLAN_VID_MASK))
3001                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3002
3003                 return (*vlan_tag != 0);
3004         }
3005
3006 #define HNS3_STRP_OUTER_VLAN    0x1
3007 #define HNS3_STRP_INNER_VLAN    0x2
3008 #define HNS3_STRP_BOTH          0x3
3009
3010         /* Hardware always insert VLAN tag into RX descriptor when
3011          * remove the tag from packet, driver needs to determine
3012          * reporting which tag to stack.
3013          */
3014         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3015                                 HNS3_RXD_STRP_TAGP_S)) {
3016         case HNS3_STRP_OUTER_VLAN:
3017                 if (handle->port_base_vlan_state !=
3018                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3019                         return false;
3020
3021                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3022                 return true;
3023         case HNS3_STRP_INNER_VLAN:
3024                 if (handle->port_base_vlan_state !=
3025                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3026                         return false;
3027
3028                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3029                 return true;
3030         case HNS3_STRP_BOTH:
3031                 if (handle->port_base_vlan_state ==
3032                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3033                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3034                 else
3035                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3036
3037                 return true;
3038         default:
3039                 return false;
3040         }
3041 }
3042
3043 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3044 {
3045         ring->desc[ring->next_to_clean].rx.bd_base_info &=
3046                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3047         ring->next_to_clean += 1;
3048
3049         if (unlikely(ring->next_to_clean == ring->desc_num))
3050                 ring->next_to_clean = 0;
3051 }
3052
3053 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3054                           unsigned char *va)
3055 {
3056         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3057         struct net_device *netdev = ring_to_netdev(ring);
3058         struct sk_buff *skb;
3059
3060         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3061         skb = ring->skb;
3062         if (unlikely(!skb)) {
3063                 hns3_rl_err(netdev, "alloc rx skb fail\n");
3064
3065                 u64_stats_update_begin(&ring->syncp);
3066                 ring->stats.sw_err_cnt++;
3067                 u64_stats_update_end(&ring->syncp);
3068
3069                 return -ENOMEM;
3070         }
3071
3072         trace_hns3_rx_desc(ring);
3073         prefetchw(skb->data);
3074
3075         ring->pending_buf = 1;
3076         ring->frag_num = 0;
3077         ring->tail_skb = NULL;
3078         if (length <= HNS3_RX_HEAD_SIZE) {
3079                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3080
3081                 /* We can reuse buffer as-is, just make sure it is reusable */
3082                 if (dev_page_is_reusable(desc_cb->priv))
3083                         desc_cb->reuse_flag = 1;
3084                 else /* This page cannot be reused so discard it */
3085                         __page_frag_cache_drain(desc_cb->priv,
3086                                                 desc_cb->pagecnt_bias);
3087
3088                 hns3_rx_ring_move_fw(ring);
3089                 return 0;
3090         }
3091         u64_stats_update_begin(&ring->syncp);
3092         ring->stats.seg_pkt_cnt++;
3093         u64_stats_update_end(&ring->syncp);
3094
3095         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3096         __skb_put(skb, ring->pull_len);
3097         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3098                             desc_cb);
3099         hns3_rx_ring_move_fw(ring);
3100
3101         return 0;
3102 }
3103
3104 static int hns3_add_frag(struct hns3_enet_ring *ring)
3105 {
3106         struct sk_buff *skb = ring->skb;
3107         struct sk_buff *head_skb = skb;
3108         struct sk_buff *new_skb;
3109         struct hns3_desc_cb *desc_cb;
3110         struct hns3_desc *desc;
3111         u32 bd_base_info;
3112
3113         do {
3114                 desc = &ring->desc[ring->next_to_clean];
3115                 desc_cb = &ring->desc_cb[ring->next_to_clean];
3116                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3117                 /* make sure HW write desc complete */
3118                 dma_rmb();
3119                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3120                         return -ENXIO;
3121
3122                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3123                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3124                         if (unlikely(!new_skb)) {
3125                                 hns3_rl_err(ring_to_netdev(ring),
3126                                             "alloc rx fraglist skb fail\n");
3127                                 return -ENXIO;
3128                         }
3129                         ring->frag_num = 0;
3130
3131                         if (ring->tail_skb) {
3132                                 ring->tail_skb->next = new_skb;
3133                                 ring->tail_skb = new_skb;
3134                         } else {
3135                                 skb_shinfo(skb)->frag_list = new_skb;
3136                                 ring->tail_skb = new_skb;
3137                         }
3138                 }
3139
3140                 if (ring->tail_skb) {
3141                         head_skb->truesize += hns3_buf_size(ring);
3142                         head_skb->data_len += le16_to_cpu(desc->rx.size);
3143                         head_skb->len += le16_to_cpu(desc->rx.size);
3144                         skb = ring->tail_skb;
3145                 }
3146
3147                 dma_sync_single_for_cpu(ring_to_dev(ring),
3148                                 desc_cb->dma + desc_cb->page_offset,
3149                                 hns3_buf_size(ring),
3150                                 DMA_FROM_DEVICE);
3151
3152                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3153                 trace_hns3_rx_desc(ring);
3154                 hns3_rx_ring_move_fw(ring);
3155                 ring->pending_buf++;
3156         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3157
3158         return 0;
3159 }
3160
3161 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3162                                      struct sk_buff *skb, u32 l234info,
3163                                      u32 bd_base_info, u32 ol_info)
3164 {
3165         u32 l3_type;
3166
3167         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3168                                                     HNS3_RXD_GRO_SIZE_M,
3169                                                     HNS3_RXD_GRO_SIZE_S);
3170         /* if there is no HW GRO, do not set gro params */
3171         if (!skb_shinfo(skb)->gso_size) {
3172                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3173                 return 0;
3174         }
3175
3176         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3177                                                   HNS3_RXD_GRO_COUNT_M,
3178                                                   HNS3_RXD_GRO_COUNT_S);
3179
3180         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3181         if (l3_type == HNS3_L3_TYPE_IPV4)
3182                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3183         else if (l3_type == HNS3_L3_TYPE_IPV6)
3184                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3185         else
3186                 return -EFAULT;
3187
3188         return  hns3_gro_complete(skb, l234info);
3189 }
3190
3191 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3192                                      struct sk_buff *skb, u32 rss_hash)
3193 {
3194         struct hnae3_handle *handle = ring->tqp->handle;
3195         enum pkt_hash_types rss_type;
3196
3197         if (rss_hash)
3198                 rss_type = handle->kinfo.rss_type;
3199         else
3200                 rss_type = PKT_HASH_TYPE_NONE;
3201
3202         skb_set_hash(skb, rss_hash, rss_type);
3203 }
3204
3205 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3206 {
3207         struct net_device *netdev = ring_to_netdev(ring);
3208         enum hns3_pkt_l2t_type l2_frame_type;
3209         u32 bd_base_info, l234info, ol_info;
3210         struct hns3_desc *desc;
3211         unsigned int len;
3212         int pre_ntc, ret;
3213
3214         /* bdinfo handled below is only valid on the last BD of the
3215          * current packet, and ring->next_to_clean indicates the first
3216          * descriptor of next packet, so need - 1 below.
3217          */
3218         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3219                                         (ring->desc_num - 1);
3220         desc = &ring->desc[pre_ntc];
3221         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3222         l234info = le32_to_cpu(desc->rx.l234_info);
3223         ol_info = le32_to_cpu(desc->rx.ol_info);
3224
3225         /* Based on hw strategy, the tag offloaded will be stored at
3226          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3227          * in one layer tag case.
3228          */
3229         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3230                 u16 vlan_tag;
3231
3232                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3233                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3234                                                vlan_tag);
3235         }
3236
3237         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3238                                   BIT(HNS3_RXD_L2E_B))))) {
3239                 u64_stats_update_begin(&ring->syncp);
3240                 if (l234info & BIT(HNS3_RXD_L2E_B))
3241                         ring->stats.l2_err++;
3242                 else
3243                         ring->stats.err_pkt_len++;
3244                 u64_stats_update_end(&ring->syncp);
3245
3246                 return -EFAULT;
3247         }
3248
3249         len = skb->len;
3250
3251         /* Do update ip stack process */
3252         skb->protocol = eth_type_trans(skb, netdev);
3253
3254         /* This is needed in order to enable forwarding support */
3255         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3256                                         bd_base_info, ol_info);
3257         if (unlikely(ret)) {
3258                 u64_stats_update_begin(&ring->syncp);
3259                 ring->stats.rx_err_cnt++;
3260                 u64_stats_update_end(&ring->syncp);
3261                 return ret;
3262         }
3263
3264         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3265                                         HNS3_RXD_DMAC_S);
3266
3267         u64_stats_update_begin(&ring->syncp);
3268         ring->stats.rx_pkts++;
3269         ring->stats.rx_bytes += len;
3270
3271         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3272                 ring->stats.rx_multicast++;
3273
3274         u64_stats_update_end(&ring->syncp);
3275
3276         ring->tqp_vector->rx_group.total_bytes += len;
3277
3278         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3279         return 0;
3280 }
3281
3282 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3283 {
3284         struct sk_buff *skb = ring->skb;
3285         struct hns3_desc_cb *desc_cb;
3286         struct hns3_desc *desc;
3287         unsigned int length;
3288         u32 bd_base_info;
3289         int ret;
3290
3291         desc = &ring->desc[ring->next_to_clean];
3292         desc_cb = &ring->desc_cb[ring->next_to_clean];
3293
3294         prefetch(desc);
3295
3296         if (!skb) {
3297                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3298
3299                 /* Check valid BD */
3300                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3301                         return -ENXIO;
3302
3303                 dma_rmb();
3304                 length = le16_to_cpu(desc->rx.size);
3305
3306                 ring->va = desc_cb->buf + desc_cb->page_offset;
3307
3308                 dma_sync_single_for_cpu(ring_to_dev(ring),
3309                                 desc_cb->dma + desc_cb->page_offset,
3310                                 hns3_buf_size(ring),
3311                                 DMA_FROM_DEVICE);
3312
3313                 /* Prefetch first cache line of first page.
3314                  * Idea is to cache few bytes of the header of the packet.
3315                  * Our L1 Cache line size is 64B so need to prefetch twice to make
3316                  * it 128B. But in actual we can have greater size of caches with
3317                  * 128B Level 1 cache lines. In such a case, single fetch would
3318                  * suffice to cache in the relevant part of the header.
3319                  */
3320                 net_prefetch(ring->va);
3321
3322                 ret = hns3_alloc_skb(ring, length, ring->va);
3323                 skb = ring->skb;
3324
3325                 if (ret < 0) /* alloc buffer fail */
3326                         return ret;
3327                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3328                         ret = hns3_add_frag(ring);
3329                         if (ret)
3330                                 return ret;
3331                 }
3332         } else {
3333                 ret = hns3_add_frag(ring);
3334                 if (ret)
3335                         return ret;
3336         }
3337
3338         /* As the head data may be changed when GRO enable, copy
3339          * the head data in after other data rx completed
3340          */
3341         if (skb->len > HNS3_RX_HEAD_SIZE)
3342                 memcpy(skb->data, ring->va,
3343                        ALIGN(ring->pull_len, sizeof(long)));
3344
3345         ret = hns3_handle_bdinfo(ring, skb);
3346         if (unlikely(ret)) {
3347                 dev_kfree_skb_any(skb);
3348                 return ret;
3349         }
3350
3351         skb_record_rx_queue(skb, ring->tqp->tqp_index);
3352         return 0;
3353 }
3354
3355 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3356                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3357 {
3358 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3359         int unused_count = hns3_desc_unused(ring);
3360         int recv_pkts = 0;
3361         int err;
3362
3363         unused_count -= ring->pending_buf;
3364
3365         while (recv_pkts < budget) {
3366                 /* Reuse or realloc buffers */
3367                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3368                         hns3_nic_alloc_rx_buffers(ring, unused_count);
3369                         unused_count = hns3_desc_unused(ring) -
3370                                         ring->pending_buf;
3371                 }
3372
3373                 /* Poll one pkt */
3374                 err = hns3_handle_rx_bd(ring);
3375                 /* Do not get FE for the packet or failed to alloc skb */
3376                 if (unlikely(!ring->skb || err == -ENXIO)) {
3377                         goto out;
3378                 } else if (likely(!err)) {
3379                         rx_fn(ring, ring->skb);
3380                         recv_pkts++;
3381                 }
3382
3383                 unused_count += ring->pending_buf;
3384                 ring->skb = NULL;
3385                 ring->pending_buf = 0;
3386         }
3387
3388 out:
3389         /* Make all data has been write before submit */
3390         if (unused_count > 0)
3391                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3392
3393         return recv_pkts;
3394 }
3395
3396 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3397 {
3398 #define HNS3_RX_LOW_BYTE_RATE 10000
3399 #define HNS3_RX_MID_BYTE_RATE 20000
3400 #define HNS3_RX_ULTRA_PACKET_RATE 40
3401
3402         enum hns3_flow_level_range new_flow_level;
3403         struct hns3_enet_tqp_vector *tqp_vector;
3404         int packets_per_msecs, bytes_per_msecs;
3405         u32 time_passed_ms;
3406
3407         tqp_vector = ring_group->ring->tqp_vector;
3408         time_passed_ms =
3409                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3410         if (!time_passed_ms)
3411                 return false;
3412
3413         do_div(ring_group->total_packets, time_passed_ms);
3414         packets_per_msecs = ring_group->total_packets;
3415
3416         do_div(ring_group->total_bytes, time_passed_ms);
3417         bytes_per_msecs = ring_group->total_bytes;
3418
3419         new_flow_level = ring_group->coal.flow_level;
3420
3421         /* Simple throttlerate management
3422          * 0-10MB/s   lower     (50000 ints/s)
3423          * 10-20MB/s   middle    (20000 ints/s)
3424          * 20-1249MB/s high      (18000 ints/s)
3425          * > 40000pps  ultra     (8000 ints/s)
3426          */
3427         switch (new_flow_level) {
3428         case HNS3_FLOW_LOW:
3429                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3430                         new_flow_level = HNS3_FLOW_MID;
3431                 break;
3432         case HNS3_FLOW_MID:
3433                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3434                         new_flow_level = HNS3_FLOW_HIGH;
3435                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3436                         new_flow_level = HNS3_FLOW_LOW;
3437                 break;
3438         case HNS3_FLOW_HIGH:
3439         case HNS3_FLOW_ULTRA:
3440         default:
3441                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3442                         new_flow_level = HNS3_FLOW_MID;
3443                 break;
3444         }
3445
3446         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3447             &tqp_vector->rx_group == ring_group)
3448                 new_flow_level = HNS3_FLOW_ULTRA;
3449
3450         ring_group->total_bytes = 0;
3451         ring_group->total_packets = 0;
3452         ring_group->coal.flow_level = new_flow_level;
3453
3454         return true;
3455 }
3456
3457 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3458 {
3459         struct hns3_enet_tqp_vector *tqp_vector;
3460         u16 new_int_gl;
3461
3462         if (!ring_group->ring)
3463                 return false;
3464
3465         tqp_vector = ring_group->ring->tqp_vector;
3466         if (!tqp_vector->last_jiffies)
3467                 return false;
3468
3469         if (ring_group->total_packets == 0) {
3470                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3471                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3472                 return true;
3473         }
3474
3475         if (!hns3_get_new_flow_lvl(ring_group))
3476                 return false;
3477
3478         new_int_gl = ring_group->coal.int_gl;
3479         switch (ring_group->coal.flow_level) {
3480         case HNS3_FLOW_LOW:
3481                 new_int_gl = HNS3_INT_GL_50K;
3482                 break;
3483         case HNS3_FLOW_MID:
3484                 new_int_gl = HNS3_INT_GL_20K;
3485                 break;
3486         case HNS3_FLOW_HIGH:
3487                 new_int_gl = HNS3_INT_GL_18K;
3488                 break;
3489         case HNS3_FLOW_ULTRA:
3490                 new_int_gl = HNS3_INT_GL_8K;
3491                 break;
3492         default:
3493                 break;
3494         }
3495
3496         if (new_int_gl != ring_group->coal.int_gl) {
3497                 ring_group->coal.int_gl = new_int_gl;
3498                 return true;
3499         }
3500         return false;
3501 }
3502
3503 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3504 {
3505         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3506         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3507         bool rx_update, tx_update;
3508
3509         /* update param every 1000ms */
3510         if (time_before(jiffies,
3511                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3512                 return;
3513
3514         if (rx_group->coal.adapt_enable) {
3515                 rx_update = hns3_get_new_int_gl(rx_group);
3516                 if (rx_update)
3517                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3518                                                        rx_group->coal.int_gl);
3519         }
3520
3521         if (tx_group->coal.adapt_enable) {
3522                 tx_update = hns3_get_new_int_gl(tx_group);
3523                 if (tx_update)
3524                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3525                                                        tx_group->coal.int_gl);
3526         }
3527
3528         tqp_vector->last_jiffies = jiffies;
3529 }
3530
3531 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3532 {
3533         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3534         struct hns3_enet_ring *ring;
3535         int rx_pkt_total = 0;
3536
3537         struct hns3_enet_tqp_vector *tqp_vector =
3538                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3539         bool clean_complete = true;
3540         int rx_budget = budget;
3541
3542         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3543                 napi_complete(napi);
3544                 return 0;
3545         }
3546
3547         /* Since the actual Tx work is minimal, we can give the Tx a larger
3548          * budget and be more aggressive about cleaning up the Tx descriptors.
3549          */
3550         hns3_for_each_ring(ring, tqp_vector->tx_group)
3551                 hns3_clean_tx_ring(ring, budget);
3552
3553         /* make sure rx ring budget not smaller than 1 */
3554         if (tqp_vector->num_tqps > 1)
3555                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3556
3557         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3558                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3559                                                     hns3_rx_skb);
3560
3561                 if (rx_cleaned >= rx_budget)
3562                         clean_complete = false;
3563
3564                 rx_pkt_total += rx_cleaned;
3565         }
3566
3567         tqp_vector->rx_group.total_packets += rx_pkt_total;
3568
3569         if (!clean_complete)
3570                 return budget;
3571
3572         if (napi_complete(napi) &&
3573             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3574                 hns3_update_new_int_gl(tqp_vector);
3575                 hns3_mask_vector_irq(tqp_vector, 1);
3576         }
3577
3578         return rx_pkt_total;
3579 }
3580
3581 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3582                                       struct hnae3_ring_chain_node *head)
3583 {
3584         struct pci_dev *pdev = tqp_vector->handle->pdev;
3585         struct hnae3_ring_chain_node *cur_chain = head;
3586         struct hnae3_ring_chain_node *chain;
3587         struct hns3_enet_ring *tx_ring;
3588         struct hns3_enet_ring *rx_ring;
3589
3590         tx_ring = tqp_vector->tx_group.ring;
3591         if (tx_ring) {
3592                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3593                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3594                               HNAE3_RING_TYPE_TX);
3595                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3596                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3597
3598                 cur_chain->next = NULL;
3599
3600                 while (tx_ring->next) {
3601                         tx_ring = tx_ring->next;
3602
3603                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3604                                              GFP_KERNEL);
3605                         if (!chain)
3606                                 goto err_free_chain;
3607
3608                         cur_chain->next = chain;
3609                         chain->tqp_index = tx_ring->tqp->tqp_index;
3610                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3611                                       HNAE3_RING_TYPE_TX);
3612                         hnae3_set_field(chain->int_gl_idx,
3613                                         HNAE3_RING_GL_IDX_M,
3614                                         HNAE3_RING_GL_IDX_S,
3615                                         HNAE3_RING_GL_TX);
3616
3617                         cur_chain = chain;
3618                 }
3619         }
3620
3621         rx_ring = tqp_vector->rx_group.ring;
3622         if (!tx_ring && rx_ring) {
3623                 cur_chain->next = NULL;
3624                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3625                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3626                               HNAE3_RING_TYPE_RX);
3627                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3628                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3629
3630                 rx_ring = rx_ring->next;
3631         }
3632
3633         while (rx_ring) {
3634                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3635                 if (!chain)
3636                         goto err_free_chain;
3637
3638                 cur_chain->next = chain;
3639                 chain->tqp_index = rx_ring->tqp->tqp_index;
3640                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3641                               HNAE3_RING_TYPE_RX);
3642                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3643                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3644
3645                 cur_chain = chain;
3646
3647                 rx_ring = rx_ring->next;
3648         }
3649
3650         return 0;
3651
3652 err_free_chain:
3653         cur_chain = head->next;
3654         while (cur_chain) {
3655                 chain = cur_chain->next;
3656                 devm_kfree(&pdev->dev, cur_chain);
3657                 cur_chain = chain;
3658         }
3659         head->next = NULL;
3660
3661         return -ENOMEM;
3662 }
3663
3664 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3665                                         struct hnae3_ring_chain_node *head)
3666 {
3667         struct pci_dev *pdev = tqp_vector->handle->pdev;
3668         struct hnae3_ring_chain_node *chain_tmp, *chain;
3669
3670         chain = head->next;
3671
3672         while (chain) {
3673                 chain_tmp = chain->next;
3674                 devm_kfree(&pdev->dev, chain);
3675                 chain = chain_tmp;
3676         }
3677 }
3678
3679 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3680                                    struct hns3_enet_ring *ring)
3681 {
3682         ring->next = group->ring;
3683         group->ring = ring;
3684
3685         group->count++;
3686 }
3687
3688 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3689 {
3690         struct pci_dev *pdev = priv->ae_handle->pdev;
3691         struct hns3_enet_tqp_vector *tqp_vector;
3692         int num_vectors = priv->vector_num;
3693         int numa_node;
3694         int vector_i;
3695
3696         numa_node = dev_to_node(&pdev->dev);
3697
3698         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3699                 tqp_vector = &priv->tqp_vector[vector_i];
3700                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3701                                 &tqp_vector->affinity_mask);
3702         }
3703 }
3704
3705 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3706 {
3707         struct hnae3_ring_chain_node vector_ring_chain;
3708         struct hnae3_handle *h = priv->ae_handle;
3709         struct hns3_enet_tqp_vector *tqp_vector;
3710         int ret;
3711         int i;
3712
3713         hns3_nic_set_cpumask(priv);
3714
3715         for (i = 0; i < priv->vector_num; i++) {
3716                 tqp_vector = &priv->tqp_vector[i];
3717                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
3718                 tqp_vector->num_tqps = 0;
3719         }
3720
3721         for (i = 0; i < h->kinfo.num_tqps; i++) {
3722                 u16 vector_i = i % priv->vector_num;
3723                 u16 tqp_num = h->kinfo.num_tqps;
3724
3725                 tqp_vector = &priv->tqp_vector[vector_i];
3726
3727                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3728                                        &priv->ring[i]);
3729
3730                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3731                                        &priv->ring[i + tqp_num]);
3732
3733                 priv->ring[i].tqp_vector = tqp_vector;
3734                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3735                 tqp_vector->num_tqps++;
3736         }
3737
3738         for (i = 0; i < priv->vector_num; i++) {
3739                 tqp_vector = &priv->tqp_vector[i];
3740
3741                 tqp_vector->rx_group.total_bytes = 0;
3742                 tqp_vector->rx_group.total_packets = 0;
3743                 tqp_vector->tx_group.total_bytes = 0;
3744                 tqp_vector->tx_group.total_packets = 0;
3745                 tqp_vector->handle = h;
3746
3747                 ret = hns3_get_vector_ring_chain(tqp_vector,
3748                                                  &vector_ring_chain);
3749                 if (ret)
3750                         goto map_ring_fail;
3751
3752                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3753                         tqp_vector->vector_irq, &vector_ring_chain);
3754
3755                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3756
3757                 if (ret)
3758                         goto map_ring_fail;
3759
3760                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3761                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3762         }
3763
3764         return 0;
3765
3766 map_ring_fail:
3767         while (i--)
3768                 netif_napi_del(&priv->tqp_vector[i].napi);
3769
3770         return ret;
3771 }
3772
3773 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3774 {
3775         struct hnae3_handle *h = priv->ae_handle;
3776         struct hns3_enet_tqp_vector *tqp_vector;
3777         struct hnae3_vector_info *vector;
3778         struct pci_dev *pdev = h->pdev;
3779         u16 tqp_num = h->kinfo.num_tqps;
3780         u16 vector_num;
3781         int ret = 0;
3782         u16 i;
3783
3784         /* RSS size, cpu online and vector_num should be the same */
3785         /* Should consider 2p/4p later */
3786         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3787
3788         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3789                               GFP_KERNEL);
3790         if (!vector)
3791                 return -ENOMEM;
3792
3793         /* save the actual available vector number */
3794         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3795
3796         priv->vector_num = vector_num;
3797         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3798                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3799                              GFP_KERNEL);
3800         if (!priv->tqp_vector) {
3801                 ret = -ENOMEM;
3802                 goto out;
3803         }
3804
3805         for (i = 0; i < priv->vector_num; i++) {
3806                 tqp_vector = &priv->tqp_vector[i];
3807                 tqp_vector->idx = i;
3808                 tqp_vector->mask_addr = vector[i].io_addr;
3809                 tqp_vector->vector_irq = vector[i].vector;
3810                 hns3_vector_coalesce_init(tqp_vector, priv);
3811         }
3812
3813 out:
3814         devm_kfree(&pdev->dev, vector);
3815         return ret;
3816 }
3817
3818 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3819 {
3820         group->ring = NULL;
3821         group->count = 0;
3822 }
3823
3824 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3825 {
3826         struct hnae3_ring_chain_node vector_ring_chain;
3827         struct hnae3_handle *h = priv->ae_handle;
3828         struct hns3_enet_tqp_vector *tqp_vector;
3829         int i;
3830
3831         for (i = 0; i < priv->vector_num; i++) {
3832                 tqp_vector = &priv->tqp_vector[i];
3833
3834                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3835                         continue;
3836
3837                 /* Since the mapping can be overwritten, when fail to get the
3838                  * chain between vector and ring, we should go on to deal with
3839                  * the remaining options.
3840                  */
3841                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3842                         dev_warn(priv->dev, "failed to get ring chain\n");
3843
3844                 h->ae_algo->ops->unmap_ring_from_vector(h,
3845                         tqp_vector->vector_irq, &vector_ring_chain);
3846
3847                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3848
3849                 hns3_clear_ring_group(&tqp_vector->rx_group);
3850                 hns3_clear_ring_group(&tqp_vector->tx_group);
3851                 netif_napi_del(&priv->tqp_vector[i].napi);
3852         }
3853 }
3854
3855 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3856 {
3857         struct hnae3_handle *h = priv->ae_handle;
3858         struct pci_dev *pdev = h->pdev;
3859         int i, ret;
3860
3861         for (i = 0; i < priv->vector_num; i++) {
3862                 struct hns3_enet_tqp_vector *tqp_vector;
3863
3864                 tqp_vector = &priv->tqp_vector[i];
3865                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3866                 if (ret)
3867                         return;
3868         }
3869
3870         devm_kfree(&pdev->dev, priv->tqp_vector);
3871 }
3872
3873 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3874                               unsigned int ring_type)
3875 {
3876         int queue_num = priv->ae_handle->kinfo.num_tqps;
3877         struct hns3_enet_ring *ring;
3878         int desc_num;
3879
3880         if (ring_type == HNAE3_RING_TYPE_TX) {
3881                 ring = &priv->ring[q->tqp_index];
3882                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3883                 ring->queue_index = q->tqp_index;
3884         } else {
3885                 ring = &priv->ring[q->tqp_index + queue_num];
3886                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3887                 ring->queue_index = q->tqp_index;
3888         }
3889
3890         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3891
3892         ring->tqp = q;
3893         ring->desc = NULL;
3894         ring->desc_cb = NULL;
3895         ring->dev = priv->dev;
3896         ring->desc_dma_addr = 0;
3897         ring->buf_size = q->buf_size;
3898         ring->desc_num = desc_num;
3899         ring->next_to_use = 0;
3900         ring->next_to_clean = 0;
3901         ring->last_to_use = 0;
3902 }
3903
3904 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3905                                struct hns3_nic_priv *priv)
3906 {
3907         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3908         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3909 }
3910
3911 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3912 {
3913         struct hnae3_handle *h = priv->ae_handle;
3914         struct pci_dev *pdev = h->pdev;
3915         int i;
3916
3917         priv->ring = devm_kzalloc(&pdev->dev,
3918                                   array3_size(h->kinfo.num_tqps,
3919                                               sizeof(*priv->ring), 2),
3920                                   GFP_KERNEL);
3921         if (!priv->ring)
3922                 return -ENOMEM;
3923
3924         for (i = 0; i < h->kinfo.num_tqps; i++)
3925                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3926
3927         return 0;
3928 }
3929
3930 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3931 {
3932         if (!priv->ring)
3933                 return;
3934
3935         devm_kfree(priv->dev, priv->ring);
3936         priv->ring = NULL;
3937 }
3938
3939 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3940 {
3941         int ret;
3942
3943         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3944                 return -EINVAL;
3945
3946         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3947                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
3948         if (!ring->desc_cb) {
3949                 ret = -ENOMEM;
3950                 goto out;
3951         }
3952
3953         ret = hns3_alloc_desc(ring);
3954         if (ret)
3955                 goto out_with_desc_cb;
3956
3957         if (!HNAE3_IS_TX_RING(ring)) {
3958                 ret = hns3_alloc_ring_buffers(ring);
3959                 if (ret)
3960                         goto out_with_desc;
3961         }
3962
3963         return 0;
3964
3965 out_with_desc:
3966         hns3_free_desc(ring);
3967 out_with_desc_cb:
3968         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3969         ring->desc_cb = NULL;
3970 out:
3971         return ret;
3972 }
3973
3974 void hns3_fini_ring(struct hns3_enet_ring *ring)
3975 {
3976         hns3_free_desc(ring);
3977         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3978         ring->desc_cb = NULL;
3979         ring->next_to_clean = 0;
3980         ring->next_to_use = 0;
3981         ring->last_to_use = 0;
3982         ring->pending_buf = 0;
3983         if (ring->skb) {
3984                 dev_kfree_skb_any(ring->skb);
3985                 ring->skb = NULL;
3986         }
3987 }
3988
3989 static int hns3_buf_size2type(u32 buf_size)
3990 {
3991         int bd_size_type;
3992
3993         switch (buf_size) {
3994         case 512:
3995                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3996                 break;
3997         case 1024:
3998                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3999                 break;
4000         case 2048:
4001                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4002                 break;
4003         case 4096:
4004                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4005                 break;
4006         default:
4007                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4008         }
4009
4010         return bd_size_type;
4011 }
4012
4013 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4014 {
4015         dma_addr_t dma = ring->desc_dma_addr;
4016         struct hnae3_queue *q = ring->tqp;
4017
4018         if (!HNAE3_IS_TX_RING(ring)) {
4019                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4020                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4021                                (u32)((dma >> 31) >> 1));
4022
4023                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4024                                hns3_buf_size2type(ring->buf_size));
4025                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4026                                ring->desc_num / 8 - 1);
4027
4028         } else {
4029                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4030                                (u32)dma);
4031                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4032                                (u32)((dma >> 31) >> 1));
4033
4034                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4035                                ring->desc_num / 8 - 1);
4036         }
4037 }
4038
4039 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4040 {
4041         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4042         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4043         int i;
4044
4045         for (i = 0; i < HNAE3_MAX_TC; i++) {
4046                 int j;
4047
4048                 if (!test_bit(i, &tc_info->tc_en))
4049                         continue;
4050
4051                 for (j = 0; j < tc_info->tqp_count[i]; j++) {
4052                         struct hnae3_queue *q;
4053
4054                         q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4055                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4056                 }
4057         }
4058 }
4059
4060 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4061 {
4062         struct hnae3_handle *h = priv->ae_handle;
4063         int ring_num = h->kinfo.num_tqps * 2;
4064         int i, j;
4065         int ret;
4066
4067         for (i = 0; i < ring_num; i++) {
4068                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
4069                 if (ret) {
4070                         dev_err(priv->dev,
4071                                 "Alloc ring memory fail! ret=%d\n", ret);
4072                         goto out_when_alloc_ring_memory;
4073                 }
4074
4075                 u64_stats_init(&priv->ring[i].syncp);
4076         }
4077
4078         return 0;
4079
4080 out_when_alloc_ring_memory:
4081         for (j = i - 1; j >= 0; j--)
4082                 hns3_fini_ring(&priv->ring[j]);
4083
4084         return -ENOMEM;
4085 }
4086
4087 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4088 {
4089         struct hnae3_handle *h = priv->ae_handle;
4090         int i;
4091
4092         for (i = 0; i < h->kinfo.num_tqps; i++) {
4093                 hns3_fini_ring(&priv->ring[i]);
4094                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4095         }
4096 }
4097
4098 /* Set mac addr if it is configured. or leave it to the AE driver */
4099 static int hns3_init_mac_addr(struct net_device *netdev)
4100 {
4101         struct hns3_nic_priv *priv = netdev_priv(netdev);
4102         struct hnae3_handle *h = priv->ae_handle;
4103         u8 mac_addr_temp[ETH_ALEN];
4104         int ret = 0;
4105
4106         if (h->ae_algo->ops->get_mac_addr)
4107                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4108
4109         /* Check if the MAC address is valid, if not get a random one */
4110         if (!is_valid_ether_addr(mac_addr_temp)) {
4111                 eth_hw_addr_random(netdev);
4112                 dev_warn(priv->dev, "using random MAC address %pM\n",
4113                          netdev->dev_addr);
4114         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4115                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4116                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4117         } else {
4118                 return 0;
4119         }
4120
4121         if (h->ae_algo->ops->set_mac_addr)
4122                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4123
4124         return ret;
4125 }
4126
4127 static int hns3_init_phy(struct net_device *netdev)
4128 {
4129         struct hnae3_handle *h = hns3_get_handle(netdev);
4130         int ret = 0;
4131
4132         if (h->ae_algo->ops->mac_connect_phy)
4133                 ret = h->ae_algo->ops->mac_connect_phy(h);
4134
4135         return ret;
4136 }
4137
4138 static void hns3_uninit_phy(struct net_device *netdev)
4139 {
4140         struct hnae3_handle *h = hns3_get_handle(netdev);
4141
4142         if (h->ae_algo->ops->mac_disconnect_phy)
4143                 h->ae_algo->ops->mac_disconnect_phy(h);
4144 }
4145
4146 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4147 {
4148         struct hnae3_handle *h = hns3_get_handle(netdev);
4149
4150         if (h->ae_algo->ops->del_all_fd_entries)
4151                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4152 }
4153
4154 static int hns3_client_start(struct hnae3_handle *handle)
4155 {
4156         if (!handle->ae_algo->ops->client_start)
4157                 return 0;
4158
4159         return handle->ae_algo->ops->client_start(handle);
4160 }
4161
4162 static void hns3_client_stop(struct hnae3_handle *handle)
4163 {
4164         if (!handle->ae_algo->ops->client_stop)
4165                 return;
4166
4167         handle->ae_algo->ops->client_stop(handle);
4168 }
4169
4170 static void hns3_info_show(struct hns3_nic_priv *priv)
4171 {
4172         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4173
4174         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4175         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4176         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4177         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4178         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4179         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4180         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4181         dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4182                  kinfo->tc_info.num_tc);
4183         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4184 }
4185
4186 static int hns3_client_init(struct hnae3_handle *handle)
4187 {
4188         struct pci_dev *pdev = handle->pdev;
4189         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4190         u16 alloc_tqps, max_rss_size;
4191         struct hns3_nic_priv *priv;
4192         struct net_device *netdev;
4193         int ret;
4194
4195         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4196                                                     &max_rss_size);
4197         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4198         if (!netdev)
4199                 return -ENOMEM;
4200
4201         priv = netdev_priv(netdev);
4202         priv->dev = &pdev->dev;
4203         priv->netdev = netdev;
4204         priv->ae_handle = handle;
4205         priv->tx_timeout_count = 0;
4206         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4207         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4208
4209         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4210
4211         handle->kinfo.netdev = netdev;
4212         handle->priv = (void *)priv;
4213
4214         hns3_init_mac_addr(netdev);
4215
4216         hns3_set_default_feature(netdev);
4217
4218         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4219         netdev->priv_flags |= IFF_UNICAST_FLT;
4220         netdev->netdev_ops = &hns3_nic_netdev_ops;
4221         SET_NETDEV_DEV(netdev, &pdev->dev);
4222         hns3_ethtool_set_ops(netdev);
4223
4224         /* Carrier off reporting is important to ethtool even BEFORE open */
4225         netif_carrier_off(netdev);
4226
4227         ret = hns3_get_ring_config(priv);
4228         if (ret) {
4229                 ret = -ENOMEM;
4230                 goto out_get_ring_cfg;
4231         }
4232
4233         ret = hns3_nic_alloc_vector_data(priv);
4234         if (ret) {
4235                 ret = -ENOMEM;
4236                 goto out_alloc_vector_data;
4237         }
4238
4239         ret = hns3_nic_init_vector_data(priv);
4240         if (ret) {
4241                 ret = -ENOMEM;
4242                 goto out_init_vector_data;
4243         }
4244
4245         ret = hns3_init_all_ring(priv);
4246         if (ret) {
4247                 ret = -ENOMEM;
4248                 goto out_init_ring;
4249         }
4250
4251         ret = hns3_init_phy(netdev);
4252         if (ret)
4253                 goto out_init_phy;
4254
4255         ret = register_netdev(netdev);
4256         if (ret) {
4257                 dev_err(priv->dev, "probe register netdev fail!\n");
4258                 goto out_reg_netdev_fail;
4259         }
4260
4261         /* the device can work without cpu rmap, only aRFS needs it */
4262         ret = hns3_set_rx_cpu_rmap(netdev);
4263         if (ret)
4264                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4265
4266         ret = hns3_nic_init_irq(priv);
4267         if (ret) {
4268                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4269                 hns3_free_rx_cpu_rmap(netdev);
4270                 goto out_init_irq_fail;
4271         }
4272
4273         ret = hns3_client_start(handle);
4274         if (ret) {
4275                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4276                 goto out_client_start;
4277         }
4278
4279         hns3_dcbnl_setup(handle);
4280
4281         hns3_dbg_init(handle);
4282
4283         netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4284
4285         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4286                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4287
4288         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4289
4290         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4291                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4292
4293         if (netif_msg_drv(handle))
4294                 hns3_info_show(priv);
4295
4296         return ret;
4297
4298 out_client_start:
4299         hns3_free_rx_cpu_rmap(netdev);
4300         hns3_nic_uninit_irq(priv);
4301 out_init_irq_fail:
4302         unregister_netdev(netdev);
4303 out_reg_netdev_fail:
4304         hns3_uninit_phy(netdev);
4305 out_init_phy:
4306         hns3_uninit_all_ring(priv);
4307 out_init_ring:
4308         hns3_nic_uninit_vector_data(priv);
4309 out_init_vector_data:
4310         hns3_nic_dealloc_vector_data(priv);
4311 out_alloc_vector_data:
4312         priv->ring = NULL;
4313 out_get_ring_cfg:
4314         priv->ae_handle = NULL;
4315         free_netdev(netdev);
4316         return ret;
4317 }
4318
4319 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4320 {
4321         struct net_device *netdev = handle->kinfo.netdev;
4322         struct hns3_nic_priv *priv = netdev_priv(netdev);
4323
4324         if (netdev->reg_state != NETREG_UNINITIALIZED)
4325                 unregister_netdev(netdev);
4326
4327         hns3_client_stop(handle);
4328
4329         hns3_uninit_phy(netdev);
4330
4331         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4332                 netdev_warn(netdev, "already uninitialized\n");
4333                 goto out_netdev_free;
4334         }
4335
4336         hns3_free_rx_cpu_rmap(netdev);
4337
4338         hns3_nic_uninit_irq(priv);
4339
4340         hns3_del_all_fd_rules(netdev, true);
4341
4342         hns3_clear_all_ring(handle, true);
4343
4344         hns3_nic_uninit_vector_data(priv);
4345
4346         hns3_nic_dealloc_vector_data(priv);
4347
4348         hns3_uninit_all_ring(priv);
4349
4350         hns3_put_ring_config(priv);
4351
4352 out_netdev_free:
4353         hns3_dbg_uninit(handle);
4354         free_netdev(netdev);
4355 }
4356
4357 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4358 {
4359         struct net_device *netdev = handle->kinfo.netdev;
4360
4361         if (!netdev)
4362                 return;
4363
4364         if (linkup) {
4365                 netif_tx_wake_all_queues(netdev);
4366                 netif_carrier_on(netdev);
4367                 if (netif_msg_link(handle))
4368                         netdev_info(netdev, "link up\n");
4369         } else {
4370                 netif_carrier_off(netdev);
4371                 netif_tx_stop_all_queues(netdev);
4372                 if (netif_msg_link(handle))
4373                         netdev_info(netdev, "link down\n");
4374         }
4375 }
4376
4377 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4378 {
4379         while (ring->next_to_clean != ring->next_to_use) {
4380                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4381                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4382                 ring_ptr_move_fw(ring, next_to_clean);
4383         }
4384
4385         ring->pending_buf = 0;
4386 }
4387
4388 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4389 {
4390         struct hns3_desc_cb res_cbs;
4391         int ret;
4392
4393         while (ring->next_to_use != ring->next_to_clean) {
4394                 /* When a buffer is not reused, it's memory has been
4395                  * freed in hns3_handle_rx_bd or will be freed by
4396                  * stack, so we need to replace the buffer here.
4397                  */
4398                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4399                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4400                         if (ret) {
4401                                 u64_stats_update_begin(&ring->syncp);
4402                                 ring->stats.sw_err_cnt++;
4403                                 u64_stats_update_end(&ring->syncp);
4404                                 /* if alloc new buffer fail, exit directly
4405                                  * and reclear in up flow.
4406                                  */
4407                                 netdev_warn(ring_to_netdev(ring),
4408                                             "reserve buffer map failed, ret = %d\n",
4409                                             ret);
4410                                 return ret;
4411                         }
4412                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4413                 }
4414                 ring_ptr_move_fw(ring, next_to_use);
4415         }
4416
4417         /* Free the pending skb in rx ring */
4418         if (ring->skb) {
4419                 dev_kfree_skb_any(ring->skb);
4420                 ring->skb = NULL;
4421                 ring->pending_buf = 0;
4422         }
4423
4424         return 0;
4425 }
4426
4427 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4428 {
4429         while (ring->next_to_use != ring->next_to_clean) {
4430                 /* When a buffer is not reused, it's memory has been
4431                  * freed in hns3_handle_rx_bd or will be freed by
4432                  * stack, so only need to unmap the buffer here.
4433                  */
4434                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4435                         hns3_unmap_buffer(ring,
4436                                           &ring->desc_cb[ring->next_to_use]);
4437                         ring->desc_cb[ring->next_to_use].dma = 0;
4438                 }
4439
4440                 ring_ptr_move_fw(ring, next_to_use);
4441         }
4442 }
4443
4444 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4445 {
4446         struct net_device *ndev = h->kinfo.netdev;
4447         struct hns3_nic_priv *priv = netdev_priv(ndev);
4448         u32 i;
4449
4450         for (i = 0; i < h->kinfo.num_tqps; i++) {
4451                 struct hns3_enet_ring *ring;
4452
4453                 ring = &priv->ring[i];
4454                 hns3_clear_tx_ring(ring);
4455
4456                 ring = &priv->ring[i + h->kinfo.num_tqps];
4457                 /* Continue to clear other rings even if clearing some
4458                  * rings failed.
4459                  */
4460                 if (force)
4461                         hns3_force_clear_rx_ring(ring);
4462                 else
4463                         hns3_clear_rx_ring(ring);
4464         }
4465 }
4466
4467 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4468 {
4469         struct net_device *ndev = h->kinfo.netdev;
4470         struct hns3_nic_priv *priv = netdev_priv(ndev);
4471         struct hns3_enet_ring *rx_ring;
4472         int i, j;
4473         int ret;
4474
4475         for (i = 0; i < h->kinfo.num_tqps; i++) {
4476                 ret = h->ae_algo->ops->reset_queue(h, i);
4477                 if (ret)
4478                         return ret;
4479
4480                 hns3_init_ring_hw(&priv->ring[i]);
4481
4482                 /* We need to clear tx ring here because self test will
4483                  * use the ring and will not run down before up
4484                  */
4485                 hns3_clear_tx_ring(&priv->ring[i]);
4486                 priv->ring[i].next_to_clean = 0;
4487                 priv->ring[i].next_to_use = 0;
4488                 priv->ring[i].last_to_use = 0;
4489
4490                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4491                 hns3_init_ring_hw(rx_ring);
4492                 ret = hns3_clear_rx_ring(rx_ring);
4493                 if (ret)
4494                         return ret;
4495
4496                 /* We can not know the hardware head and tail when this
4497                  * function is called in reset flow, so we reuse all desc.
4498                  */
4499                 for (j = 0; j < rx_ring->desc_num; j++)
4500                         hns3_reuse_buffer(rx_ring, j);
4501
4502                 rx_ring->next_to_clean = 0;
4503                 rx_ring->next_to_use = 0;
4504         }
4505
4506         hns3_init_tx_ring_tc(priv);
4507
4508         return 0;
4509 }
4510
4511 static void hns3_store_coal(struct hns3_nic_priv *priv)
4512 {
4513         /* ethtool only support setting and querying one coal
4514          * configuration for now, so save the vector 0' coal
4515          * configuration here in order to restore it.
4516          */
4517         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4518                sizeof(struct hns3_enet_coalesce));
4519         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4520                sizeof(struct hns3_enet_coalesce));
4521 }
4522
4523 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4524 {
4525         u16 vector_num = priv->vector_num;
4526         int i;
4527
4528         for (i = 0; i < vector_num; i++) {
4529                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4530                        sizeof(struct hns3_enet_coalesce));
4531                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4532                        sizeof(struct hns3_enet_coalesce));
4533         }
4534 }
4535
4536 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4537 {
4538         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4539         struct net_device *ndev = kinfo->netdev;
4540         struct hns3_nic_priv *priv = netdev_priv(ndev);
4541
4542         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4543                 return 0;
4544
4545         if (!netif_running(ndev))
4546                 return 0;
4547
4548         return hns3_nic_net_stop(ndev);
4549 }
4550
4551 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4552 {
4553         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4554         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4555         int ret = 0;
4556
4557         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4558
4559         if (netif_running(kinfo->netdev)) {
4560                 ret = hns3_nic_net_open(kinfo->netdev);
4561                 if (ret) {
4562                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4563                         netdev_err(kinfo->netdev,
4564                                    "net up fail, ret=%d!\n", ret);
4565                         return ret;
4566                 }
4567         }
4568
4569         return ret;
4570 }
4571
4572 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4573 {
4574         struct net_device *netdev = handle->kinfo.netdev;
4575         struct hns3_nic_priv *priv = netdev_priv(netdev);
4576         int ret;
4577
4578         /* Carrier off reporting is important to ethtool even BEFORE open */
4579         netif_carrier_off(netdev);
4580
4581         ret = hns3_get_ring_config(priv);
4582         if (ret)
4583                 return ret;
4584
4585         ret = hns3_nic_alloc_vector_data(priv);
4586         if (ret)
4587                 goto err_put_ring;
4588
4589         hns3_restore_coal(priv);
4590
4591         ret = hns3_nic_init_vector_data(priv);
4592         if (ret)
4593                 goto err_dealloc_vector;
4594
4595         ret = hns3_init_all_ring(priv);
4596         if (ret)
4597                 goto err_uninit_vector;
4598
4599         /* the device can work without cpu rmap, only aRFS needs it */
4600         ret = hns3_set_rx_cpu_rmap(netdev);
4601         if (ret)
4602                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4603
4604         ret = hns3_nic_init_irq(priv);
4605         if (ret) {
4606                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4607                 hns3_free_rx_cpu_rmap(netdev);
4608                 goto err_init_irq_fail;
4609         }
4610
4611         if (!hns3_is_phys_func(handle->pdev))
4612                 hns3_init_mac_addr(netdev);
4613
4614         ret = hns3_client_start(handle);
4615         if (ret) {
4616                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4617                 goto err_client_start_fail;
4618         }
4619
4620         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4621
4622         return ret;
4623
4624 err_client_start_fail:
4625         hns3_free_rx_cpu_rmap(netdev);
4626         hns3_nic_uninit_irq(priv);
4627 err_init_irq_fail:
4628         hns3_uninit_all_ring(priv);
4629 err_uninit_vector:
4630         hns3_nic_uninit_vector_data(priv);
4631 err_dealloc_vector:
4632         hns3_nic_dealloc_vector_data(priv);
4633 err_put_ring:
4634         hns3_put_ring_config(priv);
4635
4636         return ret;
4637 }
4638
4639 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4640 {
4641         struct net_device *netdev = handle->kinfo.netdev;
4642         struct hns3_nic_priv *priv = netdev_priv(netdev);
4643
4644         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4645                 netdev_warn(netdev, "already uninitialized\n");
4646                 return 0;
4647         }
4648
4649         hns3_free_rx_cpu_rmap(netdev);
4650         hns3_nic_uninit_irq(priv);
4651         hns3_clear_all_ring(handle, true);
4652         hns3_reset_tx_queue(priv->ae_handle);
4653
4654         hns3_nic_uninit_vector_data(priv);
4655
4656         hns3_store_coal(priv);
4657
4658         hns3_nic_dealloc_vector_data(priv);
4659
4660         hns3_uninit_all_ring(priv);
4661
4662         hns3_put_ring_config(priv);
4663
4664         return 0;
4665 }
4666
4667 static int hns3_reset_notify(struct hnae3_handle *handle,
4668                              enum hnae3_reset_notify_type type)
4669 {
4670         int ret = 0;
4671
4672         switch (type) {
4673         case HNAE3_UP_CLIENT:
4674                 ret = hns3_reset_notify_up_enet(handle);
4675                 break;
4676         case HNAE3_DOWN_CLIENT:
4677                 ret = hns3_reset_notify_down_enet(handle);
4678                 break;
4679         case HNAE3_INIT_CLIENT:
4680                 ret = hns3_reset_notify_init_enet(handle);
4681                 break;
4682         case HNAE3_UNINIT_CLIENT:
4683                 ret = hns3_reset_notify_uninit_enet(handle);
4684                 break;
4685         default:
4686                 break;
4687         }
4688
4689         return ret;
4690 }
4691
4692 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4693                                 bool rxfh_configured)
4694 {
4695         int ret;
4696
4697         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4698                                                  rxfh_configured);
4699         if (ret) {
4700                 dev_err(&handle->pdev->dev,
4701                         "Change tqp num(%u) fail.\n", new_tqp_num);
4702                 return ret;
4703         }
4704
4705         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4706         if (ret)
4707                 return ret;
4708
4709         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4710         if (ret)
4711                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4712
4713         return ret;
4714 }
4715
4716 int hns3_set_channels(struct net_device *netdev,
4717                       struct ethtool_channels *ch)
4718 {
4719         struct hnae3_handle *h = hns3_get_handle(netdev);
4720         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4721         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4722         u32 new_tqp_num = ch->combined_count;
4723         u16 org_tqp_num;
4724         int ret;
4725
4726         if (hns3_nic_resetting(netdev))
4727                 return -EBUSY;
4728
4729         if (ch->rx_count || ch->tx_count)
4730                 return -EINVAL;
4731
4732         if (kinfo->tc_info.mqprio_active) {
4733                 dev_err(&netdev->dev,
4734                         "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4735                 return -EINVAL;
4736         }
4737
4738         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4739             new_tqp_num < 1) {
4740                 dev_err(&netdev->dev,
4741                         "Change tqps fail, the tqp range is from 1 to %u",
4742                         hns3_get_max_available_channels(h));
4743                 return -EINVAL;
4744         }
4745
4746         if (kinfo->rss_size == new_tqp_num)
4747                 return 0;
4748
4749         netif_dbg(h, drv, netdev,
4750                   "set channels: tqp_num=%u, rxfh=%d\n",
4751                   new_tqp_num, rxfh_configured);
4752
4753         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4754         if (ret)
4755                 return ret;
4756
4757         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4758         if (ret)
4759                 return ret;
4760
4761         org_tqp_num = h->kinfo.num_tqps;
4762         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4763         if (ret) {
4764                 int ret1;
4765
4766                 netdev_warn(netdev,
4767                             "Change channels fail, revert to old value\n");
4768                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4769                 if (ret1) {
4770                         netdev_err(netdev,
4771                                    "revert to old channel fail\n");
4772                         return ret1;
4773                 }
4774
4775                 return ret;
4776         }
4777
4778         return 0;
4779 }
4780
4781 static const struct hns3_hw_error_info hns3_hw_err[] = {
4782         { .type = HNAE3_PPU_POISON_ERROR,
4783           .msg = "PPU poison" },
4784         { .type = HNAE3_CMDQ_ECC_ERROR,
4785           .msg = "IMP CMDQ error" },
4786         { .type = HNAE3_IMP_RD_POISON_ERROR,
4787           .msg = "IMP RD poison" },
4788         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4789           .msg = "ROCEE AXI RESP error" },
4790 };
4791
4792 static void hns3_process_hw_error(struct hnae3_handle *handle,
4793                                   enum hnae3_hw_error_type type)
4794 {
4795         int i;
4796
4797         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4798                 if (hns3_hw_err[i].type == type) {
4799                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4800                                 hns3_hw_err[i].msg);
4801                         break;
4802                 }
4803         }
4804 }
4805
4806 static const struct hnae3_client_ops client_ops = {
4807         .init_instance = hns3_client_init,
4808         .uninit_instance = hns3_client_uninit,
4809         .link_status_change = hns3_link_status_change,
4810         .reset_notify = hns3_reset_notify,
4811         .process_hw_error = hns3_process_hw_error,
4812 };
4813
4814 /* hns3_init_module - Driver registration routine
4815  * hns3_init_module is the first routine called when the driver is
4816  * loaded. All it does is register with the PCI subsystem.
4817  */
4818 static int __init hns3_init_module(void)
4819 {
4820         int ret;
4821
4822         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4823         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4824
4825         client.type = HNAE3_CLIENT_KNIC;
4826         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4827                  hns3_driver_name);
4828
4829         client.ops = &client_ops;
4830
4831         INIT_LIST_HEAD(&client.node);
4832
4833         hns3_dbg_register_debugfs(hns3_driver_name);
4834
4835         ret = hnae3_register_client(&client);
4836         if (ret)
4837                 goto err_reg_client;
4838
4839         ret = pci_register_driver(&hns3_driver);
4840         if (ret)
4841                 goto err_reg_driver;
4842
4843         return ret;
4844
4845 err_reg_driver:
4846         hnae3_unregister_client(&client);
4847 err_reg_client:
4848         hns3_dbg_unregister_debugfs();
4849         return ret;
4850 }
4851 module_init(hns3_init_module);
4852
4853 /* hns3_exit_module - Driver exit cleanup routine
4854  * hns3_exit_module is called just before the driver is removed
4855  * from memory.
4856  */
4857 static void __exit hns3_exit_module(void)
4858 {
4859         pci_unregister_driver(&hns3_driver);
4860         hnae3_unregister_client(&client);
4861         hns3_dbg_unregister_debugfs();
4862 }
4863 module_exit(hns3_exit_module);
4864
4865 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4866 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4867 MODULE_LICENSE("GPL");
4868 MODULE_ALIAS("pci:hns-nic");