OSDN Git Service

MAINTAINERS: add entry for redpine wireless driver
[uclinux-h8/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28
29 #include "e1000.h"
30
31 #define DRV_EXTRAVERSION "-k"
32
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41
42 static const struct e1000_info *e1000_info_tbl[] = {
43         [board_82571]           = &e1000_82571_info,
44         [board_82572]           = &e1000_82572_info,
45         [board_82573]           = &e1000_82573_info,
46         [board_82574]           = &e1000_82574_info,
47         [board_82583]           = &e1000_82583_info,
48         [board_80003es2lan]     = &e1000_es2_info,
49         [board_ich8lan]         = &e1000_ich8_info,
50         [board_ich9lan]         = &e1000_ich9_info,
51         [board_ich10lan]        = &e1000_ich10_info,
52         [board_pchlan]          = &e1000_pch_info,
53         [board_pch2lan]         = &e1000_pch2_info,
54         [board_pch_lpt]         = &e1000_pch_lpt_info,
55         [board_pch_spt]         = &e1000_pch_spt_info,
56         [board_pch_cnp]         = &e1000_pch_cnp_info,
57 };
58
59 struct e1000_reg_info {
60         u32 ofs;
61         char *name;
62 };
63
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65         /* General Registers */
66         {E1000_CTRL, "CTRL"},
67         {E1000_STATUS, "STATUS"},
68         {E1000_CTRL_EXT, "CTRL_EXT"},
69
70         /* Interrupt Registers */
71         {E1000_ICR, "ICR"},
72
73         /* Rx Registers */
74         {E1000_RCTL, "RCTL"},
75         {E1000_RDLEN(0), "RDLEN"},
76         {E1000_RDH(0), "RDH"},
77         {E1000_RDT(0), "RDT"},
78         {E1000_RDTR, "RDTR"},
79         {E1000_RXDCTL(0), "RXDCTL"},
80         {E1000_ERT, "ERT"},
81         {E1000_RDBAL(0), "RDBAL"},
82         {E1000_RDBAH(0), "RDBAH"},
83         {E1000_RDFH, "RDFH"},
84         {E1000_RDFT, "RDFT"},
85         {E1000_RDFHS, "RDFHS"},
86         {E1000_RDFTS, "RDFTS"},
87         {E1000_RDFPC, "RDFPC"},
88
89         /* Tx Registers */
90         {E1000_TCTL, "TCTL"},
91         {E1000_TDBAL(0), "TDBAL"},
92         {E1000_TDBAH(0), "TDBAH"},
93         {E1000_TDLEN(0), "TDLEN"},
94         {E1000_TDH(0), "TDH"},
95         {E1000_TDT(0), "TDT"},
96         {E1000_TIDV, "TIDV"},
97         {E1000_TXDCTL(0), "TXDCTL"},
98         {E1000_TADV, "TADV"},
99         {E1000_TARC(0), "TARC"},
100         {E1000_TDFH, "TDFH"},
101         {E1000_TDFT, "TDFT"},
102         {E1000_TDFHS, "TDFHS"},
103         {E1000_TDFTS, "TDFTS"},
104         {E1000_TDFPC, "TDFPC"},
105
106         /* List Terminator */
107         {0, NULL}
108 };
109
110 /**
111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112  * @hw: pointer to the HW structure
113  *
114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
115  * be accessing the registers at the same time.  Normally, this is handled in
116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117  * accesses later than it should which could result in the register to have
118  * an incorrect value.  Workaround this by checking the FWSM register which
119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120  * and try again a number of times.
121  **/
122 s32 __ew32_prepare(struct e1000_hw *hw)
123 {
124         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125
126         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127                 udelay(50);
128
129         return i;
130 }
131
132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133 {
134         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135                 __ew32_prepare(hw);
136
137         writel(val, hw->hw_addr + reg);
138 }
139
140 /**
141  * e1000_regdump - register printout routine
142  * @hw: pointer to the HW structure
143  * @reginfo: pointer to the register info table
144  **/
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 {
147         int n = 0;
148         char rname[16];
149         u32 regs[8];
150
151         switch (reginfo->ofs) {
152         case E1000_RXDCTL(0):
153                 for (n = 0; n < 2; n++)
154                         regs[n] = __er32(hw, E1000_RXDCTL(n));
155                 break;
156         case E1000_TXDCTL(0):
157                 for (n = 0; n < 2; n++)
158                         regs[n] = __er32(hw, E1000_TXDCTL(n));
159                 break;
160         case E1000_TARC(0):
161                 for (n = 0; n < 2; n++)
162                         regs[n] = __er32(hw, E1000_TARC(n));
163                 break;
164         default:
165                 pr_info("%-15s %08x\n",
166                         reginfo->name, __er32(hw, reginfo->ofs));
167                 return;
168         }
169
170         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
172 }
173
174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175                                  struct e1000_buffer *bi)
176 {
177         int i;
178         struct e1000_ps_page *ps_page;
179
180         for (i = 0; i < adapter->rx_ps_pages; i++) {
181                 ps_page = &bi->ps_pages[i];
182
183                 if (ps_page->page) {
184                         pr_info("packet dump for ps_page %d:\n", i);
185                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186                                        16, 1, page_address(ps_page->page),
187                                        PAGE_SIZE, true);
188                 }
189         }
190 }
191
192 /**
193  * e1000e_dump - Print registers, Tx-ring and Rx-ring
194  * @adapter: board private structure
195  **/
196 static void e1000e_dump(struct e1000_adapter *adapter)
197 {
198         struct net_device *netdev = adapter->netdev;
199         struct e1000_hw *hw = &adapter->hw;
200         struct e1000_reg_info *reginfo;
201         struct e1000_ring *tx_ring = adapter->tx_ring;
202         struct e1000_tx_desc *tx_desc;
203         struct my_u0 {
204                 __le64 a;
205                 __le64 b;
206         } *u0;
207         struct e1000_buffer *buffer_info;
208         struct e1000_ring *rx_ring = adapter->rx_ring;
209         union e1000_rx_desc_packet_split *rx_desc_ps;
210         union e1000_rx_desc_extended *rx_desc;
211         struct my_u1 {
212                 __le64 a;
213                 __le64 b;
214                 __le64 c;
215                 __le64 d;
216         } *u1;
217         u32 staterr;
218         int i = 0;
219
220         if (!netif_msg_hw(adapter))
221                 return;
222
223         /* Print netdevice Info */
224         if (netdev) {
225                 dev_info(&adapter->pdev->dev, "Net device Info\n");
226                 pr_info("Device Name     state            trans_start\n");
227                 pr_info("%-15s %016lX %016lX\n", netdev->name,
228                         netdev->state, dev_trans_start(netdev));
229         }
230
231         /* Print Registers */
232         dev_info(&adapter->pdev->dev, "Register Dump\n");
233         pr_info(" Register Name   Value\n");
234         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235              reginfo->name; reginfo++) {
236                 e1000_regdump(hw, reginfo);
237         }
238
239         /* Print Tx Ring Summary */
240         if (!netdev || !netif_running(netdev))
241                 return;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
245         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
248                 (unsigned long long)buffer_info->dma,
249                 buffer_info->length,
250                 buffer_info->next_to_watch,
251                 (unsigned long long)buffer_info->time_stamp);
252
253         /* Print Tx Ring */
254         if (!netif_msg_tx_done(adapter))
255                 goto rx_ring_summary;
256
257         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258
259         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260          *
261          * Legacy Transmit Descriptor
262          *   +--------------------------------------------------------------+
263          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
264          *   +--------------------------------------------------------------+
265          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
266          *   +--------------------------------------------------------------+
267          *   63       48 47        36 35    32 31     24 23    16 15        0
268          *
269          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270          *   63      48 47    40 39       32 31             16 15    8 7      0
271          *   +----------------------------------------------------------------+
272          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
273          *   +----------------------------------------------------------------+
274          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
275          *   +----------------------------------------------------------------+
276          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
277          *
278          * Extended Data Descriptor (DTYP=0x1)
279          *   +----------------------------------------------------------------+
280          * 0 |                     Buffer Address [63:0]                      |
281          *   +----------------------------------------------------------------+
282          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
283          *   +----------------------------------------------------------------+
284          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
285          */
286         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
287         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
288         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
289         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290                 const char *next_desc;
291                 tx_desc = E1000_TX_DESC(*tx_ring, i);
292                 buffer_info = &tx_ring->buffer_info[i];
293                 u0 = (struct my_u0 *)tx_desc;
294                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295                         next_desc = " NTC/U";
296                 else if (i == tx_ring->next_to_use)
297                         next_desc = " NTU";
298                 else if (i == tx_ring->next_to_clean)
299                         next_desc = " NTC";
300                 else
301                         next_desc = "";
302                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
303                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305                         i,
306                         (unsigned long long)le64_to_cpu(u0->a),
307                         (unsigned long long)le64_to_cpu(u0->b),
308                         (unsigned long long)buffer_info->dma,
309                         buffer_info->length, buffer_info->next_to_watch,
310                         (unsigned long long)buffer_info->time_stamp,
311                         buffer_info->skb, next_desc);
312
313                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
314                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315                                        16, 1, buffer_info->skb->data,
316                                        buffer_info->skb->len, true);
317         }
318
319         /* Print Rx Ring Summary */
320 rx_ring_summary:
321         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322         pr_info("Queue [NTU] [NTC]\n");
323         pr_info(" %5d %5X %5X\n",
324                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
325
326         /* Print Rx Ring */
327         if (!netif_msg_rx_status(adapter))
328                 return;
329
330         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331         switch (adapter->rx_ps_pages) {
332         case 1:
333         case 2:
334         case 3:
335                 /* [Extended] Packet Split Receive Descriptor Format
336                  *
337                  *    +-----------------------------------------------------+
338                  *  0 |                Buffer Address 0 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  *  8 |                Buffer Address 1 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  * 16 |                Buffer Address 2 [63:0]              |
343                  *    +-----------------------------------------------------+
344                  * 24 |                Buffer Address 3 [63:0]              |
345                  *    +-----------------------------------------------------+
346                  */
347                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
348                 /* [Extended] Receive Descriptor (Write-Back) Format
349                  *
350                  *   63       48 47    32 31     13 12    8 7    4 3        0
351                  *   +------------------------------------------------------+
352                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
353                  *   | Checksum | Ident  |         | Queue |      |  Type   |
354                  *   +------------------------------------------------------+
355                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356                  *   +------------------------------------------------------+
357                  *   63       48 47    32 31            20 19               0
358                  */
359                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360                 for (i = 0; i < rx_ring->count; i++) {
361                         const char *next_desc;
362                         buffer_info = &rx_ring->buffer_info[i];
363                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364                         u1 = (struct my_u1 *)rx_desc_ps;
365                         staterr =
366                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367
368                         if (i == rx_ring->next_to_use)
369                                 next_desc = " NTU";
370                         else if (i == rx_ring->next_to_clean)
371                                 next_desc = " NTC";
372                         else
373                                 next_desc = "";
374
375                         if (staterr & E1000_RXD_STAT_DD) {
376                                 /* Descriptor Done */
377                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378                                         "RWB", i,
379                                         (unsigned long long)le64_to_cpu(u1->a),
380                                         (unsigned long long)le64_to_cpu(u1->b),
381                                         (unsigned long long)le64_to_cpu(u1->c),
382                                         (unsigned long long)le64_to_cpu(u1->d),
383                                         buffer_info->skb, next_desc);
384                         } else {
385                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
386                                         "R  ", i,
387                                         (unsigned long long)le64_to_cpu(u1->a),
388                                         (unsigned long long)le64_to_cpu(u1->b),
389                                         (unsigned long long)le64_to_cpu(u1->c),
390                                         (unsigned long long)le64_to_cpu(u1->d),
391                                         (unsigned long long)buffer_info->dma,
392                                         buffer_info->skb, next_desc);
393
394                                 if (netif_msg_pktdata(adapter))
395                                         e1000e_dump_ps_pages(adapter,
396                                                              buffer_info);
397                         }
398                 }
399                 break;
400         default:
401         case 0:
402                 /* Extended Receive Descriptor (Read) Format
403                  *
404                  *   +-----------------------------------------------------+
405                  * 0 |                Buffer Address [63:0]                |
406                  *   +-----------------------------------------------------+
407                  * 8 |                      Reserved                       |
408                  *   +-----------------------------------------------------+
409                  */
410                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
411                 /* Extended Receive Descriptor (Write-Back) Format
412                  *
413                  *   63       48 47    32 31    24 23            4 3        0
414                  *   +------------------------------------------------------+
415                  *   |     RSS Hash      |        |               |         |
416                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
417                  *   | Packet   | IP     |        |               |  Type   |
418                  *   | Checksum | Ident  |        |               |         |
419                  *   +------------------------------------------------------+
420                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421                  *   +------------------------------------------------------+
422                  *   63       48 47    32 31            20 19               0
423                  */
424                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
425
426                 for (i = 0; i < rx_ring->count; i++) {
427                         const char *next_desc;
428
429                         buffer_info = &rx_ring->buffer_info[i];
430                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431                         u1 = (struct my_u1 *)rx_desc;
432                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433
434                         if (i == rx_ring->next_to_use)
435                                 next_desc = " NTU";
436                         else if (i == rx_ring->next_to_clean)
437                                 next_desc = " NTC";
438                         else
439                                 next_desc = "";
440
441                         if (staterr & E1000_RXD_STAT_DD) {
442                                 /* Descriptor Done */
443                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
444                                         "RWB", i,
445                                         (unsigned long long)le64_to_cpu(u1->a),
446                                         (unsigned long long)le64_to_cpu(u1->b),
447                                         buffer_info->skb, next_desc);
448                         } else {
449                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
450                                         "R  ", i,
451                                         (unsigned long long)le64_to_cpu(u1->a),
452                                         (unsigned long long)le64_to_cpu(u1->b),
453                                         (unsigned long long)buffer_info->dma,
454                                         buffer_info->skb, next_desc);
455
456                                 if (netif_msg_pktdata(adapter) &&
457                                     buffer_info->skb)
458                                         print_hex_dump(KERN_INFO, "",
459                                                        DUMP_PREFIX_ADDRESS, 16,
460                                                        1,
461                                                        buffer_info->skb->data,
462                                                        adapter->rx_buffer_len,
463                                                        true);
464                         }
465                 }
466         }
467 }
468
469 /**
470  * e1000_desc_unused - calculate if we have unused descriptors
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @staterr: descriptor extended error and status field as written by hardware
548  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
549  * @skb: pointer to sk_buff to be indicated to stack
550  **/
551 static void e1000_receive_skb(struct e1000_adapter *adapter,
552                               struct net_device *netdev, struct sk_buff *skb,
553                               u32 staterr, __le16 vlan)
554 {
555         u16 tag = le16_to_cpu(vlan);
556
557         e1000e_rx_hwtstamp(adapter, staterr, skb);
558
559         skb->protocol = eth_type_trans(skb, netdev);
560
561         if (staterr & E1000_RXD_STAT_VP)
562                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
563
564         napi_gro_receive(&adapter->napi, skb);
565 }
566
567 /**
568  * e1000_rx_checksum - Receive Checksum Offload
569  * @adapter: board private structure
570  * @status_err: receive descriptor status and error fields
571  * @csum: receive descriptor csum field
572  * @sk_buff: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 ret_val = __ew32_prepare(hw);
611
612         writel(i, rx_ring->tail);
613
614         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, tx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  **/
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645                                    int cleaned_count, gfp_t gfp)
646 {
647         struct e1000_adapter *adapter = rx_ring->adapter;
648         struct net_device *netdev = adapter->netdev;
649         struct pci_dev *pdev = adapter->pdev;
650         union e1000_rx_desc_extended *rx_desc;
651         struct e1000_buffer *buffer_info;
652         struct sk_buff *skb;
653         unsigned int i;
654         unsigned int bufsz = adapter->rx_buffer_len;
655
656         i = rx_ring->next_to_use;
657         buffer_info = &rx_ring->buffer_info[i];
658
659         while (cleaned_count--) {
660                 skb = buffer_info->skb;
661                 if (skb) {
662                         skb_trim(skb, 0);
663                         goto map_skb;
664                 }
665
666                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667                 if (!skb) {
668                         /* Better luck next round */
669                         adapter->alloc_rx_buff_failed++;
670                         break;
671                 }
672
673                 buffer_info->skb = skb;
674 map_skb:
675                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676                                                   adapter->rx_buffer_len,
677                                                   DMA_FROM_DEVICE);
678                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679                         dev_err(&pdev->dev, "Rx DMA map failed\n");
680                         adapter->rx_dma_failed++;
681                         break;
682                 }
683
684                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686
687                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688                         /* Force memory writes to complete before letting h/w
689                          * know there are new descriptors to fetch.  (Only
690                          * applicable for weak-ordered memory model archs,
691                          * such as IA-64).
692                          */
693                         wmb();
694                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695                                 e1000e_update_rdt_wa(rx_ring, i);
696                         else
697                                 writel(i, rx_ring->tail);
698                 }
699                 i++;
700                 if (i == rx_ring->count)
701                         i = 0;
702                 buffer_info = &rx_ring->buffer_info[i];
703         }
704
705         rx_ring->next_to_use = i;
706 }
707
708 /**
709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710  * @rx_ring: Rx descriptor ring
711  **/
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713                                       int cleaned_count, gfp_t gfp)
714 {
715         struct e1000_adapter *adapter = rx_ring->adapter;
716         struct net_device *netdev = adapter->netdev;
717         struct pci_dev *pdev = adapter->pdev;
718         union e1000_rx_desc_packet_split *rx_desc;
719         struct e1000_buffer *buffer_info;
720         struct e1000_ps_page *ps_page;
721         struct sk_buff *skb;
722         unsigned int i, j;
723
724         i = rx_ring->next_to_use;
725         buffer_info = &rx_ring->buffer_info[i];
726
727         while (cleaned_count--) {
728                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729
730                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731                         ps_page = &buffer_info->ps_pages[j];
732                         if (j >= adapter->rx_ps_pages) {
733                                 /* all unused desc entries get hw null ptr */
734                                 rx_desc->read.buffer_addr[j + 1] =
735                                     ~cpu_to_le64(0);
736                                 continue;
737                         }
738                         if (!ps_page->page) {
739                                 ps_page->page = alloc_page(gfp);
740                                 if (!ps_page->page) {
741                                         adapter->alloc_rx_buff_failed++;
742                                         goto no_buffers;
743                                 }
744                                 ps_page->dma = dma_map_page(&pdev->dev,
745                                                             ps_page->page,
746                                                             0, PAGE_SIZE,
747                                                             DMA_FROM_DEVICE);
748                                 if (dma_mapping_error(&pdev->dev,
749                                                       ps_page->dma)) {
750                                         dev_err(&adapter->pdev->dev,
751                                                 "Rx DMA page map failed\n");
752                                         adapter->rx_dma_failed++;
753                                         goto no_buffers;
754                                 }
755                         }
756                         /* Refresh the desc even if buffer_addrs
757                          * didn't change because each write-back
758                          * erases this info.
759                          */
760                         rx_desc->read.buffer_addr[j + 1] =
761                             cpu_to_le64(ps_page->dma);
762                 }
763
764                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
765                                                   gfp);
766
767                 if (!skb) {
768                         adapter->alloc_rx_buff_failed++;
769                         break;
770                 }
771
772                 buffer_info->skb = skb;
773                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774                                                   adapter->rx_ps_bsize0,
775                                                   DMA_FROM_DEVICE);
776                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777                         dev_err(&pdev->dev, "Rx DMA map failed\n");
778                         adapter->rx_dma_failed++;
779                         /* cleanup skb */
780                         dev_kfree_skb_any(skb);
781                         buffer_info->skb = NULL;
782                         break;
783                 }
784
785                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
786
787                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788                         /* Force memory writes to complete before letting h/w
789                          * know there are new descriptors to fetch.  (Only
790                          * applicable for weak-ordered memory model archs,
791                          * such as IA-64).
792                          */
793                         wmb();
794                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795                                 e1000e_update_rdt_wa(rx_ring, i << 1);
796                         else
797                                 writel(i << 1, rx_ring->tail);
798                 }
799
800                 i++;
801                 if (i == rx_ring->count)
802                         i = 0;
803                 buffer_info = &rx_ring->buffer_info[i];
804         }
805
806 no_buffers:
807         rx_ring->next_to_use = i;
808 }
809
810 /**
811  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812  * @rx_ring: Rx descriptor ring
813  * @cleaned_count: number of buffers to allocate this pass
814  **/
815
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817                                          int cleaned_count, gfp_t gfp)
818 {
819         struct e1000_adapter *adapter = rx_ring->adapter;
820         struct net_device *netdev = adapter->netdev;
821         struct pci_dev *pdev = adapter->pdev;
822         union e1000_rx_desc_extended *rx_desc;
823         struct e1000_buffer *buffer_info;
824         struct sk_buff *skb;
825         unsigned int i;
826         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
827
828         i = rx_ring->next_to_use;
829         buffer_info = &rx_ring->buffer_info[i];
830
831         while (cleaned_count--) {
832                 skb = buffer_info->skb;
833                 if (skb) {
834                         skb_trim(skb, 0);
835                         goto check_page;
836                 }
837
838                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839                 if (unlikely(!skb)) {
840                         /* Better luck next round */
841                         adapter->alloc_rx_buff_failed++;
842                         break;
843                 }
844
845                 buffer_info->skb = skb;
846 check_page:
847                 /* allocate a new page if necessary */
848                 if (!buffer_info->page) {
849                         buffer_info->page = alloc_page(gfp);
850                         if (unlikely(!buffer_info->page)) {
851                                 adapter->alloc_rx_buff_failed++;
852                                 break;
853                         }
854                 }
855
856                 if (!buffer_info->dma) {
857                         buffer_info->dma = dma_map_page(&pdev->dev,
858                                                         buffer_info->page, 0,
859                                                         PAGE_SIZE,
860                                                         DMA_FROM_DEVICE);
861                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862                                 adapter->alloc_rx_buff_failed++;
863                                 break;
864                         }
865                 }
866
867                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
869
870                 if (unlikely(++i == rx_ring->count))
871                         i = 0;
872                 buffer_info = &rx_ring->buffer_info[i];
873         }
874
875         if (likely(rx_ring->next_to_use != i)) {
876                 rx_ring->next_to_use = i;
877                 if (unlikely(i-- == 0))
878                         i = (rx_ring->count - 1);
879
880                 /* Force memory writes to complete before letting h/w
881                  * know there are new descriptors to fetch.  (Only
882                  * applicable for weak-ordered memory model archs,
883                  * such as IA-64).
884                  */
885                 wmb();
886                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887                         e1000e_update_rdt_wa(rx_ring, i);
888                 else
889                         writel(i, rx_ring->tail);
890         }
891 }
892
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894                                  struct sk_buff *skb)
895 {
896         if (netdev->features & NETIF_F_RXHASH)
897                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
898 }
899
900 /**
901  * e1000_clean_rx_irq - Send received data up the network stack
902  * @rx_ring: Rx descriptor ring
903  *
904  * the return value indicates whether actual cleaning was done, there
905  * is no guarantee that everything was cleaned
906  **/
907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
908                                int work_to_do)
909 {
910         struct e1000_adapter *adapter = rx_ring->adapter;
911         struct net_device *netdev = adapter->netdev;
912         struct pci_dev *pdev = adapter->pdev;
913         struct e1000_hw *hw = &adapter->hw;
914         union e1000_rx_desc_extended *rx_desc, *next_rxd;
915         struct e1000_buffer *buffer_info, *next_buffer;
916         u32 length, staterr;
917         unsigned int i;
918         int cleaned_count = 0;
919         bool cleaned = false;
920         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
921
922         i = rx_ring->next_to_clean;
923         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
924         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
925         buffer_info = &rx_ring->buffer_info[i];
926
927         while (staterr & E1000_RXD_STAT_DD) {
928                 struct sk_buff *skb;
929
930                 if (*work_done >= work_to_do)
931                         break;
932                 (*work_done)++;
933                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
934
935                 skb = buffer_info->skb;
936                 buffer_info->skb = NULL;
937
938                 prefetch(skb->data - NET_IP_ALIGN);
939
940                 i++;
941                 if (i == rx_ring->count)
942                         i = 0;
943                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
944                 prefetch(next_rxd);
945
946                 next_buffer = &rx_ring->buffer_info[i];
947
948                 cleaned = true;
949                 cleaned_count++;
950                 dma_unmap_single(&pdev->dev, buffer_info->dma,
951                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
952                 buffer_info->dma = 0;
953
954                 length = le16_to_cpu(rx_desc->wb.upper.length);
955
956                 /* !EOP means multiple descriptors were used to store a single
957                  * packet, if that's the case we need to toss it.  In fact, we
958                  * need to toss every packet with the EOP bit clear and the
959                  * next frame that _does_ have the EOP bit set, as it is by
960                  * definition only a frame fragment
961                  */
962                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
963                         adapter->flags2 |= FLAG2_IS_DISCARDING;
964
965                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
966                         /* All receives must fit into a single buffer */
967                         e_dbg("Receive packet consumed multiple buffers\n");
968                         /* recycle */
969                         buffer_info->skb = skb;
970                         if (staterr & E1000_RXD_STAT_EOP)
971                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
972                         goto next_desc;
973                 }
974
975                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
976                              !(netdev->features & NETIF_F_RXALL))) {
977                         /* recycle */
978                         buffer_info->skb = skb;
979                         goto next_desc;
980                 }
981
982                 /* adjust length to remove Ethernet CRC */
983                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
984                         /* If configured to store CRC, don't subtract FCS,
985                          * but keep the FCS bytes out of the total_rx_bytes
986                          * counter
987                          */
988                         if (netdev->features & NETIF_F_RXFCS)
989                                 total_rx_bytes -= 4;
990                         else
991                                 length -= 4;
992                 }
993
994                 total_rx_bytes += length;
995                 total_rx_packets++;
996
997                 /* code added for copybreak, this should improve
998                  * performance for small packets with large amounts
999                  * of reassembly being done in the stack
1000                  */
1001                 if (length < copybreak) {
1002                         struct sk_buff *new_skb =
1003                                 napi_alloc_skb(&adapter->napi, length);
1004                         if (new_skb) {
1005                                 skb_copy_to_linear_data_offset(new_skb,
1006                                                                -NET_IP_ALIGN,
1007                                                                (skb->data -
1008                                                                 NET_IP_ALIGN),
1009                                                                (length +
1010                                                                 NET_IP_ALIGN));
1011                                 /* save the skb in buffer_info as good */
1012                                 buffer_info->skb = skb;
1013                                 skb = new_skb;
1014                         }
1015                         /* else just continue with the old one */
1016                 }
1017                 /* end copybreak code */
1018                 skb_put(skb, length);
1019
1020                 /* Receive Checksum Offload */
1021                 e1000_rx_checksum(adapter, staterr, skb);
1022
1023                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1024
1025                 e1000_receive_skb(adapter, netdev, skb, staterr,
1026                                   rx_desc->wb.upper.vlan);
1027
1028 next_desc:
1029                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1030
1031                 /* return some buffers to hardware, one at a time is too slow */
1032                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1033                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1034                                               GFP_ATOMIC);
1035                         cleaned_count = 0;
1036                 }
1037
1038                 /* use prefetched values */
1039                 rx_desc = next_rxd;
1040                 buffer_info = next_buffer;
1041
1042                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1043         }
1044         rx_ring->next_to_clean = i;
1045
1046         cleaned_count = e1000_desc_unused(rx_ring);
1047         if (cleaned_count)
1048                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1049
1050         adapter->total_rx_bytes += total_rx_bytes;
1051         adapter->total_rx_packets += total_rx_packets;
1052         return cleaned;
1053 }
1054
1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1056                             struct e1000_buffer *buffer_info,
1057                             bool drop)
1058 {
1059         struct e1000_adapter *adapter = tx_ring->adapter;
1060
1061         if (buffer_info->dma) {
1062                 if (buffer_info->mapped_as_page)
1063                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1064                                        buffer_info->length, DMA_TO_DEVICE);
1065                 else
1066                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1067                                          buffer_info->length, DMA_TO_DEVICE);
1068                 buffer_info->dma = 0;
1069         }
1070         if (buffer_info->skb) {
1071                 if (drop)
1072                         dev_kfree_skb_any(buffer_info->skb);
1073                 else
1074                         dev_consume_skb_any(buffer_info->skb);
1075                 buffer_info->skb = NULL;
1076         }
1077         buffer_info->time_stamp = 0;
1078 }
1079
1080 static void e1000_print_hw_hang(struct work_struct *work)
1081 {
1082         struct e1000_adapter *adapter = container_of(work,
1083                                                      struct e1000_adapter,
1084                                                      print_hang_task);
1085         struct net_device *netdev = adapter->netdev;
1086         struct e1000_ring *tx_ring = adapter->tx_ring;
1087         unsigned int i = tx_ring->next_to_clean;
1088         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1089         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1090         struct e1000_hw *hw = &adapter->hw;
1091         u16 phy_status, phy_1000t_status, phy_ext_status;
1092         u16 pci_status;
1093
1094         if (test_bit(__E1000_DOWN, &adapter->state))
1095                 return;
1096
1097         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1098                 /* May be block on write-back, flush and detect again
1099                  * flush pending descriptor writebacks to memory
1100                  */
1101                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102                 /* execute the writes immediately */
1103                 e1e_flush();
1104                 /* Due to rare timing issues, write to TIDV again to ensure
1105                  * the write is successful
1106                  */
1107                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1108                 /* execute the writes immediately */
1109                 e1e_flush();
1110                 adapter->tx_hang_recheck = true;
1111                 return;
1112         }
1113         adapter->tx_hang_recheck = false;
1114
1115         if (er32(TDH(0)) == er32(TDT(0))) {
1116                 e_dbg("false hang detected, ignoring\n");
1117                 return;
1118         }
1119
1120         /* Real hang detected */
1121         netif_stop_queue(netdev);
1122
1123         e1e_rphy(hw, MII_BMSR, &phy_status);
1124         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1125         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1126
1127         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1128
1129         /* detected Hardware unit hang */
1130         e_err("Detected Hardware Unit Hang:\n"
1131               "  TDH                  <%x>\n"
1132               "  TDT                  <%x>\n"
1133               "  next_to_use          <%x>\n"
1134               "  next_to_clean        <%x>\n"
1135               "buffer_info[next_to_clean]:\n"
1136               "  time_stamp           <%lx>\n"
1137               "  next_to_watch        <%x>\n"
1138               "  jiffies              <%lx>\n"
1139               "  next_to_watch.status <%x>\n"
1140               "MAC Status             <%x>\n"
1141               "PHY Status             <%x>\n"
1142               "PHY 1000BASE-T Status  <%x>\n"
1143               "PHY Extended Status    <%x>\n"
1144               "PCI Status             <%x>\n",
1145               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1146               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1147               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1148               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1149
1150         e1000e_dump(adapter);
1151
1152         /* Suggest workaround for known h/w issue */
1153         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1154                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1155 }
1156
1157 /**
1158  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1159  * @work: pointer to work struct
1160  *
1161  * This work function polls the TSYNCTXCTL valid bit to determine when a
1162  * timestamp has been taken for the current stored skb.  The timestamp must
1163  * be for this skb because only one such packet is allowed in the queue.
1164  */
1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1166 {
1167         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1168                                                      tx_hwtstamp_work);
1169         struct e1000_hw *hw = &adapter->hw;
1170
1171         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1172                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1173                 struct skb_shared_hwtstamps shhwtstamps;
1174                 u64 txstmp;
1175
1176                 txstmp = er32(TXSTMPL);
1177                 txstmp |= (u64)er32(TXSTMPH) << 32;
1178
1179                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1180
1181                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1182                  * prior to notifying the stack of a Tx timestamp.
1183                  */
1184                 adapter->tx_hwtstamp_skb = NULL;
1185                 wmb(); /* force write prior to skb_tstamp_tx */
1186
1187                 skb_tstamp_tx(skb, &shhwtstamps);
1188                 dev_consume_skb_any(skb);
1189         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1190                               + adapter->tx_timeout_factor * HZ)) {
1191                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1192                 adapter->tx_hwtstamp_skb = NULL;
1193                 adapter->tx_hwtstamp_timeouts++;
1194                 e_warn("clearing Tx timestamp hang\n");
1195         } else {
1196                 /* reschedule to check later */
1197                 schedule_work(&adapter->tx_hwtstamp_work);
1198         }
1199 }
1200
1201 /**
1202  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1203  * @tx_ring: Tx descriptor ring
1204  *
1205  * the return value indicates whether actual cleaning was done, there
1206  * is no guarantee that everything was cleaned
1207  **/
1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1209 {
1210         struct e1000_adapter *adapter = tx_ring->adapter;
1211         struct net_device *netdev = adapter->netdev;
1212         struct e1000_hw *hw = &adapter->hw;
1213         struct e1000_tx_desc *tx_desc, *eop_desc;
1214         struct e1000_buffer *buffer_info;
1215         unsigned int i, eop;
1216         unsigned int count = 0;
1217         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1218         unsigned int bytes_compl = 0, pkts_compl = 0;
1219
1220         i = tx_ring->next_to_clean;
1221         eop = tx_ring->buffer_info[i].next_to_watch;
1222         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1223
1224         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1225                (count < tx_ring->count)) {
1226                 bool cleaned = false;
1227
1228                 dma_rmb();              /* read buffer_info after eop_desc */
1229                 for (; !cleaned; count++) {
1230                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1231                         buffer_info = &tx_ring->buffer_info[i];
1232                         cleaned = (i == eop);
1233
1234                         if (cleaned) {
1235                                 total_tx_packets += buffer_info->segs;
1236                                 total_tx_bytes += buffer_info->bytecount;
1237                                 if (buffer_info->skb) {
1238                                         bytes_compl += buffer_info->skb->len;
1239                                         pkts_compl++;
1240                                 }
1241                         }
1242
1243                         e1000_put_txbuf(tx_ring, buffer_info, false);
1244                         tx_desc->upper.data = 0;
1245
1246                         i++;
1247                         if (i == tx_ring->count)
1248                                 i = 0;
1249                 }
1250
1251                 if (i == tx_ring->next_to_use)
1252                         break;
1253                 eop = tx_ring->buffer_info[i].next_to_watch;
1254                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1255         }
1256
1257         tx_ring->next_to_clean = i;
1258
1259         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1260
1261 #define TX_WAKE_THRESHOLD 32
1262         if (count && netif_carrier_ok(netdev) &&
1263             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1264                 /* Make sure that anybody stopping the queue after this
1265                  * sees the new next_to_clean.
1266                  */
1267                 smp_mb();
1268
1269                 if (netif_queue_stopped(netdev) &&
1270                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1271                         netif_wake_queue(netdev);
1272                         ++adapter->restart_queue;
1273                 }
1274         }
1275
1276         if (adapter->detect_tx_hung) {
1277                 /* Detect a transmit hang in hardware, this serializes the
1278                  * check with the clearing of time_stamp and movement of i
1279                  */
1280                 adapter->detect_tx_hung = false;
1281                 if (tx_ring->buffer_info[i].time_stamp &&
1282                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1283                                + (adapter->tx_timeout_factor * HZ)) &&
1284                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1285                         schedule_work(&adapter->print_hang_task);
1286                 else
1287                         adapter->tx_hang_recheck = false;
1288         }
1289         adapter->total_tx_bytes += total_tx_bytes;
1290         adapter->total_tx_packets += total_tx_packets;
1291         return count < tx_ring->count;
1292 }
1293
1294 /**
1295  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1296  * @rx_ring: Rx descriptor ring
1297  *
1298  * the return value indicates whether actual cleaning was done, there
1299  * is no guarantee that everything was cleaned
1300  **/
1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1302                                   int work_to_do)
1303 {
1304         struct e1000_adapter *adapter = rx_ring->adapter;
1305         struct e1000_hw *hw = &adapter->hw;
1306         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1307         struct net_device *netdev = adapter->netdev;
1308         struct pci_dev *pdev = adapter->pdev;
1309         struct e1000_buffer *buffer_info, *next_buffer;
1310         struct e1000_ps_page *ps_page;
1311         struct sk_buff *skb;
1312         unsigned int i, j;
1313         u32 length, staterr;
1314         int cleaned_count = 0;
1315         bool cleaned = false;
1316         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1317
1318         i = rx_ring->next_to_clean;
1319         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1320         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1321         buffer_info = &rx_ring->buffer_info[i];
1322
1323         while (staterr & E1000_RXD_STAT_DD) {
1324                 if (*work_done >= work_to_do)
1325                         break;
1326                 (*work_done)++;
1327                 skb = buffer_info->skb;
1328                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1329
1330                 /* in the packet split case this is header only */
1331                 prefetch(skb->data - NET_IP_ALIGN);
1332
1333                 i++;
1334                 if (i == rx_ring->count)
1335                         i = 0;
1336                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1337                 prefetch(next_rxd);
1338
1339                 next_buffer = &rx_ring->buffer_info[i];
1340
1341                 cleaned = true;
1342                 cleaned_count++;
1343                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1344                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1345                 buffer_info->dma = 0;
1346
1347                 /* see !EOP comment in other Rx routine */
1348                 if (!(staterr & E1000_RXD_STAT_EOP))
1349                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1350
1351                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1352                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1353                         dev_kfree_skb_irq(skb);
1354                         if (staterr & E1000_RXD_STAT_EOP)
1355                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1356                         goto next_desc;
1357                 }
1358
1359                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1360                              !(netdev->features & NETIF_F_RXALL))) {
1361                         dev_kfree_skb_irq(skb);
1362                         goto next_desc;
1363                 }
1364
1365                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1366
1367                 if (!length) {
1368                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1369                         dev_kfree_skb_irq(skb);
1370                         goto next_desc;
1371                 }
1372
1373                 /* Good Receive */
1374                 skb_put(skb, length);
1375
1376                 {
1377                         /* this looks ugly, but it seems compiler issues make
1378                          * it more efficient than reusing j
1379                          */
1380                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1381
1382                         /* page alloc/put takes too long and effects small
1383                          * packet throughput, so unsplit small packets and
1384                          * save the alloc/put only valid in softirq (napi)
1385                          * context to call kmap_*
1386                          */
1387                         if (l1 && (l1 <= copybreak) &&
1388                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1389                                 u8 *vaddr;
1390
1391                                 ps_page = &buffer_info->ps_pages[0];
1392
1393                                 /* there is no documentation about how to call
1394                                  * kmap_atomic, so we can't hold the mapping
1395                                  * very long
1396                                  */
1397                                 dma_sync_single_for_cpu(&pdev->dev,
1398                                                         ps_page->dma,
1399                                                         PAGE_SIZE,
1400                                                         DMA_FROM_DEVICE);
1401                                 vaddr = kmap_atomic(ps_page->page);
1402                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1403                                 kunmap_atomic(vaddr);
1404                                 dma_sync_single_for_device(&pdev->dev,
1405                                                            ps_page->dma,
1406                                                            PAGE_SIZE,
1407                                                            DMA_FROM_DEVICE);
1408
1409                                 /* remove the CRC */
1410                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411                                         if (!(netdev->features & NETIF_F_RXFCS))
1412                                                 l1 -= 4;
1413                                 }
1414
1415                                 skb_put(skb, l1);
1416                                 goto copydone;
1417                         }       /* if */
1418                 }
1419
1420                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1421                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1422                         if (!length)
1423                                 break;
1424
1425                         ps_page = &buffer_info->ps_pages[j];
1426                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1427                                        DMA_FROM_DEVICE);
1428                         ps_page->dma = 0;
1429                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1430                         ps_page->page = NULL;
1431                         skb->len += length;
1432                         skb->data_len += length;
1433                         skb->truesize += PAGE_SIZE;
1434                 }
1435
1436                 /* strip the ethernet crc, problem is we're using pages now so
1437                  * this whole operation can get a little cpu intensive
1438                  */
1439                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1440                         if (!(netdev->features & NETIF_F_RXFCS))
1441                                 pskb_trim(skb, skb->len - 4);
1442                 }
1443
1444 copydone:
1445                 total_rx_bytes += skb->len;
1446                 total_rx_packets++;
1447
1448                 e1000_rx_checksum(adapter, staterr, skb);
1449
1450                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1451
1452                 if (rx_desc->wb.upper.header_status &
1453                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1454                         adapter->rx_hdr_split++;
1455
1456                 e1000_receive_skb(adapter, netdev, skb, staterr,
1457                                   rx_desc->wb.middle.vlan);
1458
1459 next_desc:
1460                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1461                 buffer_info->skb = NULL;
1462
1463                 /* return some buffers to hardware, one at a time is too slow */
1464                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1465                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1466                                               GFP_ATOMIC);
1467                         cleaned_count = 0;
1468                 }
1469
1470                 /* use prefetched values */
1471                 rx_desc = next_rxd;
1472                 buffer_info = next_buffer;
1473
1474                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1475         }
1476         rx_ring->next_to_clean = i;
1477
1478         cleaned_count = e1000_desc_unused(rx_ring);
1479         if (cleaned_count)
1480                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1481
1482         adapter->total_rx_bytes += total_rx_bytes;
1483         adapter->total_rx_packets += total_rx_packets;
1484         return cleaned;
1485 }
1486
1487 /**
1488  * e1000_consume_page - helper function
1489  **/
1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1491                                u16 length)
1492 {
1493         bi->page = NULL;
1494         skb->len += length;
1495         skb->data_len += length;
1496         skb->truesize += PAGE_SIZE;
1497 }
1498
1499 /**
1500  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1501  * @adapter: board private structure
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         u8 *vaddr;
1605                                         vaddr = kmap_atomic(buffer_info->page);
1606                                         memcpy(skb_tail_pointer(skb), vaddr,
1607                                                length);
1608                                         kunmap_atomic(vaddr);
1609                                         /* re-use the page, so don't erase
1610                                          * buffer_info->page
1611                                          */
1612                                         skb_put(skb, length);
1613                                 } else {
1614                                         skb_fill_page_desc(skb, 0,
1615                                                            buffer_info->page, 0,
1616                                                            length);
1617                                         e1000_consume_page(buffer_info, skb,
1618                                                            length);
1619                                 }
1620                         }
1621                 }
1622
1623                 /* Receive Checksum Offload */
1624                 e1000_rx_checksum(adapter, staterr, skb);
1625
1626                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1627
1628                 /* probably a little skewed due to removing CRC */
1629                 total_rx_bytes += skb->len;
1630                 total_rx_packets++;
1631
1632                 /* eth type trans needs skb->data to point to something */
1633                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1634                         e_err("pskb_may_pull failed.\n");
1635                         dev_kfree_skb_irq(skb);
1636                         goto next_desc;
1637                 }
1638
1639                 e1000_receive_skb(adapter, netdev, skb, staterr,
1640                                   rx_desc->wb.upper.vlan);
1641
1642 next_desc:
1643                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1644
1645                 /* return some buffers to hardware, one at a time is too slow */
1646                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1647                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1648                                               GFP_ATOMIC);
1649                         cleaned_count = 0;
1650                 }
1651
1652                 /* use prefetched values */
1653                 rx_desc = next_rxd;
1654                 buffer_info = next_buffer;
1655
1656                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1657         }
1658         rx_ring->next_to_clean = i;
1659
1660         cleaned_count = e1000_desc_unused(rx_ring);
1661         if (cleaned_count)
1662                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1663
1664         adapter->total_rx_bytes += total_rx_bytes;
1665         adapter->total_rx_packets += total_rx_packets;
1666         return cleaned;
1667 }
1668
1669 /**
1670  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1671  * @rx_ring: Rx descriptor ring
1672  **/
1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1674 {
1675         struct e1000_adapter *adapter = rx_ring->adapter;
1676         struct e1000_buffer *buffer_info;
1677         struct e1000_ps_page *ps_page;
1678         struct pci_dev *pdev = adapter->pdev;
1679         unsigned int i, j;
1680
1681         /* Free all the Rx ring sk_buffs */
1682         for (i = 0; i < rx_ring->count; i++) {
1683                 buffer_info = &rx_ring->buffer_info[i];
1684                 if (buffer_info->dma) {
1685                         if (adapter->clean_rx == e1000_clean_rx_irq)
1686                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1687                                                  adapter->rx_buffer_len,
1688                                                  DMA_FROM_DEVICE);
1689                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1690                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1691                                                PAGE_SIZE, DMA_FROM_DEVICE);
1692                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_ps_bsize0,
1695                                                  DMA_FROM_DEVICE);
1696                         buffer_info->dma = 0;
1697                 }
1698
1699                 if (buffer_info->page) {
1700                         put_page(buffer_info->page);
1701                         buffer_info->page = NULL;
1702                 }
1703
1704                 if (buffer_info->skb) {
1705                         dev_kfree_skb(buffer_info->skb);
1706                         buffer_info->skb = NULL;
1707                 }
1708
1709                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1710                         ps_page = &buffer_info->ps_pages[j];
1711                         if (!ps_page->page)
1712                                 break;
1713                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714                                        DMA_FROM_DEVICE);
1715                         ps_page->dma = 0;
1716                         put_page(ps_page->page);
1717                         ps_page->page = NULL;
1718                 }
1719         }
1720
1721         /* there also may be some cached data from a chained receive */
1722         if (rx_ring->rx_skb_top) {
1723                 dev_kfree_skb(rx_ring->rx_skb_top);
1724                 rx_ring->rx_skb_top = NULL;
1725         }
1726
1727         /* Zero out the descriptor ring */
1728         memset(rx_ring->desc, 0, rx_ring->size);
1729
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1733 }
1734
1735 static void e1000e_downshift_workaround(struct work_struct *work)
1736 {
1737         struct e1000_adapter *adapter = container_of(work,
1738                                                      struct e1000_adapter,
1739                                                      downshift_task);
1740
1741         if (test_bit(__E1000_DOWN, &adapter->state))
1742                 return;
1743
1744         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1745 }
1746
1747 /**
1748  * e1000_intr_msi - Interrupt Handler
1749  * @irq: interrupt number
1750  * @data: pointer to a network interface device structure
1751  **/
1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1753 {
1754         struct net_device *netdev = data;
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757         u32 icr = er32(ICR);
1758
1759         /* read ICR disables interrupts using IAM */
1760         if (icr & E1000_ICR_LSC) {
1761                 hw->mac.get_link_status = true;
1762                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1763                  * disconnect (LSC) before accessing any PHY registers
1764                  */
1765                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1766                     (!(er32(STATUS) & E1000_STATUS_LU)))
1767                         schedule_work(&adapter->downshift_task);
1768
1769                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1770                  * link down event; disable receives here in the ISR and reset
1771                  * adapter in watchdog
1772                  */
1773                 if (netif_carrier_ok(netdev) &&
1774                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1775                         /* disable receives */
1776                         u32 rctl = er32(RCTL);
1777
1778                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1779                         adapter->flags |= FLAG_RESTART_NOW;
1780                 }
1781                 /* guard against interrupt when we're going down */
1782                 if (!test_bit(__E1000_DOWN, &adapter->state))
1783                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1784         }
1785
1786         /* Reset on uncorrectable ECC error */
1787         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1788                 u32 pbeccsts = er32(PBECCSTS);
1789
1790                 adapter->corr_errors +=
1791                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1792                 adapter->uncorr_errors +=
1793                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1794                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1795
1796                 /* Do the reset outside of interrupt context */
1797                 schedule_work(&adapter->reset_task);
1798
1799                 /* return immediately since reset is imminent */
1800                 return IRQ_HANDLED;
1801         }
1802
1803         if (napi_schedule_prep(&adapter->napi)) {
1804                 adapter->total_tx_bytes = 0;
1805                 adapter->total_tx_packets = 0;
1806                 adapter->total_rx_bytes = 0;
1807                 adapter->total_rx_packets = 0;
1808                 __napi_schedule(&adapter->napi);
1809         }
1810
1811         return IRQ_HANDLED;
1812 }
1813
1814 /**
1815  * e1000_intr - Interrupt Handler
1816  * @irq: interrupt number
1817  * @data: pointer to a network interface device structure
1818  **/
1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1820 {
1821         struct net_device *netdev = data;
1822         struct e1000_adapter *adapter = netdev_priv(netdev);
1823         struct e1000_hw *hw = &adapter->hw;
1824         u32 rctl, icr = er32(ICR);
1825
1826         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1827                 return IRQ_NONE;        /* Not our interrupt */
1828
1829         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1830          * not set, then the adapter didn't send an interrupt
1831          */
1832         if (!(icr & E1000_ICR_INT_ASSERTED))
1833                 return IRQ_NONE;
1834
1835         /* Interrupt Auto-Mask...upon reading ICR,
1836          * interrupts are masked.  No need for the
1837          * IMC write
1838          */
1839
1840         if (icr & E1000_ICR_LSC) {
1841                 hw->mac.get_link_status = true;
1842                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1843                  * disconnect (LSC) before accessing any PHY registers
1844                  */
1845                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1846                     (!(er32(STATUS) & E1000_STATUS_LU)))
1847                         schedule_work(&adapter->downshift_task);
1848
1849                 /* 80003ES2LAN workaround--
1850                  * For packet buffer work-around on link down event;
1851                  * disable receives here in the ISR and
1852                  * reset adapter in watchdog
1853                  */
1854                 if (netif_carrier_ok(netdev) &&
1855                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1856                         /* disable receives */
1857                         rctl = er32(RCTL);
1858                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1859                         adapter->flags |= FLAG_RESTART_NOW;
1860                 }
1861                 /* guard against interrupt when we're going down */
1862                 if (!test_bit(__E1000_DOWN, &adapter->state))
1863                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1864         }
1865
1866         /* Reset on uncorrectable ECC error */
1867         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1868                 u32 pbeccsts = er32(PBECCSTS);
1869
1870                 adapter->corr_errors +=
1871                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1872                 adapter->uncorr_errors +=
1873                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1874                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1875
1876                 /* Do the reset outside of interrupt context */
1877                 schedule_work(&adapter->reset_task);
1878
1879                 /* return immediately since reset is imminent */
1880                 return IRQ_HANDLED;
1881         }
1882
1883         if (napi_schedule_prep(&adapter->napi)) {
1884                 adapter->total_tx_bytes = 0;
1885                 adapter->total_tx_packets = 0;
1886                 adapter->total_rx_bytes = 0;
1887                 adapter->total_rx_packets = 0;
1888                 __napi_schedule(&adapter->napi);
1889         }
1890
1891         return IRQ_HANDLED;
1892 }
1893
1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1895 {
1896         struct net_device *netdev = data;
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898         struct e1000_hw *hw = &adapter->hw;
1899         u32 icr = er32(ICR);
1900
1901         if (icr & adapter->eiac_mask)
1902                 ew32(ICS, (icr & adapter->eiac_mask));
1903
1904         if (icr & E1000_ICR_LSC) {
1905                 hw->mac.get_link_status = true;
1906                 /* guard against interrupt when we're going down */
1907                 if (!test_bit(__E1000_DOWN, &adapter->state))
1908                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1909         }
1910
1911         if (!test_bit(__E1000_DOWN, &adapter->state))
1912                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1913
1914         return IRQ_HANDLED;
1915 }
1916
1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1918 {
1919         struct net_device *netdev = data;
1920         struct e1000_adapter *adapter = netdev_priv(netdev);
1921         struct e1000_hw *hw = &adapter->hw;
1922         struct e1000_ring *tx_ring = adapter->tx_ring;
1923
1924         adapter->total_tx_bytes = 0;
1925         adapter->total_tx_packets = 0;
1926
1927         if (!e1000_clean_tx_irq(tx_ring))
1928                 /* Ring was not completely cleaned, so fire another interrupt */
1929                 ew32(ICS, tx_ring->ims_val);
1930
1931         if (!test_bit(__E1000_DOWN, &adapter->state))
1932                 ew32(IMS, adapter->tx_ring->ims_val);
1933
1934         return IRQ_HANDLED;
1935 }
1936
1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1938 {
1939         struct net_device *netdev = data;
1940         struct e1000_adapter *adapter = netdev_priv(netdev);
1941         struct e1000_ring *rx_ring = adapter->rx_ring;
1942
1943         /* Write the ITR value calculated at the end of the
1944          * previous interrupt.
1945          */
1946         if (rx_ring->set_itr) {
1947                 u32 itr = rx_ring->itr_val ?
1948                           1000000000 / (rx_ring->itr_val * 256) : 0;
1949
1950                 writel(itr, rx_ring->itr_register);
1951                 rx_ring->set_itr = 0;
1952         }
1953
1954         if (napi_schedule_prep(&adapter->napi)) {
1955                 adapter->total_rx_bytes = 0;
1956                 adapter->total_rx_packets = 0;
1957                 __napi_schedule(&adapter->napi);
1958         }
1959         return IRQ_HANDLED;
1960 }
1961
1962 /**
1963  * e1000_configure_msix - Configure MSI-X hardware
1964  *
1965  * e1000_configure_msix sets up the hardware to properly
1966  * generate MSI-X interrupts.
1967  **/
1968 static void e1000_configure_msix(struct e1000_adapter *adapter)
1969 {
1970         struct e1000_hw *hw = &adapter->hw;
1971         struct e1000_ring *rx_ring = adapter->rx_ring;
1972         struct e1000_ring *tx_ring = adapter->tx_ring;
1973         int vector = 0;
1974         u32 ctrl_ext, ivar = 0;
1975
1976         adapter->eiac_mask = 0;
1977
1978         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979         if (hw->mac.type == e1000_82574) {
1980                 u32 rfctl = er32(RFCTL);
1981
1982                 rfctl |= E1000_RFCTL_ACK_DIS;
1983                 ew32(RFCTL, rfctl);
1984         }
1985
1986         /* Configure Rx vector */
1987         rx_ring->ims_val = E1000_IMS_RXQ0;
1988         adapter->eiac_mask |= rx_ring->ims_val;
1989         if (rx_ring->itr_val)
1990                 writel(1000000000 / (rx_ring->itr_val * 256),
1991                        rx_ring->itr_register);
1992         else
1993                 writel(1, rx_ring->itr_register);
1994         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995
1996         /* Configure Tx vector */
1997         tx_ring->ims_val = E1000_IMS_TXQ0;
1998         vector++;
1999         if (tx_ring->itr_val)
2000                 writel(1000000000 / (tx_ring->itr_val * 256),
2001                        tx_ring->itr_register);
2002         else
2003                 writel(1, tx_ring->itr_register);
2004         adapter->eiac_mask |= tx_ring->ims_val;
2005         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006
2007         /* set vector for Other Causes, e.g. link changes */
2008         vector++;
2009         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010         if (rx_ring->itr_val)
2011                 writel(1000000000 / (rx_ring->itr_val * 256),
2012                        hw->hw_addr + E1000_EITR_82574(vector));
2013         else
2014                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015
2016         /* Cause Tx interrupts on every write back */
2017         ivar |= BIT(31);
2018
2019         ew32(IVAR, ivar);
2020
2021         /* enable MSI-X PBA support */
2022         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024         ew32(CTRL_EXT, ctrl_ext);
2025         e1e_flush();
2026 }
2027
2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029 {
2030         if (adapter->msix_entries) {
2031                 pci_disable_msix(adapter->pdev);
2032                 kfree(adapter->msix_entries);
2033                 adapter->msix_entries = NULL;
2034         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2035                 pci_disable_msi(adapter->pdev);
2036                 adapter->flags &= ~FLAG_MSI_ENABLED;
2037         }
2038 }
2039
2040 /**
2041  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042  *
2043  * Attempt to configure interrupts using the best available
2044  * capabilities of the hardware and kernel.
2045  **/
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2047 {
2048         int err;
2049         int i;
2050
2051         switch (adapter->int_mode) {
2052         case E1000E_INT_MODE_MSIX:
2053                 if (adapter->flags & FLAG_HAS_MSIX) {
2054                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2056                                                         sizeof(struct
2057                                                                msix_entry),
2058                                                         GFP_KERNEL);
2059                         if (adapter->msix_entries) {
2060                                 struct e1000_adapter *a = adapter;
2061
2062                                 for (i = 0; i < adapter->num_vectors; i++)
2063                                         adapter->msix_entries[i].entry = i;
2064
2065                                 err = pci_enable_msix_range(a->pdev,
2066                                                             a->msix_entries,
2067                                                             a->num_vectors,
2068                                                             a->num_vectors);
2069                                 if (err > 0)
2070                                         return;
2071                         }
2072                         /* MSI-X failed, so fall through and try MSI */
2073                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2074                         e1000e_reset_interrupt_capability(adapter);
2075                 }
2076                 adapter->int_mode = E1000E_INT_MODE_MSI;
2077                 /* Fall through */
2078         case E1000E_INT_MODE_MSI:
2079                 if (!pci_enable_msi(adapter->pdev)) {
2080                         adapter->flags |= FLAG_MSI_ENABLED;
2081                 } else {
2082                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2084                 }
2085                 /* Fall through */
2086         case E1000E_INT_MODE_LEGACY:
2087                 /* Don't do anything; this is the system default */
2088                 break;
2089         }
2090
2091         /* store the number of vectors being used */
2092         adapter->num_vectors = 1;
2093 }
2094
2095 /**
2096  * e1000_request_msix - Initialize MSI-X interrupts
2097  *
2098  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2099  * kernel.
2100  **/
2101 static int e1000_request_msix(struct e1000_adapter *adapter)
2102 {
2103         struct net_device *netdev = adapter->netdev;
2104         int err = 0, vector = 0;
2105
2106         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2107                 snprintf(adapter->rx_ring->name,
2108                          sizeof(adapter->rx_ring->name) - 1,
2109                          "%s-rx-0", netdev->name);
2110         else
2111                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2112         err = request_irq(adapter->msix_entries[vector].vector,
2113                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2114                           netdev);
2115         if (err)
2116                 return err;
2117         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2118             E1000_EITR_82574(vector);
2119         adapter->rx_ring->itr_val = adapter->itr;
2120         vector++;
2121
2122         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2123                 snprintf(adapter->tx_ring->name,
2124                          sizeof(adapter->tx_ring->name) - 1,
2125                          "%s-tx-0", netdev->name);
2126         else
2127                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2128         err = request_irq(adapter->msix_entries[vector].vector,
2129                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2130                           netdev);
2131         if (err)
2132                 return err;
2133         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2134             E1000_EITR_82574(vector);
2135         adapter->tx_ring->itr_val = adapter->itr;
2136         vector++;
2137
2138         err = request_irq(adapter->msix_entries[vector].vector,
2139                           e1000_msix_other, 0, netdev->name, netdev);
2140         if (err)
2141                 return err;
2142
2143         e1000_configure_msix(adapter);
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * e1000_request_irq - initialize interrupts
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         int err;
2158
2159         if (adapter->msix_entries) {
2160                 err = e1000_request_msix(adapter);
2161                 if (!err)
2162                         return err;
2163                 /* fall back to MSI */
2164                 e1000e_reset_interrupt_capability(adapter);
2165                 adapter->int_mode = E1000E_INT_MODE_MSI;
2166                 e1000e_set_interrupt_capability(adapter);
2167         }
2168         if (adapter->flags & FLAG_MSI_ENABLED) {
2169                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170                                   netdev->name, netdev);
2171                 if (!err)
2172                         return err;
2173
2174                 /* fall back to legacy interrupt */
2175                 e1000e_reset_interrupt_capability(adapter);
2176                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177         }
2178
2179         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180                           netdev->name, netdev);
2181         if (err)
2182                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184         return err;
2185 }
2186
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190
2191         if (adapter->msix_entries) {
2192                 int vector = 0;
2193
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 vector++;
2196
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199
2200                 /* Other Causes interrupt vector */
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 return;
2203         }
2204
2205         free_irq(adapter->pdev->irq, netdev);
2206 }
2207
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  **/
2211 static void e1000_irq_disable(struct e1000_adapter *adapter)
2212 {
2213         struct e1000_hw *hw = &adapter->hw;
2214
2215         ew32(IMC, ~0);
2216         if (adapter->msix_entries)
2217                 ew32(EIAC_82574, 0);
2218         e1e_flush();
2219
2220         if (adapter->msix_entries) {
2221                 int i;
2222
2223                 for (i = 0; i < adapter->num_vectors; i++)
2224                         synchronize_irq(adapter->msix_entries[i].vector);
2225         } else {
2226                 synchronize_irq(adapter->pdev->irq);
2227         }
2228 }
2229
2230 /**
2231  * e1000_irq_enable - Enable default interrupt generation settings
2232  **/
2233 static void e1000_irq_enable(struct e1000_adapter *adapter)
2234 {
2235         struct e1000_hw *hw = &adapter->hw;
2236
2237         if (adapter->msix_entries) {
2238                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2239                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2240                      IMS_OTHER_MASK);
2241         } else if (hw->mac.type >= e1000_pch_lpt) {
2242                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2243         } else {
2244                 ew32(IMS, IMS_ENABLE_MASK);
2245         }
2246         e1e_flush();
2247 }
2248
2249 /**
2250  * e1000e_get_hw_control - get control of the h/w from f/w
2251  * @adapter: address of board private structure
2252  *
2253  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2254  * For ASF and Pass Through versions of f/w this means that
2255  * the driver is loaded. For AMT version (only with 82573)
2256  * of the f/w this means that the network i/f is open.
2257  **/
2258 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2259 {
2260         struct e1000_hw *hw = &adapter->hw;
2261         u32 ctrl_ext;
2262         u32 swsm;
2263
2264         /* Let firmware know the driver has taken over */
2265         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2266                 swsm = er32(SWSM);
2267                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2268         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2269                 ctrl_ext = er32(CTRL_EXT);
2270                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2271         }
2272 }
2273
2274 /**
2275  * e1000e_release_hw_control - release control of the h/w to f/w
2276  * @adapter: address of board private structure
2277  *
2278  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2279  * For ASF and Pass Through versions of f/w this means that the
2280  * driver is no longer loaded. For AMT version (only with 82573) i
2281  * of the f/w this means that the network i/f is closed.
2282  *
2283  **/
2284 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2285 {
2286         struct e1000_hw *hw = &adapter->hw;
2287         u32 ctrl_ext;
2288         u32 swsm;
2289
2290         /* Let firmware taken over control of h/w */
2291         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2292                 swsm = er32(SWSM);
2293                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2294         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2295                 ctrl_ext = er32(CTRL_EXT);
2296                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2297         }
2298 }
2299
2300 /**
2301  * e1000_alloc_ring_dma - allocate memory for a ring structure
2302  **/
2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2304                                 struct e1000_ring *ring)
2305 {
2306         struct pci_dev *pdev = adapter->pdev;
2307
2308         ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2309                                          GFP_KERNEL);
2310         if (!ring->desc)
2311                 return -ENOMEM;
2312
2313         return 0;
2314 }
2315
2316 /**
2317  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2318  * @tx_ring: Tx descriptor ring
2319  *
2320  * Return 0 on success, negative on failure
2321  **/
2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2323 {
2324         struct e1000_adapter *adapter = tx_ring->adapter;
2325         int err = -ENOMEM, size;
2326
2327         size = sizeof(struct e1000_buffer) * tx_ring->count;
2328         tx_ring->buffer_info = vzalloc(size);
2329         if (!tx_ring->buffer_info)
2330                 goto err;
2331
2332         /* round up to nearest 4K */
2333         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2334         tx_ring->size = ALIGN(tx_ring->size, 4096);
2335
2336         err = e1000_alloc_ring_dma(adapter, tx_ring);
2337         if (err)
2338                 goto err;
2339
2340         tx_ring->next_to_use = 0;
2341         tx_ring->next_to_clean = 0;
2342
2343         return 0;
2344 err:
2345         vfree(tx_ring->buffer_info);
2346         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2347         return err;
2348 }
2349
2350 /**
2351  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2352  * @rx_ring: Rx descriptor ring
2353  *
2354  * Returns 0 on success, negative on failure
2355  **/
2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2357 {
2358         struct e1000_adapter *adapter = rx_ring->adapter;
2359         struct e1000_buffer *buffer_info;
2360         int i, size, desc_len, err = -ENOMEM;
2361
2362         size = sizeof(struct e1000_buffer) * rx_ring->count;
2363         rx_ring->buffer_info = vzalloc(size);
2364         if (!rx_ring->buffer_info)
2365                 goto err;
2366
2367         for (i = 0; i < rx_ring->count; i++) {
2368                 buffer_info = &rx_ring->buffer_info[i];
2369                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2370                                                 sizeof(struct e1000_ps_page),
2371                                                 GFP_KERNEL);
2372                 if (!buffer_info->ps_pages)
2373                         goto err_pages;
2374         }
2375
2376         desc_len = sizeof(union e1000_rx_desc_packet_split);
2377
2378         /* Round up to nearest 4K */
2379         rx_ring->size = rx_ring->count * desc_len;
2380         rx_ring->size = ALIGN(rx_ring->size, 4096);
2381
2382         err = e1000_alloc_ring_dma(adapter, rx_ring);
2383         if (err)
2384                 goto err_pages;
2385
2386         rx_ring->next_to_clean = 0;
2387         rx_ring->next_to_use = 0;
2388         rx_ring->rx_skb_top = NULL;
2389
2390         return 0;
2391
2392 err_pages:
2393         for (i = 0; i < rx_ring->count; i++) {
2394                 buffer_info = &rx_ring->buffer_info[i];
2395                 kfree(buffer_info->ps_pages);
2396         }
2397 err:
2398         vfree(rx_ring->buffer_info);
2399         e_err("Unable to allocate memory for the receive descriptor ring\n");
2400         return err;
2401 }
2402
2403 /**
2404  * e1000_clean_tx_ring - Free Tx Buffers
2405  * @tx_ring: Tx descriptor ring
2406  **/
2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2408 {
2409         struct e1000_adapter *adapter = tx_ring->adapter;
2410         struct e1000_buffer *buffer_info;
2411         unsigned long size;
2412         unsigned int i;
2413
2414         for (i = 0; i < tx_ring->count; i++) {
2415                 buffer_info = &tx_ring->buffer_info[i];
2416                 e1000_put_txbuf(tx_ring, buffer_info, false);
2417         }
2418
2419         netdev_reset_queue(adapter->netdev);
2420         size = sizeof(struct e1000_buffer) * tx_ring->count;
2421         memset(tx_ring->buffer_info, 0, size);
2422
2423         memset(tx_ring->desc, 0, tx_ring->size);
2424
2425         tx_ring->next_to_use = 0;
2426         tx_ring->next_to_clean = 0;
2427 }
2428
2429 /**
2430  * e1000e_free_tx_resources - Free Tx Resources per Queue
2431  * @tx_ring: Tx descriptor ring
2432  *
2433  * Free all transmit software resources
2434  **/
2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2436 {
2437         struct e1000_adapter *adapter = tx_ring->adapter;
2438         struct pci_dev *pdev = adapter->pdev;
2439
2440         e1000_clean_tx_ring(tx_ring);
2441
2442         vfree(tx_ring->buffer_info);
2443         tx_ring->buffer_info = NULL;
2444
2445         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2446                           tx_ring->dma);
2447         tx_ring->desc = NULL;
2448 }
2449
2450 /**
2451  * e1000e_free_rx_resources - Free Rx Resources
2452  * @rx_ring: Rx descriptor ring
2453  *
2454  * Free all receive software resources
2455  **/
2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2457 {
2458         struct e1000_adapter *adapter = rx_ring->adapter;
2459         struct pci_dev *pdev = adapter->pdev;
2460         int i;
2461
2462         e1000_clean_rx_ring(rx_ring);
2463
2464         for (i = 0; i < rx_ring->count; i++)
2465                 kfree(rx_ring->buffer_info[i].ps_pages);
2466
2467         vfree(rx_ring->buffer_info);
2468         rx_ring->buffer_info = NULL;
2469
2470         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2471                           rx_ring->dma);
2472         rx_ring->desc = NULL;
2473 }
2474
2475 /**
2476  * e1000_update_itr - update the dynamic ITR value based on statistics
2477  * @adapter: pointer to adapter
2478  * @itr_setting: current adapter->itr
2479  * @packets: the number of packets during this measurement interval
2480  * @bytes: the number of bytes during this measurement interval
2481  *
2482  *      Stores a new ITR value based on packets and byte
2483  *      counts during the last interrupt.  The advantage of per interrupt
2484  *      computation is faster updates and more accurate ITR for the current
2485  *      traffic pattern.  Constants in this function were computed
2486  *      based on theoretical maximum wire speed and thresholds were set based
2487  *      on testing data as well as attempting to minimize response time
2488  *      while increasing bulk throughput.  This functionality is controlled
2489  *      by the InterruptThrottleRate module parameter.
2490  **/
2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2492 {
2493         unsigned int retval = itr_setting;
2494
2495         if (packets == 0)
2496                 return itr_setting;
2497
2498         switch (itr_setting) {
2499         case lowest_latency:
2500                 /* handle TSO and jumbo frames */
2501                 if (bytes / packets > 8000)
2502                         retval = bulk_latency;
2503                 else if ((packets < 5) && (bytes > 512))
2504                         retval = low_latency;
2505                 break;
2506         case low_latency:       /* 50 usec aka 20000 ints/s */
2507                 if (bytes > 10000) {
2508                         /* this if handles the TSO accounting */
2509                         if (bytes / packets > 8000)
2510                                 retval = bulk_latency;
2511                         else if ((packets < 10) || ((bytes / packets) > 1200))
2512                                 retval = bulk_latency;
2513                         else if ((packets > 35))
2514                                 retval = lowest_latency;
2515                 } else if (bytes / packets > 2000) {
2516                         retval = bulk_latency;
2517                 } else if (packets <= 2 && bytes < 512) {
2518                         retval = lowest_latency;
2519                 }
2520                 break;
2521         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2522                 if (bytes > 25000) {
2523                         if (packets > 35)
2524                                 retval = low_latency;
2525                 } else if (bytes < 6000) {
2526                         retval = low_latency;
2527                 }
2528                 break;
2529         }
2530
2531         return retval;
2532 }
2533
2534 static void e1000_set_itr(struct e1000_adapter *adapter)
2535 {
2536         u16 current_itr;
2537         u32 new_itr = adapter->itr;
2538
2539         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2540         if (adapter->link_speed != SPEED_1000) {
2541                 current_itr = 0;
2542                 new_itr = 4000;
2543                 goto set_itr_now;
2544         }
2545
2546         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2547                 new_itr = 0;
2548                 goto set_itr_now;
2549         }
2550
2551         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2552                                            adapter->total_tx_packets,
2553                                            adapter->total_tx_bytes);
2554         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2555         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2556                 adapter->tx_itr = low_latency;
2557
2558         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2559                                            adapter->total_rx_packets,
2560                                            adapter->total_rx_bytes);
2561         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2562         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2563                 adapter->rx_itr = low_latency;
2564
2565         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2566
2567         /* counts and packets in update_itr are dependent on these numbers */
2568         switch (current_itr) {
2569         case lowest_latency:
2570                 new_itr = 70000;
2571                 break;
2572         case low_latency:
2573                 new_itr = 20000;        /* aka hwitr = ~200 */
2574                 break;
2575         case bulk_latency:
2576                 new_itr = 4000;
2577                 break;
2578         default:
2579                 break;
2580         }
2581
2582 set_itr_now:
2583         if (new_itr != adapter->itr) {
2584                 /* this attempts to bias the interrupt rate towards Bulk
2585                  * by adding intermediate steps when interrupt rate is
2586                  * increasing
2587                  */
2588                 new_itr = new_itr > adapter->itr ?
2589                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2590                 adapter->itr = new_itr;
2591                 adapter->rx_ring->itr_val = new_itr;
2592                 if (adapter->msix_entries)
2593                         adapter->rx_ring->set_itr = 1;
2594                 else
2595                         e1000e_write_itr(adapter, new_itr);
2596         }
2597 }
2598
2599 /**
2600  * e1000e_write_itr - write the ITR value to the appropriate registers
2601  * @adapter: address of board private structure
2602  * @itr: new ITR value to program
2603  *
2604  * e1000e_write_itr determines if the adapter is in MSI-X mode
2605  * and, if so, writes the EITR registers with the ITR value.
2606  * Otherwise, it writes the ITR value into the ITR register.
2607  **/
2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2609 {
2610         struct e1000_hw *hw = &adapter->hw;
2611         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2612
2613         if (adapter->msix_entries) {
2614                 int vector;
2615
2616                 for (vector = 0; vector < adapter->num_vectors; vector++)
2617                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2618         } else {
2619                 ew32(ITR, new_itr);
2620         }
2621 }
2622
2623 /**
2624  * e1000_alloc_queues - Allocate memory for all rings
2625  * @adapter: board private structure to initialize
2626  **/
2627 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2628 {
2629         int size = sizeof(struct e1000_ring);
2630
2631         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2632         if (!adapter->tx_ring)
2633                 goto err;
2634         adapter->tx_ring->count = adapter->tx_ring_count;
2635         adapter->tx_ring->adapter = adapter;
2636
2637         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2638         if (!adapter->rx_ring)
2639                 goto err;
2640         adapter->rx_ring->count = adapter->rx_ring_count;
2641         adapter->rx_ring->adapter = adapter;
2642
2643         return 0;
2644 err:
2645         e_err("Unable to allocate memory for queues\n");
2646         kfree(adapter->rx_ring);
2647         kfree(adapter->tx_ring);
2648         return -ENOMEM;
2649 }
2650
2651 /**
2652  * e1000e_poll - NAPI Rx polling callback
2653  * @napi: struct associated with this polling callback
2654  * @budget: number of packets driver is allowed to process this poll
2655  **/
2656 static int e1000e_poll(struct napi_struct *napi, int budget)
2657 {
2658         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2659                                                      napi);
2660         struct e1000_hw *hw = &adapter->hw;
2661         struct net_device *poll_dev = adapter->netdev;
2662         int tx_cleaned = 1, work_done = 0;
2663
2664         adapter = netdev_priv(poll_dev);
2665
2666         if (!adapter->msix_entries ||
2667             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2668                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2669
2670         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2671
2672         if (!tx_cleaned || work_done == budget)
2673                 return budget;
2674
2675         /* Exit the polling mode, but don't re-enable interrupts if stack might
2676          * poll us due to busy-polling
2677          */
2678         if (likely(napi_complete_done(napi, work_done))) {
2679                 if (adapter->itr_setting & 3)
2680                         e1000_set_itr(adapter);
2681                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2682                         if (adapter->msix_entries)
2683                                 ew32(IMS, adapter->rx_ring->ims_val);
2684                         else
2685                                 e1000_irq_enable(adapter);
2686                 }
2687         }
2688
2689         return work_done;
2690 }
2691
2692 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2693                                  __always_unused __be16 proto, u16 vid)
2694 {
2695         struct e1000_adapter *adapter = netdev_priv(netdev);
2696         struct e1000_hw *hw = &adapter->hw;
2697         u32 vfta, index;
2698
2699         /* don't update vlan cookie if already programmed */
2700         if ((adapter->hw.mng_cookie.status &
2701              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2702             (vid == adapter->mng_vlan_id))
2703                 return 0;
2704
2705         /* add VID to filter table */
2706         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2707                 index = (vid >> 5) & 0x7F;
2708                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2709                 vfta |= BIT((vid & 0x1F));
2710                 hw->mac.ops.write_vfta(hw, index, vfta);
2711         }
2712
2713         set_bit(vid, adapter->active_vlans);
2714
2715         return 0;
2716 }
2717
2718 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2719                                   __always_unused __be16 proto, u16 vid)
2720 {
2721         struct e1000_adapter *adapter = netdev_priv(netdev);
2722         struct e1000_hw *hw = &adapter->hw;
2723         u32 vfta, index;
2724
2725         if ((adapter->hw.mng_cookie.status &
2726              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2727             (vid == adapter->mng_vlan_id)) {
2728                 /* release control to f/w */
2729                 e1000e_release_hw_control(adapter);
2730                 return 0;
2731         }
2732
2733         /* remove VID from filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta &= ~BIT((vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740
2741         clear_bit(vid, adapter->active_vlans);
2742
2743         return 0;
2744 }
2745
2746 /**
2747  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2748  * @adapter: board private structure to initialize
2749  **/
2750 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2751 {
2752         struct net_device *netdev = adapter->netdev;
2753         struct e1000_hw *hw = &adapter->hw;
2754         u32 rctl;
2755
2756         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2757                 /* disable VLAN receive filtering */
2758                 rctl = er32(RCTL);
2759                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2760                 ew32(RCTL, rctl);
2761
2762                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2763                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2764                                                adapter->mng_vlan_id);
2765                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2766                 }
2767         }
2768 }
2769
2770 /**
2771  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2772  * @adapter: board private structure to initialize
2773  **/
2774 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2775 {
2776         struct e1000_hw *hw = &adapter->hw;
2777         u32 rctl;
2778
2779         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2780                 /* enable VLAN receive filtering */
2781                 rctl = er32(RCTL);
2782                 rctl |= E1000_RCTL_VFE;
2783                 rctl &= ~E1000_RCTL_CFIEN;
2784                 ew32(RCTL, rctl);
2785         }
2786 }
2787
2788 /**
2789  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2790  * @adapter: board private structure to initialize
2791  **/
2792 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2793 {
2794         struct e1000_hw *hw = &adapter->hw;
2795         u32 ctrl;
2796
2797         /* disable VLAN tag insert/strip */
2798         ctrl = er32(CTRL);
2799         ctrl &= ~E1000_CTRL_VME;
2800         ew32(CTRL, ctrl);
2801 }
2802
2803 /**
2804  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2805  * @adapter: board private structure to initialize
2806  **/
2807 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2808 {
2809         struct e1000_hw *hw = &adapter->hw;
2810         u32 ctrl;
2811
2812         /* enable VLAN tag insert/strip */
2813         ctrl = er32(CTRL);
2814         ctrl |= E1000_CTRL_VME;
2815         ew32(CTRL, ctrl);
2816 }
2817
2818 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2819 {
2820         struct net_device *netdev = adapter->netdev;
2821         u16 vid = adapter->hw.mng_cookie.vlan_id;
2822         u16 old_vid = adapter->mng_vlan_id;
2823
2824         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2825                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2826                 adapter->mng_vlan_id = vid;
2827         }
2828
2829         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2830                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2831 }
2832
2833 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2834 {
2835         u16 vid;
2836
2837         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2838
2839         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2840             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2841 }
2842
2843 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2844 {
2845         struct e1000_hw *hw = &adapter->hw;
2846         u32 manc, manc2h, mdef, i, j;
2847
2848         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2849                 return;
2850
2851         manc = er32(MANC);
2852
2853         /* enable receiving management packets to the host. this will probably
2854          * generate destination unreachable messages from the host OS, but
2855          * the packets will be handled on SMBUS
2856          */
2857         manc |= E1000_MANC_EN_MNG2HOST;
2858         manc2h = er32(MANC2H);
2859
2860         switch (hw->mac.type) {
2861         default:
2862                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2863                 break;
2864         case e1000_82574:
2865         case e1000_82583:
2866                 /* Check if IPMI pass-through decision filter already exists;
2867                  * if so, enable it.
2868                  */
2869                 for (i = 0, j = 0; i < 8; i++) {
2870                         mdef = er32(MDEF(i));
2871
2872                         /* Ignore filters with anything other than IPMI ports */
2873                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874                                 continue;
2875
2876                         /* Enable this decision filter in MANC2H */
2877                         if (mdef)
2878                                 manc2h |= BIT(i);
2879
2880                         j |= mdef;
2881                 }
2882
2883                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2884                         break;
2885
2886                 /* Create new decision filter in an empty filter */
2887                 for (i = 0, j = 0; i < 8; i++)
2888                         if (er32(MDEF(i)) == 0) {
2889                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2890                                                E1000_MDEF_PORT_664));
2891                                 manc2h |= BIT(1);
2892                                 j++;
2893                                 break;
2894                         }
2895
2896                 if (!j)
2897                         e_warn("Unable to create IPMI pass-through filter\n");
2898                 break;
2899         }
2900
2901         ew32(MANC2H, manc2h);
2902         ew32(MANC, manc);
2903 }
2904
2905 /**
2906  * e1000_configure_tx - Configure Transmit Unit after Reset
2907  * @adapter: board private structure
2908  *
2909  * Configure the Tx unit of the MAC after a reset.
2910  **/
2911 static void e1000_configure_tx(struct e1000_adapter *adapter)
2912 {
2913         struct e1000_hw *hw = &adapter->hw;
2914         struct e1000_ring *tx_ring = adapter->tx_ring;
2915         u64 tdba;
2916         u32 tdlen, tctl, tarc;
2917
2918         /* Setup the HW Tx Head and Tail descriptor pointers */
2919         tdba = tx_ring->dma;
2920         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2921         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2922         ew32(TDBAH(0), (tdba >> 32));
2923         ew32(TDLEN(0), tdlen);
2924         ew32(TDH(0), 0);
2925         ew32(TDT(0), 0);
2926         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2927         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2928
2929         writel(0, tx_ring->head);
2930         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2931                 e1000e_update_tdt_wa(tx_ring, 0);
2932         else
2933                 writel(0, tx_ring->tail);
2934
2935         /* Set the Tx Interrupt Delay register */
2936         ew32(TIDV, adapter->tx_int_delay);
2937         /* Tx irq moderation */
2938         ew32(TADV, adapter->tx_abs_int_delay);
2939
2940         if (adapter->flags2 & FLAG2_DMA_BURST) {
2941                 u32 txdctl = er32(TXDCTL(0));
2942
2943                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2944                             E1000_TXDCTL_WTHRESH);
2945                 /* set up some performance related parameters to encourage the
2946                  * hardware to use the bus more efficiently in bursts, depends
2947                  * on the tx_int_delay to be enabled,
2948                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2949                  * hthresh = 1 ==> prefetch when one or more available
2950                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2951                  * BEWARE: this seems to work but should be considered first if
2952                  * there are Tx hangs or other Tx related bugs
2953                  */
2954                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2955                 ew32(TXDCTL(0), txdctl);
2956         }
2957         /* erratum work around: set txdctl the same for both queues */
2958         ew32(TXDCTL(1), er32(TXDCTL(0)));
2959
2960         /* Program the Transmit Control Register */
2961         tctl = er32(TCTL);
2962         tctl &= ~E1000_TCTL_CT;
2963         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2967                 tarc = er32(TARC(0));
2968                 /* set the speed mode bit, we'll clear it if we're not at
2969                  * gigabit link later
2970                  */
2971 #define SPEED_MODE_BIT BIT(21)
2972                 tarc |= SPEED_MODE_BIT;
2973                 ew32(TARC(0), tarc);
2974         }
2975
2976         /* errata: program both queues to unweighted RR */
2977         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2978                 tarc = er32(TARC(0));
2979                 tarc |= 1;
2980                 ew32(TARC(0), tarc);
2981                 tarc = er32(TARC(1));
2982                 tarc |= 1;
2983                 ew32(TARC(1), tarc);
2984         }
2985
2986         /* Setup Transmit Descriptor Settings for eop descriptor */
2987         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2988
2989         /* only set IDE if we are delaying interrupts using the timers */
2990         if (adapter->tx_int_delay)
2991                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2992
2993         /* enable Report Status bit */
2994         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2995
2996         ew32(TCTL, tctl);
2997
2998         hw->mac.ops.config_collision_dist(hw);
2999
3000         /* SPT and KBL Si errata workaround to avoid data corruption */
3001         if (hw->mac.type == e1000_pch_spt) {
3002                 u32 reg_val;
3003
3004                 reg_val = er32(IOSFPC);
3005                 reg_val |= E1000_RCTL_RDMTS_HEX;
3006                 ew32(IOSFPC, reg_val);
3007
3008                 reg_val = er32(TARC(0));
3009                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3010                  * Dropping the number of outstanding requests from
3011                  * 3 to 2 in order to avoid a buffer overrun.
3012                  */
3013                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3014                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3015                 ew32(TARC(0), reg_val);
3016         }
3017 }
3018
3019 /**
3020  * e1000_setup_rctl - configure the receive control registers
3021  * @adapter: Board private structure
3022  **/
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 rctl, rfctl;
3029         u32 pages = 0;
3030
3031         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032          * If jumbo frames not set, program related MAC/PHY registers
3033          * to h/w defaults
3034          */
3035         if (hw->mac.type >= e1000_pch2lan) {
3036                 s32 ret_val;
3037
3038                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040                 else
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043                 if (ret_val)
3044                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045         }
3046
3047         /* Program MC offset vector base */
3048         rctl = er32(RCTL);
3049         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054         /* Do not Store bad packets */
3055         rctl &= ~E1000_RCTL_SBP;
3056
3057         /* Enable Long Packet receive */
3058         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059                 rctl &= ~E1000_RCTL_LPE;
3060         else
3061                 rctl |= E1000_RCTL_LPE;
3062
3063         /* Some systems expect that the CRC is included in SMBUS traffic. The
3064          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065          * host memory when this is enabled
3066          */
3067         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068                 rctl |= E1000_RCTL_SECRC;
3069
3070         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072                 u16 phy_data;
3073
3074                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075                 phy_data &= 0xfff8;
3076                 phy_data |= BIT(2);
3077                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079                 e1e_rphy(hw, 22, &phy_data);
3080                 phy_data &= 0x0fff;
3081                 phy_data |= BIT(14);
3082                 e1e_wphy(hw, 0x10, 0x2823);
3083                 e1e_wphy(hw, 0x11, 0x0003);
3084                 e1e_wphy(hw, 22, phy_data);
3085         }
3086
3087         /* Setup buffer sizes */
3088         rctl &= ~E1000_RCTL_SZ_4096;
3089         rctl |= E1000_RCTL_BSEX;
3090         switch (adapter->rx_buffer_len) {
3091         case 2048:
3092         default:
3093                 rctl |= E1000_RCTL_SZ_2048;
3094                 rctl &= ~E1000_RCTL_BSEX;
3095                 break;
3096         case 4096:
3097                 rctl |= E1000_RCTL_SZ_4096;
3098                 break;
3099         case 8192:
3100                 rctl |= E1000_RCTL_SZ_8192;
3101                 break;
3102         case 16384:
3103                 rctl |= E1000_RCTL_SZ_16384;
3104                 break;
3105         }
3106
3107         /* Enable Extended Status in all Receive Descriptors */
3108         rfctl = er32(RFCTL);
3109         rfctl |= E1000_RFCTL_EXTEN;
3110         ew32(RFCTL, rfctl);
3111
3112         /* 82571 and greater support packet-split where the protocol
3113          * header is placed in skb->data and the packet data is
3114          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115          * In the case of a non-split, skb->data is linearly filled,
3116          * followed by the page buffers.  Therefore, skb->data is
3117          * sized to hold the largest protocol header.
3118          *
3119          * allocations using alloc_page take too long for regular MTU
3120          * so only enable packet split for jumbo frames
3121          *
3122          * Using pages when the page size is greater than 16k wastes
3123          * a lot of memory, since we allocate 3 pages at all times
3124          * per packet.
3125          */
3126         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128                 adapter->rx_ps_pages = pages;
3129         else
3130                 adapter->rx_ps_pages = 0;
3131
3132         if (adapter->rx_ps_pages) {
3133                 u32 psrctl = 0;
3134
3135                 /* Enable Packet split descriptors */
3136                 rctl |= E1000_RCTL_DTYP_PS;
3137
3138                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140                 switch (adapter->rx_ps_pages) {
3141                 case 3:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143                         /* fall-through */
3144                 case 2:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146                         /* fall-through */
3147                 case 1:
3148                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149                         break;
3150                 }
3151
3152                 ew32(PSRCTL, psrctl);
3153         }
3154
3155         /* This is useful for sniffing bad packets. */
3156         if (adapter->netdev->features & NETIF_F_RXALL) {
3157                 /* UPE and MPE will be handled by normal PROMISC logic
3158                  * in e1000e_set_rx_mode
3159                  */
3160                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3161                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3162                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3163
3164                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3165                           E1000_RCTL_DPF |      /* Allow filtered pause */
3166                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3167                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168                  * and that breaks VLANs.
3169                  */
3170         }
3171
3172         ew32(RCTL, rctl);
3173         /* just started the receive unit, no need to restart */
3174         adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct e1000_ring *rx_ring = adapter->rx_ring;
3187         u64 rdba;
3188         u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190         if (adapter->rx_ps_pages) {
3191                 /* this is a 32 byte descriptor */
3192                 rdlen = rx_ring->count *
3193                     sizeof(union e1000_rx_desc_packet_split);
3194                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200         } else {
3201                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202                 adapter->clean_rx = e1000_clean_rx_irq;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204         }
3205
3206         /* disable receives while setting up the descriptors */
3207         rctl = er32(RCTL);
3208         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210         e1e_flush();
3211         usleep_range(10000, 20000);
3212
3213         if (adapter->flags2 & FLAG2_DMA_BURST) {
3214                 /* set the writeback threshold (only takes effect if the RDTR
3215                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3216                  * enable prefetching of 0x20 Rx descriptors
3217                  * granularity = 01
3218                  * wthresh = 04,
3219                  * hthresh = 04,
3220                  * pthresh = 0x20
3221                  */
3222                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224         }
3225
3226         /* set the Receive Delay Timer Register */
3227         ew32(RDTR, adapter->rx_int_delay);
3228
3229         /* irq moderation */
3230         ew32(RADV, adapter->rx_abs_int_delay);
3231         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232                 e1000e_write_itr(adapter, adapter->itr);
3233
3234         ctrl_ext = er32(CTRL_EXT);
3235         /* Auto-Mask interrupts upon ICR access */
3236         ctrl_ext |= E1000_CTRL_EXT_IAME;
3237         ew32(IAM, 0xffffffff);
3238         ew32(CTRL_EXT, ctrl_ext);
3239         e1e_flush();
3240
3241         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242          * the Base and Length of the Rx Descriptor Ring
3243          */
3244         rdba = rx_ring->dma;
3245         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246         ew32(RDBAH(0), (rdba >> 32));
3247         ew32(RDLEN(0), rdlen);
3248         ew32(RDH(0), 0);
3249         ew32(RDT(0), 0);
3250         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
3253         writel(0, rx_ring->head);
3254         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3255                 e1000e_update_rdt_wa(rx_ring, 0);
3256         else
3257                 writel(0, rx_ring->tail);
3258
3259         /* Enable Receive Checksum Offload for TCP and UDP */
3260         rxcsum = er32(RXCSUM);
3261         if (adapter->netdev->features & NETIF_F_RXCSUM)
3262                 rxcsum |= E1000_RXCSUM_TUOFL;
3263         else
3264                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3265         ew32(RXCSUM, rxcsum);
3266
3267         /* With jumbo frames, excessive C-state transition latencies result
3268          * in dropped transactions.
3269          */
3270         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3271                 u32 lat =
3272                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3273                      adapter->max_frame_size) * 8 / 1000;
3274
3275                 if (adapter->flags & FLAG_IS_ICH) {
3276                         u32 rxdctl = er32(RXDCTL(0));
3277
3278                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3279                 }
3280
3281                 dev_info(&adapter->pdev->dev,
3282                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3283                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3284         } else {
3285                 pm_qos_update_request(&adapter->pm_qos_req,
3286                                       PM_QOS_DEFAULT_VALUE);
3287         }
3288
3289         /* Enable Receives */
3290         ew32(RCTL, rctl);
3291 }
3292
3293 /**
3294  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295  * @netdev: network interface device structure
3296  *
3297  * Writes multicast address list to the MTA hash table.
3298  * Returns: -ENOMEM on failure
3299  *                0 on no addresses written
3300  *                X on writing X addresses to MTA
3301  */
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3303 {
3304         struct e1000_adapter *adapter = netdev_priv(netdev);
3305         struct e1000_hw *hw = &adapter->hw;
3306         struct netdev_hw_addr *ha;
3307         u8 *mta_list;
3308         int i;
3309
3310         if (netdev_mc_empty(netdev)) {
3311                 /* nothing to program, so clear mc list */
3312                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313                 return 0;
3314         }
3315
3316         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3317         if (!mta_list)
3318                 return -ENOMEM;
3319
3320         /* update_mc_addr_list expects a packed array of only addresses. */
3321         i = 0;
3322         netdev_for_each_mc_addr(ha, netdev)
3323             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3324
3325         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326         kfree(mta_list);
3327
3328         return netdev_mc_count(netdev);
3329 }
3330
3331 /**
3332  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333  * @netdev: network interface device structure
3334  *
3335  * Writes unicast address list to the RAR table.
3336  * Returns: -ENOMEM on failure/insufficient address space
3337  *                0 on no addresses written
3338  *                X on writing X addresses to the RAR table
3339  **/
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3341 {
3342         struct e1000_adapter *adapter = netdev_priv(netdev);
3343         struct e1000_hw *hw = &adapter->hw;
3344         unsigned int rar_entries;
3345         int count = 0;
3346
3347         rar_entries = hw->mac.ops.rar_get_count(hw);
3348
3349         /* save a rar entry for our hardware address */
3350         rar_entries--;
3351
3352         /* save a rar entry for the LAA workaround */
3353         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354                 rar_entries--;
3355
3356         /* return ENOMEM indicating insufficient memory for addresses */
3357         if (netdev_uc_count(netdev) > rar_entries)
3358                 return -ENOMEM;
3359
3360         if (!netdev_uc_empty(netdev) && rar_entries) {
3361                 struct netdev_hw_addr *ha;
3362
3363                 /* write the addresses in reverse order to avoid write
3364                  * combining
3365                  */
3366                 netdev_for_each_uc_addr(ha, netdev) {
3367                         int ret_val;
3368
3369                         if (!rar_entries)
3370                                 break;
3371                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372                         if (ret_val < 0)
3373                                 return -ENOMEM;
3374                         count++;
3375                 }
3376         }
3377
3378         /* zero out the remaining RAR entries not used above */
3379         for (; rar_entries > 0; rar_entries--) {
3380                 ew32(RAH(rar_entries), 0);
3381                 ew32(RAL(rar_entries), 0);
3382         }
3383         e1e_flush();
3384
3385         return count;
3386 }
3387
3388 /**
3389  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390  * @netdev: network interface device structure
3391  *
3392  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393  * address list or the network interface flags are updated.  This routine is
3394  * responsible for configuring the hardware for proper unicast, multicast,
3395  * promiscuous mode, and all-multi behavior.
3396  **/
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3398 {
3399         struct e1000_adapter *adapter = netdev_priv(netdev);
3400         struct e1000_hw *hw = &adapter->hw;
3401         u32 rctl;
3402
3403         if (pm_runtime_suspended(netdev->dev.parent))
3404                 return;
3405
3406         /* Check for Promiscuous and All Multicast modes */
3407         rctl = er32(RCTL);
3408
3409         /* clear the affected bits */
3410         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3411
3412         if (netdev->flags & IFF_PROMISC) {
3413                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414                 /* Do not hardware filter VLANs in promisc mode */
3415                 e1000e_vlan_filter_disable(adapter);
3416         } else {
3417                 int count;
3418
3419                 if (netdev->flags & IFF_ALLMULTI) {
3420                         rctl |= E1000_RCTL_MPE;
3421                 } else {
3422                         /* Write addresses to the MTA, if the attempt fails
3423                          * then we should just turn on promiscuous mode so
3424                          * that we can at least receive multicast traffic
3425                          */
3426                         count = e1000e_write_mc_addr_list(netdev);
3427                         if (count < 0)
3428                                 rctl |= E1000_RCTL_MPE;
3429                 }
3430                 e1000e_vlan_filter_enable(adapter);
3431                 /* Write addresses to available RAR registers, if there is not
3432                  * sufficient space to store all the addresses then enable
3433                  * unicast promiscuous mode
3434                  */
3435                 count = e1000e_write_uc_addr_list(netdev);
3436                 if (count < 0)
3437                         rctl |= E1000_RCTL_UPE;
3438         }
3439
3440         ew32(RCTL, rctl);
3441
3442         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443                 e1000e_vlan_strip_enable(adapter);
3444         else
3445                 e1000e_vlan_strip_disable(adapter);
3446 }
3447
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3449 {
3450         struct e1000_hw *hw = &adapter->hw;
3451         u32 mrqc, rxcsum;
3452         u32 rss_key[10];
3453         int i;
3454
3455         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3456         for (i = 0; i < 10; i++)
3457                 ew32(RSSRK(i), rss_key[i]);
3458
3459         /* Direct all traffic to queue 0 */
3460         for (i = 0; i < 32; i++)
3461                 ew32(RETA(i), 0);
3462
3463         /* Disable raw packet checksumming so that RSS hash is placed in
3464          * descriptor on writeback.
3465          */
3466         rxcsum = er32(RXCSUM);
3467         rxcsum |= E1000_RXCSUM_PCSD;
3468
3469         ew32(RXCSUM, rxcsum);
3470
3471         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3472                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3473                 E1000_MRQC_RSS_FIELD_IPV6 |
3474                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3475                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3476
3477         ew32(MRQC, mrqc);
3478 }
3479
3480 /**
3481  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3482  * @adapter: board private structure
3483  * @timinca: pointer to returned time increment attributes
3484  *
3485  * Get attributes for incrementing the System Time Register SYSTIML/H at
3486  * the default base frequency, and set the cyclecounter shift value.
3487  **/
3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3489 {
3490         struct e1000_hw *hw = &adapter->hw;
3491         u32 incvalue, incperiod, shift;
3492
3493         /* Make sure clock is enabled on I217/I218/I219  before checking
3494          * the frequency
3495          */
3496         if ((hw->mac.type >= e1000_pch_lpt) &&
3497             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3498             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3499                 u32 fextnvm7 = er32(FEXTNVM7);
3500
3501                 if (!(fextnvm7 & BIT(0))) {
3502                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3503                         e1e_flush();
3504                 }
3505         }
3506
3507         switch (hw->mac.type) {
3508         case e1000_pch2lan:
3509                 /* Stable 96MHz frequency */
3510                 incperiod = INCPERIOD_96MHZ;
3511                 incvalue = INCVALUE_96MHZ;
3512                 shift = INCVALUE_SHIFT_96MHZ;
3513                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3514                 break;
3515         case e1000_pch_lpt:
3516                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3517                         /* Stable 96MHz frequency */
3518                         incperiod = INCPERIOD_96MHZ;
3519                         incvalue = INCVALUE_96MHZ;
3520                         shift = INCVALUE_SHIFT_96MHZ;
3521                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3522                 } else {
3523                         /* Stable 25MHz frequency */
3524                         incperiod = INCPERIOD_25MHZ;
3525                         incvalue = INCVALUE_25MHZ;
3526                         shift = INCVALUE_SHIFT_25MHZ;
3527                         adapter->cc.shift = shift;
3528                 }
3529                 break;
3530         case e1000_pch_spt:
3531                 /* Stable 24MHz frequency */
3532                 incperiod = INCPERIOD_24MHZ;
3533                 incvalue = INCVALUE_24MHZ;
3534                 shift = INCVALUE_SHIFT_24MHZ;
3535                 adapter->cc.shift = shift;
3536                 break;
3537         case e1000_pch_cnp:
3538                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3539                         /* Stable 24MHz frequency */
3540                         incperiod = INCPERIOD_24MHZ;
3541                         incvalue = INCVALUE_24MHZ;
3542                         shift = INCVALUE_SHIFT_24MHZ;
3543                         adapter->cc.shift = shift;
3544                 } else {
3545                         /* Stable 38400KHz frequency */
3546                         incperiod = INCPERIOD_38400KHZ;
3547                         incvalue = INCVALUE_38400KHZ;
3548                         shift = INCVALUE_SHIFT_38400KHZ;
3549                         adapter->cc.shift = shift;
3550                 }
3551                 break;
3552         case e1000_82574:
3553         case e1000_82583:
3554                 /* Stable 25MHz frequency */
3555                 incperiod = INCPERIOD_25MHZ;
3556                 incvalue = INCVALUE_25MHZ;
3557                 shift = INCVALUE_SHIFT_25MHZ;
3558                 adapter->cc.shift = shift;
3559                 break;
3560         default:
3561                 return -EINVAL;
3562         }
3563
3564         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3565                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3566
3567         return 0;
3568 }
3569
3570 /**
3571  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572  * @adapter: board private structure
3573  *
3574  * Outgoing time stamping can be enabled and disabled. Play nice and
3575  * disable it when requested, although it shouldn't cause any overhead
3576  * when no packet needs it. At most one packet in the queue may be
3577  * marked for time stamping, otherwise it would be impossible to tell
3578  * for sure to which packet the hardware time stamp belongs.
3579  *
3580  * Incoming time stamping has to be configured via the hardware filters.
3581  * Not all combinations are supported, in particular event type has to be
3582  * specified. Matching the kind of event packet is not supported, with the
3583  * exception of "all V2 events regardless of level 2 or 4".
3584  **/
3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3586                                   struct hwtstamp_config *config)
3587 {
3588         struct e1000_hw *hw = &adapter->hw;
3589         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3590         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3591         u32 rxmtrl = 0;
3592         u16 rxudp = 0;
3593         bool is_l4 = false;
3594         bool is_l2 = false;
3595         u32 regval;
3596
3597         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3598                 return -EINVAL;
3599
3600         /* flags reserved for future extensions - must be zero */
3601         if (config->flags)
3602                 return -EINVAL;
3603
3604         switch (config->tx_type) {
3605         case HWTSTAMP_TX_OFF:
3606                 tsync_tx_ctl = 0;
3607                 break;
3608         case HWTSTAMP_TX_ON:
3609                 break;
3610         default:
3611                 return -ERANGE;
3612         }
3613
3614         switch (config->rx_filter) {
3615         case HWTSTAMP_FILTER_NONE:
3616                 tsync_rx_ctl = 0;
3617                 break;
3618         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621                 is_l4 = true;
3622                 break;
3623         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626                 is_l4 = true;
3627                 break;
3628         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629                 /* Also time stamps V2 L2 Path Delay Request/Response */
3630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632                 is_l2 = true;
3633                 break;
3634         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3636                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638                 is_l2 = true;
3639                 break;
3640         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641                 /* Hardware cannot filter just V2 L4 Sync messages;
3642                  * fall-through to V2 (both L2 and L4) Sync.
3643                  */
3644         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3645                 /* Also time stamps V2 Path Delay Request/Response. */
3646                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3647                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3648                 is_l2 = true;
3649                 is_l4 = true;
3650                 break;
3651         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3652                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3653                  * fall-through to V2 (both L2 and L4) Delay Request.
3654                  */
3655         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3656                 /* Also time stamps V2 Path Delay Request/Response. */
3657                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3658                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3659                 is_l2 = true;
3660                 is_l4 = true;
3661                 break;
3662         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3663         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3664                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3665                  * fall-through to all V2 (both L2 and L4) Events.
3666                  */
3667         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3668                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3669                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3670                 is_l2 = true;
3671                 is_l4 = true;
3672                 break;
3673         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3674                 /* For V1, the hardware can only filter Sync messages or
3675                  * Delay Request messages but not both so fall-through to
3676                  * time stamp all packets.
3677                  */
3678         case HWTSTAMP_FILTER_NTP_ALL:
3679         case HWTSTAMP_FILTER_ALL:
3680                 is_l2 = true;
3681                 is_l4 = true;
3682                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3683                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3684                 break;
3685         default:
3686                 return -ERANGE;
3687         }
3688
3689         adapter->hwtstamp_config = *config;
3690
3691         /* enable/disable Tx h/w time stamping */
3692         regval = er32(TSYNCTXCTL);
3693         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3694         regval |= tsync_tx_ctl;
3695         ew32(TSYNCTXCTL, regval);
3696         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3697             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3698                 e_err("Timesync Tx Control register not set as expected\n");
3699                 return -EAGAIN;
3700         }
3701
3702         /* enable/disable Rx h/w time stamping */
3703         regval = er32(TSYNCRXCTL);
3704         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3705         regval |= tsync_rx_ctl;
3706         ew32(TSYNCRXCTL, regval);
3707         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3708                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3709             (regval & (E1000_TSYNCRXCTL_ENABLED |
3710                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3711                 e_err("Timesync Rx Control register not set as expected\n");
3712                 return -EAGAIN;
3713         }
3714
3715         /* L2: define ethertype filter for time stamped packets */
3716         if (is_l2)
3717                 rxmtrl |= ETH_P_1588;
3718
3719         /* define which PTP packets get time stamped */
3720         ew32(RXMTRL, rxmtrl);
3721
3722         /* Filter by destination port */
3723         if (is_l4) {
3724                 rxudp = PTP_EV_PORT;
3725                 cpu_to_be16s(&rxudp);
3726         }
3727         ew32(RXUDP, rxudp);
3728
3729         e1e_flush();
3730
3731         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3732         er32(RXSTMPH);
3733         er32(TXSTMPH);
3734
3735         return 0;
3736 }
3737
3738 /**
3739  * e1000_configure - configure the hardware for Rx and Tx
3740  * @adapter: private board structure
3741  **/
3742 static void e1000_configure(struct e1000_adapter *adapter)
3743 {
3744         struct e1000_ring *rx_ring = adapter->rx_ring;
3745
3746         e1000e_set_rx_mode(adapter->netdev);
3747
3748         e1000_restore_vlan(adapter);
3749         e1000_init_manageability_pt(adapter);
3750
3751         e1000_configure_tx(adapter);
3752
3753         if (adapter->netdev->features & NETIF_F_RXHASH)
3754                 e1000e_setup_rss_hash(adapter);
3755         e1000_setup_rctl(adapter);
3756         e1000_configure_rx(adapter);
3757         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3758 }
3759
3760 /**
3761  * e1000e_power_up_phy - restore link in case the phy was powered down
3762  * @adapter: address of board private structure
3763  *
3764  * The phy may be powered down to save power and turn off link when the
3765  * driver is unloaded and wake on lan is not enabled (among others)
3766  * *** this routine MUST be followed by a call to e1000e_reset ***
3767  **/
3768 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3769 {
3770         if (adapter->hw.phy.ops.power_up)
3771                 adapter->hw.phy.ops.power_up(&adapter->hw);
3772
3773         adapter->hw.mac.ops.setup_link(&adapter->hw);
3774 }
3775
3776 /**
3777  * e1000_power_down_phy - Power down the PHY
3778  *
3779  * Power down the PHY so no link is implied when interface is down.
3780  * The PHY cannot be powered down if management or WoL is active.
3781  */
3782 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3783 {
3784         if (adapter->hw.phy.ops.power_down)
3785                 adapter->hw.phy.ops.power_down(&adapter->hw);
3786 }
3787
3788 /**
3789  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3790  *
3791  * We want to clear all pending descriptors from the TX ring.
3792  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793  * the data of the next descriptor. We don't care about the data we are about
3794  * to reset the HW.
3795  */
3796 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797 {
3798         struct e1000_hw *hw = &adapter->hw;
3799         struct e1000_ring *tx_ring = adapter->tx_ring;
3800         struct e1000_tx_desc *tx_desc = NULL;
3801         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802         u16 size = 512;
3803
3804         tctl = er32(TCTL);
3805         ew32(TCTL, tctl | E1000_TCTL_EN);
3806         tdt = er32(TDT(0));
3807         BUG_ON(tdt != tx_ring->next_to_use);
3808         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809         tx_desc->buffer_addr = tx_ring->dma;
3810
3811         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812         tx_desc->upper.data = 0;
3813         /* flush descriptors to memory before notifying the HW */
3814         wmb();
3815         tx_ring->next_to_use++;
3816         if (tx_ring->next_to_use == tx_ring->count)
3817                 tx_ring->next_to_use = 0;
3818         ew32(TDT(0), tx_ring->next_to_use);
3819         mmiowb();
3820         usleep_range(200, 250);
3821 }
3822
3823 /**
3824  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3825  *
3826  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827  */
3828 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829 {
3830         u32 rctl, rxdctl;
3831         struct e1000_hw *hw = &adapter->hw;
3832
3833         rctl = er32(RCTL);
3834         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835         e1e_flush();
3836         usleep_range(100, 150);
3837
3838         rxdctl = er32(RXDCTL(0));
3839         /* zero the lower 14 bits (prefetch and host thresholds) */
3840         rxdctl &= 0xffffc000;
3841
3842         /* update thresholds: prefetch threshold to 31, host threshold to 1
3843          * and make sure the granularity is "descriptors" and not "cache lines"
3844          */
3845         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847         ew32(RXDCTL(0), rxdctl);
3848         /* momentarily enable the RX ring for the changes to take effect */
3849         ew32(RCTL, rctl | E1000_RCTL_EN);
3850         e1e_flush();
3851         usleep_range(100, 150);
3852         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853 }
3854
3855 /**
3856  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857  *
3858  * In i219, the descriptor rings must be emptied before resetting the HW
3859  * or before changing the device state to D3 during runtime (runtime PM).
3860  *
3861  * Failure to do this will cause the HW to enter a unit hang state which can
3862  * only be released by PCI reset on the device
3863  *
3864  */
3865
3866 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3867 {
3868         u16 hang_state;
3869         u32 fext_nvm11, tdlen;
3870         struct e1000_hw *hw = &adapter->hw;
3871
3872         /* First, disable MULR fix in FEXTNVM11 */
3873         fext_nvm11 = er32(FEXTNVM11);
3874         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3875         ew32(FEXTNVM11, fext_nvm11);
3876         /* do nothing if we're not in faulty state, or if the queue is empty */
3877         tdlen = er32(TDLEN(0));
3878         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3879                              &hang_state);
3880         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3881                 return;
3882         e1000_flush_tx_ring(adapter);
3883         /* recheck, maybe the fault is caused by the rx ring */
3884         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3885                              &hang_state);
3886         if (hang_state & FLUSH_DESC_REQUIRED)
3887                 e1000_flush_rx_ring(adapter);
3888 }
3889
3890 /**
3891  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3892  * @adapter: board private structure
3893  *
3894  * When the MAC is reset, all hardware bits for timesync will be reset to the
3895  * default values. This function will restore the settings last in place.
3896  * Since the clock SYSTIME registers are reset, we will simply restore the
3897  * cyclecounter to the kernel real clock time.
3898  **/
3899 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3900 {
3901         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3902         struct e1000_hw *hw = &adapter->hw;
3903         unsigned long flags;
3904         u32 timinca;
3905         s32 ret_val;
3906
3907         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3908                 return;
3909
3910         if (info->adjfreq) {
3911                 /* restore the previous ptp frequency delta */
3912                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3913         } else {
3914                 /* set the default base frequency if no adjustment possible */
3915                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3916                 if (!ret_val)
3917                         ew32(TIMINCA, timinca);
3918         }
3919
3920         if (ret_val) {
3921                 dev_warn(&adapter->pdev->dev,
3922                          "Failed to restore TIMINCA clock rate delta: %d\n",
3923                          ret_val);
3924                 return;
3925         }
3926
3927         /* reset the systim ns time counter */
3928         spin_lock_irqsave(&adapter->systim_lock, flags);
3929         timecounter_init(&adapter->tc, &adapter->cc,
3930                          ktime_to_ns(ktime_get_real()));
3931         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3932
3933         /* restore the previous hwtstamp configuration settings */
3934         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3935 }
3936
3937 /**
3938  * e1000e_reset - bring the hardware into a known good state
3939  *
3940  * This function boots the hardware and enables some settings that
3941  * require a configuration cycle of the hardware - those cannot be
3942  * set/changed during runtime. After reset the device needs to be
3943  * properly configured for Rx, Tx etc.
3944  */
3945 void e1000e_reset(struct e1000_adapter *adapter)
3946 {
3947         struct e1000_mac_info *mac = &adapter->hw.mac;
3948         struct e1000_fc_info *fc = &adapter->hw.fc;
3949         struct e1000_hw *hw = &adapter->hw;
3950         u32 tx_space, min_tx_space, min_rx_space;
3951         u32 pba = adapter->pba;
3952         u16 hwm;
3953
3954         /* reset Packet Buffer Allocation to default */
3955         ew32(PBA, pba);
3956
3957         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3958                 /* To maintain wire speed transmits, the Tx FIFO should be
3959                  * large enough to accommodate two full transmit packets,
3960                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3961                  * the Rx FIFO should be large enough to accommodate at least
3962                  * one full receive packet and is similarly rounded up and
3963                  * expressed in KB.
3964                  */
3965                 pba = er32(PBA);
3966                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3967                 tx_space = pba >> 16;
3968                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3969                 pba &= 0xffff;
3970                 /* the Tx fifo also stores 16 bytes of information about the Tx
3971                  * but don't include ethernet FCS because hardware appends it
3972                  */
3973                 min_tx_space = (adapter->max_frame_size +
3974                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3975                 min_tx_space = ALIGN(min_tx_space, 1024);
3976                 min_tx_space >>= 10;
3977                 /* software strips receive CRC, so leave room for it */
3978                 min_rx_space = adapter->max_frame_size;
3979                 min_rx_space = ALIGN(min_rx_space, 1024);
3980                 min_rx_space >>= 10;
3981
3982                 /* If current Tx allocation is less than the min Tx FIFO size,
3983                  * and the min Tx FIFO size is less than the current Rx FIFO
3984                  * allocation, take space away from current Rx allocation
3985                  */
3986                 if ((tx_space < min_tx_space) &&
3987                     ((min_tx_space - tx_space) < pba)) {
3988                         pba -= min_tx_space - tx_space;
3989
3990                         /* if short on Rx space, Rx wins and must trump Tx
3991                          * adjustment
3992                          */
3993                         if (pba < min_rx_space)
3994                                 pba = min_rx_space;
3995                 }
3996
3997                 ew32(PBA, pba);
3998         }
3999
4000         /* flow control settings
4001          *
4002          * The high water mark must be low enough to fit one full frame
4003          * (or the size used for early receive) above it in the Rx FIFO.
4004          * Set it to the lower of:
4005          * - 90% of the Rx FIFO size, and
4006          * - the full Rx FIFO size minus one full frame
4007          */
4008         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4009                 fc->pause_time = 0xFFFF;
4010         else
4011                 fc->pause_time = E1000_FC_PAUSE_TIME;
4012         fc->send_xon = true;
4013         fc->current_mode = fc->requested_mode;
4014
4015         switch (hw->mac.type) {
4016         case e1000_ich9lan:
4017         case e1000_ich10lan:
4018                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4019                         pba = 14;
4020                         ew32(PBA, pba);
4021                         fc->high_water = 0x2800;
4022                         fc->low_water = fc->high_water - 8;
4023                         break;
4024                 }
4025                 /* fall-through */
4026         default:
4027                 hwm = min(((pba << 10) * 9 / 10),
4028                           ((pba << 10) - adapter->max_frame_size));
4029
4030                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4031                 fc->low_water = fc->high_water - 8;
4032                 break;
4033         case e1000_pchlan:
4034                 /* Workaround PCH LOM adapter hangs with certain network
4035                  * loads.  If hangs persist, try disabling Tx flow control.
4036                  */
4037                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4038                         fc->high_water = 0x3500;
4039                         fc->low_water = 0x1500;
4040                 } else {
4041                         fc->high_water = 0x5000;
4042                         fc->low_water = 0x3000;
4043                 }
4044                 fc->refresh_time = 0x1000;
4045                 break;
4046         case e1000_pch2lan:
4047         case e1000_pch_lpt:
4048         case e1000_pch_spt:
4049         case e1000_pch_cnp:
4050                 fc->refresh_time = 0x0400;
4051
4052                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4053                         fc->high_water = 0x05C20;
4054                         fc->low_water = 0x05048;
4055                         fc->pause_time = 0x0650;
4056                         break;
4057                 }
4058
4059                 pba = 14;
4060                 ew32(PBA, pba);
4061                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4062                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4063                 break;
4064         }
4065
4066         /* Alignment of Tx data is on an arbitrary byte boundary with the
4067          * maximum size per Tx descriptor limited only to the transmit
4068          * allocation of the packet buffer minus 96 bytes with an upper
4069          * limit of 24KB due to receive synchronization limitations.
4070          */
4071         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4072                                        24 << 10);
4073
4074         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4075          * fit in receive buffer.
4076          */
4077         if (adapter->itr_setting & 0x3) {
4078                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4079                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4080                                 dev_info(&adapter->pdev->dev,
4081                                          "Interrupt Throttle Rate off\n");
4082                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4083                                 e1000e_write_itr(adapter, 0);
4084                         }
4085                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4086                         dev_info(&adapter->pdev->dev,
4087                                  "Interrupt Throttle Rate on\n");
4088                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4089                         adapter->itr = 20000;
4090                         e1000e_write_itr(adapter, adapter->itr);
4091                 }
4092         }
4093
4094         if (hw->mac.type >= e1000_pch_spt)
4095                 e1000_flush_desc_rings(adapter);
4096         /* Allow time for pending master requests to run */
4097         mac->ops.reset_hw(hw);
4098
4099         /* For parts with AMT enabled, let the firmware know
4100          * that the network interface is in control
4101          */
4102         if (adapter->flags & FLAG_HAS_AMT)
4103                 e1000e_get_hw_control(adapter);
4104
4105         ew32(WUC, 0);
4106
4107         if (mac->ops.init_hw(hw))
4108                 e_err("Hardware Error\n");
4109
4110         e1000_update_mng_vlan(adapter);
4111
4112         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4113         ew32(VET, ETH_P_8021Q);
4114
4115         e1000e_reset_adaptive(hw);
4116
4117         /* restore systim and hwtstamp settings */
4118         e1000e_systim_reset(adapter);
4119
4120         /* Set EEE advertisement as appropriate */
4121         if (adapter->flags2 & FLAG2_HAS_EEE) {
4122                 s32 ret_val;
4123                 u16 adv_addr;
4124
4125                 switch (hw->phy.type) {
4126                 case e1000_phy_82579:
4127                         adv_addr = I82579_EEE_ADVERTISEMENT;
4128                         break;
4129                 case e1000_phy_i217:
4130                         adv_addr = I217_EEE_ADVERTISEMENT;
4131                         break;
4132                 default:
4133                         dev_err(&adapter->pdev->dev,
4134                                 "Invalid PHY type setting EEE advertisement\n");
4135                         return;
4136                 }
4137
4138                 ret_val = hw->phy.ops.acquire(hw);
4139                 if (ret_val) {
4140                         dev_err(&adapter->pdev->dev,
4141                                 "EEE advertisement - unable to acquire PHY\n");
4142                         return;
4143                 }
4144
4145                 e1000_write_emi_reg_locked(hw, adv_addr,
4146                                            hw->dev_spec.ich8lan.eee_disable ?
4147                                            0 : adapter->eee_advert);
4148
4149                 hw->phy.ops.release(hw);
4150         }
4151
4152         if (!netif_running(adapter->netdev) &&
4153             !test_bit(__E1000_TESTING, &adapter->state))
4154                 e1000_power_down_phy(adapter);
4155
4156         e1000_get_phy_info(hw);
4157
4158         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4159             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4160                 u16 phy_data = 0;
4161                 /* speed up time to link by disabling smart power down, ignore
4162                  * the return value of this function because there is nothing
4163                  * different we would do if it failed
4164                  */
4165                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4166                 phy_data &= ~IGP02E1000_PM_SPD;
4167                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4168         }
4169         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4170                 u32 reg;
4171
4172                 /* Fextnvm7 @ 0xe4[2] = 1 */
4173                 reg = er32(FEXTNVM7);
4174                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4175                 ew32(FEXTNVM7, reg);
4176                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4177                 reg = er32(FEXTNVM9);
4178                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4179                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4180                 ew32(FEXTNVM9, reg);
4181         }
4182
4183 }
4184
4185 /**
4186  * e1000e_trigger_lsc - trigger an LSC interrupt
4187  * @adapter: 
4188  *
4189  * Fire a link status change interrupt to start the watchdog.
4190  **/
4191 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4192 {
4193         struct e1000_hw *hw = &adapter->hw;
4194
4195         if (adapter->msix_entries)
4196                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4197         else
4198                 ew32(ICS, E1000_ICS_LSC);
4199 }
4200
4201 void e1000e_up(struct e1000_adapter *adapter)
4202 {
4203         /* hardware has been reset, we need to reload some things */
4204         e1000_configure(adapter);
4205
4206         clear_bit(__E1000_DOWN, &adapter->state);
4207
4208         if (adapter->msix_entries)
4209                 e1000_configure_msix(adapter);
4210         e1000_irq_enable(adapter);
4211
4212         netif_start_queue(adapter->netdev);
4213
4214         e1000e_trigger_lsc(adapter);
4215 }
4216
4217 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4218 {
4219         struct e1000_hw *hw = &adapter->hw;
4220
4221         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4222                 return;
4223
4224         /* flush pending descriptor writebacks to memory */
4225         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4226         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4227
4228         /* execute the writes immediately */
4229         e1e_flush();
4230
4231         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4232          * write is successful
4233          */
4234         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4235         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4236
4237         /* execute the writes immediately */
4238         e1e_flush();
4239 }
4240
4241 static void e1000e_update_stats(struct e1000_adapter *adapter);
4242
4243 /**
4244  * e1000e_down - quiesce the device and optionally reset the hardware
4245  * @adapter: board private structure
4246  * @reset: boolean flag to reset the hardware or not
4247  */
4248 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4249 {
4250         struct net_device *netdev = adapter->netdev;
4251         struct e1000_hw *hw = &adapter->hw;
4252         u32 tctl, rctl;
4253
4254         /* signal that we're down so the interrupt handler does not
4255          * reschedule our watchdog timer
4256          */
4257         set_bit(__E1000_DOWN, &adapter->state);
4258
4259         netif_carrier_off(netdev);
4260
4261         /* disable receives in the hardware */
4262         rctl = er32(RCTL);
4263         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4264                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4265         /* flush and sleep below */
4266
4267         netif_stop_queue(netdev);
4268
4269         /* disable transmits in the hardware */
4270         tctl = er32(TCTL);
4271         tctl &= ~E1000_TCTL_EN;
4272         ew32(TCTL, tctl);
4273
4274         /* flush both disables and wait for them to finish */
4275         e1e_flush();
4276         usleep_range(10000, 20000);
4277
4278         e1000_irq_disable(adapter);
4279
4280         napi_synchronize(&adapter->napi);
4281
4282         del_timer_sync(&adapter->watchdog_timer);
4283         del_timer_sync(&adapter->phy_info_timer);
4284
4285         spin_lock(&adapter->stats64_lock);
4286         e1000e_update_stats(adapter);
4287         spin_unlock(&adapter->stats64_lock);
4288
4289         e1000e_flush_descriptors(adapter);
4290
4291         adapter->link_speed = 0;
4292         adapter->link_duplex = 0;
4293
4294         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4295         if ((hw->mac.type >= e1000_pch2lan) &&
4296             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4297             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4298                 e_dbg("failed to disable jumbo frame workaround mode\n");
4299
4300         if (!pci_channel_offline(adapter->pdev)) {
4301                 if (reset)
4302                         e1000e_reset(adapter);
4303                 else if (hw->mac.type >= e1000_pch_spt)
4304                         e1000_flush_desc_rings(adapter);
4305         }
4306         e1000_clean_tx_ring(adapter->tx_ring);
4307         e1000_clean_rx_ring(adapter->rx_ring);
4308 }
4309
4310 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4311 {
4312         might_sleep();
4313         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4314                 usleep_range(1000, 2000);
4315         e1000e_down(adapter, true);
4316         e1000e_up(adapter);
4317         clear_bit(__E1000_RESETTING, &adapter->state);
4318 }
4319
4320 /**
4321  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4322  * @hw: pointer to the HW structure
4323  * @systim: PHC time value read, sanitized and returned
4324  * @sts: structure to hold system time before and after reading SYSTIML,
4325  * may be NULL
4326  *
4327  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4328  * check to see that the time is incrementing at a reasonable
4329  * rate and is a multiple of incvalue.
4330  **/
4331 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4332                                   struct ptp_system_timestamp *sts)
4333 {
4334         u64 time_delta, rem, temp;
4335         u64 systim_next;
4336         u32 incvalue;
4337         int i;
4338
4339         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4340         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4341                 /* latch SYSTIMH on read of SYSTIML */
4342                 ptp_read_system_prets(sts);
4343                 systim_next = (u64)er32(SYSTIML);
4344                 ptp_read_system_postts(sts);
4345                 systim_next |= (u64)er32(SYSTIMH) << 32;
4346
4347                 time_delta = systim_next - systim;
4348                 temp = time_delta;
4349                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4350                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4351
4352                 systim = systim_next;
4353
4354                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4355                         break;
4356         }
4357
4358         return systim;
4359 }
4360
4361 /**
4362  * e1000e_read_systim - read SYSTIM register
4363  * @adapter: board private structure
4364  * @sts: structure which will contain system time before and after reading
4365  * SYSTIML, may be NULL
4366  **/
4367 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4368                        struct ptp_system_timestamp *sts)
4369 {
4370         struct e1000_hw *hw = &adapter->hw;
4371         u32 systimel, systimel_2, systimeh;
4372         u64 systim;
4373         /* SYSTIMH latching upon SYSTIML read does not work well.
4374          * This means that if SYSTIML overflows after we read it but before
4375          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4376          * will experience a huge non linear increment in the systime value
4377          * to fix that we test for overflow and if true, we re-read systime.
4378          */
4379         ptp_read_system_prets(sts);
4380         systimel = er32(SYSTIML);
4381         ptp_read_system_postts(sts);
4382         systimeh = er32(SYSTIMH);
4383         /* Is systimel is so large that overflow is possible? */
4384         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4385                 ptp_read_system_prets(sts);
4386                 systimel_2 = er32(SYSTIML);
4387                 ptp_read_system_postts(sts);
4388                 if (systimel > systimel_2) {
4389                         /* There was an overflow, read again SYSTIMH, and use
4390                          * systimel_2
4391                          */
4392                         systimeh = er32(SYSTIMH);
4393                         systimel = systimel_2;
4394                 }
4395         }
4396         systim = (u64)systimel;
4397         systim |= (u64)systimeh << 32;
4398
4399         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4400                 systim = e1000e_sanitize_systim(hw, systim, sts);
4401
4402         return systim;
4403 }
4404
4405 /**
4406  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4407  * @cc: cyclecounter structure
4408  **/
4409 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4410 {
4411         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4412                                                      cc);
4413
4414         return e1000e_read_systim(adapter, NULL);
4415 }
4416
4417 /**
4418  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4419  * @adapter: board private structure to initialize
4420  *
4421  * e1000_sw_init initializes the Adapter private data structure.
4422  * Fields are initialized based on PCI device information and
4423  * OS network device settings (MTU size).
4424  **/
4425 static int e1000_sw_init(struct e1000_adapter *adapter)
4426 {
4427         struct net_device *netdev = adapter->netdev;
4428
4429         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4430         adapter->rx_ps_bsize0 = 128;
4431         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4432         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4433         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4434         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4435
4436         spin_lock_init(&adapter->stats64_lock);
4437
4438         e1000e_set_interrupt_capability(adapter);
4439
4440         if (e1000_alloc_queues(adapter))
4441                 return -ENOMEM;
4442
4443         /* Setup hardware time stamping cyclecounter */
4444         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4445                 adapter->cc.read = e1000e_cyclecounter_read;
4446                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4447                 adapter->cc.mult = 1;
4448                 /* cc.shift set in e1000e_get_base_tininca() */
4449
4450                 spin_lock_init(&adapter->systim_lock);
4451                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4452         }
4453
4454         /* Explicitly disable IRQ since the NIC can be in any state. */
4455         e1000_irq_disable(adapter);
4456
4457         set_bit(__E1000_DOWN, &adapter->state);
4458         return 0;
4459 }
4460
4461 /**
4462  * e1000_intr_msi_test - Interrupt Handler
4463  * @irq: interrupt number
4464  * @data: pointer to a network interface device structure
4465  **/
4466 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4467 {
4468         struct net_device *netdev = data;
4469         struct e1000_adapter *adapter = netdev_priv(netdev);
4470         struct e1000_hw *hw = &adapter->hw;
4471         u32 icr = er32(ICR);
4472
4473         e_dbg("icr is %08X\n", icr);
4474         if (icr & E1000_ICR_RXSEQ) {
4475                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4476                 /* Force memory writes to complete before acknowledging the
4477                  * interrupt is handled.
4478                  */
4479                 wmb();
4480         }
4481
4482         return IRQ_HANDLED;
4483 }
4484
4485 /**
4486  * e1000_test_msi_interrupt - Returns 0 for successful test
4487  * @adapter: board private struct
4488  *
4489  * code flow taken from tg3.c
4490  **/
4491 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4492 {
4493         struct net_device *netdev = adapter->netdev;
4494         struct e1000_hw *hw = &adapter->hw;
4495         int err;
4496
4497         /* poll_enable hasn't been called yet, so don't need disable */
4498         /* clear any pending events */
4499         er32(ICR);
4500
4501         /* free the real vector and request a test handler */
4502         e1000_free_irq(adapter);
4503         e1000e_reset_interrupt_capability(adapter);
4504
4505         /* Assume that the test fails, if it succeeds then the test
4506          * MSI irq handler will unset this flag
4507          */
4508         adapter->flags |= FLAG_MSI_TEST_FAILED;
4509
4510         err = pci_enable_msi(adapter->pdev);
4511         if (err)
4512                 goto msi_test_failed;
4513
4514         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4515                           netdev->name, netdev);
4516         if (err) {
4517                 pci_disable_msi(adapter->pdev);
4518                 goto msi_test_failed;
4519         }
4520
4521         /* Force memory writes to complete before enabling and firing an
4522          * interrupt.
4523          */
4524         wmb();
4525
4526         e1000_irq_enable(adapter);
4527
4528         /* fire an unusual interrupt on the test handler */
4529         ew32(ICS, E1000_ICS_RXSEQ);
4530         e1e_flush();
4531         msleep(100);
4532
4533         e1000_irq_disable(adapter);
4534
4535         rmb();                  /* read flags after interrupt has been fired */
4536
4537         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4538                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4539                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4540         } else {
4541                 e_dbg("MSI interrupt test succeeded!\n");
4542         }
4543
4544         free_irq(adapter->pdev->irq, netdev);
4545         pci_disable_msi(adapter->pdev);
4546
4547 msi_test_failed:
4548         e1000e_set_interrupt_capability(adapter);
4549         return e1000_request_irq(adapter);
4550 }
4551
4552 /**
4553  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4554  * @adapter: board private struct
4555  *
4556  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4557  **/
4558 static int e1000_test_msi(struct e1000_adapter *adapter)
4559 {
4560         int err;
4561         u16 pci_cmd;
4562
4563         if (!(adapter->flags & FLAG_MSI_ENABLED))
4564                 return 0;
4565
4566         /* disable SERR in case the MSI write causes a master abort */
4567         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4568         if (pci_cmd & PCI_COMMAND_SERR)
4569                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4570                                       pci_cmd & ~PCI_COMMAND_SERR);
4571
4572         err = e1000_test_msi_interrupt(adapter);
4573
4574         /* re-enable SERR */
4575         if (pci_cmd & PCI_COMMAND_SERR) {
4576                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4577                 pci_cmd |= PCI_COMMAND_SERR;
4578                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4579         }
4580
4581         return err;
4582 }
4583
4584 /**
4585  * e1000e_open - Called when a network interface is made active
4586  * @netdev: network interface device structure
4587  *
4588  * Returns 0 on success, negative value on failure
4589  *
4590  * The open entry point is called when a network interface is made
4591  * active by the system (IFF_UP).  At this point all resources needed
4592  * for transmit and receive operations are allocated, the interrupt
4593  * handler is registered with the OS, the watchdog timer is started,
4594  * and the stack is notified that the interface is ready.
4595  **/
4596 int e1000e_open(struct net_device *netdev)
4597 {
4598         struct e1000_adapter *adapter = netdev_priv(netdev);
4599         struct e1000_hw *hw = &adapter->hw;
4600         struct pci_dev *pdev = adapter->pdev;
4601         int err;
4602
4603         /* disallow open during test */
4604         if (test_bit(__E1000_TESTING, &adapter->state))
4605                 return -EBUSY;
4606
4607         pm_runtime_get_sync(&pdev->dev);
4608
4609         netif_carrier_off(netdev);
4610
4611         /* allocate transmit descriptors */
4612         err = e1000e_setup_tx_resources(adapter->tx_ring);
4613         if (err)
4614                 goto err_setup_tx;
4615
4616         /* allocate receive descriptors */
4617         err = e1000e_setup_rx_resources(adapter->rx_ring);
4618         if (err)
4619                 goto err_setup_rx;
4620
4621         /* If AMT is enabled, let the firmware know that the network
4622          * interface is now open and reset the part to a known state.
4623          */
4624         if (adapter->flags & FLAG_HAS_AMT) {
4625                 e1000e_get_hw_control(adapter);
4626                 e1000e_reset(adapter);
4627         }
4628
4629         e1000e_power_up_phy(adapter);
4630
4631         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4632         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4633                 e1000_update_mng_vlan(adapter);
4634
4635         /* DMA latency requirement to workaround jumbo issue */
4636         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4637                            PM_QOS_DEFAULT_VALUE);
4638
4639         /* before we allocate an interrupt, we must be ready to handle it.
4640          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4641          * as soon as we call pci_request_irq, so we have to setup our
4642          * clean_rx handler before we do so.
4643          */
4644         e1000_configure(adapter);
4645
4646         err = e1000_request_irq(adapter);
4647         if (err)
4648                 goto err_req_irq;
4649
4650         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4651          * ignore e1000e MSI messages, which means we need to test our MSI
4652          * interrupt now
4653          */
4654         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4655                 err = e1000_test_msi(adapter);
4656                 if (err) {
4657                         e_err("Interrupt allocation failed\n");
4658                         goto err_req_irq;
4659                 }
4660         }
4661
4662         /* From here on the code is the same as e1000e_up() */
4663         clear_bit(__E1000_DOWN, &adapter->state);
4664
4665         napi_enable(&adapter->napi);
4666
4667         e1000_irq_enable(adapter);
4668
4669         adapter->tx_hang_recheck = false;
4670         netif_start_queue(netdev);
4671
4672         hw->mac.get_link_status = true;
4673         pm_runtime_put(&pdev->dev);
4674
4675         e1000e_trigger_lsc(adapter);
4676
4677         return 0;
4678
4679 err_req_irq:
4680         pm_qos_remove_request(&adapter->pm_qos_req);
4681         e1000e_release_hw_control(adapter);
4682         e1000_power_down_phy(adapter);
4683         e1000e_free_rx_resources(adapter->rx_ring);
4684 err_setup_rx:
4685         e1000e_free_tx_resources(adapter->tx_ring);
4686 err_setup_tx:
4687         e1000e_reset(adapter);
4688         pm_runtime_put_sync(&pdev->dev);
4689
4690         return err;
4691 }
4692
4693 /**
4694  * e1000e_close - Disables a network interface
4695  * @netdev: network interface device structure
4696  *
4697  * Returns 0, this is not allowed to fail
4698  *
4699  * The close entry point is called when an interface is de-activated
4700  * by the OS.  The hardware is still under the drivers control, but
4701  * needs to be disabled.  A global MAC reset is issued to stop the
4702  * hardware, and all transmit and receive resources are freed.
4703  **/
4704 int e1000e_close(struct net_device *netdev)
4705 {
4706         struct e1000_adapter *adapter = netdev_priv(netdev);
4707         struct pci_dev *pdev = adapter->pdev;
4708         int count = E1000_CHECK_RESET_COUNT;
4709
4710         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4711                 usleep_range(10000, 20000);
4712
4713         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4714
4715         pm_runtime_get_sync(&pdev->dev);
4716
4717         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4718                 e1000e_down(adapter, true);
4719                 e1000_free_irq(adapter);
4720
4721                 /* Link status message must follow this format */
4722                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4723         }
4724
4725         napi_disable(&adapter->napi);
4726
4727         e1000e_free_tx_resources(adapter->tx_ring);
4728         e1000e_free_rx_resources(adapter->rx_ring);
4729
4730         /* kill manageability vlan ID if supported, but not if a vlan with
4731          * the same ID is registered on the host OS (let 8021q kill it)
4732          */
4733         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4734                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4735                                        adapter->mng_vlan_id);
4736
4737         /* If AMT is enabled, let the firmware know that the network
4738          * interface is now closed
4739          */
4740         if ((adapter->flags & FLAG_HAS_AMT) &&
4741             !test_bit(__E1000_TESTING, &adapter->state))
4742                 e1000e_release_hw_control(adapter);
4743
4744         pm_qos_remove_request(&adapter->pm_qos_req);
4745
4746         pm_runtime_put_sync(&pdev->dev);
4747
4748         return 0;
4749 }
4750
4751 /**
4752  * e1000_set_mac - Change the Ethernet Address of the NIC
4753  * @netdev: network interface device structure
4754  * @p: pointer to an address structure
4755  *
4756  * Returns 0 on success, negative on failure
4757  **/
4758 static int e1000_set_mac(struct net_device *netdev, void *p)
4759 {
4760         struct e1000_adapter *adapter = netdev_priv(netdev);
4761         struct e1000_hw *hw = &adapter->hw;
4762         struct sockaddr *addr = p;
4763
4764         if (!is_valid_ether_addr(addr->sa_data))
4765                 return -EADDRNOTAVAIL;
4766
4767         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4768         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4769
4770         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4771
4772         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4773                 /* activate the work around */
4774                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4775
4776                 /* Hold a copy of the LAA in RAR[14] This is done so that
4777                  * between the time RAR[0] gets clobbered  and the time it
4778                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4779                  * of the RARs and no incoming packets directed to this port
4780                  * are dropped. Eventually the LAA will be in RAR[0] and
4781                  * RAR[14]
4782                  */
4783                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4784                                     adapter->hw.mac.rar_entry_count - 1);
4785         }
4786
4787         return 0;
4788 }
4789
4790 /**
4791  * e1000e_update_phy_task - work thread to update phy
4792  * @work: pointer to our work struct
4793  *
4794  * this worker thread exists because we must acquire a
4795  * semaphore to read the phy, which we could msleep while
4796  * waiting for it, and we can't msleep in a timer.
4797  **/
4798 static void e1000e_update_phy_task(struct work_struct *work)
4799 {
4800         struct e1000_adapter *adapter = container_of(work,
4801                                                      struct e1000_adapter,
4802                                                      update_phy_task);
4803         struct e1000_hw *hw = &adapter->hw;
4804
4805         if (test_bit(__E1000_DOWN, &adapter->state))
4806                 return;
4807
4808         e1000_get_phy_info(hw);
4809
4810         /* Enable EEE on 82579 after link up */
4811         if (hw->phy.type >= e1000_phy_82579)
4812                 e1000_set_eee_pchlan(hw);
4813 }
4814
4815 /**
4816  * e1000_update_phy_info - timre call-back to update PHY info
4817  * @data: pointer to adapter cast into an unsigned long
4818  *
4819  * Need to wait a few seconds after link up to get diagnostic information from
4820  * the phy
4821  **/
4822 static void e1000_update_phy_info(struct timer_list *t)
4823 {
4824         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4825
4826         if (test_bit(__E1000_DOWN, &adapter->state))
4827                 return;
4828
4829         schedule_work(&adapter->update_phy_task);
4830 }
4831
4832 /**
4833  * e1000e_update_phy_stats - Update the PHY statistics counters
4834  * @adapter: board private structure
4835  *
4836  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4837  **/
4838 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4839 {
4840         struct e1000_hw *hw = &adapter->hw;
4841         s32 ret_val;
4842         u16 phy_data;
4843
4844         ret_val = hw->phy.ops.acquire(hw);
4845         if (ret_val)
4846                 return;
4847
4848         /* A page set is expensive so check if already on desired page.
4849          * If not, set to the page with the PHY status registers.
4850          */
4851         hw->phy.addr = 1;
4852         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4853                                            &phy_data);
4854         if (ret_val)
4855                 goto release;
4856         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4857                 ret_val = hw->phy.ops.set_page(hw,
4858                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4859                 if (ret_val)
4860                         goto release;
4861         }
4862
4863         /* Single Collision Count */
4864         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4865         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4866         if (!ret_val)
4867                 adapter->stats.scc += phy_data;
4868
4869         /* Excessive Collision Count */
4870         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4871         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4872         if (!ret_val)
4873                 adapter->stats.ecol += phy_data;
4874
4875         /* Multiple Collision Count */
4876         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4877         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4878         if (!ret_val)
4879                 adapter->stats.mcc += phy_data;
4880
4881         /* Late Collision Count */
4882         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4883         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4884         if (!ret_val)
4885                 adapter->stats.latecol += phy_data;
4886
4887         /* Collision Count - also used for adaptive IFS */
4888         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4889         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4890         if (!ret_val)
4891                 hw->mac.collision_delta = phy_data;
4892
4893         /* Defer Count */
4894         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4895         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4896         if (!ret_val)
4897                 adapter->stats.dc += phy_data;
4898
4899         /* Transmit with no CRS */
4900         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4901         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4902         if (!ret_val)
4903                 adapter->stats.tncrs += phy_data;
4904
4905 release:
4906         hw->phy.ops.release(hw);
4907 }
4908
4909 /**
4910  * e1000e_update_stats - Update the board statistics counters
4911  * @adapter: board private structure
4912  **/
4913 static void e1000e_update_stats(struct e1000_adapter *adapter)
4914 {
4915         struct net_device *netdev = adapter->netdev;
4916         struct e1000_hw *hw = &adapter->hw;
4917         struct pci_dev *pdev = adapter->pdev;
4918
4919         /* Prevent stats update while adapter is being reset, or if the pci
4920          * connection is down.
4921          */
4922         if (adapter->link_speed == 0)
4923                 return;
4924         if (pci_channel_offline(pdev))
4925                 return;
4926
4927         adapter->stats.crcerrs += er32(CRCERRS);
4928         adapter->stats.gprc += er32(GPRC);
4929         adapter->stats.gorc += er32(GORCL);
4930         er32(GORCH);            /* Clear gorc */
4931         adapter->stats.bprc += er32(BPRC);
4932         adapter->stats.mprc += er32(MPRC);
4933         adapter->stats.roc += er32(ROC);
4934
4935         adapter->stats.mpc += er32(MPC);
4936
4937         /* Half-duplex statistics */
4938         if (adapter->link_duplex == HALF_DUPLEX) {
4939                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4940                         e1000e_update_phy_stats(adapter);
4941                 } else {
4942                         adapter->stats.scc += er32(SCC);
4943                         adapter->stats.ecol += er32(ECOL);
4944                         adapter->stats.mcc += er32(MCC);
4945                         adapter->stats.latecol += er32(LATECOL);
4946                         adapter->stats.dc += er32(DC);
4947
4948                         hw->mac.collision_delta = er32(COLC);
4949
4950                         if ((hw->mac.type != e1000_82574) &&
4951                             (hw->mac.type != e1000_82583))
4952                                 adapter->stats.tncrs += er32(TNCRS);
4953                 }
4954                 adapter->stats.colc += hw->mac.collision_delta;
4955         }
4956
4957         adapter->stats.xonrxc += er32(XONRXC);
4958         adapter->stats.xontxc += er32(XONTXC);
4959         adapter->stats.xoffrxc += er32(XOFFRXC);
4960         adapter->stats.xofftxc += er32(XOFFTXC);
4961         adapter->stats.gptc += er32(GPTC);
4962         adapter->stats.gotc += er32(GOTCL);
4963         er32(GOTCH);            /* Clear gotc */
4964         adapter->stats.rnbc += er32(RNBC);
4965         adapter->stats.ruc += er32(RUC);
4966
4967         adapter->stats.mptc += er32(MPTC);
4968         adapter->stats.bptc += er32(BPTC);
4969
4970         /* used for adaptive IFS */
4971
4972         hw->mac.tx_packet_delta = er32(TPT);
4973         adapter->stats.tpt += hw->mac.tx_packet_delta;
4974
4975         adapter->stats.algnerrc += er32(ALGNERRC);
4976         adapter->stats.rxerrc += er32(RXERRC);
4977         adapter->stats.cexterr += er32(CEXTERR);
4978         adapter->stats.tsctc += er32(TSCTC);
4979         adapter->stats.tsctfc += er32(TSCTFC);
4980
4981         /* Fill out the OS statistics structure */
4982         netdev->stats.multicast = adapter->stats.mprc;
4983         netdev->stats.collisions = adapter->stats.colc;
4984
4985         /* Rx Errors */
4986
4987         /* RLEC on some newer hardware can be incorrect so build
4988          * our own version based on RUC and ROC
4989          */
4990         netdev->stats.rx_errors = adapter->stats.rxerrc +
4991             adapter->stats.crcerrs + adapter->stats.algnerrc +
4992             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4993         netdev->stats.rx_length_errors = adapter->stats.ruc +
4994             adapter->stats.roc;
4995         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4996         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4997         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4998
4999         /* Tx Errors */
5000         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5001         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5002         netdev->stats.tx_window_errors = adapter->stats.latecol;
5003         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5004
5005         /* Tx Dropped needs to be maintained elsewhere */
5006
5007         /* Management Stats */
5008         adapter->stats.mgptc += er32(MGTPTC);
5009         adapter->stats.mgprc += er32(MGTPRC);
5010         adapter->stats.mgpdc += er32(MGTPDC);
5011
5012         /* Correctable ECC Errors */
5013         if (hw->mac.type >= e1000_pch_lpt) {
5014                 u32 pbeccsts = er32(PBECCSTS);
5015
5016                 adapter->corr_errors +=
5017                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5018                 adapter->uncorr_errors +=
5019                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5020                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5021         }
5022 }
5023
5024 /**
5025  * e1000_phy_read_status - Update the PHY register status snapshot
5026  * @adapter: board private structure
5027  **/
5028 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5029 {
5030         struct e1000_hw *hw = &adapter->hw;
5031         struct e1000_phy_regs *phy = &adapter->phy_regs;
5032
5033         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5034             (er32(STATUS) & E1000_STATUS_LU) &&
5035             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5036                 int ret_val;
5037
5038                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5039                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5040                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5041                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5042                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5043                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5044                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5045                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5046                 if (ret_val)
5047                         e_warn("Error reading PHY register\n");
5048         } else {
5049                 /* Do not read PHY registers if link is not up
5050                  * Set values to typical power-on defaults
5051                  */
5052                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5053                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5054                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5055                              BMSR_ERCAP);
5056                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5057                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5058                 phy->lpa = 0;
5059                 phy->expansion = EXPANSION_ENABLENPAGE;
5060                 phy->ctrl1000 = ADVERTISE_1000FULL;
5061                 phy->stat1000 = 0;
5062                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5063         }
5064 }
5065
5066 static void e1000_print_link_info(struct e1000_adapter *adapter)
5067 {
5068         struct e1000_hw *hw = &adapter->hw;
5069         u32 ctrl = er32(CTRL);
5070
5071         /* Link status message must follow this format for user tools */
5072         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5073                 adapter->netdev->name, adapter->link_speed,
5074                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5075                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5076                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5077                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5078 }
5079
5080 static bool e1000e_has_link(struct e1000_adapter *adapter)
5081 {
5082         struct e1000_hw *hw = &adapter->hw;
5083         bool link_active = false;
5084         s32 ret_val = 0;
5085
5086         /* get_link_status is set on LSC (link status) interrupt or
5087          * Rx sequence error interrupt.  get_link_status will stay
5088          * true until the check_for_link establishes link
5089          * for copper adapters ONLY
5090          */
5091         switch (hw->phy.media_type) {
5092         case e1000_media_type_copper:
5093                 if (hw->mac.get_link_status) {
5094                         ret_val = hw->mac.ops.check_for_link(hw);
5095                         link_active = !hw->mac.get_link_status;
5096                 } else {
5097                         link_active = true;
5098                 }
5099                 break;
5100         case e1000_media_type_fiber:
5101                 ret_val = hw->mac.ops.check_for_link(hw);
5102                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5103                 break;
5104         case e1000_media_type_internal_serdes:
5105                 ret_val = hw->mac.ops.check_for_link(hw);
5106                 link_active = hw->mac.serdes_has_link;
5107                 break;
5108         default:
5109         case e1000_media_type_unknown:
5110                 break;
5111         }
5112
5113         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5114             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5115                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5116                 e_info("Gigabit has been disabled, downgrading speed\n");
5117         }
5118
5119         return link_active;
5120 }
5121
5122 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5123 {
5124         /* make sure the receive unit is started */
5125         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5126             (adapter->flags & FLAG_RESTART_NOW)) {
5127                 struct e1000_hw *hw = &adapter->hw;
5128                 u32 rctl = er32(RCTL);
5129
5130                 ew32(RCTL, rctl | E1000_RCTL_EN);
5131                 adapter->flags &= ~FLAG_RESTART_NOW;
5132         }
5133 }
5134
5135 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5136 {
5137         struct e1000_hw *hw = &adapter->hw;
5138
5139         /* With 82574 controllers, PHY needs to be checked periodically
5140          * for hung state and reset, if two calls return true
5141          */
5142         if (e1000_check_phy_82574(hw))
5143                 adapter->phy_hang_count++;
5144         else
5145                 adapter->phy_hang_count = 0;
5146
5147         if (adapter->phy_hang_count > 1) {
5148                 adapter->phy_hang_count = 0;
5149                 e_dbg("PHY appears hung - resetting\n");
5150                 schedule_work(&adapter->reset_task);
5151         }
5152 }
5153
5154 /**
5155  * e1000_watchdog - Timer Call-back
5156  * @data: pointer to adapter cast into an unsigned long
5157  **/
5158 static void e1000_watchdog(struct timer_list *t)
5159 {
5160         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5161
5162         /* Do the rest outside of interrupt context */
5163         schedule_work(&adapter->watchdog_task);
5164
5165         /* TODO: make this use queue_delayed_work() */
5166 }
5167
5168 static void e1000_watchdog_task(struct work_struct *work)
5169 {
5170         struct e1000_adapter *adapter = container_of(work,
5171                                                      struct e1000_adapter,
5172                                                      watchdog_task);
5173         struct net_device *netdev = adapter->netdev;
5174         struct e1000_mac_info *mac = &adapter->hw.mac;
5175         struct e1000_phy_info *phy = &adapter->hw.phy;
5176         struct e1000_ring *tx_ring = adapter->tx_ring;
5177         struct e1000_hw *hw = &adapter->hw;
5178         u32 link, tctl;
5179
5180         if (test_bit(__E1000_DOWN, &adapter->state))
5181                 return;
5182
5183         link = e1000e_has_link(adapter);
5184         if ((netif_carrier_ok(netdev)) && link) {
5185                 /* Cancel scheduled suspend requests. */
5186                 pm_runtime_resume(netdev->dev.parent);
5187
5188                 e1000e_enable_receives(adapter);
5189                 goto link_up;
5190         }
5191
5192         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5193             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5194                 e1000_update_mng_vlan(adapter);
5195
5196         if (link) {
5197                 if (!netif_carrier_ok(netdev)) {
5198                         bool txb2b = true;
5199
5200                         /* Cancel scheduled suspend requests. */
5201                         pm_runtime_resume(netdev->dev.parent);
5202
5203                         /* update snapshot of PHY registers on LSC */
5204                         e1000_phy_read_status(adapter);
5205                         mac->ops.get_link_up_info(&adapter->hw,
5206                                                   &adapter->link_speed,
5207                                                   &adapter->link_duplex);
5208                         e1000_print_link_info(adapter);
5209
5210                         /* check if SmartSpeed worked */
5211                         e1000e_check_downshift(hw);
5212                         if (phy->speed_downgraded)
5213                                 netdev_warn(netdev,
5214                                             "Link Speed was downgraded by SmartSpeed\n");
5215
5216                         /* On supported PHYs, check for duplex mismatch only
5217                          * if link has autonegotiated at 10/100 half
5218                          */
5219                         if ((hw->phy.type == e1000_phy_igp_3 ||
5220                              hw->phy.type == e1000_phy_bm) &&
5221                             hw->mac.autoneg &&
5222                             (adapter->link_speed == SPEED_10 ||
5223                              adapter->link_speed == SPEED_100) &&
5224                             (adapter->link_duplex == HALF_DUPLEX)) {
5225                                 u16 autoneg_exp;
5226
5227                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5228
5229                                 if (!(autoneg_exp & EXPANSION_NWAY))
5230                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5231                         }
5232
5233                         /* adjust timeout factor according to speed/duplex */
5234                         adapter->tx_timeout_factor = 1;
5235                         switch (adapter->link_speed) {
5236                         case SPEED_10:
5237                                 txb2b = false;
5238                                 adapter->tx_timeout_factor = 16;
5239                                 break;
5240                         case SPEED_100:
5241                                 txb2b = false;
5242                                 adapter->tx_timeout_factor = 10;
5243                                 break;
5244                         }
5245
5246                         /* workaround: re-program speed mode bit after
5247                          * link-up event
5248                          */
5249                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5250                             !txb2b) {
5251                                 u32 tarc0;
5252
5253                                 tarc0 = er32(TARC(0));
5254                                 tarc0 &= ~SPEED_MODE_BIT;
5255                                 ew32(TARC(0), tarc0);
5256                         }
5257
5258                         /* disable TSO for pcie and 10/100 speeds, to avoid
5259                          * some hardware issues
5260                          */
5261                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5262                                 switch (adapter->link_speed) {
5263                                 case SPEED_10:
5264                                 case SPEED_100:
5265                                         e_info("10/100 speed: disabling TSO\n");
5266                                         netdev->features &= ~NETIF_F_TSO;
5267                                         netdev->features &= ~NETIF_F_TSO6;
5268                                         break;
5269                                 case SPEED_1000:
5270                                         netdev->features |= NETIF_F_TSO;
5271                                         netdev->features |= NETIF_F_TSO6;
5272                                         break;
5273                                 default:
5274                                         /* oops */
5275                                         break;
5276                                 }
5277                         }
5278
5279                         /* enable transmits in the hardware, need to do this
5280                          * after setting TARC(0)
5281                          */
5282                         tctl = er32(TCTL);
5283                         tctl |= E1000_TCTL_EN;
5284                         ew32(TCTL, tctl);
5285
5286                         /* Perform any post-link-up configuration before
5287                          * reporting link up.
5288                          */
5289                         if (phy->ops.cfg_on_link_up)
5290                                 phy->ops.cfg_on_link_up(hw);
5291
5292                         netif_carrier_on(netdev);
5293
5294                         if (!test_bit(__E1000_DOWN, &adapter->state))
5295                                 mod_timer(&adapter->phy_info_timer,
5296                                           round_jiffies(jiffies + 2 * HZ));
5297                 }
5298         } else {
5299                 if (netif_carrier_ok(netdev)) {
5300                         adapter->link_speed = 0;
5301                         adapter->link_duplex = 0;
5302                         /* Link status message must follow this format */
5303                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5304                         netif_carrier_off(netdev);
5305                         if (!test_bit(__E1000_DOWN, &adapter->state))
5306                                 mod_timer(&adapter->phy_info_timer,
5307                                           round_jiffies(jiffies + 2 * HZ));
5308
5309                         /* 8000ES2LAN requires a Rx packet buffer work-around
5310                          * on link down event; reset the controller to flush
5311                          * the Rx packet buffer.
5312                          */
5313                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5314                                 adapter->flags |= FLAG_RESTART_NOW;
5315                         else
5316                                 pm_schedule_suspend(netdev->dev.parent,
5317                                                     LINK_TIMEOUT);
5318                 }
5319         }
5320
5321 link_up:
5322         spin_lock(&adapter->stats64_lock);
5323         e1000e_update_stats(adapter);
5324
5325         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5326         adapter->tpt_old = adapter->stats.tpt;
5327         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5328         adapter->colc_old = adapter->stats.colc;
5329
5330         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5331         adapter->gorc_old = adapter->stats.gorc;
5332         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5333         adapter->gotc_old = adapter->stats.gotc;
5334         spin_unlock(&adapter->stats64_lock);
5335
5336         /* If the link is lost the controller stops DMA, but
5337          * if there is queued Tx work it cannot be done.  So
5338          * reset the controller to flush the Tx packet buffers.
5339          */
5340         if (!netif_carrier_ok(netdev) &&
5341             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5342                 adapter->flags |= FLAG_RESTART_NOW;
5343
5344         /* If reset is necessary, do it outside of interrupt context. */
5345         if (adapter->flags & FLAG_RESTART_NOW) {
5346                 schedule_work(&adapter->reset_task);
5347                 /* return immediately since reset is imminent */
5348                 return;
5349         }
5350
5351         e1000e_update_adaptive(&adapter->hw);
5352
5353         /* Simple mode for Interrupt Throttle Rate (ITR) */
5354         if (adapter->itr_setting == 4) {
5355                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5356                  * Total asymmetrical Tx or Rx gets ITR=8000;
5357                  * everyone else is between 2000-8000.
5358                  */
5359                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5360                 u32 dif = (adapter->gotc > adapter->gorc ?
5361                            adapter->gotc - adapter->gorc :
5362                            adapter->gorc - adapter->gotc) / 10000;
5363                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5364
5365                 e1000e_write_itr(adapter, itr);
5366         }
5367
5368         /* Cause software interrupt to ensure Rx ring is cleaned */
5369         if (adapter->msix_entries)
5370                 ew32(ICS, adapter->rx_ring->ims_val);
5371         else
5372                 ew32(ICS, E1000_ICS_RXDMT0);
5373
5374         /* flush pending descriptors to memory before detecting Tx hang */
5375         e1000e_flush_descriptors(adapter);
5376
5377         /* Force detection of hung controller every watchdog period */
5378         adapter->detect_tx_hung = true;
5379
5380         /* With 82571 controllers, LAA may be overwritten due to controller
5381          * reset from the other port. Set the appropriate LAA in RAR[0]
5382          */
5383         if (e1000e_get_laa_state_82571(hw))
5384                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5385
5386         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5387                 e1000e_check_82574_phy_workaround(adapter);
5388
5389         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5390         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5391                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5392                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5393                         er32(RXSTMPH);
5394                         adapter->rx_hwtstamp_cleared++;
5395                 } else {
5396                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5397                 }
5398         }
5399
5400         /* Reset the timer */
5401         if (!test_bit(__E1000_DOWN, &adapter->state))
5402                 mod_timer(&adapter->watchdog_timer,
5403                           round_jiffies(jiffies + 2 * HZ));
5404 }
5405
5406 #define E1000_TX_FLAGS_CSUM             0x00000001
5407 #define E1000_TX_FLAGS_VLAN             0x00000002
5408 #define E1000_TX_FLAGS_TSO              0x00000004
5409 #define E1000_TX_FLAGS_IPV4             0x00000008
5410 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5411 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5412 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5413 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5414
5415 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5416                      __be16 protocol)
5417 {
5418         struct e1000_context_desc *context_desc;
5419         struct e1000_buffer *buffer_info;
5420         unsigned int i;
5421         u32 cmd_length = 0;
5422         u16 ipcse = 0, mss;
5423         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5424         int err;
5425
5426         if (!skb_is_gso(skb))
5427                 return 0;
5428
5429         err = skb_cow_head(skb, 0);
5430         if (err < 0)
5431                 return err;
5432
5433         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5434         mss = skb_shinfo(skb)->gso_size;
5435         if (protocol == htons(ETH_P_IP)) {
5436                 struct iphdr *iph = ip_hdr(skb);
5437                 iph->tot_len = 0;
5438                 iph->check = 0;
5439                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5440                                                          0, IPPROTO_TCP, 0);
5441                 cmd_length = E1000_TXD_CMD_IP;
5442                 ipcse = skb_transport_offset(skb) - 1;
5443         } else if (skb_is_gso_v6(skb)) {
5444                 ipv6_hdr(skb)->payload_len = 0;
5445                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5446                                                        &ipv6_hdr(skb)->daddr,
5447                                                        0, IPPROTO_TCP, 0);
5448                 ipcse = 0;
5449         }
5450         ipcss = skb_network_offset(skb);
5451         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5452         tucss = skb_transport_offset(skb);
5453         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5454
5455         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5456                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5457
5458         i = tx_ring->next_to_use;
5459         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5460         buffer_info = &tx_ring->buffer_info[i];
5461
5462         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5463         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5464         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5465         context_desc->upper_setup.tcp_fields.tucss = tucss;
5466         context_desc->upper_setup.tcp_fields.tucso = tucso;
5467         context_desc->upper_setup.tcp_fields.tucse = 0;
5468         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5469         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5470         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5471
5472         buffer_info->time_stamp = jiffies;
5473         buffer_info->next_to_watch = i;
5474
5475         i++;
5476         if (i == tx_ring->count)
5477                 i = 0;
5478         tx_ring->next_to_use = i;
5479
5480         return 1;
5481 }
5482
5483 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5484                           __be16 protocol)
5485 {
5486         struct e1000_adapter *adapter = tx_ring->adapter;
5487         struct e1000_context_desc *context_desc;
5488         struct e1000_buffer *buffer_info;
5489         unsigned int i;
5490         u8 css;
5491         u32 cmd_len = E1000_TXD_CMD_DEXT;
5492
5493         if (skb->ip_summed != CHECKSUM_PARTIAL)
5494                 return false;
5495
5496         switch (protocol) {
5497         case cpu_to_be16(ETH_P_IP):
5498                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5499                         cmd_len |= E1000_TXD_CMD_TCP;
5500                 break;
5501         case cpu_to_be16(ETH_P_IPV6):
5502                 /* XXX not handling all IPV6 headers */
5503                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5504                         cmd_len |= E1000_TXD_CMD_TCP;
5505                 break;
5506         default:
5507                 if (unlikely(net_ratelimit()))
5508                         e_warn("checksum_partial proto=%x!\n",
5509                                be16_to_cpu(protocol));
5510                 break;
5511         }
5512
5513         css = skb_checksum_start_offset(skb);
5514
5515         i = tx_ring->next_to_use;
5516         buffer_info = &tx_ring->buffer_info[i];
5517         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5518
5519         context_desc->lower_setup.ip_config = 0;
5520         context_desc->upper_setup.tcp_fields.tucss = css;
5521         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5522         context_desc->upper_setup.tcp_fields.tucse = 0;
5523         context_desc->tcp_seg_setup.data = 0;
5524         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5525
5526         buffer_info->time_stamp = jiffies;
5527         buffer_info->next_to_watch = i;
5528
5529         i++;
5530         if (i == tx_ring->count)
5531                 i = 0;
5532         tx_ring->next_to_use = i;
5533
5534         return true;
5535 }
5536
5537 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5538                         unsigned int first, unsigned int max_per_txd,
5539                         unsigned int nr_frags)
5540 {
5541         struct e1000_adapter *adapter = tx_ring->adapter;
5542         struct pci_dev *pdev = adapter->pdev;
5543         struct e1000_buffer *buffer_info;
5544         unsigned int len = skb_headlen(skb);
5545         unsigned int offset = 0, size, count = 0, i;
5546         unsigned int f, bytecount, segs;
5547
5548         i = tx_ring->next_to_use;
5549
5550         while (len) {
5551                 buffer_info = &tx_ring->buffer_info[i];
5552                 size = min(len, max_per_txd);
5553
5554                 buffer_info->length = size;
5555                 buffer_info->time_stamp = jiffies;
5556                 buffer_info->next_to_watch = i;
5557                 buffer_info->dma = dma_map_single(&pdev->dev,
5558                                                   skb->data + offset,
5559                                                   size, DMA_TO_DEVICE);
5560                 buffer_info->mapped_as_page = false;
5561                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5562                         goto dma_error;
5563
5564                 len -= size;
5565                 offset += size;
5566                 count++;
5567
5568                 if (len) {
5569                         i++;
5570                         if (i == tx_ring->count)
5571                                 i = 0;
5572                 }
5573         }
5574
5575         for (f = 0; f < nr_frags; f++) {
5576                 const struct skb_frag_struct *frag;
5577
5578                 frag = &skb_shinfo(skb)->frags[f];
5579                 len = skb_frag_size(frag);
5580                 offset = 0;
5581
5582                 while (len) {
5583                         i++;
5584                         if (i == tx_ring->count)
5585                                 i = 0;
5586
5587                         buffer_info = &tx_ring->buffer_info[i];
5588                         size = min(len, max_per_txd);
5589
5590                         buffer_info->length = size;
5591                         buffer_info->time_stamp = jiffies;
5592                         buffer_info->next_to_watch = i;
5593                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5594                                                             offset, size,
5595                                                             DMA_TO_DEVICE);
5596                         buffer_info->mapped_as_page = true;
5597                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5598                                 goto dma_error;
5599
5600                         len -= size;
5601                         offset += size;
5602                         count++;
5603                 }
5604         }
5605
5606         segs = skb_shinfo(skb)->gso_segs ? : 1;
5607         /* multiply data chunks by size of headers */
5608         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5609
5610         tx_ring->buffer_info[i].skb = skb;
5611         tx_ring->buffer_info[i].segs = segs;
5612         tx_ring->buffer_info[i].bytecount = bytecount;
5613         tx_ring->buffer_info[first].next_to_watch = i;
5614
5615         return count;
5616
5617 dma_error:
5618         dev_err(&pdev->dev, "Tx DMA map failed\n");
5619         buffer_info->dma = 0;
5620         if (count)
5621                 count--;
5622
5623         while (count--) {
5624                 if (i == 0)
5625                         i += tx_ring->count;
5626                 i--;
5627                 buffer_info = &tx_ring->buffer_info[i];
5628                 e1000_put_txbuf(tx_ring, buffer_info, true);
5629         }
5630
5631         return 0;
5632 }
5633
5634 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5635 {
5636         struct e1000_adapter *adapter = tx_ring->adapter;
5637         struct e1000_tx_desc *tx_desc = NULL;
5638         struct e1000_buffer *buffer_info;
5639         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5640         unsigned int i;
5641
5642         if (tx_flags & E1000_TX_FLAGS_TSO) {
5643                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5644                     E1000_TXD_CMD_TSE;
5645                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5646
5647                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5648                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5649         }
5650
5651         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5652                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5653                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5654         }
5655
5656         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5657                 txd_lower |= E1000_TXD_CMD_VLE;
5658                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5659         }
5660
5661         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5662                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5663
5664         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5665                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5667         }
5668
5669         i = tx_ring->next_to_use;
5670
5671         do {
5672                 buffer_info = &tx_ring->buffer_info[i];
5673                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5674                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5675                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5676                                                   buffer_info->length);
5677                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5678
5679                 i++;
5680                 if (i == tx_ring->count)
5681                         i = 0;
5682         } while (--count > 0);
5683
5684         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5685
5686         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5687         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5688                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5689
5690         /* Force memory writes to complete before letting h/w
5691          * know there are new descriptors to fetch.  (Only
5692          * applicable for weak-ordered memory model archs,
5693          * such as IA-64).
5694          */
5695         wmb();
5696
5697         tx_ring->next_to_use = i;
5698 }
5699
5700 #define MINIMUM_DHCP_PACKET_SIZE 282
5701 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5702                                     struct sk_buff *skb)
5703 {
5704         struct e1000_hw *hw = &adapter->hw;
5705         u16 length, offset;
5706
5707         if (skb_vlan_tag_present(skb) &&
5708             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5709               (adapter->hw.mng_cookie.status &
5710                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5711                 return 0;
5712
5713         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5714                 return 0;
5715
5716         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5717                 return 0;
5718
5719         {
5720                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5721                 struct udphdr *udp;
5722
5723                 if (ip->protocol != IPPROTO_UDP)
5724                         return 0;
5725
5726                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5727                 if (ntohs(udp->dest) != 67)
5728                         return 0;
5729
5730                 offset = (u8 *)udp + 8 - skb->data;
5731                 length = skb->len - offset;
5732                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5733         }
5734
5735         return 0;
5736 }
5737
5738 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5739 {
5740         struct e1000_adapter *adapter = tx_ring->adapter;
5741
5742         netif_stop_queue(adapter->netdev);
5743         /* Herbert's original patch had:
5744          *  smp_mb__after_netif_stop_queue();
5745          * but since that doesn't exist yet, just open code it.
5746          */
5747         smp_mb();
5748
5749         /* We need to check again in a case another CPU has just
5750          * made room available.
5751          */
5752         if (e1000_desc_unused(tx_ring) < size)
5753                 return -EBUSY;
5754
5755         /* A reprieve! */
5756         netif_start_queue(adapter->netdev);
5757         ++adapter->restart_queue;
5758         return 0;
5759 }
5760
5761 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5762 {
5763         BUG_ON(size > tx_ring->count);
5764
5765         if (e1000_desc_unused(tx_ring) >= size)
5766                 return 0;
5767         return __e1000_maybe_stop_tx(tx_ring, size);
5768 }
5769
5770 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5771                                     struct net_device *netdev)
5772 {
5773         struct e1000_adapter *adapter = netdev_priv(netdev);
5774         struct e1000_ring *tx_ring = adapter->tx_ring;
5775         unsigned int first;
5776         unsigned int tx_flags = 0;
5777         unsigned int len = skb_headlen(skb);
5778         unsigned int nr_frags;
5779         unsigned int mss;
5780         int count = 0;
5781         int tso;
5782         unsigned int f;
5783         __be16 protocol = vlan_get_protocol(skb);
5784
5785         if (test_bit(__E1000_DOWN, &adapter->state)) {
5786                 dev_kfree_skb_any(skb);
5787                 return NETDEV_TX_OK;
5788         }
5789
5790         if (skb->len <= 0) {
5791                 dev_kfree_skb_any(skb);
5792                 return NETDEV_TX_OK;
5793         }
5794
5795         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5796          * pad skb in order to meet this minimum size requirement
5797          */
5798         if (skb_put_padto(skb, 17))
5799                 return NETDEV_TX_OK;
5800
5801         mss = skb_shinfo(skb)->gso_size;
5802         if (mss) {
5803                 u8 hdr_len;
5804
5805                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5806                  * points to just header, pull a few bytes of payload from
5807                  * frags into skb->data
5808                  */
5809                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5810                 /* we do this workaround for ES2LAN, but it is un-necessary,
5811                  * avoiding it could save a lot of cycles
5812                  */
5813                 if (skb->data_len && (hdr_len == len)) {
5814                         unsigned int pull_size;
5815
5816                         pull_size = min_t(unsigned int, 4, skb->data_len);
5817                         if (!__pskb_pull_tail(skb, pull_size)) {
5818                                 e_err("__pskb_pull_tail failed.\n");
5819                                 dev_kfree_skb_any(skb);
5820                                 return NETDEV_TX_OK;
5821                         }
5822                         len = skb_headlen(skb);
5823                 }
5824         }
5825
5826         /* reserve a descriptor for the offload context */
5827         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5828                 count++;
5829         count++;
5830
5831         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5832
5833         nr_frags = skb_shinfo(skb)->nr_frags;
5834         for (f = 0; f < nr_frags; f++)
5835                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5836                                       adapter->tx_fifo_limit);
5837
5838         if (adapter->hw.mac.tx_pkt_filtering)
5839                 e1000_transfer_dhcp_info(adapter, skb);
5840
5841         /* need: count + 2 desc gap to keep tail from touching
5842          * head, otherwise try next time
5843          */
5844         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5845                 return NETDEV_TX_BUSY;
5846
5847         if (skb_vlan_tag_present(skb)) {
5848                 tx_flags |= E1000_TX_FLAGS_VLAN;
5849                 tx_flags |= (skb_vlan_tag_get(skb) <<
5850                              E1000_TX_FLAGS_VLAN_SHIFT);
5851         }
5852
5853         first = tx_ring->next_to_use;
5854
5855         tso = e1000_tso(tx_ring, skb, protocol);
5856         if (tso < 0) {
5857                 dev_kfree_skb_any(skb);
5858                 return NETDEV_TX_OK;
5859         }
5860
5861         if (tso)
5862                 tx_flags |= E1000_TX_FLAGS_TSO;
5863         else if (e1000_tx_csum(tx_ring, skb, protocol))
5864                 tx_flags |= E1000_TX_FLAGS_CSUM;
5865
5866         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5867          * 82571 hardware supports TSO capabilities for IPv6 as well...
5868          * no longer assume, we must.
5869          */
5870         if (protocol == htons(ETH_P_IP))
5871                 tx_flags |= E1000_TX_FLAGS_IPV4;
5872
5873         if (unlikely(skb->no_fcs))
5874                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5875
5876         /* if count is 0 then mapping error has occurred */
5877         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5878                              nr_frags);
5879         if (count) {
5880                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5881                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5882                         if (!adapter->tx_hwtstamp_skb) {
5883                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5884                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5885                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5886                                 adapter->tx_hwtstamp_start = jiffies;
5887                                 schedule_work(&adapter->tx_hwtstamp_work);
5888                         } else {
5889                                 adapter->tx_hwtstamp_skipped++;
5890                         }
5891                 }
5892
5893                 skb_tx_timestamp(skb);
5894
5895                 netdev_sent_queue(netdev, skb->len);
5896                 e1000_tx_queue(tx_ring, tx_flags, count);
5897                 /* Make sure there is space in the ring for the next send. */
5898                 e1000_maybe_stop_tx(tx_ring,
5899                                     (MAX_SKB_FRAGS *
5900                                      DIV_ROUND_UP(PAGE_SIZE,
5901                                                   adapter->tx_fifo_limit) + 2));
5902
5903                 if (!skb->xmit_more ||
5904                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5905                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5906                                 e1000e_update_tdt_wa(tx_ring,
5907                                                      tx_ring->next_to_use);
5908                         else
5909                                 writel(tx_ring->next_to_use, tx_ring->tail);
5910
5911                         /* we need this if more than one processor can write
5912                          * to our tail at a time, it synchronizes IO on
5913                          *IA64/Altix systems
5914                          */
5915                         mmiowb();
5916                 }
5917         } else {
5918                 dev_kfree_skb_any(skb);
5919                 tx_ring->buffer_info[first].time_stamp = 0;
5920                 tx_ring->next_to_use = first;
5921         }
5922
5923         return NETDEV_TX_OK;
5924 }
5925
5926 /**
5927  * e1000_tx_timeout - Respond to a Tx Hang
5928  * @netdev: network interface device structure
5929  **/
5930 static void e1000_tx_timeout(struct net_device *netdev)
5931 {
5932         struct e1000_adapter *adapter = netdev_priv(netdev);
5933
5934         /* Do the reset outside of interrupt context */
5935         adapter->tx_timeout_count++;
5936         schedule_work(&adapter->reset_task);
5937 }
5938
5939 static void e1000_reset_task(struct work_struct *work)
5940 {
5941         struct e1000_adapter *adapter;
5942         adapter = container_of(work, struct e1000_adapter, reset_task);
5943
5944         /* don't run the task if already down */
5945         if (test_bit(__E1000_DOWN, &adapter->state))
5946                 return;
5947
5948         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5949                 e1000e_dump(adapter);
5950                 e_err("Reset adapter unexpectedly\n");
5951         }
5952         e1000e_reinit_locked(adapter);
5953 }
5954
5955 /**
5956  * e1000_get_stats64 - Get System Network Statistics
5957  * @netdev: network interface device structure
5958  * @stats: rtnl_link_stats64 pointer
5959  *
5960  * Returns the address of the device statistics structure.
5961  **/
5962 void e1000e_get_stats64(struct net_device *netdev,
5963                         struct rtnl_link_stats64 *stats)
5964 {
5965         struct e1000_adapter *adapter = netdev_priv(netdev);
5966
5967         spin_lock(&adapter->stats64_lock);
5968         e1000e_update_stats(adapter);
5969         /* Fill out the OS statistics structure */
5970         stats->rx_bytes = adapter->stats.gorc;
5971         stats->rx_packets = adapter->stats.gprc;
5972         stats->tx_bytes = adapter->stats.gotc;
5973         stats->tx_packets = adapter->stats.gptc;
5974         stats->multicast = adapter->stats.mprc;
5975         stats->collisions = adapter->stats.colc;
5976
5977         /* Rx Errors */
5978
5979         /* RLEC on some newer hardware can be incorrect so build
5980          * our own version based on RUC and ROC
5981          */
5982         stats->rx_errors = adapter->stats.rxerrc +
5983             adapter->stats.crcerrs + adapter->stats.algnerrc +
5984             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5985         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5986         stats->rx_crc_errors = adapter->stats.crcerrs;
5987         stats->rx_frame_errors = adapter->stats.algnerrc;
5988         stats->rx_missed_errors = adapter->stats.mpc;
5989
5990         /* Tx Errors */
5991         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5992         stats->tx_aborted_errors = adapter->stats.ecol;
5993         stats->tx_window_errors = adapter->stats.latecol;
5994         stats->tx_carrier_errors = adapter->stats.tncrs;
5995
5996         /* Tx Dropped needs to be maintained elsewhere */
5997
5998         spin_unlock(&adapter->stats64_lock);
5999 }
6000
6001 /**
6002  * e1000_change_mtu - Change the Maximum Transfer Unit
6003  * @netdev: network interface device structure
6004  * @new_mtu: new value for maximum frame size
6005  *
6006  * Returns 0 on success, negative on failure
6007  **/
6008 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6009 {
6010         struct e1000_adapter *adapter = netdev_priv(netdev);
6011         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6012
6013         /* Jumbo frame support */
6014         if ((new_mtu > ETH_DATA_LEN) &&
6015             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6016                 e_err("Jumbo Frames not supported.\n");
6017                 return -EINVAL;
6018         }
6019
6020         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6021         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6022             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6023             (new_mtu > ETH_DATA_LEN)) {
6024                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6025                 return -EINVAL;
6026         }
6027
6028         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6029                 usleep_range(1000, 2000);
6030         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6031         adapter->max_frame_size = max_frame;
6032         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6033         netdev->mtu = new_mtu;
6034
6035         pm_runtime_get_sync(netdev->dev.parent);
6036
6037         if (netif_running(netdev))
6038                 e1000e_down(adapter, true);
6039
6040         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6041          * means we reserve 2 more, this pushes us to allocate from the next
6042          * larger slab size.
6043          * i.e. RXBUFFER_2048 --> size-4096 slab
6044          * However with the new *_jumbo_rx* routines, jumbo receives will use
6045          * fragmented skbs
6046          */
6047
6048         if (max_frame <= 2048)
6049                 adapter->rx_buffer_len = 2048;
6050         else
6051                 adapter->rx_buffer_len = 4096;
6052
6053         /* adjust allocation if LPE protects us, and we aren't using SBP */
6054         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6055                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6056
6057         if (netif_running(netdev))
6058                 e1000e_up(adapter);
6059         else
6060                 e1000e_reset(adapter);
6061
6062         pm_runtime_put_sync(netdev->dev.parent);
6063
6064         clear_bit(__E1000_RESETTING, &adapter->state);
6065
6066         return 0;
6067 }
6068
6069 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6070                            int cmd)
6071 {
6072         struct e1000_adapter *adapter = netdev_priv(netdev);
6073         struct mii_ioctl_data *data = if_mii(ifr);
6074
6075         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6076                 return -EOPNOTSUPP;
6077
6078         switch (cmd) {
6079         case SIOCGMIIPHY:
6080                 data->phy_id = adapter->hw.phy.addr;
6081                 break;
6082         case SIOCGMIIREG:
6083                 e1000_phy_read_status(adapter);
6084
6085                 switch (data->reg_num & 0x1F) {
6086                 case MII_BMCR:
6087                         data->val_out = adapter->phy_regs.bmcr;
6088                         break;
6089                 case MII_BMSR:
6090                         data->val_out = adapter->phy_regs.bmsr;
6091                         break;
6092                 case MII_PHYSID1:
6093                         data->val_out = (adapter->hw.phy.id >> 16);
6094                         break;
6095                 case MII_PHYSID2:
6096                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6097                         break;
6098                 case MII_ADVERTISE:
6099                         data->val_out = adapter->phy_regs.advertise;
6100                         break;
6101                 case MII_LPA:
6102                         data->val_out = adapter->phy_regs.lpa;
6103                         break;
6104                 case MII_EXPANSION:
6105                         data->val_out = adapter->phy_regs.expansion;
6106                         break;
6107                 case MII_CTRL1000:
6108                         data->val_out = adapter->phy_regs.ctrl1000;
6109                         break;
6110                 case MII_STAT1000:
6111                         data->val_out = adapter->phy_regs.stat1000;
6112                         break;
6113                 case MII_ESTATUS:
6114                         data->val_out = adapter->phy_regs.estatus;
6115                         break;
6116                 default:
6117                         return -EIO;
6118                 }
6119                 break;
6120         case SIOCSMIIREG:
6121         default:
6122                 return -EOPNOTSUPP;
6123         }
6124         return 0;
6125 }
6126
6127 /**
6128  * e1000e_hwtstamp_ioctl - control hardware time stamping
6129  * @netdev: network interface device structure
6130  * @ifreq: interface request
6131  *
6132  * Outgoing time stamping can be enabled and disabled. Play nice and
6133  * disable it when requested, although it shouldn't cause any overhead
6134  * when no packet needs it. At most one packet in the queue may be
6135  * marked for time stamping, otherwise it would be impossible to tell
6136  * for sure to which packet the hardware time stamp belongs.
6137  *
6138  * Incoming time stamping has to be configured via the hardware filters.
6139  * Not all combinations are supported, in particular event type has to be
6140  * specified. Matching the kind of event packet is not supported, with the
6141  * exception of "all V2 events regardless of level 2 or 4".
6142  **/
6143 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6144 {
6145         struct e1000_adapter *adapter = netdev_priv(netdev);
6146         struct hwtstamp_config config;
6147         int ret_val;
6148
6149         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6150                 return -EFAULT;
6151
6152         ret_val = e1000e_config_hwtstamp(adapter, &config);
6153         if (ret_val)
6154                 return ret_val;
6155
6156         switch (config.rx_filter) {
6157         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6158         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6159         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6160         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6161         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6162         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6163                 /* With V2 type filters which specify a Sync or Delay Request,
6164                  * Path Delay Request/Response messages are also time stamped
6165                  * by hardware so notify the caller the requested packets plus
6166                  * some others are time stamped.
6167                  */
6168                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6169                 break;
6170         default:
6171                 break;
6172         }
6173
6174         return copy_to_user(ifr->ifr_data, &config,
6175                             sizeof(config)) ? -EFAULT : 0;
6176 }
6177
6178 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6179 {
6180         struct e1000_adapter *adapter = netdev_priv(netdev);
6181
6182         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6183                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6184 }
6185
6186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6187 {
6188         switch (cmd) {
6189         case SIOCGMIIPHY:
6190         case SIOCGMIIREG:
6191         case SIOCSMIIREG:
6192                 return e1000_mii_ioctl(netdev, ifr, cmd);
6193         case SIOCSHWTSTAMP:
6194                 return e1000e_hwtstamp_set(netdev, ifr);
6195         case SIOCGHWTSTAMP:
6196                 return e1000e_hwtstamp_get(netdev, ifr);
6197         default:
6198                 return -EOPNOTSUPP;
6199         }
6200 }
6201
6202 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6203 {
6204         struct e1000_hw *hw = &adapter->hw;
6205         u32 i, mac_reg, wuc;
6206         u16 phy_reg, wuc_enable;
6207         int retval;
6208
6209         /* copy MAC RARs to PHY RARs */
6210         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6211
6212         retval = hw->phy.ops.acquire(hw);
6213         if (retval) {
6214                 e_err("Could not acquire PHY\n");
6215                 return retval;
6216         }
6217
6218         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6219         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6220         if (retval)
6221                 goto release;
6222
6223         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6224         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6225                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6226                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6227                                            (u16)(mac_reg & 0xFFFF));
6228                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6229                                            (u16)((mac_reg >> 16) & 0xFFFF));
6230         }
6231
6232         /* configure PHY Rx Control register */
6233         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6234         mac_reg = er32(RCTL);
6235         if (mac_reg & E1000_RCTL_UPE)
6236                 phy_reg |= BM_RCTL_UPE;
6237         if (mac_reg & E1000_RCTL_MPE)
6238                 phy_reg |= BM_RCTL_MPE;
6239         phy_reg &= ~(BM_RCTL_MO_MASK);
6240         if (mac_reg & E1000_RCTL_MO_3)
6241                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6242                             << BM_RCTL_MO_SHIFT);
6243         if (mac_reg & E1000_RCTL_BAM)
6244                 phy_reg |= BM_RCTL_BAM;
6245         if (mac_reg & E1000_RCTL_PMCF)
6246                 phy_reg |= BM_RCTL_PMCF;
6247         mac_reg = er32(CTRL);
6248         if (mac_reg & E1000_CTRL_RFCE)
6249                 phy_reg |= BM_RCTL_RFCE;
6250         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6251
6252         wuc = E1000_WUC_PME_EN;
6253         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6254                 wuc |= E1000_WUC_APME;
6255
6256         /* enable PHY wakeup in MAC register */
6257         ew32(WUFC, wufc);
6258         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6259                    E1000_WUC_PME_STATUS | wuc));
6260
6261         /* configure and enable PHY wakeup in PHY registers */
6262         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6263         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6264
6265         /* activate PHY wakeup */
6266         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6267         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6268         if (retval)
6269                 e_err("Could not set PHY Host Wakeup bit\n");
6270 release:
6271         hw->phy.ops.release(hw);
6272
6273         return retval;
6274 }
6275
6276 static void e1000e_flush_lpic(struct pci_dev *pdev)
6277 {
6278         struct net_device *netdev = pci_get_drvdata(pdev);
6279         struct e1000_adapter *adapter = netdev_priv(netdev);
6280         struct e1000_hw *hw = &adapter->hw;
6281         u32 ret_val;
6282
6283         pm_runtime_get_sync(netdev->dev.parent);
6284
6285         ret_val = hw->phy.ops.acquire(hw);
6286         if (ret_val)
6287                 goto fl_out;
6288
6289         pr_info("EEE TX LPI TIMER: %08X\n",
6290                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6291
6292         hw->phy.ops.release(hw);
6293
6294 fl_out:
6295         pm_runtime_put_sync(netdev->dev.parent);
6296 }
6297
6298 static int e1000e_pm_freeze(struct device *dev)
6299 {
6300         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6301         struct e1000_adapter *adapter = netdev_priv(netdev);
6302
6303         netif_device_detach(netdev);
6304
6305         if (netif_running(netdev)) {
6306                 int count = E1000_CHECK_RESET_COUNT;
6307
6308                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6309                         usleep_range(10000, 20000);
6310
6311                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6312
6313                 /* Quiesce the device without resetting the hardware */
6314                 e1000e_down(adapter, false);
6315                 e1000_free_irq(adapter);
6316         }
6317         e1000e_reset_interrupt_capability(adapter);
6318
6319         /* Allow time for pending master requests to run */
6320         e1000e_disable_pcie_master(&adapter->hw);
6321
6322         return 0;
6323 }
6324
6325 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6326 {
6327         struct net_device *netdev = pci_get_drvdata(pdev);
6328         struct e1000_adapter *adapter = netdev_priv(netdev);
6329         struct e1000_hw *hw = &adapter->hw;
6330         u32 ctrl, ctrl_ext, rctl, status;
6331         /* Runtime suspend should only enable wakeup for link changes */
6332         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6333         int retval = 0;
6334
6335         status = er32(STATUS);
6336         if (status & E1000_STATUS_LU)
6337                 wufc &= ~E1000_WUFC_LNKC;
6338
6339         if (wufc) {
6340                 e1000_setup_rctl(adapter);
6341                 e1000e_set_rx_mode(netdev);
6342
6343                 /* turn on all-multi mode if wake on multicast is enabled */
6344                 if (wufc & E1000_WUFC_MC) {
6345                         rctl = er32(RCTL);
6346                         rctl |= E1000_RCTL_MPE;
6347                         ew32(RCTL, rctl);
6348                 }
6349
6350                 ctrl = er32(CTRL);
6351                 ctrl |= E1000_CTRL_ADVD3WUC;
6352                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6353                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6354                 ew32(CTRL, ctrl);
6355
6356                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6357                     adapter->hw.phy.media_type ==
6358                     e1000_media_type_internal_serdes) {
6359                         /* keep the laser running in D3 */
6360                         ctrl_ext = er32(CTRL_EXT);
6361                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6362                         ew32(CTRL_EXT, ctrl_ext);
6363                 }
6364
6365                 if (!runtime)
6366                         e1000e_power_up_phy(adapter);
6367
6368                 if (adapter->flags & FLAG_IS_ICH)
6369                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6370
6371                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6372                         /* enable wakeup by the PHY */
6373                         retval = e1000_init_phy_wakeup(adapter, wufc);
6374                         if (retval)
6375                                 return retval;
6376                 } else {
6377                         /* enable wakeup by the MAC */
6378                         ew32(WUFC, wufc);
6379                         ew32(WUC, E1000_WUC_PME_EN);
6380                 }
6381         } else {
6382                 ew32(WUC, 0);
6383                 ew32(WUFC, 0);
6384
6385                 e1000_power_down_phy(adapter);
6386         }
6387
6388         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6389                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6390         } else if (hw->mac.type >= e1000_pch_lpt) {
6391                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6392                         /* ULP does not support wake from unicast, multicast
6393                          * or broadcast.
6394                          */
6395                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6396
6397                 if (retval)
6398                         return retval;
6399         }
6400
6401         /* Ensure that the appropriate bits are set in LPI_CTRL
6402          * for EEE in Sx
6403          */
6404         if ((hw->phy.type >= e1000_phy_i217) &&
6405             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6406                 u16 lpi_ctrl = 0;
6407
6408                 retval = hw->phy.ops.acquire(hw);
6409                 if (!retval) {
6410                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6411                                                  &lpi_ctrl);
6412                         if (!retval) {
6413                                 if (adapter->eee_advert &
6414                                     hw->dev_spec.ich8lan.eee_lp_ability &
6415                                     I82579_EEE_100_SUPPORTED)
6416                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6417                                 if (adapter->eee_advert &
6418                                     hw->dev_spec.ich8lan.eee_lp_ability &
6419                                     I82579_EEE_1000_SUPPORTED)
6420                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6421
6422                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6423                                                          lpi_ctrl);
6424                         }
6425                 }
6426                 hw->phy.ops.release(hw);
6427         }
6428
6429         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6430          * would have already happened in close and is redundant.
6431          */
6432         e1000e_release_hw_control(adapter);
6433
6434         pci_clear_master(pdev);
6435
6436         /* The pci-e switch on some quad port adapters will report a
6437          * correctable error when the MAC transitions from D0 to D3.  To
6438          * prevent this we need to mask off the correctable errors on the
6439          * downstream port of the pci-e switch.
6440          *
6441          * We don't have the associated upstream bridge while assigning
6442          * the PCI device into guest. For example, the KVM on power is
6443          * one of the cases.
6444          */
6445         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6446                 struct pci_dev *us_dev = pdev->bus->self;
6447                 u16 devctl;
6448
6449                 if (!us_dev)
6450                         return 0;
6451
6452                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6453                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6454                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6455
6456                 pci_save_state(pdev);
6457                 pci_prepare_to_sleep(pdev);
6458
6459                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6460         }
6461
6462         return 0;
6463 }
6464
6465 /**
6466  * __e1000e_disable_aspm - Disable ASPM states
6467  * @pdev: pointer to PCI device struct
6468  * @state: bit-mask of ASPM states to disable
6469  * @locked: indication if this context holds pci_bus_sem locked.
6470  *
6471  * Some devices *must* have certain ASPM states disabled per hardware errata.
6472  **/
6473 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6474 {
6475         struct pci_dev *parent = pdev->bus->self;
6476         u16 aspm_dis_mask = 0;
6477         u16 pdev_aspmc, parent_aspmc;
6478
6479         switch (state) {
6480         case PCIE_LINK_STATE_L0S:
6481         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6482                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6483                 /* fall-through - can't have L1 without L0s */
6484         case PCIE_LINK_STATE_L1:
6485                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6486                 break;
6487         default:
6488                 return;
6489         }
6490
6491         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6492         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6493
6494         if (parent) {
6495                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6496                                           &parent_aspmc);
6497                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6498         }
6499
6500         /* Nothing to do if the ASPM states to be disabled already are */
6501         if (!(pdev_aspmc & aspm_dis_mask) &&
6502             (!parent || !(parent_aspmc & aspm_dis_mask)))
6503                 return;
6504
6505         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6506                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6507                  "L0s" : "",
6508                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6509                  "L1" : "");
6510
6511 #ifdef CONFIG_PCIEASPM
6512         if (locked)
6513                 pci_disable_link_state_locked(pdev, state);
6514         else
6515                 pci_disable_link_state(pdev, state);
6516
6517         /* Double-check ASPM control.  If not disabled by the above, the
6518          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6519          * not enabled); override by writing PCI config space directly.
6520          */
6521         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6522         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6523
6524         if (!(aspm_dis_mask & pdev_aspmc))
6525                 return;
6526 #endif
6527
6528         /* Both device and parent should have the same ASPM setting.
6529          * Disable ASPM in downstream component first and then upstream.
6530          */
6531         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6532
6533         if (parent)
6534                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6535                                            aspm_dis_mask);
6536 }
6537
6538 /**
6539  * e1000e_disable_aspm - Disable ASPM states.
6540  * @pdev: pointer to PCI device struct
6541  * @state: bit-mask of ASPM states to disable
6542  *
6543  * This function acquires the pci_bus_sem!
6544  * Some devices *must* have certain ASPM states disabled per hardware errata.
6545  **/
6546 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6547 {
6548         __e1000e_disable_aspm(pdev, state, 0);
6549 }
6550
6551 /**
6552  * e1000e_disable_aspm_locked   Disable ASPM states.
6553  * @pdev: pointer to PCI device struct
6554  * @state: bit-mask of ASPM states to disable
6555  *
6556  * This function must be called with pci_bus_sem acquired!
6557  * Some devices *must* have certain ASPM states disabled per hardware errata.
6558  **/
6559 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6560 {
6561         __e1000e_disable_aspm(pdev, state, 1);
6562 }
6563
6564 #ifdef CONFIG_PM
6565 static int __e1000_resume(struct pci_dev *pdev)
6566 {
6567         struct net_device *netdev = pci_get_drvdata(pdev);
6568         struct e1000_adapter *adapter = netdev_priv(netdev);
6569         struct e1000_hw *hw = &adapter->hw;
6570         u16 aspm_disable_flag = 0;
6571
6572         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6573                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6574         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6575                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6576         if (aspm_disable_flag)
6577                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6578
6579         pci_set_master(pdev);
6580
6581         if (hw->mac.type >= e1000_pch2lan)
6582                 e1000_resume_workarounds_pchlan(&adapter->hw);
6583
6584         e1000e_power_up_phy(adapter);
6585
6586         /* report the system wakeup cause from S3/S4 */
6587         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6588                 u16 phy_data;
6589
6590                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6591                 if (phy_data) {
6592                         e_info("PHY Wakeup cause - %s\n",
6593                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6594                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6595                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6596                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6597                                phy_data & E1000_WUS_LNKC ?
6598                                "Link Status Change" : "other");
6599                 }
6600                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6601         } else {
6602                 u32 wus = er32(WUS);
6603
6604                 if (wus) {
6605                         e_info("MAC Wakeup cause - %s\n",
6606                                wus & E1000_WUS_EX ? "Unicast Packet" :
6607                                wus & E1000_WUS_MC ? "Multicast Packet" :
6608                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6609                                wus & E1000_WUS_MAG ? "Magic Packet" :
6610                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6611                                "other");
6612                 }
6613                 ew32(WUS, ~0);
6614         }
6615
6616         e1000e_reset(adapter);
6617
6618         e1000_init_manageability_pt(adapter);
6619
6620         /* If the controller has AMT, do not set DRV_LOAD until the interface
6621          * is up.  For all other cases, let the f/w know that the h/w is now
6622          * under the control of the driver.
6623          */
6624         if (!(adapter->flags & FLAG_HAS_AMT))
6625                 e1000e_get_hw_control(adapter);
6626
6627         return 0;
6628 }
6629
6630 #ifdef CONFIG_PM_SLEEP
6631 static int e1000e_pm_thaw(struct device *dev)
6632 {
6633         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6634         struct e1000_adapter *adapter = netdev_priv(netdev);
6635
6636         e1000e_set_interrupt_capability(adapter);
6637         if (netif_running(netdev)) {
6638                 u32 err = e1000_request_irq(adapter);
6639
6640                 if (err)
6641                         return err;
6642
6643                 e1000e_up(adapter);
6644         }
6645
6646         netif_device_attach(netdev);
6647
6648         return 0;
6649 }
6650
6651 static int e1000e_pm_suspend(struct device *dev)
6652 {
6653         struct pci_dev *pdev = to_pci_dev(dev);
6654         int rc;
6655
6656         e1000e_flush_lpic(pdev);
6657
6658         e1000e_pm_freeze(dev);
6659
6660         rc = __e1000_shutdown(pdev, false);
6661         if (rc)
6662                 e1000e_pm_thaw(dev);
6663
6664         return rc;
6665 }
6666
6667 static int e1000e_pm_resume(struct device *dev)
6668 {
6669         struct pci_dev *pdev = to_pci_dev(dev);
6670         int rc;
6671
6672         rc = __e1000_resume(pdev);
6673         if (rc)
6674                 return rc;
6675
6676         return e1000e_pm_thaw(dev);
6677 }
6678 #endif /* CONFIG_PM_SLEEP */
6679
6680 static int e1000e_pm_runtime_idle(struct device *dev)
6681 {
6682         struct pci_dev *pdev = to_pci_dev(dev);
6683         struct net_device *netdev = pci_get_drvdata(pdev);
6684         struct e1000_adapter *adapter = netdev_priv(netdev);
6685         u16 eee_lp;
6686
6687         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6688
6689         if (!e1000e_has_link(adapter)) {
6690                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6691                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6692         }
6693
6694         return -EBUSY;
6695 }
6696
6697 static int e1000e_pm_runtime_resume(struct device *dev)
6698 {
6699         struct pci_dev *pdev = to_pci_dev(dev);
6700         struct net_device *netdev = pci_get_drvdata(pdev);
6701         struct e1000_adapter *adapter = netdev_priv(netdev);
6702         int rc;
6703
6704         rc = __e1000_resume(pdev);
6705         if (rc)
6706                 return rc;
6707
6708         if (netdev->flags & IFF_UP)
6709                 e1000e_up(adapter);
6710
6711         return rc;
6712 }
6713
6714 static int e1000e_pm_runtime_suspend(struct device *dev)
6715 {
6716         struct pci_dev *pdev = to_pci_dev(dev);
6717         struct net_device *netdev = pci_get_drvdata(pdev);
6718         struct e1000_adapter *adapter = netdev_priv(netdev);
6719
6720         if (netdev->flags & IFF_UP) {
6721                 int count = E1000_CHECK_RESET_COUNT;
6722
6723                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6724                         usleep_range(10000, 20000);
6725
6726                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6727
6728                 /* Down the device without resetting the hardware */
6729                 e1000e_down(adapter, false);
6730         }
6731
6732         if (__e1000_shutdown(pdev, true)) {
6733                 e1000e_pm_runtime_resume(dev);
6734                 return -EBUSY;
6735         }
6736
6737         return 0;
6738 }
6739 #endif /* CONFIG_PM */
6740
6741 static void e1000_shutdown(struct pci_dev *pdev)
6742 {
6743         e1000e_flush_lpic(pdev);
6744
6745         e1000e_pm_freeze(&pdev->dev);
6746
6747         __e1000_shutdown(pdev, false);
6748 }
6749
6750 #ifdef CONFIG_NET_POLL_CONTROLLER
6751
6752 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6753 {
6754         struct net_device *netdev = data;
6755         struct e1000_adapter *adapter = netdev_priv(netdev);
6756
6757         if (adapter->msix_entries) {
6758                 int vector, msix_irq;
6759
6760                 vector = 0;
6761                 msix_irq = adapter->msix_entries[vector].vector;
6762                 if (disable_hardirq(msix_irq))
6763                         e1000_intr_msix_rx(msix_irq, netdev);
6764                 enable_irq(msix_irq);
6765
6766                 vector++;
6767                 msix_irq = adapter->msix_entries[vector].vector;
6768                 if (disable_hardirq(msix_irq))
6769                         e1000_intr_msix_tx(msix_irq, netdev);
6770                 enable_irq(msix_irq);
6771
6772                 vector++;
6773                 msix_irq = adapter->msix_entries[vector].vector;
6774                 if (disable_hardirq(msix_irq))
6775                         e1000_msix_other(msix_irq, netdev);
6776                 enable_irq(msix_irq);
6777         }
6778
6779         return IRQ_HANDLED;
6780 }
6781
6782 /**
6783  * e1000_netpoll
6784  * @netdev: network interface device structure
6785  *
6786  * Polling 'interrupt' - used by things like netconsole to send skbs
6787  * without having to re-enable interrupts. It's not called while
6788  * the interrupt routine is executing.
6789  */
6790 static void e1000_netpoll(struct net_device *netdev)
6791 {
6792         struct e1000_adapter *adapter = netdev_priv(netdev);
6793
6794         switch (adapter->int_mode) {
6795         case E1000E_INT_MODE_MSIX:
6796                 e1000_intr_msix(adapter->pdev->irq, netdev);
6797                 break;
6798         case E1000E_INT_MODE_MSI:
6799                 if (disable_hardirq(adapter->pdev->irq))
6800                         e1000_intr_msi(adapter->pdev->irq, netdev);
6801                 enable_irq(adapter->pdev->irq);
6802                 break;
6803         default:                /* E1000E_INT_MODE_LEGACY */
6804                 if (disable_hardirq(adapter->pdev->irq))
6805                         e1000_intr(adapter->pdev->irq, netdev);
6806                 enable_irq(adapter->pdev->irq);
6807                 break;
6808         }
6809 }
6810 #endif
6811
6812 /**
6813  * e1000_io_error_detected - called when PCI error is detected
6814  * @pdev: Pointer to PCI device
6815  * @state: The current pci connection state
6816  *
6817  * This function is called after a PCI bus error affecting
6818  * this device has been detected.
6819  */
6820 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6821                                                 pci_channel_state_t state)
6822 {
6823         struct net_device *netdev = pci_get_drvdata(pdev);
6824         struct e1000_adapter *adapter = netdev_priv(netdev);
6825
6826         netif_device_detach(netdev);
6827
6828         if (state == pci_channel_io_perm_failure)
6829                 return PCI_ERS_RESULT_DISCONNECT;
6830
6831         if (netif_running(netdev))
6832                 e1000e_down(adapter, true);
6833         pci_disable_device(pdev);
6834
6835         /* Request a slot slot reset. */
6836         return PCI_ERS_RESULT_NEED_RESET;
6837 }
6838
6839 /**
6840  * e1000_io_slot_reset - called after the pci bus has been reset.
6841  * @pdev: Pointer to PCI device
6842  *
6843  * Restart the card from scratch, as if from a cold-boot. Implementation
6844  * resembles the first-half of the e1000e_pm_resume routine.
6845  */
6846 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6847 {
6848         struct net_device *netdev = pci_get_drvdata(pdev);
6849         struct e1000_adapter *adapter = netdev_priv(netdev);
6850         struct e1000_hw *hw = &adapter->hw;
6851         u16 aspm_disable_flag = 0;
6852         int err;
6853         pci_ers_result_t result;
6854
6855         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6856                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6857         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6858                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6859         if (aspm_disable_flag)
6860                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6861
6862         err = pci_enable_device_mem(pdev);
6863         if (err) {
6864                 dev_err(&pdev->dev,
6865                         "Cannot re-enable PCI device after reset.\n");
6866                 result = PCI_ERS_RESULT_DISCONNECT;
6867         } else {
6868                 pdev->state_saved = true;
6869                 pci_restore_state(pdev);
6870                 pci_set_master(pdev);
6871
6872                 pci_enable_wake(pdev, PCI_D3hot, 0);
6873                 pci_enable_wake(pdev, PCI_D3cold, 0);
6874
6875                 e1000e_reset(adapter);
6876                 ew32(WUS, ~0);
6877                 result = PCI_ERS_RESULT_RECOVERED;
6878         }
6879
6880         return result;
6881 }
6882
6883 /**
6884  * e1000_io_resume - called when traffic can start flowing again.
6885  * @pdev: Pointer to PCI device
6886  *
6887  * This callback is called when the error recovery driver tells us that
6888  * its OK to resume normal operation. Implementation resembles the
6889  * second-half of the e1000e_pm_resume routine.
6890  */
6891 static void e1000_io_resume(struct pci_dev *pdev)
6892 {
6893         struct net_device *netdev = pci_get_drvdata(pdev);
6894         struct e1000_adapter *adapter = netdev_priv(netdev);
6895
6896         e1000_init_manageability_pt(adapter);
6897
6898         if (netif_running(netdev))
6899                 e1000e_up(adapter);
6900
6901         netif_device_attach(netdev);
6902
6903         /* If the controller has AMT, do not set DRV_LOAD until the interface
6904          * is up.  For all other cases, let the f/w know that the h/w is now
6905          * under the control of the driver.
6906          */
6907         if (!(adapter->flags & FLAG_HAS_AMT))
6908                 e1000e_get_hw_control(adapter);
6909 }
6910
6911 static void e1000_print_device_info(struct e1000_adapter *adapter)
6912 {
6913         struct e1000_hw *hw = &adapter->hw;
6914         struct net_device *netdev = adapter->netdev;
6915         u32 ret_val;
6916         u8 pba_str[E1000_PBANUM_LENGTH];
6917
6918         /* print bus type/speed/width info */
6919         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6920                /* bus width */
6921                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6922                 "Width x1"),
6923                /* MAC address */
6924                netdev->dev_addr);
6925         e_info("Intel(R) PRO/%s Network Connection\n",
6926                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6927         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6928                                                 E1000_PBANUM_LENGTH);
6929         if (ret_val)
6930                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6931         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6932                hw->mac.type, hw->phy.type, pba_str);
6933 }
6934
6935 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6936 {
6937         struct e1000_hw *hw = &adapter->hw;
6938         int ret_val;
6939         u16 buf = 0;
6940
6941         if (hw->mac.type != e1000_82573)
6942                 return;
6943
6944         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6945         le16_to_cpus(&buf);
6946         if (!ret_val && (!(buf & BIT(0)))) {
6947                 /* Deep Smart Power Down (DSPD) */
6948                 dev_warn(&adapter->pdev->dev,
6949                          "Warning: detected DSPD enabled in EEPROM\n");
6950         }
6951 }
6952
6953 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6954                                             netdev_features_t features)
6955 {
6956         struct e1000_adapter *adapter = netdev_priv(netdev);
6957         struct e1000_hw *hw = &adapter->hw;
6958
6959         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6960         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6961                 features &= ~NETIF_F_RXFCS;
6962
6963         /* Since there is no support for separate Rx/Tx vlan accel
6964          * enable/disable make sure Tx flag is always in same state as Rx.
6965          */
6966         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6967                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6968         else
6969                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6970
6971         return features;
6972 }
6973
6974 static int e1000_set_features(struct net_device *netdev,
6975                               netdev_features_t features)
6976 {
6977         struct e1000_adapter *adapter = netdev_priv(netdev);
6978         netdev_features_t changed = features ^ netdev->features;
6979
6980         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6981                 adapter->flags |= FLAG_TSO_FORCE;
6982
6983         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6984                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6985                          NETIF_F_RXALL)))
6986                 return 0;
6987
6988         if (changed & NETIF_F_RXFCS) {
6989                 if (features & NETIF_F_RXFCS) {
6990                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6991                 } else {
6992                         /* We need to take it back to defaults, which might mean
6993                          * stripping is still disabled at the adapter level.
6994                          */
6995                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6996                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6997                         else
6998                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6999                 }
7000         }
7001
7002         netdev->features = features;
7003
7004         if (netif_running(netdev))
7005                 e1000e_reinit_locked(adapter);
7006         else
7007                 e1000e_reset(adapter);
7008
7009         return 0;
7010 }
7011
7012 static const struct net_device_ops e1000e_netdev_ops = {
7013         .ndo_open               = e1000e_open,
7014         .ndo_stop               = e1000e_close,
7015         .ndo_start_xmit         = e1000_xmit_frame,
7016         .ndo_get_stats64        = e1000e_get_stats64,
7017         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7018         .ndo_set_mac_address    = e1000_set_mac,
7019         .ndo_change_mtu         = e1000_change_mtu,
7020         .ndo_do_ioctl           = e1000_ioctl,
7021         .ndo_tx_timeout         = e1000_tx_timeout,
7022         .ndo_validate_addr      = eth_validate_addr,
7023
7024         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7025         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7026 #ifdef CONFIG_NET_POLL_CONTROLLER
7027         .ndo_poll_controller    = e1000_netpoll,
7028 #endif
7029         .ndo_set_features = e1000_set_features,
7030         .ndo_fix_features = e1000_fix_features,
7031         .ndo_features_check     = passthru_features_check,
7032 };
7033
7034 /**
7035  * e1000_probe - Device Initialization Routine
7036  * @pdev: PCI device information struct
7037  * @ent: entry in e1000_pci_tbl
7038  *
7039  * Returns 0 on success, negative on failure
7040  *
7041  * e1000_probe initializes an adapter identified by a pci_dev structure.
7042  * The OS initialization, configuring of the adapter private structure,
7043  * and a hardware reset occur.
7044  **/
7045 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7046 {
7047         struct net_device *netdev;
7048         struct e1000_adapter *adapter;
7049         struct e1000_hw *hw;
7050         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7051         resource_size_t mmio_start, mmio_len;
7052         resource_size_t flash_start, flash_len;
7053         static int cards_found;
7054         u16 aspm_disable_flag = 0;
7055         int bars, i, err, pci_using_dac;
7056         u16 eeprom_data = 0;
7057         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7058         s32 ret_val = 0;
7059
7060         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7061                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7062         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7063                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7064         if (aspm_disable_flag)
7065                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7066
7067         err = pci_enable_device_mem(pdev);
7068         if (err)
7069                 return err;
7070
7071         pci_using_dac = 0;
7072         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7073         if (!err) {
7074                 pci_using_dac = 1;
7075         } else {
7076                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7077                 if (err) {
7078                         dev_err(&pdev->dev,
7079                                 "No usable DMA configuration, aborting\n");
7080                         goto err_dma;
7081                 }
7082         }
7083
7084         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7085         err = pci_request_selected_regions_exclusive(pdev, bars,
7086                                                      e1000e_driver_name);
7087         if (err)
7088                 goto err_pci_reg;
7089
7090         /* AER (Advanced Error Reporting) hooks */
7091         pci_enable_pcie_error_reporting(pdev);
7092
7093         pci_set_master(pdev);
7094         /* PCI config space info */
7095         err = pci_save_state(pdev);
7096         if (err)
7097                 goto err_alloc_etherdev;
7098
7099         err = -ENOMEM;
7100         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7101         if (!netdev)
7102                 goto err_alloc_etherdev;
7103
7104         SET_NETDEV_DEV(netdev, &pdev->dev);
7105
7106         netdev->irq = pdev->irq;
7107
7108         pci_set_drvdata(pdev, netdev);
7109         adapter = netdev_priv(netdev);
7110         hw = &adapter->hw;
7111         adapter->netdev = netdev;
7112         adapter->pdev = pdev;
7113         adapter->ei = ei;
7114         adapter->pba = ei->pba;
7115         adapter->flags = ei->flags;
7116         adapter->flags2 = ei->flags2;
7117         adapter->hw.adapter = adapter;
7118         adapter->hw.mac.type = ei->mac;
7119         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7120         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7121
7122         mmio_start = pci_resource_start(pdev, 0);
7123         mmio_len = pci_resource_len(pdev, 0);
7124
7125         err = -EIO;
7126         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7127         if (!adapter->hw.hw_addr)
7128                 goto err_ioremap;
7129
7130         if ((adapter->flags & FLAG_HAS_FLASH) &&
7131             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7132             (hw->mac.type < e1000_pch_spt)) {
7133                 flash_start = pci_resource_start(pdev, 1);
7134                 flash_len = pci_resource_len(pdev, 1);
7135                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7136                 if (!adapter->hw.flash_address)
7137                         goto err_flashmap;
7138         }
7139
7140         /* Set default EEE advertisement */
7141         if (adapter->flags2 & FLAG2_HAS_EEE)
7142                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7143
7144         /* construct the net_device struct */
7145         netdev->netdev_ops = &e1000e_netdev_ops;
7146         e1000e_set_ethtool_ops(netdev);
7147         netdev->watchdog_timeo = 5 * HZ;
7148         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7149         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7150
7151         netdev->mem_start = mmio_start;
7152         netdev->mem_end = mmio_start + mmio_len;
7153
7154         adapter->bd_number = cards_found++;
7155
7156         e1000e_check_options(adapter);
7157
7158         /* setup adapter struct */
7159         err = e1000_sw_init(adapter);
7160         if (err)
7161                 goto err_sw_init;
7162
7163         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7164         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7165         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7166
7167         err = ei->get_variants(adapter);
7168         if (err)
7169                 goto err_hw_init;
7170
7171         if ((adapter->flags & FLAG_IS_ICH) &&
7172             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7173             (hw->mac.type < e1000_pch_spt))
7174                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7175
7176         hw->mac.ops.get_bus_info(&adapter->hw);
7177
7178         adapter->hw.phy.autoneg_wait_to_complete = 0;
7179
7180         /* Copper options */
7181         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7182                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7183                 adapter->hw.phy.disable_polarity_correction = 0;
7184                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7185         }
7186
7187         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7188                 dev_info(&pdev->dev,
7189                          "PHY reset is blocked due to SOL/IDER session.\n");
7190
7191         /* Set initial default active device features */
7192         netdev->features = (NETIF_F_SG |
7193                             NETIF_F_HW_VLAN_CTAG_RX |
7194                             NETIF_F_HW_VLAN_CTAG_TX |
7195                             NETIF_F_TSO |
7196                             NETIF_F_TSO6 |
7197                             NETIF_F_RXHASH |
7198                             NETIF_F_RXCSUM |
7199                             NETIF_F_HW_CSUM);
7200
7201         /* Set user-changeable features (subset of all device features) */
7202         netdev->hw_features = netdev->features;
7203         netdev->hw_features |= NETIF_F_RXFCS;
7204         netdev->priv_flags |= IFF_SUPP_NOFCS;
7205         netdev->hw_features |= NETIF_F_RXALL;
7206
7207         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7208                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7209
7210         netdev->vlan_features |= (NETIF_F_SG |
7211                                   NETIF_F_TSO |
7212                                   NETIF_F_TSO6 |
7213                                   NETIF_F_HW_CSUM);
7214
7215         netdev->priv_flags |= IFF_UNICAST_FLT;
7216
7217         if (pci_using_dac) {
7218                 netdev->features |= NETIF_F_HIGHDMA;
7219                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7220         }
7221
7222         /* MTU range: 68 - max_hw_frame_size */
7223         netdev->min_mtu = ETH_MIN_MTU;
7224         netdev->max_mtu = adapter->max_hw_frame_size -
7225                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7226
7227         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7228                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7229
7230         /* before reading the NVM, reset the controller to
7231          * put the device in a known good starting state
7232          */
7233         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7234
7235         /* systems with ASPM and others may see the checksum fail on the first
7236          * attempt. Let's give it a few tries
7237          */
7238         for (i = 0;; i++) {
7239                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7240                         break;
7241                 if (i == 2) {
7242                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7243                         err = -EIO;
7244                         goto err_eeprom;
7245                 }
7246         }
7247
7248         e1000_eeprom_checks(adapter);
7249
7250         /* copy the MAC address */
7251         if (e1000e_read_mac_addr(&adapter->hw))
7252                 dev_err(&pdev->dev,
7253                         "NVM Read Error while reading MAC address\n");
7254
7255         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7256
7257         if (!is_valid_ether_addr(netdev->dev_addr)) {
7258                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7259                         netdev->dev_addr);
7260                 err = -EIO;
7261                 goto err_eeprom;
7262         }
7263
7264         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7265         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7266
7267         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7268         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7269         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7270         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7271         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7272
7273         /* Initialize link parameters. User can change them with ethtool */
7274         adapter->hw.mac.autoneg = 1;
7275         adapter->fc_autoneg = true;
7276         adapter->hw.fc.requested_mode = e1000_fc_default;
7277         adapter->hw.fc.current_mode = e1000_fc_default;
7278         adapter->hw.phy.autoneg_advertised = 0x2f;
7279
7280         /* Initial Wake on LAN setting - If APM wake is enabled in
7281          * the EEPROM, enable the ACPI Magic Packet filter
7282          */
7283         if (adapter->flags & FLAG_APME_IN_WUC) {
7284                 /* APME bit in EEPROM is mapped to WUC.APME */
7285                 eeprom_data = er32(WUC);
7286                 eeprom_apme_mask = E1000_WUC_APME;
7287                 if ((hw->mac.type > e1000_ich10lan) &&
7288                     (eeprom_data & E1000_WUC_PHY_WAKE))
7289                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7290         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7291                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7292                     (adapter->hw.bus.func == 1))
7293                         ret_val = e1000_read_nvm(&adapter->hw,
7294                                               NVM_INIT_CONTROL3_PORT_B,
7295                                               1, &eeprom_data);
7296                 else
7297                         ret_val = e1000_read_nvm(&adapter->hw,
7298                                               NVM_INIT_CONTROL3_PORT_A,
7299                                               1, &eeprom_data);
7300         }
7301
7302         /* fetch WoL from EEPROM */
7303         if (ret_val)
7304                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7305         else if (eeprom_data & eeprom_apme_mask)
7306                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7307
7308         /* now that we have the eeprom settings, apply the special cases
7309          * where the eeprom may be wrong or the board simply won't support
7310          * wake on lan on a particular port
7311          */
7312         if (!(adapter->flags & FLAG_HAS_WOL))
7313                 adapter->eeprom_wol = 0;
7314
7315         /* initialize the wol settings based on the eeprom settings */
7316         adapter->wol = adapter->eeprom_wol;
7317
7318         /* make sure adapter isn't asleep if manageability is enabled */
7319         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7320             (hw->mac.ops.check_mng_mode(hw)))
7321                 device_wakeup_enable(&pdev->dev);
7322
7323         /* save off EEPROM version number */
7324         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7325
7326         if (ret_val) {
7327                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7328                 adapter->eeprom_vers = 0;
7329         }
7330
7331         /* init PTP hardware clock */
7332         e1000e_ptp_init(adapter);
7333
7334         /* reset the hardware with the new settings */
7335         e1000e_reset(adapter);
7336
7337         /* If the controller has AMT, do not set DRV_LOAD until the interface
7338          * is up.  For all other cases, let the f/w know that the h/w is now
7339          * under the control of the driver.
7340          */
7341         if (!(adapter->flags & FLAG_HAS_AMT))
7342                 e1000e_get_hw_control(adapter);
7343
7344         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7345         err = register_netdev(netdev);
7346         if (err)
7347                 goto err_register;
7348
7349         /* carrier off reporting is important to ethtool even BEFORE open */
7350         netif_carrier_off(netdev);
7351
7352         e1000_print_device_info(adapter);
7353
7354         if (pci_dev_run_wake(pdev))
7355                 pm_runtime_put_noidle(&pdev->dev);
7356
7357         return 0;
7358
7359 err_register:
7360         if (!(adapter->flags & FLAG_HAS_AMT))
7361                 e1000e_release_hw_control(adapter);
7362 err_eeprom:
7363         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7364                 e1000_phy_hw_reset(&adapter->hw);
7365 err_hw_init:
7366         kfree(adapter->tx_ring);
7367         kfree(adapter->rx_ring);
7368 err_sw_init:
7369         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7370                 iounmap(adapter->hw.flash_address);
7371         e1000e_reset_interrupt_capability(adapter);
7372 err_flashmap:
7373         iounmap(adapter->hw.hw_addr);
7374 err_ioremap:
7375         free_netdev(netdev);
7376 err_alloc_etherdev:
7377         pci_release_mem_regions(pdev);
7378 err_pci_reg:
7379 err_dma:
7380         pci_disable_device(pdev);
7381         return err;
7382 }
7383
7384 /**
7385  * e1000_remove - Device Removal Routine
7386  * @pdev: PCI device information struct
7387  *
7388  * e1000_remove is called by the PCI subsystem to alert the driver
7389  * that it should release a PCI device.  The could be caused by a
7390  * Hot-Plug event, or because the driver is going to be removed from
7391  * memory.
7392  **/
7393 static void e1000_remove(struct pci_dev *pdev)
7394 {
7395         struct net_device *netdev = pci_get_drvdata(pdev);
7396         struct e1000_adapter *adapter = netdev_priv(netdev);
7397         bool down = test_bit(__E1000_DOWN, &adapter->state);
7398
7399         e1000e_ptp_remove(adapter);
7400
7401         /* The timers may be rescheduled, so explicitly disable them
7402          * from being rescheduled.
7403          */
7404         if (!down)
7405                 set_bit(__E1000_DOWN, &adapter->state);
7406         del_timer_sync(&adapter->watchdog_timer);
7407         del_timer_sync(&adapter->phy_info_timer);
7408
7409         cancel_work_sync(&adapter->reset_task);
7410         cancel_work_sync(&adapter->watchdog_task);
7411         cancel_work_sync(&adapter->downshift_task);
7412         cancel_work_sync(&adapter->update_phy_task);
7413         cancel_work_sync(&adapter->print_hang_task);
7414
7415         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7416                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7417                 if (adapter->tx_hwtstamp_skb) {
7418                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7419                         adapter->tx_hwtstamp_skb = NULL;
7420                 }
7421         }
7422
7423         /* Don't lie to e1000_close() down the road. */
7424         if (!down)
7425                 clear_bit(__E1000_DOWN, &adapter->state);
7426         unregister_netdev(netdev);
7427
7428         if (pci_dev_run_wake(pdev))
7429                 pm_runtime_get_noresume(&pdev->dev);
7430
7431         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7432          * would have already happened in close and is redundant.
7433          */
7434         e1000e_release_hw_control(adapter);
7435
7436         e1000e_reset_interrupt_capability(adapter);
7437         kfree(adapter->tx_ring);
7438         kfree(adapter->rx_ring);
7439
7440         iounmap(adapter->hw.hw_addr);
7441         if ((adapter->hw.flash_address) &&
7442             (adapter->hw.mac.type < e1000_pch_spt))
7443                 iounmap(adapter->hw.flash_address);
7444         pci_release_mem_regions(pdev);
7445
7446         free_netdev(netdev);
7447
7448         /* AER disable */
7449         pci_disable_pcie_error_reporting(pdev);
7450
7451         pci_disable_device(pdev);
7452 }
7453
7454 /* PCI Error Recovery (ERS) */
7455 static const struct pci_error_handlers e1000_err_handler = {
7456         .error_detected = e1000_io_error_detected,
7457         .slot_reset = e1000_io_slot_reset,
7458         .resume = e1000_io_resume,
7459 };
7460
7461 static const struct pci_device_id e1000_pci_tbl[] = {
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7466           board_82571 },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7468         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7472
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7477
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7485
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7487           board_80003es2lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7489           board_80003es2lan },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7491           board_80003es2lan },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7493           board_80003es2lan },
7494
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7503
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7513
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7517
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7521
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7526
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7529
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7555
7556         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7557 };
7558 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7559
7560 static const struct dev_pm_ops e1000_pm_ops = {
7561 #ifdef CONFIG_PM_SLEEP
7562         .suspend        = e1000e_pm_suspend,
7563         .resume         = e1000e_pm_resume,
7564         .freeze         = e1000e_pm_freeze,
7565         .thaw           = e1000e_pm_thaw,
7566         .poweroff       = e1000e_pm_suspend,
7567         .restore        = e1000e_pm_resume,
7568 #endif
7569         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7570                            e1000e_pm_runtime_idle)
7571 };
7572
7573 /* PCI Device API Driver */
7574 static struct pci_driver e1000_driver = {
7575         .name     = e1000e_driver_name,
7576         .id_table = e1000_pci_tbl,
7577         .probe    = e1000_probe,
7578         .remove   = e1000_remove,
7579         .driver   = {
7580                 .pm = &e1000_pm_ops,
7581         },
7582         .shutdown = e1000_shutdown,
7583         .err_handler = &e1000_err_handler
7584 };
7585
7586 /**
7587  * e1000_init_module - Driver Registration Routine
7588  *
7589  * e1000_init_module is the first routine called when the driver is
7590  * loaded. All it does is register with the PCI subsystem.
7591  **/
7592 static int __init e1000_init_module(void)
7593 {
7594         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7595                 e1000e_driver_version);
7596         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7597
7598         return pci_register_driver(&e1000_driver);
7599 }
7600 module_init(e1000_init_module);
7601
7602 /**
7603  * e1000_exit_module - Driver Exit Cleanup Routine
7604  *
7605  * e1000_exit_module is called just before the driver is removed
7606  * from memory.
7607  **/
7608 static void __exit e1000_exit_module(void)
7609 {
7610         pci_unregister_driver(&e1000_driver);
7611 }
7612 module_exit(e1000_exit_module);
7613
7614 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7615 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7616 MODULE_LICENSE("GPL v2");
7617 MODULE_VERSION(DRV_VERSION);
7618
7619 /* netdev.c */