OSDN Git Service

Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[uclinux-h8/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469                     (I40E_DEBUG_FD & pf->hw.debug_mask))
470                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471                                  rx_desc->wb.qword0.hi_dword.fd_id);
472
473                 /* Check if the programming error is for ATR.
474                  * If so, auto disable ATR and set a state for
475                  * flush in progress. Next time we come here if flush is in
476                  * progress do nothing, once flush is complete the state will
477                  * be cleared.
478                  */
479                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
480                         return;
481
482                 pf->fd_add_err++;
483                 /* store the current atr filter count */
484                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
485
486                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
487                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
488                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
489                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
490                 }
491
492                 /* filter programming failed most likely due to table full */
493                 fcnt_prog = i40e_get_global_fd_count(pf);
494                 fcnt_avail = pf->fdir_pf_filter_count;
495                 /* If ATR is running fcnt_prog can quickly change,
496                  * if we are very close to full, it makes sense to disable
497                  * FD ATR/SB and then re-enable it when there is room.
498                  */
499                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
500                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
501                             !(pf->auto_disable_flags &
502                                      I40E_FLAG_FD_SB_ENABLED)) {
503                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
504                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505                                 pf->auto_disable_flags |=
506                                                         I40E_FLAG_FD_SB_ENABLED;
507                         }
508                 } else {
509                         dev_info(&pdev->dev,
510                                 "FD filter programming failed due to incorrect filter parameters\n");
511                 }
512         } else if (error ==
513                           (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516                                  rx_desc->wb.qword0.hi_dword.fd_id);
517         }
518 }
519
520 /**
521  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522  * @ring:      the ring that owns the buffer
523  * @tx_buffer: the buffer to free
524  **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526                                             struct i40e_tx_buffer *tx_buffer)
527 {
528         if (tx_buffer->skb) {
529                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530                         kfree(tx_buffer->raw_buf);
531                 else
532                         dev_kfree_skb_any(tx_buffer->skb);
533
534                 if (dma_unmap_len(tx_buffer, len))
535                         dma_unmap_single(ring->dev,
536                                          dma_unmap_addr(tx_buffer, dma),
537                                          dma_unmap_len(tx_buffer, len),
538                                          DMA_TO_DEVICE);
539         } else if (dma_unmap_len(tx_buffer, len)) {
540                 dma_unmap_page(ring->dev,
541                                dma_unmap_addr(tx_buffer, dma),
542                                dma_unmap_len(tx_buffer, len),
543                                DMA_TO_DEVICE);
544         }
545         tx_buffer->next_to_watch = NULL;
546         tx_buffer->skb = NULL;
547         dma_unmap_len_set(tx_buffer, len, 0);
548         /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552  * i40e_clean_tx_ring - Free any empty Tx buffers
553  * @tx_ring: ring to be cleaned
554  **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557         unsigned long bi_size;
558         u16 i;
559
560         /* ring already cleared, nothing to do */
561         if (!tx_ring->tx_bi)
562                 return;
563
564         /* Free all the Tx ring sk_buffs */
565         for (i = 0; i < tx_ring->count; i++)
566                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569         memset(tx_ring->tx_bi, 0, bi_size);
570
571         /* Zero out the descriptor ring */
572         memset(tx_ring->desc, 0, tx_ring->size);
573
574         tx_ring->next_to_use = 0;
575         tx_ring->next_to_clean = 0;
576
577         if (!tx_ring->netdev)
578                 return;
579
580         /* cleanup Tx queue statistics */
581         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582                                                   tx_ring->queue_index));
583 }
584
585 /**
586  * i40e_free_tx_resources - Free Tx resources per queue
587  * @tx_ring: Tx descriptor ring for a specific queue
588  *
589  * Free all transmit software resources
590  **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593         i40e_clean_tx_ring(tx_ring);
594         kfree(tx_ring->tx_bi);
595         tx_ring->tx_bi = NULL;
596
597         if (tx_ring->desc) {
598                 dma_free_coherent(tx_ring->dev, tx_ring->size,
599                                   tx_ring->desc, tx_ring->dma);
600                 tx_ring->desc = NULL;
601         }
602 }
603
604 /**
605  * i40e_get_head - Retrieve head from head writeback
606  * @tx_ring:  tx ring to fetch head of
607  *
608  * Returns value of Tx ring head based on value stored
609  * in head write-back location
610  **/
611 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
612 {
613         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
614
615         return le32_to_cpu(*(volatile __le32 *)head);
616 }
617
618 /**
619  * i40e_get_tx_pending - how many tx descriptors not processed
620  * @tx_ring: the ring of descriptors
621  *
622  * Since there is no access to the ring head register
623  * in XL710, we need to use our local copies
624  **/
625 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
626 {
627         u32 head, tail;
628
629         head = i40e_get_head(ring);
630         tail = readl(ring->tail);
631
632         if (head != tail)
633                 return (head < tail) ?
634                         tail - head : (tail + ring->count - head);
635
636         return 0;
637 }
638
639 /**
640  * i40e_check_tx_hang - Is there a hang in the Tx queue
641  * @tx_ring: the ring of descriptors
642  **/
643 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
644 {
645         u32 tx_done = tx_ring->stats.packets;
646         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
647         u32 tx_pending = i40e_get_tx_pending(tx_ring);
648         struct i40e_pf *pf = tx_ring->vsi->back;
649         bool ret = false;
650
651         clear_check_for_tx_hang(tx_ring);
652
653         /* Check for a hung queue, but be thorough. This verifies
654          * that a transmit has been completed since the previous
655          * check AND there is at least one packet pending. The
656          * ARMED bit is set to indicate a potential hang. The
657          * bit is cleared if a pause frame is received to remove
658          * false hang detection due to PFC or 802.3x frames. By
659          * requiring this to fail twice we avoid races with
660          * PFC clearing the ARMED bit and conditions where we
661          * run the check_tx_hang logic with a transmit completion
662          * pending but without time to complete it yet.
663          */
664         if ((tx_done_old == tx_done) && tx_pending) {
665                 /* make sure it is true for two checks in a row */
666                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
667                                        &tx_ring->state);
668         } else if (tx_done_old == tx_done &&
669                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
670                 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
671                         dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
672                                  tx_pending, tx_ring->queue_index);
673                 pf->tx_sluggish_count++;
674         } else {
675                 /* update completed stats and disarm the hang check */
676                 tx_ring->tx_stats.tx_done_old = tx_done;
677                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
678         }
679
680         return ret;
681 }
682
683 #define WB_STRIDE 0x3
684
685 /**
686  * i40e_clean_tx_irq - Reclaim resources after transmit completes
687  * @tx_ring:  tx ring to clean
688  * @budget:   how many cleans we're allowed
689  *
690  * Returns true if there's any budget left (e.g. the clean is finished)
691  **/
692 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
693 {
694         u16 i = tx_ring->next_to_clean;
695         struct i40e_tx_buffer *tx_buf;
696         struct i40e_tx_desc *tx_head;
697         struct i40e_tx_desc *tx_desc;
698         unsigned int total_packets = 0;
699         unsigned int total_bytes = 0;
700
701         tx_buf = &tx_ring->tx_bi[i];
702         tx_desc = I40E_TX_DESC(tx_ring, i);
703         i -= tx_ring->count;
704
705         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
706
707         do {
708                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
709
710                 /* if next_to_watch is not set then there is no work pending */
711                 if (!eop_desc)
712                         break;
713
714                 /* prevent any other reads prior to eop_desc */
715                 read_barrier_depends();
716
717                 /* we have caught up to head, no work left to do */
718                 if (tx_head == tx_desc)
719                         break;
720
721                 /* clear next_to_watch to prevent false hangs */
722                 tx_buf->next_to_watch = NULL;
723
724                 /* update the statistics for this packet */
725                 total_bytes += tx_buf->bytecount;
726                 total_packets += tx_buf->gso_segs;
727
728                 /* free the skb */
729                 dev_consume_skb_any(tx_buf->skb);
730
731                 /* unmap skb header data */
732                 dma_unmap_single(tx_ring->dev,
733                                  dma_unmap_addr(tx_buf, dma),
734                                  dma_unmap_len(tx_buf, len),
735                                  DMA_TO_DEVICE);
736
737                 /* clear tx_buffer data */
738                 tx_buf->skb = NULL;
739                 dma_unmap_len_set(tx_buf, len, 0);
740
741                 /* unmap remaining buffers */
742                 while (tx_desc != eop_desc) {
743
744                         tx_buf++;
745                         tx_desc++;
746                         i++;
747                         if (unlikely(!i)) {
748                                 i -= tx_ring->count;
749                                 tx_buf = tx_ring->tx_bi;
750                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
751                         }
752
753                         /* unmap any remaining paged data */
754                         if (dma_unmap_len(tx_buf, len)) {
755                                 dma_unmap_page(tx_ring->dev,
756                                                dma_unmap_addr(tx_buf, dma),
757                                                dma_unmap_len(tx_buf, len),
758                                                DMA_TO_DEVICE);
759                                 dma_unmap_len_set(tx_buf, len, 0);
760                         }
761                 }
762
763                 /* move us one more past the eop_desc for start of next pkt */
764                 tx_buf++;
765                 tx_desc++;
766                 i++;
767                 if (unlikely(!i)) {
768                         i -= tx_ring->count;
769                         tx_buf = tx_ring->tx_bi;
770                         tx_desc = I40E_TX_DESC(tx_ring, 0);
771                 }
772
773                 prefetch(tx_desc);
774
775                 /* update budget accounting */
776                 budget--;
777         } while (likely(budget));
778
779         i += tx_ring->count;
780         tx_ring->next_to_clean = i;
781         u64_stats_update_begin(&tx_ring->syncp);
782         tx_ring->stats.bytes += total_bytes;
783         tx_ring->stats.packets += total_packets;
784         u64_stats_update_end(&tx_ring->syncp);
785         tx_ring->q_vector->tx.total_bytes += total_bytes;
786         tx_ring->q_vector->tx.total_packets += total_packets;
787
788         /* check to see if there are any non-cache aligned descriptors
789          * waiting to be written back, and kick the hardware to force
790          * them to be written back in case of napi polling
791          */
792         if (budget &&
793             !((i & WB_STRIDE) == WB_STRIDE) &&
794             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
795             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
796                 tx_ring->arm_wb = true;
797         else
798                 tx_ring->arm_wb = false;
799
800         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
801                 /* schedule immediate reset if we believe we hung */
802                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
803                          "  VSI                  <%d>\n"
804                          "  Tx Queue             <%d>\n"
805                          "  next_to_use          <%x>\n"
806                          "  next_to_clean        <%x>\n",
807                          tx_ring->vsi->seid,
808                          tx_ring->queue_index,
809                          tx_ring->next_to_use, i);
810
811                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
812
813                 dev_info(tx_ring->dev,
814                          "tx hang detected on queue %d, reset requested\n",
815                          tx_ring->queue_index);
816
817                 /* do not fire the reset immediately, wait for the stack to
818                  * decide we are truly stuck, also prevents every queue from
819                  * simultaneously requesting a reset
820                  */
821
822                 /* the adapter is about to reset, no point in enabling polling */
823                 budget = 1;
824         }
825
826         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
827                                                       tx_ring->queue_index),
828                                   total_packets, total_bytes);
829
830 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
831         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
832                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
833                 /* Make sure that anybody stopping the queue after this
834                  * sees the new next_to_clean.
835                  */
836                 smp_mb();
837                 if (__netif_subqueue_stopped(tx_ring->netdev,
838                                              tx_ring->queue_index) &&
839                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
840                         netif_wake_subqueue(tx_ring->netdev,
841                                             tx_ring->queue_index);
842                         ++tx_ring->tx_stats.restart_queue;
843                 }
844         }
845
846         return !!budget;
847 }
848
849 /**
850  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
851  * @vsi: the VSI we care about
852  * @q_vector: the vector  on which to force writeback
853  *
854  **/
855 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
856 {
857         u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
858                   I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
859                   I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
860                   I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
861                   /* allow 00 to be written to the index */
862
863         wr32(&vsi->back->hw,
864              I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
865              val);
866 }
867
868 /**
869  * i40e_set_new_dynamic_itr - Find new ITR level
870  * @rc: structure containing ring performance data
871  *
872  * Stores a new ITR value based on packets and byte counts during
873  * the last interrupt.  The advantage of per interrupt computation
874  * is faster updates and more accurate ITR for the current traffic
875  * pattern.  Constants in this function were computed based on
876  * theoretical maximum wire speed and thresholds were set based on
877  * testing data as well as attempting to minimize response time
878  * while increasing bulk throughput.
879  **/
880 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
881 {
882         enum i40e_latency_range new_latency_range = rc->latency_range;
883         u32 new_itr = rc->itr;
884         int bytes_per_int;
885
886         if (rc->total_packets == 0 || !rc->itr)
887                 return;
888
889         /* simple throttlerate management
890          *   0-10MB/s   lowest (100000 ints/s)
891          *  10-20MB/s   low    (20000 ints/s)
892          *  20-1249MB/s bulk   (8000 ints/s)
893          */
894         bytes_per_int = rc->total_bytes / rc->itr;
895         switch (rc->itr) {
896         case I40E_LOWEST_LATENCY:
897                 if (bytes_per_int > 10)
898                         new_latency_range = I40E_LOW_LATENCY;
899                 break;
900         case I40E_LOW_LATENCY:
901                 if (bytes_per_int > 20)
902                         new_latency_range = I40E_BULK_LATENCY;
903                 else if (bytes_per_int <= 10)
904                         new_latency_range = I40E_LOWEST_LATENCY;
905                 break;
906         case I40E_BULK_LATENCY:
907                 if (bytes_per_int <= 20)
908                         rc->latency_range = I40E_LOW_LATENCY;
909                 break;
910         }
911
912         switch (new_latency_range) {
913         case I40E_LOWEST_LATENCY:
914                 new_itr = I40E_ITR_100K;
915                 break;
916         case I40E_LOW_LATENCY:
917                 new_itr = I40E_ITR_20K;
918                 break;
919         case I40E_BULK_LATENCY:
920                 new_itr = I40E_ITR_8K;
921                 break;
922         default:
923                 break;
924         }
925
926         if (new_itr != rc->itr) {
927                 /* do an exponential smoothing */
928                 new_itr = (10 * new_itr * rc->itr) /
929                           ((9 * new_itr) + rc->itr);
930                 rc->itr = new_itr & I40E_MAX_ITR;
931         }
932
933         rc->total_bytes = 0;
934         rc->total_packets = 0;
935 }
936
937 /**
938  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
939  * @q_vector: the vector to adjust
940  **/
941 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
942 {
943         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
944         struct i40e_hw *hw = &q_vector->vsi->back->hw;
945         u32 reg_addr;
946         u16 old_itr;
947
948         reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
949         old_itr = q_vector->rx.itr;
950         i40e_set_new_dynamic_itr(&q_vector->rx);
951         if (old_itr != q_vector->rx.itr)
952                 wr32(hw, reg_addr, q_vector->rx.itr);
953
954         reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
955         old_itr = q_vector->tx.itr;
956         i40e_set_new_dynamic_itr(&q_vector->tx);
957         if (old_itr != q_vector->tx.itr)
958                 wr32(hw, reg_addr, q_vector->tx.itr);
959 }
960
961 /**
962  * i40e_clean_programming_status - clean the programming status descriptor
963  * @rx_ring: the rx ring that has this descriptor
964  * @rx_desc: the rx descriptor written back by HW
965  *
966  * Flow director should handle FD_FILTER_STATUS to check its filter programming
967  * status being successful or not and take actions accordingly. FCoE should
968  * handle its context/filter programming/invalidation status and take actions.
969  *
970  **/
971 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
972                                           union i40e_rx_desc *rx_desc)
973 {
974         u64 qw;
975         u8 id;
976
977         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
978         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
979                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
980
981         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
982                 i40e_fd_handle_status(rx_ring, rx_desc, id);
983 #ifdef I40E_FCOE
984         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
985                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
986                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
987 #endif
988 }
989
990 /**
991  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
992  * @tx_ring: the tx ring to set up
993  *
994  * Return 0 on success, negative on error
995  **/
996 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
997 {
998         struct device *dev = tx_ring->dev;
999         int bi_size;
1000
1001         if (!dev)
1002                 return -ENOMEM;
1003
1004         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1005         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1006         if (!tx_ring->tx_bi)
1007                 goto err;
1008
1009         /* round up to nearest 4K */
1010         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1011         /* add u32 for head writeback, align after this takes care of
1012          * guaranteeing this is at least one cache line in size
1013          */
1014         tx_ring->size += sizeof(u32);
1015         tx_ring->size = ALIGN(tx_ring->size, 4096);
1016         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1017                                            &tx_ring->dma, GFP_KERNEL);
1018         if (!tx_ring->desc) {
1019                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1020                          tx_ring->size);
1021                 goto err;
1022         }
1023
1024         tx_ring->next_to_use = 0;
1025         tx_ring->next_to_clean = 0;
1026         return 0;
1027
1028 err:
1029         kfree(tx_ring->tx_bi);
1030         tx_ring->tx_bi = NULL;
1031         return -ENOMEM;
1032 }
1033
1034 /**
1035  * i40e_clean_rx_ring - Free Rx buffers
1036  * @rx_ring: ring to be cleaned
1037  **/
1038 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1039 {
1040         struct device *dev = rx_ring->dev;
1041         struct i40e_rx_buffer *rx_bi;
1042         unsigned long bi_size;
1043         u16 i;
1044
1045         /* ring already cleared, nothing to do */
1046         if (!rx_ring->rx_bi)
1047                 return;
1048
1049         if (ring_is_ps_enabled(rx_ring)) {
1050                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1051
1052                 rx_bi = &rx_ring->rx_bi[0];
1053                 if (rx_bi->hdr_buf) {
1054                         dma_free_coherent(dev,
1055                                           bufsz,
1056                                           rx_bi->hdr_buf,
1057                                           rx_bi->dma);
1058                         for (i = 0; i < rx_ring->count; i++) {
1059                                 rx_bi = &rx_ring->rx_bi[i];
1060                                 rx_bi->dma = 0;
1061                                 rx_bi->hdr_buf = NULL;
1062                         }
1063                 }
1064         }
1065         /* Free all the Rx ring sk_buffs */
1066         for (i = 0; i < rx_ring->count; i++) {
1067                 rx_bi = &rx_ring->rx_bi[i];
1068                 if (rx_bi->dma) {
1069                         dma_unmap_single(dev,
1070                                          rx_bi->dma,
1071                                          rx_ring->rx_buf_len,
1072                                          DMA_FROM_DEVICE);
1073                         rx_bi->dma = 0;
1074                 }
1075                 if (rx_bi->skb) {
1076                         dev_kfree_skb(rx_bi->skb);
1077                         rx_bi->skb = NULL;
1078                 }
1079                 if (rx_bi->page) {
1080                         if (rx_bi->page_dma) {
1081                                 dma_unmap_page(dev,
1082                                                rx_bi->page_dma,
1083                                                PAGE_SIZE / 2,
1084                                                DMA_FROM_DEVICE);
1085                                 rx_bi->page_dma = 0;
1086                         }
1087                         __free_page(rx_bi->page);
1088                         rx_bi->page = NULL;
1089                         rx_bi->page_offset = 0;
1090                 }
1091         }
1092
1093         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1094         memset(rx_ring->rx_bi, 0, bi_size);
1095
1096         /* Zero out the descriptor ring */
1097         memset(rx_ring->desc, 0, rx_ring->size);
1098
1099         rx_ring->next_to_clean = 0;
1100         rx_ring->next_to_use = 0;
1101 }
1102
1103 /**
1104  * i40e_free_rx_resources - Free Rx resources
1105  * @rx_ring: ring to clean the resources from
1106  *
1107  * Free all receive software resources
1108  **/
1109 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1110 {
1111         i40e_clean_rx_ring(rx_ring);
1112         kfree(rx_ring->rx_bi);
1113         rx_ring->rx_bi = NULL;
1114
1115         if (rx_ring->desc) {
1116                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1117                                   rx_ring->desc, rx_ring->dma);
1118                 rx_ring->desc = NULL;
1119         }
1120 }
1121
1122 /**
1123  * i40e_alloc_rx_headers - allocate rx header buffers
1124  * @rx_ring: ring to alloc buffers
1125  *
1126  * Allocate rx header buffers for the entire ring. As these are static,
1127  * this is only called when setting up a new ring.
1128  **/
1129 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1130 {
1131         struct device *dev = rx_ring->dev;
1132         struct i40e_rx_buffer *rx_bi;
1133         dma_addr_t dma;
1134         void *buffer;
1135         int buf_size;
1136         int i;
1137
1138         if (rx_ring->rx_bi[0].hdr_buf)
1139                 return;
1140         /* Make sure the buffers don't cross cache line boundaries. */
1141         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1142         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1143                                     &dma, GFP_KERNEL);
1144         if (!buffer)
1145                 return;
1146         for (i = 0; i < rx_ring->count; i++) {
1147                 rx_bi = &rx_ring->rx_bi[i];
1148                 rx_bi->dma = dma + (i * buf_size);
1149                 rx_bi->hdr_buf = buffer + (i * buf_size);
1150         }
1151 }
1152
1153 /**
1154  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1155  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1156  *
1157  * Returns 0 on success, negative on failure
1158  **/
1159 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1160 {
1161         struct device *dev = rx_ring->dev;
1162         int bi_size;
1163
1164         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1165         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1166         if (!rx_ring->rx_bi)
1167                 goto err;
1168
1169         u64_stats_init(&rx_ring->syncp);
1170
1171         /* Round up to nearest 4K */
1172         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1173                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1174                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1175         rx_ring->size = ALIGN(rx_ring->size, 4096);
1176         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1177                                            &rx_ring->dma, GFP_KERNEL);
1178
1179         if (!rx_ring->desc) {
1180                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1181                          rx_ring->size);
1182                 goto err;
1183         }
1184
1185         rx_ring->next_to_clean = 0;
1186         rx_ring->next_to_use = 0;
1187
1188         return 0;
1189 err:
1190         kfree(rx_ring->rx_bi);
1191         rx_ring->rx_bi = NULL;
1192         return -ENOMEM;
1193 }
1194
1195 /**
1196  * i40e_release_rx_desc - Store the new tail and head values
1197  * @rx_ring: ring to bump
1198  * @val: new head index
1199  **/
1200 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1201 {
1202         rx_ring->next_to_use = val;
1203         /* Force memory writes to complete before letting h/w
1204          * know there are new descriptors to fetch.  (Only
1205          * applicable for weak-ordered memory model archs,
1206          * such as IA-64).
1207          */
1208         wmb();
1209         writel(val, rx_ring->tail);
1210 }
1211
1212 /**
1213  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1214  * @rx_ring: ring to place buffers on
1215  * @cleaned_count: number of buffers to replace
1216  **/
1217 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1218 {
1219         u16 i = rx_ring->next_to_use;
1220         union i40e_rx_desc *rx_desc;
1221         struct i40e_rx_buffer *bi;
1222
1223         /* do nothing if no valid netdev defined */
1224         if (!rx_ring->netdev || !cleaned_count)
1225                 return;
1226
1227         while (cleaned_count--) {
1228                 rx_desc = I40E_RX_DESC(rx_ring, i);
1229                 bi = &rx_ring->rx_bi[i];
1230
1231                 if (bi->skb) /* desc is in use */
1232                         goto no_buffers;
1233                 if (!bi->page) {
1234                         bi->page = alloc_page(GFP_ATOMIC);
1235                         if (!bi->page) {
1236                                 rx_ring->rx_stats.alloc_page_failed++;
1237                                 goto no_buffers;
1238                         }
1239                 }
1240
1241                 if (!bi->page_dma) {
1242                         /* use a half page if we're re-using */
1243                         bi->page_offset ^= PAGE_SIZE / 2;
1244                         bi->page_dma = dma_map_page(rx_ring->dev,
1245                                                     bi->page,
1246                                                     bi->page_offset,
1247                                                     PAGE_SIZE / 2,
1248                                                     DMA_FROM_DEVICE);
1249                         if (dma_mapping_error(rx_ring->dev,
1250                                               bi->page_dma)) {
1251                                 rx_ring->rx_stats.alloc_page_failed++;
1252                                 bi->page_dma = 0;
1253                                 goto no_buffers;
1254                         }
1255                 }
1256
1257                 dma_sync_single_range_for_device(rx_ring->dev,
1258                                                  bi->dma,
1259                                                  0,
1260                                                  rx_ring->rx_hdr_len,
1261                                                  DMA_FROM_DEVICE);
1262                 /* Refresh the desc even if buffer_addrs didn't change
1263                  * because each write-back erases this info.
1264                  */
1265                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1266                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1267                 i++;
1268                 if (i == rx_ring->count)
1269                         i = 0;
1270         }
1271
1272 no_buffers:
1273         if (rx_ring->next_to_use != i)
1274                 i40e_release_rx_desc(rx_ring, i);
1275 }
1276
1277 /**
1278  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1279  * @rx_ring: ring to place buffers on
1280  * @cleaned_count: number of buffers to replace
1281  **/
1282 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1283 {
1284         u16 i = rx_ring->next_to_use;
1285         union i40e_rx_desc *rx_desc;
1286         struct i40e_rx_buffer *bi;
1287         struct sk_buff *skb;
1288
1289         /* do nothing if no valid netdev defined */
1290         if (!rx_ring->netdev || !cleaned_count)
1291                 return;
1292
1293         while (cleaned_count--) {
1294                 rx_desc = I40E_RX_DESC(rx_ring, i);
1295                 bi = &rx_ring->rx_bi[i];
1296                 skb = bi->skb;
1297
1298                 if (!skb) {
1299                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1300                                                         rx_ring->rx_buf_len);
1301                         if (!skb) {
1302                                 rx_ring->rx_stats.alloc_buff_failed++;
1303                                 goto no_buffers;
1304                         }
1305                         /* initialize queue mapping */
1306                         skb_record_rx_queue(skb, rx_ring->queue_index);
1307                         bi->skb = skb;
1308                 }
1309
1310                 if (!bi->dma) {
1311                         bi->dma = dma_map_single(rx_ring->dev,
1312                                                  skb->data,
1313                                                  rx_ring->rx_buf_len,
1314                                                  DMA_FROM_DEVICE);
1315                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1316                                 rx_ring->rx_stats.alloc_buff_failed++;
1317                                 bi->dma = 0;
1318                                 goto no_buffers;
1319                         }
1320                 }
1321
1322                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1323                 rx_desc->read.hdr_addr = 0;
1324                 i++;
1325                 if (i == rx_ring->count)
1326                         i = 0;
1327         }
1328
1329 no_buffers:
1330         if (rx_ring->next_to_use != i)
1331                 i40e_release_rx_desc(rx_ring, i);
1332 }
1333
1334 /**
1335  * i40e_receive_skb - Send a completed packet up the stack
1336  * @rx_ring:  rx ring in play
1337  * @skb: packet to send up
1338  * @vlan_tag: vlan tag for packet
1339  **/
1340 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1341                              struct sk_buff *skb, u16 vlan_tag)
1342 {
1343         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1344         struct i40e_vsi *vsi = rx_ring->vsi;
1345         u64 flags = vsi->back->flags;
1346
1347         if (vlan_tag & VLAN_VID_MASK)
1348                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1349
1350         if (flags & I40E_FLAG_IN_NETPOLL)
1351                 netif_rx(skb);
1352         else
1353                 napi_gro_receive(&q_vector->napi, skb);
1354 }
1355
1356 /**
1357  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1358  * @vsi: the VSI we care about
1359  * @skb: skb currently being received and modified
1360  * @rx_status: status value of last descriptor in packet
1361  * @rx_error: error value of last descriptor in packet
1362  * @rx_ptype: ptype value of last descriptor in packet
1363  **/
1364 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1365                                     struct sk_buff *skb,
1366                                     u32 rx_status,
1367                                     u32 rx_error,
1368                                     u16 rx_ptype)
1369 {
1370         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1371         bool ipv4 = false, ipv6 = false;
1372         bool ipv4_tunnel, ipv6_tunnel;
1373         __wsum rx_udp_csum;
1374         struct iphdr *iph;
1375         __sum16 csum;
1376
1377         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1378                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1379         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1380                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1381
1382         skb->ip_summed = CHECKSUM_NONE;
1383
1384         /* Rx csum enabled and ip headers found? */
1385         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1386                 return;
1387
1388         /* did the hardware decode the packet and checksum? */
1389         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1390                 return;
1391
1392         /* both known and outer_ip must be set for the below code to work */
1393         if (!(decoded.known && decoded.outer_ip))
1394                 return;
1395
1396         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1397             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1398                 ipv4 = true;
1399         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1400                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1401                 ipv6 = true;
1402
1403         if (ipv4 &&
1404             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1405                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1406                 goto checksum_fail;
1407
1408         /* likely incorrect csum if alternate IP extension headers found */
1409         if (ipv6 &&
1410             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1411                 /* don't increment checksum err here, non-fatal err */
1412                 return;
1413
1414         /* there was some L4 error, count error and punt packet to the stack */
1415         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1416                 goto checksum_fail;
1417
1418         /* handle packets that were not able to be checksummed due
1419          * to arrival speed, in this case the stack can compute
1420          * the csum.
1421          */
1422         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1423                 return;
1424
1425         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1426          * it in the driver, hardware does not do it for us.
1427          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1428          * so the total length of IPv4 header is IHL*4 bytes
1429          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1430          */
1431         if (ipv4_tunnel) {
1432                 skb->transport_header = skb->mac_header +
1433                                         sizeof(struct ethhdr) +
1434                                         (ip_hdr(skb)->ihl * 4);
1435
1436                 /* Add 4 bytes for VLAN tagged packets */
1437                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1438                                           skb->protocol == htons(ETH_P_8021AD))
1439                                           ? VLAN_HLEN : 0;
1440
1441                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1442                     (udp_hdr(skb)->check != 0)) {
1443                         rx_udp_csum = udp_csum(skb);
1444                         iph = ip_hdr(skb);
1445                         csum = csum_tcpudp_magic(
1446                                         iph->saddr, iph->daddr,
1447                                         (skb->len - skb_transport_offset(skb)),
1448                                         IPPROTO_UDP, rx_udp_csum);
1449
1450                         if (udp_hdr(skb)->check != csum)
1451                                 goto checksum_fail;
1452
1453                 } /* else its GRE and so no outer UDP header */
1454         }
1455
1456         skb->ip_summed = CHECKSUM_UNNECESSARY;
1457         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1458
1459         return;
1460
1461 checksum_fail:
1462         vsi->back->hw_csum_rx_error++;
1463 }
1464
1465 /**
1466  * i40e_rx_hash - returns the hash value from the Rx descriptor
1467  * @ring: descriptor ring
1468  * @rx_desc: specific descriptor
1469  **/
1470 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1471                                union i40e_rx_desc *rx_desc)
1472 {
1473         const __le64 rss_mask =
1474                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1475                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1476
1477         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1478             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1479                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1480         else
1481                 return 0;
1482 }
1483
1484 /**
1485  * i40e_ptype_to_hash - get a hash type
1486  * @ptype: the ptype value from the descriptor
1487  *
1488  * Returns a hash type to be used by skb_set_hash
1489  **/
1490 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1491 {
1492         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1493
1494         if (!decoded.known)
1495                 return PKT_HASH_TYPE_NONE;
1496
1497         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1498             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1499                 return PKT_HASH_TYPE_L4;
1500         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1501                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1502                 return PKT_HASH_TYPE_L3;
1503         else
1504                 return PKT_HASH_TYPE_L2;
1505 }
1506
1507 /**
1508  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1509  * @rx_ring:  rx ring to clean
1510  * @budget:   how many cleans we're allowed
1511  *
1512  * Returns true if there's any budget left (e.g. the clean is finished)
1513  **/
1514 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1515 {
1516         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1517         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1518         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1519         const int current_node = numa_node_id();
1520         struct i40e_vsi *vsi = rx_ring->vsi;
1521         u16 i = rx_ring->next_to_clean;
1522         union i40e_rx_desc *rx_desc;
1523         u32 rx_error, rx_status;
1524         u8 rx_ptype;
1525         u64 qword;
1526
1527         if (budget <= 0)
1528                 return 0;
1529
1530         do {
1531                 struct i40e_rx_buffer *rx_bi;
1532                 struct sk_buff *skb;
1533                 u16 vlan_tag;
1534                 /* return some buffers to hardware, one at a time is too slow */
1535                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1536                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1537                         cleaned_count = 0;
1538                 }
1539
1540                 i = rx_ring->next_to_clean;
1541                 rx_desc = I40E_RX_DESC(rx_ring, i);
1542                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1543                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1544                         I40E_RXD_QW1_STATUS_SHIFT;
1545
1546                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1547                         break;
1548
1549                 /* This memory barrier is needed to keep us from reading
1550                  * any other fields out of the rx_desc until we know the
1551                  * DD bit is set.
1552                  */
1553                 dma_rmb();
1554                 if (i40e_rx_is_programming_status(qword)) {
1555                         i40e_clean_programming_status(rx_ring, rx_desc);
1556                         I40E_RX_INCREMENT(rx_ring, i);
1557                         continue;
1558                 }
1559                 rx_bi = &rx_ring->rx_bi[i];
1560                 skb = rx_bi->skb;
1561                 if (likely(!skb)) {
1562                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1563                                                         rx_ring->rx_hdr_len);
1564                         if (!skb) {
1565                                 rx_ring->rx_stats.alloc_buff_failed++;
1566                                 break;
1567                         }
1568
1569                         /* initialize queue mapping */
1570                         skb_record_rx_queue(skb, rx_ring->queue_index);
1571                         /* we are reusing so sync this buffer for CPU use */
1572                         dma_sync_single_range_for_cpu(rx_ring->dev,
1573                                                       rx_bi->dma,
1574                                                       0,
1575                                                       rx_ring->rx_hdr_len,
1576                                                       DMA_FROM_DEVICE);
1577                 }
1578                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1579                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1580                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1581                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1582                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1583                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1584
1585                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1586                            I40E_RXD_QW1_ERROR_SHIFT;
1587                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1588                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1589
1590                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1591                            I40E_RXD_QW1_PTYPE_SHIFT;
1592                 prefetch(rx_bi->page);
1593                 rx_bi->skb = NULL;
1594                 cleaned_count++;
1595                 if (rx_hbo || rx_sph) {
1596                         int len;
1597                         if (rx_hbo)
1598                                 len = I40E_RX_HDR_SIZE;
1599                         else
1600                                 len = rx_header_len;
1601                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1602                 } else if (skb->len == 0) {
1603                         int len;
1604
1605                         len = (rx_packet_len > skb_headlen(skb) ?
1606                                 skb_headlen(skb) : rx_packet_len);
1607                         memcpy(__skb_put(skb, len),
1608                                rx_bi->page + rx_bi->page_offset,
1609                                len);
1610                         rx_bi->page_offset += len;
1611                         rx_packet_len -= len;
1612                 }
1613
1614                 /* Get the rest of the data if this was a header split */
1615                 if (rx_packet_len) {
1616                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1617                                            rx_bi->page,
1618                                            rx_bi->page_offset,
1619                                            rx_packet_len);
1620
1621                         skb->len += rx_packet_len;
1622                         skb->data_len += rx_packet_len;
1623                         skb->truesize += rx_packet_len;
1624
1625                         if ((page_count(rx_bi->page) == 1) &&
1626                             (page_to_nid(rx_bi->page) == current_node))
1627                                 get_page(rx_bi->page);
1628                         else
1629                                 rx_bi->page = NULL;
1630
1631                         dma_unmap_page(rx_ring->dev,
1632                                        rx_bi->page_dma,
1633                                        PAGE_SIZE / 2,
1634                                        DMA_FROM_DEVICE);
1635                         rx_bi->page_dma = 0;
1636                 }
1637                 I40E_RX_INCREMENT(rx_ring, i);
1638
1639                 if (unlikely(
1640                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1641                         struct i40e_rx_buffer *next_buffer;
1642
1643                         next_buffer = &rx_ring->rx_bi[i];
1644                         next_buffer->skb = skb;
1645                         rx_ring->rx_stats.non_eop_descs++;
1646                         continue;
1647                 }
1648
1649                 /* ERR_MASK will only have valid bits if EOP set */
1650                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1651                         dev_kfree_skb_any(skb);
1652                         continue;
1653                 }
1654
1655                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1656                              i40e_ptype_to_hash(rx_ptype));
1657                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1658                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1659                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1660                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1661                         rx_ring->last_rx_timestamp = jiffies;
1662                 }
1663
1664                 /* probably a little skewed due to removing CRC */
1665                 total_rx_bytes += skb->len;
1666                 total_rx_packets++;
1667
1668                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1669
1670                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1671
1672                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1673                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1674                          : 0;
1675 #ifdef I40E_FCOE
1676                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1677                         dev_kfree_skb_any(skb);
1678                         continue;
1679                 }
1680 #endif
1681                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1682                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1683
1684                 rx_desc->wb.qword1.status_error_len = 0;
1685
1686         } while (likely(total_rx_packets < budget));
1687
1688         u64_stats_update_begin(&rx_ring->syncp);
1689         rx_ring->stats.packets += total_rx_packets;
1690         rx_ring->stats.bytes += total_rx_bytes;
1691         u64_stats_update_end(&rx_ring->syncp);
1692         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1693         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1694
1695         return total_rx_packets;
1696 }
1697
1698 /**
1699  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1700  * @rx_ring:  rx ring to clean
1701  * @budget:   how many cleans we're allowed
1702  *
1703  * Returns number of packets cleaned
1704  **/
1705 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1706 {
1707         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1708         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1709         struct i40e_vsi *vsi = rx_ring->vsi;
1710         union i40e_rx_desc *rx_desc;
1711         u32 rx_error, rx_status;
1712         u16 rx_packet_len;
1713         u8 rx_ptype;
1714         u64 qword;
1715         u16 i;
1716
1717         do {
1718                 struct i40e_rx_buffer *rx_bi;
1719                 struct sk_buff *skb;
1720                 u16 vlan_tag;
1721                 /* return some buffers to hardware, one at a time is too slow */
1722                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1723                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1724                         cleaned_count = 0;
1725                 }
1726
1727                 i = rx_ring->next_to_clean;
1728                 rx_desc = I40E_RX_DESC(rx_ring, i);
1729                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1730                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1731                         I40E_RXD_QW1_STATUS_SHIFT;
1732
1733                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1734                         break;
1735
1736                 /* This memory barrier is needed to keep us from reading
1737                  * any other fields out of the rx_desc until we know the
1738                  * DD bit is set.
1739                  */
1740                 dma_rmb();
1741
1742                 if (i40e_rx_is_programming_status(qword)) {
1743                         i40e_clean_programming_status(rx_ring, rx_desc);
1744                         I40E_RX_INCREMENT(rx_ring, i);
1745                         continue;
1746                 }
1747                 rx_bi = &rx_ring->rx_bi[i];
1748                 skb = rx_bi->skb;
1749                 prefetch(skb->data);
1750
1751                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1752                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1753
1754                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1755                            I40E_RXD_QW1_ERROR_SHIFT;
1756                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1757
1758                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1759                            I40E_RXD_QW1_PTYPE_SHIFT;
1760                 rx_bi->skb = NULL;
1761                 cleaned_count++;
1762
1763                 /* Get the header and possibly the whole packet
1764                  * If this is an skb from previous receive dma will be 0
1765                  */
1766                 skb_put(skb, rx_packet_len);
1767                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1768                                  DMA_FROM_DEVICE);
1769                 rx_bi->dma = 0;
1770
1771                 I40E_RX_INCREMENT(rx_ring, i);
1772
1773                 if (unlikely(
1774                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1775                         rx_ring->rx_stats.non_eop_descs++;
1776                         continue;
1777                 }
1778
1779                 /* ERR_MASK will only have valid bits if EOP set */
1780                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1781                         dev_kfree_skb_any(skb);
1782                         /* TODO: shouldn't we increment a counter indicating the
1783                          * drop?
1784                          */
1785                         continue;
1786                 }
1787
1788                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1789                              i40e_ptype_to_hash(rx_ptype));
1790                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1791                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1792                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1793                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1794                         rx_ring->last_rx_timestamp = jiffies;
1795                 }
1796
1797                 /* probably a little skewed due to removing CRC */
1798                 total_rx_bytes += skb->len;
1799                 total_rx_packets++;
1800
1801                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1802
1803                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1804
1805                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1806                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1807                          : 0;
1808 #ifdef I40E_FCOE
1809                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1810                         dev_kfree_skb_any(skb);
1811                         continue;
1812                 }
1813 #endif
1814                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1815
1816                 rx_desc->wb.qword1.status_error_len = 0;
1817         } while (likely(total_rx_packets < budget));
1818
1819         u64_stats_update_begin(&rx_ring->syncp);
1820         rx_ring->stats.packets += total_rx_packets;
1821         rx_ring->stats.bytes += total_rx_bytes;
1822         u64_stats_update_end(&rx_ring->syncp);
1823         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1824         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1825
1826         return total_rx_packets;
1827 }
1828
1829 /**
1830  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1831  * @napi: napi struct with our devices info in it
1832  * @budget: amount of work driver is allowed to do this pass, in packets
1833  *
1834  * This function will clean all queues associated with a q_vector.
1835  *
1836  * Returns the amount of work done
1837  **/
1838 int i40e_napi_poll(struct napi_struct *napi, int budget)
1839 {
1840         struct i40e_q_vector *q_vector =
1841                                container_of(napi, struct i40e_q_vector, napi);
1842         struct i40e_vsi *vsi = q_vector->vsi;
1843         struct i40e_ring *ring;
1844         bool clean_complete = true;
1845         bool arm_wb = false;
1846         int budget_per_ring;
1847         int cleaned;
1848
1849         if (test_bit(__I40E_DOWN, &vsi->state)) {
1850                 napi_complete(napi);
1851                 return 0;
1852         }
1853
1854         /* Since the actual Tx work is minimal, we can give the Tx a larger
1855          * budget and be more aggressive about cleaning up the Tx descriptors.
1856          */
1857         i40e_for_each_ring(ring, q_vector->tx) {
1858                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1859                 arm_wb |= ring->arm_wb;
1860         }
1861
1862         /* We attempt to distribute budget to each Rx queue fairly, but don't
1863          * allow the budget to go below 1 because that would exit polling early.
1864          */
1865         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1866
1867         i40e_for_each_ring(ring, q_vector->rx) {
1868                 if (ring_is_ps_enabled(ring))
1869                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1870                 else
1871                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1872                 /* if we didn't clean as many as budgeted, we must be done */
1873                 clean_complete &= (budget_per_ring != cleaned);
1874         }
1875
1876         /* If work not completed, return budget and polling will return */
1877         if (!clean_complete) {
1878                 if (arm_wb)
1879                         i40e_force_wb(vsi, q_vector);
1880                 return budget;
1881         }
1882
1883         /* Work is done so exit the polling mode and re-enable the interrupt */
1884         napi_complete(napi);
1885         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1886             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1887                 i40e_update_dynamic_itr(q_vector);
1888
1889         if (!test_bit(__I40E_DOWN, &vsi->state)) {
1890                 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1891                         i40e_irq_dynamic_enable(vsi,
1892                                         q_vector->v_idx + vsi->base_vector);
1893                 } else {
1894                         struct i40e_hw *hw = &vsi->back->hw;
1895                         /* We re-enable the queue 0 cause, but
1896                          * don't worry about dynamic_enable
1897                          * because we left it on for the other
1898                          * possible interrupts during napi
1899                          */
1900                         u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1901                         qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1902                         wr32(hw, I40E_QINT_RQCTL(0), qval);
1903
1904                         qval = rd32(hw, I40E_QINT_TQCTL(0));
1905                         qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1906                         wr32(hw, I40E_QINT_TQCTL(0), qval);
1907
1908                         i40e_irq_dynamic_enable_icr0(vsi->back);
1909                 }
1910         }
1911
1912         return 0;
1913 }
1914
1915 /**
1916  * i40e_atr - Add a Flow Director ATR filter
1917  * @tx_ring:  ring to add programming descriptor to
1918  * @skb:      send buffer
1919  * @tx_flags: send tx flags
1920  * @protocol: wire protocol
1921  **/
1922 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1923                      u32 tx_flags, __be16 protocol)
1924 {
1925         struct i40e_filter_program_desc *fdir_desc;
1926         struct i40e_pf *pf = tx_ring->vsi->back;
1927         union {
1928                 unsigned char *network;
1929                 struct iphdr *ipv4;
1930                 struct ipv6hdr *ipv6;
1931         } hdr;
1932         struct tcphdr *th;
1933         unsigned int hlen;
1934         u32 flex_ptype, dtype_cmd;
1935         u16 i;
1936
1937         /* make sure ATR is enabled */
1938         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1939                 return;
1940
1941         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1942                 return;
1943
1944         /* if sampling is disabled do nothing */
1945         if (!tx_ring->atr_sample_rate)
1946                 return;
1947
1948         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1949                 return;
1950
1951         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1952                 /* snag network header to get L4 type and address */
1953                 hdr.network = skb_network_header(skb);
1954
1955                 /* Currently only IPv4/IPv6 with TCP is supported
1956                  * access ihl as u8 to avoid unaligned access on ia64
1957                  */
1958                 if (tx_flags & I40E_TX_FLAGS_IPV4)
1959                         hlen = (hdr.network[0] & 0x0F) << 2;
1960                 else if (protocol == htons(ETH_P_IPV6))
1961                         hlen = sizeof(struct ipv6hdr);
1962                 else
1963                         return;
1964         } else {
1965                 hdr.network = skb_inner_network_header(skb);
1966                 hlen = skb_inner_network_header_len(skb);
1967         }
1968
1969         /* Currently only IPv4/IPv6 with TCP is supported
1970          * Note: tx_flags gets modified to reflect inner protocols in
1971          * tx_enable_csum function if encap is enabled.
1972          */
1973         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
1974             (hdr.ipv4->protocol != IPPROTO_TCP))
1975                 return;
1976         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
1977                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
1978                 return;
1979
1980         th = (struct tcphdr *)(hdr.network + hlen);
1981
1982         /* Due to lack of space, no more new filters can be programmed */
1983         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1984                 return;
1985
1986         tx_ring->atr_count++;
1987
1988         /* sample on all syn/fin/rst packets or once every atr sample rate */
1989         if (!th->fin &&
1990             !th->syn &&
1991             !th->rst &&
1992             (tx_ring->atr_count < tx_ring->atr_sample_rate))
1993                 return;
1994
1995         tx_ring->atr_count = 0;
1996
1997         /* grab the next descriptor */
1998         i = tx_ring->next_to_use;
1999         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2000
2001         i++;
2002         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2003
2004         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2005                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2006         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2007                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2008                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2009                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2010                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2011
2012         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2013
2014         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2015
2016         dtype_cmd |= (th->fin || th->rst) ?
2017                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2018                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2019                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2020                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2021
2022         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2023                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2024
2025         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2026                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2027
2028         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2029         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2030                 dtype_cmd |=
2031                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2032                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2033                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2034         else
2035                 dtype_cmd |=
2036                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2037                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2038                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2039
2040         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2041         fdir_desc->rsvd = cpu_to_le32(0);
2042         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2043         fdir_desc->fd_id = cpu_to_le32(0);
2044 }
2045
2046 /**
2047  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2048  * @skb:     send buffer
2049  * @tx_ring: ring to send buffer on
2050  * @flags:   the tx flags to be set
2051  *
2052  * Checks the skb and set up correspondingly several generic transmit flags
2053  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2054  *
2055  * Returns error code indicate the frame should be dropped upon error and the
2056  * otherwise  returns 0 to indicate the flags has been set properly.
2057  **/
2058 #ifdef I40E_FCOE
2059 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2060                                       struct i40e_ring *tx_ring,
2061                                       u32 *flags)
2062 #else
2063 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2064                                              struct i40e_ring *tx_ring,
2065                                              u32 *flags)
2066 #endif
2067 {
2068         __be16 protocol = skb->protocol;
2069         u32  tx_flags = 0;
2070
2071         if (protocol == htons(ETH_P_8021Q) &&
2072             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2073                 /* When HW VLAN acceleration is turned off by the user the
2074                  * stack sets the protocol to 8021q so that the driver
2075                  * can take any steps required to support the SW only
2076                  * VLAN handling.  In our case the driver doesn't need
2077                  * to take any further steps so just set the protocol
2078                  * to the encapsulated ethertype.
2079                  */
2080                 skb->protocol = vlan_get_protocol(skb);
2081                 goto out;
2082         }
2083
2084         /* if we have a HW VLAN tag being added, default to the HW one */
2085         if (skb_vlan_tag_present(skb)) {
2086                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2087                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2088         /* else if it is a SW VLAN, check the next protocol and store the tag */
2089         } else if (protocol == htons(ETH_P_8021Q)) {
2090                 struct vlan_hdr *vhdr, _vhdr;
2091                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2092                 if (!vhdr)
2093                         return -EINVAL;
2094
2095                 protocol = vhdr->h_vlan_encapsulated_proto;
2096                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2097                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2098         }
2099
2100         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2101                 goto out;
2102
2103         /* Insert 802.1p priority into VLAN header */
2104         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2105             (skb->priority != TC_PRIO_CONTROL)) {
2106                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2107                 tx_flags |= (skb->priority & 0x7) <<
2108                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2109                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2110                         struct vlan_ethhdr *vhdr;
2111                         int rc;
2112
2113                         rc = skb_cow_head(skb, 0);
2114                         if (rc < 0)
2115                                 return rc;
2116                         vhdr = (struct vlan_ethhdr *)skb->data;
2117                         vhdr->h_vlan_TCI = htons(tx_flags >>
2118                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2119                 } else {
2120                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2121                 }
2122         }
2123
2124 out:
2125         *flags = tx_flags;
2126         return 0;
2127 }
2128
2129 /**
2130  * i40e_tso - set up the tso context descriptor
2131  * @tx_ring:  ptr to the ring to send
2132  * @skb:      ptr to the skb we're sending
2133  * @hdr_len:  ptr to the size of the packet header
2134  * @cd_tunneling: ptr to context descriptor bits
2135  *
2136  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2137  **/
2138 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2139                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2140                     u32 *cd_tunneling)
2141 {
2142         u32 cd_cmd, cd_tso_len, cd_mss;
2143         struct ipv6hdr *ipv6h;
2144         struct tcphdr *tcph;
2145         struct iphdr *iph;
2146         u32 l4len;
2147         int err;
2148
2149         if (!skb_is_gso(skb))
2150                 return 0;
2151
2152         err = skb_cow_head(skb, 0);
2153         if (err < 0)
2154                 return err;
2155
2156         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2157         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2158
2159         if (iph->version == 4) {
2160                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2161                 iph->tot_len = 0;
2162                 iph->check = 0;
2163                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2164                                                  0, IPPROTO_TCP, 0);
2165         } else if (ipv6h->version == 6) {
2166                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2167                 ipv6h->payload_len = 0;
2168                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2169                                                0, IPPROTO_TCP, 0);
2170         }
2171
2172         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2173         *hdr_len = (skb->encapsulation
2174                     ? (skb_inner_transport_header(skb) - skb->data)
2175                     : skb_transport_offset(skb)) + l4len;
2176
2177         /* find the field values */
2178         cd_cmd = I40E_TX_CTX_DESC_TSO;
2179         cd_tso_len = skb->len - *hdr_len;
2180         cd_mss = skb_shinfo(skb)->gso_size;
2181         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2182                                 ((u64)cd_tso_len <<
2183                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2184                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2185         return 1;
2186 }
2187
2188 /**
2189  * i40e_tsyn - set up the tsyn context descriptor
2190  * @tx_ring:  ptr to the ring to send
2191  * @skb:      ptr to the skb we're sending
2192  * @tx_flags: the collected send information
2193  *
2194  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2195  **/
2196 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2197                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2198 {
2199         struct i40e_pf *pf;
2200
2201         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2202                 return 0;
2203
2204         /* Tx timestamps cannot be sampled when doing TSO */
2205         if (tx_flags & I40E_TX_FLAGS_TSO)
2206                 return 0;
2207
2208         /* only timestamp the outbound packet if the user has requested it and
2209          * we are not already transmitting a packet to be timestamped
2210          */
2211         pf = i40e_netdev_to_pf(tx_ring->netdev);
2212         if (!(pf->flags & I40E_FLAG_PTP))
2213                 return 0;
2214
2215         if (pf->ptp_tx &&
2216             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2217                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2218                 pf->ptp_tx_skb = skb_get(skb);
2219         } else {
2220                 return 0;
2221         }
2222
2223         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2224                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2225
2226         return 1;
2227 }
2228
2229 /**
2230  * i40e_tx_enable_csum - Enable Tx checksum offloads
2231  * @skb: send buffer
2232  * @tx_flags: pointer to Tx flags currently set
2233  * @td_cmd: Tx descriptor command bits to set
2234  * @td_offset: Tx descriptor header offsets to set
2235  * @cd_tunneling: ptr to context desc bits
2236  **/
2237 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2238                                 u32 *td_cmd, u32 *td_offset,
2239                                 struct i40e_ring *tx_ring,
2240                                 u32 *cd_tunneling)
2241 {
2242         struct ipv6hdr *this_ipv6_hdr;
2243         unsigned int this_tcp_hdrlen;
2244         struct iphdr *this_ip_hdr;
2245         u32 network_hdr_len;
2246         u8 l4_hdr = 0;
2247         u32 l4_tunnel = 0;
2248
2249         if (skb->encapsulation) {
2250                 switch (ip_hdr(skb)->protocol) {
2251                 case IPPROTO_UDP:
2252                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2253                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2254                         break;
2255                 default:
2256                         return;
2257                 }
2258                 network_hdr_len = skb_inner_network_header_len(skb);
2259                 this_ip_hdr = inner_ip_hdr(skb);
2260                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2261                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2262
2263                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2264                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2265                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2266                                 ip_hdr(skb)->check = 0;
2267                         } else {
2268                                 *cd_tunneling |=
2269                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2270                         }
2271                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2272                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2273                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2274                                 ip_hdr(skb)->check = 0;
2275                 }
2276
2277                 /* Now set the ctx descriptor fields */
2278                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2279                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2280                                    l4_tunnel                             |
2281                                    ((skb_inner_network_offset(skb) -
2282                                         skb_transport_offset(skb)) >> 1) <<
2283                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2284                 if (this_ip_hdr->version == 6) {
2285                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2286                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2287                 }
2288         } else {
2289                 network_hdr_len = skb_network_header_len(skb);
2290                 this_ip_hdr = ip_hdr(skb);
2291                 this_ipv6_hdr = ipv6_hdr(skb);
2292                 this_tcp_hdrlen = tcp_hdrlen(skb);
2293         }
2294
2295         /* Enable IP checksum offloads */
2296         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2297                 l4_hdr = this_ip_hdr->protocol;
2298                 /* the stack computes the IP header already, the only time we
2299                  * need the hardware to recompute it is in the case of TSO.
2300                  */
2301                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2302                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2303                         this_ip_hdr->check = 0;
2304                 } else {
2305                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2306                 }
2307                 /* Now set the td_offset for IP header length */
2308                 *td_offset = (network_hdr_len >> 2) <<
2309                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2310         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2311                 l4_hdr = this_ipv6_hdr->nexthdr;
2312                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2313                 /* Now set the td_offset for IP header length */
2314                 *td_offset = (network_hdr_len >> 2) <<
2315                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2316         }
2317         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2318         *td_offset |= (skb_network_offset(skb) >> 1) <<
2319                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2320
2321         /* Enable L4 checksum offloads */
2322         switch (l4_hdr) {
2323         case IPPROTO_TCP:
2324                 /* enable checksum offloads */
2325                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2326                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2327                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2328                 break;
2329         case IPPROTO_SCTP:
2330                 /* enable SCTP checksum offload */
2331                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2332                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2333                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2334                 break;
2335         case IPPROTO_UDP:
2336                 /* enable UDP checksum offload */
2337                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2338                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2339                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2340                 break;
2341         default:
2342                 break;
2343         }
2344 }
2345
2346 /**
2347  * i40e_create_tx_ctx Build the Tx context descriptor
2348  * @tx_ring:  ring to create the descriptor on
2349  * @cd_type_cmd_tso_mss: Quad Word 1
2350  * @cd_tunneling: Quad Word 0 - bits 0-31
2351  * @cd_l2tag2: Quad Word 0 - bits 32-63
2352  **/
2353 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2354                                const u64 cd_type_cmd_tso_mss,
2355                                const u32 cd_tunneling, const u32 cd_l2tag2)
2356 {
2357         struct i40e_tx_context_desc *context_desc;
2358         int i = tx_ring->next_to_use;
2359
2360         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2361             !cd_tunneling && !cd_l2tag2)
2362                 return;
2363
2364         /* grab the next descriptor */
2365         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2366
2367         i++;
2368         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2369
2370         /* cpu_to_le32 and assign to struct fields */
2371         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2372         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2373         context_desc->rsvd = cpu_to_le16(0);
2374         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2375 }
2376
2377 /**
2378  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2379  * @tx_ring: the ring to be checked
2380  * @size:    the size buffer we want to assure is available
2381  *
2382  * Returns -EBUSY if a stop is needed, else 0
2383  **/
2384 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2385 {
2386         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2387         /* Memory barrier before checking head and tail */
2388         smp_mb();
2389
2390         /* Check again in a case another CPU has just made room available. */
2391         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2392                 return -EBUSY;
2393
2394         /* A reprieve! - use start_queue because it doesn't call schedule */
2395         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2396         ++tx_ring->tx_stats.restart_queue;
2397         return 0;
2398 }
2399
2400 /**
2401  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2402  * @tx_ring: the ring to be checked
2403  * @size:    the size buffer we want to assure is available
2404  *
2405  * Returns 0 if stop is not needed
2406  **/
2407 #ifdef I40E_FCOE
2408 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2409 #else
2410 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2411 #endif
2412 {
2413         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2414                 return 0;
2415         return __i40e_maybe_stop_tx(tx_ring, size);
2416 }
2417
2418 /**
2419  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2420  * @skb:      send buffer
2421  * @tx_flags: collected send information
2422  *
2423  * Note: Our HW can't scatter-gather more than 8 fragments to build
2424  * a packet on the wire and so we need to figure out the cases where we
2425  * need to linearize the skb.
2426  **/
2427 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2428 {
2429         struct skb_frag_struct *frag;
2430         bool linearize = false;
2431         unsigned int size = 0;
2432         u16 num_frags;
2433         u16 gso_segs;
2434
2435         num_frags = skb_shinfo(skb)->nr_frags;
2436         gso_segs = skb_shinfo(skb)->gso_segs;
2437
2438         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2439                 u16 j = 0;
2440
2441                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2442                         goto linearize_chk_done;
2443                 /* try the simple math, if we have too many frags per segment */
2444                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2445                     I40E_MAX_BUFFER_TXD) {
2446                         linearize = true;
2447                         goto linearize_chk_done;
2448                 }
2449                 frag = &skb_shinfo(skb)->frags[0];
2450                 /* we might still have more fragments per segment */
2451                 do {
2452                         size += skb_frag_size(frag);
2453                         frag++; j++;
2454                         if ((size >= skb_shinfo(skb)->gso_size) &&
2455                             (j < I40E_MAX_BUFFER_TXD)) {
2456                                 size = (size % skb_shinfo(skb)->gso_size);
2457                                 j = (size) ? 1 : 0;
2458                         }
2459                         if (j == I40E_MAX_BUFFER_TXD) {
2460                                 linearize = true;
2461                                 break;
2462                         }
2463                         num_frags--;
2464                 } while (num_frags);
2465         } else {
2466                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2467                         linearize = true;
2468         }
2469
2470 linearize_chk_done:
2471         return linearize;
2472 }
2473
2474 /**
2475  * i40e_tx_map - Build the Tx descriptor
2476  * @tx_ring:  ring to send buffer on
2477  * @skb:      send buffer
2478  * @first:    first buffer info buffer to use
2479  * @tx_flags: collected send information
2480  * @hdr_len:  size of the packet header
2481  * @td_cmd:   the command field in the descriptor
2482  * @td_offset: offset for checksum or crc
2483  **/
2484 #ifdef I40E_FCOE
2485 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2486                         struct i40e_tx_buffer *first, u32 tx_flags,
2487                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2488 #else
2489 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2490                                struct i40e_tx_buffer *first, u32 tx_flags,
2491                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2492 #endif
2493 {
2494         unsigned int data_len = skb->data_len;
2495         unsigned int size = skb_headlen(skb);
2496         struct skb_frag_struct *frag;
2497         struct i40e_tx_buffer *tx_bi;
2498         struct i40e_tx_desc *tx_desc;
2499         u16 i = tx_ring->next_to_use;
2500         u32 td_tag = 0;
2501         dma_addr_t dma;
2502         u16 gso_segs;
2503
2504         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2505                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2506                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2507                          I40E_TX_FLAGS_VLAN_SHIFT;
2508         }
2509
2510         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2511                 gso_segs = skb_shinfo(skb)->gso_segs;
2512         else
2513                 gso_segs = 1;
2514
2515         /* multiply data chunks by size of headers */
2516         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2517         first->gso_segs = gso_segs;
2518         first->skb = skb;
2519         first->tx_flags = tx_flags;
2520
2521         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2522
2523         tx_desc = I40E_TX_DESC(tx_ring, i);
2524         tx_bi = first;
2525
2526         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2527                 if (dma_mapping_error(tx_ring->dev, dma))
2528                         goto dma_error;
2529
2530                 /* record length, and DMA address */
2531                 dma_unmap_len_set(tx_bi, len, size);
2532                 dma_unmap_addr_set(tx_bi, dma, dma);
2533
2534                 tx_desc->buffer_addr = cpu_to_le64(dma);
2535
2536                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2537                         tx_desc->cmd_type_offset_bsz =
2538                                 build_ctob(td_cmd, td_offset,
2539                                            I40E_MAX_DATA_PER_TXD, td_tag);
2540
2541                         tx_desc++;
2542                         i++;
2543                         if (i == tx_ring->count) {
2544                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2545                                 i = 0;
2546                         }
2547
2548                         dma += I40E_MAX_DATA_PER_TXD;
2549                         size -= I40E_MAX_DATA_PER_TXD;
2550
2551                         tx_desc->buffer_addr = cpu_to_le64(dma);
2552                 }
2553
2554                 if (likely(!data_len))
2555                         break;
2556
2557                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2558                                                           size, td_tag);
2559
2560                 tx_desc++;
2561                 i++;
2562                 if (i == tx_ring->count) {
2563                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2564                         i = 0;
2565                 }
2566
2567                 size = skb_frag_size(frag);
2568                 data_len -= size;
2569
2570                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2571                                        DMA_TO_DEVICE);
2572
2573                 tx_bi = &tx_ring->tx_bi[i];
2574         }
2575
2576         /* Place RS bit on last descriptor of any packet that spans across the
2577          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2578          */
2579         if (((i & WB_STRIDE) != WB_STRIDE) &&
2580             (first <= &tx_ring->tx_bi[i]) &&
2581             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2582                 tx_desc->cmd_type_offset_bsz =
2583                         build_ctob(td_cmd, td_offset, size, td_tag) |
2584                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2585                                          I40E_TXD_QW1_CMD_SHIFT);
2586         } else {
2587                 tx_desc->cmd_type_offset_bsz =
2588                         build_ctob(td_cmd, td_offset, size, td_tag) |
2589                         cpu_to_le64((u64)I40E_TXD_CMD <<
2590                                          I40E_TXD_QW1_CMD_SHIFT);
2591         }
2592
2593         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2594                                                  tx_ring->queue_index),
2595                              first->bytecount);
2596
2597         /* Force memory writes to complete before letting h/w
2598          * know there are new descriptors to fetch.  (Only
2599          * applicable for weak-ordered memory model archs,
2600          * such as IA-64).
2601          */
2602         wmb();
2603
2604         /* set next_to_watch value indicating a packet is present */
2605         first->next_to_watch = tx_desc;
2606
2607         i++;
2608         if (i == tx_ring->count)
2609                 i = 0;
2610
2611         tx_ring->next_to_use = i;
2612
2613         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2614         /* notify HW of packet */
2615         if (!skb->xmit_more ||
2616             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2617                                                    tx_ring->queue_index)))
2618                 writel(i, tx_ring->tail);
2619
2620         return;
2621
2622 dma_error:
2623         dev_info(tx_ring->dev, "TX DMA map failed\n");
2624
2625         /* clear dma mappings for failed tx_bi map */
2626         for (;;) {
2627                 tx_bi = &tx_ring->tx_bi[i];
2628                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2629                 if (tx_bi == first)
2630                         break;
2631                 if (i == 0)
2632                         i = tx_ring->count;
2633                 i--;
2634         }
2635
2636         tx_ring->next_to_use = i;
2637 }
2638
2639 /**
2640  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2641  * @skb:     send buffer
2642  * @tx_ring: ring to send buffer on
2643  *
2644  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2645  * there is not enough descriptors available in this ring since we need at least
2646  * one descriptor.
2647  **/
2648 #ifdef I40E_FCOE
2649 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2650                                       struct i40e_ring *tx_ring)
2651 #else
2652 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2653                                              struct i40e_ring *tx_ring)
2654 #endif
2655 {
2656         unsigned int f;
2657         int count = 0;
2658
2659         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2660          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2661          *       + 4 desc gap to avoid the cache line where head is,
2662          *       + 1 desc for context descriptor,
2663          * otherwise try next time
2664          */
2665         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2666                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2667
2668         count += TXD_USE_COUNT(skb_headlen(skb));
2669         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2670                 tx_ring->tx_stats.tx_busy++;
2671                 return 0;
2672         }
2673         return count;
2674 }
2675
2676 /**
2677  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2678  * @skb:     send buffer
2679  * @tx_ring: ring to send buffer on
2680  *
2681  * Returns NETDEV_TX_OK if sent, else an error code
2682  **/
2683 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2684                                         struct i40e_ring *tx_ring)
2685 {
2686         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2687         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2688         struct i40e_tx_buffer *first;
2689         u32 td_offset = 0;
2690         u32 tx_flags = 0;
2691         __be16 protocol;
2692         u32 td_cmd = 0;
2693         u8 hdr_len = 0;
2694         int tsyn;
2695         int tso;
2696         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2697                 return NETDEV_TX_BUSY;
2698
2699         /* prepare the xmit flags */
2700         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2701                 goto out_drop;
2702
2703         /* obtain protocol of skb */
2704         protocol = vlan_get_protocol(skb);
2705
2706         /* record the location of the first descriptor for this packet */
2707         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2708
2709         /* setup IPv4/IPv6 offloads */
2710         if (protocol == htons(ETH_P_IP))
2711                 tx_flags |= I40E_TX_FLAGS_IPV4;
2712         else if (protocol == htons(ETH_P_IPV6))
2713                 tx_flags |= I40E_TX_FLAGS_IPV6;
2714
2715         tso = i40e_tso(tx_ring, skb, &hdr_len,
2716                        &cd_type_cmd_tso_mss, &cd_tunneling);
2717
2718         if (tso < 0)
2719                 goto out_drop;
2720         else if (tso)
2721                 tx_flags |= I40E_TX_FLAGS_TSO;
2722
2723         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2724
2725         if (tsyn)
2726                 tx_flags |= I40E_TX_FLAGS_TSYN;
2727
2728         if (i40e_chk_linearize(skb, tx_flags))
2729                 if (skb_linearize(skb))
2730                         goto out_drop;
2731
2732         skb_tx_timestamp(skb);
2733
2734         /* always enable CRC insertion offload */
2735         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2736
2737         /* Always offload the checksum, since it's in the data descriptor */
2738         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2739                 tx_flags |= I40E_TX_FLAGS_CSUM;
2740
2741                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2742                                     tx_ring, &cd_tunneling);
2743         }
2744
2745         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2746                            cd_tunneling, cd_l2tag2);
2747
2748         /* Add Flow Director ATR if it's enabled.
2749          *
2750          * NOTE: this must always be directly before the data descriptor.
2751          */
2752         i40e_atr(tx_ring, skb, tx_flags, protocol);
2753
2754         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2755                     td_cmd, td_offset);
2756
2757         return NETDEV_TX_OK;
2758
2759 out_drop:
2760         dev_kfree_skb_any(skb);
2761         return NETDEV_TX_OK;
2762 }
2763
2764 /**
2765  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2766  * @skb:    send buffer
2767  * @netdev: network interface device structure
2768  *
2769  * Returns NETDEV_TX_OK if sent, else an error code
2770  **/
2771 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2772 {
2773         struct i40e_netdev_priv *np = netdev_priv(netdev);
2774         struct i40e_vsi *vsi = np->vsi;
2775         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2776
2777         /* hardware can't handle really short frames, hardware padding works
2778          * beyond this point
2779          */
2780         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2781                 return NETDEV_TX_OK;
2782
2783         return i40e_xmit_frame_ring(skb, tx_ring);
2784 }