OSDN Git Service

Merge tag '5.6-rc-smb3-plugfest-patches' of git://git.samba.org/sfrench/cifs-2.6
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / intel / i40e / i40e_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21         struct i40e_pf *pf = vsi->back;
22         struct device *dev;
23         unsigned int i, j;
24         dma_addr_t dma;
25
26         dev = &pf->pdev->dev;
27         for (i = 0; i < umem->npgs; i++) {
28                 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29                                          DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30                 if (dma_mapping_error(dev, dma))
31                         goto out_unmap;
32
33                 umem->pages[i].dma = dma;
34         }
35
36         return 0;
37
38 out_unmap:
39         for (j = 0; j < i; j++) {
40                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42                 umem->pages[i].dma = 0;
43         }
44
45         return -1;
46 }
47
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55         struct i40e_pf *pf = vsi->back;
56         struct device *dev;
57         unsigned int i;
58
59         dev = &pf->pdev->dev;
60
61         for (i = 0; i < umem->npgs; i++) {
62                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64
65                 umem->pages[i].dma = 0;
66         }
67 }
68
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78                                 u16 qid)
79 {
80         struct net_device *netdev = vsi->netdev;
81         struct xdp_umem_fq_reuse *reuseq;
82         bool if_running;
83         int err;
84
85         if (vsi->type != I40E_VSI_MAIN)
86                 return -EINVAL;
87
88         if (qid >= vsi->num_queue_pairs)
89                 return -EINVAL;
90
91         if (qid >= netdev->real_num_rx_queues ||
92             qid >= netdev->real_num_tx_queues)
93                 return -EINVAL;
94
95         reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96         if (!reuseq)
97                 return -ENOMEM;
98
99         xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100
101         err = i40e_xsk_umem_dma_map(vsi, umem);
102         if (err)
103                 return err;
104
105         set_bit(qid, vsi->af_xdp_zc_qps);
106
107         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
108
109         if (if_running) {
110                 err = i40e_queue_pair_disable(vsi, qid);
111                 if (err)
112                         return err;
113
114                 err = i40e_queue_pair_enable(vsi, qid);
115                 if (err)
116                         return err;
117
118                 /* Kick start the NAPI context so that receiving will start */
119                 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
120                 if (err)
121                         return err;
122         }
123
124         return 0;
125 }
126
127 /**
128  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
129  * @vsi: Current VSI
130  * @qid: Rx ring to associate UMEM to
131  *
132  * Returns 0 on success, <0 on failure
133  **/
134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
135 {
136         struct net_device *netdev = vsi->netdev;
137         struct xdp_umem *umem;
138         bool if_running;
139         int err;
140
141         umem = xdp_get_umem_from_qid(netdev, qid);
142         if (!umem)
143                 return -EINVAL;
144
145         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
146
147         if (if_running) {
148                 err = i40e_queue_pair_disable(vsi, qid);
149                 if (err)
150                         return err;
151         }
152
153         clear_bit(qid, vsi->af_xdp_zc_qps);
154         i40e_xsk_umem_dma_unmap(vsi, umem);
155
156         if (if_running) {
157                 err = i40e_queue_pair_enable(vsi, qid);
158                 if (err)
159                         return err;
160         }
161
162         return 0;
163 }
164
165 /**
166  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
167  * @vsi: Current VSI
168  * @umem: UMEM to enable/associate to a ring, or NULL to disable
169  * @qid: Rx ring to (dis)associate UMEM (from)to
170  *
171  * This function enables or disables a UMEM to a certain ring.
172  *
173  * Returns 0 on success, <0 on failure
174  **/
175 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
176                         u16 qid)
177 {
178         return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
179                 i40e_xsk_umem_disable(vsi, qid);
180 }
181
182 /**
183  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
184  * @rx_ring: Rx ring
185  * @xdp: xdp_buff used as input to the XDP program
186  *
187  * This function enables or disables a UMEM to a certain ring.
188  *
189  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
190  **/
191 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
192 {
193         struct xdp_umem *umem = rx_ring->xsk_umem;
194         int err, result = I40E_XDP_PASS;
195         struct i40e_ring *xdp_ring;
196         struct bpf_prog *xdp_prog;
197         u64 offset;
198         u32 act;
199
200         rcu_read_lock();
201         /* NB! xdp_prog will always be !NULL, due to the fact that
202          * this path is enabled by setting an XDP program.
203          */
204         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
205         act = bpf_prog_run_xdp(xdp_prog, xdp);
206         offset = xdp->data - xdp->data_hard_start;
207
208         xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);
209
210         switch (act) {
211         case XDP_PASS:
212                 break;
213         case XDP_TX:
214                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
215                 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
216                 break;
217         case XDP_REDIRECT:
218                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
219                 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
220                 break;
221         default:
222                 bpf_warn_invalid_xdp_action(act);
223                 /* fall through */
224         case XDP_ABORTED:
225                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
226                 /* fallthrough -- handle aborts by dropping packet */
227         case XDP_DROP:
228                 result = I40E_XDP_CONSUMED;
229                 break;
230         }
231         rcu_read_unlock();
232         return result;
233 }
234
235 /**
236  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
237  * @rx_ring: Rx ring
238  * @bi: Rx buffer to populate
239  *
240  * This function allocates an Rx buffer. The buffer can come from fill
241  * queue, or via the recycle queue (next_to_alloc).
242  *
243  * Returns true for a successful allocation, false otherwise
244  **/
245 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
246                                  struct i40e_rx_buffer *bi)
247 {
248         struct xdp_umem *umem = rx_ring->xsk_umem;
249         void *addr = bi->addr;
250         u64 handle, hr;
251
252         if (addr) {
253                 rx_ring->rx_stats.page_reuse_count++;
254                 return true;
255         }
256
257         if (!xsk_umem_peek_addr(umem, &handle)) {
258                 rx_ring->rx_stats.alloc_page_failed++;
259                 return false;
260         }
261
262         hr = umem->headroom + XDP_PACKET_HEADROOM;
263
264         bi->dma = xdp_umem_get_dma(umem, handle);
265         bi->dma += hr;
266
267         bi->addr = xdp_umem_get_data(umem, handle);
268         bi->addr += hr;
269
270         bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
271
272         xsk_umem_release_addr(umem);
273         return true;
274 }
275
276 /**
277  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
278  * @rx_ring: Rx ring
279  * @bi: Rx buffer to populate
280  *
281  * This function allocates an Rx buffer. The buffer can come from fill
282  * queue, or via the reuse queue.
283  *
284  * Returns true for a successful allocation, false otherwise
285  **/
286 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
287                                       struct i40e_rx_buffer *bi)
288 {
289         struct xdp_umem *umem = rx_ring->xsk_umem;
290         u64 handle, hr;
291
292         if (!xsk_umem_peek_addr_rq(umem, &handle)) {
293                 rx_ring->rx_stats.alloc_page_failed++;
294                 return false;
295         }
296
297         handle &= rx_ring->xsk_umem->chunk_mask;
298
299         hr = umem->headroom + XDP_PACKET_HEADROOM;
300
301         bi->dma = xdp_umem_get_dma(umem, handle);
302         bi->dma += hr;
303
304         bi->addr = xdp_umem_get_data(umem, handle);
305         bi->addr += hr;
306
307         bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
308
309         xsk_umem_release_addr_rq(umem);
310         return true;
311 }
312
313 static __always_inline bool
314 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
315                            bool alloc(struct i40e_ring *rx_ring,
316                                       struct i40e_rx_buffer *bi))
317 {
318         u16 ntu = rx_ring->next_to_use;
319         union i40e_rx_desc *rx_desc;
320         struct i40e_rx_buffer *bi;
321         bool ok = true;
322
323         rx_desc = I40E_RX_DESC(rx_ring, ntu);
324         bi = &rx_ring->rx_bi[ntu];
325         do {
326                 if (!alloc(rx_ring, bi)) {
327                         ok = false;
328                         goto no_buffers;
329                 }
330
331                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
332                                                  rx_ring->rx_buf_len,
333                                                  DMA_BIDIRECTIONAL);
334
335                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
336
337                 rx_desc++;
338                 bi++;
339                 ntu++;
340
341                 if (unlikely(ntu == rx_ring->count)) {
342                         rx_desc = I40E_RX_DESC(rx_ring, 0);
343                         bi = rx_ring->rx_bi;
344                         ntu = 0;
345                 }
346
347                 rx_desc->wb.qword1.status_error_len = 0;
348                 count--;
349         } while (count);
350
351 no_buffers:
352         if (rx_ring->next_to_use != ntu)
353                 i40e_release_rx_desc(rx_ring, ntu);
354
355         return ok;
356 }
357
358 /**
359  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
360  * @rx_ring: Rx ring
361  * @count: The number of buffers to allocate
362  *
363  * This function allocates a number of Rx buffers from the reuse queue
364  * or fill ring and places them on the Rx ring.
365  *
366  * Returns true for a successful allocation, false otherwise
367  **/
368 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
369 {
370         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
371                                           i40e_alloc_buffer_slow_zc);
372 }
373
374 /**
375  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
376  * @rx_ring: Rx ring
377  * @count: The number of buffers to allocate
378  *
379  * This function allocates a number of Rx buffers from the fill ring
380  * or the internal recycle mechanism and places them on the Rx ring.
381  *
382  * Returns true for a successful allocation, false otherwise
383  **/
384 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
385 {
386         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
387                                           i40e_alloc_buffer_zc);
388 }
389
390 /**
391  * i40e_get_rx_buffer_zc - Return the current Rx buffer
392  * @rx_ring: Rx ring
393  * @size: The size of the rx buffer (read from descriptor)
394  *
395  * This function returns the current, received Rx buffer, and also
396  * does DMA synchronization.  the Rx ring.
397  *
398  * Returns the received Rx buffer
399  **/
400 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
401                                                     const unsigned int size)
402 {
403         struct i40e_rx_buffer *bi;
404
405         bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
406
407         /* we are reusing so sync this buffer for CPU use */
408         dma_sync_single_range_for_cpu(rx_ring->dev,
409                                       bi->dma, 0,
410                                       size,
411                                       DMA_BIDIRECTIONAL);
412
413         return bi;
414 }
415
416 /**
417  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
418  * @rx_ring: Rx ring
419  * @old_bi: The Rx buffer to recycle
420  *
421  * This function recycles a finished Rx buffer, and places it on the
422  * recycle queue (next_to_alloc).
423  **/
424 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
425                                     struct i40e_rx_buffer *old_bi)
426 {
427         struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
428         u16 nta = rx_ring->next_to_alloc;
429
430         /* update, and store next to alloc */
431         nta++;
432         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
433
434         /* transfer page from old buffer to new buffer */
435         new_bi->dma = old_bi->dma;
436         new_bi->addr = old_bi->addr;
437         new_bi->handle = old_bi->handle;
438
439         old_bi->addr = NULL;
440 }
441
442 /**
443  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
444  * @alloc: Zero-copy allocator
445  * @handle: Buffer handle
446  **/
447 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
448 {
449         struct i40e_rx_buffer *bi;
450         struct i40e_ring *rx_ring;
451         u64 hr, mask;
452         u16 nta;
453
454         rx_ring = container_of(alloc, struct i40e_ring, zca);
455         hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
456         mask = rx_ring->xsk_umem->chunk_mask;
457
458         nta = rx_ring->next_to_alloc;
459         bi = &rx_ring->rx_bi[nta];
460
461         nta++;
462         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
463
464         handle &= mask;
465
466         bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
467         bi->dma += hr;
468
469         bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
470         bi->addr += hr;
471
472         bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle,
473                                             rx_ring->xsk_umem->headroom);
474 }
475
476 /**
477  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
478  * @rx_ring: Rx ring
479  * @bi: Rx buffer
480  * @xdp: xdp_buff
481  *
482  * This functions allocates a new skb from a zero-copy Rx buffer.
483  *
484  * Returns the skb, or NULL on failure.
485  **/
486 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
487                                              struct i40e_rx_buffer *bi,
488                                              struct xdp_buff *xdp)
489 {
490         unsigned int metasize = xdp->data - xdp->data_meta;
491         unsigned int datasize = xdp->data_end - xdp->data;
492         struct sk_buff *skb;
493
494         /* allocate a skb to store the frags */
495         skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
496                                xdp->data_end - xdp->data_hard_start,
497                                GFP_ATOMIC | __GFP_NOWARN);
498         if (unlikely(!skb))
499                 return NULL;
500
501         skb_reserve(skb, xdp->data - xdp->data_hard_start);
502         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
503         if (metasize)
504                 skb_metadata_set(skb, metasize);
505
506         i40e_reuse_rx_buffer_zc(rx_ring, bi);
507         return skb;
508 }
509
510 /**
511  * i40e_inc_ntc: Advance the next_to_clean index
512  * @rx_ring: Rx ring
513  **/
514 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
515 {
516         u32 ntc = rx_ring->next_to_clean + 1;
517
518         ntc = (ntc < rx_ring->count) ? ntc : 0;
519         rx_ring->next_to_clean = ntc;
520         prefetch(I40E_RX_DESC(rx_ring, ntc));
521 }
522
523 /**
524  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
525  * @rx_ring: Rx ring
526  * @budget: NAPI budget
527  *
528  * Returns amount of work completed
529  **/
530 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
531 {
532         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
533         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
534         unsigned int xdp_res, xdp_xmit = 0;
535         bool failure = false;
536         struct sk_buff *skb;
537         struct xdp_buff xdp;
538
539         xdp.rxq = &rx_ring->xdp_rxq;
540
541         while (likely(total_rx_packets < (unsigned int)budget)) {
542                 struct i40e_rx_buffer *bi;
543                 union i40e_rx_desc *rx_desc;
544                 unsigned int size;
545                 u64 qword;
546
547                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
548                         failure = failure ||
549                                   !i40e_alloc_rx_buffers_fast_zc(rx_ring,
550                                                                  cleaned_count);
551                         cleaned_count = 0;
552                 }
553
554                 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
555                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
556
557                 /* This memory barrier is needed to keep us from reading
558                  * any other fields out of the rx_desc until we have
559                  * verified the descriptor has been written back.
560                  */
561                 dma_rmb();
562
563                 bi = i40e_clean_programming_status(rx_ring, rx_desc,
564                                                    qword);
565                 if (unlikely(bi)) {
566                         i40e_reuse_rx_buffer_zc(rx_ring, bi);
567                         cleaned_count++;
568                         continue;
569                 }
570
571                 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
572                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
573                 if (!size)
574                         break;
575
576                 bi = i40e_get_rx_buffer_zc(rx_ring, size);
577                 xdp.data = bi->addr;
578                 xdp.data_meta = xdp.data;
579                 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
580                 xdp.data_end = xdp.data + size;
581                 xdp.handle = bi->handle;
582
583                 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
584                 if (xdp_res) {
585                         if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
586                                 xdp_xmit |= xdp_res;
587                                 bi->addr = NULL;
588                         } else {
589                                 i40e_reuse_rx_buffer_zc(rx_ring, bi);
590                         }
591
592                         total_rx_bytes += size;
593                         total_rx_packets++;
594
595                         cleaned_count++;
596                         i40e_inc_ntc(rx_ring);
597                         continue;
598                 }
599
600                 /* XDP_PASS path */
601
602                 /* NB! We are not checking for errors using
603                  * i40e_test_staterr with
604                  * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
605                  * SBP is *not* set in PRT_SBPVSI (default not set).
606                  */
607                 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
608                 if (!skb) {
609                         rx_ring->rx_stats.alloc_buff_failed++;
610                         break;
611                 }
612
613                 cleaned_count++;
614                 i40e_inc_ntc(rx_ring);
615
616                 if (eth_skb_pad(skb))
617                         continue;
618
619                 total_rx_bytes += skb->len;
620                 total_rx_packets++;
621
622                 i40e_process_skb_fields(rx_ring, rx_desc, skb);
623                 napi_gro_receive(&rx_ring->q_vector->napi, skb);
624         }
625
626         i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
627         i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
628
629         if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
630                 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
631                         xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
632                 else
633                         xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
634
635                 return (int)total_rx_packets;
636         }
637         return failure ? budget : (int)total_rx_packets;
638 }
639
640 /**
641  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
642  * @xdp_ring: XDP Tx ring
643  * @budget: NAPI budget
644  *
645  * Returns true if the work is finished.
646  **/
647 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
648 {
649         struct i40e_tx_desc *tx_desc = NULL;
650         struct i40e_tx_buffer *tx_bi;
651         bool work_done = true;
652         struct xdp_desc desc;
653         dma_addr_t dma;
654
655         while (budget-- > 0) {
656                 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
657                         xdp_ring->tx_stats.tx_busy++;
658                         work_done = false;
659                         break;
660                 }
661
662                 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
663                         break;
664
665                 dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
666
667                 dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
668                                            DMA_BIDIRECTIONAL);
669
670                 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
671                 tx_bi->bytecount = desc.len;
672
673                 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
674                 tx_desc->buffer_addr = cpu_to_le64(dma);
675                 tx_desc->cmd_type_offset_bsz =
676                         build_ctob(I40E_TX_DESC_CMD_ICRC
677                                    | I40E_TX_DESC_CMD_EOP,
678                                    0, desc.len, 0);
679
680                 xdp_ring->next_to_use++;
681                 if (xdp_ring->next_to_use == xdp_ring->count)
682                         xdp_ring->next_to_use = 0;
683         }
684
685         if (tx_desc) {
686                 /* Request an interrupt for the last frame and bump tail ptr. */
687                 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
688                                                  I40E_TXD_QW1_CMD_SHIFT);
689                 i40e_xdp_ring_update_tail(xdp_ring);
690
691                 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
692         }
693
694         return !!budget && work_done;
695 }
696
697 /**
698  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
699  * @tx_ring: XDP Tx ring
700  * @tx_bi: Tx buffer info to clean
701  **/
702 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
703                                      struct i40e_tx_buffer *tx_bi)
704 {
705         xdp_return_frame(tx_bi->xdpf);
706         dma_unmap_single(tx_ring->dev,
707                          dma_unmap_addr(tx_bi, dma),
708                          dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
709         dma_unmap_len_set(tx_bi, len, 0);
710 }
711
712 /**
713  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
714  * @tx_ring: XDP Tx ring
715  * @tx_bi: Tx buffer info to clean
716  *
717  * Returns true if cleanup/tranmission is done.
718  **/
719 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
720                            struct i40e_ring *tx_ring, int napi_budget)
721 {
722         unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
723         u32 i, completed_frames, frames_ready, xsk_frames = 0;
724         struct xdp_umem *umem = tx_ring->xsk_umem;
725         u32 head_idx = i40e_get_head(tx_ring);
726         bool work_done = true, xmit_done;
727         struct i40e_tx_buffer *tx_bi;
728
729         if (head_idx < tx_ring->next_to_clean)
730                 head_idx += tx_ring->count;
731         frames_ready = head_idx - tx_ring->next_to_clean;
732
733         if (frames_ready == 0) {
734                 goto out_xmit;
735         } else if (frames_ready > budget) {
736                 completed_frames = budget;
737                 work_done = false;
738         } else {
739                 completed_frames = frames_ready;
740         }
741
742         ntc = tx_ring->next_to_clean;
743
744         for (i = 0; i < completed_frames; i++) {
745                 tx_bi = &tx_ring->tx_bi[ntc];
746
747                 if (tx_bi->xdpf)
748                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
749                 else
750                         xsk_frames++;
751
752                 tx_bi->xdpf = NULL;
753                 total_bytes += tx_bi->bytecount;
754
755                 if (++ntc >= tx_ring->count)
756                         ntc = 0;
757         }
758
759         tx_ring->next_to_clean += completed_frames;
760         if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
761                 tx_ring->next_to_clean -= tx_ring->count;
762
763         if (xsk_frames)
764                 xsk_umem_complete_tx(umem, xsk_frames);
765
766         i40e_arm_wb(tx_ring, vsi, budget);
767         i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
768
769 out_xmit:
770         if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem))
771                 xsk_set_tx_need_wakeup(tx_ring->xsk_umem);
772
773         xmit_done = i40e_xmit_zc(tx_ring, budget);
774
775         return work_done && xmit_done;
776 }
777
778 /**
779  * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
780  * @dev: the netdevice
781  * @queue_id: queue id to wake up
782  * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
783  *
784  * Returns <0 for errors, 0 otherwise.
785  **/
786 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
787 {
788         struct i40e_netdev_priv *np = netdev_priv(dev);
789         struct i40e_vsi *vsi = np->vsi;
790         struct i40e_pf *pf = vsi->back;
791         struct i40e_ring *ring;
792
793         if (test_bit(__I40E_CONFIG_BUSY, pf->state))
794                 return -EAGAIN;
795
796         if (test_bit(__I40E_VSI_DOWN, vsi->state))
797                 return -ENETDOWN;
798
799         if (!i40e_enabled_xdp_vsi(vsi))
800                 return -ENXIO;
801
802         if (queue_id >= vsi->num_queue_pairs)
803                 return -ENXIO;
804
805         if (!vsi->xdp_rings[queue_id]->xsk_umem)
806                 return -ENXIO;
807
808         ring = vsi->xdp_rings[queue_id];
809
810         /* The idea here is that if NAPI is running, mark a miss, so
811          * it will run again. If not, trigger an interrupt and
812          * schedule the NAPI from interrupt context. If NAPI would be
813          * scheduled here, the interrupt affinity would not be
814          * honored.
815          */
816         if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
817                 i40e_force_wb(vsi, ring->q_vector);
818
819         return 0;
820 }
821
822 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
823 {
824         u16 i;
825
826         for (i = 0; i < rx_ring->count; i++) {
827                 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
828
829                 if (!rx_bi->addr)
830                         continue;
831
832                 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
833                 rx_bi->addr = NULL;
834         }
835 }
836
837 /**
838  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
839  * @xdp_ring: XDP Tx ring
840  **/
841 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
842 {
843         u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
844         struct xdp_umem *umem = tx_ring->xsk_umem;
845         struct i40e_tx_buffer *tx_bi;
846         u32 xsk_frames = 0;
847
848         while (ntc != ntu) {
849                 tx_bi = &tx_ring->tx_bi[ntc];
850
851                 if (tx_bi->xdpf)
852                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
853                 else
854                         xsk_frames++;
855
856                 tx_bi->xdpf = NULL;
857
858                 ntc++;
859                 if (ntc >= tx_ring->count)
860                         ntc = 0;
861         }
862
863         if (xsk_frames)
864                 xsk_umem_complete_tx(umem, xsk_frames);
865 }
866
867 /**
868  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
869  * @vsi: vsi
870  *
871  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
872  **/
873 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
874 {
875         struct net_device *netdev = vsi->netdev;
876         int i;
877
878         for (i = 0; i < vsi->num_queue_pairs; i++) {
879                 if (xdp_get_umem_from_qid(netdev, i))
880                         return true;
881         }
882
883         return false;
884 }