OSDN Git Service

qede: avoid uninitialized entries in coal_entry array
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48
49 static const struct qed_eth_ops *qed_ops;
50
51 #define CHIP_NUM_57980S_40              0x1634
52 #define CHIP_NUM_57980S_10              0x1666
53 #define CHIP_NUM_57980S_MF              0x1636
54 #define CHIP_NUM_57980S_100             0x1644
55 #define CHIP_NUM_57980S_50              0x1654
56 #define CHIP_NUM_57980S_25              0x1656
57 #define CHIP_NUM_57980S_IOV             0x1664
58 #define CHIP_NUM_AH                     0x8070
59 #define CHIP_NUM_AH_IOV                 0x8090
60
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
71
72 #endif
73
74 enum qede_pci_private {
75         QEDE_PRIVATE_PF,
76         QEDE_PRIVATE_VF
77 };
78
79 static const struct pci_device_id qede_pci_tbl[] = {
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93         { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101
102 #define TX_TIMEOUT              (5 * HZ)
103
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI  11
106
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113                                          enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116                                       struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120                             __be16 vlan_proto)
121 {
122         struct qede_dev *edev = netdev_priv(ndev);
123
124         if (vlan > 4095) {
125                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126                 return -EINVAL;
127         }
128
129         if (vlan_proto != htons(ETH_P_8021Q))
130                 return -EPROTONOSUPPORT;
131
132         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133                    vlan, vf);
134
135         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140         struct qede_dev *edev = netdev_priv(ndev);
141
142         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143
144         if (!is_valid_ether_addr(mac)) {
145                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146                 return -EINVAL;
147         }
148
149         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155         struct qed_dev_info *qed_info = &edev->dev_info.common;
156         struct qed_update_vport_params *vport_params;
157         int rc;
158
159         vport_params = vzalloc(sizeof(*vport_params));
160         if (!vport_params)
161                 return -ENOMEM;
162         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163
164         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165
166         /* Enable/Disable Tx switching for PF */
167         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169                 vport_params->vport_id = 0;
170                 vport_params->update_tx_switching_flg = 1;
171                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172                 edev->ops->vport_update(edev->cdev, vport_params);
173         }
174
175         vfree(vport_params);
176         return rc;
177 }
178 #endif
179
180 static const struct pci_error_handlers qede_err_handler = {
181         .error_detected = qede_io_error_detected,
182 };
183
184 static struct pci_driver qede_pci_driver = {
185         .name = "qede",
186         .id_table = qede_pci_tbl,
187         .probe = qede_probe,
188         .remove = qede_remove,
189         .shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191         .sriov_configure = qede_sriov_configure,
192 #endif
193         .err_handler = &qede_err_handler,
194 };
195
196 static struct qed_eth_cb_ops qede_ll_ops = {
197         {
198 #ifdef CONFIG_RFS_ACCEL
199                 .arfs_filter_op = qede_arfs_filter_op,
200 #endif
201                 .link_update = qede_link_update,
202                 .schedule_recovery_handler = qede_schedule_recovery_handler,
203                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
204                 .get_generic_tlv_data = qede_get_generic_tlv_data,
205                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
206         },
207         .force_mac = qede_force_mac,
208         .ports_update = qede_udp_ports_update,
209 };
210
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212                              void *ptr)
213 {
214         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215         struct ethtool_drvinfo drvinfo;
216         struct qede_dev *edev;
217
218         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219                 goto done;
220
221         /* Check whether this is a qede device */
222         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223                 goto done;
224
225         memset(&drvinfo, 0, sizeof(drvinfo));
226         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227         if (strcmp(drvinfo.driver, "qede"))
228                 goto done;
229         edev = netdev_priv(ndev);
230
231         switch (event) {
232         case NETDEV_CHANGENAME:
233                 /* Notify qed of the name change */
234                 if (!edev->ops || !edev->ops->common)
235                         goto done;
236                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237                 break;
238         case NETDEV_CHANGEADDR:
239                 edev = netdev_priv(ndev);
240                 qede_rdma_event_changeaddr(edev);
241                 break;
242         }
243
244 done:
245         return NOTIFY_DONE;
246 }
247
248 static struct notifier_block qede_netdev_notifier = {
249         .notifier_call = qede_netdev_event,
250 };
251
252 static
253 int __init qede_init(void)
254 {
255         int ret;
256
257         pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258
259         qede_forced_speed_maps_init();
260
261         qed_ops = qed_get_eth_ops();
262         if (!qed_ops) {
263                 pr_notice("Failed to get qed ethtool operations\n");
264                 return -EINVAL;
265         }
266
267         /* Must register notifier before pci ops, since we might miss
268          * interface rename after pci probe and netdev registration.
269          */
270         ret = register_netdevice_notifier(&qede_netdev_notifier);
271         if (ret) {
272                 pr_notice("Failed to register netdevice_notifier\n");
273                 qed_put_eth_ops();
274                 return -EINVAL;
275         }
276
277         ret = pci_register_driver(&qede_pci_driver);
278         if (ret) {
279                 pr_notice("Failed to register driver\n");
280                 unregister_netdevice_notifier(&qede_netdev_notifier);
281                 qed_put_eth_ops();
282                 return -EINVAL;
283         }
284
285         return 0;
286 }
287
288 static void __exit qede_cleanup(void)
289 {
290         if (debug & QED_LOG_INFO_MASK)
291                 pr_info("qede_cleanup called\n");
292
293         unregister_netdevice_notifier(&qede_netdev_notifier);
294         pci_unregister_driver(&qede_pci_driver);
295         qed_put_eth_ops();
296 }
297
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306         struct qede_stats_common *p_common = &edev->stats.common;
307         struct qed_eth_stats stats;
308
309         edev->ops->get_vport_stats(edev->cdev, &stats);
310
311         p_common->no_buff_discards = stats.common.no_buff_discards;
312         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313         p_common->ttl0_discard = stats.common.ttl0_discard;
314         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321         p_common->mac_filter_discards = stats.common.mac_filter_discards;
322         p_common->gft_filter_drop = stats.common.gft_filter_drop;
323
324         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332         p_common->coalesced_events = stats.common.tpa_coalesced_events;
333         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336
337         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338         p_common->rx_65_to_127_byte_packets =
339             stats.common.rx_65_to_127_byte_packets;
340         p_common->rx_128_to_255_byte_packets =
341             stats.common.rx_128_to_255_byte_packets;
342         p_common->rx_256_to_511_byte_packets =
343             stats.common.rx_256_to_511_byte_packets;
344         p_common->rx_512_to_1023_byte_packets =
345             stats.common.rx_512_to_1023_byte_packets;
346         p_common->rx_1024_to_1518_byte_packets =
347             stats.common.rx_1024_to_1518_byte_packets;
348         p_common->rx_crc_errors = stats.common.rx_crc_errors;
349         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350         p_common->rx_pause_frames = stats.common.rx_pause_frames;
351         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352         p_common->rx_align_errors = stats.common.rx_align_errors;
353         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355         p_common->rx_jabbers = stats.common.rx_jabbers;
356         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357         p_common->rx_fragments = stats.common.rx_fragments;
358         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359         p_common->tx_65_to_127_byte_packets =
360             stats.common.tx_65_to_127_byte_packets;
361         p_common->tx_128_to_255_byte_packets =
362             stats.common.tx_128_to_255_byte_packets;
363         p_common->tx_256_to_511_byte_packets =
364             stats.common.tx_256_to_511_byte_packets;
365         p_common->tx_512_to_1023_byte_packets =
366             stats.common.tx_512_to_1023_byte_packets;
367         p_common->tx_1024_to_1518_byte_packets =
368             stats.common.tx_1024_to_1518_byte_packets;
369         p_common->tx_pause_frames = stats.common.tx_pause_frames;
370         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371         p_common->brb_truncates = stats.common.brb_truncates;
372         p_common->brb_discards = stats.common.brb_discards;
373         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374         p_common->link_change_count = stats.common.link_change_count;
375         p_common->ptp_skip_txts = edev->ptp_skip_txts;
376
377         if (QEDE_IS_BB(edev)) {
378                 struct qede_stats_bb *p_bb = &edev->stats.bb;
379
380                 p_bb->rx_1519_to_1522_byte_packets =
381                     stats.bb.rx_1519_to_1522_byte_packets;
382                 p_bb->rx_1519_to_2047_byte_packets =
383                     stats.bb.rx_1519_to_2047_byte_packets;
384                 p_bb->rx_2048_to_4095_byte_packets =
385                     stats.bb.rx_2048_to_4095_byte_packets;
386                 p_bb->rx_4096_to_9216_byte_packets =
387                     stats.bb.rx_4096_to_9216_byte_packets;
388                 p_bb->rx_9217_to_16383_byte_packets =
389                     stats.bb.rx_9217_to_16383_byte_packets;
390                 p_bb->tx_1519_to_2047_byte_packets =
391                     stats.bb.tx_1519_to_2047_byte_packets;
392                 p_bb->tx_2048_to_4095_byte_packets =
393                     stats.bb.tx_2048_to_4095_byte_packets;
394                 p_bb->tx_4096_to_9216_byte_packets =
395                     stats.bb.tx_4096_to_9216_byte_packets;
396                 p_bb->tx_9217_to_16383_byte_packets =
397                     stats.bb.tx_9217_to_16383_byte_packets;
398                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400         } else {
401                 struct qede_stats_ah *p_ah = &edev->stats.ah;
402
403                 p_ah->rx_1519_to_max_byte_packets =
404                     stats.ah.rx_1519_to_max_byte_packets;
405                 p_ah->tx_1519_to_max_byte_packets =
406                     stats.ah.tx_1519_to_max_byte_packets;
407         }
408 }
409
410 static void qede_get_stats64(struct net_device *dev,
411                              struct rtnl_link_stats64 *stats)
412 {
413         struct qede_dev *edev = netdev_priv(dev);
414         struct qede_stats_common *p_common;
415
416         qede_fill_by_demand_stats(edev);
417         p_common = &edev->stats.common;
418
419         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420                             p_common->rx_bcast_pkts;
421         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422                             p_common->tx_bcast_pkts;
423
424         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425                           p_common->rx_bcast_bytes;
426         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427                           p_common->tx_bcast_bytes;
428
429         stats->tx_errors = p_common->tx_err_drop_pkts;
430         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431
432         stats->rx_fifo_errors = p_common->no_buff_discards;
433
434         if (QEDE_IS_BB(edev))
435                 stats->collisions = edev->stats.bb.tx_total_collisions;
436         stats->rx_crc_errors = p_common->rx_crc_errors;
437         stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442                               struct ifla_vf_info *ivi)
443 {
444         struct qede_dev *edev = netdev_priv(dev);
445
446         if (!edev->ops)
447                 return -EINVAL;
448
449         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453                             int min_tx_rate, int max_tx_rate)
454 {
455         struct qede_dev *edev = netdev_priv(dev);
456
457         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458                                         max_tx_rate);
459 }
460
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463         struct qede_dev *edev = netdev_priv(dev);
464
465         if (!edev->ops)
466                 return -EINVAL;
467
468         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472                                   int link_state)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484         struct qede_dev *edev = netdev_priv(dev);
485
486         if (!edev->ops)
487                 return -EINVAL;
488
489         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495         struct qede_dev *edev = netdev_priv(dev);
496
497         if (!netif_running(dev))
498                 return -EAGAIN;
499
500         switch (cmd) {
501         case SIOCSHWTSTAMP:
502                 return qede_ptp_hw_ts(edev, ifr);
503         default:
504                 DP_VERBOSE(edev, QED_MSG_DEBUG,
505                            "default IOCTL cmd 0x%x\n", cmd);
506                 return -EOPNOTSUPP;
507         }
508
509         return 0;
510 }
511
512 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
513 {
514         char *p_sb = (char *)fp->sb_info->sb_virt;
515         u32 sb_size, i;
516
517         sb_size = sizeof(struct status_block);
518
519         for (i = 0; i < sb_size; i += 8)
520                 DP_NOTICE(edev,
521                           "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
522                           p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
523                           p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
524 }
525
526 static void
527 qede_txq_fp_log_metadata(struct qede_dev *edev,
528                          struct qede_fastpath *fp, struct qede_tx_queue *txq)
529 {
530         struct qed_chain *p_chain = &txq->tx_pbl;
531
532         /* Dump txq/fp/sb ids etc. other metadata */
533         DP_NOTICE(edev,
534                   "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
535                   fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
536                   p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
537
538         /* Dump all the relevant prod/cons indexes */
539         DP_NOTICE(edev,
540                   "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
541                   le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
542                   qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
543 }
544
545 static void
546 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
547 {
548         struct qed_sb_info_dbg sb_dbg;
549         int rc;
550
551         /* sb info */
552         qede_fp_sb_dump(edev, fp);
553
554         memset(&sb_dbg, 0, sizeof(sb_dbg));
555         rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
556
557         DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
558                   sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
559
560         /* report to mfw */
561         edev->ops->common->mfw_report(edev->cdev,
562                                       "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
563                                       txq->index, le16_to_cpu(*txq->hw_cons_ptr),
564                                       qed_chain_get_cons_idx(&txq->tx_pbl),
565                                       qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
566         if (!rc)
567                 edev->ops->common->mfw_report(edev->cdev,
568                                               "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
569                                               txq->index, fp->sb_info->igu_sb_id,
570                                               sb_dbg.igu_prod, sb_dbg.igu_cons,
571                                               sb_dbg.pi[TX_PI(txq->cos)]);
572 }
573
574 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
575 {
576         struct qede_dev *edev = netdev_priv(dev);
577         int i;
578
579         netif_carrier_off(dev);
580         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
581
582         for_each_queue(i) {
583                 struct qede_tx_queue *txq;
584                 struct qede_fastpath *fp;
585                 int cos;
586
587                 fp = &edev->fp_array[i];
588                 if (!(fp->type & QEDE_FASTPATH_TX))
589                         continue;
590
591                 for_each_cos_in_txq(edev, cos) {
592                         txq = &fp->txq[cos];
593
594                         /* Dump basic metadata for all queues */
595                         qede_txq_fp_log_metadata(edev, fp, txq);
596
597                         if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
598                             qed_chain_get_prod_idx(&txq->tx_pbl))
599                                 qede_tx_log_print(edev, fp, txq);
600                 }
601         }
602
603         if (IS_VF(edev))
604                 return;
605
606         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
607             edev->state == QEDE_STATE_RECOVERY) {
608                 DP_INFO(edev,
609                         "Avoid handling a Tx timeout while another HW error is being handled\n");
610                 return;
611         }
612
613         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
614         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
615         schedule_delayed_work(&edev->sp_task, 0);
616 }
617
618 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
619 {
620         struct qede_dev *edev = netdev_priv(ndev);
621         int cos, count, offset;
622
623         if (num_tc > edev->dev_info.num_tc)
624                 return -EINVAL;
625
626         netdev_reset_tc(ndev);
627         netdev_set_num_tc(ndev, num_tc);
628
629         for_each_cos_in_txq(edev, cos) {
630                 count = QEDE_TSS_COUNT(edev);
631                 offset = cos * QEDE_TSS_COUNT(edev);
632                 netdev_set_tc_queue(ndev, cos, count, offset);
633         }
634
635         return 0;
636 }
637
638 static int
639 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
640                 __be16 proto)
641 {
642         switch (f->command) {
643         case FLOW_CLS_REPLACE:
644                 return qede_add_tc_flower_fltr(edev, proto, f);
645         case FLOW_CLS_DESTROY:
646                 return qede_delete_flow_filter(edev, f->cookie);
647         default:
648                 return -EOPNOTSUPP;
649         }
650 }
651
652 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
653                                   void *cb_priv)
654 {
655         struct flow_cls_offload *f;
656         struct qede_dev *edev = cb_priv;
657
658         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
659                 return -EOPNOTSUPP;
660
661         switch (type) {
662         case TC_SETUP_CLSFLOWER:
663                 f = type_data;
664                 return qede_set_flower(edev, f, f->common.protocol);
665         default:
666                 return -EOPNOTSUPP;
667         }
668 }
669
670 static LIST_HEAD(qede_block_cb_list);
671
672 static int
673 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
674                       void *type_data)
675 {
676         struct qede_dev *edev = netdev_priv(dev);
677         struct tc_mqprio_qopt *mqprio;
678
679         switch (type) {
680         case TC_SETUP_BLOCK:
681                 return flow_block_cb_setup_simple(type_data,
682                                                   &qede_block_cb_list,
683                                                   qede_setup_tc_block_cb,
684                                                   edev, edev, true);
685         case TC_SETUP_QDISC_MQPRIO:
686                 mqprio = type_data;
687
688                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
689                 return qede_setup_tc(dev, mqprio->num_tc);
690         default:
691                 return -EOPNOTSUPP;
692         }
693 }
694
695 static const struct net_device_ops qede_netdev_ops = {
696         .ndo_open               = qede_open,
697         .ndo_stop               = qede_close,
698         .ndo_start_xmit         = qede_start_xmit,
699         .ndo_select_queue       = qede_select_queue,
700         .ndo_set_rx_mode        = qede_set_rx_mode,
701         .ndo_set_mac_address    = qede_set_mac_addr,
702         .ndo_validate_addr      = eth_validate_addr,
703         .ndo_change_mtu         = qede_change_mtu,
704         .ndo_eth_ioctl          = qede_ioctl,
705         .ndo_tx_timeout         = qede_tx_timeout,
706 #ifdef CONFIG_QED_SRIOV
707         .ndo_set_vf_mac         = qede_set_vf_mac,
708         .ndo_set_vf_vlan        = qede_set_vf_vlan,
709         .ndo_set_vf_trust       = qede_set_vf_trust,
710 #endif
711         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
712         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
713         .ndo_fix_features       = qede_fix_features,
714         .ndo_set_features       = qede_set_features,
715         .ndo_get_stats64        = qede_get_stats64,
716 #ifdef CONFIG_QED_SRIOV
717         .ndo_set_vf_link_state  = qede_set_vf_link_state,
718         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
719         .ndo_get_vf_config      = qede_get_vf_config,
720         .ndo_set_vf_rate        = qede_set_vf_rate,
721 #endif
722         .ndo_features_check     = qede_features_check,
723         .ndo_bpf                = qede_xdp,
724 #ifdef CONFIG_RFS_ACCEL
725         .ndo_rx_flow_steer      = qede_rx_flow_steer,
726 #endif
727         .ndo_xdp_xmit           = qede_xdp_transmit,
728         .ndo_setup_tc           = qede_setup_tc_offload,
729 };
730
731 static const struct net_device_ops qede_netdev_vf_ops = {
732         .ndo_open               = qede_open,
733         .ndo_stop               = qede_close,
734         .ndo_start_xmit         = qede_start_xmit,
735         .ndo_select_queue       = qede_select_queue,
736         .ndo_set_rx_mode        = qede_set_rx_mode,
737         .ndo_set_mac_address    = qede_set_mac_addr,
738         .ndo_validate_addr      = eth_validate_addr,
739         .ndo_change_mtu         = qede_change_mtu,
740         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
741         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
742         .ndo_fix_features       = qede_fix_features,
743         .ndo_set_features       = qede_set_features,
744         .ndo_get_stats64        = qede_get_stats64,
745         .ndo_features_check     = qede_features_check,
746 };
747
748 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
749         .ndo_open               = qede_open,
750         .ndo_stop               = qede_close,
751         .ndo_start_xmit         = qede_start_xmit,
752         .ndo_select_queue       = qede_select_queue,
753         .ndo_set_rx_mode        = qede_set_rx_mode,
754         .ndo_set_mac_address    = qede_set_mac_addr,
755         .ndo_validate_addr      = eth_validate_addr,
756         .ndo_change_mtu         = qede_change_mtu,
757         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
758         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
759         .ndo_fix_features       = qede_fix_features,
760         .ndo_set_features       = qede_set_features,
761         .ndo_get_stats64        = qede_get_stats64,
762         .ndo_features_check     = qede_features_check,
763         .ndo_bpf                = qede_xdp,
764         .ndo_xdp_xmit           = qede_xdp_transmit,
765 };
766
767 /* -------------------------------------------------------------------------
768  * START OF PROBE / REMOVE
769  * -------------------------------------------------------------------------
770  */
771
772 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
773                                             struct pci_dev *pdev,
774                                             struct qed_dev_eth_info *info,
775                                             u32 dp_module, u8 dp_level)
776 {
777         struct net_device *ndev;
778         struct qede_dev *edev;
779
780         ndev = alloc_etherdev_mqs(sizeof(*edev),
781                                   info->num_queues * info->num_tc,
782                                   info->num_queues);
783         if (!ndev) {
784                 pr_err("etherdev allocation failed\n");
785                 return NULL;
786         }
787
788         edev = netdev_priv(ndev);
789         edev->ndev = ndev;
790         edev->cdev = cdev;
791         edev->pdev = pdev;
792         edev->dp_module = dp_module;
793         edev->dp_level = dp_level;
794         edev->ops = qed_ops;
795
796         if (is_kdump_kernel()) {
797                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
798                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
799         } else {
800                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
801                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
802         }
803
804         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
805                 info->num_queues, info->num_queues);
806
807         SET_NETDEV_DEV(ndev, &pdev->dev);
808
809         memset(&edev->stats, 0, sizeof(edev->stats));
810         memcpy(&edev->dev_info, info, sizeof(*info));
811
812         /* As ethtool doesn't have the ability to show WoL behavior as
813          * 'default', if device supports it declare it's enabled.
814          */
815         if (edev->dev_info.common.wol_support)
816                 edev->wol_enabled = true;
817
818         INIT_LIST_HEAD(&edev->vlan_list);
819
820         return edev;
821 }
822
823 static void qede_init_ndev(struct qede_dev *edev)
824 {
825         struct net_device *ndev = edev->ndev;
826         struct pci_dev *pdev = edev->pdev;
827         bool udp_tunnel_enable = false;
828         netdev_features_t hw_features;
829
830         pci_set_drvdata(pdev, ndev);
831
832         ndev->mem_start = edev->dev_info.common.pci_mem_start;
833         ndev->base_addr = ndev->mem_start;
834         ndev->mem_end = edev->dev_info.common.pci_mem_end;
835         ndev->irq = edev->dev_info.common.pci_irq;
836
837         ndev->watchdog_timeo = TX_TIMEOUT;
838
839         if (IS_VF(edev)) {
840                 if (edev->dev_info.xdp_supported)
841                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
842                 else
843                         ndev->netdev_ops = &qede_netdev_vf_ops;
844         } else {
845                 ndev->netdev_ops = &qede_netdev_ops;
846         }
847
848         qede_set_ethtool_ops(ndev);
849
850         ndev->priv_flags |= IFF_UNICAST_FLT;
851
852         /* user-changeble features */
853         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
854                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
855                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
856
857         if (edev->dev_info.common.b_arfs_capable)
858                 hw_features |= NETIF_F_NTUPLE;
859
860         if (edev->dev_info.common.vxlan_enable ||
861             edev->dev_info.common.geneve_enable)
862                 udp_tunnel_enable = true;
863
864         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
865                 hw_features |= NETIF_F_TSO_ECN;
866                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
867                                         NETIF_F_SG | NETIF_F_TSO |
868                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
869                                         NETIF_F_RXCSUM;
870         }
871
872         if (udp_tunnel_enable) {
873                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
874                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
875                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
876                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
877
878                 qede_set_udp_tunnels(edev);
879         }
880
881         if (edev->dev_info.common.gre_enable) {
882                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
883                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
884                                           NETIF_F_GSO_GRE_CSUM);
885         }
886
887         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
888                               NETIF_F_HIGHDMA;
889         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
890                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
891                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
892
893         ndev->hw_features = hw_features;
894
895         ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
896                              NETDEV_XDP_ACT_NDO_XMIT;
897
898         /* MTU range: 46 - 9600 */
899         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
900         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
901
902         /* Set network device HW mac */
903         eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
904
905         ndev->mtu = edev->dev_info.common.mtu;
906 }
907
908 /* This function converts from 32b param to two params of level and module
909  * Input 32b decoding:
910  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
911  * 'happy' flow, e.g. memory allocation failed.
912  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
913  * and provide important parameters.
914  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
915  * module. VERBOSE prints are for tracking the specific flow in low level.
916  *
917  * Notice that the level should be that of the lowest required logs.
918  */
919 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
920 {
921         *p_dp_level = QED_LEVEL_NOTICE;
922         *p_dp_module = 0;
923
924         if (debug & QED_LOG_VERBOSE_MASK) {
925                 *p_dp_level = QED_LEVEL_VERBOSE;
926                 *p_dp_module = (debug & 0x3FFFFFFF);
927         } else if (debug & QED_LOG_INFO_MASK) {
928                 *p_dp_level = QED_LEVEL_INFO;
929         } else if (debug & QED_LOG_NOTICE_MASK) {
930                 *p_dp_level = QED_LEVEL_NOTICE;
931         }
932 }
933
934 static void qede_free_fp_array(struct qede_dev *edev)
935 {
936         if (edev->fp_array) {
937                 struct qede_fastpath *fp;
938                 int i;
939
940                 for_each_queue(i) {
941                         fp = &edev->fp_array[i];
942
943                         kfree(fp->sb_info);
944                         /* Handle mem alloc failure case where qede_init_fp
945                          * didn't register xdp_rxq_info yet.
946                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
947                          */
948                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
949                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
950                         kfree(fp->rxq);
951                         kfree(fp->xdp_tx);
952                         kfree(fp->txq);
953                 }
954                 kfree(edev->fp_array);
955         }
956
957         edev->num_queues = 0;
958         edev->fp_num_tx = 0;
959         edev->fp_num_rx = 0;
960 }
961
962 static int qede_alloc_fp_array(struct qede_dev *edev)
963 {
964         u8 fp_combined, fp_rx = edev->fp_num_rx;
965         struct qede_fastpath *fp;
966         int i;
967
968         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
969                                  sizeof(*edev->fp_array), GFP_KERNEL);
970         if (!edev->fp_array) {
971                 DP_NOTICE(edev, "fp array allocation failed\n");
972                 goto err;
973         }
974
975         if (!edev->coal_entry) {
976                 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
977                                            sizeof(*edev->coal_entry),
978                                            GFP_KERNEL);
979                 if (!edev->coal_entry) {
980                         DP_ERR(edev, "coalesce entry allocation failed\n");
981                         goto err;
982                 }
983         }
984
985         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
986
987         /* Allocate the FP elements for Rx queues followed by combined and then
988          * the Tx. This ordering should be maintained so that the respective
989          * queues (Rx or Tx) will be together in the fastpath array and the
990          * associated ids will be sequential.
991          */
992         for_each_queue(i) {
993                 fp = &edev->fp_array[i];
994
995                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
996                 if (!fp->sb_info) {
997                         DP_NOTICE(edev, "sb info struct allocation failed\n");
998                         goto err;
999                 }
1000
1001                 if (fp_rx) {
1002                         fp->type = QEDE_FASTPATH_RX;
1003                         fp_rx--;
1004                 } else if (fp_combined) {
1005                         fp->type = QEDE_FASTPATH_COMBINED;
1006                         fp_combined--;
1007                 } else {
1008                         fp->type = QEDE_FASTPATH_TX;
1009                 }
1010
1011                 if (fp->type & QEDE_FASTPATH_TX) {
1012                         fp->txq = kcalloc(edev->dev_info.num_tc,
1013                                           sizeof(*fp->txq), GFP_KERNEL);
1014                         if (!fp->txq)
1015                                 goto err;
1016                 }
1017
1018                 if (fp->type & QEDE_FASTPATH_RX) {
1019                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1020                         if (!fp->rxq)
1021                                 goto err;
1022
1023                         if (edev->xdp_prog) {
1024                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1025                                                      GFP_KERNEL);
1026                                 if (!fp->xdp_tx)
1027                                         goto err;
1028                                 fp->type |= QEDE_FASTPATH_XDP;
1029                         }
1030                 }
1031         }
1032
1033         return 0;
1034 err:
1035         qede_free_fp_array(edev);
1036         return -ENOMEM;
1037 }
1038
1039 /* The qede lock is used to protect driver state change and driver flows that
1040  * are not reentrant.
1041  */
1042 void __qede_lock(struct qede_dev *edev)
1043 {
1044         mutex_lock(&edev->qede_lock);
1045 }
1046
1047 void __qede_unlock(struct qede_dev *edev)
1048 {
1049         mutex_unlock(&edev->qede_lock);
1050 }
1051
1052 /* This version of the lock should be used when acquiring the RTNL lock is also
1053  * needed in addition to the internal qede lock.
1054  */
1055 static void qede_lock(struct qede_dev *edev)
1056 {
1057         rtnl_lock();
1058         __qede_lock(edev);
1059 }
1060
1061 static void qede_unlock(struct qede_dev *edev)
1062 {
1063         __qede_unlock(edev);
1064         rtnl_unlock();
1065 }
1066
1067 static void qede_sp_task(struct work_struct *work)
1068 {
1069         struct qede_dev *edev = container_of(work, struct qede_dev,
1070                                              sp_task.work);
1071
1072         /* Disable execution of this deferred work once
1073          * qede removal is in progress, this stop any future
1074          * scheduling of sp_task.
1075          */
1076         if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1077                 return;
1078
1079         /* The locking scheme depends on the specific flag:
1080          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1081          * ensure that ongoing flows are ended and new ones are not started.
1082          * In other cases - only the internal qede lock should be acquired.
1083          */
1084
1085         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1086 #ifdef CONFIG_QED_SRIOV
1087                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1088                  * The recovery of the active VFs is currently not supported.
1089                  */
1090                 if (pci_num_vf(edev->pdev))
1091                         qede_sriov_configure(edev->pdev, 0);
1092 #endif
1093                 qede_lock(edev);
1094                 qede_recovery_handler(edev);
1095                 qede_unlock(edev);
1096         }
1097
1098         __qede_lock(edev);
1099
1100         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1101                 if (edev->state == QEDE_STATE_OPEN)
1102                         qede_config_rx_mode(edev->ndev);
1103
1104 #ifdef CONFIG_RFS_ACCEL
1105         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1106                 if (edev->state == QEDE_STATE_OPEN)
1107                         qede_process_arfs_filters(edev, false);
1108         }
1109 #endif
1110         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1111                 qede_generic_hw_err_handler(edev);
1112         __qede_unlock(edev);
1113
1114         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1115 #ifdef CONFIG_QED_SRIOV
1116                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1117                  * The recovery of the active VFs is currently not supported.
1118                  */
1119                 if (pci_num_vf(edev->pdev))
1120                         qede_sriov_configure(edev->pdev, 0);
1121 #endif
1122                 edev->ops->common->recovery_process(edev->cdev);
1123         }
1124 }
1125
1126 static void qede_update_pf_params(struct qed_dev *cdev)
1127 {
1128         struct qed_pf_params pf_params;
1129         u16 num_cons;
1130
1131         /* 64 rx + 64 tx + 64 XDP */
1132         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1133
1134         /* 1 rx + 1 xdp + max tx cos */
1135         num_cons = QED_MIN_L2_CONS;
1136
1137         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1138
1139         /* Same for VFs - make sure they'll have sufficient connections
1140          * to support XDP Tx queues.
1141          */
1142         pf_params.eth_pf_params.num_vf_cons = 48;
1143
1144         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1145         qed_ops->common->update_pf_params(cdev, &pf_params);
1146 }
1147
1148 #define QEDE_FW_VER_STR_SIZE    80
1149
1150 static void qede_log_probe(struct qede_dev *edev)
1151 {
1152         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1153         u8 buf[QEDE_FW_VER_STR_SIZE];
1154         size_t left_size;
1155
1156         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1157                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1158                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1159                  p_dev_info->fw_eng,
1160                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1161                  QED_MFW_VERSION_3_OFFSET,
1162                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1163                  QED_MFW_VERSION_2_OFFSET,
1164                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1165                  QED_MFW_VERSION_1_OFFSET,
1166                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1167                  QED_MFW_VERSION_0_OFFSET);
1168
1169         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1170         if (p_dev_info->mbi_version && left_size)
1171                 snprintf(buf + strlen(buf), left_size,
1172                          " [MBI %d.%d.%d]",
1173                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1174                          QED_MBI_VERSION_2_OFFSET,
1175                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1176                          QED_MBI_VERSION_1_OFFSET,
1177                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1178                          QED_MBI_VERSION_0_OFFSET);
1179
1180         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1181                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1182                 buf, edev->ndev->name);
1183 }
1184
1185 enum qede_probe_mode {
1186         QEDE_PROBE_NORMAL,
1187         QEDE_PROBE_RECOVERY,
1188 };
1189
1190 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1191                         bool is_vf, enum qede_probe_mode mode)
1192 {
1193         struct qed_probe_params probe_params;
1194         struct qed_slowpath_params sp_params;
1195         struct qed_dev_eth_info dev_info;
1196         struct qede_dev *edev;
1197         struct qed_dev *cdev;
1198         int rc;
1199
1200         if (unlikely(dp_level & QED_LEVEL_INFO))
1201                 pr_notice("Starting qede probe\n");
1202
1203         memset(&probe_params, 0, sizeof(probe_params));
1204         probe_params.protocol = QED_PROTOCOL_ETH;
1205         probe_params.dp_module = dp_module;
1206         probe_params.dp_level = dp_level;
1207         probe_params.is_vf = is_vf;
1208         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1209         cdev = qed_ops->common->probe(pdev, &probe_params);
1210         if (!cdev) {
1211                 rc = -ENODEV;
1212                 goto err0;
1213         }
1214
1215         qede_update_pf_params(cdev);
1216
1217         /* Start the Slowpath-process */
1218         memset(&sp_params, 0, sizeof(sp_params));
1219         sp_params.int_mode = QED_INT_MODE_MSIX;
1220         strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1221         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1222         if (rc) {
1223                 pr_notice("Cannot start slowpath\n");
1224                 goto err1;
1225         }
1226
1227         /* Learn information crucial for qede to progress */
1228         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1229         if (rc)
1230                 goto err2;
1231
1232         if (mode != QEDE_PROBE_RECOVERY) {
1233                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1234                                            dp_level);
1235                 if (!edev) {
1236                         rc = -ENOMEM;
1237                         goto err2;
1238                 }
1239
1240                 edev->devlink = qed_ops->common->devlink_register(cdev);
1241                 if (IS_ERR(edev->devlink)) {
1242                         DP_NOTICE(edev, "Cannot register devlink\n");
1243                         rc = PTR_ERR(edev->devlink);
1244                         edev->devlink = NULL;
1245                         goto err3;
1246                 }
1247         } else {
1248                 struct net_device *ndev = pci_get_drvdata(pdev);
1249                 struct qed_devlink *qdl;
1250
1251                 edev = netdev_priv(ndev);
1252                 qdl = devlink_priv(edev->devlink);
1253                 qdl->cdev = cdev;
1254                 edev->cdev = cdev;
1255                 memset(&edev->stats, 0, sizeof(edev->stats));
1256                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1257         }
1258
1259         if (is_vf)
1260                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1261
1262         qede_init_ndev(edev);
1263
1264         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1265         if (rc)
1266                 goto err3;
1267
1268         if (mode != QEDE_PROBE_RECOVERY) {
1269                 /* Prepare the lock prior to the registration of the netdev,
1270                  * as once it's registered we might reach flows requiring it
1271                  * [it's even possible to reach a flow needing it directly
1272                  * from there, although it's unlikely].
1273                  */
1274                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1275                 mutex_init(&edev->qede_lock);
1276
1277                 rc = register_netdev(edev->ndev);
1278                 if (rc) {
1279                         DP_NOTICE(edev, "Cannot register net-device\n");
1280                         goto err4;
1281                 }
1282         }
1283
1284         edev->ops->common->set_name(cdev, edev->ndev->name);
1285
1286         /* PTP not supported on VFs */
1287         if (!is_vf)
1288                 qede_ptp_enable(edev);
1289
1290         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1291
1292 #ifdef CONFIG_DCB
1293         if (!IS_VF(edev))
1294                 qede_set_dcbnl_ops(edev->ndev);
1295 #endif
1296
1297         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1298
1299         qede_log_probe(edev);
1300         return 0;
1301
1302 err4:
1303         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1304 err3:
1305         if (mode != QEDE_PROBE_RECOVERY)
1306                 free_netdev(edev->ndev);
1307         else
1308                 edev->cdev = NULL;
1309 err2:
1310         qed_ops->common->slowpath_stop(cdev);
1311 err1:
1312         qed_ops->common->remove(cdev);
1313 err0:
1314         return rc;
1315 }
1316
1317 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1318 {
1319         bool is_vf = false;
1320         u32 dp_module = 0;
1321         u8 dp_level = 0;
1322
1323         switch ((enum qede_pci_private)id->driver_data) {
1324         case QEDE_PRIVATE_VF:
1325                 if (debug & QED_LOG_VERBOSE_MASK)
1326                         dev_err(&pdev->dev, "Probing a VF\n");
1327                 is_vf = true;
1328                 break;
1329         default:
1330                 if (debug & QED_LOG_VERBOSE_MASK)
1331                         dev_err(&pdev->dev, "Probing a PF\n");
1332         }
1333
1334         qede_config_debug(debug, &dp_module, &dp_level);
1335
1336         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1337                             QEDE_PROBE_NORMAL);
1338 }
1339
1340 enum qede_remove_mode {
1341         QEDE_REMOVE_NORMAL,
1342         QEDE_REMOVE_RECOVERY,
1343 };
1344
1345 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1346 {
1347         struct net_device *ndev = pci_get_drvdata(pdev);
1348         struct qede_dev *edev;
1349         struct qed_dev *cdev;
1350
1351         if (!ndev) {
1352                 dev_info(&pdev->dev, "Device has already been removed\n");
1353                 return;
1354         }
1355
1356         edev = netdev_priv(ndev);
1357         cdev = edev->cdev;
1358
1359         DP_INFO(edev, "Starting qede_remove\n");
1360
1361         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1362
1363         if (mode != QEDE_REMOVE_RECOVERY) {
1364                 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1365                 unregister_netdev(ndev);
1366
1367                 cancel_delayed_work_sync(&edev->sp_task);
1368
1369                 edev->ops->common->set_power_state(cdev, PCI_D0);
1370
1371                 pci_set_drvdata(pdev, NULL);
1372         }
1373
1374         qede_ptp_disable(edev);
1375
1376         /* Use global ops since we've freed edev */
1377         qed_ops->common->slowpath_stop(cdev);
1378         if (system_state == SYSTEM_POWER_OFF)
1379                 return;
1380
1381         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1382                 qed_ops->common->devlink_unregister(edev->devlink);
1383                 edev->devlink = NULL;
1384         }
1385         qed_ops->common->remove(cdev);
1386         edev->cdev = NULL;
1387
1388         /* Since this can happen out-of-sync with other flows,
1389          * don't release the netdevice until after slowpath stop
1390          * has been called to guarantee various other contexts
1391          * [e.g., QED register callbacks] won't break anything when
1392          * accessing the netdevice.
1393          */
1394         if (mode != QEDE_REMOVE_RECOVERY) {
1395                 kfree(edev->coal_entry);
1396                 free_netdev(ndev);
1397         }
1398
1399         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1400 }
1401
1402 static void qede_remove(struct pci_dev *pdev)
1403 {
1404         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1405 }
1406
1407 static void qede_shutdown(struct pci_dev *pdev)
1408 {
1409         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1410 }
1411
1412 /* -------------------------------------------------------------------------
1413  * START OF LOAD / UNLOAD
1414  * -------------------------------------------------------------------------
1415  */
1416
1417 static int qede_set_num_queues(struct qede_dev *edev)
1418 {
1419         int rc;
1420         u16 rss_num;
1421
1422         /* Setup queues according to possible resources*/
1423         if (edev->req_queues)
1424                 rss_num = edev->req_queues;
1425         else
1426                 rss_num = netif_get_num_default_rss_queues() *
1427                           edev->dev_info.common.num_hwfns;
1428
1429         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1430
1431         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1432         if (rc > 0) {
1433                 /* Managed to request interrupts for our queues */
1434                 edev->num_queues = rc;
1435                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1436                         QEDE_QUEUE_CNT(edev), rss_num);
1437                 rc = 0;
1438         }
1439
1440         edev->fp_num_tx = edev->req_num_tx;
1441         edev->fp_num_rx = edev->req_num_rx;
1442
1443         return rc;
1444 }
1445
1446 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1447                              u16 sb_id)
1448 {
1449         if (sb_info->sb_virt) {
1450                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1451                                               QED_SB_TYPE_L2_QUEUE);
1452                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1453                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1454                 memset(sb_info, 0, sizeof(*sb_info));
1455         }
1456 }
1457
1458 /* This function allocates fast-path status block memory */
1459 static int qede_alloc_mem_sb(struct qede_dev *edev,
1460                              struct qed_sb_info *sb_info, u16 sb_id)
1461 {
1462         struct status_block *sb_virt;
1463         dma_addr_t sb_phys;
1464         int rc;
1465
1466         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1467                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1468         if (!sb_virt) {
1469                 DP_ERR(edev, "Status block allocation failed\n");
1470                 return -ENOMEM;
1471         }
1472
1473         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1474                                         sb_virt, sb_phys, sb_id,
1475                                         QED_SB_TYPE_L2_QUEUE);
1476         if (rc) {
1477                 DP_ERR(edev, "Status block initialization failed\n");
1478                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1479                                   sb_virt, sb_phys);
1480                 return rc;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static void qede_free_rx_buffers(struct qede_dev *edev,
1487                                  struct qede_rx_queue *rxq)
1488 {
1489         u16 i;
1490
1491         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1492                 struct sw_rx_data *rx_buf;
1493                 struct page *data;
1494
1495                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1496                 data = rx_buf->data;
1497
1498                 dma_unmap_page(&edev->pdev->dev,
1499                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1500
1501                 rx_buf->data = NULL;
1502                 __free_page(data);
1503         }
1504 }
1505
1506 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1507 {
1508         /* Free rx buffers */
1509         qede_free_rx_buffers(edev, rxq);
1510
1511         /* Free the parallel SW ring */
1512         kfree(rxq->sw_rx_ring);
1513
1514         /* Free the real RQ ring used by FW */
1515         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1516         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1517 }
1518
1519 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1520 {
1521         int i;
1522
1523         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1524                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1525
1526                 tpa_info->state = QEDE_AGG_STATE_NONE;
1527         }
1528 }
1529
1530 /* This function allocates all memory needed per Rx queue */
1531 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1532 {
1533         struct qed_chain_init_params params = {
1534                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1535                 .num_elems      = RX_RING_SIZE,
1536         };
1537         struct qed_dev *cdev = edev->cdev;
1538         int i, rc, size;
1539
1540         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1541
1542         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1543
1544         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1545         size = rxq->rx_headroom +
1546                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1547
1548         /* Make sure that the headroom and  payload fit in a single page */
1549         if (rxq->rx_buf_size + size > PAGE_SIZE)
1550                 rxq->rx_buf_size = PAGE_SIZE - size;
1551
1552         /* Segment size to split a page in multiple equal parts,
1553          * unless XDP is used in which case we'd use the entire page.
1554          */
1555         if (!edev->xdp_prog) {
1556                 size = size + rxq->rx_buf_size;
1557                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1558         } else {
1559                 rxq->rx_buf_seg_size = PAGE_SIZE;
1560                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1561         }
1562
1563         /* Allocate the parallel driver ring for Rx buffers */
1564         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1565         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1566         if (!rxq->sw_rx_ring) {
1567                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1568                 rc = -ENOMEM;
1569                 goto err;
1570         }
1571
1572         /* Allocate FW Rx ring  */
1573         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1574         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1575         params.elem_size = sizeof(struct eth_rx_bd);
1576
1577         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1578         if (rc)
1579                 goto err;
1580
1581         /* Allocate FW completion ring */
1582         params.mode = QED_CHAIN_MODE_PBL;
1583         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1584         params.elem_size = sizeof(union eth_rx_cqe);
1585
1586         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1587         if (rc)
1588                 goto err;
1589
1590         /* Allocate buffers for the Rx ring */
1591         rxq->filled_buffers = 0;
1592         for (i = 0; i < rxq->num_rx_buffers; i++) {
1593                 rc = qede_alloc_rx_buffer(rxq, false);
1594                 if (rc) {
1595                         DP_ERR(edev,
1596                                "Rx buffers allocation failed at index %d\n", i);
1597                         goto err;
1598                 }
1599         }
1600
1601         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1602         if (!edev->gro_disable)
1603                 qede_set_tpa_param(rxq);
1604 err:
1605         return rc;
1606 }
1607
1608 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1609 {
1610         /* Free the parallel SW ring */
1611         if (txq->is_xdp)
1612                 kfree(txq->sw_tx_ring.xdp);
1613         else
1614                 kfree(txq->sw_tx_ring.skbs);
1615
1616         /* Free the real RQ ring used by FW */
1617         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1618 }
1619
1620 /* This function allocates all memory needed per Tx queue */
1621 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1622 {
1623         struct qed_chain_init_params params = {
1624                 .mode           = QED_CHAIN_MODE_PBL,
1625                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1626                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1627                 .num_elems      = edev->q_num_tx_buffers,
1628                 .elem_size      = sizeof(union eth_tx_bd_types),
1629         };
1630         int size, rc;
1631
1632         txq->num_tx_buffers = edev->q_num_tx_buffers;
1633
1634         /* Allocate the parallel driver ring for Tx buffers */
1635         if (txq->is_xdp) {
1636                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1637                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1638                 if (!txq->sw_tx_ring.xdp)
1639                         goto err;
1640         } else {
1641                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1642                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1643                 if (!txq->sw_tx_ring.skbs)
1644                         goto err;
1645         }
1646
1647         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1648         if (rc)
1649                 goto err;
1650
1651         return 0;
1652
1653 err:
1654         qede_free_mem_txq(edev, txq);
1655         return -ENOMEM;
1656 }
1657
1658 /* This function frees all memory of a single fp */
1659 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1660 {
1661         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1662
1663         if (fp->type & QEDE_FASTPATH_RX)
1664                 qede_free_mem_rxq(edev, fp->rxq);
1665
1666         if (fp->type & QEDE_FASTPATH_XDP)
1667                 qede_free_mem_txq(edev, fp->xdp_tx);
1668
1669         if (fp->type & QEDE_FASTPATH_TX) {
1670                 int cos;
1671
1672                 for_each_cos_in_txq(edev, cos)
1673                         qede_free_mem_txq(edev, &fp->txq[cos]);
1674         }
1675 }
1676
1677 /* This function allocates all memory needed for a single fp (i.e. an entity
1678  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1679  */
1680 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1681 {
1682         int rc = 0;
1683
1684         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1685         if (rc)
1686                 goto out;
1687
1688         if (fp->type & QEDE_FASTPATH_RX) {
1689                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1690                 if (rc)
1691                         goto out;
1692         }
1693
1694         if (fp->type & QEDE_FASTPATH_XDP) {
1695                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1696                 if (rc)
1697                         goto out;
1698         }
1699
1700         if (fp->type & QEDE_FASTPATH_TX) {
1701                 int cos;
1702
1703                 for_each_cos_in_txq(edev, cos) {
1704                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1705                         if (rc)
1706                                 goto out;
1707                 }
1708         }
1709
1710 out:
1711         return rc;
1712 }
1713
1714 static void qede_free_mem_load(struct qede_dev *edev)
1715 {
1716         int i;
1717
1718         for_each_queue(i) {
1719                 struct qede_fastpath *fp = &edev->fp_array[i];
1720
1721                 qede_free_mem_fp(edev, fp);
1722         }
1723 }
1724
1725 /* This function allocates all qede memory at NIC load. */
1726 static int qede_alloc_mem_load(struct qede_dev *edev)
1727 {
1728         int rc = 0, queue_id;
1729
1730         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1731                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1732
1733                 rc = qede_alloc_mem_fp(edev, fp);
1734                 if (rc) {
1735                         DP_ERR(edev,
1736                                "Failed to allocate memory for fastpath - rss id = %d\n",
1737                                queue_id);
1738                         qede_free_mem_load(edev);
1739                         return rc;
1740                 }
1741         }
1742
1743         return 0;
1744 }
1745
1746 static void qede_empty_tx_queue(struct qede_dev *edev,
1747                                 struct qede_tx_queue *txq)
1748 {
1749         unsigned int pkts_compl = 0, bytes_compl = 0;
1750         struct netdev_queue *netdev_txq;
1751         int rc, len = 0;
1752
1753         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1754
1755         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1756                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1757                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1758                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1759                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1760                            qed_chain_get_prod_idx(&txq->tx_pbl));
1761
1762                 rc = qede_free_tx_pkt(edev, txq, &len);
1763                 if (rc) {
1764                         DP_NOTICE(edev,
1765                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1766                                   txq->index,
1767                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1768                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1769                         break;
1770                 }
1771
1772                 bytes_compl += len;
1773                 pkts_compl++;
1774                 txq->sw_tx_cons++;
1775         }
1776
1777         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1778 }
1779
1780 static void qede_empty_tx_queues(struct qede_dev *edev)
1781 {
1782         int i;
1783
1784         for_each_queue(i)
1785                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1786                         int cos;
1787
1788                         for_each_cos_in_txq(edev, cos) {
1789                                 struct qede_fastpath *fp;
1790
1791                                 fp = &edev->fp_array[i];
1792                                 qede_empty_tx_queue(edev,
1793                                                     &fp->txq[cos]);
1794                         }
1795                 }
1796 }
1797
1798 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1799 static void qede_init_fp(struct qede_dev *edev)
1800 {
1801         int queue_id, rxq_index = 0, txq_index = 0;
1802         struct qede_fastpath *fp;
1803         bool init_xdp = false;
1804
1805         for_each_queue(queue_id) {
1806                 fp = &edev->fp_array[queue_id];
1807
1808                 fp->edev = edev;
1809                 fp->id = queue_id;
1810
1811                 if (fp->type & QEDE_FASTPATH_XDP) {
1812                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1813                                                                 rxq_index);
1814                         fp->xdp_tx->is_xdp = 1;
1815
1816                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1817                         init_xdp = true;
1818                 }
1819
1820                 if (fp->type & QEDE_FASTPATH_RX) {
1821                         fp->rxq->rxq_id = rxq_index++;
1822
1823                         /* Determine how to map buffers for this queue */
1824                         if (fp->type & QEDE_FASTPATH_XDP)
1825                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1826                         else
1827                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1828                         fp->rxq->dev = &edev->pdev->dev;
1829
1830                         /* Driver have no error path from here */
1831                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1832                                                  fp->rxq->rxq_id, 0) < 0);
1833
1834                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1835                                                        MEM_TYPE_PAGE_ORDER0,
1836                                                        NULL)) {
1837                                 DP_NOTICE(edev,
1838                                           "Failed to register XDP memory model\n");
1839                         }
1840                 }
1841
1842                 if (fp->type & QEDE_FASTPATH_TX) {
1843                         int cos;
1844
1845                         for_each_cos_in_txq(edev, cos) {
1846                                 struct qede_tx_queue *txq = &fp->txq[cos];
1847                                 u16 ndev_tx_id;
1848
1849                                 txq->cos = cos;
1850                                 txq->index = txq_index;
1851                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1852                                 txq->ndev_txq_id = ndev_tx_id;
1853
1854                                 if (edev->dev_info.is_legacy)
1855                                         txq->is_legacy = true;
1856                                 txq->dev = &edev->pdev->dev;
1857                         }
1858
1859                         txq_index++;
1860                 }
1861
1862                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1863                          edev->ndev->name, queue_id);
1864         }
1865
1866         if (init_xdp) {
1867                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1868                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1869         }
1870 }
1871
1872 static int qede_set_real_num_queues(struct qede_dev *edev)
1873 {
1874         int rc = 0;
1875
1876         rc = netif_set_real_num_tx_queues(edev->ndev,
1877                                           QEDE_TSS_COUNT(edev) *
1878                                           edev->dev_info.num_tc);
1879         if (rc) {
1880                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1881                 return rc;
1882         }
1883
1884         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1885         if (rc) {
1886                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1887                 return rc;
1888         }
1889
1890         return 0;
1891 }
1892
1893 static void qede_napi_disable_remove(struct qede_dev *edev)
1894 {
1895         int i;
1896
1897         for_each_queue(i) {
1898                 napi_disable(&edev->fp_array[i].napi);
1899
1900                 netif_napi_del(&edev->fp_array[i].napi);
1901         }
1902 }
1903
1904 static void qede_napi_add_enable(struct qede_dev *edev)
1905 {
1906         int i;
1907
1908         /* Add NAPI objects */
1909         for_each_queue(i) {
1910                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1911                 napi_enable(&edev->fp_array[i].napi);
1912         }
1913 }
1914
1915 static void qede_sync_free_irqs(struct qede_dev *edev)
1916 {
1917         int i;
1918
1919         for (i = 0; i < edev->int_info.used_cnt; i++) {
1920                 if (edev->int_info.msix_cnt) {
1921                         free_irq(edev->int_info.msix[i].vector,
1922                                  &edev->fp_array[i]);
1923                 } else {
1924                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1925                 }
1926         }
1927
1928         edev->int_info.used_cnt = 0;
1929         edev->int_info.msix_cnt = 0;
1930 }
1931
1932 static int qede_req_msix_irqs(struct qede_dev *edev)
1933 {
1934         int i, rc;
1935
1936         /* Sanitize number of interrupts == number of prepared RSS queues */
1937         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1938                 DP_ERR(edev,
1939                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1940                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1941                 return -EINVAL;
1942         }
1943
1944         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1945 #ifdef CONFIG_RFS_ACCEL
1946                 struct qede_fastpath *fp = &edev->fp_array[i];
1947
1948                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1949                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1950                                               edev->int_info.msix[i].vector);
1951                         if (rc) {
1952                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1953                                 qede_free_arfs(edev);
1954                         }
1955                 }
1956 #endif
1957                 rc = request_irq(edev->int_info.msix[i].vector,
1958                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1959                                  &edev->fp_array[i]);
1960                 if (rc) {
1961                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1962 #ifdef CONFIG_RFS_ACCEL
1963                         if (edev->ndev->rx_cpu_rmap)
1964                                 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1965
1966                         edev->ndev->rx_cpu_rmap = NULL;
1967 #endif
1968                         qede_sync_free_irqs(edev);
1969                         return rc;
1970                 }
1971                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1972                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1973                            edev->fp_array[i].name, i,
1974                            &edev->fp_array[i]);
1975                 edev->int_info.used_cnt++;
1976         }
1977
1978         return 0;
1979 }
1980
1981 static void qede_simd_fp_handler(void *cookie)
1982 {
1983         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1984
1985         napi_schedule_irqoff(&fp->napi);
1986 }
1987
1988 static int qede_setup_irqs(struct qede_dev *edev)
1989 {
1990         int i, rc = 0;
1991
1992         /* Learn Interrupt configuration */
1993         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1994         if (rc)
1995                 return rc;
1996
1997         if (edev->int_info.msix_cnt) {
1998                 rc = qede_req_msix_irqs(edev);
1999                 if (rc)
2000                         return rc;
2001                 edev->ndev->irq = edev->int_info.msix[0].vector;
2002         } else {
2003                 const struct qed_common_ops *ops;
2004
2005                 /* qed should learn receive the RSS ids and callbacks */
2006                 ops = edev->ops->common;
2007                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2008                         ops->simd_handler_config(edev->cdev,
2009                                                  &edev->fp_array[i], i,
2010                                                  qede_simd_fp_handler);
2011                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2012         }
2013         return 0;
2014 }
2015
2016 static int qede_drain_txq(struct qede_dev *edev,
2017                           struct qede_tx_queue *txq, bool allow_drain)
2018 {
2019         int rc, cnt = 1000;
2020
2021         while (txq->sw_tx_cons != txq->sw_tx_prod) {
2022                 if (!cnt) {
2023                         if (allow_drain) {
2024                                 DP_NOTICE(edev,
2025                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
2026                                           txq->index);
2027                                 rc = edev->ops->common->drain(edev->cdev);
2028                                 if (rc)
2029                                         return rc;
2030                                 return qede_drain_txq(edev, txq, false);
2031                         }
2032                         DP_NOTICE(edev,
2033                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2034                                   txq->index, txq->sw_tx_prod,
2035                                   txq->sw_tx_cons);
2036                         return -ENODEV;
2037                 }
2038                 cnt--;
2039                 usleep_range(1000, 2000);
2040                 barrier();
2041         }
2042
2043         /* FW finished processing, wait for HW to transmit all tx packets */
2044         usleep_range(1000, 2000);
2045
2046         return 0;
2047 }
2048
2049 static int qede_stop_txq(struct qede_dev *edev,
2050                          struct qede_tx_queue *txq, int rss_id)
2051 {
2052         /* delete doorbell from doorbell recovery mechanism */
2053         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2054                                            &txq->tx_db);
2055
2056         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2057 }
2058
2059 static int qede_stop_queues(struct qede_dev *edev)
2060 {
2061         struct qed_update_vport_params *vport_update_params;
2062         struct qed_dev *cdev = edev->cdev;
2063         struct qede_fastpath *fp;
2064         int rc, i;
2065
2066         /* Disable the vport */
2067         vport_update_params = vzalloc(sizeof(*vport_update_params));
2068         if (!vport_update_params)
2069                 return -ENOMEM;
2070
2071         vport_update_params->vport_id = 0;
2072         vport_update_params->update_vport_active_flg = 1;
2073         vport_update_params->vport_active_flg = 0;
2074         vport_update_params->update_rss_flg = 0;
2075
2076         rc = edev->ops->vport_update(cdev, vport_update_params);
2077         vfree(vport_update_params);
2078
2079         if (rc) {
2080                 DP_ERR(edev, "Failed to update vport\n");
2081                 return rc;
2082         }
2083
2084         /* Flush Tx queues. If needed, request drain from MCP */
2085         for_each_queue(i) {
2086                 fp = &edev->fp_array[i];
2087
2088                 if (fp->type & QEDE_FASTPATH_TX) {
2089                         int cos;
2090
2091                         for_each_cos_in_txq(edev, cos) {
2092                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2093                                 if (rc)
2094                                         return rc;
2095                         }
2096                 }
2097
2098                 if (fp->type & QEDE_FASTPATH_XDP) {
2099                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2100                         if (rc)
2101                                 return rc;
2102                 }
2103         }
2104
2105         /* Stop all Queues in reverse order */
2106         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2107                 fp = &edev->fp_array[i];
2108
2109                 /* Stop the Tx Queue(s) */
2110                 if (fp->type & QEDE_FASTPATH_TX) {
2111                         int cos;
2112
2113                         for_each_cos_in_txq(edev, cos) {
2114                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2115                                 if (rc)
2116                                         return rc;
2117                         }
2118                 }
2119
2120                 /* Stop the Rx Queue */
2121                 if (fp->type & QEDE_FASTPATH_RX) {
2122                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2123                         if (rc) {
2124                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2125                                 return rc;
2126                         }
2127                 }
2128
2129                 /* Stop the XDP forwarding queue */
2130                 if (fp->type & QEDE_FASTPATH_XDP) {
2131                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2132                         if (rc)
2133                                 return rc;
2134
2135                         bpf_prog_put(fp->rxq->xdp_prog);
2136                 }
2137         }
2138
2139         /* Stop the vport */
2140         rc = edev->ops->vport_stop(cdev, 0);
2141         if (rc)
2142                 DP_ERR(edev, "Failed to stop VPORT\n");
2143
2144         return rc;
2145 }
2146
2147 static int qede_start_txq(struct qede_dev *edev,
2148                           struct qede_fastpath *fp,
2149                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2150 {
2151         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2152         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2153         struct qed_queue_start_common_params params;
2154         struct qed_txq_start_ret_params ret_params;
2155         int rc;
2156
2157         memset(&params, 0, sizeof(params));
2158         memset(&ret_params, 0, sizeof(ret_params));
2159
2160         /* Let the XDP queue share the queue-zone with one of the regular txq.
2161          * We don't really care about its coalescing.
2162          */
2163         if (txq->is_xdp)
2164                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2165         else
2166                 params.queue_id = txq->index;
2167
2168         params.p_sb = fp->sb_info;
2169         params.sb_idx = sb_idx;
2170         params.tc = txq->cos;
2171
2172         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2173                                    page_cnt, &ret_params);
2174         if (rc) {
2175                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2176                 return rc;
2177         }
2178
2179         txq->doorbell_addr = ret_params.p_doorbell;
2180         txq->handle = ret_params.p_handle;
2181
2182         /* Determine the FW consumer address associated */
2183         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2184
2185         /* Prepare the doorbell parameters */
2186         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2187         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2188         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2189                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2190         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2191
2192         /* register doorbell with doorbell recovery mechanism */
2193         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2194                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2195                                                 DB_REC_KERNEL);
2196
2197         return rc;
2198 }
2199
2200 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2201 {
2202         int vlan_removal_en = 1;
2203         struct qed_dev *cdev = edev->cdev;
2204         struct qed_dev_info *qed_info = &edev->dev_info.common;
2205         struct qed_update_vport_params *vport_update_params;
2206         struct qed_queue_start_common_params q_params;
2207         struct qed_start_vport_params start = {0};
2208         int rc, i;
2209
2210         if (!edev->num_queues) {
2211                 DP_ERR(edev,
2212                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2213                 return -EINVAL;
2214         }
2215
2216         vport_update_params = vzalloc(sizeof(*vport_update_params));
2217         if (!vport_update_params)
2218                 return -ENOMEM;
2219
2220         start.handle_ptp_pkts = !!(edev->ptp);
2221         start.gro_enable = !edev->gro_disable;
2222         start.mtu = edev->ndev->mtu;
2223         start.vport_id = 0;
2224         start.drop_ttl0 = true;
2225         start.remove_inner_vlan = vlan_removal_en;
2226         start.clear_stats = clear_stats;
2227
2228         rc = edev->ops->vport_start(cdev, &start);
2229
2230         if (rc) {
2231                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2232                 goto out;
2233         }
2234
2235         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2236                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2237                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2238
2239         for_each_queue(i) {
2240                 struct qede_fastpath *fp = &edev->fp_array[i];
2241                 dma_addr_t p_phys_table;
2242                 u32 page_cnt;
2243
2244                 if (fp->type & QEDE_FASTPATH_RX) {
2245                         struct qed_rxq_start_ret_params ret_params;
2246                         struct qede_rx_queue *rxq = fp->rxq;
2247                         __le16 *val;
2248
2249                         memset(&ret_params, 0, sizeof(ret_params));
2250                         memset(&q_params, 0, sizeof(q_params));
2251                         q_params.queue_id = rxq->rxq_id;
2252                         q_params.vport_id = 0;
2253                         q_params.p_sb = fp->sb_info;
2254                         q_params.sb_idx = RX_PI;
2255
2256                         p_phys_table =
2257                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2258                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2259
2260                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2261                                                    rxq->rx_buf_size,
2262                                                    rxq->rx_bd_ring.p_phys_addr,
2263                                                    p_phys_table,
2264                                                    page_cnt, &ret_params);
2265                         if (rc) {
2266                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2267                                        rc);
2268                                 goto out;
2269                         }
2270
2271                         /* Use the return parameters */
2272                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2273                         rxq->handle = ret_params.p_handle;
2274
2275                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2276                         rxq->hw_cons_ptr = val;
2277
2278                         qede_update_rx_prod(edev, rxq);
2279                 }
2280
2281                 if (fp->type & QEDE_FASTPATH_XDP) {
2282                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2283                         if (rc)
2284                                 goto out;
2285
2286                         bpf_prog_add(edev->xdp_prog, 1);
2287                         fp->rxq->xdp_prog = edev->xdp_prog;
2288                 }
2289
2290                 if (fp->type & QEDE_FASTPATH_TX) {
2291                         int cos;
2292
2293                         for_each_cos_in_txq(edev, cos) {
2294                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2295                                                     TX_PI(cos));
2296                                 if (rc)
2297                                         goto out;
2298                         }
2299                 }
2300         }
2301
2302         /* Prepare and send the vport enable */
2303         vport_update_params->vport_id = start.vport_id;
2304         vport_update_params->update_vport_active_flg = 1;
2305         vport_update_params->vport_active_flg = 1;
2306
2307         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2308             qed_info->tx_switching) {
2309                 vport_update_params->update_tx_switching_flg = 1;
2310                 vport_update_params->tx_switching_flg = 1;
2311         }
2312
2313         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2314                              &vport_update_params->update_rss_flg);
2315
2316         rc = edev->ops->vport_update(cdev, vport_update_params);
2317         if (rc)
2318                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2319
2320 out:
2321         vfree(vport_update_params);
2322         return rc;
2323 }
2324
2325 enum qede_unload_mode {
2326         QEDE_UNLOAD_NORMAL,
2327         QEDE_UNLOAD_RECOVERY,
2328 };
2329
2330 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2331                         bool is_locked)
2332 {
2333         struct qed_link_params link_params;
2334         int rc;
2335
2336         DP_INFO(edev, "Starting qede unload\n");
2337
2338         if (!is_locked)
2339                 __qede_lock(edev);
2340
2341         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2342
2343         if (mode != QEDE_UNLOAD_RECOVERY)
2344                 edev->state = QEDE_STATE_CLOSED;
2345
2346         qede_rdma_dev_event_close(edev);
2347
2348         /* Close OS Tx */
2349         netif_tx_disable(edev->ndev);
2350         netif_carrier_off(edev->ndev);
2351
2352         if (mode != QEDE_UNLOAD_RECOVERY) {
2353                 /* Reset the link */
2354                 memset(&link_params, 0, sizeof(link_params));
2355                 link_params.link_up = false;
2356                 edev->ops->common->set_link(edev->cdev, &link_params);
2357
2358                 rc = qede_stop_queues(edev);
2359                 if (rc) {
2360 #ifdef CONFIG_RFS_ACCEL
2361                         if (edev->dev_info.common.b_arfs_capable) {
2362                                 qede_poll_for_freeing_arfs_filters(edev);
2363                                 if (edev->ndev->rx_cpu_rmap)
2364                                         free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2365
2366                                 edev->ndev->rx_cpu_rmap = NULL;
2367                         }
2368 #endif
2369                         qede_sync_free_irqs(edev);
2370                         goto out;
2371                 }
2372
2373                 DP_INFO(edev, "Stopped Queues\n");
2374         }
2375
2376         qede_vlan_mark_nonconfigured(edev);
2377         edev->ops->fastpath_stop(edev->cdev);
2378
2379         if (edev->dev_info.common.b_arfs_capable) {
2380                 qede_poll_for_freeing_arfs_filters(edev);
2381                 qede_free_arfs(edev);
2382         }
2383
2384         /* Release the interrupts */
2385         qede_sync_free_irqs(edev);
2386         edev->ops->common->set_fp_int(edev->cdev, 0);
2387
2388         qede_napi_disable_remove(edev);
2389
2390         if (mode == QEDE_UNLOAD_RECOVERY)
2391                 qede_empty_tx_queues(edev);
2392
2393         qede_free_mem_load(edev);
2394         qede_free_fp_array(edev);
2395
2396 out:
2397         if (!is_locked)
2398                 __qede_unlock(edev);
2399
2400         if (mode != QEDE_UNLOAD_RECOVERY)
2401                 DP_NOTICE(edev, "Link is down\n");
2402
2403         edev->ptp_skip_txts = 0;
2404
2405         DP_INFO(edev, "Ending qede unload\n");
2406 }
2407
2408 enum qede_load_mode {
2409         QEDE_LOAD_NORMAL,
2410         QEDE_LOAD_RELOAD,
2411         QEDE_LOAD_RECOVERY,
2412 };
2413
2414 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2415                      bool is_locked)
2416 {
2417         struct qed_link_params link_params;
2418         struct ethtool_coalesce coal = {};
2419         u8 num_tc;
2420         int rc, i;
2421
2422         DP_INFO(edev, "Starting qede load\n");
2423
2424         if (!is_locked)
2425                 __qede_lock(edev);
2426
2427         rc = qede_set_num_queues(edev);
2428         if (rc)
2429                 goto out;
2430
2431         rc = qede_alloc_fp_array(edev);
2432         if (rc)
2433                 goto out;
2434
2435         qede_init_fp(edev);
2436
2437         rc = qede_alloc_mem_load(edev);
2438         if (rc)
2439                 goto err1;
2440         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2441                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2442
2443         rc = qede_set_real_num_queues(edev);
2444         if (rc)
2445                 goto err2;
2446
2447         if (qede_alloc_arfs(edev)) {
2448                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2449                 edev->dev_info.common.b_arfs_capable = false;
2450         }
2451
2452         qede_napi_add_enable(edev);
2453         DP_INFO(edev, "Napi added and enabled\n");
2454
2455         rc = qede_setup_irqs(edev);
2456         if (rc)
2457                 goto err3;
2458         DP_INFO(edev, "Setup IRQs succeeded\n");
2459
2460         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2461         if (rc)
2462                 goto err4;
2463         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2464
2465         num_tc = netdev_get_num_tc(edev->ndev);
2466         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2467         qede_setup_tc(edev->ndev, num_tc);
2468
2469         /* Program un-configured VLANs */
2470         qede_configure_vlan_filters(edev);
2471
2472         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2473
2474         /* Ask for link-up using current configuration */
2475         memset(&link_params, 0, sizeof(link_params));
2476         link_params.link_up = true;
2477         edev->ops->common->set_link(edev->cdev, &link_params);
2478
2479         edev->state = QEDE_STATE_OPEN;
2480
2481         coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2482         coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2483
2484         for_each_queue(i) {
2485                 if (edev->coal_entry[i].isvalid) {
2486                         coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2487                         coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2488                 }
2489                 __qede_unlock(edev);
2490                 qede_set_per_coalesce(edev->ndev, i, &coal);
2491                 __qede_lock(edev);
2492         }
2493         DP_INFO(edev, "Ending successfully qede load\n");
2494
2495         goto out;
2496 err4:
2497         qede_sync_free_irqs(edev);
2498 err3:
2499         qede_napi_disable_remove(edev);
2500 err2:
2501         qede_free_mem_load(edev);
2502 err1:
2503         edev->ops->common->set_fp_int(edev->cdev, 0);
2504         qede_free_fp_array(edev);
2505         edev->num_queues = 0;
2506         edev->fp_num_tx = 0;
2507         edev->fp_num_rx = 0;
2508 out:
2509         if (!is_locked)
2510                 __qede_unlock(edev);
2511
2512         return rc;
2513 }
2514
2515 /* 'func' should be able to run between unload and reload assuming interface
2516  * is actually running, or afterwards in case it's currently DOWN.
2517  */
2518 void qede_reload(struct qede_dev *edev,
2519                  struct qede_reload_args *args, bool is_locked)
2520 {
2521         if (!is_locked)
2522                 __qede_lock(edev);
2523
2524         /* Since qede_lock is held, internal state wouldn't change even
2525          * if netdev state would start transitioning. Check whether current
2526          * internal configuration indicates device is up, then reload.
2527          */
2528         if (edev->state == QEDE_STATE_OPEN) {
2529                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2530                 if (args)
2531                         args->func(edev, args);
2532                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2533
2534                 /* Since no one is going to do it for us, re-configure */
2535                 qede_config_rx_mode(edev->ndev);
2536         } else if (args) {
2537                 args->func(edev, args);
2538         }
2539
2540         if (!is_locked)
2541                 __qede_unlock(edev);
2542 }
2543
2544 /* called with rtnl_lock */
2545 static int qede_open(struct net_device *ndev)
2546 {
2547         struct qede_dev *edev = netdev_priv(ndev);
2548         int rc;
2549
2550         netif_carrier_off(ndev);
2551
2552         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2553
2554         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2555         if (rc)
2556                 return rc;
2557
2558         udp_tunnel_nic_reset_ntf(ndev);
2559
2560         edev->ops->common->update_drv_state(edev->cdev, true);
2561
2562         return 0;
2563 }
2564
2565 static int qede_close(struct net_device *ndev)
2566 {
2567         struct qede_dev *edev = netdev_priv(ndev);
2568
2569         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2570
2571         if (edev->cdev)
2572                 edev->ops->common->update_drv_state(edev->cdev, false);
2573
2574         return 0;
2575 }
2576
2577 static void qede_link_update(void *dev, struct qed_link_output *link)
2578 {
2579         struct qede_dev *edev = dev;
2580
2581         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2582                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2583                 return;
2584         }
2585
2586         if (link->link_up) {
2587                 if (!netif_carrier_ok(edev->ndev)) {
2588                         DP_NOTICE(edev, "Link is up\n");
2589                         netif_tx_start_all_queues(edev->ndev);
2590                         netif_carrier_on(edev->ndev);
2591                         qede_rdma_dev_event_open(edev);
2592                 }
2593         } else {
2594                 if (netif_carrier_ok(edev->ndev)) {
2595                         DP_NOTICE(edev, "Link is down\n");
2596                         netif_tx_disable(edev->ndev);
2597                         netif_carrier_off(edev->ndev);
2598                         qede_rdma_dev_event_close(edev);
2599                 }
2600         }
2601 }
2602
2603 static void qede_schedule_recovery_handler(void *dev)
2604 {
2605         struct qede_dev *edev = dev;
2606
2607         if (edev->state == QEDE_STATE_RECOVERY) {
2608                 DP_NOTICE(edev,
2609                           "Avoid scheduling a recovery handling since already in recovery state\n");
2610                 return;
2611         }
2612
2613         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2614         schedule_delayed_work(&edev->sp_task, 0);
2615
2616         DP_INFO(edev, "Scheduled a recovery handler\n");
2617 }
2618
2619 static void qede_recovery_failed(struct qede_dev *edev)
2620 {
2621         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2622
2623         netif_device_detach(edev->ndev);
2624
2625         if (edev->cdev)
2626                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2627 }
2628
2629 static void qede_recovery_handler(struct qede_dev *edev)
2630 {
2631         u32 curr_state = edev->state;
2632         int rc;
2633
2634         DP_NOTICE(edev, "Starting a recovery process\n");
2635
2636         /* No need to acquire first the qede_lock since is done by qede_sp_task
2637          * before calling this function.
2638          */
2639         edev->state = QEDE_STATE_RECOVERY;
2640
2641         edev->ops->common->recovery_prolog(edev->cdev);
2642
2643         if (curr_state == QEDE_STATE_OPEN)
2644                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2645
2646         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2647
2648         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2649                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2650         if (rc) {
2651                 edev->cdev = NULL;
2652                 goto err;
2653         }
2654
2655         if (curr_state == QEDE_STATE_OPEN) {
2656                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2657                 if (rc)
2658                         goto err;
2659
2660                 qede_config_rx_mode(edev->ndev);
2661                 udp_tunnel_nic_reset_ntf(edev->ndev);
2662         }
2663
2664         edev->state = curr_state;
2665
2666         DP_NOTICE(edev, "Recovery handling is done\n");
2667
2668         return;
2669
2670 err:
2671         qede_recovery_failed(edev);
2672 }
2673
2674 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2675 {
2676         struct qed_dev *cdev = edev->cdev;
2677
2678         DP_NOTICE(edev,
2679                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2680                   edev->err_flags);
2681
2682         /* Get a call trace of the flow that led to the error */
2683         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2684
2685         /* Prevent HW attentions from being reasserted */
2686         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2687                 edev->ops->common->attn_clr_enable(cdev, true);
2688
2689         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2690 }
2691
2692 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2693 {
2694         DP_NOTICE(edev,
2695                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2696                   edev->err_flags);
2697
2698         if (edev->devlink) {
2699                 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2700                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2701         }
2702
2703         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2704
2705         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2706 }
2707
2708 static void qede_set_hw_err_flags(struct qede_dev *edev,
2709                                   enum qed_hw_err_type err_type)
2710 {
2711         unsigned long err_flags = 0;
2712
2713         switch (err_type) {
2714         case QED_HW_ERR_DMAE_FAIL:
2715                 set_bit(QEDE_ERR_WARN, &err_flags);
2716                 fallthrough;
2717         case QED_HW_ERR_MFW_RESP_FAIL:
2718         case QED_HW_ERR_HW_ATTN:
2719         case QED_HW_ERR_RAMROD_FAIL:
2720         case QED_HW_ERR_FW_ASSERT:
2721                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2722                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2723                 /* make this error as recoverable and start recovery*/
2724                 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2725                 break;
2726
2727         default:
2728                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2729                 break;
2730         }
2731
2732         edev->err_flags |= err_flags;
2733 }
2734
2735 static void qede_schedule_hw_err_handler(void *dev,
2736                                          enum qed_hw_err_type err_type)
2737 {
2738         struct qede_dev *edev = dev;
2739
2740         /* Fan failure cannot be masked by handling of another HW error or by a
2741          * concurrent recovery process.
2742          */
2743         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2744              edev->state == QEDE_STATE_RECOVERY) &&
2745              err_type != QED_HW_ERR_FAN_FAIL) {
2746                 DP_INFO(edev,
2747                         "Avoid scheduling an error handling while another HW error is being handled\n");
2748                 return;
2749         }
2750
2751         if (err_type >= QED_HW_ERR_LAST) {
2752                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2753                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2754                 return;
2755         }
2756
2757         edev->last_err_type = err_type;
2758         qede_set_hw_err_flags(edev, err_type);
2759         qede_atomic_hw_err_handler(edev);
2760         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2761         schedule_delayed_work(&edev->sp_task, 0);
2762
2763         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2764 }
2765
2766 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2767 {
2768         struct netdev_queue *netdev_txq;
2769
2770         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2771         if (netif_xmit_stopped(netdev_txq))
2772                 return true;
2773
2774         return false;
2775 }
2776
2777 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2778 {
2779         struct qede_dev *edev = dev;
2780         struct netdev_hw_addr *ha;
2781         int i;
2782
2783         if (edev->ndev->features & NETIF_F_IP_CSUM)
2784                 data->feat_flags |= QED_TLV_IP_CSUM;
2785         if (edev->ndev->features & NETIF_F_TSO)
2786                 data->feat_flags |= QED_TLV_LSO;
2787
2788         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2789         eth_zero_addr(data->mac[1]);
2790         eth_zero_addr(data->mac[2]);
2791         /* Copy the first two UC macs */
2792         netif_addr_lock_bh(edev->ndev);
2793         i = 1;
2794         netdev_for_each_uc_addr(ha, edev->ndev) {
2795                 ether_addr_copy(data->mac[i++], ha->addr);
2796                 if (i == QED_TLV_MAC_COUNT)
2797                         break;
2798         }
2799
2800         netif_addr_unlock_bh(edev->ndev);
2801 }
2802
2803 static void qede_get_eth_tlv_data(void *dev, void *data)
2804 {
2805         struct qed_mfw_tlv_eth *etlv = data;
2806         struct qede_dev *edev = dev;
2807         struct qede_fastpath *fp;
2808         int i;
2809
2810         etlv->lso_maxoff_size = 0XFFFF;
2811         etlv->lso_maxoff_size_set = true;
2812         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2813         etlv->lso_minseg_size_set = true;
2814         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2815         etlv->prom_mode_set = true;
2816         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2817         etlv->tx_descr_size_set = true;
2818         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2819         etlv->rx_descr_size_set = true;
2820         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2821         etlv->iov_offload_set = true;
2822
2823         /* Fill information regarding queues; Should be done under the qede
2824          * lock to guarantee those don't change beneath our feet.
2825          */
2826         etlv->txqs_empty = true;
2827         etlv->rxqs_empty = true;
2828         etlv->num_txqs_full = 0;
2829         etlv->num_rxqs_full = 0;
2830
2831         __qede_lock(edev);
2832         for_each_queue(i) {
2833                 fp = &edev->fp_array[i];
2834                 if (fp->type & QEDE_FASTPATH_TX) {
2835                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2836
2837                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2838                                 etlv->txqs_empty = false;
2839                         if (qede_is_txq_full(edev, txq))
2840                                 etlv->num_txqs_full++;
2841                 }
2842                 if (fp->type & QEDE_FASTPATH_RX) {
2843                         if (qede_has_rx_work(fp->rxq))
2844                                 etlv->rxqs_empty = false;
2845
2846                         /* This one is a bit tricky; Firmware might stop
2847                          * placing packets if ring is not yet full.
2848                          * Give an approximation.
2849                          */
2850                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2851                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2852                             RX_RING_SIZE - 100)
2853                                 etlv->num_rxqs_full++;
2854                 }
2855         }
2856         __qede_unlock(edev);
2857
2858         etlv->txqs_empty_set = true;
2859         etlv->rxqs_empty_set = true;
2860         etlv->num_txqs_full_set = true;
2861         etlv->num_rxqs_full_set = true;
2862 }
2863
2864 /**
2865  * qede_io_error_detected(): Called when PCI error is detected
2866  *
2867  * @pdev: Pointer to PCI device
2868  * @state: The current pci connection state
2869  *
2870  *Return: pci_ers_result_t.
2871  *
2872  * This function is called after a PCI bus error affecting
2873  * this device has been detected.
2874  */
2875 static pci_ers_result_t
2876 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2877 {
2878         struct net_device *dev = pci_get_drvdata(pdev);
2879         struct qede_dev *edev = netdev_priv(dev);
2880
2881         if (!edev)
2882                 return PCI_ERS_RESULT_NONE;
2883
2884         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2885
2886         __qede_lock(edev);
2887         if (edev->state == QEDE_STATE_RECOVERY) {
2888                 DP_NOTICE(edev, "Device already in the recovery state\n");
2889                 __qede_unlock(edev);
2890                 return PCI_ERS_RESULT_NONE;
2891         }
2892
2893         /* PF handles the recovery of its VFs */
2894         if (IS_VF(edev)) {
2895                 DP_VERBOSE(edev, QED_MSG_IOV,
2896                            "VF recovery is handled by its PF\n");
2897                 __qede_unlock(edev);
2898                 return PCI_ERS_RESULT_RECOVERED;
2899         }
2900
2901         /* Close OS Tx */
2902         netif_tx_disable(edev->ndev);
2903         netif_carrier_off(edev->ndev);
2904
2905         set_bit(QEDE_SP_AER, &edev->sp_flags);
2906         schedule_delayed_work(&edev->sp_task, 0);
2907
2908         __qede_unlock(edev);
2909
2910         return PCI_ERS_RESULT_CAN_RECOVER;
2911 }