OSDN Git Service

qede: Use NETIF_F_GRO_HW.
[android-x86/kernel.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65
66 static char version[] =
67         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77 static const struct qed_eth_ops *qed_ops;
78
79 #define CHIP_NUM_57980S_40              0x1634
80 #define CHIP_NUM_57980S_10              0x1666
81 #define CHIP_NUM_57980S_MF              0x1636
82 #define CHIP_NUM_57980S_100             0x1644
83 #define CHIP_NUM_57980S_50              0x1654
84 #define CHIP_NUM_57980S_25              0x1656
85 #define CHIP_NUM_57980S_IOV             0x1664
86 #define CHIP_NUM_AH                     0x8070
87 #define CHIP_NUM_AH_IOV                 0x8090
88
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
99
100 #endif
101
102 enum qede_pci_private {
103         QEDE_PRIVATE_PF,
104         QEDE_PRIVATE_VF
105 };
106
107 static const struct pci_device_id qede_pci_tbl[] = {
108         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121         { 0 }
122 };
123
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128 #define TX_TIMEOUT              (5 * HZ)
129
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI  11
132
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136
137 /* The qede lock is used to protect driver state change and driver flows that
138  * are not reentrant.
139  */
140 void __qede_lock(struct qede_dev *edev)
141 {
142         mutex_lock(&edev->qede_lock);
143 }
144
145 void __qede_unlock(struct qede_dev *edev)
146 {
147         mutex_unlock(&edev->qede_lock);
148 }
149
150 #ifdef CONFIG_QED_SRIOV
151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152                             __be16 vlan_proto)
153 {
154         struct qede_dev *edev = netdev_priv(ndev);
155
156         if (vlan > 4095) {
157                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158                 return -EINVAL;
159         }
160
161         if (vlan_proto != htons(ETH_P_8021Q))
162                 return -EPROTONOSUPPORT;
163
164         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165                    vlan, vf);
166
167         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169
170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172         struct qede_dev *edev = netdev_priv(ndev);
173
174         DP_VERBOSE(edev, QED_MSG_IOV,
175                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177
178         if (!is_valid_ether_addr(mac)) {
179                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180                 return -EINVAL;
181         }
182
183         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185
186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189         struct qed_dev_info *qed_info = &edev->dev_info.common;
190         struct qed_update_vport_params *vport_params;
191         int rc;
192
193         vport_params = vzalloc(sizeof(*vport_params));
194         if (!vport_params)
195                 return -ENOMEM;
196         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197
198         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199
200         /* Enable/Disable Tx switching for PF */
201         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203                 vport_params->vport_id = 0;
204                 vport_params->update_tx_switching_flg = 1;
205                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206                 edev->ops->vport_update(edev->cdev, vport_params);
207         }
208
209         vfree(vport_params);
210         return rc;
211 }
212 #endif
213
214 static struct pci_driver qede_pci_driver = {
215         .name = "qede",
216         .id_table = qede_pci_tbl,
217         .probe = qede_probe,
218         .remove = qede_remove,
219         .shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221         .sriov_configure = qede_sriov_configure,
222 #endif
223 };
224
225 static struct qed_eth_cb_ops qede_ll_ops = {
226         {
227 #ifdef CONFIG_RFS_ACCEL
228                 .arfs_filter_op = qede_arfs_filter_op,
229 #endif
230                 .link_update = qede_link_update,
231         },
232         .force_mac = qede_force_mac,
233         .ports_update = qede_udp_ports_update,
234 };
235
236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237                              void *ptr)
238 {
239         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240         struct ethtool_drvinfo drvinfo;
241         struct qede_dev *edev;
242
243         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244                 goto done;
245
246         /* Check whether this is a qede device */
247         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248                 goto done;
249
250         memset(&drvinfo, 0, sizeof(drvinfo));
251         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252         if (strcmp(drvinfo.driver, "qede"))
253                 goto done;
254         edev = netdev_priv(ndev);
255
256         switch (event) {
257         case NETDEV_CHANGENAME:
258                 /* Notify qed of the name change */
259                 if (!edev->ops || !edev->ops->common)
260                         goto done;
261                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262                 break;
263         case NETDEV_CHANGEADDR:
264                 edev = netdev_priv(ndev);
265                 qede_rdma_event_changeaddr(edev);
266                 break;
267         }
268
269 done:
270         return NOTIFY_DONE;
271 }
272
273 static struct notifier_block qede_netdev_notifier = {
274         .notifier_call = qede_netdev_event,
275 };
276
277 static
278 int __init qede_init(void)
279 {
280         int ret;
281
282         pr_info("qede_init: %s\n", version);
283
284         qed_ops = qed_get_eth_ops();
285         if (!qed_ops) {
286                 pr_notice("Failed to get qed ethtool operations\n");
287                 return -EINVAL;
288         }
289
290         /* Must register notifier before pci ops, since we might miss
291          * interface rename after pci probe and netdev registeration.
292          */
293         ret = register_netdevice_notifier(&qede_netdev_notifier);
294         if (ret) {
295                 pr_notice("Failed to register netdevice_notifier\n");
296                 qed_put_eth_ops();
297                 return -EINVAL;
298         }
299
300         ret = pci_register_driver(&qede_pci_driver);
301         if (ret) {
302                 pr_notice("Failed to register driver\n");
303                 unregister_netdevice_notifier(&qede_netdev_notifier);
304                 qed_put_eth_ops();
305                 return -EINVAL;
306         }
307
308         return 0;
309 }
310
311 static void __exit qede_cleanup(void)
312 {
313         if (debug & QED_LOG_INFO_MASK)
314                 pr_info("qede_cleanup called\n");
315
316         unregister_netdevice_notifier(&qede_netdev_notifier);
317         pci_unregister_driver(&qede_pci_driver);
318         qed_put_eth_ops();
319 }
320
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326
327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329         struct qede_stats_common *p_common = &edev->stats.common;
330         struct qed_eth_stats stats;
331
332         edev->ops->get_vport_stats(edev->cdev, &stats);
333
334         p_common->no_buff_discards = stats.common.no_buff_discards;
335         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336         p_common->ttl0_discard = stats.common.ttl0_discard;
337         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344         p_common->mac_filter_discards = stats.common.mac_filter_discards;
345
346         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354         p_common->coalesced_events = stats.common.tpa_coalesced_events;
355         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358
359         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360         p_common->rx_65_to_127_byte_packets =
361             stats.common.rx_65_to_127_byte_packets;
362         p_common->rx_128_to_255_byte_packets =
363             stats.common.rx_128_to_255_byte_packets;
364         p_common->rx_256_to_511_byte_packets =
365             stats.common.rx_256_to_511_byte_packets;
366         p_common->rx_512_to_1023_byte_packets =
367             stats.common.rx_512_to_1023_byte_packets;
368         p_common->rx_1024_to_1518_byte_packets =
369             stats.common.rx_1024_to_1518_byte_packets;
370         p_common->rx_crc_errors = stats.common.rx_crc_errors;
371         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372         p_common->rx_pause_frames = stats.common.rx_pause_frames;
373         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374         p_common->rx_align_errors = stats.common.rx_align_errors;
375         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377         p_common->rx_jabbers = stats.common.rx_jabbers;
378         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379         p_common->rx_fragments = stats.common.rx_fragments;
380         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381         p_common->tx_65_to_127_byte_packets =
382             stats.common.tx_65_to_127_byte_packets;
383         p_common->tx_128_to_255_byte_packets =
384             stats.common.tx_128_to_255_byte_packets;
385         p_common->tx_256_to_511_byte_packets =
386             stats.common.tx_256_to_511_byte_packets;
387         p_common->tx_512_to_1023_byte_packets =
388             stats.common.tx_512_to_1023_byte_packets;
389         p_common->tx_1024_to_1518_byte_packets =
390             stats.common.tx_1024_to_1518_byte_packets;
391         p_common->tx_pause_frames = stats.common.tx_pause_frames;
392         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393         p_common->brb_truncates = stats.common.brb_truncates;
394         p_common->brb_discards = stats.common.brb_discards;
395         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396
397         if (QEDE_IS_BB(edev)) {
398                 struct qede_stats_bb *p_bb = &edev->stats.bb;
399
400                 p_bb->rx_1519_to_1522_byte_packets =
401                     stats.bb.rx_1519_to_1522_byte_packets;
402                 p_bb->rx_1519_to_2047_byte_packets =
403                     stats.bb.rx_1519_to_2047_byte_packets;
404                 p_bb->rx_2048_to_4095_byte_packets =
405                     stats.bb.rx_2048_to_4095_byte_packets;
406                 p_bb->rx_4096_to_9216_byte_packets =
407                     stats.bb.rx_4096_to_9216_byte_packets;
408                 p_bb->rx_9217_to_16383_byte_packets =
409                     stats.bb.rx_9217_to_16383_byte_packets;
410                 p_bb->tx_1519_to_2047_byte_packets =
411                     stats.bb.tx_1519_to_2047_byte_packets;
412                 p_bb->tx_2048_to_4095_byte_packets =
413                     stats.bb.tx_2048_to_4095_byte_packets;
414                 p_bb->tx_4096_to_9216_byte_packets =
415                     stats.bb.tx_4096_to_9216_byte_packets;
416                 p_bb->tx_9217_to_16383_byte_packets =
417                     stats.bb.tx_9217_to_16383_byte_packets;
418                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420         } else {
421                 struct qede_stats_ah *p_ah = &edev->stats.ah;
422
423                 p_ah->rx_1519_to_max_byte_packets =
424                     stats.ah.rx_1519_to_max_byte_packets;
425                 p_ah->tx_1519_to_max_byte_packets =
426                     stats.ah.tx_1519_to_max_byte_packets;
427         }
428 }
429
430 static void qede_get_stats64(struct net_device *dev,
431                              struct rtnl_link_stats64 *stats)
432 {
433         struct qede_dev *edev = netdev_priv(dev);
434         struct qede_stats_common *p_common;
435
436         qede_fill_by_demand_stats(edev);
437         p_common = &edev->stats.common;
438
439         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440                             p_common->rx_bcast_pkts;
441         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442                             p_common->tx_bcast_pkts;
443
444         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445                           p_common->rx_bcast_bytes;
446         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447                           p_common->tx_bcast_bytes;
448
449         stats->tx_errors = p_common->tx_err_drop_pkts;
450         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451
452         stats->rx_fifo_errors = p_common->no_buff_discards;
453
454         if (QEDE_IS_BB(edev))
455                 stats->collisions = edev->stats.bb.tx_total_collisions;
456         stats->rx_crc_errors = p_common->rx_crc_errors;
457         stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459
460 #ifdef CONFIG_QED_SRIOV
461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462                               struct ifla_vf_info *ivi)
463 {
464         struct qede_dev *edev = netdev_priv(dev);
465
466         if (!edev->ops)
467                 return -EINVAL;
468
469         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471
472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473                             int min_tx_rate, int max_tx_rate)
474 {
475         struct qede_dev *edev = netdev_priv(dev);
476
477         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478                                         max_tx_rate);
479 }
480
481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483         struct qede_dev *edev = netdev_priv(dev);
484
485         if (!edev->ops)
486                 return -EINVAL;
487
488         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490
491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492                                   int link_state)
493 {
494         struct qede_dev *edev = netdev_priv(dev);
495
496         if (!edev->ops)
497                 return -EINVAL;
498
499         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501
502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504         struct qede_dev *edev = netdev_priv(dev);
505
506         if (!edev->ops)
507                 return -EINVAL;
508
509         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512
513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515         struct qede_dev *edev = netdev_priv(dev);
516
517         if (!netif_running(dev))
518                 return -EAGAIN;
519
520         switch (cmd) {
521         case SIOCSHWTSTAMP:
522                 return qede_ptp_hw_ts(edev, ifr);
523         default:
524                 DP_VERBOSE(edev, QED_MSG_DEBUG,
525                            "default IOCTL cmd 0x%x\n", cmd);
526                 return -EOPNOTSUPP;
527         }
528
529         return 0;
530 }
531
532 static const struct net_device_ops qede_netdev_ops = {
533         .ndo_open = qede_open,
534         .ndo_stop = qede_close,
535         .ndo_start_xmit = qede_start_xmit,
536         .ndo_set_rx_mode = qede_set_rx_mode,
537         .ndo_set_mac_address = qede_set_mac_addr,
538         .ndo_validate_addr = eth_validate_addr,
539         .ndo_change_mtu = qede_change_mtu,
540         .ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542         .ndo_set_vf_mac = qede_set_vf_mac,
543         .ndo_set_vf_vlan = qede_set_vf_vlan,
544         .ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548         .ndo_fix_features = qede_fix_features,
549         .ndo_set_features = qede_set_features,
550         .ndo_get_stats64 = qede_get_stats64,
551 #ifdef CONFIG_QED_SRIOV
552         .ndo_set_vf_link_state = qede_set_vf_link_state,
553         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554         .ndo_get_vf_config = qede_get_vf_config,
555         .ndo_set_vf_rate = qede_set_vf_rate,
556 #endif
557         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
558         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
559         .ndo_features_check = qede_features_check,
560         .ndo_bpf = qede_xdp,
561 #ifdef CONFIG_RFS_ACCEL
562         .ndo_rx_flow_steer = qede_rx_flow_steer,
563 #endif
564 };
565
566 static const struct net_device_ops qede_netdev_vf_ops = {
567         .ndo_open = qede_open,
568         .ndo_stop = qede_close,
569         .ndo_start_xmit = qede_start_xmit,
570         .ndo_set_rx_mode = qede_set_rx_mode,
571         .ndo_set_mac_address = qede_set_mac_addr,
572         .ndo_validate_addr = eth_validate_addr,
573         .ndo_change_mtu = qede_change_mtu,
574         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576         .ndo_fix_features = qede_fix_features,
577         .ndo_set_features = qede_set_features,
578         .ndo_get_stats64 = qede_get_stats64,
579         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
580         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
581         .ndo_features_check = qede_features_check,
582 };
583
584 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
585         .ndo_open = qede_open,
586         .ndo_stop = qede_close,
587         .ndo_start_xmit = qede_start_xmit,
588         .ndo_set_rx_mode = qede_set_rx_mode,
589         .ndo_set_mac_address = qede_set_mac_addr,
590         .ndo_validate_addr = eth_validate_addr,
591         .ndo_change_mtu = qede_change_mtu,
592         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
593         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
594         .ndo_fix_features = qede_fix_features,
595         .ndo_set_features = qede_set_features,
596         .ndo_get_stats64 = qede_get_stats64,
597         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
598         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
599         .ndo_features_check = qede_features_check,
600         .ndo_bpf = qede_xdp,
601 };
602
603 /* -------------------------------------------------------------------------
604  * START OF PROBE / REMOVE
605  * -------------------------------------------------------------------------
606  */
607
608 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
609                                             struct pci_dev *pdev,
610                                             struct qed_dev_eth_info *info,
611                                             u32 dp_module, u8 dp_level)
612 {
613         struct net_device *ndev;
614         struct qede_dev *edev;
615
616         ndev = alloc_etherdev_mqs(sizeof(*edev),
617                                   info->num_queues, info->num_queues);
618         if (!ndev) {
619                 pr_err("etherdev allocation failed\n");
620                 return NULL;
621         }
622
623         edev = netdev_priv(ndev);
624         edev->ndev = ndev;
625         edev->cdev = cdev;
626         edev->pdev = pdev;
627         edev->dp_module = dp_module;
628         edev->dp_level = dp_level;
629         edev->ops = qed_ops;
630         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
631         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
632
633         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
634                 info->num_queues, info->num_queues);
635
636         SET_NETDEV_DEV(ndev, &pdev->dev);
637
638         memset(&edev->stats, 0, sizeof(edev->stats));
639         memcpy(&edev->dev_info, info, sizeof(*info));
640
641         /* As ethtool doesn't have the ability to show WoL behavior as
642          * 'default', if device supports it declare it's enabled.
643          */
644         if (edev->dev_info.common.wol_support)
645                 edev->wol_enabled = true;
646
647         INIT_LIST_HEAD(&edev->vlan_list);
648
649         return edev;
650 }
651
652 static void qede_init_ndev(struct qede_dev *edev)
653 {
654         struct net_device *ndev = edev->ndev;
655         struct pci_dev *pdev = edev->pdev;
656         bool udp_tunnel_enable = false;
657         netdev_features_t hw_features;
658
659         pci_set_drvdata(pdev, ndev);
660
661         ndev->mem_start = edev->dev_info.common.pci_mem_start;
662         ndev->base_addr = ndev->mem_start;
663         ndev->mem_end = edev->dev_info.common.pci_mem_end;
664         ndev->irq = edev->dev_info.common.pci_irq;
665
666         ndev->watchdog_timeo = TX_TIMEOUT;
667
668         if (IS_VF(edev)) {
669                 if (edev->dev_info.xdp_supported)
670                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
671                 else
672                         ndev->netdev_ops = &qede_netdev_vf_ops;
673         } else {
674                 ndev->netdev_ops = &qede_netdev_ops;
675         }
676
677         qede_set_ethtool_ops(ndev);
678
679         ndev->priv_flags |= IFF_UNICAST_FLT;
680
681         /* user-changeble features */
682         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
683                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
684                       NETIF_F_TSO | NETIF_F_TSO6;
685
686         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
687                 hw_features |= NETIF_F_NTUPLE;
688
689         if (edev->dev_info.common.vxlan_enable ||
690             edev->dev_info.common.geneve_enable)
691                 udp_tunnel_enable = true;
692
693         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
694                 hw_features |= NETIF_F_TSO_ECN;
695                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
696                                         NETIF_F_SG | NETIF_F_TSO |
697                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
698                                         NETIF_F_RXCSUM;
699         }
700
701         if (udp_tunnel_enable) {
702                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
703                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
704                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
705                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
706         }
707
708         if (edev->dev_info.common.gre_enable) {
709                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
710                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
711                                           NETIF_F_GSO_GRE_CSUM);
712         }
713
714         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
715                               NETIF_F_HIGHDMA;
716         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
717                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
718                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
719
720         ndev->hw_features = hw_features;
721
722         /* MTU range: 46 - 9600 */
723         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
724         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
725
726         /* Set network device HW mac */
727         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
728
729         ndev->mtu = edev->dev_info.common.mtu;
730 }
731
732 /* This function converts from 32b param to two params of level and module
733  * Input 32b decoding:
734  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
735  * 'happy' flow, e.g. memory allocation failed.
736  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
737  * and provide important parameters.
738  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
739  * module. VERBOSE prints are for tracking the specific flow in low level.
740  *
741  * Notice that the level should be that of the lowest required logs.
742  */
743 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
744 {
745         *p_dp_level = QED_LEVEL_NOTICE;
746         *p_dp_module = 0;
747
748         if (debug & QED_LOG_VERBOSE_MASK) {
749                 *p_dp_level = QED_LEVEL_VERBOSE;
750                 *p_dp_module = (debug & 0x3FFFFFFF);
751         } else if (debug & QED_LOG_INFO_MASK) {
752                 *p_dp_level = QED_LEVEL_INFO;
753         } else if (debug & QED_LOG_NOTICE_MASK) {
754                 *p_dp_level = QED_LEVEL_NOTICE;
755         }
756 }
757
758 static void qede_free_fp_array(struct qede_dev *edev)
759 {
760         if (edev->fp_array) {
761                 struct qede_fastpath *fp;
762                 int i;
763
764                 for_each_queue(i) {
765                         fp = &edev->fp_array[i];
766
767                         kfree(fp->sb_info);
768                         kfree(fp->rxq);
769                         kfree(fp->xdp_tx);
770                         kfree(fp->txq);
771                 }
772                 kfree(edev->fp_array);
773         }
774
775         edev->num_queues = 0;
776         edev->fp_num_tx = 0;
777         edev->fp_num_rx = 0;
778 }
779
780 static int qede_alloc_fp_array(struct qede_dev *edev)
781 {
782         u8 fp_combined, fp_rx = edev->fp_num_rx;
783         struct qede_fastpath *fp;
784         int i;
785
786         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
787                                  sizeof(*edev->fp_array), GFP_KERNEL);
788         if (!edev->fp_array) {
789                 DP_NOTICE(edev, "fp array allocation failed\n");
790                 goto err;
791         }
792
793         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
794
795         /* Allocate the FP elements for Rx queues followed by combined and then
796          * the Tx. This ordering should be maintained so that the respective
797          * queues (Rx or Tx) will be together in the fastpath array and the
798          * associated ids will be sequential.
799          */
800         for_each_queue(i) {
801                 fp = &edev->fp_array[i];
802
803                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
804                 if (!fp->sb_info) {
805                         DP_NOTICE(edev, "sb info struct allocation failed\n");
806                         goto err;
807                 }
808
809                 if (fp_rx) {
810                         fp->type = QEDE_FASTPATH_RX;
811                         fp_rx--;
812                 } else if (fp_combined) {
813                         fp->type = QEDE_FASTPATH_COMBINED;
814                         fp_combined--;
815                 } else {
816                         fp->type = QEDE_FASTPATH_TX;
817                 }
818
819                 if (fp->type & QEDE_FASTPATH_TX) {
820                         fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
821                         if (!fp->txq)
822                                 goto err;
823                 }
824
825                 if (fp->type & QEDE_FASTPATH_RX) {
826                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
827                         if (!fp->rxq)
828                                 goto err;
829
830                         if (edev->xdp_prog) {
831                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
832                                                      GFP_KERNEL);
833                                 if (!fp->xdp_tx)
834                                         goto err;
835                                 fp->type |= QEDE_FASTPATH_XDP;
836                         }
837                 }
838         }
839
840         return 0;
841 err:
842         qede_free_fp_array(edev);
843         return -ENOMEM;
844 }
845
846 static void qede_sp_task(struct work_struct *work)
847 {
848         struct qede_dev *edev = container_of(work, struct qede_dev,
849                                              sp_task.work);
850
851         __qede_lock(edev);
852
853         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
854                 if (edev->state == QEDE_STATE_OPEN)
855                         qede_config_rx_mode(edev->ndev);
856
857 #ifdef CONFIG_RFS_ACCEL
858         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
859                 if (edev->state == QEDE_STATE_OPEN)
860                         qede_process_arfs_filters(edev, false);
861         }
862 #endif
863         __qede_unlock(edev);
864 }
865
866 static void qede_update_pf_params(struct qed_dev *cdev)
867 {
868         struct qed_pf_params pf_params;
869
870         /* 64 rx + 64 tx + 64 XDP */
871         memset(&pf_params, 0, sizeof(struct qed_pf_params));
872         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
873
874         /* Same for VFs - make sure they'll have sufficient connections
875          * to support XDP Tx queues.
876          */
877         pf_params.eth_pf_params.num_vf_cons = 48;
878
879         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
880         qed_ops->common->update_pf_params(cdev, &pf_params);
881 }
882
883 #define QEDE_FW_VER_STR_SIZE    80
884
885 static void qede_log_probe(struct qede_dev *edev)
886 {
887         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
888         u8 buf[QEDE_FW_VER_STR_SIZE];
889         size_t left_size;
890
891         snprintf(buf, QEDE_FW_VER_STR_SIZE,
892                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
893                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
894                  p_dev_info->fw_eng,
895                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
896                  QED_MFW_VERSION_3_OFFSET,
897                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
898                  QED_MFW_VERSION_2_OFFSET,
899                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
900                  QED_MFW_VERSION_1_OFFSET,
901                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
902                  QED_MFW_VERSION_0_OFFSET);
903
904         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
905         if (p_dev_info->mbi_version && left_size)
906                 snprintf(buf + strlen(buf), left_size,
907                          " [MBI %d.%d.%d]",
908                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
909                          QED_MBI_VERSION_2_OFFSET,
910                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
911                          QED_MBI_VERSION_1_OFFSET,
912                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
913                          QED_MBI_VERSION_0_OFFSET);
914
915         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
916                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
917                 buf, edev->ndev->name);
918 }
919
920 enum qede_probe_mode {
921         QEDE_PROBE_NORMAL,
922 };
923
924 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
925                         bool is_vf, enum qede_probe_mode mode)
926 {
927         struct qed_probe_params probe_params;
928         struct qed_slowpath_params sp_params;
929         struct qed_dev_eth_info dev_info;
930         struct qede_dev *edev;
931         struct qed_dev *cdev;
932         int rc;
933
934         if (unlikely(dp_level & QED_LEVEL_INFO))
935                 pr_notice("Starting qede probe\n");
936
937         memset(&probe_params, 0, sizeof(probe_params));
938         probe_params.protocol = QED_PROTOCOL_ETH;
939         probe_params.dp_module = dp_module;
940         probe_params.dp_level = dp_level;
941         probe_params.is_vf = is_vf;
942         cdev = qed_ops->common->probe(pdev, &probe_params);
943         if (!cdev) {
944                 rc = -ENODEV;
945                 goto err0;
946         }
947
948         qede_update_pf_params(cdev);
949
950         /* Start the Slowpath-process */
951         memset(&sp_params, 0, sizeof(sp_params));
952         sp_params.int_mode = QED_INT_MODE_MSIX;
953         sp_params.drv_major = QEDE_MAJOR_VERSION;
954         sp_params.drv_minor = QEDE_MINOR_VERSION;
955         sp_params.drv_rev = QEDE_REVISION_VERSION;
956         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
957         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
958         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
959         if (rc) {
960                 pr_notice("Cannot start slowpath\n");
961                 goto err1;
962         }
963
964         /* Learn information crucial for qede to progress */
965         rc = qed_ops->fill_dev_info(cdev, &dev_info);
966         if (rc)
967                 goto err2;
968
969         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
970                                    dp_level);
971         if (!edev) {
972                 rc = -ENOMEM;
973                 goto err2;
974         }
975
976         if (is_vf)
977                 edev->flags |= QEDE_FLAG_IS_VF;
978
979         qede_init_ndev(edev);
980
981         rc = qede_rdma_dev_add(edev);
982         if (rc)
983                 goto err3;
984
985         /* Prepare the lock prior to the registeration of the netdev,
986          * as once it's registered we might reach flows requiring it
987          * [it's even possible to reach a flow needing it directly
988          * from there, although it's unlikely].
989          */
990         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
991         mutex_init(&edev->qede_lock);
992         rc = register_netdev(edev->ndev);
993         if (rc) {
994                 DP_NOTICE(edev, "Cannot register net-device\n");
995                 goto err4;
996         }
997
998         edev->ops->common->set_name(cdev, edev->ndev->name);
999
1000         /* PTP not supported on VFs */
1001         if (!is_vf)
1002                 qede_ptp_enable(edev, true);
1003
1004         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1005
1006 #ifdef CONFIG_DCB
1007         if (!IS_VF(edev))
1008                 qede_set_dcbnl_ops(edev->ndev);
1009 #endif
1010
1011         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1012
1013         qede_log_probe(edev);
1014         return 0;
1015
1016 err4:
1017         qede_rdma_dev_remove(edev);
1018 err3:
1019         free_netdev(edev->ndev);
1020 err2:
1021         qed_ops->common->slowpath_stop(cdev);
1022 err1:
1023         qed_ops->common->remove(cdev);
1024 err0:
1025         return rc;
1026 }
1027
1028 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1029 {
1030         bool is_vf = false;
1031         u32 dp_module = 0;
1032         u8 dp_level = 0;
1033
1034         switch ((enum qede_pci_private)id->driver_data) {
1035         case QEDE_PRIVATE_VF:
1036                 if (debug & QED_LOG_VERBOSE_MASK)
1037                         dev_err(&pdev->dev, "Probing a VF\n");
1038                 is_vf = true;
1039                 break;
1040         default:
1041                 if (debug & QED_LOG_VERBOSE_MASK)
1042                         dev_err(&pdev->dev, "Probing a PF\n");
1043         }
1044
1045         qede_config_debug(debug, &dp_module, &dp_level);
1046
1047         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1048                             QEDE_PROBE_NORMAL);
1049 }
1050
1051 enum qede_remove_mode {
1052         QEDE_REMOVE_NORMAL,
1053 };
1054
1055 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1056 {
1057         struct net_device *ndev = pci_get_drvdata(pdev);
1058         struct qede_dev *edev = netdev_priv(ndev);
1059         struct qed_dev *cdev = edev->cdev;
1060
1061         DP_INFO(edev, "Starting qede_remove\n");
1062
1063         unregister_netdev(ndev);
1064         cancel_delayed_work_sync(&edev->sp_task);
1065
1066         qede_ptp_disable(edev);
1067
1068         qede_rdma_dev_remove(edev);
1069
1070         edev->ops->common->set_power_state(cdev, PCI_D0);
1071
1072         pci_set_drvdata(pdev, NULL);
1073
1074         /* Use global ops since we've freed edev */
1075         qed_ops->common->slowpath_stop(cdev);
1076         if (system_state == SYSTEM_POWER_OFF)
1077                 return;
1078         qed_ops->common->remove(cdev);
1079
1080         /* Since this can happen out-of-sync with other flows,
1081          * don't release the netdevice until after slowpath stop
1082          * has been called to guarantee various other contexts
1083          * [e.g., QED register callbacks] won't break anything when
1084          * accessing the netdevice.
1085          */
1086          free_netdev(ndev);
1087
1088         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1089 }
1090
1091 static void qede_remove(struct pci_dev *pdev)
1092 {
1093         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1094 }
1095
1096 static void qede_shutdown(struct pci_dev *pdev)
1097 {
1098         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1099 }
1100
1101 /* -------------------------------------------------------------------------
1102  * START OF LOAD / UNLOAD
1103  * -------------------------------------------------------------------------
1104  */
1105
1106 static int qede_set_num_queues(struct qede_dev *edev)
1107 {
1108         int rc;
1109         u16 rss_num;
1110
1111         /* Setup queues according to possible resources*/
1112         if (edev->req_queues)
1113                 rss_num = edev->req_queues;
1114         else
1115                 rss_num = netif_get_num_default_rss_queues() *
1116                           edev->dev_info.common.num_hwfns;
1117
1118         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1119
1120         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1121         if (rc > 0) {
1122                 /* Managed to request interrupts for our queues */
1123                 edev->num_queues = rc;
1124                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1125                         QEDE_QUEUE_CNT(edev), rss_num);
1126                 rc = 0;
1127         }
1128
1129         edev->fp_num_tx = edev->req_num_tx;
1130         edev->fp_num_rx = edev->req_num_rx;
1131
1132         return rc;
1133 }
1134
1135 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1136                              u16 sb_id)
1137 {
1138         if (sb_info->sb_virt) {
1139                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1140                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1141                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1142                 memset(sb_info, 0, sizeof(*sb_info));
1143         }
1144 }
1145
1146 /* This function allocates fast-path status block memory */
1147 static int qede_alloc_mem_sb(struct qede_dev *edev,
1148                              struct qed_sb_info *sb_info, u16 sb_id)
1149 {
1150         struct status_block *sb_virt;
1151         dma_addr_t sb_phys;
1152         int rc;
1153
1154         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1155                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1156         if (!sb_virt) {
1157                 DP_ERR(edev, "Status block allocation failed\n");
1158                 return -ENOMEM;
1159         }
1160
1161         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1162                                         sb_virt, sb_phys, sb_id,
1163                                         QED_SB_TYPE_L2_QUEUE);
1164         if (rc) {
1165                 DP_ERR(edev, "Status block initialization failed\n");
1166                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1167                                   sb_virt, sb_phys);
1168                 return rc;
1169         }
1170
1171         return 0;
1172 }
1173
1174 static void qede_free_rx_buffers(struct qede_dev *edev,
1175                                  struct qede_rx_queue *rxq)
1176 {
1177         u16 i;
1178
1179         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1180                 struct sw_rx_data *rx_buf;
1181                 struct page *data;
1182
1183                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1184                 data = rx_buf->data;
1185
1186                 dma_unmap_page(&edev->pdev->dev,
1187                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1188
1189                 rx_buf->data = NULL;
1190                 __free_page(data);
1191         }
1192 }
1193
1194 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1195 {
1196         int i;
1197
1198         if (edev->gro_disable)
1199                 return;
1200
1201         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1202                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1203                 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1204
1205                 if (replace_buf->data) {
1206                         dma_unmap_page(&edev->pdev->dev,
1207                                        replace_buf->mapping,
1208                                        PAGE_SIZE, DMA_FROM_DEVICE);
1209                         __free_page(replace_buf->data);
1210                 }
1211         }
1212 }
1213
1214 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1215 {
1216         qede_free_sge_mem(edev, rxq);
1217
1218         /* Free rx buffers */
1219         qede_free_rx_buffers(edev, rxq);
1220
1221         /* Free the parallel SW ring */
1222         kfree(rxq->sw_rx_ring);
1223
1224         /* Free the real RQ ring used by FW */
1225         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1226         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1227 }
1228
1229 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1230 {
1231         dma_addr_t mapping;
1232         int i;
1233
1234         if (edev->gro_disable)
1235                 return 0;
1236
1237         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1238                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1239                 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1240
1241                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1242                 if (unlikely(!replace_buf->data)) {
1243                         DP_NOTICE(edev,
1244                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
1245                         goto err;
1246                 }
1247
1248                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1249                                        PAGE_SIZE, DMA_FROM_DEVICE);
1250                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1251                         DP_NOTICE(edev,
1252                                   "Failed to map TPA replacement buffer\n");
1253                         goto err;
1254                 }
1255
1256                 replace_buf->mapping = mapping;
1257                 tpa_info->buffer.page_offset = 0;
1258                 tpa_info->buffer_mapping = mapping;
1259                 tpa_info->state = QEDE_AGG_STATE_NONE;
1260         }
1261
1262         return 0;
1263 err:
1264         qede_free_sge_mem(edev, rxq);
1265         edev->gro_disable = 1;
1266         edev->ndev->features &= ~NETIF_F_GRO_HW;
1267         return -ENOMEM;
1268 }
1269
1270 /* This function allocates all memory needed per Rx queue */
1271 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1272 {
1273         int i, rc, size;
1274
1275         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1276
1277         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1278         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1279
1280         /* Make sure that the headroom and  payload fit in a single page */
1281         if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1282                 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1283
1284         /* Segment size to spilt a page in multiple equal parts,
1285          * unless XDP is used in which case we'd use the entire page.
1286          */
1287         if (!edev->xdp_prog)
1288                 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1289         else
1290                 rxq->rx_buf_seg_size = PAGE_SIZE;
1291
1292         /* Allocate the parallel driver ring for Rx buffers */
1293         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1294         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1295         if (!rxq->sw_rx_ring) {
1296                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1297                 rc = -ENOMEM;
1298                 goto err;
1299         }
1300
1301         /* Allocate FW Rx ring  */
1302         rc = edev->ops->common->chain_alloc(edev->cdev,
1303                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1304                                             QED_CHAIN_MODE_NEXT_PTR,
1305                                             QED_CHAIN_CNT_TYPE_U16,
1306                                             RX_RING_SIZE,
1307                                             sizeof(struct eth_rx_bd),
1308                                             &rxq->rx_bd_ring, NULL);
1309         if (rc)
1310                 goto err;
1311
1312         /* Allocate FW completion ring */
1313         rc = edev->ops->common->chain_alloc(edev->cdev,
1314                                             QED_CHAIN_USE_TO_CONSUME,
1315                                             QED_CHAIN_MODE_PBL,
1316                                             QED_CHAIN_CNT_TYPE_U16,
1317                                             RX_RING_SIZE,
1318                                             sizeof(union eth_rx_cqe),
1319                                             &rxq->rx_comp_ring, NULL);
1320         if (rc)
1321                 goto err;
1322
1323         /* Allocate buffers for the Rx ring */
1324         rxq->filled_buffers = 0;
1325         for (i = 0; i < rxq->num_rx_buffers; i++) {
1326                 rc = qede_alloc_rx_buffer(rxq, false);
1327                 if (rc) {
1328                         DP_ERR(edev,
1329                                "Rx buffers allocation failed at index %d\n", i);
1330                         goto err;
1331                 }
1332         }
1333
1334         rc = qede_alloc_sge_mem(edev, rxq);
1335 err:
1336         return rc;
1337 }
1338
1339 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1340 {
1341         /* Free the parallel SW ring */
1342         if (txq->is_xdp)
1343                 kfree(txq->sw_tx_ring.xdp);
1344         else
1345                 kfree(txq->sw_tx_ring.skbs);
1346
1347         /* Free the real RQ ring used by FW */
1348         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1349 }
1350
1351 /* This function allocates all memory needed per Tx queue */
1352 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1353 {
1354         union eth_tx_bd_types *p_virt;
1355         int size, rc;
1356
1357         txq->num_tx_buffers = edev->q_num_tx_buffers;
1358
1359         /* Allocate the parallel driver ring for Tx buffers */
1360         if (txq->is_xdp) {
1361                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1362                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1363                 if (!txq->sw_tx_ring.xdp)
1364                         goto err;
1365         } else {
1366                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1367                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1368                 if (!txq->sw_tx_ring.skbs)
1369                         goto err;
1370         }
1371
1372         rc = edev->ops->common->chain_alloc(edev->cdev,
1373                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1374                                             QED_CHAIN_MODE_PBL,
1375                                             QED_CHAIN_CNT_TYPE_U16,
1376                                             txq->num_tx_buffers,
1377                                             sizeof(*p_virt),
1378                                             &txq->tx_pbl, NULL);
1379         if (rc)
1380                 goto err;
1381
1382         return 0;
1383
1384 err:
1385         qede_free_mem_txq(edev, txq);
1386         return -ENOMEM;
1387 }
1388
1389 /* This function frees all memory of a single fp */
1390 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1391 {
1392         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1393
1394         if (fp->type & QEDE_FASTPATH_RX)
1395                 qede_free_mem_rxq(edev, fp->rxq);
1396
1397         if (fp->type & QEDE_FASTPATH_XDP)
1398                 qede_free_mem_txq(edev, fp->xdp_tx);
1399
1400         if (fp->type & QEDE_FASTPATH_TX)
1401                 qede_free_mem_txq(edev, fp->txq);
1402 }
1403
1404 /* This function allocates all memory needed for a single fp (i.e. an entity
1405  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1406  */
1407 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1408 {
1409         int rc = 0;
1410
1411         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1412         if (rc)
1413                 goto out;
1414
1415         if (fp->type & QEDE_FASTPATH_RX) {
1416                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1417                 if (rc)
1418                         goto out;
1419         }
1420
1421         if (fp->type & QEDE_FASTPATH_XDP) {
1422                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1423                 if (rc)
1424                         goto out;
1425         }
1426
1427         if (fp->type & QEDE_FASTPATH_TX) {
1428                 rc = qede_alloc_mem_txq(edev, fp->txq);
1429                 if (rc)
1430                         goto out;
1431         }
1432
1433 out:
1434         return rc;
1435 }
1436
1437 static void qede_free_mem_load(struct qede_dev *edev)
1438 {
1439         int i;
1440
1441         for_each_queue(i) {
1442                 struct qede_fastpath *fp = &edev->fp_array[i];
1443
1444                 qede_free_mem_fp(edev, fp);
1445         }
1446 }
1447
1448 /* This function allocates all qede memory at NIC load. */
1449 static int qede_alloc_mem_load(struct qede_dev *edev)
1450 {
1451         int rc = 0, queue_id;
1452
1453         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1454                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1455
1456                 rc = qede_alloc_mem_fp(edev, fp);
1457                 if (rc) {
1458                         DP_ERR(edev,
1459                                "Failed to allocate memory for fastpath - rss id = %d\n",
1460                                queue_id);
1461                         qede_free_mem_load(edev);
1462                         return rc;
1463                 }
1464         }
1465
1466         return 0;
1467 }
1468
1469 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1470 static void qede_init_fp(struct qede_dev *edev)
1471 {
1472         int queue_id, rxq_index = 0, txq_index = 0;
1473         struct qede_fastpath *fp;
1474
1475         for_each_queue(queue_id) {
1476                 fp = &edev->fp_array[queue_id];
1477
1478                 fp->edev = edev;
1479                 fp->id = queue_id;
1480
1481                 if (fp->type & QEDE_FASTPATH_XDP) {
1482                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1483                                                                 rxq_index);
1484                         fp->xdp_tx->is_xdp = 1;
1485                 }
1486
1487                 if (fp->type & QEDE_FASTPATH_RX) {
1488                         fp->rxq->rxq_id = rxq_index++;
1489
1490                         /* Determine how to map buffers for this queue */
1491                         if (fp->type & QEDE_FASTPATH_XDP)
1492                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1493                         else
1494                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1495                         fp->rxq->dev = &edev->pdev->dev;
1496                 }
1497
1498                 if (fp->type & QEDE_FASTPATH_TX) {
1499                         fp->txq->index = txq_index++;
1500                         if (edev->dev_info.is_legacy)
1501                                 fp->txq->is_legacy = 1;
1502                         fp->txq->dev = &edev->pdev->dev;
1503                 }
1504
1505                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1506                          edev->ndev->name, queue_id);
1507         }
1508
1509         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1510 }
1511
1512 static int qede_set_real_num_queues(struct qede_dev *edev)
1513 {
1514         int rc = 0;
1515
1516         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1517         if (rc) {
1518                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1519                 return rc;
1520         }
1521
1522         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1523         if (rc) {
1524                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1525                 return rc;
1526         }
1527
1528         return 0;
1529 }
1530
1531 static void qede_napi_disable_remove(struct qede_dev *edev)
1532 {
1533         int i;
1534
1535         for_each_queue(i) {
1536                 napi_disable(&edev->fp_array[i].napi);
1537
1538                 netif_napi_del(&edev->fp_array[i].napi);
1539         }
1540 }
1541
1542 static void qede_napi_add_enable(struct qede_dev *edev)
1543 {
1544         int i;
1545
1546         /* Add NAPI objects */
1547         for_each_queue(i) {
1548                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1549                                qede_poll, NAPI_POLL_WEIGHT);
1550                 napi_enable(&edev->fp_array[i].napi);
1551         }
1552 }
1553
1554 static void qede_sync_free_irqs(struct qede_dev *edev)
1555 {
1556         int i;
1557
1558         for (i = 0; i < edev->int_info.used_cnt; i++) {
1559                 if (edev->int_info.msix_cnt) {
1560                         synchronize_irq(edev->int_info.msix[i].vector);
1561                         free_irq(edev->int_info.msix[i].vector,
1562                                  &edev->fp_array[i]);
1563                 } else {
1564                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1565                 }
1566         }
1567
1568         edev->int_info.used_cnt = 0;
1569 }
1570
1571 static int qede_req_msix_irqs(struct qede_dev *edev)
1572 {
1573         int i, rc;
1574
1575         /* Sanitize number of interrupts == number of prepared RSS queues */
1576         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1577                 DP_ERR(edev,
1578                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1579                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1580                 return -EINVAL;
1581         }
1582
1583         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1584 #ifdef CONFIG_RFS_ACCEL
1585                 struct qede_fastpath *fp = &edev->fp_array[i];
1586
1587                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1588                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1589                                               edev->int_info.msix[i].vector);
1590                         if (rc) {
1591                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1592                                 qede_free_arfs(edev);
1593                         }
1594                 }
1595 #endif
1596                 rc = request_irq(edev->int_info.msix[i].vector,
1597                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1598                                  &edev->fp_array[i]);
1599                 if (rc) {
1600                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1601                         qede_sync_free_irqs(edev);
1602                         return rc;
1603                 }
1604                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1605                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1606                            edev->fp_array[i].name, i,
1607                            &edev->fp_array[i]);
1608                 edev->int_info.used_cnt++;
1609         }
1610
1611         return 0;
1612 }
1613
1614 static void qede_simd_fp_handler(void *cookie)
1615 {
1616         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1617
1618         napi_schedule_irqoff(&fp->napi);
1619 }
1620
1621 static int qede_setup_irqs(struct qede_dev *edev)
1622 {
1623         int i, rc = 0;
1624
1625         /* Learn Interrupt configuration */
1626         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1627         if (rc)
1628                 return rc;
1629
1630         if (edev->int_info.msix_cnt) {
1631                 rc = qede_req_msix_irqs(edev);
1632                 if (rc)
1633                         return rc;
1634                 edev->ndev->irq = edev->int_info.msix[0].vector;
1635         } else {
1636                 const struct qed_common_ops *ops;
1637
1638                 /* qed should learn receive the RSS ids and callbacks */
1639                 ops = edev->ops->common;
1640                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1641                         ops->simd_handler_config(edev->cdev,
1642                                                  &edev->fp_array[i], i,
1643                                                  qede_simd_fp_handler);
1644                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1645         }
1646         return 0;
1647 }
1648
1649 static int qede_drain_txq(struct qede_dev *edev,
1650                           struct qede_tx_queue *txq, bool allow_drain)
1651 {
1652         int rc, cnt = 1000;
1653
1654         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1655                 if (!cnt) {
1656                         if (allow_drain) {
1657                                 DP_NOTICE(edev,
1658                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1659                                           txq->index);
1660                                 rc = edev->ops->common->drain(edev->cdev);
1661                                 if (rc)
1662                                         return rc;
1663                                 return qede_drain_txq(edev, txq, false);
1664                         }
1665                         DP_NOTICE(edev,
1666                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1667                                   txq->index, txq->sw_tx_prod,
1668                                   txq->sw_tx_cons);
1669                         return -ENODEV;
1670                 }
1671                 cnt--;
1672                 usleep_range(1000, 2000);
1673                 barrier();
1674         }
1675
1676         /* FW finished processing, wait for HW to transmit all tx packets */
1677         usleep_range(1000, 2000);
1678
1679         return 0;
1680 }
1681
1682 static int qede_stop_txq(struct qede_dev *edev,
1683                          struct qede_tx_queue *txq, int rss_id)
1684 {
1685         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1686 }
1687
1688 static int qede_stop_queues(struct qede_dev *edev)
1689 {
1690         struct qed_update_vport_params *vport_update_params;
1691         struct qed_dev *cdev = edev->cdev;
1692         struct qede_fastpath *fp;
1693         int rc, i;
1694
1695         /* Disable the vport */
1696         vport_update_params = vzalloc(sizeof(*vport_update_params));
1697         if (!vport_update_params)
1698                 return -ENOMEM;
1699
1700         vport_update_params->vport_id = 0;
1701         vport_update_params->update_vport_active_flg = 1;
1702         vport_update_params->vport_active_flg = 0;
1703         vport_update_params->update_rss_flg = 0;
1704
1705         rc = edev->ops->vport_update(cdev, vport_update_params);
1706         vfree(vport_update_params);
1707
1708         if (rc) {
1709                 DP_ERR(edev, "Failed to update vport\n");
1710                 return rc;
1711         }
1712
1713         /* Flush Tx queues. If needed, request drain from MCP */
1714         for_each_queue(i) {
1715                 fp = &edev->fp_array[i];
1716
1717                 if (fp->type & QEDE_FASTPATH_TX) {
1718                         rc = qede_drain_txq(edev, fp->txq, true);
1719                         if (rc)
1720                                 return rc;
1721                 }
1722
1723                 if (fp->type & QEDE_FASTPATH_XDP) {
1724                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
1725                         if (rc)
1726                                 return rc;
1727                 }
1728         }
1729
1730         /* Stop all Queues in reverse order */
1731         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1732                 fp = &edev->fp_array[i];
1733
1734                 /* Stop the Tx Queue(s) */
1735                 if (fp->type & QEDE_FASTPATH_TX) {
1736                         rc = qede_stop_txq(edev, fp->txq, i);
1737                         if (rc)
1738                                 return rc;
1739                 }
1740
1741                 /* Stop the Rx Queue */
1742                 if (fp->type & QEDE_FASTPATH_RX) {
1743                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1744                         if (rc) {
1745                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1746                                 return rc;
1747                         }
1748                 }
1749
1750                 /* Stop the XDP forwarding queue */
1751                 if (fp->type & QEDE_FASTPATH_XDP) {
1752                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
1753                         if (rc)
1754                                 return rc;
1755
1756                         bpf_prog_put(fp->rxq->xdp_prog);
1757                 }
1758         }
1759
1760         /* Stop the vport */
1761         rc = edev->ops->vport_stop(cdev, 0);
1762         if (rc)
1763                 DP_ERR(edev, "Failed to stop VPORT\n");
1764
1765         return rc;
1766 }
1767
1768 static int qede_start_txq(struct qede_dev *edev,
1769                           struct qede_fastpath *fp,
1770                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1771 {
1772         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1773         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1774         struct qed_queue_start_common_params params;
1775         struct qed_txq_start_ret_params ret_params;
1776         int rc;
1777
1778         memset(&params, 0, sizeof(params));
1779         memset(&ret_params, 0, sizeof(ret_params));
1780
1781         /* Let the XDP queue share the queue-zone with one of the regular txq.
1782          * We don't really care about its coalescing.
1783          */
1784         if (txq->is_xdp)
1785                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1786         else
1787                 params.queue_id = txq->index;
1788
1789         params.p_sb = fp->sb_info;
1790         params.sb_idx = sb_idx;
1791
1792         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1793                                    page_cnt, &ret_params);
1794         if (rc) {
1795                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1796                 return rc;
1797         }
1798
1799         txq->doorbell_addr = ret_params.p_doorbell;
1800         txq->handle = ret_params.p_handle;
1801
1802         /* Determine the FW consumer address associated */
1803         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1804
1805         /* Prepare the doorbell parameters */
1806         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1807         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1808         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1809                   DQ_XCM_ETH_TX_BD_PROD_CMD);
1810         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1811
1812         return rc;
1813 }
1814
1815 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1816 {
1817         int vlan_removal_en = 1;
1818         struct qed_dev *cdev = edev->cdev;
1819         struct qed_dev_info *qed_info = &edev->dev_info.common;
1820         struct qed_update_vport_params *vport_update_params;
1821         struct qed_queue_start_common_params q_params;
1822         struct qed_start_vport_params start = {0};
1823         int rc, i;
1824
1825         if (!edev->num_queues) {
1826                 DP_ERR(edev,
1827                        "Cannot update V-VPORT as active as there are no Rx queues\n");
1828                 return -EINVAL;
1829         }
1830
1831         vport_update_params = vzalloc(sizeof(*vport_update_params));
1832         if (!vport_update_params)
1833                 return -ENOMEM;
1834
1835         start.handle_ptp_pkts = !!(edev->ptp);
1836         start.gro_enable = !edev->gro_disable;
1837         start.mtu = edev->ndev->mtu;
1838         start.vport_id = 0;
1839         start.drop_ttl0 = true;
1840         start.remove_inner_vlan = vlan_removal_en;
1841         start.clear_stats = clear_stats;
1842
1843         rc = edev->ops->vport_start(cdev, &start);
1844
1845         if (rc) {
1846                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1847                 goto out;
1848         }
1849
1850         DP_VERBOSE(edev, NETIF_MSG_IFUP,
1851                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1852                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1853
1854         for_each_queue(i) {
1855                 struct qede_fastpath *fp = &edev->fp_array[i];
1856                 dma_addr_t p_phys_table;
1857                 u32 page_cnt;
1858
1859                 if (fp->type & QEDE_FASTPATH_RX) {
1860                         struct qed_rxq_start_ret_params ret_params;
1861                         struct qede_rx_queue *rxq = fp->rxq;
1862                         __le16 *val;
1863
1864                         memset(&ret_params, 0, sizeof(ret_params));
1865                         memset(&q_params, 0, sizeof(q_params));
1866                         q_params.queue_id = rxq->rxq_id;
1867                         q_params.vport_id = 0;
1868                         q_params.p_sb = fp->sb_info;
1869                         q_params.sb_idx = RX_PI;
1870
1871                         p_phys_table =
1872                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1873                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1874
1875                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
1876                                                    rxq->rx_buf_size,
1877                                                    rxq->rx_bd_ring.p_phys_addr,
1878                                                    p_phys_table,
1879                                                    page_cnt, &ret_params);
1880                         if (rc) {
1881                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1882                                        rc);
1883                                 goto out;
1884                         }
1885
1886                         /* Use the return parameters */
1887                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
1888                         rxq->handle = ret_params.p_handle;
1889
1890                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1891                         rxq->hw_cons_ptr = val;
1892
1893                         qede_update_rx_prod(edev, rxq);
1894                 }
1895
1896                 if (fp->type & QEDE_FASTPATH_XDP) {
1897                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1898                         if (rc)
1899                                 goto out;
1900
1901                         fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1902                         if (IS_ERR(fp->rxq->xdp_prog)) {
1903                                 rc = PTR_ERR(fp->rxq->xdp_prog);
1904                                 fp->rxq->xdp_prog = NULL;
1905                                 goto out;
1906                         }
1907                 }
1908
1909                 if (fp->type & QEDE_FASTPATH_TX) {
1910                         rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1911                         if (rc)
1912                                 goto out;
1913                 }
1914         }
1915
1916         /* Prepare and send the vport enable */
1917         vport_update_params->vport_id = start.vport_id;
1918         vport_update_params->update_vport_active_flg = 1;
1919         vport_update_params->vport_active_flg = 1;
1920
1921         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1922             qed_info->tx_switching) {
1923                 vport_update_params->update_tx_switching_flg = 1;
1924                 vport_update_params->tx_switching_flg = 1;
1925         }
1926
1927         qede_fill_rss_params(edev, &vport_update_params->rss_params,
1928                              &vport_update_params->update_rss_flg);
1929
1930         rc = edev->ops->vport_update(cdev, vport_update_params);
1931         if (rc)
1932                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1933
1934 out:
1935         vfree(vport_update_params);
1936         return rc;
1937 }
1938
1939 enum qede_unload_mode {
1940         QEDE_UNLOAD_NORMAL,
1941 };
1942
1943 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1944                         bool is_locked)
1945 {
1946         struct qed_link_params link_params;
1947         int rc;
1948
1949         DP_INFO(edev, "Starting qede unload\n");
1950
1951         if (!is_locked)
1952                 __qede_lock(edev);
1953
1954         edev->state = QEDE_STATE_CLOSED;
1955
1956         qede_rdma_dev_event_close(edev);
1957
1958         /* Close OS Tx */
1959         netif_tx_disable(edev->ndev);
1960         netif_carrier_off(edev->ndev);
1961
1962         /* Reset the link */
1963         memset(&link_params, 0, sizeof(link_params));
1964         link_params.link_up = false;
1965         edev->ops->common->set_link(edev->cdev, &link_params);
1966         rc = qede_stop_queues(edev);
1967         if (rc) {
1968                 qede_sync_free_irqs(edev);
1969                 goto out;
1970         }
1971
1972         DP_INFO(edev, "Stopped Queues\n");
1973
1974         qede_vlan_mark_nonconfigured(edev);
1975         edev->ops->fastpath_stop(edev->cdev);
1976
1977         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1978                 qede_poll_for_freeing_arfs_filters(edev);
1979                 qede_free_arfs(edev);
1980         }
1981
1982         /* Release the interrupts */
1983         qede_sync_free_irqs(edev);
1984         edev->ops->common->set_fp_int(edev->cdev, 0);
1985
1986         qede_napi_disable_remove(edev);
1987
1988         qede_free_mem_load(edev);
1989         qede_free_fp_array(edev);
1990
1991 out:
1992         if (!is_locked)
1993                 __qede_unlock(edev);
1994         DP_INFO(edev, "Ending qede unload\n");
1995 }
1996
1997 enum qede_load_mode {
1998         QEDE_LOAD_NORMAL,
1999         QEDE_LOAD_RELOAD,
2000 };
2001
2002 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2003                      bool is_locked)
2004 {
2005         struct qed_link_params link_params;
2006         int rc;
2007
2008         DP_INFO(edev, "Starting qede load\n");
2009
2010         if (!is_locked)
2011                 __qede_lock(edev);
2012
2013         rc = qede_set_num_queues(edev);
2014         if (rc)
2015                 goto out;
2016
2017         rc = qede_alloc_fp_array(edev);
2018         if (rc)
2019                 goto out;
2020
2021         qede_init_fp(edev);
2022
2023         rc = qede_alloc_mem_load(edev);
2024         if (rc)
2025                 goto err1;
2026         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2027                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2028
2029         rc = qede_set_real_num_queues(edev);
2030         if (rc)
2031                 goto err2;
2032
2033         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2034                 rc = qede_alloc_arfs(edev);
2035                 if (rc)
2036                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2037         }
2038
2039         qede_napi_add_enable(edev);
2040         DP_INFO(edev, "Napi added and enabled\n");
2041
2042         rc = qede_setup_irqs(edev);
2043         if (rc)
2044                 goto err3;
2045         DP_INFO(edev, "Setup IRQs succeeded\n");
2046
2047         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2048         if (rc)
2049                 goto err4;
2050         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2051
2052         /* Program un-configured VLANs */
2053         qede_configure_vlan_filters(edev);
2054
2055         /* Ask for link-up using current configuration */
2056         memset(&link_params, 0, sizeof(link_params));
2057         link_params.link_up = true;
2058         edev->ops->common->set_link(edev->cdev, &link_params);
2059
2060         qede_rdma_dev_event_open(edev);
2061
2062         edev->state = QEDE_STATE_OPEN;
2063
2064         DP_INFO(edev, "Ending successfully qede load\n");
2065
2066         goto out;
2067 err4:
2068         qede_sync_free_irqs(edev);
2069         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2070 err3:
2071         qede_napi_disable_remove(edev);
2072 err2:
2073         qede_free_mem_load(edev);
2074 err1:
2075         edev->ops->common->set_fp_int(edev->cdev, 0);
2076         qede_free_fp_array(edev);
2077         edev->num_queues = 0;
2078         edev->fp_num_tx = 0;
2079         edev->fp_num_rx = 0;
2080 out:
2081         if (!is_locked)
2082                 __qede_unlock(edev);
2083
2084         return rc;
2085 }
2086
2087 /* 'func' should be able to run between unload and reload assuming interface
2088  * is actually running, or afterwards in case it's currently DOWN.
2089  */
2090 void qede_reload(struct qede_dev *edev,
2091                  struct qede_reload_args *args, bool is_locked)
2092 {
2093         if (!is_locked)
2094                 __qede_lock(edev);
2095
2096         /* Since qede_lock is held, internal state wouldn't change even
2097          * if netdev state would start transitioning. Check whether current
2098          * internal configuration indicates device is up, then reload.
2099          */
2100         if (edev->state == QEDE_STATE_OPEN) {
2101                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2102                 if (args)
2103                         args->func(edev, args);
2104                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2105
2106                 /* Since no one is going to do it for us, re-configure */
2107                 qede_config_rx_mode(edev->ndev);
2108         } else if (args) {
2109                 args->func(edev, args);
2110         }
2111
2112         if (!is_locked)
2113                 __qede_unlock(edev);
2114 }
2115
2116 /* called with rtnl_lock */
2117 static int qede_open(struct net_device *ndev)
2118 {
2119         struct qede_dev *edev = netdev_priv(ndev);
2120         int rc;
2121
2122         netif_carrier_off(ndev);
2123
2124         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2125
2126         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2127         if (rc)
2128                 return rc;
2129
2130         udp_tunnel_get_rx_info(ndev);
2131
2132         edev->ops->common->update_drv_state(edev->cdev, true);
2133
2134         return 0;
2135 }
2136
2137 static int qede_close(struct net_device *ndev)
2138 {
2139         struct qede_dev *edev = netdev_priv(ndev);
2140
2141         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2142
2143         edev->ops->common->update_drv_state(edev->cdev, false);
2144
2145         return 0;
2146 }
2147
2148 static void qede_link_update(void *dev, struct qed_link_output *link)
2149 {
2150         struct qede_dev *edev = dev;
2151
2152         if (!netif_running(edev->ndev)) {
2153                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2154                 return;
2155         }
2156
2157         if (link->link_up) {
2158                 if (!netif_carrier_ok(edev->ndev)) {
2159                         DP_NOTICE(edev, "Link is up\n");
2160                         netif_tx_start_all_queues(edev->ndev);
2161                         netif_carrier_on(edev->ndev);
2162                 }
2163         } else {
2164                 if (netif_carrier_ok(edev->ndev)) {
2165                         DP_NOTICE(edev, "Link is down\n");
2166                         netif_tx_disable(edev->ndev);
2167                         netif_carrier_off(edev->ndev);
2168                 }
2169         }
2170 }