OSDN Git Service

Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65
66 static char version[] =
67         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77 static const struct qed_eth_ops *qed_ops;
78
79 #define CHIP_NUM_57980S_40              0x1634
80 #define CHIP_NUM_57980S_10              0x1666
81 #define CHIP_NUM_57980S_MF              0x1636
82 #define CHIP_NUM_57980S_100             0x1644
83 #define CHIP_NUM_57980S_50              0x1654
84 #define CHIP_NUM_57980S_25              0x1656
85 #define CHIP_NUM_57980S_IOV             0x1664
86 #define CHIP_NUM_AH                     0x8070
87 #define CHIP_NUM_AH_IOV                 0x8090
88
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
99
100 #endif
101
102 enum qede_pci_private {
103         QEDE_PRIVATE_PF,
104         QEDE_PRIVATE_VF
105 };
106
107 static const struct pci_device_id qede_pci_tbl[] = {
108         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121         { 0 }
122 };
123
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128 #define TX_TIMEOUT              (5 * HZ)
129
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI  11
132
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_get_eth_tlv_data(void *edev, void *data);
137 static void qede_get_generic_tlv_data(void *edev,
138                                       struct qed_generic_tlvs *data);
139
140 /* The qede lock is used to protect driver state change and driver flows that
141  * are not reentrant.
142  */
143 void __qede_lock(struct qede_dev *edev)
144 {
145         mutex_lock(&edev->qede_lock);
146 }
147
148 void __qede_unlock(struct qede_dev *edev)
149 {
150         mutex_unlock(&edev->qede_lock);
151 }
152
153 #ifdef CONFIG_QED_SRIOV
154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
155                             __be16 vlan_proto)
156 {
157         struct qede_dev *edev = netdev_priv(ndev);
158
159         if (vlan > 4095) {
160                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
161                 return -EINVAL;
162         }
163
164         if (vlan_proto != htons(ETH_P_8021Q))
165                 return -EPROTONOSUPPORT;
166
167         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
168                    vlan, vf);
169
170         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
171 }
172
173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
174 {
175         struct qede_dev *edev = netdev_priv(ndev);
176
177         DP_VERBOSE(edev, QED_MSG_IOV,
178                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
179                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
180
181         if (!is_valid_ether_addr(mac)) {
182                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
183                 return -EINVAL;
184         }
185
186         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
187 }
188
189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
190 {
191         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
192         struct qed_dev_info *qed_info = &edev->dev_info.common;
193         struct qed_update_vport_params *vport_params;
194         int rc;
195
196         vport_params = vzalloc(sizeof(*vport_params));
197         if (!vport_params)
198                 return -ENOMEM;
199         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
200
201         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
202
203         /* Enable/Disable Tx switching for PF */
204         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
205             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
206                 vport_params->vport_id = 0;
207                 vport_params->update_tx_switching_flg = 1;
208                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
209                 edev->ops->vport_update(edev->cdev, vport_params);
210         }
211
212         vfree(vport_params);
213         return rc;
214 }
215 #endif
216
217 static struct pci_driver qede_pci_driver = {
218         .name = "qede",
219         .id_table = qede_pci_tbl,
220         .probe = qede_probe,
221         .remove = qede_remove,
222         .shutdown = qede_shutdown,
223 #ifdef CONFIG_QED_SRIOV
224         .sriov_configure = qede_sriov_configure,
225 #endif
226 };
227
228 static struct qed_eth_cb_ops qede_ll_ops = {
229         {
230 #ifdef CONFIG_RFS_ACCEL
231                 .arfs_filter_op = qede_arfs_filter_op,
232 #endif
233                 .link_update = qede_link_update,
234                 .get_generic_tlv_data = qede_get_generic_tlv_data,
235                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
236         },
237         .force_mac = qede_force_mac,
238         .ports_update = qede_udp_ports_update,
239 };
240
241 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
242                              void *ptr)
243 {
244         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
245         struct ethtool_drvinfo drvinfo;
246         struct qede_dev *edev;
247
248         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
249                 goto done;
250
251         /* Check whether this is a qede device */
252         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
253                 goto done;
254
255         memset(&drvinfo, 0, sizeof(drvinfo));
256         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
257         if (strcmp(drvinfo.driver, "qede"))
258                 goto done;
259         edev = netdev_priv(ndev);
260
261         switch (event) {
262         case NETDEV_CHANGENAME:
263                 /* Notify qed of the name change */
264                 if (!edev->ops || !edev->ops->common)
265                         goto done;
266                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
267                 break;
268         case NETDEV_CHANGEADDR:
269                 edev = netdev_priv(ndev);
270                 qede_rdma_event_changeaddr(edev);
271                 break;
272         }
273
274 done:
275         return NOTIFY_DONE;
276 }
277
278 static struct notifier_block qede_netdev_notifier = {
279         .notifier_call = qede_netdev_event,
280 };
281
282 static
283 int __init qede_init(void)
284 {
285         int ret;
286
287         pr_info("qede_init: %s\n", version);
288
289         qed_ops = qed_get_eth_ops();
290         if (!qed_ops) {
291                 pr_notice("Failed to get qed ethtool operations\n");
292                 return -EINVAL;
293         }
294
295         /* Must register notifier before pci ops, since we might miss
296          * interface rename after pci probe and netdev registration.
297          */
298         ret = register_netdevice_notifier(&qede_netdev_notifier);
299         if (ret) {
300                 pr_notice("Failed to register netdevice_notifier\n");
301                 qed_put_eth_ops();
302                 return -EINVAL;
303         }
304
305         ret = pci_register_driver(&qede_pci_driver);
306         if (ret) {
307                 pr_notice("Failed to register driver\n");
308                 unregister_netdevice_notifier(&qede_netdev_notifier);
309                 qed_put_eth_ops();
310                 return -EINVAL;
311         }
312
313         return 0;
314 }
315
316 static void __exit qede_cleanup(void)
317 {
318         if (debug & QED_LOG_INFO_MASK)
319                 pr_info("qede_cleanup called\n");
320
321         unregister_netdevice_notifier(&qede_netdev_notifier);
322         pci_unregister_driver(&qede_pci_driver);
323         qed_put_eth_ops();
324 }
325
326 module_init(qede_init);
327 module_exit(qede_cleanup);
328
329 static int qede_open(struct net_device *ndev);
330 static int qede_close(struct net_device *ndev);
331
332 void qede_fill_by_demand_stats(struct qede_dev *edev)
333 {
334         struct qede_stats_common *p_common = &edev->stats.common;
335         struct qed_eth_stats stats;
336
337         edev->ops->get_vport_stats(edev->cdev, &stats);
338
339         p_common->no_buff_discards = stats.common.no_buff_discards;
340         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
341         p_common->ttl0_discard = stats.common.ttl0_discard;
342         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
343         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
344         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
345         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
346         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
347         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
348         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
349         p_common->mac_filter_discards = stats.common.mac_filter_discards;
350         p_common->gft_filter_drop = stats.common.gft_filter_drop;
351
352         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
353         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
354         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
355         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
356         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
357         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
358         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
359         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
360         p_common->coalesced_events = stats.common.tpa_coalesced_events;
361         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
362         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
363         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
364
365         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
366         p_common->rx_65_to_127_byte_packets =
367             stats.common.rx_65_to_127_byte_packets;
368         p_common->rx_128_to_255_byte_packets =
369             stats.common.rx_128_to_255_byte_packets;
370         p_common->rx_256_to_511_byte_packets =
371             stats.common.rx_256_to_511_byte_packets;
372         p_common->rx_512_to_1023_byte_packets =
373             stats.common.rx_512_to_1023_byte_packets;
374         p_common->rx_1024_to_1518_byte_packets =
375             stats.common.rx_1024_to_1518_byte_packets;
376         p_common->rx_crc_errors = stats.common.rx_crc_errors;
377         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
378         p_common->rx_pause_frames = stats.common.rx_pause_frames;
379         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
380         p_common->rx_align_errors = stats.common.rx_align_errors;
381         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
382         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
383         p_common->rx_jabbers = stats.common.rx_jabbers;
384         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
385         p_common->rx_fragments = stats.common.rx_fragments;
386         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
387         p_common->tx_65_to_127_byte_packets =
388             stats.common.tx_65_to_127_byte_packets;
389         p_common->tx_128_to_255_byte_packets =
390             stats.common.tx_128_to_255_byte_packets;
391         p_common->tx_256_to_511_byte_packets =
392             stats.common.tx_256_to_511_byte_packets;
393         p_common->tx_512_to_1023_byte_packets =
394             stats.common.tx_512_to_1023_byte_packets;
395         p_common->tx_1024_to_1518_byte_packets =
396             stats.common.tx_1024_to_1518_byte_packets;
397         p_common->tx_pause_frames = stats.common.tx_pause_frames;
398         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
399         p_common->brb_truncates = stats.common.brb_truncates;
400         p_common->brb_discards = stats.common.brb_discards;
401         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
402         p_common->link_change_count = stats.common.link_change_count;
403
404         if (QEDE_IS_BB(edev)) {
405                 struct qede_stats_bb *p_bb = &edev->stats.bb;
406
407                 p_bb->rx_1519_to_1522_byte_packets =
408                     stats.bb.rx_1519_to_1522_byte_packets;
409                 p_bb->rx_1519_to_2047_byte_packets =
410                     stats.bb.rx_1519_to_2047_byte_packets;
411                 p_bb->rx_2048_to_4095_byte_packets =
412                     stats.bb.rx_2048_to_4095_byte_packets;
413                 p_bb->rx_4096_to_9216_byte_packets =
414                     stats.bb.rx_4096_to_9216_byte_packets;
415                 p_bb->rx_9217_to_16383_byte_packets =
416                     stats.bb.rx_9217_to_16383_byte_packets;
417                 p_bb->tx_1519_to_2047_byte_packets =
418                     stats.bb.tx_1519_to_2047_byte_packets;
419                 p_bb->tx_2048_to_4095_byte_packets =
420                     stats.bb.tx_2048_to_4095_byte_packets;
421                 p_bb->tx_4096_to_9216_byte_packets =
422                     stats.bb.tx_4096_to_9216_byte_packets;
423                 p_bb->tx_9217_to_16383_byte_packets =
424                     stats.bb.tx_9217_to_16383_byte_packets;
425                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
426                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
427         } else {
428                 struct qede_stats_ah *p_ah = &edev->stats.ah;
429
430                 p_ah->rx_1519_to_max_byte_packets =
431                     stats.ah.rx_1519_to_max_byte_packets;
432                 p_ah->tx_1519_to_max_byte_packets =
433                     stats.ah.tx_1519_to_max_byte_packets;
434         }
435 }
436
437 static void qede_get_stats64(struct net_device *dev,
438                              struct rtnl_link_stats64 *stats)
439 {
440         struct qede_dev *edev = netdev_priv(dev);
441         struct qede_stats_common *p_common;
442
443         qede_fill_by_demand_stats(edev);
444         p_common = &edev->stats.common;
445
446         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
447                             p_common->rx_bcast_pkts;
448         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
449                             p_common->tx_bcast_pkts;
450
451         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
452                           p_common->rx_bcast_bytes;
453         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
454                           p_common->tx_bcast_bytes;
455
456         stats->tx_errors = p_common->tx_err_drop_pkts;
457         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
458
459         stats->rx_fifo_errors = p_common->no_buff_discards;
460
461         if (QEDE_IS_BB(edev))
462                 stats->collisions = edev->stats.bb.tx_total_collisions;
463         stats->rx_crc_errors = p_common->rx_crc_errors;
464         stats->rx_frame_errors = p_common->rx_align_errors;
465 }
466
467 #ifdef CONFIG_QED_SRIOV
468 static int qede_get_vf_config(struct net_device *dev, int vfidx,
469                               struct ifla_vf_info *ivi)
470 {
471         struct qede_dev *edev = netdev_priv(dev);
472
473         if (!edev->ops)
474                 return -EINVAL;
475
476         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
477 }
478
479 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
480                             int min_tx_rate, int max_tx_rate)
481 {
482         struct qede_dev *edev = netdev_priv(dev);
483
484         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
485                                         max_tx_rate);
486 }
487
488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
489 {
490         struct qede_dev *edev = netdev_priv(dev);
491
492         if (!edev->ops)
493                 return -EINVAL;
494
495         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
496 }
497
498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
499                                   int link_state)
500 {
501         struct qede_dev *edev = netdev_priv(dev);
502
503         if (!edev->ops)
504                 return -EINVAL;
505
506         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
507 }
508
509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
510 {
511         struct qede_dev *edev = netdev_priv(dev);
512
513         if (!edev->ops)
514                 return -EINVAL;
515
516         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
517 }
518 #endif
519
520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
521 {
522         struct qede_dev *edev = netdev_priv(dev);
523
524         if (!netif_running(dev))
525                 return -EAGAIN;
526
527         switch (cmd) {
528         case SIOCSHWTSTAMP:
529                 return qede_ptp_hw_ts(edev, ifr);
530         default:
531                 DP_VERBOSE(edev, QED_MSG_DEBUG,
532                            "default IOCTL cmd 0x%x\n", cmd);
533                 return -EOPNOTSUPP;
534         }
535
536         return 0;
537 }
538
539 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
540 {
541         struct qede_dev *edev = netdev_priv(ndev);
542         int cos, count, offset;
543
544         if (num_tc > edev->dev_info.num_tc)
545                 return -EINVAL;
546
547         netdev_reset_tc(ndev);
548         netdev_set_num_tc(ndev, num_tc);
549
550         for_each_cos_in_txq(edev, cos) {
551                 count = QEDE_TSS_COUNT(edev);
552                 offset = cos * QEDE_TSS_COUNT(edev);
553                 netdev_set_tc_queue(ndev, cos, count, offset);
554         }
555
556         return 0;
557 }
558
559 static int
560 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
561                 __be16 proto)
562 {
563         switch (f->command) {
564         case TC_CLSFLOWER_REPLACE:
565                 return qede_add_tc_flower_fltr(edev, proto, f);
566         case TC_CLSFLOWER_DESTROY:
567                 return qede_delete_flow_filter(edev, f->cookie);
568         default:
569                 return -EOPNOTSUPP;
570         }
571 }
572
573 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
574                                   void *cb_priv)
575 {
576         struct tc_cls_flower_offload *f;
577         struct qede_dev *edev = cb_priv;
578
579         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
580                 return -EOPNOTSUPP;
581
582         switch (type) {
583         case TC_SETUP_CLSFLOWER:
584                 f = type_data;
585                 return qede_set_flower(edev, f, f->common.protocol);
586         default:
587                 return -EOPNOTSUPP;
588         }
589 }
590
591 static int qede_setup_tc_block(struct qede_dev *edev,
592                                struct tc_block_offload *f)
593 {
594         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
595                 return -EOPNOTSUPP;
596
597         switch (f->command) {
598         case TC_BLOCK_BIND:
599                 return tcf_block_cb_register(f->block,
600                                              qede_setup_tc_block_cb,
601                                              edev, edev, f->extack);
602         case TC_BLOCK_UNBIND:
603                 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
604                 return 0;
605         default:
606                 return -EOPNOTSUPP;
607         }
608 }
609
610 static int
611 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
612                       void *type_data)
613 {
614         struct qede_dev *edev = netdev_priv(dev);
615         struct tc_mqprio_qopt *mqprio;
616
617         switch (type) {
618         case TC_SETUP_BLOCK:
619                 return qede_setup_tc_block(edev, type_data);
620         case TC_SETUP_QDISC_MQPRIO:
621                 mqprio = type_data;
622
623                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
624                 return qede_setup_tc(dev, mqprio->num_tc);
625         default:
626                 return -EOPNOTSUPP;
627         }
628 }
629
630 static const struct net_device_ops qede_netdev_ops = {
631         .ndo_open = qede_open,
632         .ndo_stop = qede_close,
633         .ndo_start_xmit = qede_start_xmit,
634         .ndo_select_queue = qede_select_queue,
635         .ndo_set_rx_mode = qede_set_rx_mode,
636         .ndo_set_mac_address = qede_set_mac_addr,
637         .ndo_validate_addr = eth_validate_addr,
638         .ndo_change_mtu = qede_change_mtu,
639         .ndo_do_ioctl = qede_ioctl,
640 #ifdef CONFIG_QED_SRIOV
641         .ndo_set_vf_mac = qede_set_vf_mac,
642         .ndo_set_vf_vlan = qede_set_vf_vlan,
643         .ndo_set_vf_trust = qede_set_vf_trust,
644 #endif
645         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
646         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
647         .ndo_fix_features = qede_fix_features,
648         .ndo_set_features = qede_set_features,
649         .ndo_get_stats64 = qede_get_stats64,
650 #ifdef CONFIG_QED_SRIOV
651         .ndo_set_vf_link_state = qede_set_vf_link_state,
652         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
653         .ndo_get_vf_config = qede_get_vf_config,
654         .ndo_set_vf_rate = qede_set_vf_rate,
655 #endif
656         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
657         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
658         .ndo_features_check = qede_features_check,
659         .ndo_bpf = qede_xdp,
660 #ifdef CONFIG_RFS_ACCEL
661         .ndo_rx_flow_steer = qede_rx_flow_steer,
662 #endif
663         .ndo_setup_tc = qede_setup_tc_offload,
664 };
665
666 static const struct net_device_ops qede_netdev_vf_ops = {
667         .ndo_open = qede_open,
668         .ndo_stop = qede_close,
669         .ndo_start_xmit = qede_start_xmit,
670         .ndo_select_queue = qede_select_queue,
671         .ndo_set_rx_mode = qede_set_rx_mode,
672         .ndo_set_mac_address = qede_set_mac_addr,
673         .ndo_validate_addr = eth_validate_addr,
674         .ndo_change_mtu = qede_change_mtu,
675         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
676         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
677         .ndo_fix_features = qede_fix_features,
678         .ndo_set_features = qede_set_features,
679         .ndo_get_stats64 = qede_get_stats64,
680         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
681         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
682         .ndo_features_check = qede_features_check,
683 };
684
685 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
686         .ndo_open = qede_open,
687         .ndo_stop = qede_close,
688         .ndo_start_xmit = qede_start_xmit,
689         .ndo_select_queue = qede_select_queue,
690         .ndo_set_rx_mode = qede_set_rx_mode,
691         .ndo_set_mac_address = qede_set_mac_addr,
692         .ndo_validate_addr = eth_validate_addr,
693         .ndo_change_mtu = qede_change_mtu,
694         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
695         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
696         .ndo_fix_features = qede_fix_features,
697         .ndo_set_features = qede_set_features,
698         .ndo_get_stats64 = qede_get_stats64,
699         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
700         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
701         .ndo_features_check = qede_features_check,
702         .ndo_bpf = qede_xdp,
703 };
704
705 /* -------------------------------------------------------------------------
706  * START OF PROBE / REMOVE
707  * -------------------------------------------------------------------------
708  */
709
710 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
711                                             struct pci_dev *pdev,
712                                             struct qed_dev_eth_info *info,
713                                             u32 dp_module, u8 dp_level)
714 {
715         struct net_device *ndev;
716         struct qede_dev *edev;
717
718         ndev = alloc_etherdev_mqs(sizeof(*edev),
719                                   info->num_queues * info->num_tc,
720                                   info->num_queues);
721         if (!ndev) {
722                 pr_err("etherdev allocation failed\n");
723                 return NULL;
724         }
725
726         edev = netdev_priv(ndev);
727         edev->ndev = ndev;
728         edev->cdev = cdev;
729         edev->pdev = pdev;
730         edev->dp_module = dp_module;
731         edev->dp_level = dp_level;
732         edev->ops = qed_ops;
733         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
734         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
735
736         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
737                 info->num_queues, info->num_queues);
738
739         SET_NETDEV_DEV(ndev, &pdev->dev);
740
741         memset(&edev->stats, 0, sizeof(edev->stats));
742         memcpy(&edev->dev_info, info, sizeof(*info));
743
744         /* As ethtool doesn't have the ability to show WoL behavior as
745          * 'default', if device supports it declare it's enabled.
746          */
747         if (edev->dev_info.common.wol_support)
748                 edev->wol_enabled = true;
749
750         INIT_LIST_HEAD(&edev->vlan_list);
751
752         return edev;
753 }
754
755 static void qede_init_ndev(struct qede_dev *edev)
756 {
757         struct net_device *ndev = edev->ndev;
758         struct pci_dev *pdev = edev->pdev;
759         bool udp_tunnel_enable = false;
760         netdev_features_t hw_features;
761
762         pci_set_drvdata(pdev, ndev);
763
764         ndev->mem_start = edev->dev_info.common.pci_mem_start;
765         ndev->base_addr = ndev->mem_start;
766         ndev->mem_end = edev->dev_info.common.pci_mem_end;
767         ndev->irq = edev->dev_info.common.pci_irq;
768
769         ndev->watchdog_timeo = TX_TIMEOUT;
770
771         if (IS_VF(edev)) {
772                 if (edev->dev_info.xdp_supported)
773                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
774                 else
775                         ndev->netdev_ops = &qede_netdev_vf_ops;
776         } else {
777                 ndev->netdev_ops = &qede_netdev_ops;
778         }
779
780         qede_set_ethtool_ops(ndev);
781
782         ndev->priv_flags |= IFF_UNICAST_FLT;
783
784         /* user-changeble features */
785         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
786                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
787                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
788
789         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
790                 hw_features |= NETIF_F_NTUPLE;
791
792         if (edev->dev_info.common.vxlan_enable ||
793             edev->dev_info.common.geneve_enable)
794                 udp_tunnel_enable = true;
795
796         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
797                 hw_features |= NETIF_F_TSO_ECN;
798                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
799                                         NETIF_F_SG | NETIF_F_TSO |
800                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
801                                         NETIF_F_RXCSUM;
802         }
803
804         if (udp_tunnel_enable) {
805                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
806                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
807                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
808                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
809         }
810
811         if (edev->dev_info.common.gre_enable) {
812                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
813                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
814                                           NETIF_F_GSO_GRE_CSUM);
815         }
816
817         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
818                               NETIF_F_HIGHDMA;
819         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
820                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
821                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
822
823         ndev->hw_features = hw_features;
824
825         /* MTU range: 46 - 9600 */
826         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
827         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
828
829         /* Set network device HW mac */
830         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
831
832         ndev->mtu = edev->dev_info.common.mtu;
833 }
834
835 /* This function converts from 32b param to two params of level and module
836  * Input 32b decoding:
837  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
838  * 'happy' flow, e.g. memory allocation failed.
839  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
840  * and provide important parameters.
841  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
842  * module. VERBOSE prints are for tracking the specific flow in low level.
843  *
844  * Notice that the level should be that of the lowest required logs.
845  */
846 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
847 {
848         *p_dp_level = QED_LEVEL_NOTICE;
849         *p_dp_module = 0;
850
851         if (debug & QED_LOG_VERBOSE_MASK) {
852                 *p_dp_level = QED_LEVEL_VERBOSE;
853                 *p_dp_module = (debug & 0x3FFFFFFF);
854         } else if (debug & QED_LOG_INFO_MASK) {
855                 *p_dp_level = QED_LEVEL_INFO;
856         } else if (debug & QED_LOG_NOTICE_MASK) {
857                 *p_dp_level = QED_LEVEL_NOTICE;
858         }
859 }
860
861 static void qede_free_fp_array(struct qede_dev *edev)
862 {
863         if (edev->fp_array) {
864                 struct qede_fastpath *fp;
865                 int i;
866
867                 for_each_queue(i) {
868                         fp = &edev->fp_array[i];
869
870                         kfree(fp->sb_info);
871                         /* Handle mem alloc failure case where qede_init_fp
872                          * didn't register xdp_rxq_info yet.
873                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
874                          */
875                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
876                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
877                         kfree(fp->rxq);
878                         kfree(fp->xdp_tx);
879                         kfree(fp->txq);
880                 }
881                 kfree(edev->fp_array);
882         }
883
884         edev->num_queues = 0;
885         edev->fp_num_tx = 0;
886         edev->fp_num_rx = 0;
887 }
888
889 static int qede_alloc_fp_array(struct qede_dev *edev)
890 {
891         u8 fp_combined, fp_rx = edev->fp_num_rx;
892         struct qede_fastpath *fp;
893         int i;
894
895         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
896                                  sizeof(*edev->fp_array), GFP_KERNEL);
897         if (!edev->fp_array) {
898                 DP_NOTICE(edev, "fp array allocation failed\n");
899                 goto err;
900         }
901
902         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
903
904         /* Allocate the FP elements for Rx queues followed by combined and then
905          * the Tx. This ordering should be maintained so that the respective
906          * queues (Rx or Tx) will be together in the fastpath array and the
907          * associated ids will be sequential.
908          */
909         for_each_queue(i) {
910                 fp = &edev->fp_array[i];
911
912                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
913                 if (!fp->sb_info) {
914                         DP_NOTICE(edev, "sb info struct allocation failed\n");
915                         goto err;
916                 }
917
918                 if (fp_rx) {
919                         fp->type = QEDE_FASTPATH_RX;
920                         fp_rx--;
921                 } else if (fp_combined) {
922                         fp->type = QEDE_FASTPATH_COMBINED;
923                         fp_combined--;
924                 } else {
925                         fp->type = QEDE_FASTPATH_TX;
926                 }
927
928                 if (fp->type & QEDE_FASTPATH_TX) {
929                         fp->txq = kcalloc(edev->dev_info.num_tc,
930                                           sizeof(*fp->txq), GFP_KERNEL);
931                         if (!fp->txq)
932                                 goto err;
933                 }
934
935                 if (fp->type & QEDE_FASTPATH_RX) {
936                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
937                         if (!fp->rxq)
938                                 goto err;
939
940                         if (edev->xdp_prog) {
941                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
942                                                      GFP_KERNEL);
943                                 if (!fp->xdp_tx)
944                                         goto err;
945                                 fp->type |= QEDE_FASTPATH_XDP;
946                         }
947                 }
948         }
949
950         return 0;
951 err:
952         qede_free_fp_array(edev);
953         return -ENOMEM;
954 }
955
956 static void qede_sp_task(struct work_struct *work)
957 {
958         struct qede_dev *edev = container_of(work, struct qede_dev,
959                                              sp_task.work);
960
961         __qede_lock(edev);
962
963         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
964                 if (edev->state == QEDE_STATE_OPEN)
965                         qede_config_rx_mode(edev->ndev);
966
967 #ifdef CONFIG_RFS_ACCEL
968         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
969                 if (edev->state == QEDE_STATE_OPEN)
970                         qede_process_arfs_filters(edev, false);
971         }
972 #endif
973         __qede_unlock(edev);
974 }
975
976 static void qede_update_pf_params(struct qed_dev *cdev)
977 {
978         struct qed_pf_params pf_params;
979         u16 num_cons;
980
981         /* 64 rx + 64 tx + 64 XDP */
982         memset(&pf_params, 0, sizeof(struct qed_pf_params));
983
984         /* 1 rx + 1 xdp + max tx cos */
985         num_cons = QED_MIN_L2_CONS;
986
987         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
988
989         /* Same for VFs - make sure they'll have sufficient connections
990          * to support XDP Tx queues.
991          */
992         pf_params.eth_pf_params.num_vf_cons = 48;
993
994         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
995         qed_ops->common->update_pf_params(cdev, &pf_params);
996 }
997
998 #define QEDE_FW_VER_STR_SIZE    80
999
1000 static void qede_log_probe(struct qede_dev *edev)
1001 {
1002         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1003         u8 buf[QEDE_FW_VER_STR_SIZE];
1004         size_t left_size;
1005
1006         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1007                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1008                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1009                  p_dev_info->fw_eng,
1010                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1011                  QED_MFW_VERSION_3_OFFSET,
1012                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1013                  QED_MFW_VERSION_2_OFFSET,
1014                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1015                  QED_MFW_VERSION_1_OFFSET,
1016                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1017                  QED_MFW_VERSION_0_OFFSET);
1018
1019         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1020         if (p_dev_info->mbi_version && left_size)
1021                 snprintf(buf + strlen(buf), left_size,
1022                          " [MBI %d.%d.%d]",
1023                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1024                          QED_MBI_VERSION_2_OFFSET,
1025                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1026                          QED_MBI_VERSION_1_OFFSET,
1027                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1028                          QED_MBI_VERSION_0_OFFSET);
1029
1030         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1031                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1032                 buf, edev->ndev->name);
1033 }
1034
1035 enum qede_probe_mode {
1036         QEDE_PROBE_NORMAL,
1037 };
1038
1039 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1040                         bool is_vf, enum qede_probe_mode mode)
1041 {
1042         struct qed_probe_params probe_params;
1043         struct qed_slowpath_params sp_params;
1044         struct qed_dev_eth_info dev_info;
1045         struct qede_dev *edev;
1046         struct qed_dev *cdev;
1047         int rc;
1048
1049         if (unlikely(dp_level & QED_LEVEL_INFO))
1050                 pr_notice("Starting qede probe\n");
1051
1052         memset(&probe_params, 0, sizeof(probe_params));
1053         probe_params.protocol = QED_PROTOCOL_ETH;
1054         probe_params.dp_module = dp_module;
1055         probe_params.dp_level = dp_level;
1056         probe_params.is_vf = is_vf;
1057         cdev = qed_ops->common->probe(pdev, &probe_params);
1058         if (!cdev) {
1059                 rc = -ENODEV;
1060                 goto err0;
1061         }
1062
1063         qede_update_pf_params(cdev);
1064
1065         /* Start the Slowpath-process */
1066         memset(&sp_params, 0, sizeof(sp_params));
1067         sp_params.int_mode = QED_INT_MODE_MSIX;
1068         sp_params.drv_major = QEDE_MAJOR_VERSION;
1069         sp_params.drv_minor = QEDE_MINOR_VERSION;
1070         sp_params.drv_rev = QEDE_REVISION_VERSION;
1071         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1072         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1073         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1074         if (rc) {
1075                 pr_notice("Cannot start slowpath\n");
1076                 goto err1;
1077         }
1078
1079         /* Learn information crucial for qede to progress */
1080         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1081         if (rc)
1082                 goto err2;
1083
1084         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1085                                    dp_level);
1086         if (!edev) {
1087                 rc = -ENOMEM;
1088                 goto err2;
1089         }
1090
1091         if (is_vf)
1092                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1093
1094         qede_init_ndev(edev);
1095
1096         rc = qede_rdma_dev_add(edev);
1097         if (rc)
1098                 goto err3;
1099
1100         /* Prepare the lock prior to the registration of the netdev,
1101          * as once it's registered we might reach flows requiring it
1102          * [it's even possible to reach a flow needing it directly
1103          * from there, although it's unlikely].
1104          */
1105         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1106         mutex_init(&edev->qede_lock);
1107         rc = register_netdev(edev->ndev);
1108         if (rc) {
1109                 DP_NOTICE(edev, "Cannot register net-device\n");
1110                 goto err4;
1111         }
1112
1113         edev->ops->common->set_name(cdev, edev->ndev->name);
1114
1115         /* PTP not supported on VFs */
1116         if (!is_vf)
1117                 qede_ptp_enable(edev, true);
1118
1119         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1120
1121 #ifdef CONFIG_DCB
1122         if (!IS_VF(edev))
1123                 qede_set_dcbnl_ops(edev->ndev);
1124 #endif
1125
1126         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1127
1128         qede_log_probe(edev);
1129         return 0;
1130
1131 err4:
1132         qede_rdma_dev_remove(edev);
1133 err3:
1134         free_netdev(edev->ndev);
1135 err2:
1136         qed_ops->common->slowpath_stop(cdev);
1137 err1:
1138         qed_ops->common->remove(cdev);
1139 err0:
1140         return rc;
1141 }
1142
1143 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1144 {
1145         bool is_vf = false;
1146         u32 dp_module = 0;
1147         u8 dp_level = 0;
1148
1149         switch ((enum qede_pci_private)id->driver_data) {
1150         case QEDE_PRIVATE_VF:
1151                 if (debug & QED_LOG_VERBOSE_MASK)
1152                         dev_err(&pdev->dev, "Probing a VF\n");
1153                 is_vf = true;
1154                 break;
1155         default:
1156                 if (debug & QED_LOG_VERBOSE_MASK)
1157                         dev_err(&pdev->dev, "Probing a PF\n");
1158         }
1159
1160         qede_config_debug(debug, &dp_module, &dp_level);
1161
1162         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1163                             QEDE_PROBE_NORMAL);
1164 }
1165
1166 enum qede_remove_mode {
1167         QEDE_REMOVE_NORMAL,
1168 };
1169
1170 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1171 {
1172         struct net_device *ndev = pci_get_drvdata(pdev);
1173         struct qede_dev *edev = netdev_priv(ndev);
1174         struct qed_dev *cdev = edev->cdev;
1175
1176         DP_INFO(edev, "Starting qede_remove\n");
1177
1178         qede_rdma_dev_remove(edev);
1179         unregister_netdev(ndev);
1180         cancel_delayed_work_sync(&edev->sp_task);
1181
1182         qede_ptp_disable(edev);
1183
1184         edev->ops->common->set_power_state(cdev, PCI_D0);
1185
1186         pci_set_drvdata(pdev, NULL);
1187
1188         /* Use global ops since we've freed edev */
1189         qed_ops->common->slowpath_stop(cdev);
1190         if (system_state == SYSTEM_POWER_OFF)
1191                 return;
1192         qed_ops->common->remove(cdev);
1193
1194         /* Since this can happen out-of-sync with other flows,
1195          * don't release the netdevice until after slowpath stop
1196          * has been called to guarantee various other contexts
1197          * [e.g., QED register callbacks] won't break anything when
1198          * accessing the netdevice.
1199          */
1200          free_netdev(ndev);
1201
1202         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1203 }
1204
1205 static void qede_remove(struct pci_dev *pdev)
1206 {
1207         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1208 }
1209
1210 static void qede_shutdown(struct pci_dev *pdev)
1211 {
1212         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1213 }
1214
1215 /* -------------------------------------------------------------------------
1216  * START OF LOAD / UNLOAD
1217  * -------------------------------------------------------------------------
1218  */
1219
1220 static int qede_set_num_queues(struct qede_dev *edev)
1221 {
1222         int rc;
1223         u16 rss_num;
1224
1225         /* Setup queues according to possible resources*/
1226         if (edev->req_queues)
1227                 rss_num = edev->req_queues;
1228         else
1229                 rss_num = netif_get_num_default_rss_queues() *
1230                           edev->dev_info.common.num_hwfns;
1231
1232         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1233
1234         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1235         if (rc > 0) {
1236                 /* Managed to request interrupts for our queues */
1237                 edev->num_queues = rc;
1238                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1239                         QEDE_QUEUE_CNT(edev), rss_num);
1240                 rc = 0;
1241         }
1242
1243         edev->fp_num_tx = edev->req_num_tx;
1244         edev->fp_num_rx = edev->req_num_rx;
1245
1246         return rc;
1247 }
1248
1249 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1250                              u16 sb_id)
1251 {
1252         if (sb_info->sb_virt) {
1253                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1254                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1255                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1256                 memset(sb_info, 0, sizeof(*sb_info));
1257         }
1258 }
1259
1260 /* This function allocates fast-path status block memory */
1261 static int qede_alloc_mem_sb(struct qede_dev *edev,
1262                              struct qed_sb_info *sb_info, u16 sb_id)
1263 {
1264         struct status_block_e4 *sb_virt;
1265         dma_addr_t sb_phys;
1266         int rc;
1267
1268         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1269                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1270         if (!sb_virt) {
1271                 DP_ERR(edev, "Status block allocation failed\n");
1272                 return -ENOMEM;
1273         }
1274
1275         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1276                                         sb_virt, sb_phys, sb_id,
1277                                         QED_SB_TYPE_L2_QUEUE);
1278         if (rc) {
1279                 DP_ERR(edev, "Status block initialization failed\n");
1280                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1281                                   sb_virt, sb_phys);
1282                 return rc;
1283         }
1284
1285         return 0;
1286 }
1287
1288 static void qede_free_rx_buffers(struct qede_dev *edev,
1289                                  struct qede_rx_queue *rxq)
1290 {
1291         u16 i;
1292
1293         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1294                 struct sw_rx_data *rx_buf;
1295                 struct page *data;
1296
1297                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1298                 data = rx_buf->data;
1299
1300                 dma_unmap_page(&edev->pdev->dev,
1301                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1302
1303                 rx_buf->data = NULL;
1304                 __free_page(data);
1305         }
1306 }
1307
1308 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1309 {
1310         /* Free rx buffers */
1311         qede_free_rx_buffers(edev, rxq);
1312
1313         /* Free the parallel SW ring */
1314         kfree(rxq->sw_rx_ring);
1315
1316         /* Free the real RQ ring used by FW */
1317         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1318         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1319 }
1320
1321 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1322 {
1323         int i;
1324
1325         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1326                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1327
1328                 tpa_info->state = QEDE_AGG_STATE_NONE;
1329         }
1330 }
1331
1332 /* This function allocates all memory needed per Rx queue */
1333 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1334 {
1335         int i, rc, size;
1336
1337         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1338
1339         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1340
1341         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1342         size = rxq->rx_headroom +
1343                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1344
1345         /* Make sure that the headroom and  payload fit in a single page */
1346         if (rxq->rx_buf_size + size > PAGE_SIZE)
1347                 rxq->rx_buf_size = PAGE_SIZE - size;
1348
1349         /* Segment size to spilt a page in multiple equal parts ,
1350          * unless XDP is used in which case we'd use the entire page.
1351          */
1352         if (!edev->xdp_prog) {
1353                 size = size + rxq->rx_buf_size;
1354                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1355         } else {
1356                 rxq->rx_buf_seg_size = PAGE_SIZE;
1357         }
1358
1359         /* Allocate the parallel driver ring for Rx buffers */
1360         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1361         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1362         if (!rxq->sw_rx_ring) {
1363                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1364                 rc = -ENOMEM;
1365                 goto err;
1366         }
1367
1368         /* Allocate FW Rx ring  */
1369         rc = edev->ops->common->chain_alloc(edev->cdev,
1370                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1371                                             QED_CHAIN_MODE_NEXT_PTR,
1372                                             QED_CHAIN_CNT_TYPE_U16,
1373                                             RX_RING_SIZE,
1374                                             sizeof(struct eth_rx_bd),
1375                                             &rxq->rx_bd_ring, NULL);
1376         if (rc)
1377                 goto err;
1378
1379         /* Allocate FW completion ring */
1380         rc = edev->ops->common->chain_alloc(edev->cdev,
1381                                             QED_CHAIN_USE_TO_CONSUME,
1382                                             QED_CHAIN_MODE_PBL,
1383                                             QED_CHAIN_CNT_TYPE_U16,
1384                                             RX_RING_SIZE,
1385                                             sizeof(union eth_rx_cqe),
1386                                             &rxq->rx_comp_ring, NULL);
1387         if (rc)
1388                 goto err;
1389
1390         /* Allocate buffers for the Rx ring */
1391         rxq->filled_buffers = 0;
1392         for (i = 0; i < rxq->num_rx_buffers; i++) {
1393                 rc = qede_alloc_rx_buffer(rxq, false);
1394                 if (rc) {
1395                         DP_ERR(edev,
1396                                "Rx buffers allocation failed at index %d\n", i);
1397                         goto err;
1398                 }
1399         }
1400
1401         if (!edev->gro_disable)
1402                 qede_set_tpa_param(rxq);
1403 err:
1404         return rc;
1405 }
1406
1407 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1408 {
1409         /* Free the parallel SW ring */
1410         if (txq->is_xdp)
1411                 kfree(txq->sw_tx_ring.xdp);
1412         else
1413                 kfree(txq->sw_tx_ring.skbs);
1414
1415         /* Free the real RQ ring used by FW */
1416         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1417 }
1418
1419 /* This function allocates all memory needed per Tx queue */
1420 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1421 {
1422         union eth_tx_bd_types *p_virt;
1423         int size, rc;
1424
1425         txq->num_tx_buffers = edev->q_num_tx_buffers;
1426
1427         /* Allocate the parallel driver ring for Tx buffers */
1428         if (txq->is_xdp) {
1429                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1430                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1431                 if (!txq->sw_tx_ring.xdp)
1432                         goto err;
1433         } else {
1434                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1435                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1436                 if (!txq->sw_tx_ring.skbs)
1437                         goto err;
1438         }
1439
1440         rc = edev->ops->common->chain_alloc(edev->cdev,
1441                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1442                                             QED_CHAIN_MODE_PBL,
1443                                             QED_CHAIN_CNT_TYPE_U16,
1444                                             txq->num_tx_buffers,
1445                                             sizeof(*p_virt),
1446                                             &txq->tx_pbl, NULL);
1447         if (rc)
1448                 goto err;
1449
1450         return 0;
1451
1452 err:
1453         qede_free_mem_txq(edev, txq);
1454         return -ENOMEM;
1455 }
1456
1457 /* This function frees all memory of a single fp */
1458 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1459 {
1460         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1461
1462         if (fp->type & QEDE_FASTPATH_RX)
1463                 qede_free_mem_rxq(edev, fp->rxq);
1464
1465         if (fp->type & QEDE_FASTPATH_XDP)
1466                 qede_free_mem_txq(edev, fp->xdp_tx);
1467
1468         if (fp->type & QEDE_FASTPATH_TX) {
1469                 int cos;
1470
1471                 for_each_cos_in_txq(edev, cos)
1472                         qede_free_mem_txq(edev, &fp->txq[cos]);
1473         }
1474 }
1475
1476 /* This function allocates all memory needed for a single fp (i.e. an entity
1477  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1478  */
1479 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1480 {
1481         int rc = 0;
1482
1483         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1484         if (rc)
1485                 goto out;
1486
1487         if (fp->type & QEDE_FASTPATH_RX) {
1488                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1489                 if (rc)
1490                         goto out;
1491         }
1492
1493         if (fp->type & QEDE_FASTPATH_XDP) {
1494                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1495                 if (rc)
1496                         goto out;
1497         }
1498
1499         if (fp->type & QEDE_FASTPATH_TX) {
1500                 int cos;
1501
1502                 for_each_cos_in_txq(edev, cos) {
1503                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1504                         if (rc)
1505                                 goto out;
1506                 }
1507         }
1508
1509 out:
1510         return rc;
1511 }
1512
1513 static void qede_free_mem_load(struct qede_dev *edev)
1514 {
1515         int i;
1516
1517         for_each_queue(i) {
1518                 struct qede_fastpath *fp = &edev->fp_array[i];
1519
1520                 qede_free_mem_fp(edev, fp);
1521         }
1522 }
1523
1524 /* This function allocates all qede memory at NIC load. */
1525 static int qede_alloc_mem_load(struct qede_dev *edev)
1526 {
1527         int rc = 0, queue_id;
1528
1529         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1530                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1531
1532                 rc = qede_alloc_mem_fp(edev, fp);
1533                 if (rc) {
1534                         DP_ERR(edev,
1535                                "Failed to allocate memory for fastpath - rss id = %d\n",
1536                                queue_id);
1537                         qede_free_mem_load(edev);
1538                         return rc;
1539                 }
1540         }
1541
1542         return 0;
1543 }
1544
1545 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1546 static void qede_init_fp(struct qede_dev *edev)
1547 {
1548         int queue_id, rxq_index = 0, txq_index = 0;
1549         struct qede_fastpath *fp;
1550
1551         for_each_queue(queue_id) {
1552                 fp = &edev->fp_array[queue_id];
1553
1554                 fp->edev = edev;
1555                 fp->id = queue_id;
1556
1557                 if (fp->type & QEDE_FASTPATH_XDP) {
1558                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1559                                                                 rxq_index);
1560                         fp->xdp_tx->is_xdp = 1;
1561                 }
1562
1563                 if (fp->type & QEDE_FASTPATH_RX) {
1564                         fp->rxq->rxq_id = rxq_index++;
1565
1566                         /* Determine how to map buffers for this queue */
1567                         if (fp->type & QEDE_FASTPATH_XDP)
1568                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1569                         else
1570                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1571                         fp->rxq->dev = &edev->pdev->dev;
1572
1573                         /* Driver have no error path from here */
1574                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1575                                                  fp->rxq->rxq_id) < 0);
1576                 }
1577
1578                 if (fp->type & QEDE_FASTPATH_TX) {
1579                         int cos;
1580
1581                         for_each_cos_in_txq(edev, cos) {
1582                                 struct qede_tx_queue *txq = &fp->txq[cos];
1583                                 u16 ndev_tx_id;
1584
1585                                 txq->cos = cos;
1586                                 txq->index = txq_index;
1587                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1588                                 txq->ndev_txq_id = ndev_tx_id;
1589
1590                                 if (edev->dev_info.is_legacy)
1591                                         txq->is_legacy = 1;
1592                                 txq->dev = &edev->pdev->dev;
1593                         }
1594
1595                         txq_index++;
1596                 }
1597
1598                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1599                          edev->ndev->name, queue_id);
1600         }
1601
1602         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1603 }
1604
1605 static int qede_set_real_num_queues(struct qede_dev *edev)
1606 {
1607         int rc = 0;
1608
1609         rc = netif_set_real_num_tx_queues(edev->ndev,
1610                                           QEDE_TSS_COUNT(edev) *
1611                                           edev->dev_info.num_tc);
1612         if (rc) {
1613                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1614                 return rc;
1615         }
1616
1617         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1618         if (rc) {
1619                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1620                 return rc;
1621         }
1622
1623         return 0;
1624 }
1625
1626 static void qede_napi_disable_remove(struct qede_dev *edev)
1627 {
1628         int i;
1629
1630         for_each_queue(i) {
1631                 napi_disable(&edev->fp_array[i].napi);
1632
1633                 netif_napi_del(&edev->fp_array[i].napi);
1634         }
1635 }
1636
1637 static void qede_napi_add_enable(struct qede_dev *edev)
1638 {
1639         int i;
1640
1641         /* Add NAPI objects */
1642         for_each_queue(i) {
1643                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1644                                qede_poll, NAPI_POLL_WEIGHT);
1645                 napi_enable(&edev->fp_array[i].napi);
1646         }
1647 }
1648
1649 static void qede_sync_free_irqs(struct qede_dev *edev)
1650 {
1651         int i;
1652
1653         for (i = 0; i < edev->int_info.used_cnt; i++) {
1654                 if (edev->int_info.msix_cnt) {
1655                         synchronize_irq(edev->int_info.msix[i].vector);
1656                         free_irq(edev->int_info.msix[i].vector,
1657                                  &edev->fp_array[i]);
1658                 } else {
1659                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1660                 }
1661         }
1662
1663         edev->int_info.used_cnt = 0;
1664 }
1665
1666 static int qede_req_msix_irqs(struct qede_dev *edev)
1667 {
1668         int i, rc;
1669
1670         /* Sanitize number of interrupts == number of prepared RSS queues */
1671         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1672                 DP_ERR(edev,
1673                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1674                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1675                 return -EINVAL;
1676         }
1677
1678         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1679 #ifdef CONFIG_RFS_ACCEL
1680                 struct qede_fastpath *fp = &edev->fp_array[i];
1681
1682                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1683                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1684                                               edev->int_info.msix[i].vector);
1685                         if (rc) {
1686                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1687                                 qede_free_arfs(edev);
1688                         }
1689                 }
1690 #endif
1691                 rc = request_irq(edev->int_info.msix[i].vector,
1692                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1693                                  &edev->fp_array[i]);
1694                 if (rc) {
1695                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1696                         qede_sync_free_irqs(edev);
1697                         return rc;
1698                 }
1699                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1700                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1701                            edev->fp_array[i].name, i,
1702                            &edev->fp_array[i]);
1703                 edev->int_info.used_cnt++;
1704         }
1705
1706         return 0;
1707 }
1708
1709 static void qede_simd_fp_handler(void *cookie)
1710 {
1711         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1712
1713         napi_schedule_irqoff(&fp->napi);
1714 }
1715
1716 static int qede_setup_irqs(struct qede_dev *edev)
1717 {
1718         int i, rc = 0;
1719
1720         /* Learn Interrupt configuration */
1721         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1722         if (rc)
1723                 return rc;
1724
1725         if (edev->int_info.msix_cnt) {
1726                 rc = qede_req_msix_irqs(edev);
1727                 if (rc)
1728                         return rc;
1729                 edev->ndev->irq = edev->int_info.msix[0].vector;
1730         } else {
1731                 const struct qed_common_ops *ops;
1732
1733                 /* qed should learn receive the RSS ids and callbacks */
1734                 ops = edev->ops->common;
1735                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1736                         ops->simd_handler_config(edev->cdev,
1737                                                  &edev->fp_array[i], i,
1738                                                  qede_simd_fp_handler);
1739                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1740         }
1741         return 0;
1742 }
1743
1744 static int qede_drain_txq(struct qede_dev *edev,
1745                           struct qede_tx_queue *txq, bool allow_drain)
1746 {
1747         int rc, cnt = 1000;
1748
1749         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1750                 if (!cnt) {
1751                         if (allow_drain) {
1752                                 DP_NOTICE(edev,
1753                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1754                                           txq->index);
1755                                 rc = edev->ops->common->drain(edev->cdev);
1756                                 if (rc)
1757                                         return rc;
1758                                 return qede_drain_txq(edev, txq, false);
1759                         }
1760                         DP_NOTICE(edev,
1761                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1762                                   txq->index, txq->sw_tx_prod,
1763                                   txq->sw_tx_cons);
1764                         return -ENODEV;
1765                 }
1766                 cnt--;
1767                 usleep_range(1000, 2000);
1768                 barrier();
1769         }
1770
1771         /* FW finished processing, wait for HW to transmit all tx packets */
1772         usleep_range(1000, 2000);
1773
1774         return 0;
1775 }
1776
1777 static int qede_stop_txq(struct qede_dev *edev,
1778                          struct qede_tx_queue *txq, int rss_id)
1779 {
1780         /* delete doorbell from doorbell recovery mechanism */
1781         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1782                                            &txq->tx_db);
1783
1784         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1785 }
1786
1787 static int qede_stop_queues(struct qede_dev *edev)
1788 {
1789         struct qed_update_vport_params *vport_update_params;
1790         struct qed_dev *cdev = edev->cdev;
1791         struct qede_fastpath *fp;
1792         int rc, i;
1793
1794         /* Disable the vport */
1795         vport_update_params = vzalloc(sizeof(*vport_update_params));
1796         if (!vport_update_params)
1797                 return -ENOMEM;
1798
1799         vport_update_params->vport_id = 0;
1800         vport_update_params->update_vport_active_flg = 1;
1801         vport_update_params->vport_active_flg = 0;
1802         vport_update_params->update_rss_flg = 0;
1803
1804         rc = edev->ops->vport_update(cdev, vport_update_params);
1805         vfree(vport_update_params);
1806
1807         if (rc) {
1808                 DP_ERR(edev, "Failed to update vport\n");
1809                 return rc;
1810         }
1811
1812         /* Flush Tx queues. If needed, request drain from MCP */
1813         for_each_queue(i) {
1814                 fp = &edev->fp_array[i];
1815
1816                 if (fp->type & QEDE_FASTPATH_TX) {
1817                         int cos;
1818
1819                         for_each_cos_in_txq(edev, cos) {
1820                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
1821                                 if (rc)
1822                                         return rc;
1823                         }
1824                 }
1825
1826                 if (fp->type & QEDE_FASTPATH_XDP) {
1827                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
1828                         if (rc)
1829                                 return rc;
1830                 }
1831         }
1832
1833         /* Stop all Queues in reverse order */
1834         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1835                 fp = &edev->fp_array[i];
1836
1837                 /* Stop the Tx Queue(s) */
1838                 if (fp->type & QEDE_FASTPATH_TX) {
1839                         int cos;
1840
1841                         for_each_cos_in_txq(edev, cos) {
1842                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
1843                                 if (rc)
1844                                         return rc;
1845                         }
1846                 }
1847
1848                 /* Stop the Rx Queue */
1849                 if (fp->type & QEDE_FASTPATH_RX) {
1850                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1851                         if (rc) {
1852                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1853                                 return rc;
1854                         }
1855                 }
1856
1857                 /* Stop the XDP forwarding queue */
1858                 if (fp->type & QEDE_FASTPATH_XDP) {
1859                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
1860                         if (rc)
1861                                 return rc;
1862
1863                         bpf_prog_put(fp->rxq->xdp_prog);
1864                 }
1865         }
1866
1867         /* Stop the vport */
1868         rc = edev->ops->vport_stop(cdev, 0);
1869         if (rc)
1870                 DP_ERR(edev, "Failed to stop VPORT\n");
1871
1872         return rc;
1873 }
1874
1875 static int qede_start_txq(struct qede_dev *edev,
1876                           struct qede_fastpath *fp,
1877                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1878 {
1879         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1880         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1881         struct qed_queue_start_common_params params;
1882         struct qed_txq_start_ret_params ret_params;
1883         int rc;
1884
1885         memset(&params, 0, sizeof(params));
1886         memset(&ret_params, 0, sizeof(ret_params));
1887
1888         /* Let the XDP queue share the queue-zone with one of the regular txq.
1889          * We don't really care about its coalescing.
1890          */
1891         if (txq->is_xdp)
1892                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1893         else
1894                 params.queue_id = txq->index;
1895
1896         params.p_sb = fp->sb_info;
1897         params.sb_idx = sb_idx;
1898         params.tc = txq->cos;
1899
1900         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1901                                    page_cnt, &ret_params);
1902         if (rc) {
1903                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1904                 return rc;
1905         }
1906
1907         txq->doorbell_addr = ret_params.p_doorbell;
1908         txq->handle = ret_params.p_handle;
1909
1910         /* Determine the FW consumer address associated */
1911         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1912
1913         /* Prepare the doorbell parameters */
1914         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1915         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1916         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1917                   DQ_XCM_ETH_TX_BD_PROD_CMD);
1918         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1919
1920         /* register doorbell with doorbell recovery mechanism */
1921         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
1922                                                 &txq->tx_db, DB_REC_WIDTH_32B,
1923                                                 DB_REC_KERNEL);
1924
1925         return rc;
1926 }
1927
1928 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1929 {
1930         int vlan_removal_en = 1;
1931         struct qed_dev *cdev = edev->cdev;
1932         struct qed_dev_info *qed_info = &edev->dev_info.common;
1933         struct qed_update_vport_params *vport_update_params;
1934         struct qed_queue_start_common_params q_params;
1935         struct qed_start_vport_params start = {0};
1936         int rc, i;
1937
1938         if (!edev->num_queues) {
1939                 DP_ERR(edev,
1940                        "Cannot update V-VPORT as active as there are no Rx queues\n");
1941                 return -EINVAL;
1942         }
1943
1944         vport_update_params = vzalloc(sizeof(*vport_update_params));
1945         if (!vport_update_params)
1946                 return -ENOMEM;
1947
1948         start.handle_ptp_pkts = !!(edev->ptp);
1949         start.gro_enable = !edev->gro_disable;
1950         start.mtu = edev->ndev->mtu;
1951         start.vport_id = 0;
1952         start.drop_ttl0 = true;
1953         start.remove_inner_vlan = vlan_removal_en;
1954         start.clear_stats = clear_stats;
1955
1956         rc = edev->ops->vport_start(cdev, &start);
1957
1958         if (rc) {
1959                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1960                 goto out;
1961         }
1962
1963         DP_VERBOSE(edev, NETIF_MSG_IFUP,
1964                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1965                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1966
1967         for_each_queue(i) {
1968                 struct qede_fastpath *fp = &edev->fp_array[i];
1969                 dma_addr_t p_phys_table;
1970                 u32 page_cnt;
1971
1972                 if (fp->type & QEDE_FASTPATH_RX) {
1973                         struct qed_rxq_start_ret_params ret_params;
1974                         struct qede_rx_queue *rxq = fp->rxq;
1975                         __le16 *val;
1976
1977                         memset(&ret_params, 0, sizeof(ret_params));
1978                         memset(&q_params, 0, sizeof(q_params));
1979                         q_params.queue_id = rxq->rxq_id;
1980                         q_params.vport_id = 0;
1981                         q_params.p_sb = fp->sb_info;
1982                         q_params.sb_idx = RX_PI;
1983
1984                         p_phys_table =
1985                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1986                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1987
1988                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
1989                                                    rxq->rx_buf_size,
1990                                                    rxq->rx_bd_ring.p_phys_addr,
1991                                                    p_phys_table,
1992                                                    page_cnt, &ret_params);
1993                         if (rc) {
1994                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1995                                        rc);
1996                                 goto out;
1997                         }
1998
1999                         /* Use the return parameters */
2000                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2001                         rxq->handle = ret_params.p_handle;
2002
2003                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2004                         rxq->hw_cons_ptr = val;
2005
2006                         qede_update_rx_prod(edev, rxq);
2007                 }
2008
2009                 if (fp->type & QEDE_FASTPATH_XDP) {
2010                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2011                         if (rc)
2012                                 goto out;
2013
2014                         fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2015                         if (IS_ERR(fp->rxq->xdp_prog)) {
2016                                 rc = PTR_ERR(fp->rxq->xdp_prog);
2017                                 fp->rxq->xdp_prog = NULL;
2018                                 goto out;
2019                         }
2020                 }
2021
2022                 if (fp->type & QEDE_FASTPATH_TX) {
2023                         int cos;
2024
2025                         for_each_cos_in_txq(edev, cos) {
2026                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2027                                                     TX_PI(cos));
2028                                 if (rc)
2029                                         goto out;
2030                         }
2031                 }
2032         }
2033
2034         /* Prepare and send the vport enable */
2035         vport_update_params->vport_id = start.vport_id;
2036         vport_update_params->update_vport_active_flg = 1;
2037         vport_update_params->vport_active_flg = 1;
2038
2039         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2040             qed_info->tx_switching) {
2041                 vport_update_params->update_tx_switching_flg = 1;
2042                 vport_update_params->tx_switching_flg = 1;
2043         }
2044
2045         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2046                              &vport_update_params->update_rss_flg);
2047
2048         rc = edev->ops->vport_update(cdev, vport_update_params);
2049         if (rc)
2050                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2051
2052 out:
2053         vfree(vport_update_params);
2054         return rc;
2055 }
2056
2057 enum qede_unload_mode {
2058         QEDE_UNLOAD_NORMAL,
2059 };
2060
2061 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2062                         bool is_locked)
2063 {
2064         struct qed_link_params link_params;
2065         int rc;
2066
2067         DP_INFO(edev, "Starting qede unload\n");
2068
2069         if (!is_locked)
2070                 __qede_lock(edev);
2071
2072         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2073
2074         edev->state = QEDE_STATE_CLOSED;
2075
2076         qede_rdma_dev_event_close(edev);
2077
2078         /* Close OS Tx */
2079         netif_tx_disable(edev->ndev);
2080         netif_carrier_off(edev->ndev);
2081
2082         /* Reset the link */
2083         memset(&link_params, 0, sizeof(link_params));
2084         link_params.link_up = false;
2085         edev->ops->common->set_link(edev->cdev, &link_params);
2086         rc = qede_stop_queues(edev);
2087         if (rc) {
2088                 qede_sync_free_irqs(edev);
2089                 goto out;
2090         }
2091
2092         DP_INFO(edev, "Stopped Queues\n");
2093
2094         qede_vlan_mark_nonconfigured(edev);
2095         edev->ops->fastpath_stop(edev->cdev);
2096
2097         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2098                 qede_poll_for_freeing_arfs_filters(edev);
2099                 qede_free_arfs(edev);
2100         }
2101
2102         /* Release the interrupts */
2103         qede_sync_free_irqs(edev);
2104         edev->ops->common->set_fp_int(edev->cdev, 0);
2105
2106         qede_napi_disable_remove(edev);
2107
2108         qede_free_mem_load(edev);
2109         qede_free_fp_array(edev);
2110
2111 out:
2112         if (!is_locked)
2113                 __qede_unlock(edev);
2114         DP_INFO(edev, "Ending qede unload\n");
2115 }
2116
2117 enum qede_load_mode {
2118         QEDE_LOAD_NORMAL,
2119         QEDE_LOAD_RELOAD,
2120 };
2121
2122 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2123                      bool is_locked)
2124 {
2125         struct qed_link_params link_params;
2126         u8 num_tc;
2127         int rc;
2128
2129         DP_INFO(edev, "Starting qede load\n");
2130
2131         if (!is_locked)
2132                 __qede_lock(edev);
2133
2134         rc = qede_set_num_queues(edev);
2135         if (rc)
2136                 goto out;
2137
2138         rc = qede_alloc_fp_array(edev);
2139         if (rc)
2140                 goto out;
2141
2142         qede_init_fp(edev);
2143
2144         rc = qede_alloc_mem_load(edev);
2145         if (rc)
2146                 goto err1;
2147         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2148                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2149
2150         rc = qede_set_real_num_queues(edev);
2151         if (rc)
2152                 goto err2;
2153
2154         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2155                 rc = qede_alloc_arfs(edev);
2156                 if (rc)
2157                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2158         }
2159
2160         qede_napi_add_enable(edev);
2161         DP_INFO(edev, "Napi added and enabled\n");
2162
2163         rc = qede_setup_irqs(edev);
2164         if (rc)
2165                 goto err3;
2166         DP_INFO(edev, "Setup IRQs succeeded\n");
2167
2168         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2169         if (rc)
2170                 goto err4;
2171         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2172
2173         num_tc = netdev_get_num_tc(edev->ndev);
2174         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2175         qede_setup_tc(edev->ndev, num_tc);
2176
2177         /* Program un-configured VLANs */
2178         qede_configure_vlan_filters(edev);
2179
2180         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2181
2182         /* Ask for link-up using current configuration */
2183         memset(&link_params, 0, sizeof(link_params));
2184         link_params.link_up = true;
2185         edev->ops->common->set_link(edev->cdev, &link_params);
2186
2187         edev->state = QEDE_STATE_OPEN;
2188
2189         DP_INFO(edev, "Ending successfully qede load\n");
2190
2191         goto out;
2192 err4:
2193         qede_sync_free_irqs(edev);
2194         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2195 err3:
2196         qede_napi_disable_remove(edev);
2197 err2:
2198         qede_free_mem_load(edev);
2199 err1:
2200         edev->ops->common->set_fp_int(edev->cdev, 0);
2201         qede_free_fp_array(edev);
2202         edev->num_queues = 0;
2203         edev->fp_num_tx = 0;
2204         edev->fp_num_rx = 0;
2205 out:
2206         if (!is_locked)
2207                 __qede_unlock(edev);
2208
2209         return rc;
2210 }
2211
2212 /* 'func' should be able to run between unload and reload assuming interface
2213  * is actually running, or afterwards in case it's currently DOWN.
2214  */
2215 void qede_reload(struct qede_dev *edev,
2216                  struct qede_reload_args *args, bool is_locked)
2217 {
2218         if (!is_locked)
2219                 __qede_lock(edev);
2220
2221         /* Since qede_lock is held, internal state wouldn't change even
2222          * if netdev state would start transitioning. Check whether current
2223          * internal configuration indicates device is up, then reload.
2224          */
2225         if (edev->state == QEDE_STATE_OPEN) {
2226                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2227                 if (args)
2228                         args->func(edev, args);
2229                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2230
2231                 /* Since no one is going to do it for us, re-configure */
2232                 qede_config_rx_mode(edev->ndev);
2233         } else if (args) {
2234                 args->func(edev, args);
2235         }
2236
2237         if (!is_locked)
2238                 __qede_unlock(edev);
2239 }
2240
2241 /* called with rtnl_lock */
2242 static int qede_open(struct net_device *ndev)
2243 {
2244         struct qede_dev *edev = netdev_priv(ndev);
2245         int rc;
2246
2247         netif_carrier_off(ndev);
2248
2249         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2250
2251         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2252         if (rc)
2253                 return rc;
2254
2255         udp_tunnel_get_rx_info(ndev);
2256
2257         edev->ops->common->update_drv_state(edev->cdev, true);
2258
2259         return 0;
2260 }
2261
2262 static int qede_close(struct net_device *ndev)
2263 {
2264         struct qede_dev *edev = netdev_priv(ndev);
2265
2266         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2267
2268         edev->ops->common->update_drv_state(edev->cdev, false);
2269
2270         return 0;
2271 }
2272
2273 static void qede_link_update(void *dev, struct qed_link_output *link)
2274 {
2275         struct qede_dev *edev = dev;
2276
2277         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2278                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2279                 return;
2280         }
2281
2282         if (link->link_up) {
2283                 if (!netif_carrier_ok(edev->ndev)) {
2284                         DP_NOTICE(edev, "Link is up\n");
2285                         netif_tx_start_all_queues(edev->ndev);
2286                         netif_carrier_on(edev->ndev);
2287                         qede_rdma_dev_event_open(edev);
2288                 }
2289         } else {
2290                 if (netif_carrier_ok(edev->ndev)) {
2291                         DP_NOTICE(edev, "Link is down\n");
2292                         netif_tx_disable(edev->ndev);
2293                         netif_carrier_off(edev->ndev);
2294                         qede_rdma_dev_event_close(edev);
2295                 }
2296         }
2297 }
2298
2299 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2300 {
2301         struct netdev_queue *netdev_txq;
2302
2303         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2304         if (netif_xmit_stopped(netdev_txq))
2305                 return true;
2306
2307         return false;
2308 }
2309
2310 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2311 {
2312         struct qede_dev *edev = dev;
2313         struct netdev_hw_addr *ha;
2314         int i;
2315
2316         if (edev->ndev->features & NETIF_F_IP_CSUM)
2317                 data->feat_flags |= QED_TLV_IP_CSUM;
2318         if (edev->ndev->features & NETIF_F_TSO)
2319                 data->feat_flags |= QED_TLV_LSO;
2320
2321         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2322         memset(data->mac[1], 0, ETH_ALEN);
2323         memset(data->mac[2], 0, ETH_ALEN);
2324         /* Copy the first two UC macs */
2325         netif_addr_lock_bh(edev->ndev);
2326         i = 1;
2327         netdev_for_each_uc_addr(ha, edev->ndev) {
2328                 ether_addr_copy(data->mac[i++], ha->addr);
2329                 if (i == QED_TLV_MAC_COUNT)
2330                         break;
2331         }
2332
2333         netif_addr_unlock_bh(edev->ndev);
2334 }
2335
2336 static void qede_get_eth_tlv_data(void *dev, void *data)
2337 {
2338         struct qed_mfw_tlv_eth *etlv = data;
2339         struct qede_dev *edev = dev;
2340         struct qede_fastpath *fp;
2341         int i;
2342
2343         etlv->lso_maxoff_size = 0XFFFF;
2344         etlv->lso_maxoff_size_set = true;
2345         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2346         etlv->lso_minseg_size_set = true;
2347         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2348         etlv->prom_mode_set = true;
2349         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2350         etlv->tx_descr_size_set = true;
2351         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2352         etlv->rx_descr_size_set = true;
2353         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2354         etlv->iov_offload_set = true;
2355
2356         /* Fill information regarding queues; Should be done under the qede
2357          * lock to guarantee those don't change beneath our feet.
2358          */
2359         etlv->txqs_empty = true;
2360         etlv->rxqs_empty = true;
2361         etlv->num_txqs_full = 0;
2362         etlv->num_rxqs_full = 0;
2363
2364         __qede_lock(edev);
2365         for_each_queue(i) {
2366                 fp = &edev->fp_array[i];
2367                 if (fp->type & QEDE_FASTPATH_TX) {
2368                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2369
2370                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2371                                 etlv->txqs_empty = false;
2372                         if (qede_is_txq_full(edev, txq))
2373                                 etlv->num_txqs_full++;
2374                 }
2375                 if (fp->type & QEDE_FASTPATH_RX) {
2376                         if (qede_has_rx_work(fp->rxq))
2377                                 etlv->rxqs_empty = false;
2378
2379                         /* This one is a bit tricky; Firmware might stop
2380                          * placing packets if ring is not yet full.
2381                          * Give an approximation.
2382                          */
2383                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2384                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2385                             RX_RING_SIZE - 100)
2386                                 etlv->num_rxqs_full++;
2387                 }
2388         }
2389         __qede_unlock(edev);
2390
2391         etlv->txqs_empty_set = true;
2392         etlv->rxqs_empty_set = true;
2393         etlv->num_txqs_full_set = true;
2394         etlv->num_rxqs_full_set = true;
2395 }