OSDN Git Service

stmmac: debugfs entry name is not be changed when udev rename device name.
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO        5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK     256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
91                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER        1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123         if (unlikely(watchdog < 0))
124                 watchdog = TX_TIMEO;
125         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126                 buf_sz = DEFAULT_BUFSIZE;
127         if (unlikely(flow_ctrl > 1))
128                 flow_ctrl = FLOW_AUTO;
129         else if (likely(flow_ctrl < 0))
130                 flow_ctrl = FLOW_OFF;
131         if (unlikely((pause < 0) || (pause > 0xffff)))
132                 pause = PAUSE_TIME;
133         if (eee_timer < 0)
134                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146         u32 queue;
147
148         for (queue = 0; queue < maxq; queue++) {
149                 struct stmmac_channel *ch = &priv->channel[queue];
150
151                 if (queue < rx_queues_cnt)
152                         napi_disable(&ch->rx_napi);
153                 if (queue < tx_queues_cnt)
154                         napi_disable(&ch->tx_napi);
155         }
156 }
157
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167         u32 queue;
168
169         for (queue = 0; queue < maxq; queue++) {
170                 struct stmmac_channel *ch = &priv->channel[queue];
171
172                 if (queue < rx_queues_cnt)
173                         napi_enable(&ch->rx_napi);
174                 if (queue < tx_queues_cnt)
175                         napi_enable(&ch->tx_napi);
176         }
177 }
178
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186         u32 queue;
187
188         for (queue = 0; queue < tx_queues_cnt; queue++)
189                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199         u32 queue;
200
201         for (queue = 0; queue < tx_queues_cnt; queue++)
202                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207         if (!test_bit(STMMAC_DOWN, &priv->state) &&
208             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209                 queue_work(priv->wq, &priv->service_task);
210 }
211
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214         netif_carrier_off(priv->dev);
215         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216         stmmac_service_event_schedule(priv);
217 }
218
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *      If a specific clk_csr value is passed from the platform
226  *      this means that the CSR Clock Range selection cannot be
227  *      changed at run-time and it is fixed (as reported in the driver
228  *      documentation). Viceversa the driver will try to set the MDC
229  *      clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233         u32 clk_rate;
234
235         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236
237         /* Platform provided default clk_csr would be assumed valid
238          * for all other cases except for the below mentioned ones.
239          * For values higher than the IEEE 802.3 specified frequency
240          * we can not estimate the proper divider as it is not known
241          * the frequency of clk_csr_i. So we do not change the default
242          * divider.
243          */
244         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245                 if (clk_rate < CSR_F_35M)
246                         priv->clk_csr = STMMAC_CSR_20_35M;
247                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248                         priv->clk_csr = STMMAC_CSR_35_60M;
249                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250                         priv->clk_csr = STMMAC_CSR_60_100M;
251                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252                         priv->clk_csr = STMMAC_CSR_100_150M;
253                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254                         priv->clk_csr = STMMAC_CSR_150_250M;
255                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256                         priv->clk_csr = STMMAC_CSR_250_300M;
257         }
258
259         if (priv->plat->has_sun8i) {
260                 if (clk_rate > 160000000)
261                         priv->clk_csr = 0x03;
262                 else if (clk_rate > 80000000)
263                         priv->clk_csr = 0x02;
264                 else if (clk_rate > 40000000)
265                         priv->clk_csr = 0x01;
266                 else
267                         priv->clk_csr = 0;
268         }
269
270         if (priv->plat->has_xgmac) {
271                 if (clk_rate > 400000000)
272                         priv->clk_csr = 0x5;
273                 else if (clk_rate > 350000000)
274                         priv->clk_csr = 0x4;
275                 else if (clk_rate > 300000000)
276                         priv->clk_csr = 0x3;
277                 else if (clk_rate > 250000000)
278                         priv->clk_csr = 0x2;
279                 else if (clk_rate > 150000000)
280                         priv->clk_csr = 0x1;
281                 else
282                         priv->clk_csr = 0x0;
283         }
284 }
285
286 static void print_pkt(unsigned char *buf, int len)
287 {
288         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295         u32 avail;
296
297         if (tx_q->dirty_tx > tx_q->cur_tx)
298                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299         else
300                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301
302         return avail;
303 }
304
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313         u32 dirty;
314
315         if (rx_q->dirty_rx <= rx_q->cur_rx)
316                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
317         else
318                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319
320         return dirty;
321 }
322
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331         u32 tx_cnt = priv->plat->tx_queues_to_use;
332         u32 queue;
333
334         /* check if all TX queues have the work finished */
335         for (queue = 0; queue < tx_cnt; queue++) {
336                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337
338                 if (tx_q->dirty_tx != tx_q->cur_tx)
339                         return; /* still unfinished work */
340         }
341
342         /* Check and enter in LPI mode */
343         if (!priv->tx_path_in_lpi_mode)
344                 stmmac_set_eee_mode(priv, priv->hw,
345                                 priv->plat->en_tx_lpi_clockgating);
346 }
347
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356         stmmac_reset_eee_mode(priv, priv->hw);
357         del_timer_sync(&priv->eee_ctrl_timer);
358         priv->tx_path_in_lpi_mode = false;
359 }
360
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371
372         stmmac_enable_eee_mode(priv);
373         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386         int tx_lpi_timer = priv->tx_lpi_timer;
387
388         /* Using PCS we cannot dial with the phy registers at this stage
389          * so we do not support extra feature like EEE.
390          */
391         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
392             (priv->hw->pcs == STMMAC_PCS_TBI) ||
393             (priv->hw->pcs == STMMAC_PCS_RTBI))
394                 return false;
395
396         /* Check if MAC core supports the EEE feature. */
397         if (!priv->dma_cap.eee)
398                 return false;
399
400         mutex_lock(&priv->lock);
401
402         /* Check if it needs to be deactivated */
403         if (!priv->eee_active) {
404                 if (priv->eee_enabled) {
405                         netdev_dbg(priv->dev, "disable EEE\n");
406                         del_timer_sync(&priv->eee_ctrl_timer);
407                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
408                 }
409                 mutex_unlock(&priv->lock);
410                 return false;
411         }
412
413         if (priv->eee_active && !priv->eee_enabled) {
414                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
415                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
416                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
417                                      tx_lpi_timer);
418         }
419
420         mutex_unlock(&priv->lock);
421         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
422         return true;
423 }
424
425 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
426  * @priv: driver private structure
427  * @p : descriptor pointer
428  * @skb : the socket buffer
429  * Description :
430  * This function will read timestamp from the descriptor & pass it to stack.
431  * and also perform some sanity checks.
432  */
433 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
434                                    struct dma_desc *p, struct sk_buff *skb)
435 {
436         struct skb_shared_hwtstamps shhwtstamp;
437         bool found = false;
438         u64 ns = 0;
439
440         if (!priv->hwts_tx_en)
441                 return;
442
443         /* exit if skb doesn't support hw tstamp */
444         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
445                 return;
446
447         /* check tx tstamp status */
448         if (stmmac_get_tx_timestamp_status(priv, p)) {
449                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
450                 found = true;
451         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
452                 found = true;
453         }
454
455         if (found) {
456                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
457                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
458
459                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
460                 /* pass tstamp to stack */
461                 skb_tstamp_tx(skb, &shhwtstamp);
462         }
463 }
464
465 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @np : next descriptor pointer
469  * @skb : the socket buffer
470  * Description :
471  * This function will read received packet's timestamp from the descriptor
472  * and pass it to stack. It also perform some sanity checks.
473  */
474 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
475                                    struct dma_desc *np, struct sk_buff *skb)
476 {
477         struct skb_shared_hwtstamps *shhwtstamp = NULL;
478         struct dma_desc *desc = p;
479         u64 ns = 0;
480
481         if (!priv->hwts_rx_en)
482                 return;
483         /* For GMAC4, the valid timestamp is from CTX next desc. */
484         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
485                 desc = np;
486
487         /* Check if timestamp is available */
488         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
489                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
490                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
491                 shhwtstamp = skb_hwtstamps(skb);
492                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
493                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
494         } else  {
495                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
496         }
497 }
498
499 /**
500  *  stmmac_hwtstamp_set - control hardware timestamping.
501  *  @dev: device pointer.
502  *  @ifr: An IOCTL specific structure, that can contain a pointer to
503  *  a proprietary structure used to pass information to the driver.
504  *  Description:
505  *  This function configures the MAC to enable/disable both outgoing(TX)
506  *  and incoming(RX) packets time stamping based on user input.
507  *  Return Value:
508  *  0 on success and an appropriate -ve integer on failure.
509  */
510 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
511 {
512         struct stmmac_priv *priv = netdev_priv(dev);
513         struct hwtstamp_config config;
514         struct timespec64 now;
515         u64 temp = 0;
516         u32 ptp_v2 = 0;
517         u32 tstamp_all = 0;
518         u32 ptp_over_ipv4_udp = 0;
519         u32 ptp_over_ipv6_udp = 0;
520         u32 ptp_over_ethernet = 0;
521         u32 snap_type_sel = 0;
522         u32 ts_master_en = 0;
523         u32 ts_event_en = 0;
524         u32 sec_inc = 0;
525         u32 value = 0;
526         bool xmac;
527
528         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
529
530         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
531                 netdev_alert(priv->dev, "No support for HW time stamping\n");
532                 priv->hwts_tx_en = 0;
533                 priv->hwts_rx_en = 0;
534
535                 return -EOPNOTSUPP;
536         }
537
538         if (copy_from_user(&config, ifr->ifr_data,
539                            sizeof(config)))
540                 return -EFAULT;
541
542         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
543                    __func__, config.flags, config.tx_type, config.rx_filter);
544
545         /* reserved for future extensions */
546         if (config.flags)
547                 return -EINVAL;
548
549         if (config.tx_type != HWTSTAMP_TX_OFF &&
550             config.tx_type != HWTSTAMP_TX_ON)
551                 return -ERANGE;
552
553         if (priv->adv_ts) {
554                 switch (config.rx_filter) {
555                 case HWTSTAMP_FILTER_NONE:
556                         /* time stamp no incoming packet at all */
557                         config.rx_filter = HWTSTAMP_FILTER_NONE;
558                         break;
559
560                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
561                         /* PTP v1, UDP, any kind of event packet */
562                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
563                         /* 'xmac' hardware can support Sync, Pdelay_Req and
564                          * Pdelay_resp by setting bit14 and bits17/16 to 01
565                          * This leaves Delay_Req timestamps out.
566                          * Enable all events *and* general purpose message
567                          * timestamping
568                          */
569                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
570                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
571                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
572                         break;
573
574                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
575                         /* PTP v1, UDP, Sync packet */
576                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
577                         /* take time stamp for SYNC messages only */
578                         ts_event_en = PTP_TCR_TSEVNTENA;
579
580                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
581                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
582                         break;
583
584                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
585                         /* PTP v1, UDP, Delay_req packet */
586                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
587                         /* take time stamp for Delay_Req messages only */
588                         ts_master_en = PTP_TCR_TSMSTRENA;
589                         ts_event_en = PTP_TCR_TSEVNTENA;
590
591                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
592                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
593                         break;
594
595                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
596                         /* PTP v2, UDP, any kind of event packet */
597                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
598                         ptp_v2 = PTP_TCR_TSVER2ENA;
599                         /* take time stamp for all event messages */
600                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
601
602                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
603                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
604                         break;
605
606                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
607                         /* PTP v2, UDP, Sync packet */
608                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
609                         ptp_v2 = PTP_TCR_TSVER2ENA;
610                         /* take time stamp for SYNC messages only */
611                         ts_event_en = PTP_TCR_TSEVNTENA;
612
613                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
614                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
615                         break;
616
617                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
618                         /* PTP v2, UDP, Delay_req packet */
619                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
620                         ptp_v2 = PTP_TCR_TSVER2ENA;
621                         /* take time stamp for Delay_Req messages only */
622                         ts_master_en = PTP_TCR_TSMSTRENA;
623                         ts_event_en = PTP_TCR_TSEVNTENA;
624
625                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
626                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
627                         break;
628
629                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
630                         /* PTP v2/802.AS1 any layer, any kind of event packet */
631                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632                         ptp_v2 = PTP_TCR_TSVER2ENA;
633                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
634                         ts_event_en = PTP_TCR_TSEVNTENA;
635                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637                         ptp_over_ethernet = PTP_TCR_TSIPENA;
638                         break;
639
640                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
641                         /* PTP v2/802.AS1, any layer, Sync packet */
642                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
643                         ptp_v2 = PTP_TCR_TSVER2ENA;
644                         /* take time stamp for SYNC messages only */
645                         ts_event_en = PTP_TCR_TSEVNTENA;
646
647                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
648                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
649                         ptp_over_ethernet = PTP_TCR_TSIPENA;
650                         break;
651
652                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
653                         /* PTP v2/802.AS1, any layer, Delay_req packet */
654                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
655                         ptp_v2 = PTP_TCR_TSVER2ENA;
656                         /* take time stamp for Delay_Req messages only */
657                         ts_master_en = PTP_TCR_TSMSTRENA;
658                         ts_event_en = PTP_TCR_TSEVNTENA;
659
660                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
661                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
662                         ptp_over_ethernet = PTP_TCR_TSIPENA;
663                         break;
664
665                 case HWTSTAMP_FILTER_NTP_ALL:
666                 case HWTSTAMP_FILTER_ALL:
667                         /* time stamp any incoming packet */
668                         config.rx_filter = HWTSTAMP_FILTER_ALL;
669                         tstamp_all = PTP_TCR_TSENALL;
670                         break;
671
672                 default:
673                         return -ERANGE;
674                 }
675         } else {
676                 switch (config.rx_filter) {
677                 case HWTSTAMP_FILTER_NONE:
678                         config.rx_filter = HWTSTAMP_FILTER_NONE;
679                         break;
680                 default:
681                         /* PTP v1, UDP, any kind of event packet */
682                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
683                         break;
684                 }
685         }
686         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
687         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
688
689         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
690                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
691         else {
692                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
693                          tstamp_all | ptp_v2 | ptp_over_ethernet |
694                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
695                          ts_master_en | snap_type_sel);
696                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
697
698                 /* program Sub Second Increment reg */
699                 stmmac_config_sub_second_increment(priv,
700                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
701                                 xmac, &sec_inc);
702                 temp = div_u64(1000000000ULL, sec_inc);
703
704                 /* Store sub second increment and flags for later use */
705                 priv->sub_second_inc = sec_inc;
706                 priv->systime_flags = value;
707
708                 /* calculate default added value:
709                  * formula is :
710                  * addend = (2^32)/freq_div_ratio;
711                  * where, freq_div_ratio = 1e9ns/sec_inc
712                  */
713                 temp = (u64)(temp << 32);
714                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
715                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
716
717                 /* initialize system time */
718                 ktime_get_real_ts64(&now);
719
720                 /* lower 32 bits of tv_sec are safe until y2106 */
721                 stmmac_init_systime(priv, priv->ptpaddr,
722                                 (u32)now.tv_sec, now.tv_nsec);
723         }
724
725         memcpy(&priv->tstamp_config, &config, sizeof(config));
726
727         return copy_to_user(ifr->ifr_data, &config,
728                             sizeof(config)) ? -EFAULT : 0;
729 }
730
731 /**
732  *  stmmac_hwtstamp_get - read hardware timestamping.
733  *  @dev: device pointer.
734  *  @ifr: An IOCTL specific structure, that can contain a pointer to
735  *  a proprietary structure used to pass information to the driver.
736  *  Description:
737  *  This function obtain the current hardware timestamping settings
738     as requested.
739  */
740 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
741 {
742         struct stmmac_priv *priv = netdev_priv(dev);
743         struct hwtstamp_config *config = &priv->tstamp_config;
744
745         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
746                 return -EOPNOTSUPP;
747
748         return copy_to_user(ifr->ifr_data, config,
749                             sizeof(*config)) ? -EFAULT : 0;
750 }
751
752 /**
753  * stmmac_init_ptp - init PTP
754  * @priv: driver private structure
755  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
756  * This is done by looking at the HW cap. register.
757  * This function also registers the ptp driver.
758  */
759 static int stmmac_init_ptp(struct stmmac_priv *priv)
760 {
761         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
762
763         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
764                 return -EOPNOTSUPP;
765
766         priv->adv_ts = 0;
767         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
768         if (xmac && priv->dma_cap.atime_stamp)
769                 priv->adv_ts = 1;
770         /* Dwmac 3.x core with extend_desc can support adv_ts */
771         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
772                 priv->adv_ts = 1;
773
774         if (priv->dma_cap.time_stamp)
775                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
776
777         if (priv->adv_ts)
778                 netdev_info(priv->dev,
779                             "IEEE 1588-2008 Advanced Timestamp supported\n");
780
781         priv->hwts_tx_en = 0;
782         priv->hwts_rx_en = 0;
783
784         stmmac_ptp_register(priv);
785
786         return 0;
787 }
788
789 static void stmmac_release_ptp(struct stmmac_priv *priv)
790 {
791         if (priv->plat->clk_ptp_ref)
792                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
793         stmmac_ptp_unregister(priv);
794 }
795
796 /**
797  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
798  *  @priv: driver private structure
799  *  Description: It is used for configuring the flow control in all queues
800  */
801 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
802 {
803         u32 tx_cnt = priv->plat->tx_queues_to_use;
804
805         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
806                         priv->pause, tx_cnt);
807 }
808
809 static void stmmac_validate(struct phylink_config *config,
810                             unsigned long *supported,
811                             struct phylink_link_state *state)
812 {
813         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
815         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
816         int tx_cnt = priv->plat->tx_queues_to_use;
817         int max_speed = priv->plat->max_speed;
818
819         phylink_set(mac_supported, 10baseT_Half);
820         phylink_set(mac_supported, 10baseT_Full);
821         phylink_set(mac_supported, 100baseT_Half);
822         phylink_set(mac_supported, 100baseT_Full);
823         phylink_set(mac_supported, 1000baseT_Half);
824         phylink_set(mac_supported, 1000baseT_Full);
825         phylink_set(mac_supported, 1000baseKX_Full);
826
827         phylink_set(mac_supported, Autoneg);
828         phylink_set(mac_supported, Pause);
829         phylink_set(mac_supported, Asym_Pause);
830         phylink_set_port_modes(mac_supported);
831
832         /* Cut down 1G if asked to */
833         if ((max_speed > 0) && (max_speed < 1000)) {
834                 phylink_set(mask, 1000baseT_Full);
835                 phylink_set(mask, 1000baseX_Full);
836         } else if (priv->plat->has_xgmac) {
837                 if (!max_speed || (max_speed >= 2500)) {
838                         phylink_set(mac_supported, 2500baseT_Full);
839                         phylink_set(mac_supported, 2500baseX_Full);
840                 }
841                 if (!max_speed || (max_speed >= 5000)) {
842                         phylink_set(mac_supported, 5000baseT_Full);
843                 }
844                 if (!max_speed || (max_speed >= 10000)) {
845                         phylink_set(mac_supported, 10000baseSR_Full);
846                         phylink_set(mac_supported, 10000baseLR_Full);
847                         phylink_set(mac_supported, 10000baseER_Full);
848                         phylink_set(mac_supported, 10000baseLRM_Full);
849                         phylink_set(mac_supported, 10000baseT_Full);
850                         phylink_set(mac_supported, 10000baseKX4_Full);
851                         phylink_set(mac_supported, 10000baseKR_Full);
852                 }
853         }
854
855         /* Half-Duplex can only work with single queue */
856         if (tx_cnt > 1) {
857                 phylink_set(mask, 10baseT_Half);
858                 phylink_set(mask, 100baseT_Half);
859                 phylink_set(mask, 1000baseT_Half);
860         }
861
862         bitmap_and(supported, supported, mac_supported,
863                    __ETHTOOL_LINK_MODE_MASK_NBITS);
864         bitmap_andnot(supported, supported, mask,
865                       __ETHTOOL_LINK_MODE_MASK_NBITS);
866         bitmap_and(state->advertising, state->advertising, mac_supported,
867                    __ETHTOOL_LINK_MODE_MASK_NBITS);
868         bitmap_andnot(state->advertising, state->advertising, mask,
869                       __ETHTOOL_LINK_MODE_MASK_NBITS);
870 }
871
872 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
873                                      struct phylink_link_state *state)
874 {
875         state->link = 0;
876 }
877
878 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
879                               const struct phylink_link_state *state)
880 {
881         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
882         u32 ctrl;
883
884         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
885         ctrl &= ~priv->hw->link.speed_mask;
886
887         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
888                 switch (state->speed) {
889                 case SPEED_10000:
890                         ctrl |= priv->hw->link.xgmii.speed10000;
891                         break;
892                 case SPEED_5000:
893                         ctrl |= priv->hw->link.xgmii.speed5000;
894                         break;
895                 case SPEED_2500:
896                         ctrl |= priv->hw->link.xgmii.speed2500;
897                         break;
898                 default:
899                         return;
900                 }
901         } else {
902                 switch (state->speed) {
903                 case SPEED_2500:
904                         ctrl |= priv->hw->link.speed2500;
905                         break;
906                 case SPEED_1000:
907                         ctrl |= priv->hw->link.speed1000;
908                         break;
909                 case SPEED_100:
910                         ctrl |= priv->hw->link.speed100;
911                         break;
912                 case SPEED_10:
913                         ctrl |= priv->hw->link.speed10;
914                         break;
915                 default:
916                         return;
917                 }
918         }
919
920         priv->speed = state->speed;
921
922         if (priv->plat->fix_mac_speed)
923                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
924
925         if (!state->duplex)
926                 ctrl &= ~priv->hw->link.duplex;
927         else
928                 ctrl |= priv->hw->link.duplex;
929
930         /* Flow Control operation */
931         if (state->pause)
932                 stmmac_mac_flow_ctrl(priv, state->duplex);
933
934         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
935 }
936
937 static void stmmac_mac_an_restart(struct phylink_config *config)
938 {
939         /* Not Supported */
940 }
941
942 static void stmmac_mac_link_down(struct phylink_config *config,
943                                  unsigned int mode, phy_interface_t interface)
944 {
945         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946
947         stmmac_mac_set(priv, priv->ioaddr, false);
948         priv->eee_active = false;
949         stmmac_eee_init(priv);
950         stmmac_set_eee_pls(priv, priv->hw, false);
951 }
952
953 static void stmmac_mac_link_up(struct phylink_config *config,
954                                unsigned int mode, phy_interface_t interface,
955                                struct phy_device *phy)
956 {
957         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
958
959         stmmac_mac_set(priv, priv->ioaddr, true);
960         if (phy && priv->dma_cap.eee) {
961                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
962                 priv->eee_enabled = stmmac_eee_init(priv);
963                 stmmac_set_eee_pls(priv, priv->hw, true);
964         }
965 }
966
967 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
968         .validate = stmmac_validate,
969         .mac_pcs_get_state = stmmac_mac_pcs_get_state,
970         .mac_config = stmmac_mac_config,
971         .mac_an_restart = stmmac_mac_an_restart,
972         .mac_link_down = stmmac_mac_link_down,
973         .mac_link_up = stmmac_mac_link_up,
974 };
975
976 /**
977  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
978  * @priv: driver private structure
979  * Description: this is to verify if the HW supports the PCS.
980  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
981  * configured for the TBI, RTBI, or SGMII PHY interface.
982  */
983 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
984 {
985         int interface = priv->plat->interface;
986
987         if (priv->dma_cap.pcs) {
988                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
990                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
991                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
992                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
993                         priv->hw->pcs = STMMAC_PCS_RGMII;
994                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
995                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
996                         priv->hw->pcs = STMMAC_PCS_SGMII;
997                 }
998         }
999 }
1000
1001 /**
1002  * stmmac_init_phy - PHY initialization
1003  * @dev: net device structure
1004  * Description: it initializes the driver's PHY state, and attaches the PHY
1005  * to the mac driver.
1006  *  Return value:
1007  *  0 on success
1008  */
1009 static int stmmac_init_phy(struct net_device *dev)
1010 {
1011         struct stmmac_priv *priv = netdev_priv(dev);
1012         struct device_node *node;
1013         int ret;
1014
1015         node = priv->plat->phylink_node;
1016
1017         if (node)
1018                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1019
1020         /* Some DT bindings do not set-up the PHY handle. Let's try to
1021          * manually parse it
1022          */
1023         if (!node || ret) {
1024                 int addr = priv->plat->phy_addr;
1025                 struct phy_device *phydev;
1026
1027                 phydev = mdiobus_get_phy(priv->mii, addr);
1028                 if (!phydev) {
1029                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1030                         return -ENODEV;
1031                 }
1032
1033                 ret = phylink_connect_phy(priv->phylink, phydev);
1034         }
1035
1036         return ret;
1037 }
1038
1039 static int stmmac_phy_setup(struct stmmac_priv *priv)
1040 {
1041         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1042         int mode = priv->plat->phy_interface;
1043         struct phylink *phylink;
1044
1045         priv->phylink_config.dev = &priv->dev->dev;
1046         priv->phylink_config.type = PHYLINK_NETDEV;
1047
1048         phylink = phylink_create(&priv->phylink_config, fwnode,
1049                                  mode, &stmmac_phylink_mac_ops);
1050         if (IS_ERR(phylink))
1051                 return PTR_ERR(phylink);
1052
1053         priv->phylink = phylink;
1054         return 0;
1055 }
1056
1057 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1058 {
1059         u32 rx_cnt = priv->plat->rx_queues_to_use;
1060         void *head_rx;
1061         u32 queue;
1062
1063         /* Display RX rings */
1064         for (queue = 0; queue < rx_cnt; queue++) {
1065                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1066
1067                 pr_info("\tRX Queue %u rings\n", queue);
1068
1069                 if (priv->extend_desc)
1070                         head_rx = (void *)rx_q->dma_erx;
1071                 else
1072                         head_rx = (void *)rx_q->dma_rx;
1073
1074                 /* Display RX ring */
1075                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1076         }
1077 }
1078
1079 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1080 {
1081         u32 tx_cnt = priv->plat->tx_queues_to_use;
1082         void *head_tx;
1083         u32 queue;
1084
1085         /* Display TX rings */
1086         for (queue = 0; queue < tx_cnt; queue++) {
1087                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1088
1089                 pr_info("\tTX Queue %d rings\n", queue);
1090
1091                 if (priv->extend_desc)
1092                         head_tx = (void *)tx_q->dma_etx;
1093                 else
1094                         head_tx = (void *)tx_q->dma_tx;
1095
1096                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1097         }
1098 }
1099
1100 static void stmmac_display_rings(struct stmmac_priv *priv)
1101 {
1102         /* Display RX ring */
1103         stmmac_display_rx_rings(priv);
1104
1105         /* Display TX ring */
1106         stmmac_display_tx_rings(priv);
1107 }
1108
1109 static int stmmac_set_bfsize(int mtu, int bufsize)
1110 {
1111         int ret = bufsize;
1112
1113         if (mtu >= BUF_SIZE_8KiB)
1114                 ret = BUF_SIZE_16KiB;
1115         else if (mtu >= BUF_SIZE_4KiB)
1116                 ret = BUF_SIZE_8KiB;
1117         else if (mtu >= BUF_SIZE_2KiB)
1118                 ret = BUF_SIZE_4KiB;
1119         else if (mtu > DEFAULT_BUFSIZE)
1120                 ret = BUF_SIZE_2KiB;
1121         else
1122                 ret = DEFAULT_BUFSIZE;
1123
1124         return ret;
1125 }
1126
1127 /**
1128  * stmmac_clear_rx_descriptors - clear RX descriptors
1129  * @priv: driver private structure
1130  * @queue: RX queue index
1131  * Description: this function is called to clear the RX descriptors
1132  * in case of both basic and extended descriptors are used.
1133  */
1134 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1135 {
1136         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1137         int i;
1138
1139         /* Clear the RX descriptors */
1140         for (i = 0; i < DMA_RX_SIZE; i++)
1141                 if (priv->extend_desc)
1142                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1143                                         priv->use_riwt, priv->mode,
1144                                         (i == DMA_RX_SIZE - 1),
1145                                         priv->dma_buf_sz);
1146                 else
1147                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1148                                         priv->use_riwt, priv->mode,
1149                                         (i == DMA_RX_SIZE - 1),
1150                                         priv->dma_buf_sz);
1151 }
1152
1153 /**
1154  * stmmac_clear_tx_descriptors - clear tx descriptors
1155  * @priv: driver private structure
1156  * @queue: TX queue index.
1157  * Description: this function is called to clear the TX descriptors
1158  * in case of both basic and extended descriptors are used.
1159  */
1160 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1161 {
1162         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1163         int i;
1164
1165         /* Clear the TX descriptors */
1166         for (i = 0; i < DMA_TX_SIZE; i++)
1167                 if (priv->extend_desc)
1168                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1169                                         priv->mode, (i == DMA_TX_SIZE - 1));
1170                 else
1171                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1172                                         priv->mode, (i == DMA_TX_SIZE - 1));
1173 }
1174
1175 /**
1176  * stmmac_clear_descriptors - clear descriptors
1177  * @priv: driver private structure
1178  * Description: this function is called to clear the TX and RX descriptors
1179  * in case of both basic and extended descriptors are used.
1180  */
1181 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1182 {
1183         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1184         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1185         u32 queue;
1186
1187         /* Clear the RX descriptors */
1188         for (queue = 0; queue < rx_queue_cnt; queue++)
1189                 stmmac_clear_rx_descriptors(priv, queue);
1190
1191         /* Clear the TX descriptors */
1192         for (queue = 0; queue < tx_queue_cnt; queue++)
1193                 stmmac_clear_tx_descriptors(priv, queue);
1194 }
1195
1196 /**
1197  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1198  * @priv: driver private structure
1199  * @p: descriptor pointer
1200  * @i: descriptor index
1201  * @flags: gfp flag
1202  * @queue: RX queue index
1203  * Description: this function is called to allocate a receive buffer, perform
1204  * the DMA mapping and init the descriptor.
1205  */
1206 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1207                                   int i, gfp_t flags, u32 queue)
1208 {
1209         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1210         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1211
1212         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1213         if (!buf->page)
1214                 return -ENOMEM;
1215
1216         if (priv->sph) {
1217                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1218                 if (!buf->sec_page)
1219                         return -ENOMEM;
1220
1221                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1222                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1223         } else {
1224                 buf->sec_page = NULL;
1225         }
1226
1227         buf->addr = page_pool_get_dma_addr(buf->page);
1228         stmmac_set_desc_addr(priv, p, buf->addr);
1229         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1230                 stmmac_init_desc3(priv, p);
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * stmmac_free_rx_buffer - free RX dma buffers
1237  * @priv: private structure
1238  * @queue: RX queue index
1239  * @i: buffer index.
1240  */
1241 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1242 {
1243         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1244         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1245
1246         if (buf->page)
1247                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1248         buf->page = NULL;
1249
1250         if (buf->sec_page)
1251                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1252         buf->sec_page = NULL;
1253 }
1254
1255 /**
1256  * stmmac_free_tx_buffer - free RX dma buffers
1257  * @priv: private structure
1258  * @queue: RX queue index
1259  * @i: buffer index.
1260  */
1261 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1262 {
1263         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1264
1265         if (tx_q->tx_skbuff_dma[i].buf) {
1266                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1267                         dma_unmap_page(priv->device,
1268                                        tx_q->tx_skbuff_dma[i].buf,
1269                                        tx_q->tx_skbuff_dma[i].len,
1270                                        DMA_TO_DEVICE);
1271                 else
1272                         dma_unmap_single(priv->device,
1273                                          tx_q->tx_skbuff_dma[i].buf,
1274                                          tx_q->tx_skbuff_dma[i].len,
1275                                          DMA_TO_DEVICE);
1276         }
1277
1278         if (tx_q->tx_skbuff[i]) {
1279                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1280                 tx_q->tx_skbuff[i] = NULL;
1281                 tx_q->tx_skbuff_dma[i].buf = 0;
1282                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1283         }
1284 }
1285
1286 /**
1287  * init_dma_rx_desc_rings - init the RX descriptor rings
1288  * @dev: net device structure
1289  * @flags: gfp flag.
1290  * Description: this function initializes the DMA RX descriptors
1291  * and allocates the socket buffers. It supports the chained and ring
1292  * modes.
1293  */
1294 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1295 {
1296         struct stmmac_priv *priv = netdev_priv(dev);
1297         u32 rx_count = priv->plat->rx_queues_to_use;
1298         int ret = -ENOMEM;
1299         int queue;
1300         int i;
1301
1302         /* RX INITIALIZATION */
1303         netif_dbg(priv, probe, priv->dev,
1304                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1305
1306         for (queue = 0; queue < rx_count; queue++) {
1307                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1308
1309                 netif_dbg(priv, probe, priv->dev,
1310                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1311                           (u32)rx_q->dma_rx_phy);
1312
1313                 stmmac_clear_rx_descriptors(priv, queue);
1314
1315                 for (i = 0; i < DMA_RX_SIZE; i++) {
1316                         struct dma_desc *p;
1317
1318                         if (priv->extend_desc)
1319                                 p = &((rx_q->dma_erx + i)->basic);
1320                         else
1321                                 p = rx_q->dma_rx + i;
1322
1323                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1324                                                      queue);
1325                         if (ret)
1326                                 goto err_init_rx_buffers;
1327                 }
1328
1329                 rx_q->cur_rx = 0;
1330                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1331
1332                 /* Setup the chained descriptor addresses */
1333                 if (priv->mode == STMMAC_CHAIN_MODE) {
1334                         if (priv->extend_desc)
1335                                 stmmac_mode_init(priv, rx_q->dma_erx,
1336                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1337                         else
1338                                 stmmac_mode_init(priv, rx_q->dma_rx,
1339                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1340                 }
1341         }
1342
1343         return 0;
1344
1345 err_init_rx_buffers:
1346         while (queue >= 0) {
1347                 while (--i >= 0)
1348                         stmmac_free_rx_buffer(priv, queue, i);
1349
1350                 if (queue == 0)
1351                         break;
1352
1353                 i = DMA_RX_SIZE;
1354                 queue--;
1355         }
1356
1357         return ret;
1358 }
1359
1360 /**
1361  * init_dma_tx_desc_rings - init the TX descriptor rings
1362  * @dev: net device structure.
1363  * Description: this function initializes the DMA TX descriptors
1364  * and allocates the socket buffers. It supports the chained and ring
1365  * modes.
1366  */
1367 static int init_dma_tx_desc_rings(struct net_device *dev)
1368 {
1369         struct stmmac_priv *priv = netdev_priv(dev);
1370         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1371         u32 queue;
1372         int i;
1373
1374         for (queue = 0; queue < tx_queue_cnt; queue++) {
1375                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376
1377                 netif_dbg(priv, probe, priv->dev,
1378                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1379                          (u32)tx_q->dma_tx_phy);
1380
1381                 /* Setup the chained descriptor addresses */
1382                 if (priv->mode == STMMAC_CHAIN_MODE) {
1383                         if (priv->extend_desc)
1384                                 stmmac_mode_init(priv, tx_q->dma_etx,
1385                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1386                         else
1387                                 stmmac_mode_init(priv, tx_q->dma_tx,
1388                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1389                 }
1390
1391                 for (i = 0; i < DMA_TX_SIZE; i++) {
1392                         struct dma_desc *p;
1393                         if (priv->extend_desc)
1394                                 p = &((tx_q->dma_etx + i)->basic);
1395                         else
1396                                 p = tx_q->dma_tx + i;
1397
1398                         stmmac_clear_desc(priv, p);
1399
1400                         tx_q->tx_skbuff_dma[i].buf = 0;
1401                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1402                         tx_q->tx_skbuff_dma[i].len = 0;
1403                         tx_q->tx_skbuff_dma[i].last_segment = false;
1404                         tx_q->tx_skbuff[i] = NULL;
1405                 }
1406
1407                 tx_q->dirty_tx = 0;
1408                 tx_q->cur_tx = 0;
1409                 tx_q->mss = 0;
1410
1411                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1412         }
1413
1414         return 0;
1415 }
1416
1417 /**
1418  * init_dma_desc_rings - init the RX/TX descriptor rings
1419  * @dev: net device structure
1420  * @flags: gfp flag.
1421  * Description: this function initializes the DMA RX/TX descriptors
1422  * and allocates the socket buffers. It supports the chained and ring
1423  * modes.
1424  */
1425 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1426 {
1427         struct stmmac_priv *priv = netdev_priv(dev);
1428         int ret;
1429
1430         ret = init_dma_rx_desc_rings(dev, flags);
1431         if (ret)
1432                 return ret;
1433
1434         ret = init_dma_tx_desc_rings(dev);
1435
1436         stmmac_clear_descriptors(priv);
1437
1438         if (netif_msg_hw(priv))
1439                 stmmac_display_rings(priv);
1440
1441         return ret;
1442 }
1443
1444 /**
1445  * dma_free_rx_skbufs - free RX dma buffers
1446  * @priv: private structure
1447  * @queue: RX queue index
1448  */
1449 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451         int i;
1452
1453         for (i = 0; i < DMA_RX_SIZE; i++)
1454                 stmmac_free_rx_buffer(priv, queue, i);
1455 }
1456
1457 /**
1458  * dma_free_tx_skbufs - free TX dma buffers
1459  * @priv: private structure
1460  * @queue: TX queue index
1461  */
1462 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1463 {
1464         int i;
1465
1466         for (i = 0; i < DMA_TX_SIZE; i++)
1467                 stmmac_free_tx_buffer(priv, queue, i);
1468 }
1469
1470 /**
1471  * free_dma_rx_desc_resources - free RX dma desc resources
1472  * @priv: private structure
1473  */
1474 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1475 {
1476         u32 rx_count = priv->plat->rx_queues_to_use;
1477         u32 queue;
1478
1479         /* Free RX queue resources */
1480         for (queue = 0; queue < rx_count; queue++) {
1481                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1482
1483                 /* Release the DMA RX socket buffers */
1484                 dma_free_rx_skbufs(priv, queue);
1485
1486                 /* Free DMA regions of consistent memory previously allocated */
1487                 if (!priv->extend_desc)
1488                         dma_free_coherent(priv->device,
1489                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1490                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1491                 else
1492                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1493                                           sizeof(struct dma_extended_desc),
1494                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1495
1496                 kfree(rx_q->buf_pool);
1497                 if (rx_q->page_pool)
1498                         page_pool_destroy(rx_q->page_pool);
1499         }
1500 }
1501
1502 /**
1503  * free_dma_tx_desc_resources - free TX dma desc resources
1504  * @priv: private structure
1505  */
1506 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1507 {
1508         u32 tx_count = priv->plat->tx_queues_to_use;
1509         u32 queue;
1510
1511         /* Free TX queue resources */
1512         for (queue = 0; queue < tx_count; queue++) {
1513                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1514
1515                 /* Release the DMA TX socket buffers */
1516                 dma_free_tx_skbufs(priv, queue);
1517
1518                 /* Free DMA regions of consistent memory previously allocated */
1519                 if (!priv->extend_desc)
1520                         dma_free_coherent(priv->device,
1521                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1522                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1523                 else
1524                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1525                                           sizeof(struct dma_extended_desc),
1526                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1527
1528                 kfree(tx_q->tx_skbuff_dma);
1529                 kfree(tx_q->tx_skbuff);
1530         }
1531 }
1532
1533 /**
1534  * alloc_dma_rx_desc_resources - alloc RX resources.
1535  * @priv: private structure
1536  * Description: according to which descriptor can be used (extend or basic)
1537  * this function allocates the resources for TX and RX paths. In case of
1538  * reception, for example, it pre-allocated the RX socket buffer in order to
1539  * allow zero-copy mechanism.
1540  */
1541 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1542 {
1543         u32 rx_count = priv->plat->rx_queues_to_use;
1544         int ret = -ENOMEM;
1545         u32 queue;
1546
1547         /* RX queues buffers and DMA */
1548         for (queue = 0; queue < rx_count; queue++) {
1549                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1550                 struct page_pool_params pp_params = { 0 };
1551                 unsigned int num_pages;
1552
1553                 rx_q->queue_index = queue;
1554                 rx_q->priv_data = priv;
1555
1556                 pp_params.flags = PP_FLAG_DMA_MAP;
1557                 pp_params.pool_size = DMA_RX_SIZE;
1558                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1559                 pp_params.order = ilog2(num_pages);
1560                 pp_params.nid = dev_to_node(priv->device);
1561                 pp_params.dev = priv->device;
1562                 pp_params.dma_dir = DMA_FROM_DEVICE;
1563
1564                 rx_q->page_pool = page_pool_create(&pp_params);
1565                 if (IS_ERR(rx_q->page_pool)) {
1566                         ret = PTR_ERR(rx_q->page_pool);
1567                         rx_q->page_pool = NULL;
1568                         goto err_dma;
1569                 }
1570
1571                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1572                                          GFP_KERNEL);
1573                 if (!rx_q->buf_pool)
1574                         goto err_dma;
1575
1576                 if (priv->extend_desc) {
1577                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1578                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1579                                                            &rx_q->dma_rx_phy,
1580                                                            GFP_KERNEL);
1581                         if (!rx_q->dma_erx)
1582                                 goto err_dma;
1583
1584                 } else {
1585                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1586                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1587                                                           &rx_q->dma_rx_phy,
1588                                                           GFP_KERNEL);
1589                         if (!rx_q->dma_rx)
1590                                 goto err_dma;
1591                 }
1592         }
1593
1594         return 0;
1595
1596 err_dma:
1597         free_dma_rx_desc_resources(priv);
1598
1599         return ret;
1600 }
1601
1602 /**
1603  * alloc_dma_tx_desc_resources - alloc TX resources.
1604  * @priv: private structure
1605  * Description: according to which descriptor can be used (extend or basic)
1606  * this function allocates the resources for TX and RX paths. In case of
1607  * reception, for example, it pre-allocated the RX socket buffer in order to
1608  * allow zero-copy mechanism.
1609  */
1610 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1611 {
1612         u32 tx_count = priv->plat->tx_queues_to_use;
1613         int ret = -ENOMEM;
1614         u32 queue;
1615
1616         /* TX queues buffers and DMA */
1617         for (queue = 0; queue < tx_count; queue++) {
1618                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1619
1620                 tx_q->queue_index = queue;
1621                 tx_q->priv_data = priv;
1622
1623                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1624                                               sizeof(*tx_q->tx_skbuff_dma),
1625                                               GFP_KERNEL);
1626                 if (!tx_q->tx_skbuff_dma)
1627                         goto err_dma;
1628
1629                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1630                                           sizeof(struct sk_buff *),
1631                                           GFP_KERNEL);
1632                 if (!tx_q->tx_skbuff)
1633                         goto err_dma;
1634
1635                 if (priv->extend_desc) {
1636                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1637                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1638                                                            &tx_q->dma_tx_phy,
1639                                                            GFP_KERNEL);
1640                         if (!tx_q->dma_etx)
1641                                 goto err_dma;
1642                 } else {
1643                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1644                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1645                                                           &tx_q->dma_tx_phy,
1646                                                           GFP_KERNEL);
1647                         if (!tx_q->dma_tx)
1648                                 goto err_dma;
1649                 }
1650         }
1651
1652         return 0;
1653
1654 err_dma:
1655         free_dma_tx_desc_resources(priv);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * alloc_dma_desc_resources - alloc TX/RX resources.
1662  * @priv: private structure
1663  * Description: according to which descriptor can be used (extend or basic)
1664  * this function allocates the resources for TX and RX paths. In case of
1665  * reception, for example, it pre-allocated the RX socket buffer in order to
1666  * allow zero-copy mechanism.
1667  */
1668 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1669 {
1670         /* RX Allocation */
1671         int ret = alloc_dma_rx_desc_resources(priv);
1672
1673         if (ret)
1674                 return ret;
1675
1676         ret = alloc_dma_tx_desc_resources(priv);
1677
1678         return ret;
1679 }
1680
1681 /**
1682  * free_dma_desc_resources - free dma desc resources
1683  * @priv: private structure
1684  */
1685 static void free_dma_desc_resources(struct stmmac_priv *priv)
1686 {
1687         /* Release the DMA RX socket buffers */
1688         free_dma_rx_desc_resources(priv);
1689
1690         /* Release the DMA TX socket buffers */
1691         free_dma_tx_desc_resources(priv);
1692 }
1693
1694 /**
1695  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1696  *  @priv: driver private structure
1697  *  Description: It is used for enabling the rx queues in the MAC
1698  */
1699 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1700 {
1701         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1702         int queue;
1703         u8 mode;
1704
1705         for (queue = 0; queue < rx_queues_count; queue++) {
1706                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1707                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1708         }
1709 }
1710
1711 /**
1712  * stmmac_start_rx_dma - start RX DMA channel
1713  * @priv: driver private structure
1714  * @chan: RX channel index
1715  * Description:
1716  * This starts a RX DMA channel
1717  */
1718 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1719 {
1720         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1721         stmmac_start_rx(priv, priv->ioaddr, chan);
1722 }
1723
1724 /**
1725  * stmmac_start_tx_dma - start TX DMA channel
1726  * @priv: driver private structure
1727  * @chan: TX channel index
1728  * Description:
1729  * This starts a TX DMA channel
1730  */
1731 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1732 {
1733         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1734         stmmac_start_tx(priv, priv->ioaddr, chan);
1735 }
1736
1737 /**
1738  * stmmac_stop_rx_dma - stop RX DMA channel
1739  * @priv: driver private structure
1740  * @chan: RX channel index
1741  * Description:
1742  * This stops a RX DMA channel
1743  */
1744 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1745 {
1746         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1747         stmmac_stop_rx(priv, priv->ioaddr, chan);
1748 }
1749
1750 /**
1751  * stmmac_stop_tx_dma - stop TX DMA channel
1752  * @priv: driver private structure
1753  * @chan: TX channel index
1754  * Description:
1755  * This stops a TX DMA channel
1756  */
1757 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1758 {
1759         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1760         stmmac_stop_tx(priv, priv->ioaddr, chan);
1761 }
1762
1763 /**
1764  * stmmac_start_all_dma - start all RX and TX DMA channels
1765  * @priv: driver private structure
1766  * Description:
1767  * This starts all the RX and TX DMA channels
1768  */
1769 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1770 {
1771         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1772         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1773         u32 chan = 0;
1774
1775         for (chan = 0; chan < rx_channels_count; chan++)
1776                 stmmac_start_rx_dma(priv, chan);
1777
1778         for (chan = 0; chan < tx_channels_count; chan++)
1779                 stmmac_start_tx_dma(priv, chan);
1780 }
1781
1782 /**
1783  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1784  * @priv: driver private structure
1785  * Description:
1786  * This stops the RX and TX DMA channels
1787  */
1788 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1789 {
1790         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1791         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1792         u32 chan = 0;
1793
1794         for (chan = 0; chan < rx_channels_count; chan++)
1795                 stmmac_stop_rx_dma(priv, chan);
1796
1797         for (chan = 0; chan < tx_channels_count; chan++)
1798                 stmmac_stop_tx_dma(priv, chan);
1799 }
1800
1801 /**
1802  *  stmmac_dma_operation_mode - HW DMA operation mode
1803  *  @priv: driver private structure
1804  *  Description: it is used for configuring the DMA operation mode register in
1805  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1806  */
1807 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1808 {
1809         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1810         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1811         int rxfifosz = priv->plat->rx_fifo_size;
1812         int txfifosz = priv->plat->tx_fifo_size;
1813         u32 txmode = 0;
1814         u32 rxmode = 0;
1815         u32 chan = 0;
1816         u8 qmode = 0;
1817
1818         if (rxfifosz == 0)
1819                 rxfifosz = priv->dma_cap.rx_fifo_size;
1820         if (txfifosz == 0)
1821                 txfifosz = priv->dma_cap.tx_fifo_size;
1822
1823         /* Adjust for real per queue fifo size */
1824         rxfifosz /= rx_channels_count;
1825         txfifosz /= tx_channels_count;
1826
1827         if (priv->plat->force_thresh_dma_mode) {
1828                 txmode = tc;
1829                 rxmode = tc;
1830         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1831                 /*
1832                  * In case of GMAC, SF mode can be enabled
1833                  * to perform the TX COE in HW. This depends on:
1834                  * 1) TX COE if actually supported
1835                  * 2) There is no bugged Jumbo frame support
1836                  *    that needs to not insert csum in the TDES.
1837                  */
1838                 txmode = SF_DMA_MODE;
1839                 rxmode = SF_DMA_MODE;
1840                 priv->xstats.threshold = SF_DMA_MODE;
1841         } else {
1842                 txmode = tc;
1843                 rxmode = SF_DMA_MODE;
1844         }
1845
1846         /* configure all channels */
1847         for (chan = 0; chan < rx_channels_count; chan++) {
1848                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1849
1850                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1851                                 rxfifosz, qmode);
1852                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1853                                 chan);
1854         }
1855
1856         for (chan = 0; chan < tx_channels_count; chan++) {
1857                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1858
1859                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1860                                 txfifosz, qmode);
1861         }
1862 }
1863
1864 /**
1865  * stmmac_tx_clean - to manage the transmission completion
1866  * @priv: driver private structure
1867  * @queue: TX queue index
1868  * Description: it reclaims the transmit resources after transmission completes.
1869  */
1870 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1871 {
1872         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1873         unsigned int bytes_compl = 0, pkts_compl = 0;
1874         unsigned int entry, count = 0;
1875
1876         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1877
1878         priv->xstats.tx_clean++;
1879
1880         entry = tx_q->dirty_tx;
1881         while ((entry != tx_q->cur_tx) && (count < budget)) {
1882                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1883                 struct dma_desc *p;
1884                 int status;
1885
1886                 if (priv->extend_desc)
1887                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1888                 else
1889                         p = tx_q->dma_tx + entry;
1890
1891                 status = stmmac_tx_status(priv, &priv->dev->stats,
1892                                 &priv->xstats, p, priv->ioaddr);
1893                 /* Check if the descriptor is owned by the DMA */
1894                 if (unlikely(status & tx_dma_own))
1895                         break;
1896
1897                 count++;
1898
1899                 /* Make sure descriptor fields are read after reading
1900                  * the own bit.
1901                  */
1902                 dma_rmb();
1903
1904                 /* Just consider the last segment and ...*/
1905                 if (likely(!(status & tx_not_ls))) {
1906                         /* ... verify the status error condition */
1907                         if (unlikely(status & tx_err)) {
1908                                 priv->dev->stats.tx_errors++;
1909                         } else {
1910                                 priv->dev->stats.tx_packets++;
1911                                 priv->xstats.tx_pkt_n++;
1912                         }
1913                         stmmac_get_tx_hwtstamp(priv, p, skb);
1914                 }
1915
1916                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1917                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1918                                 dma_unmap_page(priv->device,
1919                                                tx_q->tx_skbuff_dma[entry].buf,
1920                                                tx_q->tx_skbuff_dma[entry].len,
1921                                                DMA_TO_DEVICE);
1922                         else
1923                                 dma_unmap_single(priv->device,
1924                                                  tx_q->tx_skbuff_dma[entry].buf,
1925                                                  tx_q->tx_skbuff_dma[entry].len,
1926                                                  DMA_TO_DEVICE);
1927                         tx_q->tx_skbuff_dma[entry].buf = 0;
1928                         tx_q->tx_skbuff_dma[entry].len = 0;
1929                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1930                 }
1931
1932                 stmmac_clean_desc3(priv, tx_q, p);
1933
1934                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1935                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1936
1937                 if (likely(skb != NULL)) {
1938                         pkts_compl++;
1939                         bytes_compl += skb->len;
1940                         dev_consume_skb_any(skb);
1941                         tx_q->tx_skbuff[entry] = NULL;
1942                 }
1943
1944                 stmmac_release_tx_desc(priv, p, priv->mode);
1945
1946                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1947         }
1948         tx_q->dirty_tx = entry;
1949
1950         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1951                                   pkts_compl, bytes_compl);
1952
1953         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1954                                                                 queue))) &&
1955             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1956
1957                 netif_dbg(priv, tx_done, priv->dev,
1958                           "%s: restart transmit\n", __func__);
1959                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1960         }
1961
1962         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1963                 stmmac_enable_eee_mode(priv);
1964                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1965         }
1966
1967         /* We still have pending packets, let's call for a new scheduling */
1968         if (tx_q->dirty_tx != tx_q->cur_tx)
1969                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1970
1971         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1972
1973         return count;
1974 }
1975
1976 /**
1977  * stmmac_tx_err - to manage the tx error
1978  * @priv: driver private structure
1979  * @chan: channel index
1980  * Description: it cleans the descriptors and restarts the transmission
1981  * in case of transmission errors.
1982  */
1983 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1984 {
1985         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1986         int i;
1987
1988         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1989
1990         stmmac_stop_tx_dma(priv, chan);
1991         dma_free_tx_skbufs(priv, chan);
1992         for (i = 0; i < DMA_TX_SIZE; i++)
1993                 if (priv->extend_desc)
1994                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1995                                         priv->mode, (i == DMA_TX_SIZE - 1));
1996                 else
1997                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1998                                         priv->mode, (i == DMA_TX_SIZE - 1));
1999         tx_q->dirty_tx = 0;
2000         tx_q->cur_tx = 0;
2001         tx_q->mss = 0;
2002         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2003         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2004                             tx_q->dma_tx_phy, chan);
2005         stmmac_start_tx_dma(priv, chan);
2006
2007         priv->dev->stats.tx_errors++;
2008         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2009 }
2010
2011 /**
2012  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2013  *  @priv: driver private structure
2014  *  @txmode: TX operating mode
2015  *  @rxmode: RX operating mode
2016  *  @chan: channel index
2017  *  Description: it is used for configuring of the DMA operation mode in
2018  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2019  *  mode.
2020  */
2021 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2022                                           u32 rxmode, u32 chan)
2023 {
2024         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2025         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2026         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2027         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2028         int rxfifosz = priv->plat->rx_fifo_size;
2029         int txfifosz = priv->plat->tx_fifo_size;
2030
2031         if (rxfifosz == 0)
2032                 rxfifosz = priv->dma_cap.rx_fifo_size;
2033         if (txfifosz == 0)
2034                 txfifosz = priv->dma_cap.tx_fifo_size;
2035
2036         /* Adjust for real per queue fifo size */
2037         rxfifosz /= rx_channels_count;
2038         txfifosz /= tx_channels_count;
2039
2040         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2041         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2042 }
2043
2044 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2045 {
2046         int ret;
2047
2048         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2049                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2050         if (ret && (ret != -EINVAL)) {
2051                 stmmac_global_err(priv);
2052                 return true;
2053         }
2054
2055         return false;
2056 }
2057
2058 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2059 {
2060         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2061                                                  &priv->xstats, chan);
2062         struct stmmac_channel *ch = &priv->channel[chan];
2063
2064         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2065                 if (napi_schedule_prep(&ch->rx_napi)) {
2066                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2067                         __napi_schedule_irqoff(&ch->rx_napi);
2068                         status |= handle_tx;
2069                 }
2070         }
2071
2072         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2073                 napi_schedule_irqoff(&ch->tx_napi);
2074
2075         return status;
2076 }
2077
2078 /**
2079  * stmmac_dma_interrupt - DMA ISR
2080  * @priv: driver private structure
2081  * Description: this is the DMA ISR. It is called by the main ISR.
2082  * It calls the dwmac dma routine and schedule poll method in case of some
2083  * work can be done.
2084  */
2085 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2086 {
2087         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2088         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2089         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2090                                 tx_channel_count : rx_channel_count;
2091         u32 chan;
2092         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2093
2094         /* Make sure we never check beyond our status buffer. */
2095         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2096                 channels_to_check = ARRAY_SIZE(status);
2097
2098         for (chan = 0; chan < channels_to_check; chan++)
2099                 status[chan] = stmmac_napi_check(priv, chan);
2100
2101         for (chan = 0; chan < tx_channel_count; chan++) {
2102                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2103                         /* Try to bump up the dma threshold on this failure */
2104                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2105                             (tc <= 256)) {
2106                                 tc += 64;
2107                                 if (priv->plat->force_thresh_dma_mode)
2108                                         stmmac_set_dma_operation_mode(priv,
2109                                                                       tc,
2110                                                                       tc,
2111                                                                       chan);
2112                                 else
2113                                         stmmac_set_dma_operation_mode(priv,
2114                                                                     tc,
2115                                                                     SF_DMA_MODE,
2116                                                                     chan);
2117                                 priv->xstats.threshold = tc;
2118                         }
2119                 } else if (unlikely(status[chan] == tx_hard_error)) {
2120                         stmmac_tx_err(priv, chan);
2121                 }
2122         }
2123 }
2124
2125 /**
2126  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2127  * @priv: driver private structure
2128  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2129  */
2130 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2131 {
2132         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2133                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2134
2135         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2136
2137         if (priv->dma_cap.rmon) {
2138                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2139                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2140         } else
2141                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2142 }
2143
2144 /**
2145  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2146  * @priv: driver private structure
2147  * Description:
2148  *  new GMAC chip generations have a new register to indicate the
2149  *  presence of the optional feature/functions.
2150  *  This can be also used to override the value passed through the
2151  *  platform and necessary for old MAC10/100 and GMAC chips.
2152  */
2153 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2154 {
2155         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2156 }
2157
2158 /**
2159  * stmmac_check_ether_addr - check if the MAC addr is valid
2160  * @priv: driver private structure
2161  * Description:
2162  * it is to verify if the MAC address is valid, in case of failures it
2163  * generates a random MAC address
2164  */
2165 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2166 {
2167         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2168                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2169                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2170                         eth_hw_addr_random(priv->dev);
2171                 dev_info(priv->device, "device MAC address %pM\n",
2172                          priv->dev->dev_addr);
2173         }
2174 }
2175
2176 /**
2177  * stmmac_init_dma_engine - DMA init.
2178  * @priv: driver private structure
2179  * Description:
2180  * It inits the DMA invoking the specific MAC/GMAC callback.
2181  * Some DMA parameters can be passed from the platform;
2182  * in case of these are not passed a default is kept for the MAC or GMAC.
2183  */
2184 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2185 {
2186         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2187         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2188         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2189         struct stmmac_rx_queue *rx_q;
2190         struct stmmac_tx_queue *tx_q;
2191         u32 chan = 0;
2192         int atds = 0;
2193         int ret = 0;
2194
2195         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2196                 dev_err(priv->device, "Invalid DMA configuration\n");
2197                 return -EINVAL;
2198         }
2199
2200         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2201                 atds = 1;
2202
2203         ret = stmmac_reset(priv, priv->ioaddr);
2204         if (ret) {
2205                 dev_err(priv->device, "Failed to reset the dma\n");
2206                 return ret;
2207         }
2208
2209         /* DMA Configuration */
2210         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2211
2212         if (priv->plat->axi)
2213                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2214
2215         /* DMA CSR Channel configuration */
2216         for (chan = 0; chan < dma_csr_ch; chan++)
2217                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2218
2219         /* DMA RX Channel Configuration */
2220         for (chan = 0; chan < rx_channels_count; chan++) {
2221                 rx_q = &priv->rx_queue[chan];
2222
2223                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2224                                     rx_q->dma_rx_phy, chan);
2225
2226                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2227                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2228                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2229                                        rx_q->rx_tail_addr, chan);
2230         }
2231
2232         /* DMA TX Channel Configuration */
2233         for (chan = 0; chan < tx_channels_count; chan++) {
2234                 tx_q = &priv->tx_queue[chan];
2235
2236                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2237                                     tx_q->dma_tx_phy, chan);
2238
2239                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2240                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2241                                        tx_q->tx_tail_addr, chan);
2242         }
2243
2244         return ret;
2245 }
2246
2247 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2248 {
2249         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2250
2251         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2252 }
2253
2254 /**
2255  * stmmac_tx_timer - mitigation sw timer for tx.
2256  * @data: data pointer
2257  * Description:
2258  * This is the timer handler to directly invoke the stmmac_tx_clean.
2259  */
2260 static void stmmac_tx_timer(struct timer_list *t)
2261 {
2262         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2263         struct stmmac_priv *priv = tx_q->priv_data;
2264         struct stmmac_channel *ch;
2265
2266         ch = &priv->channel[tx_q->queue_index];
2267
2268         /*
2269          * If NAPI is already running we can miss some events. Let's rearm
2270          * the timer and try again.
2271          */
2272         if (likely(napi_schedule_prep(&ch->tx_napi)))
2273                 __napi_schedule(&ch->tx_napi);
2274         else
2275                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2276 }
2277
2278 /**
2279  * stmmac_init_coalesce - init mitigation options.
2280  * @priv: driver private structure
2281  * Description:
2282  * This inits the coalesce parameters: i.e. timer rate,
2283  * timer handler and default threshold used for enabling the
2284  * interrupt on completion bit.
2285  */
2286 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2287 {
2288         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2289         u32 chan;
2290
2291         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2292         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2293         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2294
2295         for (chan = 0; chan < tx_channel_count; chan++) {
2296                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2297
2298                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2299         }
2300 }
2301
2302 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2303 {
2304         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2305         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2306         u32 chan;
2307
2308         /* set TX ring length */
2309         for (chan = 0; chan < tx_channels_count; chan++)
2310                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2311                                 (DMA_TX_SIZE - 1), chan);
2312
2313         /* set RX ring length */
2314         for (chan = 0; chan < rx_channels_count; chan++)
2315                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2316                                 (DMA_RX_SIZE - 1), chan);
2317 }
2318
2319 /**
2320  *  stmmac_set_tx_queue_weight - Set TX queue weight
2321  *  @priv: driver private structure
2322  *  Description: It is used for setting TX queues weight
2323  */
2324 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2325 {
2326         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2327         u32 weight;
2328         u32 queue;
2329
2330         for (queue = 0; queue < tx_queues_count; queue++) {
2331                 weight = priv->plat->tx_queues_cfg[queue].weight;
2332                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2333         }
2334 }
2335
2336 /**
2337  *  stmmac_configure_cbs - Configure CBS in TX queue
2338  *  @priv: driver private structure
2339  *  Description: It is used for configuring CBS in AVB TX queues
2340  */
2341 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2342 {
2343         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2344         u32 mode_to_use;
2345         u32 queue;
2346
2347         /* queue 0 is reserved for legacy traffic */
2348         for (queue = 1; queue < tx_queues_count; queue++) {
2349                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2350                 if (mode_to_use == MTL_QUEUE_DCB)
2351                         continue;
2352
2353                 stmmac_config_cbs(priv, priv->hw,
2354                                 priv->plat->tx_queues_cfg[queue].send_slope,
2355                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2356                                 priv->plat->tx_queues_cfg[queue].high_credit,
2357                                 priv->plat->tx_queues_cfg[queue].low_credit,
2358                                 queue);
2359         }
2360 }
2361
2362 /**
2363  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2364  *  @priv: driver private structure
2365  *  Description: It is used for mapping RX queues to RX dma channels
2366  */
2367 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2368 {
2369         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2370         u32 queue;
2371         u32 chan;
2372
2373         for (queue = 0; queue < rx_queues_count; queue++) {
2374                 chan = priv->plat->rx_queues_cfg[queue].chan;
2375                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2376         }
2377 }
2378
2379 /**
2380  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2381  *  @priv: driver private structure
2382  *  Description: It is used for configuring the RX Queue Priority
2383  */
2384 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2385 {
2386         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2387         u32 queue;
2388         u32 prio;
2389
2390         for (queue = 0; queue < rx_queues_count; queue++) {
2391                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2392                         continue;
2393
2394                 prio = priv->plat->rx_queues_cfg[queue].prio;
2395                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2396         }
2397 }
2398
2399 /**
2400  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2401  *  @priv: driver private structure
2402  *  Description: It is used for configuring the TX Queue Priority
2403  */
2404 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2405 {
2406         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2407         u32 queue;
2408         u32 prio;
2409
2410         for (queue = 0; queue < tx_queues_count; queue++) {
2411                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2412                         continue;
2413
2414                 prio = priv->plat->tx_queues_cfg[queue].prio;
2415                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2416         }
2417 }
2418
2419 /**
2420  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2421  *  @priv: driver private structure
2422  *  Description: It is used for configuring the RX queue routing
2423  */
2424 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2425 {
2426         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2427         u32 queue;
2428         u8 packet;
2429
2430         for (queue = 0; queue < rx_queues_count; queue++) {
2431                 /* no specific packet type routing specified for the queue */
2432                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2433                         continue;
2434
2435                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2436                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2437         }
2438 }
2439
2440 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2441 {
2442         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2443                 priv->rss.enable = false;
2444                 return;
2445         }
2446
2447         if (priv->dev->features & NETIF_F_RXHASH)
2448                 priv->rss.enable = true;
2449         else
2450                 priv->rss.enable = false;
2451
2452         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2453                              priv->plat->rx_queues_to_use);
2454 }
2455
2456 /**
2457  *  stmmac_mtl_configuration - Configure MTL
2458  *  @priv: driver private structure
2459  *  Description: It is used for configurring MTL
2460  */
2461 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2462 {
2463         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2464         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2465
2466         if (tx_queues_count > 1)
2467                 stmmac_set_tx_queue_weight(priv);
2468
2469         /* Configure MTL RX algorithms */
2470         if (rx_queues_count > 1)
2471                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2472                                 priv->plat->rx_sched_algorithm);
2473
2474         /* Configure MTL TX algorithms */
2475         if (tx_queues_count > 1)
2476                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2477                                 priv->plat->tx_sched_algorithm);
2478
2479         /* Configure CBS in AVB TX queues */
2480         if (tx_queues_count > 1)
2481                 stmmac_configure_cbs(priv);
2482
2483         /* Map RX MTL to DMA channels */
2484         stmmac_rx_queue_dma_chan_map(priv);
2485
2486         /* Enable MAC RX Queues */
2487         stmmac_mac_enable_rx_queues(priv);
2488
2489         /* Set RX priorities */
2490         if (rx_queues_count > 1)
2491                 stmmac_mac_config_rx_queues_prio(priv);
2492
2493         /* Set TX priorities */
2494         if (tx_queues_count > 1)
2495                 stmmac_mac_config_tx_queues_prio(priv);
2496
2497         /* Set RX routing */
2498         if (rx_queues_count > 1)
2499                 stmmac_mac_config_rx_queues_routing(priv);
2500
2501         /* Receive Side Scaling */
2502         if (rx_queues_count > 1)
2503                 stmmac_mac_config_rss(priv);
2504 }
2505
2506 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2507 {
2508         if (priv->dma_cap.asp) {
2509                 netdev_info(priv->dev, "Enabling Safety Features\n");
2510                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2511         } else {
2512                 netdev_info(priv->dev, "No Safety Features support found\n");
2513         }
2514 }
2515
2516 /**
2517  * stmmac_hw_setup - setup mac in a usable state.
2518  *  @dev : pointer to the device structure.
2519  *  Description:
2520  *  this is the main function to setup the HW in a usable state because the
2521  *  dma engine is reset, the core registers are configured (e.g. AXI,
2522  *  Checksum features, timers). The DMA is ready to start receiving and
2523  *  transmitting.
2524  *  Return value:
2525  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2526  *  file on failure.
2527  */
2528 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2529 {
2530         struct stmmac_priv *priv = netdev_priv(dev);
2531         u32 rx_cnt = priv->plat->rx_queues_to_use;
2532         u32 tx_cnt = priv->plat->tx_queues_to_use;
2533         u32 chan;
2534         int ret;
2535
2536         /* DMA initialization and SW reset */
2537         ret = stmmac_init_dma_engine(priv);
2538         if (ret < 0) {
2539                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2540                            __func__);
2541                 return ret;
2542         }
2543
2544         /* Copy the MAC addr into the HW  */
2545         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2546
2547         /* PS and related bits will be programmed according to the speed */
2548         if (priv->hw->pcs) {
2549                 int speed = priv->plat->mac_port_sel_speed;
2550
2551                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2552                     (speed == SPEED_1000)) {
2553                         priv->hw->ps = speed;
2554                 } else {
2555                         dev_warn(priv->device, "invalid port speed\n");
2556                         priv->hw->ps = 0;
2557                 }
2558         }
2559
2560         /* Initialize the MAC Core */
2561         stmmac_core_init(priv, priv->hw, dev);
2562
2563         /* Initialize MTL*/
2564         stmmac_mtl_configuration(priv);
2565
2566         /* Initialize Safety Features */
2567         stmmac_safety_feat_configuration(priv);
2568
2569         ret = stmmac_rx_ipc(priv, priv->hw);
2570         if (!ret) {
2571                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2572                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2573                 priv->hw->rx_csum = 0;
2574         }
2575
2576         /* Enable the MAC Rx/Tx */
2577         stmmac_mac_set(priv, priv->ioaddr, true);
2578
2579         /* Set the HW DMA mode and the COE */
2580         stmmac_dma_operation_mode(priv);
2581
2582         stmmac_mmc_setup(priv);
2583
2584         if (init_ptp) {
2585                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2586                 if (ret < 0)
2587                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2588
2589                 ret = stmmac_init_ptp(priv);
2590                 if (ret == -EOPNOTSUPP)
2591                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2592                 else if (ret)
2593                         netdev_warn(priv->dev, "PTP init failed\n");
2594         }
2595
2596         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2597
2598         if (priv->use_riwt) {
2599                 if (!priv->rx_riwt)
2600                         priv->rx_riwt = DEF_DMA_RIWT;
2601
2602                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2603         }
2604
2605         if (priv->hw->pcs)
2606                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2607
2608         /* set TX and RX rings length */
2609         stmmac_set_rings_length(priv);
2610
2611         /* Enable TSO */
2612         if (priv->tso) {
2613                 for (chan = 0; chan < tx_cnt; chan++)
2614                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2615         }
2616
2617         /* Enable Split Header */
2618         if (priv->sph && priv->hw->rx_csum) {
2619                 for (chan = 0; chan < rx_cnt; chan++)
2620                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2621         }
2622
2623         /* VLAN Tag Insertion */
2624         if (priv->dma_cap.vlins)
2625                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2626
2627         /* Start the ball rolling... */
2628         stmmac_start_all_dma(priv);
2629
2630         return 0;
2631 }
2632
2633 static void stmmac_hw_teardown(struct net_device *dev)
2634 {
2635         struct stmmac_priv *priv = netdev_priv(dev);
2636
2637         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2638 }
2639
2640 /**
2641  *  stmmac_open - open entry point of the driver
2642  *  @dev : pointer to the device structure.
2643  *  Description:
2644  *  This function is the open entry point of the driver.
2645  *  Return value:
2646  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2647  *  file on failure.
2648  */
2649 static int stmmac_open(struct net_device *dev)
2650 {
2651         struct stmmac_priv *priv = netdev_priv(dev);
2652         int bfsize = 0;
2653         u32 chan;
2654         int ret;
2655
2656         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2657             priv->hw->pcs != STMMAC_PCS_TBI &&
2658             priv->hw->pcs != STMMAC_PCS_RTBI) {
2659                 ret = stmmac_init_phy(dev);
2660                 if (ret) {
2661                         netdev_err(priv->dev,
2662                                    "%s: Cannot attach to PHY (error: %d)\n",
2663                                    __func__, ret);
2664                         return ret;
2665                 }
2666         }
2667
2668         /* Extra statistics */
2669         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2670         priv->xstats.threshold = tc;
2671
2672         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2673         if (bfsize < 0)
2674                 bfsize = 0;
2675
2676         if (bfsize < BUF_SIZE_16KiB)
2677                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2678
2679         priv->dma_buf_sz = bfsize;
2680         buf_sz = bfsize;
2681
2682         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2683
2684         ret = alloc_dma_desc_resources(priv);
2685         if (ret < 0) {
2686                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2687                            __func__);
2688                 goto dma_desc_error;
2689         }
2690
2691         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2692         if (ret < 0) {
2693                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2694                            __func__);
2695                 goto init_error;
2696         }
2697
2698         ret = stmmac_hw_setup(dev, true);
2699         if (ret < 0) {
2700                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2701                 goto init_error;
2702         }
2703
2704         stmmac_init_coalesce(priv);
2705
2706         phylink_start(priv->phylink);
2707
2708         /* Request the IRQ lines */
2709         ret = request_irq(dev->irq, stmmac_interrupt,
2710                           IRQF_SHARED, dev->name, dev);
2711         if (unlikely(ret < 0)) {
2712                 netdev_err(priv->dev,
2713                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2714                            __func__, dev->irq, ret);
2715                 goto irq_error;
2716         }
2717
2718         /* Request the Wake IRQ in case of another line is used for WoL */
2719         if (priv->wol_irq != dev->irq) {
2720                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2721                                   IRQF_SHARED, dev->name, dev);
2722                 if (unlikely(ret < 0)) {
2723                         netdev_err(priv->dev,
2724                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2725                                    __func__, priv->wol_irq, ret);
2726                         goto wolirq_error;
2727                 }
2728         }
2729
2730         /* Request the IRQ lines */
2731         if (priv->lpi_irq > 0) {
2732                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2733                                   dev->name, dev);
2734                 if (unlikely(ret < 0)) {
2735                         netdev_err(priv->dev,
2736                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2737                                    __func__, priv->lpi_irq, ret);
2738                         goto lpiirq_error;
2739                 }
2740         }
2741
2742         stmmac_enable_all_queues(priv);
2743         stmmac_start_all_queues(priv);
2744
2745         return 0;
2746
2747 lpiirq_error:
2748         if (priv->wol_irq != dev->irq)
2749                 free_irq(priv->wol_irq, dev);
2750 wolirq_error:
2751         free_irq(dev->irq, dev);
2752 irq_error:
2753         phylink_stop(priv->phylink);
2754
2755         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2756                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2757
2758         stmmac_hw_teardown(dev);
2759 init_error:
2760         free_dma_desc_resources(priv);
2761 dma_desc_error:
2762         phylink_disconnect_phy(priv->phylink);
2763         return ret;
2764 }
2765
2766 /**
2767  *  stmmac_release - close entry point of the driver
2768  *  @dev : device pointer.
2769  *  Description:
2770  *  This is the stop entry point of the driver.
2771  */
2772 static int stmmac_release(struct net_device *dev)
2773 {
2774         struct stmmac_priv *priv = netdev_priv(dev);
2775         u32 chan;
2776
2777         if (priv->eee_enabled)
2778                 del_timer_sync(&priv->eee_ctrl_timer);
2779
2780         /* Stop and disconnect the PHY */
2781         phylink_stop(priv->phylink);
2782         phylink_disconnect_phy(priv->phylink);
2783
2784         stmmac_stop_all_queues(priv);
2785
2786         stmmac_disable_all_queues(priv);
2787
2788         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2789                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2790
2791         /* Free the IRQ lines */
2792         free_irq(dev->irq, dev);
2793         if (priv->wol_irq != dev->irq)
2794                 free_irq(priv->wol_irq, dev);
2795         if (priv->lpi_irq > 0)
2796                 free_irq(priv->lpi_irq, dev);
2797
2798         /* Stop TX/RX DMA and clear the descriptors */
2799         stmmac_stop_all_dma(priv);
2800
2801         /* Release and free the Rx/Tx resources */
2802         free_dma_desc_resources(priv);
2803
2804         /* Disable the MAC Rx/Tx */
2805         stmmac_mac_set(priv, priv->ioaddr, false);
2806
2807         netif_carrier_off(dev);
2808
2809         stmmac_release_ptp(priv);
2810
2811         return 0;
2812 }
2813
2814 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2815                                struct stmmac_tx_queue *tx_q)
2816 {
2817         u16 tag = 0x0, inner_tag = 0x0;
2818         u32 inner_type = 0x0;
2819         struct dma_desc *p;
2820
2821         if (!priv->dma_cap.vlins)
2822                 return false;
2823         if (!skb_vlan_tag_present(skb))
2824                 return false;
2825         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2826                 inner_tag = skb_vlan_tag_get(skb);
2827                 inner_type = STMMAC_VLAN_INSERT;
2828         }
2829
2830         tag = skb_vlan_tag_get(skb);
2831
2832         p = tx_q->dma_tx + tx_q->cur_tx;
2833         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2834                 return false;
2835
2836         stmmac_set_tx_owner(priv, p);
2837         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2838         return true;
2839 }
2840
2841 /**
2842  *  stmmac_tso_allocator - close entry point of the driver
2843  *  @priv: driver private structure
2844  *  @des: buffer start address
2845  *  @total_len: total length to fill in descriptors
2846  *  @last_segmant: condition for the last descriptor
2847  *  @queue: TX queue index
2848  *  Description:
2849  *  This function fills descriptor and request new descriptors according to
2850  *  buffer length to fill
2851  */
2852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2853                                  int total_len, bool last_segment, u32 queue)
2854 {
2855         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2856         struct dma_desc *desc;
2857         u32 buff_size;
2858         int tmp_len;
2859
2860         tmp_len = total_len;
2861
2862         while (tmp_len > 0) {
2863                 dma_addr_t curr_addr;
2864
2865                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2866                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2867                 desc = tx_q->dma_tx + tx_q->cur_tx;
2868
2869                 curr_addr = des + (total_len - tmp_len);
2870                 if (priv->dma_cap.addr64 <= 32)
2871                         desc->des0 = cpu_to_le32(curr_addr);
2872                 else
2873                         stmmac_set_desc_addr(priv, desc, curr_addr);
2874
2875                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2876                             TSO_MAX_BUFF_SIZE : tmp_len;
2877
2878                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2879                                 0, 1,
2880                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2881                                 0, 0);
2882
2883                 tmp_len -= TSO_MAX_BUFF_SIZE;
2884         }
2885 }
2886
2887 /**
2888  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2889  *  @skb : the socket buffer
2890  *  @dev : device pointer
2891  *  Description: this is the transmit function that is called on TSO frames
2892  *  (support available on GMAC4 and newer chips).
2893  *  Diagram below show the ring programming in case of TSO frames:
2894  *
2895  *  First Descriptor
2896  *   --------
2897  *   | DES0 |---> buffer1 = L2/L3/L4 header
2898  *   | DES1 |---> TCP Payload (can continue on next descr...)
2899  *   | DES2 |---> buffer 1 and 2 len
2900  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2901  *   --------
2902  *      |
2903  *     ...
2904  *      |
2905  *   --------
2906  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2907  *   | DES1 | --|
2908  *   | DES2 | --> buffer 1 and 2 len
2909  *   | DES3 |
2910  *   --------
2911  *
2912  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2913  */
2914 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2915 {
2916         struct dma_desc *desc, *first, *mss_desc = NULL;
2917         struct stmmac_priv *priv = netdev_priv(dev);
2918         int nfrags = skb_shinfo(skb)->nr_frags;
2919         u32 queue = skb_get_queue_mapping(skb);
2920         unsigned int first_entry, tx_packets;
2921         int tmp_pay_len = 0, first_tx;
2922         struct stmmac_tx_queue *tx_q;
2923         u8 proto_hdr_len, hdr;
2924         bool has_vlan, set_ic;
2925         u32 pay_len, mss;
2926         dma_addr_t des;
2927         int i;
2928
2929         tx_q = &priv->tx_queue[queue];
2930         first_tx = tx_q->cur_tx;
2931
2932         /* Compute header lengths */
2933         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2934                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2935                 hdr = sizeof(struct udphdr);
2936         } else {
2937                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2938                 hdr = tcp_hdrlen(skb);
2939         }
2940
2941         /* Desc availability based on threshold should be enough safe */
2942         if (unlikely(stmmac_tx_avail(priv, queue) <
2943                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2944                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2945                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2946                                                                 queue));
2947                         /* This is a hard error, log it. */
2948                         netdev_err(priv->dev,
2949                                    "%s: Tx Ring full when queue awake\n",
2950                                    __func__);
2951                 }
2952                 return NETDEV_TX_BUSY;
2953         }
2954
2955         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2956
2957         mss = skb_shinfo(skb)->gso_size;
2958
2959         /* set new MSS value if needed */
2960         if (mss != tx_q->mss) {
2961                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2962                 stmmac_set_mss(priv, mss_desc, mss);
2963                 tx_q->mss = mss;
2964                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2965                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2966         }
2967
2968         if (netif_msg_tx_queued(priv)) {
2969                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2970                         __func__, hdr, proto_hdr_len, pay_len, mss);
2971                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2972                         skb->data_len);
2973         }
2974
2975         /* Check if VLAN can be inserted by HW */
2976         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2977
2978         first_entry = tx_q->cur_tx;
2979         WARN_ON(tx_q->tx_skbuff[first_entry]);
2980
2981         desc = tx_q->dma_tx + first_entry;
2982         first = desc;
2983
2984         if (has_vlan)
2985                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2986
2987         /* first descriptor: fill Headers on Buf1 */
2988         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2989                              DMA_TO_DEVICE);
2990         if (dma_mapping_error(priv->device, des))
2991                 goto dma_map_err;
2992
2993         tx_q->tx_skbuff_dma[first_entry].buf = des;
2994         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2995
2996         if (priv->dma_cap.addr64 <= 32) {
2997                 first->des0 = cpu_to_le32(des);
2998
2999                 /* Fill start of payload in buff2 of first descriptor */
3000                 if (pay_len)
3001                         first->des1 = cpu_to_le32(des + proto_hdr_len);
3002
3003                 /* If needed take extra descriptors to fill the remaining payload */
3004                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3005         } else {
3006                 stmmac_set_desc_addr(priv, first, des);
3007                 tmp_pay_len = pay_len;
3008                 des += proto_hdr_len;
3009                 pay_len = 0;
3010         }
3011
3012         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3013
3014         /* Prepare fragments */
3015         for (i = 0; i < nfrags; i++) {
3016                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3017
3018                 des = skb_frag_dma_map(priv->device, frag, 0,
3019                                        skb_frag_size(frag),
3020                                        DMA_TO_DEVICE);
3021                 if (dma_mapping_error(priv->device, des))
3022                         goto dma_map_err;
3023
3024                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3025                                      (i == nfrags - 1), queue);
3026
3027                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3028                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3029                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3030         }
3031
3032         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3033
3034         /* Only the last descriptor gets to point to the skb. */
3035         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3036
3037         /* Manage tx mitigation */
3038         tx_packets = (tx_q->cur_tx + 1) - first_tx;
3039         tx_q->tx_count_frames += tx_packets;
3040
3041         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3042                 set_ic = true;
3043         else if (!priv->tx_coal_frames)
3044                 set_ic = false;
3045         else if (tx_packets > priv->tx_coal_frames)
3046                 set_ic = true;
3047         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3048                 set_ic = true;
3049         else
3050                 set_ic = false;
3051
3052         if (set_ic) {
3053                 desc = &tx_q->dma_tx[tx_q->cur_tx];
3054                 tx_q->tx_count_frames = 0;
3055                 stmmac_set_tx_ic(priv, desc);
3056                 priv->xstats.tx_set_ic_bit++;
3057         }
3058
3059         /* We've used all descriptors we need for this skb, however,
3060          * advance cur_tx so that it references a fresh descriptor.
3061          * ndo_start_xmit will fill this descriptor the next time it's
3062          * called and stmmac_tx_clean may clean up to this descriptor.
3063          */
3064         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3065
3066         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3067                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3068                           __func__);
3069                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3070         }
3071
3072         dev->stats.tx_bytes += skb->len;
3073         priv->xstats.tx_tso_frames++;
3074         priv->xstats.tx_tso_nfrags += nfrags;
3075
3076         if (priv->sarc_type)
3077                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3078
3079         skb_tx_timestamp(skb);
3080
3081         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3082                      priv->hwts_tx_en)) {
3083                 /* declare that device is doing timestamping */
3084                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3085                 stmmac_enable_tx_timestamp(priv, first);
3086         }
3087
3088         /* Complete the first descriptor before granting the DMA */
3089         stmmac_prepare_tso_tx_desc(priv, first, 1,
3090                         proto_hdr_len,
3091                         pay_len,
3092                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3093                         hdr / 4, (skb->len - proto_hdr_len));
3094
3095         /* If context desc is used to change MSS */
3096         if (mss_desc) {
3097                 /* Make sure that first descriptor has been completely
3098                  * written, including its own bit. This is because MSS is
3099                  * actually before first descriptor, so we need to make
3100                  * sure that MSS's own bit is the last thing written.
3101                  */
3102                 dma_wmb();
3103                 stmmac_set_tx_owner(priv, mss_desc);
3104         }
3105
3106         /* The own bit must be the latest setting done when prepare the
3107          * descriptor and then barrier is needed to make sure that
3108          * all is coherent before granting the DMA engine.
3109          */
3110         wmb();
3111
3112         if (netif_msg_pktdata(priv)) {
3113                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3114                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3115                         tx_q->cur_tx, first, nfrags);
3116
3117                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3118
3119                 pr_info(">>> frame to be transmitted: ");
3120                 print_pkt(skb->data, skb_headlen(skb));
3121         }
3122
3123         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3124
3125         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3126         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3127         stmmac_tx_timer_arm(priv, queue);
3128
3129         return NETDEV_TX_OK;
3130
3131 dma_map_err:
3132         dev_err(priv->device, "Tx dma map failed\n");
3133         dev_kfree_skb(skb);
3134         priv->dev->stats.tx_dropped++;
3135         return NETDEV_TX_OK;
3136 }
3137
3138 /**
3139  *  stmmac_xmit - Tx entry point of the driver
3140  *  @skb : the socket buffer
3141  *  @dev : device pointer
3142  *  Description : this is the tx entry point of the driver.
3143  *  It programs the chain or the ring and supports oversized frames
3144  *  and SG feature.
3145  */
3146 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3147 {
3148         unsigned int first_entry, tx_packets, enh_desc;
3149         struct stmmac_priv *priv = netdev_priv(dev);
3150         unsigned int nopaged_len = skb_headlen(skb);
3151         int i, csum_insertion = 0, is_jumbo = 0;
3152         u32 queue = skb_get_queue_mapping(skb);
3153         int nfrags = skb_shinfo(skb)->nr_frags;
3154         int gso = skb_shinfo(skb)->gso_type;
3155         struct dma_desc *desc, *first;
3156         struct stmmac_tx_queue *tx_q;
3157         bool has_vlan, set_ic;
3158         int entry, first_tx;
3159         dma_addr_t des;
3160
3161         tx_q = &priv->tx_queue[queue];
3162         first_tx = tx_q->cur_tx;
3163
3164         if (priv->tx_path_in_lpi_mode)
3165                 stmmac_disable_eee_mode(priv);
3166
3167         /* Manage oversized TCP frames for GMAC4 device */
3168         if (skb_is_gso(skb) && priv->tso) {
3169                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3170                         return stmmac_tso_xmit(skb, dev);
3171                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3172                         return stmmac_tso_xmit(skb, dev);
3173         }
3174
3175         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3176                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3177                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3178                                                                 queue));
3179                         /* This is a hard error, log it. */
3180                         netdev_err(priv->dev,
3181                                    "%s: Tx Ring full when queue awake\n",
3182                                    __func__);
3183                 }
3184                 return NETDEV_TX_BUSY;
3185         }
3186
3187         /* Check if VLAN can be inserted by HW */
3188         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3189
3190         entry = tx_q->cur_tx;
3191         first_entry = entry;
3192         WARN_ON(tx_q->tx_skbuff[first_entry]);
3193
3194         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3195
3196         if (likely(priv->extend_desc))
3197                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3198         else
3199                 desc = tx_q->dma_tx + entry;
3200
3201         first = desc;
3202
3203         if (has_vlan)
3204                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3205
3206         enh_desc = priv->plat->enh_desc;
3207         /* To program the descriptors according to the size of the frame */
3208         if (enh_desc)
3209                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3210
3211         if (unlikely(is_jumbo)) {
3212                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3213                 if (unlikely(entry < 0) && (entry != -EINVAL))
3214                         goto dma_map_err;
3215         }
3216
3217         for (i = 0; i < nfrags; i++) {
3218                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3219                 int len = skb_frag_size(frag);
3220                 bool last_segment = (i == (nfrags - 1));
3221
3222                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3223                 WARN_ON(tx_q->tx_skbuff[entry]);
3224
3225                 if (likely(priv->extend_desc))
3226                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3227                 else
3228                         desc = tx_q->dma_tx + entry;
3229
3230                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3231                                        DMA_TO_DEVICE);
3232                 if (dma_mapping_error(priv->device, des))
3233                         goto dma_map_err; /* should reuse desc w/o issues */
3234
3235                 tx_q->tx_skbuff_dma[entry].buf = des;
3236
3237                 stmmac_set_desc_addr(priv, desc, des);
3238
3239                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3240                 tx_q->tx_skbuff_dma[entry].len = len;
3241                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3242
3243                 /* Prepare the descriptor and set the own bit too */
3244                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3245                                 priv->mode, 1, last_segment, skb->len);
3246         }
3247
3248         /* Only the last descriptor gets to point to the skb. */
3249         tx_q->tx_skbuff[entry] = skb;
3250
3251         /* According to the coalesce parameter the IC bit for the latest
3252          * segment is reset and the timer re-started to clean the tx status.
3253          * This approach takes care about the fragments: desc is the first
3254          * element in case of no SG.
3255          */
3256         tx_packets = (entry + 1) - first_tx;
3257         tx_q->tx_count_frames += tx_packets;
3258
3259         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3260                 set_ic = true;
3261         else if (!priv->tx_coal_frames)
3262                 set_ic = false;
3263         else if (tx_packets > priv->tx_coal_frames)
3264                 set_ic = true;
3265         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3266                 set_ic = true;
3267         else
3268                 set_ic = false;
3269
3270         if (set_ic) {
3271                 if (likely(priv->extend_desc))
3272                         desc = &tx_q->dma_etx[entry].basic;
3273                 else
3274                         desc = &tx_q->dma_tx[entry];
3275
3276                 tx_q->tx_count_frames = 0;
3277                 stmmac_set_tx_ic(priv, desc);
3278                 priv->xstats.tx_set_ic_bit++;
3279         }
3280
3281         /* We've used all descriptors we need for this skb, however,
3282          * advance cur_tx so that it references a fresh descriptor.
3283          * ndo_start_xmit will fill this descriptor the next time it's
3284          * called and stmmac_tx_clean may clean up to this descriptor.
3285          */
3286         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3287         tx_q->cur_tx = entry;
3288
3289         if (netif_msg_pktdata(priv)) {
3290                 void *tx_head;
3291
3292                 netdev_dbg(priv->dev,
3293                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3294                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3295                            entry, first, nfrags);
3296
3297                 if (priv->extend_desc)
3298                         tx_head = (void *)tx_q->dma_etx;
3299                 else
3300                         tx_head = (void *)tx_q->dma_tx;
3301
3302                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3303
3304                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3305                 print_pkt(skb->data, skb->len);
3306         }
3307
3308         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3309                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3310                           __func__);
3311                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3312         }
3313
3314         dev->stats.tx_bytes += skb->len;
3315
3316         if (priv->sarc_type)
3317                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3318
3319         skb_tx_timestamp(skb);
3320
3321         /* Ready to fill the first descriptor and set the OWN bit w/o any
3322          * problems because all the descriptors are actually ready to be
3323          * passed to the DMA engine.
3324          */
3325         if (likely(!is_jumbo)) {
3326                 bool last_segment = (nfrags == 0);
3327
3328                 des = dma_map_single(priv->device, skb->data,
3329                                      nopaged_len, DMA_TO_DEVICE);
3330                 if (dma_mapping_error(priv->device, des))
3331                         goto dma_map_err;
3332
3333                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3334
3335                 stmmac_set_desc_addr(priv, first, des);
3336
3337                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3338                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3339
3340                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3341                              priv->hwts_tx_en)) {
3342                         /* declare that device is doing timestamping */
3343                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3344                         stmmac_enable_tx_timestamp(priv, first);
3345                 }
3346
3347                 /* Prepare the first descriptor setting the OWN bit too */
3348                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3349                                 csum_insertion, priv->mode, 1, last_segment,
3350                                 skb->len);
3351         } else {
3352                 stmmac_set_tx_owner(priv, first);
3353         }
3354
3355         /* The own bit must be the latest setting done when prepare the
3356          * descriptor and then barrier is needed to make sure that
3357          * all is coherent before granting the DMA engine.
3358          */
3359         wmb();
3360
3361         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3362
3363         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3364
3365         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3366         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3367         stmmac_tx_timer_arm(priv, queue);
3368
3369         return NETDEV_TX_OK;
3370
3371 dma_map_err:
3372         netdev_err(priv->dev, "Tx DMA map failed\n");
3373         dev_kfree_skb(skb);
3374         priv->dev->stats.tx_dropped++;
3375         return NETDEV_TX_OK;
3376 }
3377
3378 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         struct vlan_ethhdr *veth;
3381         __be16 vlan_proto;
3382         u16 vlanid;
3383
3384         veth = (struct vlan_ethhdr *)skb->data;
3385         vlan_proto = veth->h_vlan_proto;
3386
3387         if ((vlan_proto == htons(ETH_P_8021Q) &&
3388              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3389             (vlan_proto == htons(ETH_P_8021AD) &&
3390              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3391                 /* pop the vlan tag */
3392                 vlanid = ntohs(veth->h_vlan_TCI);
3393                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3394                 skb_pull(skb, VLAN_HLEN);
3395                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3396         }
3397 }
3398
3399
3400 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3401 {
3402         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3403                 return 0;
3404
3405         return 1;
3406 }
3407
3408 /**
3409  * stmmac_rx_refill - refill used skb preallocated buffers
3410  * @priv: driver private structure
3411  * @queue: RX queue index
3412  * Description : this is to reallocate the skb for the reception process
3413  * that is based on zero-copy.
3414  */
3415 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3416 {
3417         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3418         int len, dirty = stmmac_rx_dirty(priv, queue);
3419         unsigned int entry = rx_q->dirty_rx;
3420
3421         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3422
3423         while (dirty-- > 0) {
3424                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3425                 struct dma_desc *p;
3426                 bool use_rx_wd;
3427
3428                 if (priv->extend_desc)
3429                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3430                 else
3431                         p = rx_q->dma_rx + entry;
3432
3433                 if (!buf->page) {
3434                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3435                         if (!buf->page)
3436                                 break;
3437                 }
3438
3439                 if (priv->sph && !buf->sec_page) {
3440                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3441                         if (!buf->sec_page)
3442                                 break;
3443
3444                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3445
3446                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3447                                                    len, DMA_FROM_DEVICE);
3448                 }
3449
3450                 buf->addr = page_pool_get_dma_addr(buf->page);
3451
3452                 /* Sync whole allocation to device. This will invalidate old
3453                  * data.
3454                  */
3455                 dma_sync_single_for_device(priv->device, buf->addr, len,
3456                                            DMA_FROM_DEVICE);
3457
3458                 stmmac_set_desc_addr(priv, p, buf->addr);
3459                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3460                 stmmac_refill_desc3(priv, rx_q, p);
3461
3462                 rx_q->rx_count_frames++;
3463                 rx_q->rx_count_frames += priv->rx_coal_frames;
3464                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3465                         rx_q->rx_count_frames = 0;
3466
3467                 use_rx_wd = !priv->rx_coal_frames;
3468                 use_rx_wd |= rx_q->rx_count_frames > 0;
3469                 if (!priv->use_riwt)
3470                         use_rx_wd = false;
3471
3472                 dma_wmb();
3473                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3474
3475                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3476         }
3477         rx_q->dirty_rx = entry;
3478         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3479                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3480         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3481 }
3482
3483 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3484                                        struct dma_desc *p,
3485                                        int status, unsigned int len)
3486 {
3487         int ret, coe = priv->hw->rx_csum;
3488         unsigned int plen = 0, hlen = 0;
3489
3490         /* Not first descriptor, buffer is always zero */
3491         if (priv->sph && len)
3492                 return 0;
3493
3494         /* First descriptor, get split header length */
3495         ret = stmmac_get_rx_header_len(priv, p, &hlen);
3496         if (priv->sph && hlen) {
3497                 priv->xstats.rx_split_hdr_pkt_n++;
3498                 return hlen;
3499         }
3500
3501         /* First descriptor, not last descriptor and not split header */
3502         if (status & rx_not_ls)
3503                 return priv->dma_buf_sz;
3504
3505         plen = stmmac_get_rx_frame_len(priv, p, coe);
3506
3507         /* First descriptor and last descriptor and not split header */
3508         return min_t(unsigned int, priv->dma_buf_sz, plen);
3509 }
3510
3511 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3512                                        struct dma_desc *p,
3513                                        int status, unsigned int len)
3514 {
3515         int coe = priv->hw->rx_csum;
3516         unsigned int plen = 0;
3517
3518         /* Not split header, buffer is not available */
3519         if (!priv->sph)
3520                 return 0;
3521
3522         /* Not last descriptor */
3523         if (status & rx_not_ls)
3524                 return priv->dma_buf_sz;
3525
3526         plen = stmmac_get_rx_frame_len(priv, p, coe);
3527
3528         /* Last descriptor */
3529         return plen - len;
3530 }
3531
3532 /**
3533  * stmmac_rx - manage the receive process
3534  * @priv: driver private structure
3535  * @limit: napi bugget
3536  * @queue: RX queue index.
3537  * Description :  this the function called by the napi poll method.
3538  * It gets all the frames inside the ring.
3539  */
3540 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3541 {
3542         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3543         struct stmmac_channel *ch = &priv->channel[queue];
3544         unsigned int count = 0, error = 0, len = 0;
3545         int status = 0, coe = priv->hw->rx_csum;
3546         unsigned int next_entry = rx_q->cur_rx;
3547         struct sk_buff *skb = NULL;
3548
3549         if (netif_msg_rx_status(priv)) {
3550                 void *rx_head;
3551
3552                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3553                 if (priv->extend_desc)
3554                         rx_head = (void *)rx_q->dma_erx;
3555                 else
3556                         rx_head = (void *)rx_q->dma_rx;
3557
3558                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3559         }
3560         while (count < limit) {
3561                 unsigned int buf1_len = 0, buf2_len = 0;
3562                 enum pkt_hash_types hash_type;
3563                 struct stmmac_rx_buffer *buf;
3564                 struct dma_desc *np, *p;
3565                 int entry;
3566                 u32 hash;
3567
3568                 if (!count && rx_q->state_saved) {
3569                         skb = rx_q->state.skb;
3570                         error = rx_q->state.error;
3571                         len = rx_q->state.len;
3572                 } else {
3573                         rx_q->state_saved = false;
3574                         skb = NULL;
3575                         error = 0;
3576                         len = 0;
3577                 }
3578
3579                 if (count >= limit)
3580                         break;
3581
3582 read_again:
3583                 buf1_len = 0;
3584                 buf2_len = 0;
3585                 entry = next_entry;
3586                 buf = &rx_q->buf_pool[entry];
3587
3588                 if (priv->extend_desc)
3589                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3590                 else
3591                         p = rx_q->dma_rx + entry;
3592
3593                 /* read the status of the incoming frame */
3594                 status = stmmac_rx_status(priv, &priv->dev->stats,
3595                                 &priv->xstats, p);
3596                 /* check if managed by the DMA otherwise go ahead */
3597                 if (unlikely(status & dma_own))
3598                         break;
3599
3600                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3601                 next_entry = rx_q->cur_rx;
3602
3603                 if (priv->extend_desc)
3604                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3605                 else
3606                         np = rx_q->dma_rx + next_entry;
3607
3608                 prefetch(np);
3609
3610                 if (priv->extend_desc)
3611                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3612                                         &priv->xstats, rx_q->dma_erx + entry);
3613                 if (unlikely(status == discard_frame)) {
3614                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3615                         buf->page = NULL;
3616                         error = 1;
3617                         if (!priv->hwts_rx_en)
3618                                 priv->dev->stats.rx_errors++;
3619                 }
3620
3621                 if (unlikely(error && (status & rx_not_ls)))
3622                         goto read_again;
3623                 if (unlikely(error)) {
3624                         dev_kfree_skb(skb);
3625                         skb = NULL;
3626                         count++;
3627                         continue;
3628                 }
3629
3630                 /* Buffer is good. Go on. */
3631
3632                 prefetch(page_address(buf->page));
3633                 if (buf->sec_page)
3634                         prefetch(page_address(buf->sec_page));
3635
3636                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3637                 len += buf1_len;
3638                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3639                 len += buf2_len;
3640
3641                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3642                  * Type frames (LLC/LLC-SNAP)
3643                  *
3644                  * llc_snap is never checked in GMAC >= 4, so this ACS
3645                  * feature is always disabled and packets need to be
3646                  * stripped manually.
3647                  */
3648                 if (likely(!(status & rx_not_ls)) &&
3649                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3650                      unlikely(status != llc_snap))) {
3651                         if (buf2_len)
3652                                 buf2_len -= ETH_FCS_LEN;
3653                         else
3654                                 buf1_len -= ETH_FCS_LEN;
3655
3656                         len -= ETH_FCS_LEN;
3657                 }
3658
3659                 if (!skb) {
3660                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3661                         if (!skb) {
3662                                 priv->dev->stats.rx_dropped++;
3663                                 count++;
3664                                 goto drain_data;
3665                         }
3666
3667                         dma_sync_single_for_cpu(priv->device, buf->addr,
3668                                                 buf1_len, DMA_FROM_DEVICE);
3669                         skb_copy_to_linear_data(skb, page_address(buf->page),
3670                                                 buf1_len);
3671                         skb_put(skb, buf1_len);
3672
3673                         /* Data payload copied into SKB, page ready for recycle */
3674                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3675                         buf->page = NULL;
3676                 } else if (buf1_len) {
3677                         dma_sync_single_for_cpu(priv->device, buf->addr,
3678                                                 buf1_len, DMA_FROM_DEVICE);
3679                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3680                                         buf->page, 0, buf1_len,
3681                                         priv->dma_buf_sz);
3682
3683                         /* Data payload appended into SKB */
3684                         page_pool_release_page(rx_q->page_pool, buf->page);
3685                         buf->page = NULL;
3686                 }
3687
3688                 if (buf2_len) {
3689                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3690                                                 buf2_len, DMA_FROM_DEVICE);
3691                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3692                                         buf->sec_page, 0, buf2_len,
3693                                         priv->dma_buf_sz);
3694
3695                         /* Data payload appended into SKB */
3696                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3697                         buf->sec_page = NULL;
3698                 }
3699
3700 drain_data:
3701                 if (likely(status & rx_not_ls))
3702                         goto read_again;
3703                 if (!skb)
3704                         continue;
3705
3706                 /* Got entire packet into SKB. Finish it. */
3707
3708                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3709                 stmmac_rx_vlan(priv->dev, skb);
3710                 skb->protocol = eth_type_trans(skb, priv->dev);
3711
3712                 if (unlikely(!coe))
3713                         skb_checksum_none_assert(skb);
3714                 else
3715                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3716
3717                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3718                         skb_set_hash(skb, hash, hash_type);
3719
3720                 skb_record_rx_queue(skb, queue);
3721                 napi_gro_receive(&ch->rx_napi, skb);
3722                 skb = NULL;
3723
3724                 priv->dev->stats.rx_packets++;
3725                 priv->dev->stats.rx_bytes += len;
3726                 count++;
3727         }
3728
3729         if (status & rx_not_ls || skb) {
3730                 rx_q->state_saved = true;
3731                 rx_q->state.skb = skb;
3732                 rx_q->state.error = error;
3733                 rx_q->state.len = len;
3734         }
3735
3736         stmmac_rx_refill(priv, queue);
3737
3738         priv->xstats.rx_pkt_n += count;
3739
3740         return count;
3741 }
3742
3743 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3744 {
3745         struct stmmac_channel *ch =
3746                 container_of(napi, struct stmmac_channel, rx_napi);
3747         struct stmmac_priv *priv = ch->priv_data;
3748         u32 chan = ch->index;
3749         int work_done;
3750
3751         priv->xstats.napi_poll++;
3752
3753         work_done = stmmac_rx(priv, budget, chan);
3754         if (work_done < budget && napi_complete_done(napi, work_done))
3755                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3756         return work_done;
3757 }
3758
3759 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3760 {
3761         struct stmmac_channel *ch =
3762                 container_of(napi, struct stmmac_channel, tx_napi);
3763         struct stmmac_priv *priv = ch->priv_data;
3764         struct stmmac_tx_queue *tx_q;
3765         u32 chan = ch->index;
3766         int work_done;
3767
3768         priv->xstats.napi_poll++;
3769
3770         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3771         work_done = min(work_done, budget);
3772
3773         if (work_done < budget)
3774                 napi_complete_done(napi, work_done);
3775
3776         /* Force transmission restart */
3777         tx_q = &priv->tx_queue[chan];
3778         if (tx_q->cur_tx != tx_q->dirty_tx) {
3779                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3780                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3781                                        chan);
3782         }
3783
3784         return work_done;
3785 }
3786
3787 /**
3788  *  stmmac_tx_timeout
3789  *  @dev : Pointer to net device structure
3790  *  Description: this function is called when a packet transmission fails to
3791  *   complete within a reasonable time. The driver will mark the error in the
3792  *   netdev structure and arrange for the device to be reset to a sane state
3793  *   in order to transmit a new packet.
3794  */
3795 static void stmmac_tx_timeout(struct net_device *dev)
3796 {
3797         struct stmmac_priv *priv = netdev_priv(dev);
3798
3799         stmmac_global_err(priv);
3800 }
3801
3802 /**
3803  *  stmmac_set_rx_mode - entry point for multicast addressing
3804  *  @dev : pointer to the device structure
3805  *  Description:
3806  *  This function is a driver entry point which gets called by the kernel
3807  *  whenever multicast addresses must be enabled/disabled.
3808  *  Return value:
3809  *  void.
3810  */
3811 static void stmmac_set_rx_mode(struct net_device *dev)
3812 {
3813         struct stmmac_priv *priv = netdev_priv(dev);
3814
3815         stmmac_set_filter(priv, priv->hw, dev);
3816 }
3817
3818 /**
3819  *  stmmac_change_mtu - entry point to change MTU size for the device.
3820  *  @dev : device pointer.
3821  *  @new_mtu : the new MTU size for the device.
3822  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3823  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3824  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3825  *  Return value:
3826  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3827  *  file on failure.
3828  */
3829 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3830 {
3831         struct stmmac_priv *priv = netdev_priv(dev);
3832         int txfifosz = priv->plat->tx_fifo_size;
3833
3834         if (txfifosz == 0)
3835                 txfifosz = priv->dma_cap.tx_fifo_size;
3836
3837         txfifosz /= priv->plat->tx_queues_to_use;
3838
3839         if (netif_running(dev)) {
3840                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3841                 return -EBUSY;
3842         }
3843
3844         new_mtu = STMMAC_ALIGN(new_mtu);
3845
3846         /* If condition true, FIFO is too small or MTU too large */
3847         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3848                 return -EINVAL;
3849
3850         dev->mtu = new_mtu;
3851
3852         netdev_update_features(dev);
3853
3854         return 0;
3855 }
3856
3857 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3858                                              netdev_features_t features)
3859 {
3860         struct stmmac_priv *priv = netdev_priv(dev);
3861
3862         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3863                 features &= ~NETIF_F_RXCSUM;
3864
3865         if (!priv->plat->tx_coe)
3866                 features &= ~NETIF_F_CSUM_MASK;
3867
3868         /* Some GMAC devices have a bugged Jumbo frame support that
3869          * needs to have the Tx COE disabled for oversized frames
3870          * (due to limited buffer sizes). In this case we disable
3871          * the TX csum insertion in the TDES and not use SF.
3872          */
3873         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3874                 features &= ~NETIF_F_CSUM_MASK;
3875
3876         /* Disable tso if asked by ethtool */
3877         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3878                 if (features & NETIF_F_TSO)
3879                         priv->tso = true;
3880                 else
3881                         priv->tso = false;
3882         }
3883
3884         return features;
3885 }
3886
3887 static int stmmac_set_features(struct net_device *netdev,
3888                                netdev_features_t features)
3889 {
3890         struct stmmac_priv *priv = netdev_priv(netdev);
3891         bool sph_en;
3892         u32 chan;
3893
3894         /* Keep the COE Type in case of csum is supporting */
3895         if (features & NETIF_F_RXCSUM)
3896                 priv->hw->rx_csum = priv->plat->rx_coe;
3897         else
3898                 priv->hw->rx_csum = 0;
3899         /* No check needed because rx_coe has been set before and it will be
3900          * fixed in case of issue.
3901          */
3902         stmmac_rx_ipc(priv, priv->hw);
3903
3904         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3905         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3906                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3907
3908         return 0;
3909 }
3910
3911 /**
3912  *  stmmac_interrupt - main ISR
3913  *  @irq: interrupt number.
3914  *  @dev_id: to pass the net device pointer.
3915  *  Description: this is the main driver interrupt service routine.
3916  *  It can call:
3917  *  o DMA service routine (to manage incoming frame reception and transmission
3918  *    status)
3919  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3920  *    interrupts.
3921  */
3922 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3923 {
3924         struct net_device *dev = (struct net_device *)dev_id;
3925         struct stmmac_priv *priv = netdev_priv(dev);
3926         u32 rx_cnt = priv->plat->rx_queues_to_use;
3927         u32 tx_cnt = priv->plat->tx_queues_to_use;
3928         u32 queues_count;
3929         u32 queue;
3930         bool xmac;
3931
3932         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3933         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3934
3935         if (priv->irq_wake)
3936                 pm_wakeup_event(priv->device, 0);
3937
3938         if (unlikely(!dev)) {
3939                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3940                 return IRQ_NONE;
3941         }
3942
3943         /* Check if adapter is up */
3944         if (test_bit(STMMAC_DOWN, &priv->state))
3945                 return IRQ_HANDLED;
3946         /* Check if a fatal error happened */
3947         if (stmmac_safety_feat_interrupt(priv))
3948                 return IRQ_HANDLED;
3949
3950         /* To handle GMAC own interrupts */
3951         if ((priv->plat->has_gmac) || xmac) {
3952                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3953                 int mtl_status;
3954
3955                 if (unlikely(status)) {
3956                         /* For LPI we need to save the tx status */
3957                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3958                                 priv->tx_path_in_lpi_mode = true;
3959                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3960                                 priv->tx_path_in_lpi_mode = false;
3961                 }
3962
3963                 for (queue = 0; queue < queues_count; queue++) {
3964                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3965
3966                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3967                                                                 queue);
3968                         if (mtl_status != -EINVAL)
3969                                 status |= mtl_status;
3970
3971                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3972                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3973                                                        rx_q->rx_tail_addr,
3974                                                        queue);
3975                 }
3976
3977                 /* PCS link status */
3978                 if (priv->hw->pcs) {
3979                         if (priv->xstats.pcs_link)
3980                                 netif_carrier_on(dev);
3981                         else
3982                                 netif_carrier_off(dev);
3983                 }
3984         }
3985
3986         /* To handle DMA interrupts */
3987         stmmac_dma_interrupt(priv);
3988
3989         return IRQ_HANDLED;
3990 }
3991
3992 #ifdef CONFIG_NET_POLL_CONTROLLER
3993 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3994  * to allow network I/O with interrupts disabled.
3995  */
3996 static void stmmac_poll_controller(struct net_device *dev)
3997 {
3998         disable_irq(dev->irq);
3999         stmmac_interrupt(dev->irq, dev);
4000         enable_irq(dev->irq);
4001 }
4002 #endif
4003
4004 /**
4005  *  stmmac_ioctl - Entry point for the Ioctl
4006  *  @dev: Device pointer.
4007  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4008  *  a proprietary structure used to pass information to the driver.
4009  *  @cmd: IOCTL command
4010  *  Description:
4011  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4012  */
4013 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4014 {
4015         struct stmmac_priv *priv = netdev_priv (dev);
4016         int ret = -EOPNOTSUPP;
4017
4018         if (!netif_running(dev))
4019                 return -EINVAL;
4020
4021         switch (cmd) {
4022         case SIOCGMIIPHY:
4023         case SIOCGMIIREG:
4024         case SIOCSMIIREG:
4025                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4026                 break;
4027         case SIOCSHWTSTAMP:
4028                 ret = stmmac_hwtstamp_set(dev, rq);
4029                 break;
4030         case SIOCGHWTSTAMP:
4031                 ret = stmmac_hwtstamp_get(dev, rq);
4032                 break;
4033         default:
4034                 break;
4035         }
4036
4037         return ret;
4038 }
4039
4040 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4041                                     void *cb_priv)
4042 {
4043         struct stmmac_priv *priv = cb_priv;
4044         int ret = -EOPNOTSUPP;
4045
4046         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4047                 return ret;
4048
4049         stmmac_disable_all_queues(priv);
4050
4051         switch (type) {
4052         case TC_SETUP_CLSU32:
4053                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4054                 break;
4055         case TC_SETUP_CLSFLOWER:
4056                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4057                 break;
4058         default:
4059                 break;
4060         }
4061
4062         stmmac_enable_all_queues(priv);
4063         return ret;
4064 }
4065
4066 static LIST_HEAD(stmmac_block_cb_list);
4067
4068 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4069                            void *type_data)
4070 {
4071         struct stmmac_priv *priv = netdev_priv(ndev);
4072
4073         switch (type) {
4074         case TC_SETUP_BLOCK:
4075                 return flow_block_cb_setup_simple(type_data,
4076                                                   &stmmac_block_cb_list,
4077                                                   stmmac_setup_tc_block_cb,
4078                                                   priv, priv, true);
4079         case TC_SETUP_QDISC_CBS:
4080                 return stmmac_tc_setup_cbs(priv, priv, type_data);
4081         default:
4082                 return -EOPNOTSUPP;
4083         }
4084 }
4085
4086 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4087                                struct net_device *sb_dev)
4088 {
4089         int gso = skb_shinfo(skb)->gso_type;
4090
4091         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4092                 /*
4093                  * There is no way to determine the number of TSO/USO
4094                  * capable Queues. Let's use always the Queue 0
4095                  * because if TSO/USO is supported then at least this
4096                  * one will be capable.
4097                  */
4098                 return 0;
4099         }
4100
4101         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4102 }
4103
4104 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4105 {
4106         struct stmmac_priv *priv = netdev_priv(ndev);
4107         int ret = 0;
4108
4109         ret = eth_mac_addr(ndev, addr);
4110         if (ret)
4111                 return ret;
4112
4113         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4114
4115         return ret;
4116 }
4117
4118 #ifdef CONFIG_DEBUG_FS
4119 static struct dentry *stmmac_fs_dir;
4120
4121 static void sysfs_display_ring(void *head, int size, int extend_desc,
4122                                struct seq_file *seq)
4123 {
4124         int i;
4125         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4126         struct dma_desc *p = (struct dma_desc *)head;
4127
4128         for (i = 0; i < size; i++) {
4129                 if (extend_desc) {
4130                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4131                                    i, (unsigned int)virt_to_phys(ep),
4132                                    le32_to_cpu(ep->basic.des0),
4133                                    le32_to_cpu(ep->basic.des1),
4134                                    le32_to_cpu(ep->basic.des2),
4135                                    le32_to_cpu(ep->basic.des3));
4136                         ep++;
4137                 } else {
4138                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4139                                    i, (unsigned int)virt_to_phys(p),
4140                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4141                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4142                         p++;
4143                 }
4144                 seq_printf(seq, "\n");
4145         }
4146 }
4147
4148 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4149 {
4150         struct net_device *dev = seq->private;
4151         struct stmmac_priv *priv = netdev_priv(dev);
4152         u32 rx_count = priv->plat->rx_queues_to_use;
4153         u32 tx_count = priv->plat->tx_queues_to_use;
4154         u32 queue;
4155
4156         if ((dev->flags & IFF_UP) == 0)
4157                 return 0;
4158
4159         for (queue = 0; queue < rx_count; queue++) {
4160                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4161
4162                 seq_printf(seq, "RX Queue %d:\n", queue);
4163
4164                 if (priv->extend_desc) {
4165                         seq_printf(seq, "Extended descriptor ring:\n");
4166                         sysfs_display_ring((void *)rx_q->dma_erx,
4167                                            DMA_RX_SIZE, 1, seq);
4168                 } else {
4169                         seq_printf(seq, "Descriptor ring:\n");
4170                         sysfs_display_ring((void *)rx_q->dma_rx,
4171                                            DMA_RX_SIZE, 0, seq);
4172                 }
4173         }
4174
4175         for (queue = 0; queue < tx_count; queue++) {
4176                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4177
4178                 seq_printf(seq, "TX Queue %d:\n", queue);
4179
4180                 if (priv->extend_desc) {
4181                         seq_printf(seq, "Extended descriptor ring:\n");
4182                         sysfs_display_ring((void *)tx_q->dma_etx,
4183                                            DMA_TX_SIZE, 1, seq);
4184                 } else {
4185                         seq_printf(seq, "Descriptor ring:\n");
4186                         sysfs_display_ring((void *)tx_q->dma_tx,
4187                                            DMA_TX_SIZE, 0, seq);
4188                 }
4189         }
4190
4191         return 0;
4192 }
4193 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4194
4195 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4196 {
4197         struct net_device *dev = seq->private;
4198         struct stmmac_priv *priv = netdev_priv(dev);
4199
4200         if (!priv->hw_cap_support) {
4201                 seq_printf(seq, "DMA HW features not supported\n");
4202                 return 0;
4203         }
4204
4205         seq_printf(seq, "==============================\n");
4206         seq_printf(seq, "\tDMA HW features\n");
4207         seq_printf(seq, "==============================\n");
4208
4209         seq_printf(seq, "\t10/100 Mbps: %s\n",
4210                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4211         seq_printf(seq, "\t1000 Mbps: %s\n",
4212                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4213         seq_printf(seq, "\tHalf duplex: %s\n",
4214                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4215         seq_printf(seq, "\tHash Filter: %s\n",
4216                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4217         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4218                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4219         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4220                    (priv->dma_cap.pcs) ? "Y" : "N");
4221         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4222                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4223         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4224                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4225         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4226                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4227         seq_printf(seq, "\tRMON module: %s\n",
4228                    (priv->dma_cap.rmon) ? "Y" : "N");
4229         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4230                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4231         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4232                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4233         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4234                    (priv->dma_cap.eee) ? "Y" : "N");
4235         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4236         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4237                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4238         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4239                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4240                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4241         } else {
4242                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4243                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4244                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4245                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4246         }
4247         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4248                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4249         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4250                    priv->dma_cap.number_rx_channel);
4251         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4252                    priv->dma_cap.number_tx_channel);
4253         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4254                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4255
4256         return 0;
4257 }
4258 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4259
4260 /* Use network device events to rename debugfs file entries.
4261  */
4262 static int stmmac_device_event(struct notifier_block *unused,
4263                                unsigned long event, void *ptr)
4264 {
4265         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4266         struct stmmac_priv *priv = netdev_priv(dev);
4267
4268         if (dev->netdev_ops != &stmmac_netdev_ops)
4269                 goto done;
4270
4271         switch (event) {
4272         case NETDEV_CHANGENAME:
4273                 if (priv->dbgfs_dir)
4274                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4275                                                          priv->dbgfs_dir,
4276                                                          stmmac_fs_dir,
4277                                                          dev->name);
4278                 break;
4279         }
4280 done:
4281         return NOTIFY_DONE;
4282 }
4283
4284 static struct notifier_block stmmac_notifier = {
4285         .notifier_call = stmmac_device_event,
4286 };
4287
4288 static void stmmac_init_fs(struct net_device *dev)
4289 {
4290         struct stmmac_priv *priv = netdev_priv(dev);
4291
4292         /* Create per netdev entries */
4293         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4294
4295         /* Entry to report DMA RX/TX rings */
4296         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4297                             &stmmac_rings_status_fops);
4298
4299         /* Entry to report the DMA HW features */
4300         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4301                             &stmmac_dma_cap_fops);
4302
4303         register_netdevice_notifier(&stmmac_notifier);
4304 }
4305
4306 static void stmmac_exit_fs(struct net_device *dev)
4307 {
4308         struct stmmac_priv *priv = netdev_priv(dev);
4309
4310         unregister_netdevice_notifier(&stmmac_notifier);
4311         debugfs_remove_recursive(priv->dbgfs_dir);
4312 }
4313 #endif /* CONFIG_DEBUG_FS */
4314
4315 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4316 {
4317         unsigned char *data = (unsigned char *)&vid_le;
4318         unsigned char data_byte = 0;
4319         u32 crc = ~0x0;
4320         u32 temp = 0;
4321         int i, bits;
4322
4323         bits = get_bitmask_order(VLAN_VID_MASK);
4324         for (i = 0; i < bits; i++) {
4325                 if ((i % 8) == 0)
4326                         data_byte = data[i / 8];
4327
4328                 temp = ((crc & 1) ^ data_byte) & 1;
4329                 crc >>= 1;
4330                 data_byte >>= 1;
4331
4332                 if (temp)
4333                         crc ^= 0xedb88320;
4334         }
4335
4336         return crc;
4337 }
4338
4339 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4340 {
4341         u32 crc, hash = 0;
4342         __le16 pmatch = 0;
4343         int count = 0;
4344         u16 vid = 0;
4345
4346         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4347                 __le16 vid_le = cpu_to_le16(vid);
4348                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4349                 hash |= (1 << crc);
4350                 count++;
4351         }
4352
4353         if (!priv->dma_cap.vlhash) {
4354                 if (count > 2) /* VID = 0 always passes filter */
4355                         return -EOPNOTSUPP;
4356
4357                 pmatch = cpu_to_le16(vid);
4358                 hash = 0;
4359         }
4360
4361         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4362 }
4363
4364 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4365 {
4366         struct stmmac_priv *priv = netdev_priv(ndev);
4367         bool is_double = false;
4368         int ret;
4369
4370         if (be16_to_cpu(proto) == ETH_P_8021AD)
4371                 is_double = true;
4372
4373         set_bit(vid, priv->active_vlans);
4374         ret = stmmac_vlan_update(priv, is_double);
4375         if (ret) {
4376                 clear_bit(vid, priv->active_vlans);
4377                 return ret;
4378         }
4379
4380         return ret;
4381 }
4382
4383 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4384 {
4385         struct stmmac_priv *priv = netdev_priv(ndev);
4386         bool is_double = false;
4387
4388         if (be16_to_cpu(proto) == ETH_P_8021AD)
4389                 is_double = true;
4390
4391         clear_bit(vid, priv->active_vlans);
4392         return stmmac_vlan_update(priv, is_double);
4393 }
4394
4395 static const struct net_device_ops stmmac_netdev_ops = {
4396         .ndo_open = stmmac_open,
4397         .ndo_start_xmit = stmmac_xmit,
4398         .ndo_stop = stmmac_release,
4399         .ndo_change_mtu = stmmac_change_mtu,
4400         .ndo_fix_features = stmmac_fix_features,
4401         .ndo_set_features = stmmac_set_features,
4402         .ndo_set_rx_mode = stmmac_set_rx_mode,
4403         .ndo_tx_timeout = stmmac_tx_timeout,
4404         .ndo_do_ioctl = stmmac_ioctl,
4405         .ndo_setup_tc = stmmac_setup_tc,
4406         .ndo_select_queue = stmmac_select_queue,
4407 #ifdef CONFIG_NET_POLL_CONTROLLER
4408         .ndo_poll_controller = stmmac_poll_controller,
4409 #endif
4410         .ndo_set_mac_address = stmmac_set_mac_address,
4411         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4412         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4413 };
4414
4415 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4416 {
4417         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4418                 return;
4419         if (test_bit(STMMAC_DOWN, &priv->state))
4420                 return;
4421
4422         netdev_err(priv->dev, "Reset adapter.\n");
4423
4424         rtnl_lock();
4425         netif_trans_update(priv->dev);
4426         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4427                 usleep_range(1000, 2000);
4428
4429         set_bit(STMMAC_DOWN, &priv->state);
4430         dev_close(priv->dev);
4431         dev_open(priv->dev, NULL);
4432         clear_bit(STMMAC_DOWN, &priv->state);
4433         clear_bit(STMMAC_RESETING, &priv->state);
4434         rtnl_unlock();
4435 }
4436
4437 static void stmmac_service_task(struct work_struct *work)
4438 {
4439         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4440                         service_task);
4441
4442         stmmac_reset_subtask(priv);
4443         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4444 }
4445
4446 /**
4447  *  stmmac_hw_init - Init the MAC device
4448  *  @priv: driver private structure
4449  *  Description: this function is to configure the MAC device according to
4450  *  some platform parameters or the HW capability register. It prepares the
4451  *  driver to use either ring or chain modes and to setup either enhanced or
4452  *  normal descriptors.
4453  */
4454 static int stmmac_hw_init(struct stmmac_priv *priv)
4455 {
4456         int ret;
4457
4458         /* dwmac-sun8i only work in chain mode */
4459         if (priv->plat->has_sun8i)
4460                 chain_mode = 1;
4461         priv->chain_mode = chain_mode;
4462
4463         /* Initialize HW Interface */
4464         ret = stmmac_hwif_init(priv);
4465         if (ret)
4466                 return ret;
4467
4468         /* Get the HW capability (new GMAC newer than 3.50a) */
4469         priv->hw_cap_support = stmmac_get_hw_features(priv);
4470         if (priv->hw_cap_support) {
4471                 dev_info(priv->device, "DMA HW capability register supported\n");
4472
4473                 /* We can override some gmac/dma configuration fields: e.g.
4474                  * enh_desc, tx_coe (e.g. that are passed through the
4475                  * platform) with the values from the HW capability
4476                  * register (if supported).
4477                  */
4478                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4479                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4480                 priv->hw->pmt = priv->plat->pmt;
4481                 if (priv->dma_cap.hash_tb_sz) {
4482                         priv->hw->multicast_filter_bins =
4483                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4484                         priv->hw->mcast_bits_log2 =
4485                                         ilog2(priv->hw->multicast_filter_bins);
4486                 }
4487
4488                 /* TXCOE doesn't work in thresh DMA mode */
4489                 if (priv->plat->force_thresh_dma_mode)
4490                         priv->plat->tx_coe = 0;
4491                 else
4492                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4493
4494                 /* In case of GMAC4 rx_coe is from HW cap register. */
4495                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4496
4497                 if (priv->dma_cap.rx_coe_type2)
4498                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4499                 else if (priv->dma_cap.rx_coe_type1)
4500                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4501
4502         } else {
4503                 dev_info(priv->device, "No HW DMA feature register supported\n");
4504         }
4505
4506         if (priv->plat->rx_coe) {
4507                 priv->hw->rx_csum = priv->plat->rx_coe;
4508                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4509                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4510                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4511         }
4512         if (priv->plat->tx_coe)
4513                 dev_info(priv->device, "TX Checksum insertion supported\n");
4514
4515         if (priv->plat->pmt) {
4516                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4517                 device_set_wakeup_capable(priv->device, 1);
4518         }
4519
4520         if (priv->dma_cap.tsoen)
4521                 dev_info(priv->device, "TSO supported\n");
4522
4523         /* Run HW quirks, if any */
4524         if (priv->hwif_quirks) {
4525                 ret = priv->hwif_quirks(priv);
4526                 if (ret)
4527                         return ret;
4528         }
4529
4530         /* Rx Watchdog is available in the COREs newer than the 3.40.
4531          * In some case, for example on bugged HW this feature
4532          * has to be disable and this can be done by passing the
4533          * riwt_off field from the platform.
4534          */
4535         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4536             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4537                 priv->use_riwt = 1;
4538                 dev_info(priv->device,
4539                          "Enable RX Mitigation via HW Watchdog Timer\n");
4540         }
4541
4542         return 0;
4543 }
4544
4545 /**
4546  * stmmac_dvr_probe
4547  * @device: device pointer
4548  * @plat_dat: platform data pointer
4549  * @res: stmmac resource pointer
4550  * Description: this is the main probe function used to
4551  * call the alloc_etherdev, allocate the priv structure.
4552  * Return:
4553  * returns 0 on success, otherwise errno.
4554  */
4555 int stmmac_dvr_probe(struct device *device,
4556                      struct plat_stmmacenet_data *plat_dat,
4557                      struct stmmac_resources *res)
4558 {
4559         struct net_device *ndev = NULL;
4560         struct stmmac_priv *priv;
4561         u32 queue, rxq, maxq;
4562         int i, ret = 0;
4563
4564         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4565                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4566         if (!ndev)
4567                 return -ENOMEM;
4568
4569         SET_NETDEV_DEV(ndev, device);
4570
4571         priv = netdev_priv(ndev);
4572         priv->device = device;
4573         priv->dev = ndev;
4574
4575         stmmac_set_ethtool_ops(ndev);
4576         priv->pause = pause;
4577         priv->plat = plat_dat;
4578         priv->ioaddr = res->addr;
4579         priv->dev->base_addr = (unsigned long)res->addr;
4580
4581         priv->dev->irq = res->irq;
4582         priv->wol_irq = res->wol_irq;
4583         priv->lpi_irq = res->lpi_irq;
4584
4585         if (!IS_ERR_OR_NULL(res->mac))
4586                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4587
4588         dev_set_drvdata(device, priv->dev);
4589
4590         /* Verify driver arguments */
4591         stmmac_verify_args();
4592
4593         /* Allocate workqueue */
4594         priv->wq = create_singlethread_workqueue("stmmac_wq");
4595         if (!priv->wq) {
4596                 dev_err(priv->device, "failed to create workqueue\n");
4597                 return -ENOMEM;
4598         }
4599
4600         INIT_WORK(&priv->service_task, stmmac_service_task);
4601
4602         /* Override with kernel parameters if supplied XXX CRS XXX
4603          * this needs to have multiple instances
4604          */
4605         if ((phyaddr >= 0) && (phyaddr <= 31))
4606                 priv->plat->phy_addr = phyaddr;
4607
4608         if (priv->plat->stmmac_rst) {
4609                 ret = reset_control_assert(priv->plat->stmmac_rst);
4610                 reset_control_deassert(priv->plat->stmmac_rst);
4611                 /* Some reset controllers have only reset callback instead of
4612                  * assert + deassert callbacks pair.
4613                  */
4614                 if (ret == -ENOTSUPP)
4615                         reset_control_reset(priv->plat->stmmac_rst);
4616         }
4617
4618         /* Init MAC and get the capabilities */
4619         ret = stmmac_hw_init(priv);
4620         if (ret)
4621                 goto error_hw_init;
4622
4623         stmmac_check_ether_addr(priv);
4624
4625         /* Configure real RX and TX queues */
4626         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4627         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4628
4629         ndev->netdev_ops = &stmmac_netdev_ops;
4630
4631         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4632                             NETIF_F_RXCSUM;
4633
4634         ret = stmmac_tc_init(priv, priv);
4635         if (!ret) {
4636                 ndev->hw_features |= NETIF_F_HW_TC;
4637         }
4638
4639         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4640                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4641                 if (priv->plat->has_gmac4)
4642                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4643                 priv->tso = true;
4644                 dev_info(priv->device, "TSO feature enabled\n");
4645         }
4646
4647         if (priv->dma_cap.sphen) {
4648                 ndev->hw_features |= NETIF_F_GRO;
4649                 priv->sph = true;
4650                 dev_info(priv->device, "SPH feature enabled\n");
4651         }
4652
4653         if (priv->dma_cap.addr64) {
4654                 ret = dma_set_mask_and_coherent(device,
4655                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4656                 if (!ret) {
4657                         dev_info(priv->device, "Using %d bits DMA width\n",
4658                                  priv->dma_cap.addr64);
4659
4660                         /*
4661                          * If more than 32 bits can be addressed, make sure to
4662                          * enable enhanced addressing mode.
4663                          */
4664                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4665                                 priv->plat->dma_cfg->eame = true;
4666                 } else {
4667                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4668                         if (ret) {
4669                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4670                                 goto error_hw_init;
4671                         }
4672
4673                         priv->dma_cap.addr64 = 32;
4674                 }
4675         }
4676
4677         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4678         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4679 #ifdef STMMAC_VLAN_TAG_USED
4680         /* Both mac100 and gmac support receive VLAN tag detection */
4681         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4682         if (priv->dma_cap.vlhash) {
4683                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4684                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4685         }
4686         if (priv->dma_cap.vlins) {
4687                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4688                 if (priv->dma_cap.dvlan)
4689                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4690         }
4691 #endif
4692         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4693
4694         /* Initialize RSS */
4695         rxq = priv->plat->rx_queues_to_use;
4696         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4697         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4698                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4699
4700         if (priv->dma_cap.rssen && priv->plat->rss_en)
4701                 ndev->features |= NETIF_F_RXHASH;
4702
4703         /* MTU range: 46 - hw-specific max */
4704         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4705         if (priv->plat->has_xgmac)
4706                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4707         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4708                 ndev->max_mtu = JUMBO_LEN;
4709         else
4710                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4711         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4712          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4713          */
4714         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4715             (priv->plat->maxmtu >= ndev->min_mtu))
4716                 ndev->max_mtu = priv->plat->maxmtu;
4717         else if (priv->plat->maxmtu < ndev->min_mtu)
4718                 dev_warn(priv->device,
4719                          "%s: warning: maxmtu having invalid value (%d)\n",
4720                          __func__, priv->plat->maxmtu);
4721
4722         if (flow_ctrl)
4723                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4724
4725         /* Setup channels NAPI */
4726         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4727
4728         for (queue = 0; queue < maxq; queue++) {
4729                 struct stmmac_channel *ch = &priv->channel[queue];
4730
4731                 ch->priv_data = priv;
4732                 ch->index = queue;
4733
4734                 if (queue < priv->plat->rx_queues_to_use) {
4735                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4736                                        NAPI_POLL_WEIGHT);
4737                 }
4738                 if (queue < priv->plat->tx_queues_to_use) {
4739                         netif_tx_napi_add(ndev, &ch->tx_napi,
4740                                           stmmac_napi_poll_tx,
4741                                           NAPI_POLL_WEIGHT);
4742                 }
4743         }
4744
4745         mutex_init(&priv->lock);
4746
4747         /* If a specific clk_csr value is passed from the platform
4748          * this means that the CSR Clock Range selection cannot be
4749          * changed at run-time and it is fixed. Viceversa the driver'll try to
4750          * set the MDC clock dynamically according to the csr actual
4751          * clock input.
4752          */
4753         if (priv->plat->clk_csr >= 0)
4754                 priv->clk_csr = priv->plat->clk_csr;
4755         else
4756                 stmmac_clk_csr_set(priv);
4757
4758         stmmac_check_pcs_mode(priv);
4759
4760         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4761             priv->hw->pcs != STMMAC_PCS_TBI &&
4762             priv->hw->pcs != STMMAC_PCS_RTBI) {
4763                 /* MDIO bus Registration */
4764                 ret = stmmac_mdio_register(ndev);
4765                 if (ret < 0) {
4766                         dev_err(priv->device,
4767                                 "%s: MDIO bus (id: %d) registration failed",
4768                                 __func__, priv->plat->bus_id);
4769                         goto error_mdio_register;
4770                 }
4771         }
4772
4773         ret = stmmac_phy_setup(priv);
4774         if (ret) {
4775                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4776                 goto error_phy_setup;
4777         }
4778
4779         ret = register_netdev(ndev);
4780         if (ret) {
4781                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4782                         __func__, ret);
4783                 goto error_netdev_register;
4784         }
4785
4786 #ifdef CONFIG_DEBUG_FS
4787         stmmac_init_fs(ndev);
4788 #endif
4789
4790         return ret;
4791
4792 error_netdev_register:
4793         phylink_destroy(priv->phylink);
4794 error_phy_setup:
4795         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4796             priv->hw->pcs != STMMAC_PCS_TBI &&
4797             priv->hw->pcs != STMMAC_PCS_RTBI)
4798                 stmmac_mdio_unregister(ndev);
4799 error_mdio_register:
4800         for (queue = 0; queue < maxq; queue++) {
4801                 struct stmmac_channel *ch = &priv->channel[queue];
4802
4803                 if (queue < priv->plat->rx_queues_to_use)
4804                         netif_napi_del(&ch->rx_napi);
4805                 if (queue < priv->plat->tx_queues_to_use)
4806                         netif_napi_del(&ch->tx_napi);
4807         }
4808 error_hw_init:
4809         destroy_workqueue(priv->wq);
4810
4811         return ret;
4812 }
4813 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4814
4815 /**
4816  * stmmac_dvr_remove
4817  * @dev: device pointer
4818  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4819  * changes the link status, releases the DMA descriptor rings.
4820  */
4821 int stmmac_dvr_remove(struct device *dev)
4822 {
4823         struct net_device *ndev = dev_get_drvdata(dev);
4824         struct stmmac_priv *priv = netdev_priv(ndev);
4825
4826         netdev_info(priv->dev, "%s: removing driver", __func__);
4827
4828 #ifdef CONFIG_DEBUG_FS
4829         stmmac_exit_fs(ndev);
4830 #endif
4831         stmmac_stop_all_dma(priv);
4832
4833         stmmac_mac_set(priv, priv->ioaddr, false);
4834         netif_carrier_off(ndev);
4835         unregister_netdev(ndev);
4836         phylink_destroy(priv->phylink);
4837         if (priv->plat->stmmac_rst)
4838                 reset_control_assert(priv->plat->stmmac_rst);
4839         clk_disable_unprepare(priv->plat->pclk);
4840         clk_disable_unprepare(priv->plat->stmmac_clk);
4841         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4842             priv->hw->pcs != STMMAC_PCS_TBI &&
4843             priv->hw->pcs != STMMAC_PCS_RTBI)
4844                 stmmac_mdio_unregister(ndev);
4845         destroy_workqueue(priv->wq);
4846         mutex_destroy(&priv->lock);
4847
4848         return 0;
4849 }
4850 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4851
4852 /**
4853  * stmmac_suspend - suspend callback
4854  * @dev: device pointer
4855  * Description: this is the function to suspend the device and it is called
4856  * by the platform driver to stop the network queue, release the resources,
4857  * program the PMT register (for WoL), clean and release driver resources.
4858  */
4859 int stmmac_suspend(struct device *dev)
4860 {
4861         struct net_device *ndev = dev_get_drvdata(dev);
4862         struct stmmac_priv *priv = netdev_priv(ndev);
4863
4864         if (!ndev || !netif_running(ndev))
4865                 return 0;
4866
4867         phylink_mac_change(priv->phylink, false);
4868
4869         mutex_lock(&priv->lock);
4870
4871         netif_device_detach(ndev);
4872         stmmac_stop_all_queues(priv);
4873
4874         stmmac_disable_all_queues(priv);
4875
4876         /* Stop TX/RX DMA */
4877         stmmac_stop_all_dma(priv);
4878
4879         /* Enable Power down mode by programming the PMT regs */
4880         if (device_may_wakeup(priv->device)) {
4881                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4882                 priv->irq_wake = 1;
4883         } else {
4884                 mutex_unlock(&priv->lock);
4885                 rtnl_lock();
4886                 phylink_stop(priv->phylink);
4887                 rtnl_unlock();
4888                 mutex_lock(&priv->lock);
4889
4890                 stmmac_mac_set(priv, priv->ioaddr, false);
4891                 pinctrl_pm_select_sleep_state(priv->device);
4892                 /* Disable clock in case of PWM is off */
4893                 if (priv->plat->clk_ptp_ref)
4894                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
4895                 clk_disable_unprepare(priv->plat->pclk);
4896                 clk_disable_unprepare(priv->plat->stmmac_clk);
4897         }
4898         mutex_unlock(&priv->lock);
4899
4900         priv->speed = SPEED_UNKNOWN;
4901         return 0;
4902 }
4903 EXPORT_SYMBOL_GPL(stmmac_suspend);
4904
4905 /**
4906  * stmmac_reset_queues_param - reset queue parameters
4907  * @dev: device pointer
4908  */
4909 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4910 {
4911         u32 rx_cnt = priv->plat->rx_queues_to_use;
4912         u32 tx_cnt = priv->plat->tx_queues_to_use;
4913         u32 queue;
4914
4915         for (queue = 0; queue < rx_cnt; queue++) {
4916                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4917
4918                 rx_q->cur_rx = 0;
4919                 rx_q->dirty_rx = 0;
4920         }
4921
4922         for (queue = 0; queue < tx_cnt; queue++) {
4923                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4924
4925                 tx_q->cur_tx = 0;
4926                 tx_q->dirty_tx = 0;
4927                 tx_q->mss = 0;
4928         }
4929 }
4930
4931 /**
4932  * stmmac_resume - resume callback
4933  * @dev: device pointer
4934  * Description: when resume this function is invoked to setup the DMA and CORE
4935  * in a usable state.
4936  */
4937 int stmmac_resume(struct device *dev)
4938 {
4939         struct net_device *ndev = dev_get_drvdata(dev);
4940         struct stmmac_priv *priv = netdev_priv(ndev);
4941
4942         if (!netif_running(ndev))
4943                 return 0;
4944
4945         /* Power Down bit, into the PM register, is cleared
4946          * automatically as soon as a magic packet or a Wake-up frame
4947          * is received. Anyway, it's better to manually clear
4948          * this bit because it can generate problems while resuming
4949          * from another devices (e.g. serial console).
4950          */
4951         if (device_may_wakeup(priv->device)) {
4952                 mutex_lock(&priv->lock);
4953                 stmmac_pmt(priv, priv->hw, 0);
4954                 mutex_unlock(&priv->lock);
4955                 priv->irq_wake = 0;
4956         } else {
4957                 pinctrl_pm_select_default_state(priv->device);
4958                 /* enable the clk previously disabled */
4959                 clk_prepare_enable(priv->plat->stmmac_clk);
4960                 clk_prepare_enable(priv->plat->pclk);
4961                 if (priv->plat->clk_ptp_ref)
4962                         clk_prepare_enable(priv->plat->clk_ptp_ref);
4963                 /* reset the phy so that it's ready */
4964                 if (priv->mii)
4965                         stmmac_mdio_reset(priv->mii);
4966         }
4967
4968         netif_device_attach(ndev);
4969
4970         mutex_lock(&priv->lock);
4971
4972         stmmac_reset_queues_param(priv);
4973
4974         stmmac_clear_descriptors(priv);
4975
4976         stmmac_hw_setup(ndev, false);
4977         stmmac_init_coalesce(priv);
4978         stmmac_set_rx_mode(ndev);
4979
4980         stmmac_enable_all_queues(priv);
4981
4982         stmmac_start_all_queues(priv);
4983
4984         mutex_unlock(&priv->lock);
4985
4986         if (!device_may_wakeup(priv->device)) {
4987                 rtnl_lock();
4988                 phylink_start(priv->phylink);
4989                 rtnl_unlock();
4990         }
4991
4992         phylink_mac_change(priv->phylink, true);
4993
4994         return 0;
4995 }
4996 EXPORT_SYMBOL_GPL(stmmac_resume);
4997
4998 #ifndef MODULE
4999 static int __init stmmac_cmdline_opt(char *str)
5000 {
5001         char *opt;
5002
5003         if (!str || !*str)
5004                 return -EINVAL;
5005         while ((opt = strsep(&str, ",")) != NULL) {
5006                 if (!strncmp(opt, "debug:", 6)) {
5007                         if (kstrtoint(opt + 6, 0, &debug))
5008                                 goto err;
5009                 } else if (!strncmp(opt, "phyaddr:", 8)) {
5010                         if (kstrtoint(opt + 8, 0, &phyaddr))
5011                                 goto err;
5012                 } else if (!strncmp(opt, "buf_sz:", 7)) {
5013                         if (kstrtoint(opt + 7, 0, &buf_sz))
5014                                 goto err;
5015                 } else if (!strncmp(opt, "tc:", 3)) {
5016                         if (kstrtoint(opt + 3, 0, &tc))
5017                                 goto err;
5018                 } else if (!strncmp(opt, "watchdog:", 9)) {
5019                         if (kstrtoint(opt + 9, 0, &watchdog))
5020                                 goto err;
5021                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5022                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
5023                                 goto err;
5024                 } else if (!strncmp(opt, "pause:", 6)) {
5025                         if (kstrtoint(opt + 6, 0, &pause))
5026                                 goto err;
5027                 } else if (!strncmp(opt, "eee_timer:", 10)) {
5028                         if (kstrtoint(opt + 10, 0, &eee_timer))
5029                                 goto err;
5030                 } else if (!strncmp(opt, "chain_mode:", 11)) {
5031                         if (kstrtoint(opt + 11, 0, &chain_mode))
5032                                 goto err;
5033                 }
5034         }
5035         return 0;
5036
5037 err:
5038         pr_err("%s: ERROR broken module parameter conversion", __func__);
5039         return -EINVAL;
5040 }
5041
5042 __setup("stmmaceth=", stmmac_cmdline_opt);
5043 #endif /* MODULE */
5044
5045 static int __init stmmac_init(void)
5046 {
5047 #ifdef CONFIG_DEBUG_FS
5048         /* Create debugfs main directory if it doesn't exist yet */
5049         if (!stmmac_fs_dir)
5050                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5051 #endif
5052
5053         return 0;
5054 }
5055
5056 static void __exit stmmac_exit(void)
5057 {
5058 #ifdef CONFIG_DEBUG_FS
5059         debugfs_remove_recursive(stmmac_fs_dir);
5060 #endif
5061 }
5062
5063 module_init(stmmac_init)
5064 module_exit(stmmac_exit)
5065
5066 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5067 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5068 MODULE_LICENSE("GPL");