OSDN Git Service

Merge tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
50 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO        5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK     256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
91                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER        1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122         if (unlikely(watchdog < 0))
123                 watchdog = TX_TIMEO;
124         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125                 buf_sz = DEFAULT_BUFSIZE;
126         if (unlikely(flow_ctrl > 1))
127                 flow_ctrl = FLOW_AUTO;
128         else if (likely(flow_ctrl < 0))
129                 flow_ctrl = FLOW_OFF;
130         if (unlikely((pause < 0) || (pause > 0xffff)))
131                 pause = PAUSE_TIME;
132         if (eee_timer < 0)
133                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145         u32 queue;
146
147         for (queue = 0; queue < maxq; queue++) {
148                 struct stmmac_channel *ch = &priv->channel[queue];
149
150                 if (queue < rx_queues_cnt)
151                         napi_disable(&ch->rx_napi);
152                 if (queue < tx_queues_cnt)
153                         napi_disable(&ch->tx_napi);
154         }
155 }
156
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166         u32 queue;
167
168         for (queue = 0; queue < maxq; queue++) {
169                 struct stmmac_channel *ch = &priv->channel[queue];
170
171                 if (queue < rx_queues_cnt)
172                         napi_enable(&ch->rx_napi);
173                 if (queue < tx_queues_cnt)
174                         napi_enable(&ch->tx_napi);
175         }
176 }
177
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185         u32 queue;
186
187         for (queue = 0; queue < tx_queues_cnt; queue++)
188                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198         u32 queue;
199
200         for (queue = 0; queue < tx_queues_cnt; queue++)
201                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206         if (!test_bit(STMMAC_DOWN, &priv->state) &&
207             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208                 queue_work(priv->wq, &priv->service_task);
209 }
210
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213         netif_carrier_off(priv->dev);
214         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215         stmmac_service_event_schedule(priv);
216 }
217
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *      If a specific clk_csr value is passed from the platform
225  *      this means that the CSR Clock Range selection cannot be
226  *      changed at run-time and it is fixed (as reported in the driver
227  *      documentation). Viceversa the driver will try to set the MDC
228  *      clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232         u32 clk_rate;
233
234         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235
236         /* Platform provided default clk_csr would be assumed valid
237          * for all other cases except for the below mentioned ones.
238          * For values higher than the IEEE 802.3 specified frequency
239          * we can not estimate the proper divider as it is not known
240          * the frequency of clk_csr_i. So we do not change the default
241          * divider.
242          */
243         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244                 if (clk_rate < CSR_F_35M)
245                         priv->clk_csr = STMMAC_CSR_20_35M;
246                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247                         priv->clk_csr = STMMAC_CSR_35_60M;
248                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249                         priv->clk_csr = STMMAC_CSR_60_100M;
250                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251                         priv->clk_csr = STMMAC_CSR_100_150M;
252                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253                         priv->clk_csr = STMMAC_CSR_150_250M;
254                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255                         priv->clk_csr = STMMAC_CSR_250_300M;
256         }
257
258         if (priv->plat->has_sun8i) {
259                 if (clk_rate > 160000000)
260                         priv->clk_csr = 0x03;
261                 else if (clk_rate > 80000000)
262                         priv->clk_csr = 0x02;
263                 else if (clk_rate > 40000000)
264                         priv->clk_csr = 0x01;
265                 else
266                         priv->clk_csr = 0;
267         }
268
269         if (priv->plat->has_xgmac) {
270                 if (clk_rate > 400000000)
271                         priv->clk_csr = 0x5;
272                 else if (clk_rate > 350000000)
273                         priv->clk_csr = 0x4;
274                 else if (clk_rate > 300000000)
275                         priv->clk_csr = 0x3;
276                 else if (clk_rate > 250000000)
277                         priv->clk_csr = 0x2;
278                 else if (clk_rate > 150000000)
279                         priv->clk_csr = 0x1;
280                 else
281                         priv->clk_csr = 0x0;
282         }
283 }
284
285 static void print_pkt(unsigned char *buf, int len)
286 {
287         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294         u32 avail;
295
296         if (tx_q->dirty_tx > tx_q->cur_tx)
297                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298         else
299                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300
301         return avail;
302 }
303
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312         u32 dirty;
313
314         if (rx_q->dirty_rx <= rx_q->cur_rx)
315                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
316         else
317                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318
319         return dirty;
320 }
321
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330         u32 tx_cnt = priv->plat->tx_queues_to_use;
331         u32 queue;
332
333         /* check if all TX queues have the work finished */
334         for (queue = 0; queue < tx_cnt; queue++) {
335                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336
337                 if (tx_q->dirty_tx != tx_q->cur_tx)
338                         return; /* still unfinished work */
339         }
340
341         /* Check and enter in LPI mode */
342         if (!priv->tx_path_in_lpi_mode)
343                 stmmac_set_eee_mode(priv, priv->hw,
344                                 priv->plat->en_tx_lpi_clockgating);
345 }
346
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355         stmmac_reset_eee_mode(priv, priv->hw);
356         del_timer_sync(&priv->eee_ctrl_timer);
357         priv->tx_path_in_lpi_mode = false;
358 }
359
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370
371         stmmac_enable_eee_mode(priv);
372         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385         int tx_lpi_timer = priv->tx_lpi_timer;
386
387         /* Using PCS we cannot dial with the phy registers at this stage
388          * so we do not support extra feature like EEE.
389          */
390         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391             (priv->hw->pcs == STMMAC_PCS_TBI) ||
392             (priv->hw->pcs == STMMAC_PCS_RTBI))
393                 return false;
394
395         /* Check if MAC core supports the EEE feature. */
396         if (!priv->dma_cap.eee)
397                 return false;
398
399         mutex_lock(&priv->lock);
400
401         /* Check if it needs to be deactivated */
402         if (!priv->eee_active) {
403                 if (priv->eee_enabled) {
404                         netdev_dbg(priv->dev, "disable EEE\n");
405                         del_timer_sync(&priv->eee_ctrl_timer);
406                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407                 }
408                 mutex_unlock(&priv->lock);
409                 return false;
410         }
411
412         if (priv->eee_active && !priv->eee_enabled) {
413                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416                                      tx_lpi_timer);
417         }
418
419         mutex_unlock(&priv->lock);
420         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421         return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433                                    struct dma_desc *p, struct sk_buff *skb)
434 {
435         struct skb_shared_hwtstamps shhwtstamp;
436         bool found = false;
437         u64 ns = 0;
438
439         if (!priv->hwts_tx_en)
440                 return;
441
442         /* exit if skb doesn't support hw tstamp */
443         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444                 return;
445
446         /* check tx tstamp status */
447         if (stmmac_get_tx_timestamp_status(priv, p)) {
448                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449                 found = true;
450         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451                 found = true;
452         }
453
454         if (found) {
455                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459                 /* pass tstamp to stack */
460                 skb_tstamp_tx(skb, &shhwtstamp);
461         }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474                                    struct dma_desc *np, struct sk_buff *skb)
475 {
476         struct skb_shared_hwtstamps *shhwtstamp = NULL;
477         struct dma_desc *desc = p;
478         u64 ns = 0;
479
480         if (!priv->hwts_rx_en)
481                 return;
482         /* For GMAC4, the valid timestamp is from CTX next desc. */
483         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484                 desc = np;
485
486         /* Check if timestamp is available */
487         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490                 shhwtstamp = skb_hwtstamps(skb);
491                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493         } else  {
494                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495         }
496 }
497
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511         struct stmmac_priv *priv = netdev_priv(dev);
512         struct hwtstamp_config config;
513         struct timespec64 now;
514         u64 temp = 0;
515         u32 ptp_v2 = 0;
516         u32 tstamp_all = 0;
517         u32 ptp_over_ipv4_udp = 0;
518         u32 ptp_over_ipv6_udp = 0;
519         u32 ptp_over_ethernet = 0;
520         u32 snap_type_sel = 0;
521         u32 ts_master_en = 0;
522         u32 ts_event_en = 0;
523         u32 sec_inc = 0;
524         u32 value = 0;
525         bool xmac;
526
527         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530                 netdev_alert(priv->dev, "No support for HW time stamping\n");
531                 priv->hwts_tx_en = 0;
532                 priv->hwts_rx_en = 0;
533
534                 return -EOPNOTSUPP;
535         }
536
537         if (copy_from_user(&config, ifr->ifr_data,
538                            sizeof(config)))
539                 return -EFAULT;
540
541         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542                    __func__, config.flags, config.tx_type, config.rx_filter);
543
544         /* reserved for future extensions */
545         if (config.flags)
546                 return -EINVAL;
547
548         if (config.tx_type != HWTSTAMP_TX_OFF &&
549             config.tx_type != HWTSTAMP_TX_ON)
550                 return -ERANGE;
551
552         if (priv->adv_ts) {
553                 switch (config.rx_filter) {
554                 case HWTSTAMP_FILTER_NONE:
555                         /* time stamp no incoming packet at all */
556                         config.rx_filter = HWTSTAMP_FILTER_NONE;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560                         /* PTP v1, UDP, any kind of event packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562                         /* 'xmac' hardware can support Sync, Pdelay_Req and
563                          * Pdelay_resp by setting bit14 and bits17/16 to 01
564                          * This leaves Delay_Req timestamps out.
565                          * Enable all events *and* general purpose message
566                          * timestamping
567                          */
568                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571                         break;
572
573                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574                         /* PTP v1, UDP, Sync packet */
575                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576                         /* take time stamp for SYNC messages only */
577                         ts_event_en = PTP_TCR_TSEVNTENA;
578
579                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581                         break;
582
583                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584                         /* PTP v1, UDP, Delay_req packet */
585                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586                         /* take time stamp for Delay_Req messages only */
587                         ts_master_en = PTP_TCR_TSMSTRENA;
588                         ts_event_en = PTP_TCR_TSEVNTENA;
589
590                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592                         break;
593
594                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595                         /* PTP v2, UDP, any kind of event packet */
596                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597                         ptp_v2 = PTP_TCR_TSVER2ENA;
598                         /* take time stamp for all event messages */
599                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603                         break;
604
605                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606                         /* PTP v2, UDP, Sync packet */
607                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608                         ptp_v2 = PTP_TCR_TSVER2ENA;
609                         /* take time stamp for SYNC messages only */
610                         ts_event_en = PTP_TCR_TSEVNTENA;
611
612                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614                         break;
615
616                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617                         /* PTP v2, UDP, Delay_req packet */
618                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619                         ptp_v2 = PTP_TCR_TSVER2ENA;
620                         /* take time stamp for Delay_Req messages only */
621                         ts_master_en = PTP_TCR_TSMSTRENA;
622                         ts_event_en = PTP_TCR_TSEVNTENA;
623
624                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626                         break;
627
628                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629                         /* PTP v2/802.AS1 any layer, any kind of event packet */
630                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631                         ptp_v2 = PTP_TCR_TSVER2ENA;
632                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633                         ts_event_en = PTP_TCR_TSEVNTENA;
634                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636                         ptp_over_ethernet = PTP_TCR_TSIPENA;
637                         break;
638
639                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640                         /* PTP v2/802.AS1, any layer, Sync packet */
641                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642                         ptp_v2 = PTP_TCR_TSVER2ENA;
643                         /* take time stamp for SYNC messages only */
644                         ts_event_en = PTP_TCR_TSEVNTENA;
645
646                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648                         ptp_over_ethernet = PTP_TCR_TSIPENA;
649                         break;
650
651                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652                         /* PTP v2/802.AS1, any layer, Delay_req packet */
653                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654                         ptp_v2 = PTP_TCR_TSVER2ENA;
655                         /* take time stamp for Delay_Req messages only */
656                         ts_master_en = PTP_TCR_TSMSTRENA;
657                         ts_event_en = PTP_TCR_TSEVNTENA;
658
659                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661                         ptp_over_ethernet = PTP_TCR_TSIPENA;
662                         break;
663
664                 case HWTSTAMP_FILTER_NTP_ALL:
665                 case HWTSTAMP_FILTER_ALL:
666                         /* time stamp any incoming packet */
667                         config.rx_filter = HWTSTAMP_FILTER_ALL;
668                         tstamp_all = PTP_TCR_TSENALL;
669                         break;
670
671                 default:
672                         return -ERANGE;
673                 }
674         } else {
675                 switch (config.rx_filter) {
676                 case HWTSTAMP_FILTER_NONE:
677                         config.rx_filter = HWTSTAMP_FILTER_NONE;
678                         break;
679                 default:
680                         /* PTP v1, UDP, any kind of event packet */
681                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682                         break;
683                 }
684         }
685         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690         else {
691                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692                          tstamp_all | ptp_v2 | ptp_over_ethernet |
693                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694                          ts_master_en | snap_type_sel);
695                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697                 /* program Sub Second Increment reg */
698                 stmmac_config_sub_second_increment(priv,
699                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
700                                 xmac, &sec_inc);
701                 temp = div_u64(1000000000ULL, sec_inc);
702
703                 /* Store sub second increment and flags for later use */
704                 priv->sub_second_inc = sec_inc;
705                 priv->systime_flags = value;
706
707                 /* calculate default added value:
708                  * formula is :
709                  * addend = (2^32)/freq_div_ratio;
710                  * where, freq_div_ratio = 1e9ns/sec_inc
711                  */
712                 temp = (u64)(temp << 32);
713                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716                 /* initialize system time */
717                 ktime_get_real_ts64(&now);
718
719                 /* lower 32 bits of tv_sec are safe until y2106 */
720                 stmmac_init_systime(priv, priv->ptpaddr,
721                                 (u32)now.tv_sec, now.tv_nsec);
722         }
723
724         memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726         return copy_to_user(ifr->ifr_data, &config,
727                             sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741         struct stmmac_priv *priv = netdev_priv(dev);
742         struct hwtstamp_config *config = &priv->tstamp_config;
743
744         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745                 return -EOPNOTSUPP;
746
747         return copy_to_user(ifr->ifr_data, config,
748                             sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763                 return -EOPNOTSUPP;
764
765         priv->adv_ts = 0;
766         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767         if (xmac && priv->dma_cap.atime_stamp)
768                 priv->adv_ts = 1;
769         /* Dwmac 3.x core with extend_desc can support adv_ts */
770         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771                 priv->adv_ts = 1;
772
773         if (priv->dma_cap.time_stamp)
774                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776         if (priv->adv_ts)
777                 netdev_info(priv->dev,
778                             "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780         priv->hwts_tx_en = 0;
781         priv->hwts_rx_en = 0;
782
783         stmmac_ptp_register(priv);
784
785         return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790         if (priv->plat->clk_ptp_ref)
791                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
792         stmmac_ptp_unregister(priv);
793 }
794
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802         u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805                         priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809                             unsigned long *supported,
810                             struct phylink_link_state *state)
811 {
812         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815         int tx_cnt = priv->plat->tx_queues_to_use;
816         int max_speed = priv->plat->max_speed;
817
818         phylink_set(mac_supported, 10baseT_Half);
819         phylink_set(mac_supported, 10baseT_Full);
820         phylink_set(mac_supported, 100baseT_Half);
821         phylink_set(mac_supported, 100baseT_Full);
822         phylink_set(mac_supported, 1000baseT_Half);
823         phylink_set(mac_supported, 1000baseT_Full);
824         phylink_set(mac_supported, 1000baseKX_Full);
825
826         phylink_set(mac_supported, Autoneg);
827         phylink_set(mac_supported, Pause);
828         phylink_set(mac_supported, Asym_Pause);
829         phylink_set_port_modes(mac_supported);
830
831         /* Cut down 1G if asked to */
832         if ((max_speed > 0) && (max_speed < 1000)) {
833                 phylink_set(mask, 1000baseT_Full);
834                 phylink_set(mask, 1000baseX_Full);
835         } else if (priv->plat->has_xgmac) {
836                 if (!max_speed || (max_speed >= 2500)) {
837                         phylink_set(mac_supported, 2500baseT_Full);
838                         phylink_set(mac_supported, 2500baseX_Full);
839                 }
840                 if (!max_speed || (max_speed >= 5000)) {
841                         phylink_set(mac_supported, 5000baseT_Full);
842                 }
843                 if (!max_speed || (max_speed >= 10000)) {
844                         phylink_set(mac_supported, 10000baseSR_Full);
845                         phylink_set(mac_supported, 10000baseLR_Full);
846                         phylink_set(mac_supported, 10000baseER_Full);
847                         phylink_set(mac_supported, 10000baseLRM_Full);
848                         phylink_set(mac_supported, 10000baseT_Full);
849                         phylink_set(mac_supported, 10000baseKX4_Full);
850                         phylink_set(mac_supported, 10000baseKR_Full);
851                 }
852         }
853
854         /* Half-Duplex can only work with single queue */
855         if (tx_cnt > 1) {
856                 phylink_set(mask, 10baseT_Half);
857                 phylink_set(mask, 100baseT_Half);
858                 phylink_set(mask, 1000baseT_Half);
859         }
860
861         bitmap_and(supported, supported, mac_supported,
862                    __ETHTOOL_LINK_MODE_MASK_NBITS);
863         bitmap_andnot(supported, supported, mask,
864                       __ETHTOOL_LINK_MODE_MASK_NBITS);
865         bitmap_and(state->advertising, state->advertising, mac_supported,
866                    __ETHTOOL_LINK_MODE_MASK_NBITS);
867         bitmap_andnot(state->advertising, state->advertising, mask,
868                       __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872                                      struct phylink_link_state *state)
873 {
874         state->link = 0;
875 }
876
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878                               const struct phylink_link_state *state)
879 {
880         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881         u32 ctrl;
882
883         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884         ctrl &= ~priv->hw->link.speed_mask;
885
886         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887                 switch (state->speed) {
888                 case SPEED_10000:
889                         ctrl |= priv->hw->link.xgmii.speed10000;
890                         break;
891                 case SPEED_5000:
892                         ctrl |= priv->hw->link.xgmii.speed5000;
893                         break;
894                 case SPEED_2500:
895                         ctrl |= priv->hw->link.xgmii.speed2500;
896                         break;
897                 default:
898                         return;
899                 }
900         } else {
901                 switch (state->speed) {
902                 case SPEED_2500:
903                         ctrl |= priv->hw->link.speed2500;
904                         break;
905                 case SPEED_1000:
906                         ctrl |= priv->hw->link.speed1000;
907                         break;
908                 case SPEED_100:
909                         ctrl |= priv->hw->link.speed100;
910                         break;
911                 case SPEED_10:
912                         ctrl |= priv->hw->link.speed10;
913                         break;
914                 default:
915                         return;
916                 }
917         }
918
919         priv->speed = state->speed;
920
921         if (priv->plat->fix_mac_speed)
922                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923
924         if (!state->duplex)
925                 ctrl &= ~priv->hw->link.duplex;
926         else
927                 ctrl |= priv->hw->link.duplex;
928
929         /* Flow Control operation */
930         if (state->pause)
931                 stmmac_mac_flow_ctrl(priv, state->duplex);
932
933         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938         /* Not Supported */
939 }
940
941 static void stmmac_mac_link_down(struct phylink_config *config,
942                                  unsigned int mode, phy_interface_t interface)
943 {
944         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945
946         stmmac_mac_set(priv, priv->ioaddr, false);
947         priv->eee_active = false;
948         stmmac_eee_init(priv);
949         stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951
952 static void stmmac_mac_link_up(struct phylink_config *config,
953                                unsigned int mode, phy_interface_t interface,
954                                struct phy_device *phy)
955 {
956         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957
958         stmmac_mac_set(priv, priv->ioaddr, true);
959         if (phy && priv->dma_cap.eee) {
960                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
961                 priv->eee_enabled = stmmac_eee_init(priv);
962                 stmmac_set_eee_pls(priv, priv->hw, true);
963         }
964 }
965
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967         .validate = stmmac_validate,
968         .mac_pcs_get_state = stmmac_mac_pcs_get_state,
969         .mac_config = stmmac_mac_config,
970         .mac_an_restart = stmmac_mac_an_restart,
971         .mac_link_down = stmmac_mac_link_down,
972         .mac_link_up = stmmac_mac_link_up,
973 };
974
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984         int interface = priv->plat->interface;
985
986         if (priv->dma_cap.pcs) {
987                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992                         priv->hw->pcs = STMMAC_PCS_RGMII;
993                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
994                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995                         priv->hw->pcs = STMMAC_PCS_SGMII;
996                 }
997         }
998 }
999
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010         struct stmmac_priv *priv = netdev_priv(dev);
1011         struct device_node *node;
1012         int ret;
1013
1014         node = priv->plat->phylink_node;
1015
1016         if (node)
1017                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018
1019         /* Some DT bindings do not set-up the PHY handle. Let's try to
1020          * manually parse it
1021          */
1022         if (!node || ret) {
1023                 int addr = priv->plat->phy_addr;
1024                 struct phy_device *phydev;
1025
1026                 phydev = mdiobus_get_phy(priv->mii, addr);
1027                 if (!phydev) {
1028                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029                         return -ENODEV;
1030                 }
1031
1032                 ret = phylink_connect_phy(priv->phylink, phydev);
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041         int mode = priv->plat->phy_interface;
1042         struct phylink *phylink;
1043
1044         priv->phylink_config.dev = &priv->dev->dev;
1045         priv->phylink_config.type = PHYLINK_NETDEV;
1046
1047         phylink = phylink_create(&priv->phylink_config, fwnode,
1048                                  mode, &stmmac_phylink_mac_ops);
1049         if (IS_ERR(phylink))
1050                 return PTR_ERR(phylink);
1051
1052         priv->phylink = phylink;
1053         return 0;
1054 }
1055
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058         u32 rx_cnt = priv->plat->rx_queues_to_use;
1059         void *head_rx;
1060         u32 queue;
1061
1062         /* Display RX rings */
1063         for (queue = 0; queue < rx_cnt; queue++) {
1064                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065
1066                 pr_info("\tRX Queue %u rings\n", queue);
1067
1068                 if (priv->extend_desc)
1069                         head_rx = (void *)rx_q->dma_erx;
1070                 else
1071                         head_rx = (void *)rx_q->dma_rx;
1072
1073                 /* Display RX ring */
1074                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075         }
1076 }
1077
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080         u32 tx_cnt = priv->plat->tx_queues_to_use;
1081         void *head_tx;
1082         u32 queue;
1083
1084         /* Display TX rings */
1085         for (queue = 0; queue < tx_cnt; queue++) {
1086                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087
1088                 pr_info("\tTX Queue %d rings\n", queue);
1089
1090                 if (priv->extend_desc)
1091                         head_tx = (void *)tx_q->dma_etx;
1092                 else
1093                         head_tx = (void *)tx_q->dma_tx;
1094
1095                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1096         }
1097 }
1098
1099 static void stmmac_display_rings(struct stmmac_priv *priv)
1100 {
1101         /* Display RX ring */
1102         stmmac_display_rx_rings(priv);
1103
1104         /* Display TX ring */
1105         stmmac_display_tx_rings(priv);
1106 }
1107
1108 static int stmmac_set_bfsize(int mtu, int bufsize)
1109 {
1110         int ret = bufsize;
1111
1112         if (mtu >= BUF_SIZE_4KiB)
1113                 ret = BUF_SIZE_8KiB;
1114         else if (mtu >= BUF_SIZE_2KiB)
1115                 ret = BUF_SIZE_4KiB;
1116         else if (mtu > DEFAULT_BUFSIZE)
1117                 ret = BUF_SIZE_2KiB;
1118         else
1119                 ret = DEFAULT_BUFSIZE;
1120
1121         return ret;
1122 }
1123
1124 /**
1125  * stmmac_clear_rx_descriptors - clear RX descriptors
1126  * @priv: driver private structure
1127  * @queue: RX queue index
1128  * Description: this function is called to clear the RX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1134         int i;
1135
1136         /* Clear the RX descriptors */
1137         for (i = 0; i < DMA_RX_SIZE; i++)
1138                 if (priv->extend_desc)
1139                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1140                                         priv->use_riwt, priv->mode,
1141                                         (i == DMA_RX_SIZE - 1),
1142                                         priv->dma_buf_sz);
1143                 else
1144                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1145                                         priv->use_riwt, priv->mode,
1146                                         (i == DMA_RX_SIZE - 1),
1147                                         priv->dma_buf_sz);
1148 }
1149
1150 /**
1151  * stmmac_clear_tx_descriptors - clear tx descriptors
1152  * @priv: driver private structure
1153  * @queue: TX queue index.
1154  * Description: this function is called to clear the TX descriptors
1155  * in case of both basic and extended descriptors are used.
1156  */
1157 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1158 {
1159         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1160         int i;
1161
1162         /* Clear the TX descriptors */
1163         for (i = 0; i < DMA_TX_SIZE; i++)
1164                 if (priv->extend_desc)
1165                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1166                                         priv->mode, (i == DMA_TX_SIZE - 1));
1167                 else
1168                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1169                                         priv->mode, (i == DMA_TX_SIZE - 1));
1170 }
1171
1172 /**
1173  * stmmac_clear_descriptors - clear descriptors
1174  * @priv: driver private structure
1175  * Description: this function is called to clear the TX and RX descriptors
1176  * in case of both basic and extended descriptors are used.
1177  */
1178 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1179 {
1180         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1181         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1182         u32 queue;
1183
1184         /* Clear the RX descriptors */
1185         for (queue = 0; queue < rx_queue_cnt; queue++)
1186                 stmmac_clear_rx_descriptors(priv, queue);
1187
1188         /* Clear the TX descriptors */
1189         for (queue = 0; queue < tx_queue_cnt; queue++)
1190                 stmmac_clear_tx_descriptors(priv, queue);
1191 }
1192
1193 /**
1194  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1195  * @priv: driver private structure
1196  * @p: descriptor pointer
1197  * @i: descriptor index
1198  * @flags: gfp flag
1199  * @queue: RX queue index
1200  * Description: this function is called to allocate a receive buffer, perform
1201  * the DMA mapping and init the descriptor.
1202  */
1203 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1204                                   int i, gfp_t flags, u32 queue)
1205 {
1206         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1207         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1208
1209         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1210         if (!buf->page)
1211                 return -ENOMEM;
1212
1213         if (priv->sph) {
1214                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1215                 if (!buf->sec_page)
1216                         return -ENOMEM;
1217
1218                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1219                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1220         } else {
1221                 buf->sec_page = NULL;
1222         }
1223
1224         buf->addr = page_pool_get_dma_addr(buf->page);
1225         stmmac_set_desc_addr(priv, p, buf->addr);
1226         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1227                 stmmac_init_desc3(priv, p);
1228
1229         return 0;
1230 }
1231
1232 /**
1233  * stmmac_free_rx_buffer - free RX dma buffers
1234  * @priv: private structure
1235  * @queue: RX queue index
1236  * @i: buffer index.
1237  */
1238 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1239 {
1240         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1241         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1242
1243         if (buf->page)
1244                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1245         buf->page = NULL;
1246
1247         if (buf->sec_page)
1248                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1249         buf->sec_page = NULL;
1250 }
1251
1252 /**
1253  * stmmac_free_tx_buffer - free RX dma buffers
1254  * @priv: private structure
1255  * @queue: RX queue index
1256  * @i: buffer index.
1257  */
1258 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1259 {
1260         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1261
1262         if (tx_q->tx_skbuff_dma[i].buf) {
1263                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1264                         dma_unmap_page(priv->device,
1265                                        tx_q->tx_skbuff_dma[i].buf,
1266                                        tx_q->tx_skbuff_dma[i].len,
1267                                        DMA_TO_DEVICE);
1268                 else
1269                         dma_unmap_single(priv->device,
1270                                          tx_q->tx_skbuff_dma[i].buf,
1271                                          tx_q->tx_skbuff_dma[i].len,
1272                                          DMA_TO_DEVICE);
1273         }
1274
1275         if (tx_q->tx_skbuff[i]) {
1276                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1277                 tx_q->tx_skbuff[i] = NULL;
1278                 tx_q->tx_skbuff_dma[i].buf = 0;
1279                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1280         }
1281 }
1282
1283 /**
1284  * init_dma_rx_desc_rings - init the RX descriptor rings
1285  * @dev: net device structure
1286  * @flags: gfp flag.
1287  * Description: this function initializes the DMA RX descriptors
1288  * and allocates the socket buffers. It supports the chained and ring
1289  * modes.
1290  */
1291 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1292 {
1293         struct stmmac_priv *priv = netdev_priv(dev);
1294         u32 rx_count = priv->plat->rx_queues_to_use;
1295         int ret = -ENOMEM;
1296         int bfsize = 0;
1297         int queue;
1298         int i;
1299
1300         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1301         if (bfsize < 0)
1302                 bfsize = 0;
1303
1304         if (bfsize < BUF_SIZE_16KiB)
1305                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1306
1307         priv->dma_buf_sz = bfsize;
1308
1309         /* RX INITIALIZATION */
1310         netif_dbg(priv, probe, priv->dev,
1311                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1312
1313         for (queue = 0; queue < rx_count; queue++) {
1314                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315
1316                 netif_dbg(priv, probe, priv->dev,
1317                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1318                           (u32)rx_q->dma_rx_phy);
1319
1320                 stmmac_clear_rx_descriptors(priv, queue);
1321
1322                 for (i = 0; i < DMA_RX_SIZE; i++) {
1323                         struct dma_desc *p;
1324
1325                         if (priv->extend_desc)
1326                                 p = &((rx_q->dma_erx + i)->basic);
1327                         else
1328                                 p = rx_q->dma_rx + i;
1329
1330                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1331                                                      queue);
1332                         if (ret)
1333                                 goto err_init_rx_buffers;
1334                 }
1335
1336                 rx_q->cur_rx = 0;
1337                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1338
1339                 /* Setup the chained descriptor addresses */
1340                 if (priv->mode == STMMAC_CHAIN_MODE) {
1341                         if (priv->extend_desc)
1342                                 stmmac_mode_init(priv, rx_q->dma_erx,
1343                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344                         else
1345                                 stmmac_mode_init(priv, rx_q->dma_rx,
1346                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347                 }
1348         }
1349
1350         buf_sz = bfsize;
1351
1352         return 0;
1353
1354 err_init_rx_buffers:
1355         while (queue >= 0) {
1356                 while (--i >= 0)
1357                         stmmac_free_rx_buffer(priv, queue, i);
1358
1359                 if (queue == 0)
1360                         break;
1361
1362                 i = DMA_RX_SIZE;
1363                 queue--;
1364         }
1365
1366         return ret;
1367 }
1368
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378         struct stmmac_priv *priv = netdev_priv(dev);
1379         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380         u32 queue;
1381         int i;
1382
1383         for (queue = 0; queue < tx_queue_cnt; queue++) {
1384                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385
1386                 netif_dbg(priv, probe, priv->dev,
1387                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1388                          (u32)tx_q->dma_tx_phy);
1389
1390                 /* Setup the chained descriptor addresses */
1391                 if (priv->mode == STMMAC_CHAIN_MODE) {
1392                         if (priv->extend_desc)
1393                                 stmmac_mode_init(priv, tx_q->dma_etx,
1394                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395                         else
1396                                 stmmac_mode_init(priv, tx_q->dma_tx,
1397                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398                 }
1399
1400                 for (i = 0; i < DMA_TX_SIZE; i++) {
1401                         struct dma_desc *p;
1402                         if (priv->extend_desc)
1403                                 p = &((tx_q->dma_etx + i)->basic);
1404                         else
1405                                 p = tx_q->dma_tx + i;
1406
1407                         stmmac_clear_desc(priv, p);
1408
1409                         tx_q->tx_skbuff_dma[i].buf = 0;
1410                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1411                         tx_q->tx_skbuff_dma[i].len = 0;
1412                         tx_q->tx_skbuff_dma[i].last_segment = false;
1413                         tx_q->tx_skbuff[i] = NULL;
1414                 }
1415
1416                 tx_q->dirty_tx = 0;
1417                 tx_q->cur_tx = 0;
1418                 tx_q->mss = 0;
1419
1420                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421         }
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436         struct stmmac_priv *priv = netdev_priv(dev);
1437         int ret;
1438
1439         ret = init_dma_rx_desc_rings(dev, flags);
1440         if (ret)
1441                 return ret;
1442
1443         ret = init_dma_tx_desc_rings(dev);
1444
1445         stmmac_clear_descriptors(priv);
1446
1447         if (netif_msg_hw(priv))
1448                 stmmac_display_rings(priv);
1449
1450         return ret;
1451 }
1452
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460         int i;
1461
1462         for (i = 0; i < DMA_RX_SIZE; i++)
1463                 stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473         int i;
1474
1475         for (i = 0; i < DMA_TX_SIZE; i++)
1476                 stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485         u32 rx_count = priv->plat->rx_queues_to_use;
1486         u32 queue;
1487
1488         /* Free RX queue resources */
1489         for (queue = 0; queue < rx_count; queue++) {
1490                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491
1492                 /* Release the DMA RX socket buffers */
1493                 dma_free_rx_skbufs(priv, queue);
1494
1495                 /* Free DMA regions of consistent memory previously allocated */
1496                 if (!priv->extend_desc)
1497                         dma_free_coherent(priv->device,
1498                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1499                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1500                 else
1501                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1502                                           sizeof(struct dma_extended_desc),
1503                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1504
1505                 kfree(rx_q->buf_pool);
1506                 if (rx_q->page_pool)
1507                         page_pool_destroy(rx_q->page_pool);
1508         }
1509 }
1510
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517         u32 tx_count = priv->plat->tx_queues_to_use;
1518         u32 queue;
1519
1520         /* Free TX queue resources */
1521         for (queue = 0; queue < tx_count; queue++) {
1522                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523
1524                 /* Release the DMA TX socket buffers */
1525                 dma_free_tx_skbufs(priv, queue);
1526
1527                 /* Free DMA regions of consistent memory previously allocated */
1528                 if (!priv->extend_desc)
1529                         dma_free_coherent(priv->device,
1530                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1531                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1532                 else
1533                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1534                                           sizeof(struct dma_extended_desc),
1535                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1536
1537                 kfree(tx_q->tx_skbuff_dma);
1538                 kfree(tx_q->tx_skbuff);
1539         }
1540 }
1541
1542 /**
1543  * alloc_dma_rx_desc_resources - alloc RX resources.
1544  * @priv: private structure
1545  * Description: according to which descriptor can be used (extend or basic)
1546  * this function allocates the resources for TX and RX paths. In case of
1547  * reception, for example, it pre-allocated the RX socket buffer in order to
1548  * allow zero-copy mechanism.
1549  */
1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1551 {
1552         u32 rx_count = priv->plat->rx_queues_to_use;
1553         int ret = -ENOMEM;
1554         u32 queue;
1555
1556         /* RX queues buffers and DMA */
1557         for (queue = 0; queue < rx_count; queue++) {
1558                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1559                 struct page_pool_params pp_params = { 0 };
1560                 unsigned int num_pages;
1561
1562                 rx_q->queue_index = queue;
1563                 rx_q->priv_data = priv;
1564
1565                 pp_params.flags = PP_FLAG_DMA_MAP;
1566                 pp_params.pool_size = DMA_RX_SIZE;
1567                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1568                 pp_params.order = ilog2(num_pages);
1569                 pp_params.nid = dev_to_node(priv->device);
1570                 pp_params.dev = priv->device;
1571                 pp_params.dma_dir = DMA_FROM_DEVICE;
1572
1573                 rx_q->page_pool = page_pool_create(&pp_params);
1574                 if (IS_ERR(rx_q->page_pool)) {
1575                         ret = PTR_ERR(rx_q->page_pool);
1576                         rx_q->page_pool = NULL;
1577                         goto err_dma;
1578                 }
1579
1580                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1581                                          GFP_KERNEL);
1582                 if (!rx_q->buf_pool)
1583                         goto err_dma;
1584
1585                 if (priv->extend_desc) {
1586                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1587                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1588                                                            &rx_q->dma_rx_phy,
1589                                                            GFP_KERNEL);
1590                         if (!rx_q->dma_erx)
1591                                 goto err_dma;
1592
1593                 } else {
1594                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1595                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1596                                                           &rx_q->dma_rx_phy,
1597                                                           GFP_KERNEL);
1598                         if (!rx_q->dma_rx)
1599                                 goto err_dma;
1600                 }
1601         }
1602
1603         return 0;
1604
1605 err_dma:
1606         free_dma_rx_desc_resources(priv);
1607
1608         return ret;
1609 }
1610
1611 /**
1612  * alloc_dma_tx_desc_resources - alloc TX resources.
1613  * @priv: private structure
1614  * Description: according to which descriptor can be used (extend or basic)
1615  * this function allocates the resources for TX and RX paths. In case of
1616  * reception, for example, it pre-allocated the RX socket buffer in order to
1617  * allow zero-copy mechanism.
1618  */
1619 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1620 {
1621         u32 tx_count = priv->plat->tx_queues_to_use;
1622         int ret = -ENOMEM;
1623         u32 queue;
1624
1625         /* TX queues buffers and DMA */
1626         for (queue = 0; queue < tx_count; queue++) {
1627                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1628
1629                 tx_q->queue_index = queue;
1630                 tx_q->priv_data = priv;
1631
1632                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1633                                               sizeof(*tx_q->tx_skbuff_dma),
1634                                               GFP_KERNEL);
1635                 if (!tx_q->tx_skbuff_dma)
1636                         goto err_dma;
1637
1638                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1639                                           sizeof(struct sk_buff *),
1640                                           GFP_KERNEL);
1641                 if (!tx_q->tx_skbuff)
1642                         goto err_dma;
1643
1644                 if (priv->extend_desc) {
1645                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1646                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1647                                                            &tx_q->dma_tx_phy,
1648                                                            GFP_KERNEL);
1649                         if (!tx_q->dma_etx)
1650                                 goto err_dma;
1651                 } else {
1652                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1653                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1654                                                           &tx_q->dma_tx_phy,
1655                                                           GFP_KERNEL);
1656                         if (!tx_q->dma_tx)
1657                                 goto err_dma;
1658                 }
1659         }
1660
1661         return 0;
1662
1663 err_dma:
1664         free_dma_tx_desc_resources(priv);
1665
1666         return ret;
1667 }
1668
1669 /**
1670  * alloc_dma_desc_resources - alloc TX/RX resources.
1671  * @priv: private structure
1672  * Description: according to which descriptor can be used (extend or basic)
1673  * this function allocates the resources for TX and RX paths. In case of
1674  * reception, for example, it pre-allocated the RX socket buffer in order to
1675  * allow zero-copy mechanism.
1676  */
1677 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1678 {
1679         /* RX Allocation */
1680         int ret = alloc_dma_rx_desc_resources(priv);
1681
1682         if (ret)
1683                 return ret;
1684
1685         ret = alloc_dma_tx_desc_resources(priv);
1686
1687         return ret;
1688 }
1689
1690 /**
1691  * free_dma_desc_resources - free dma desc resources
1692  * @priv: private structure
1693  */
1694 static void free_dma_desc_resources(struct stmmac_priv *priv)
1695 {
1696         /* Release the DMA RX socket buffers */
1697         free_dma_rx_desc_resources(priv);
1698
1699         /* Release the DMA TX socket buffers */
1700         free_dma_tx_desc_resources(priv);
1701 }
1702
1703 /**
1704  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1705  *  @priv: driver private structure
1706  *  Description: It is used for enabling the rx queues in the MAC
1707  */
1708 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1709 {
1710         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1711         int queue;
1712         u8 mode;
1713
1714         for (queue = 0; queue < rx_queues_count; queue++) {
1715                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1716                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1717         }
1718 }
1719
1720 /**
1721  * stmmac_start_rx_dma - start RX DMA channel
1722  * @priv: driver private structure
1723  * @chan: RX channel index
1724  * Description:
1725  * This starts a RX DMA channel
1726  */
1727 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1728 {
1729         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1730         stmmac_start_rx(priv, priv->ioaddr, chan);
1731 }
1732
1733 /**
1734  * stmmac_start_tx_dma - start TX DMA channel
1735  * @priv: driver private structure
1736  * @chan: TX channel index
1737  * Description:
1738  * This starts a TX DMA channel
1739  */
1740 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1743         stmmac_start_tx(priv, priv->ioaddr, chan);
1744 }
1745
1746 /**
1747  * stmmac_stop_rx_dma - stop RX DMA channel
1748  * @priv: driver private structure
1749  * @chan: RX channel index
1750  * Description:
1751  * This stops a RX DMA channel
1752  */
1753 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1754 {
1755         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1756         stmmac_stop_rx(priv, priv->ioaddr, chan);
1757 }
1758
1759 /**
1760  * stmmac_stop_tx_dma - stop TX DMA channel
1761  * @priv: driver private structure
1762  * @chan: TX channel index
1763  * Description:
1764  * This stops a TX DMA channel
1765  */
1766 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1767 {
1768         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1769         stmmac_stop_tx(priv, priv->ioaddr, chan);
1770 }
1771
1772 /**
1773  * stmmac_start_all_dma - start all RX and TX DMA channels
1774  * @priv: driver private structure
1775  * Description:
1776  * This starts all the RX and TX DMA channels
1777  */
1778 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1779 {
1780         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1781         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1782         u32 chan = 0;
1783
1784         for (chan = 0; chan < rx_channels_count; chan++)
1785                 stmmac_start_rx_dma(priv, chan);
1786
1787         for (chan = 0; chan < tx_channels_count; chan++)
1788                 stmmac_start_tx_dma(priv, chan);
1789 }
1790
1791 /**
1792  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1793  * @priv: driver private structure
1794  * Description:
1795  * This stops the RX and TX DMA channels
1796  */
1797 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1798 {
1799         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1800         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1801         u32 chan = 0;
1802
1803         for (chan = 0; chan < rx_channels_count; chan++)
1804                 stmmac_stop_rx_dma(priv, chan);
1805
1806         for (chan = 0; chan < tx_channels_count; chan++)
1807                 stmmac_stop_tx_dma(priv, chan);
1808 }
1809
1810 /**
1811  *  stmmac_dma_operation_mode - HW DMA operation mode
1812  *  @priv: driver private structure
1813  *  Description: it is used for configuring the DMA operation mode register in
1814  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1815  */
1816 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1817 {
1818         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1819         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1820         int rxfifosz = priv->plat->rx_fifo_size;
1821         int txfifosz = priv->plat->tx_fifo_size;
1822         u32 txmode = 0;
1823         u32 rxmode = 0;
1824         u32 chan = 0;
1825         u8 qmode = 0;
1826
1827         if (rxfifosz == 0)
1828                 rxfifosz = priv->dma_cap.rx_fifo_size;
1829         if (txfifosz == 0)
1830                 txfifosz = priv->dma_cap.tx_fifo_size;
1831
1832         /* Adjust for real per queue fifo size */
1833         rxfifosz /= rx_channels_count;
1834         txfifosz /= tx_channels_count;
1835
1836         if (priv->plat->force_thresh_dma_mode) {
1837                 txmode = tc;
1838                 rxmode = tc;
1839         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1840                 /*
1841                  * In case of GMAC, SF mode can be enabled
1842                  * to perform the TX COE in HW. This depends on:
1843                  * 1) TX COE if actually supported
1844                  * 2) There is no bugged Jumbo frame support
1845                  *    that needs to not insert csum in the TDES.
1846                  */
1847                 txmode = SF_DMA_MODE;
1848                 rxmode = SF_DMA_MODE;
1849                 priv->xstats.threshold = SF_DMA_MODE;
1850         } else {
1851                 txmode = tc;
1852                 rxmode = SF_DMA_MODE;
1853         }
1854
1855         /* configure all channels */
1856         for (chan = 0; chan < rx_channels_count; chan++) {
1857                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1858
1859                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1860                                 rxfifosz, qmode);
1861                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1862                                 chan);
1863         }
1864
1865         for (chan = 0; chan < tx_channels_count; chan++) {
1866                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1867
1868                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1869                                 txfifosz, qmode);
1870         }
1871 }
1872
1873 /**
1874  * stmmac_tx_clean - to manage the transmission completion
1875  * @priv: driver private structure
1876  * @queue: TX queue index
1877  * Description: it reclaims the transmit resources after transmission completes.
1878  */
1879 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1880 {
1881         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1882         unsigned int bytes_compl = 0, pkts_compl = 0;
1883         unsigned int entry, count = 0;
1884
1885         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1886
1887         priv->xstats.tx_clean++;
1888
1889         entry = tx_q->dirty_tx;
1890         while ((entry != tx_q->cur_tx) && (count < budget)) {
1891                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1892                 struct dma_desc *p;
1893                 int status;
1894
1895                 if (priv->extend_desc)
1896                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1897                 else
1898                         p = tx_q->dma_tx + entry;
1899
1900                 status = stmmac_tx_status(priv, &priv->dev->stats,
1901                                 &priv->xstats, p, priv->ioaddr);
1902                 /* Check if the descriptor is owned by the DMA */
1903                 if (unlikely(status & tx_dma_own))
1904                         break;
1905
1906                 count++;
1907
1908                 /* Make sure descriptor fields are read after reading
1909                  * the own bit.
1910                  */
1911                 dma_rmb();
1912
1913                 /* Just consider the last segment and ...*/
1914                 if (likely(!(status & tx_not_ls))) {
1915                         /* ... verify the status error condition */
1916                         if (unlikely(status & tx_err)) {
1917                                 priv->dev->stats.tx_errors++;
1918                         } else {
1919                                 priv->dev->stats.tx_packets++;
1920                                 priv->xstats.tx_pkt_n++;
1921                         }
1922                         stmmac_get_tx_hwtstamp(priv, p, skb);
1923                 }
1924
1925                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1926                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1927                                 dma_unmap_page(priv->device,
1928                                                tx_q->tx_skbuff_dma[entry].buf,
1929                                                tx_q->tx_skbuff_dma[entry].len,
1930                                                DMA_TO_DEVICE);
1931                         else
1932                                 dma_unmap_single(priv->device,
1933                                                  tx_q->tx_skbuff_dma[entry].buf,
1934                                                  tx_q->tx_skbuff_dma[entry].len,
1935                                                  DMA_TO_DEVICE);
1936                         tx_q->tx_skbuff_dma[entry].buf = 0;
1937                         tx_q->tx_skbuff_dma[entry].len = 0;
1938                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1939                 }
1940
1941                 stmmac_clean_desc3(priv, tx_q, p);
1942
1943                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1944                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1945
1946                 if (likely(skb != NULL)) {
1947                         pkts_compl++;
1948                         bytes_compl += skb->len;
1949                         dev_consume_skb_any(skb);
1950                         tx_q->tx_skbuff[entry] = NULL;
1951                 }
1952
1953                 stmmac_release_tx_desc(priv, p, priv->mode);
1954
1955                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1956         }
1957         tx_q->dirty_tx = entry;
1958
1959         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1960                                   pkts_compl, bytes_compl);
1961
1962         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1963                                                                 queue))) &&
1964             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1965
1966                 netif_dbg(priv, tx_done, priv->dev,
1967                           "%s: restart transmit\n", __func__);
1968                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1969         }
1970
1971         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1972                 stmmac_enable_eee_mode(priv);
1973                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1974         }
1975
1976         /* We still have pending packets, let's call for a new scheduling */
1977         if (tx_q->dirty_tx != tx_q->cur_tx)
1978                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1979
1980         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1981
1982         return count;
1983 }
1984
1985 /**
1986  * stmmac_tx_err - to manage the tx error
1987  * @priv: driver private structure
1988  * @chan: channel index
1989  * Description: it cleans the descriptors and restarts the transmission
1990  * in case of transmission errors.
1991  */
1992 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1993 {
1994         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1995         int i;
1996
1997         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1998
1999         stmmac_stop_tx_dma(priv, chan);
2000         dma_free_tx_skbufs(priv, chan);
2001         for (i = 0; i < DMA_TX_SIZE; i++)
2002                 if (priv->extend_desc)
2003                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2004                                         priv->mode, (i == DMA_TX_SIZE - 1));
2005                 else
2006                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2007                                         priv->mode, (i == DMA_TX_SIZE - 1));
2008         tx_q->dirty_tx = 0;
2009         tx_q->cur_tx = 0;
2010         tx_q->mss = 0;
2011         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2012         stmmac_start_tx_dma(priv, chan);
2013
2014         priv->dev->stats.tx_errors++;
2015         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2016 }
2017
2018 /**
2019  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2020  *  @priv: driver private structure
2021  *  @txmode: TX operating mode
2022  *  @rxmode: RX operating mode
2023  *  @chan: channel index
2024  *  Description: it is used for configuring of the DMA operation mode in
2025  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2026  *  mode.
2027  */
2028 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2029                                           u32 rxmode, u32 chan)
2030 {
2031         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2032         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2033         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2034         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2035         int rxfifosz = priv->plat->rx_fifo_size;
2036         int txfifosz = priv->plat->tx_fifo_size;
2037
2038         if (rxfifosz == 0)
2039                 rxfifosz = priv->dma_cap.rx_fifo_size;
2040         if (txfifosz == 0)
2041                 txfifosz = priv->dma_cap.tx_fifo_size;
2042
2043         /* Adjust for real per queue fifo size */
2044         rxfifosz /= rx_channels_count;
2045         txfifosz /= tx_channels_count;
2046
2047         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2048         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2049 }
2050
2051 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2052 {
2053         int ret;
2054
2055         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2056                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2057         if (ret && (ret != -EINVAL)) {
2058                 stmmac_global_err(priv);
2059                 return true;
2060         }
2061
2062         return false;
2063 }
2064
2065 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2066 {
2067         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2068                                                  &priv->xstats, chan);
2069         struct stmmac_channel *ch = &priv->channel[chan];
2070
2071         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2072                 if (napi_schedule_prep(&ch->rx_napi)) {
2073                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2074                         __napi_schedule_irqoff(&ch->rx_napi);
2075                         status |= handle_tx;
2076                 }
2077         }
2078
2079         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2080                 napi_schedule_irqoff(&ch->tx_napi);
2081
2082         return status;
2083 }
2084
2085 /**
2086  * stmmac_dma_interrupt - DMA ISR
2087  * @priv: driver private structure
2088  * Description: this is the DMA ISR. It is called by the main ISR.
2089  * It calls the dwmac dma routine and schedule poll method in case of some
2090  * work can be done.
2091  */
2092 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2093 {
2094         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2095         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2096         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2097                                 tx_channel_count : rx_channel_count;
2098         u32 chan;
2099         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2100
2101         /* Make sure we never check beyond our status buffer. */
2102         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2103                 channels_to_check = ARRAY_SIZE(status);
2104
2105         for (chan = 0; chan < channels_to_check; chan++)
2106                 status[chan] = stmmac_napi_check(priv, chan);
2107
2108         for (chan = 0; chan < tx_channel_count; chan++) {
2109                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2110                         /* Try to bump up the dma threshold on this failure */
2111                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2112                             (tc <= 256)) {
2113                                 tc += 64;
2114                                 if (priv->plat->force_thresh_dma_mode)
2115                                         stmmac_set_dma_operation_mode(priv,
2116                                                                       tc,
2117                                                                       tc,
2118                                                                       chan);
2119                                 else
2120                                         stmmac_set_dma_operation_mode(priv,
2121                                                                     tc,
2122                                                                     SF_DMA_MODE,
2123                                                                     chan);
2124                                 priv->xstats.threshold = tc;
2125                         }
2126                 } else if (unlikely(status[chan] == tx_hard_error)) {
2127                         stmmac_tx_err(priv, chan);
2128                 }
2129         }
2130 }
2131
2132 /**
2133  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2134  * @priv: driver private structure
2135  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2136  */
2137 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2138 {
2139         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2140                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2141
2142         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2143
2144         if (priv->dma_cap.rmon) {
2145                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2146                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2147         } else
2148                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2149 }
2150
2151 /**
2152  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2153  * @priv: driver private structure
2154  * Description:
2155  *  new GMAC chip generations have a new register to indicate the
2156  *  presence of the optional feature/functions.
2157  *  This can be also used to override the value passed through the
2158  *  platform and necessary for old MAC10/100 and GMAC chips.
2159  */
2160 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2161 {
2162         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2163 }
2164
2165 /**
2166  * stmmac_check_ether_addr - check if the MAC addr is valid
2167  * @priv: driver private structure
2168  * Description:
2169  * it is to verify if the MAC address is valid, in case of failures it
2170  * generates a random MAC address
2171  */
2172 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2173 {
2174         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2175                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2176                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2177                         eth_hw_addr_random(priv->dev);
2178                 dev_info(priv->device, "device MAC address %pM\n",
2179                          priv->dev->dev_addr);
2180         }
2181 }
2182
2183 /**
2184  * stmmac_init_dma_engine - DMA init.
2185  * @priv: driver private structure
2186  * Description:
2187  * It inits the DMA invoking the specific MAC/GMAC callback.
2188  * Some DMA parameters can be passed from the platform;
2189  * in case of these are not passed a default is kept for the MAC or GMAC.
2190  */
2191 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2192 {
2193         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2194         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2195         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2196         struct stmmac_rx_queue *rx_q;
2197         struct stmmac_tx_queue *tx_q;
2198         u32 chan = 0;
2199         int atds = 0;
2200         int ret = 0;
2201
2202         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2203                 dev_err(priv->device, "Invalid DMA configuration\n");
2204                 return -EINVAL;
2205         }
2206
2207         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2208                 atds = 1;
2209
2210         ret = stmmac_reset(priv, priv->ioaddr);
2211         if (ret) {
2212                 dev_err(priv->device, "Failed to reset the dma\n");
2213                 return ret;
2214         }
2215
2216         /* DMA Configuration */
2217         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2218
2219         if (priv->plat->axi)
2220                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2221
2222         /* DMA CSR Channel configuration */
2223         for (chan = 0; chan < dma_csr_ch; chan++)
2224                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2225
2226         /* DMA RX Channel Configuration */
2227         for (chan = 0; chan < rx_channels_count; chan++) {
2228                 rx_q = &priv->rx_queue[chan];
2229
2230                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2231                                     rx_q->dma_rx_phy, chan);
2232
2233                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2234                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2235                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2236                                        rx_q->rx_tail_addr, chan);
2237         }
2238
2239         /* DMA TX Channel Configuration */
2240         for (chan = 0; chan < tx_channels_count; chan++) {
2241                 tx_q = &priv->tx_queue[chan];
2242
2243                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2244                                     tx_q->dma_tx_phy, chan);
2245
2246                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2247                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2248                                        tx_q->tx_tail_addr, chan);
2249         }
2250
2251         return ret;
2252 }
2253
2254 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2255 {
2256         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2257
2258         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2259 }
2260
2261 /**
2262  * stmmac_tx_timer - mitigation sw timer for tx.
2263  * @data: data pointer
2264  * Description:
2265  * This is the timer handler to directly invoke the stmmac_tx_clean.
2266  */
2267 static void stmmac_tx_timer(struct timer_list *t)
2268 {
2269         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2270         struct stmmac_priv *priv = tx_q->priv_data;
2271         struct stmmac_channel *ch;
2272
2273         ch = &priv->channel[tx_q->queue_index];
2274
2275         /*
2276          * If NAPI is already running we can miss some events. Let's rearm
2277          * the timer and try again.
2278          */
2279         if (likely(napi_schedule_prep(&ch->tx_napi)))
2280                 __napi_schedule(&ch->tx_napi);
2281         else
2282                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2283 }
2284
2285 /**
2286  * stmmac_init_coalesce - init mitigation options.
2287  * @priv: driver private structure
2288  * Description:
2289  * This inits the coalesce parameters: i.e. timer rate,
2290  * timer handler and default threshold used for enabling the
2291  * interrupt on completion bit.
2292  */
2293 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2294 {
2295         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2296         u32 chan;
2297
2298         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2299         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2300         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2301
2302         for (chan = 0; chan < tx_channel_count; chan++) {
2303                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2304
2305                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2306         }
2307 }
2308
2309 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2310 {
2311         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2312         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2313         u32 chan;
2314
2315         /* set TX ring length */
2316         for (chan = 0; chan < tx_channels_count; chan++)
2317                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2318                                 (DMA_TX_SIZE - 1), chan);
2319
2320         /* set RX ring length */
2321         for (chan = 0; chan < rx_channels_count; chan++)
2322                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2323                                 (DMA_RX_SIZE - 1), chan);
2324 }
2325
2326 /**
2327  *  stmmac_set_tx_queue_weight - Set TX queue weight
2328  *  @priv: driver private structure
2329  *  Description: It is used for setting TX queues weight
2330  */
2331 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2332 {
2333         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2334         u32 weight;
2335         u32 queue;
2336
2337         for (queue = 0; queue < tx_queues_count; queue++) {
2338                 weight = priv->plat->tx_queues_cfg[queue].weight;
2339                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2340         }
2341 }
2342
2343 /**
2344  *  stmmac_configure_cbs - Configure CBS in TX queue
2345  *  @priv: driver private structure
2346  *  Description: It is used for configuring CBS in AVB TX queues
2347  */
2348 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2349 {
2350         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2351         u32 mode_to_use;
2352         u32 queue;
2353
2354         /* queue 0 is reserved for legacy traffic */
2355         for (queue = 1; queue < tx_queues_count; queue++) {
2356                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2357                 if (mode_to_use == MTL_QUEUE_DCB)
2358                         continue;
2359
2360                 stmmac_config_cbs(priv, priv->hw,
2361                                 priv->plat->tx_queues_cfg[queue].send_slope,
2362                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2363                                 priv->plat->tx_queues_cfg[queue].high_credit,
2364                                 priv->plat->tx_queues_cfg[queue].low_credit,
2365                                 queue);
2366         }
2367 }
2368
2369 /**
2370  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2371  *  @priv: driver private structure
2372  *  Description: It is used for mapping RX queues to RX dma channels
2373  */
2374 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2375 {
2376         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2377         u32 queue;
2378         u32 chan;
2379
2380         for (queue = 0; queue < rx_queues_count; queue++) {
2381                 chan = priv->plat->rx_queues_cfg[queue].chan;
2382                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2383         }
2384 }
2385
2386 /**
2387  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2388  *  @priv: driver private structure
2389  *  Description: It is used for configuring the RX Queue Priority
2390  */
2391 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2392 {
2393         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2394         u32 queue;
2395         u32 prio;
2396
2397         for (queue = 0; queue < rx_queues_count; queue++) {
2398                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2399                         continue;
2400
2401                 prio = priv->plat->rx_queues_cfg[queue].prio;
2402                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2403         }
2404 }
2405
2406 /**
2407  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2408  *  @priv: driver private structure
2409  *  Description: It is used for configuring the TX Queue Priority
2410  */
2411 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2412 {
2413         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2414         u32 queue;
2415         u32 prio;
2416
2417         for (queue = 0; queue < tx_queues_count; queue++) {
2418                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2419                         continue;
2420
2421                 prio = priv->plat->tx_queues_cfg[queue].prio;
2422                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2423         }
2424 }
2425
2426 /**
2427  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2428  *  @priv: driver private structure
2429  *  Description: It is used for configuring the RX queue routing
2430  */
2431 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2432 {
2433         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2434         u32 queue;
2435         u8 packet;
2436
2437         for (queue = 0; queue < rx_queues_count; queue++) {
2438                 /* no specific packet type routing specified for the queue */
2439                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2440                         continue;
2441
2442                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2443                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2444         }
2445 }
2446
2447 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2448 {
2449         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2450                 priv->rss.enable = false;
2451                 return;
2452         }
2453
2454         if (priv->dev->features & NETIF_F_RXHASH)
2455                 priv->rss.enable = true;
2456         else
2457                 priv->rss.enable = false;
2458
2459         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2460                              priv->plat->rx_queues_to_use);
2461 }
2462
2463 /**
2464  *  stmmac_mtl_configuration - Configure MTL
2465  *  @priv: driver private structure
2466  *  Description: It is used for configurring MTL
2467  */
2468 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2469 {
2470         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2471         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2472
2473         if (tx_queues_count > 1)
2474                 stmmac_set_tx_queue_weight(priv);
2475
2476         /* Configure MTL RX algorithms */
2477         if (rx_queues_count > 1)
2478                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2479                                 priv->plat->rx_sched_algorithm);
2480
2481         /* Configure MTL TX algorithms */
2482         if (tx_queues_count > 1)
2483                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2484                                 priv->plat->tx_sched_algorithm);
2485
2486         /* Configure CBS in AVB TX queues */
2487         if (tx_queues_count > 1)
2488                 stmmac_configure_cbs(priv);
2489
2490         /* Map RX MTL to DMA channels */
2491         stmmac_rx_queue_dma_chan_map(priv);
2492
2493         /* Enable MAC RX Queues */
2494         stmmac_mac_enable_rx_queues(priv);
2495
2496         /* Set RX priorities */
2497         if (rx_queues_count > 1)
2498                 stmmac_mac_config_rx_queues_prio(priv);
2499
2500         /* Set TX priorities */
2501         if (tx_queues_count > 1)
2502                 stmmac_mac_config_tx_queues_prio(priv);
2503
2504         /* Set RX routing */
2505         if (rx_queues_count > 1)
2506                 stmmac_mac_config_rx_queues_routing(priv);
2507
2508         /* Receive Side Scaling */
2509         if (rx_queues_count > 1)
2510                 stmmac_mac_config_rss(priv);
2511 }
2512
2513 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2514 {
2515         if (priv->dma_cap.asp) {
2516                 netdev_info(priv->dev, "Enabling Safety Features\n");
2517                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2518         } else {
2519                 netdev_info(priv->dev, "No Safety Features support found\n");
2520         }
2521 }
2522
2523 /**
2524  * stmmac_hw_setup - setup mac in a usable state.
2525  *  @dev : pointer to the device structure.
2526  *  Description:
2527  *  this is the main function to setup the HW in a usable state because the
2528  *  dma engine is reset, the core registers are configured (e.g. AXI,
2529  *  Checksum features, timers). The DMA is ready to start receiving and
2530  *  transmitting.
2531  *  Return value:
2532  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2533  *  file on failure.
2534  */
2535 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2536 {
2537         struct stmmac_priv *priv = netdev_priv(dev);
2538         u32 rx_cnt = priv->plat->rx_queues_to_use;
2539         u32 tx_cnt = priv->plat->tx_queues_to_use;
2540         u32 chan;
2541         int ret;
2542
2543         /* DMA initialization and SW reset */
2544         ret = stmmac_init_dma_engine(priv);
2545         if (ret < 0) {
2546                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2547                            __func__);
2548                 return ret;
2549         }
2550
2551         /* Copy the MAC addr into the HW  */
2552         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2553
2554         /* PS and related bits will be programmed according to the speed */
2555         if (priv->hw->pcs) {
2556                 int speed = priv->plat->mac_port_sel_speed;
2557
2558                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2559                     (speed == SPEED_1000)) {
2560                         priv->hw->ps = speed;
2561                 } else {
2562                         dev_warn(priv->device, "invalid port speed\n");
2563                         priv->hw->ps = 0;
2564                 }
2565         }
2566
2567         /* Initialize the MAC Core */
2568         stmmac_core_init(priv, priv->hw, dev);
2569
2570         /* Initialize MTL*/
2571         stmmac_mtl_configuration(priv);
2572
2573         /* Initialize Safety Features */
2574         stmmac_safety_feat_configuration(priv);
2575
2576         ret = stmmac_rx_ipc(priv, priv->hw);
2577         if (!ret) {
2578                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2579                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2580                 priv->hw->rx_csum = 0;
2581         }
2582
2583         /* Enable the MAC Rx/Tx */
2584         stmmac_mac_set(priv, priv->ioaddr, true);
2585
2586         /* Set the HW DMA mode and the COE */
2587         stmmac_dma_operation_mode(priv);
2588
2589         stmmac_mmc_setup(priv);
2590
2591         if (init_ptp) {
2592                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2593                 if (ret < 0)
2594                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2595
2596                 ret = stmmac_init_ptp(priv);
2597                 if (ret == -EOPNOTSUPP)
2598                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2599                 else if (ret)
2600                         netdev_warn(priv->dev, "PTP init failed\n");
2601         }
2602
2603         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2604
2605         if (priv->use_riwt) {
2606                 if (!priv->rx_riwt)
2607                         priv->rx_riwt = DEF_DMA_RIWT;
2608
2609                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2610         }
2611
2612         if (priv->hw->pcs)
2613                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2614
2615         /* set TX and RX rings length */
2616         stmmac_set_rings_length(priv);
2617
2618         /* Enable TSO */
2619         if (priv->tso) {
2620                 for (chan = 0; chan < tx_cnt; chan++)
2621                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2622         }
2623
2624         /* Enable Split Header */
2625         if (priv->sph && priv->hw->rx_csum) {
2626                 for (chan = 0; chan < rx_cnt; chan++)
2627                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2628         }
2629
2630         /* VLAN Tag Insertion */
2631         if (priv->dma_cap.vlins)
2632                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2633
2634         /* Start the ball rolling... */
2635         stmmac_start_all_dma(priv);
2636
2637         return 0;
2638 }
2639
2640 static void stmmac_hw_teardown(struct net_device *dev)
2641 {
2642         struct stmmac_priv *priv = netdev_priv(dev);
2643
2644         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2645 }
2646
2647 /**
2648  *  stmmac_open - open entry point of the driver
2649  *  @dev : pointer to the device structure.
2650  *  Description:
2651  *  This function is the open entry point of the driver.
2652  *  Return value:
2653  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2654  *  file on failure.
2655  */
2656 static int stmmac_open(struct net_device *dev)
2657 {
2658         struct stmmac_priv *priv = netdev_priv(dev);
2659         u32 chan;
2660         int ret;
2661
2662         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2663             priv->hw->pcs != STMMAC_PCS_TBI &&
2664             priv->hw->pcs != STMMAC_PCS_RTBI) {
2665                 ret = stmmac_init_phy(dev);
2666                 if (ret) {
2667                         netdev_err(priv->dev,
2668                                    "%s: Cannot attach to PHY (error: %d)\n",
2669                                    __func__, ret);
2670                         return ret;
2671                 }
2672         }
2673
2674         /* Extra statistics */
2675         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2676         priv->xstats.threshold = tc;
2677
2678         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680
2681         ret = alloc_dma_desc_resources(priv);
2682         if (ret < 0) {
2683                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684                            __func__);
2685                 goto dma_desc_error;
2686         }
2687
2688         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689         if (ret < 0) {
2690                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691                            __func__);
2692                 goto init_error;
2693         }
2694
2695         ret = stmmac_hw_setup(dev, true);
2696         if (ret < 0) {
2697                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698                 goto init_error;
2699         }
2700
2701         stmmac_init_coalesce(priv);
2702
2703         phylink_start(priv->phylink);
2704
2705         /* Request the IRQ lines */
2706         ret = request_irq(dev->irq, stmmac_interrupt,
2707                           IRQF_SHARED, dev->name, dev);
2708         if (unlikely(ret < 0)) {
2709                 netdev_err(priv->dev,
2710                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711                            __func__, dev->irq, ret);
2712                 goto irq_error;
2713         }
2714
2715         /* Request the Wake IRQ in case of another line is used for WoL */
2716         if (priv->wol_irq != dev->irq) {
2717                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718                                   IRQF_SHARED, dev->name, dev);
2719                 if (unlikely(ret < 0)) {
2720                         netdev_err(priv->dev,
2721                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722                                    __func__, priv->wol_irq, ret);
2723                         goto wolirq_error;
2724                 }
2725         }
2726
2727         /* Request the IRQ lines */
2728         if (priv->lpi_irq > 0) {
2729                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730                                   dev->name, dev);
2731                 if (unlikely(ret < 0)) {
2732                         netdev_err(priv->dev,
2733                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734                                    __func__, priv->lpi_irq, ret);
2735                         goto lpiirq_error;
2736                 }
2737         }
2738
2739         stmmac_enable_all_queues(priv);
2740         stmmac_start_all_queues(priv);
2741
2742         return 0;
2743
2744 lpiirq_error:
2745         if (priv->wol_irq != dev->irq)
2746                 free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748         free_irq(dev->irq, dev);
2749 irq_error:
2750         phylink_stop(priv->phylink);
2751
2752         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2754
2755         stmmac_hw_teardown(dev);
2756 init_error:
2757         free_dma_desc_resources(priv);
2758 dma_desc_error:
2759         phylink_disconnect_phy(priv->phylink);
2760         return ret;
2761 }
2762
2763 /**
2764  *  stmmac_release - close entry point of the driver
2765  *  @dev : device pointer.
2766  *  Description:
2767  *  This is the stop entry point of the driver.
2768  */
2769 static int stmmac_release(struct net_device *dev)
2770 {
2771         struct stmmac_priv *priv = netdev_priv(dev);
2772         u32 chan;
2773
2774         if (priv->eee_enabled)
2775                 del_timer_sync(&priv->eee_ctrl_timer);
2776
2777         /* Stop and disconnect the PHY */
2778         phylink_stop(priv->phylink);
2779         phylink_disconnect_phy(priv->phylink);
2780
2781         stmmac_stop_all_queues(priv);
2782
2783         stmmac_disable_all_queues(priv);
2784
2785         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2787
2788         /* Free the IRQ lines */
2789         free_irq(dev->irq, dev);
2790         if (priv->wol_irq != dev->irq)
2791                 free_irq(priv->wol_irq, dev);
2792         if (priv->lpi_irq > 0)
2793                 free_irq(priv->lpi_irq, dev);
2794
2795         /* Stop TX/RX DMA and clear the descriptors */
2796         stmmac_stop_all_dma(priv);
2797
2798         /* Release and free the Rx/Tx resources */
2799         free_dma_desc_resources(priv);
2800
2801         /* Disable the MAC Rx/Tx */
2802         stmmac_mac_set(priv, priv->ioaddr, false);
2803
2804         netif_carrier_off(dev);
2805
2806         stmmac_release_ptp(priv);
2807
2808         return 0;
2809 }
2810
2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812                                struct stmmac_tx_queue *tx_q)
2813 {
2814         u16 tag = 0x0, inner_tag = 0x0;
2815         u32 inner_type = 0x0;
2816         struct dma_desc *p;
2817
2818         if (!priv->dma_cap.vlins)
2819                 return false;
2820         if (!skb_vlan_tag_present(skb))
2821                 return false;
2822         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823                 inner_tag = skb_vlan_tag_get(skb);
2824                 inner_type = STMMAC_VLAN_INSERT;
2825         }
2826
2827         tag = skb_vlan_tag_get(skb);
2828
2829         p = tx_q->dma_tx + tx_q->cur_tx;
2830         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831                 return false;
2832
2833         stmmac_set_tx_owner(priv, p);
2834         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835         return true;
2836 }
2837
2838 /**
2839  *  stmmac_tso_allocator - close entry point of the driver
2840  *  @priv: driver private structure
2841  *  @des: buffer start address
2842  *  @total_len: total length to fill in descriptors
2843  *  @last_segmant: condition for the last descriptor
2844  *  @queue: TX queue index
2845  *  Description:
2846  *  This function fills descriptor and request new descriptors according to
2847  *  buffer length to fill
2848  */
2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850                                  int total_len, bool last_segment, u32 queue)
2851 {
2852         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853         struct dma_desc *desc;
2854         u32 buff_size;
2855         int tmp_len;
2856
2857         tmp_len = total_len;
2858
2859         while (tmp_len > 0) {
2860                 dma_addr_t curr_addr;
2861
2862                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864                 desc = tx_q->dma_tx + tx_q->cur_tx;
2865
2866                 curr_addr = des + (total_len - tmp_len);
2867                 if (priv->dma_cap.addr64 <= 32)
2868                         desc->des0 = cpu_to_le32(curr_addr);
2869                 else
2870                         stmmac_set_desc_addr(priv, desc, curr_addr);
2871
2872                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873                             TSO_MAX_BUFF_SIZE : tmp_len;
2874
2875                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876                                 0, 1,
2877                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878                                 0, 0);
2879
2880                 tmp_len -= TSO_MAX_BUFF_SIZE;
2881         }
2882 }
2883
2884 /**
2885  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886  *  @skb : the socket buffer
2887  *  @dev : device pointer
2888  *  Description: this is the transmit function that is called on TSO frames
2889  *  (support available on GMAC4 and newer chips).
2890  *  Diagram below show the ring programming in case of TSO frames:
2891  *
2892  *  First Descriptor
2893  *   --------
2894  *   | DES0 |---> buffer1 = L2/L3/L4 header
2895  *   | DES1 |---> TCP Payload (can continue on next descr...)
2896  *   | DES2 |---> buffer 1 and 2 len
2897  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898  *   --------
2899  *      |
2900  *     ...
2901  *      |
2902  *   --------
2903  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904  *   | DES1 | --|
2905  *   | DES2 | --> buffer 1 and 2 len
2906  *   | DES3 |
2907  *   --------
2908  *
2909  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910  */
2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913         struct dma_desc *desc, *first, *mss_desc = NULL;
2914         struct stmmac_priv *priv = netdev_priv(dev);
2915         int nfrags = skb_shinfo(skb)->nr_frags;
2916         u32 queue = skb_get_queue_mapping(skb);
2917         unsigned int first_entry, tx_packets;
2918         int tmp_pay_len = 0, first_tx;
2919         struct stmmac_tx_queue *tx_q;
2920         u8 proto_hdr_len, hdr;
2921         bool has_vlan, set_ic;
2922         u32 pay_len, mss;
2923         dma_addr_t des;
2924         int i;
2925
2926         tx_q = &priv->tx_queue[queue];
2927         first_tx = tx_q->cur_tx;
2928
2929         /* Compute header lengths */
2930         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2931                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2932                 hdr = sizeof(struct udphdr);
2933         } else {
2934                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2935                 hdr = tcp_hdrlen(skb);
2936         }
2937
2938         /* Desc availability based on threshold should be enough safe */
2939         if (unlikely(stmmac_tx_avail(priv, queue) <
2940                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2941                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2942                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2943                                                                 queue));
2944                         /* This is a hard error, log it. */
2945                         netdev_err(priv->dev,
2946                                    "%s: Tx Ring full when queue awake\n",
2947                                    __func__);
2948                 }
2949                 return NETDEV_TX_BUSY;
2950         }
2951
2952         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2953
2954         mss = skb_shinfo(skb)->gso_size;
2955
2956         /* set new MSS value if needed */
2957         if (mss != tx_q->mss) {
2958                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2959                 stmmac_set_mss(priv, mss_desc, mss);
2960                 tx_q->mss = mss;
2961                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2962                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2963         }
2964
2965         if (netif_msg_tx_queued(priv)) {
2966                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2967                         __func__, hdr, proto_hdr_len, pay_len, mss);
2968                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2969                         skb->data_len);
2970         }
2971
2972         /* Check if VLAN can be inserted by HW */
2973         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2974
2975         first_entry = tx_q->cur_tx;
2976         WARN_ON(tx_q->tx_skbuff[first_entry]);
2977
2978         desc = tx_q->dma_tx + first_entry;
2979         first = desc;
2980
2981         if (has_vlan)
2982                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2983
2984         /* first descriptor: fill Headers on Buf1 */
2985         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2986                              DMA_TO_DEVICE);
2987         if (dma_mapping_error(priv->device, des))
2988                 goto dma_map_err;
2989
2990         tx_q->tx_skbuff_dma[first_entry].buf = des;
2991         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2992
2993         if (priv->dma_cap.addr64 <= 32) {
2994                 first->des0 = cpu_to_le32(des);
2995
2996                 /* Fill start of payload in buff2 of first descriptor */
2997                 if (pay_len)
2998                         first->des1 = cpu_to_le32(des + proto_hdr_len);
2999
3000                 /* If needed take extra descriptors to fill the remaining payload */
3001                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3002         } else {
3003                 stmmac_set_desc_addr(priv, first, des);
3004                 tmp_pay_len = pay_len;
3005                 des += proto_hdr_len;
3006                 pay_len = 0;
3007         }
3008
3009         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3010
3011         /* Prepare fragments */
3012         for (i = 0; i < nfrags; i++) {
3013                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3014
3015                 des = skb_frag_dma_map(priv->device, frag, 0,
3016                                        skb_frag_size(frag),
3017                                        DMA_TO_DEVICE);
3018                 if (dma_mapping_error(priv->device, des))
3019                         goto dma_map_err;
3020
3021                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3022                                      (i == nfrags - 1), queue);
3023
3024                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3025                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3026                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3027         }
3028
3029         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3030
3031         /* Only the last descriptor gets to point to the skb. */
3032         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3033
3034         /* Manage tx mitigation */
3035         tx_packets = (tx_q->cur_tx + 1) - first_tx;
3036         tx_q->tx_count_frames += tx_packets;
3037
3038         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3039                 set_ic = true;
3040         else if (!priv->tx_coal_frames)
3041                 set_ic = false;
3042         else if (tx_packets > priv->tx_coal_frames)
3043                 set_ic = true;
3044         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3045                 set_ic = true;
3046         else
3047                 set_ic = false;
3048
3049         if (set_ic) {
3050                 desc = &tx_q->dma_tx[tx_q->cur_tx];
3051                 tx_q->tx_count_frames = 0;
3052                 stmmac_set_tx_ic(priv, desc);
3053                 priv->xstats.tx_set_ic_bit++;
3054         } else {
3055                 stmmac_tx_timer_arm(priv, queue);
3056         }
3057
3058         /* We've used all descriptors we need for this skb, however,
3059          * advance cur_tx so that it references a fresh descriptor.
3060          * ndo_start_xmit will fill this descriptor the next time it's
3061          * called and stmmac_tx_clean may clean up to this descriptor.
3062          */
3063         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3064
3065         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3066                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3067                           __func__);
3068                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3069         }
3070
3071         dev->stats.tx_bytes += skb->len;
3072         priv->xstats.tx_tso_frames++;
3073         priv->xstats.tx_tso_nfrags += nfrags;
3074
3075         if (priv->sarc_type)
3076                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3077
3078         skb_tx_timestamp(skb);
3079
3080         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3081                      priv->hwts_tx_en)) {
3082                 /* declare that device is doing timestamping */
3083                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3084                 stmmac_enable_tx_timestamp(priv, first);
3085         }
3086
3087         /* Complete the first descriptor before granting the DMA */
3088         stmmac_prepare_tso_tx_desc(priv, first, 1,
3089                         proto_hdr_len,
3090                         pay_len,
3091                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3092                         hdr / 4, (skb->len - proto_hdr_len));
3093
3094         /* If context desc is used to change MSS */
3095         if (mss_desc) {
3096                 /* Make sure that first descriptor has been completely
3097                  * written, including its own bit. This is because MSS is
3098                  * actually before first descriptor, so we need to make
3099                  * sure that MSS's own bit is the last thing written.
3100                  */
3101                 dma_wmb();
3102                 stmmac_set_tx_owner(priv, mss_desc);
3103         }
3104
3105         /* The own bit must be the latest setting done when prepare the
3106          * descriptor and then barrier is needed to make sure that
3107          * all is coherent before granting the DMA engine.
3108          */
3109         wmb();
3110
3111         if (netif_msg_pktdata(priv)) {
3112                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3113                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3114                         tx_q->cur_tx, first, nfrags);
3115
3116                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3117
3118                 pr_info(">>> frame to be transmitted: ");
3119                 print_pkt(skb->data, skb_headlen(skb));
3120         }
3121
3122         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3123
3124         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3125         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3126
3127         return NETDEV_TX_OK;
3128
3129 dma_map_err:
3130         dev_err(priv->device, "Tx dma map failed\n");
3131         dev_kfree_skb(skb);
3132         priv->dev->stats.tx_dropped++;
3133         return NETDEV_TX_OK;
3134 }
3135
3136 /**
3137  *  stmmac_xmit - Tx entry point of the driver
3138  *  @skb : the socket buffer
3139  *  @dev : device pointer
3140  *  Description : this is the tx entry point of the driver.
3141  *  It programs the chain or the ring and supports oversized frames
3142  *  and SG feature.
3143  */
3144 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3145 {
3146         unsigned int first_entry, tx_packets, enh_desc;
3147         struct stmmac_priv *priv = netdev_priv(dev);
3148         unsigned int nopaged_len = skb_headlen(skb);
3149         int i, csum_insertion = 0, is_jumbo = 0;
3150         u32 queue = skb_get_queue_mapping(skb);
3151         int nfrags = skb_shinfo(skb)->nr_frags;
3152         int gso = skb_shinfo(skb)->gso_type;
3153         struct dma_desc *desc, *first;
3154         struct stmmac_tx_queue *tx_q;
3155         bool has_vlan, set_ic;
3156         int entry, first_tx;
3157         dma_addr_t des;
3158
3159         tx_q = &priv->tx_queue[queue];
3160         first_tx = tx_q->cur_tx;
3161
3162         if (priv->tx_path_in_lpi_mode)
3163                 stmmac_disable_eee_mode(priv);
3164
3165         /* Manage oversized TCP frames for GMAC4 device */
3166         if (skb_is_gso(skb) && priv->tso) {
3167                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3168                         return stmmac_tso_xmit(skb, dev);
3169                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3170                         return stmmac_tso_xmit(skb, dev);
3171         }
3172
3173         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3174                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3175                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3176                                                                 queue));
3177                         /* This is a hard error, log it. */
3178                         netdev_err(priv->dev,
3179                                    "%s: Tx Ring full when queue awake\n",
3180                                    __func__);
3181                 }
3182                 return NETDEV_TX_BUSY;
3183         }
3184
3185         /* Check if VLAN can be inserted by HW */
3186         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3187
3188         entry = tx_q->cur_tx;
3189         first_entry = entry;
3190         WARN_ON(tx_q->tx_skbuff[first_entry]);
3191
3192         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3193
3194         if (likely(priv->extend_desc))
3195                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3196         else
3197                 desc = tx_q->dma_tx + entry;
3198
3199         first = desc;
3200
3201         if (has_vlan)
3202                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3203
3204         enh_desc = priv->plat->enh_desc;
3205         /* To program the descriptors according to the size of the frame */
3206         if (enh_desc)
3207                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3208
3209         if (unlikely(is_jumbo)) {
3210                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3211                 if (unlikely(entry < 0) && (entry != -EINVAL))
3212                         goto dma_map_err;
3213         }
3214
3215         for (i = 0; i < nfrags; i++) {
3216                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3217                 int len = skb_frag_size(frag);
3218                 bool last_segment = (i == (nfrags - 1));
3219
3220                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3221                 WARN_ON(tx_q->tx_skbuff[entry]);
3222
3223                 if (likely(priv->extend_desc))
3224                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3225                 else
3226                         desc = tx_q->dma_tx + entry;
3227
3228                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3229                                        DMA_TO_DEVICE);
3230                 if (dma_mapping_error(priv->device, des))
3231                         goto dma_map_err; /* should reuse desc w/o issues */
3232
3233                 tx_q->tx_skbuff_dma[entry].buf = des;
3234
3235                 stmmac_set_desc_addr(priv, desc, des);
3236
3237                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3238                 tx_q->tx_skbuff_dma[entry].len = len;
3239                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3240
3241                 /* Prepare the descriptor and set the own bit too */
3242                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3243                                 priv->mode, 1, last_segment, skb->len);
3244         }
3245
3246         /* Only the last descriptor gets to point to the skb. */
3247         tx_q->tx_skbuff[entry] = skb;
3248
3249         /* According to the coalesce parameter the IC bit for the latest
3250          * segment is reset and the timer re-started to clean the tx status.
3251          * This approach takes care about the fragments: desc is the first
3252          * element in case of no SG.
3253          */
3254         tx_packets = (entry + 1) - first_tx;
3255         tx_q->tx_count_frames += tx_packets;
3256
3257         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3258                 set_ic = true;
3259         else if (!priv->tx_coal_frames)
3260                 set_ic = false;
3261         else if (tx_packets > priv->tx_coal_frames)
3262                 set_ic = true;
3263         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3264                 set_ic = true;
3265         else
3266                 set_ic = false;
3267
3268         if (set_ic) {
3269                 if (likely(priv->extend_desc))
3270                         desc = &tx_q->dma_etx[entry].basic;
3271                 else
3272                         desc = &tx_q->dma_tx[entry];
3273
3274                 tx_q->tx_count_frames = 0;
3275                 stmmac_set_tx_ic(priv, desc);
3276                 priv->xstats.tx_set_ic_bit++;
3277         } else {
3278                 stmmac_tx_timer_arm(priv, queue);
3279         }
3280
3281         /* We've used all descriptors we need for this skb, however,
3282          * advance cur_tx so that it references a fresh descriptor.
3283          * ndo_start_xmit will fill this descriptor the next time it's
3284          * called and stmmac_tx_clean may clean up to this descriptor.
3285          */
3286         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3287         tx_q->cur_tx = entry;
3288
3289         if (netif_msg_pktdata(priv)) {
3290                 void *tx_head;
3291
3292                 netdev_dbg(priv->dev,
3293                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3294                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3295                            entry, first, nfrags);
3296
3297                 if (priv->extend_desc)
3298                         tx_head = (void *)tx_q->dma_etx;
3299                 else
3300                         tx_head = (void *)tx_q->dma_tx;
3301
3302                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3303
3304                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3305                 print_pkt(skb->data, skb->len);
3306         }
3307
3308         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3309                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3310                           __func__);
3311                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3312         }
3313
3314         dev->stats.tx_bytes += skb->len;
3315
3316         if (priv->sarc_type)
3317                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3318
3319         skb_tx_timestamp(skb);
3320
3321         /* Ready to fill the first descriptor and set the OWN bit w/o any
3322          * problems because all the descriptors are actually ready to be
3323          * passed to the DMA engine.
3324          */
3325         if (likely(!is_jumbo)) {
3326                 bool last_segment = (nfrags == 0);
3327
3328                 des = dma_map_single(priv->device, skb->data,
3329                                      nopaged_len, DMA_TO_DEVICE);
3330                 if (dma_mapping_error(priv->device, des))
3331                         goto dma_map_err;
3332
3333                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3334
3335                 stmmac_set_desc_addr(priv, first, des);
3336
3337                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3338                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3339
3340                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3341                              priv->hwts_tx_en)) {
3342                         /* declare that device is doing timestamping */
3343                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3344                         stmmac_enable_tx_timestamp(priv, first);
3345                 }
3346
3347                 /* Prepare the first descriptor setting the OWN bit too */
3348                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3349                                 csum_insertion, priv->mode, 1, last_segment,
3350                                 skb->len);
3351         } else {
3352                 stmmac_set_tx_owner(priv, first);
3353         }
3354
3355         /* The own bit must be the latest setting done when prepare the
3356          * descriptor and then barrier is needed to make sure that
3357          * all is coherent before granting the DMA engine.
3358          */
3359         wmb();
3360
3361         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3362
3363         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3364
3365         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3366         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3367
3368         return NETDEV_TX_OK;
3369
3370 dma_map_err:
3371         netdev_err(priv->dev, "Tx DMA map failed\n");
3372         dev_kfree_skb(skb);
3373         priv->dev->stats.tx_dropped++;
3374         return NETDEV_TX_OK;
3375 }
3376
3377 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3378 {
3379         struct vlan_ethhdr *veth;
3380         __be16 vlan_proto;
3381         u16 vlanid;
3382
3383         veth = (struct vlan_ethhdr *)skb->data;
3384         vlan_proto = veth->h_vlan_proto;
3385
3386         if ((vlan_proto == htons(ETH_P_8021Q) &&
3387              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3388             (vlan_proto == htons(ETH_P_8021AD) &&
3389              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3390                 /* pop the vlan tag */
3391                 vlanid = ntohs(veth->h_vlan_TCI);
3392                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3393                 skb_pull(skb, VLAN_HLEN);
3394                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3395         }
3396 }
3397
3398
3399 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3400 {
3401         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3402                 return 0;
3403
3404         return 1;
3405 }
3406
3407 /**
3408  * stmmac_rx_refill - refill used skb preallocated buffers
3409  * @priv: driver private structure
3410  * @queue: RX queue index
3411  * Description : this is to reallocate the skb for the reception process
3412  * that is based on zero-copy.
3413  */
3414 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3415 {
3416         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3417         int len, dirty = stmmac_rx_dirty(priv, queue);
3418         unsigned int entry = rx_q->dirty_rx;
3419
3420         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3421
3422         while (dirty-- > 0) {
3423                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3424                 struct dma_desc *p;
3425                 bool use_rx_wd;
3426
3427                 if (priv->extend_desc)
3428                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3429                 else
3430                         p = rx_q->dma_rx + entry;
3431
3432                 if (!buf->page) {
3433                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3434                         if (!buf->page)
3435                                 break;
3436                 }
3437
3438                 if (priv->sph && !buf->sec_page) {
3439                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3440                         if (!buf->sec_page)
3441                                 break;
3442
3443                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3444
3445                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3446                                                    len, DMA_FROM_DEVICE);
3447                 }
3448
3449                 buf->addr = page_pool_get_dma_addr(buf->page);
3450
3451                 /* Sync whole allocation to device. This will invalidate old
3452                  * data.
3453                  */
3454                 dma_sync_single_for_device(priv->device, buf->addr, len,
3455                                            DMA_FROM_DEVICE);
3456
3457                 stmmac_set_desc_addr(priv, p, buf->addr);
3458                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3459                 stmmac_refill_desc3(priv, rx_q, p);
3460
3461                 rx_q->rx_count_frames++;
3462                 rx_q->rx_count_frames += priv->rx_coal_frames;
3463                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3464                         rx_q->rx_count_frames = 0;
3465
3466                 use_rx_wd = !priv->rx_coal_frames;
3467                 use_rx_wd |= rx_q->rx_count_frames > 0;
3468                 if (!priv->use_riwt)
3469                         use_rx_wd = false;
3470
3471                 dma_wmb();
3472                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3473
3474                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3475         }
3476         rx_q->dirty_rx = entry;
3477         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3478                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3479         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3480 }
3481
3482 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3483                                        struct dma_desc *p,
3484                                        int status, unsigned int len)
3485 {
3486         int ret, coe = priv->hw->rx_csum;
3487         unsigned int plen = 0, hlen = 0;
3488
3489         /* Not first descriptor, buffer is always zero */
3490         if (priv->sph && len)
3491                 return 0;
3492
3493         /* First descriptor, get split header length */
3494         ret = stmmac_get_rx_header_len(priv, p, &hlen);
3495         if (priv->sph && hlen) {
3496                 priv->xstats.rx_split_hdr_pkt_n++;
3497                 return hlen;
3498         }
3499
3500         /* First descriptor, not last descriptor and not split header */
3501         if (status & rx_not_ls)
3502                 return priv->dma_buf_sz;
3503
3504         plen = stmmac_get_rx_frame_len(priv, p, coe);
3505
3506         /* First descriptor and last descriptor and not split header */
3507         return min_t(unsigned int, priv->dma_buf_sz, plen);
3508 }
3509
3510 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3511                                        struct dma_desc *p,
3512                                        int status, unsigned int len)
3513 {
3514         int coe = priv->hw->rx_csum;
3515         unsigned int plen = 0;
3516
3517         /* Not split header, buffer is not available */
3518         if (!priv->sph)
3519                 return 0;
3520
3521         /* Not last descriptor */
3522         if (status & rx_not_ls)
3523                 return priv->dma_buf_sz;
3524
3525         plen = stmmac_get_rx_frame_len(priv, p, coe);
3526
3527         /* Last descriptor */
3528         return plen - len;
3529 }
3530
3531 /**
3532  * stmmac_rx - manage the receive process
3533  * @priv: driver private structure
3534  * @limit: napi bugget
3535  * @queue: RX queue index.
3536  * Description :  this the function called by the napi poll method.
3537  * It gets all the frames inside the ring.
3538  */
3539 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3540 {
3541         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3542         struct stmmac_channel *ch = &priv->channel[queue];
3543         unsigned int count = 0, error = 0, len = 0;
3544         int status = 0, coe = priv->hw->rx_csum;
3545         unsigned int next_entry = rx_q->cur_rx;
3546         struct sk_buff *skb = NULL;
3547
3548         if (netif_msg_rx_status(priv)) {
3549                 void *rx_head;
3550
3551                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3552                 if (priv->extend_desc)
3553                         rx_head = (void *)rx_q->dma_erx;
3554                 else
3555                         rx_head = (void *)rx_q->dma_rx;
3556
3557                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3558         }
3559         while (count < limit) {
3560                 unsigned int buf1_len = 0, buf2_len = 0;
3561                 enum pkt_hash_types hash_type;
3562                 struct stmmac_rx_buffer *buf;
3563                 struct dma_desc *np, *p;
3564                 int entry;
3565                 u32 hash;
3566
3567                 if (!count && rx_q->state_saved) {
3568                         skb = rx_q->state.skb;
3569                         error = rx_q->state.error;
3570                         len = rx_q->state.len;
3571                 } else {
3572                         rx_q->state_saved = false;
3573                         skb = NULL;
3574                         error = 0;
3575                         len = 0;
3576                 }
3577
3578                 if (count >= limit)
3579                         break;
3580
3581 read_again:
3582                 buf1_len = 0;
3583                 buf2_len = 0;
3584                 entry = next_entry;
3585                 buf = &rx_q->buf_pool[entry];
3586
3587                 if (priv->extend_desc)
3588                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3589                 else
3590                         p = rx_q->dma_rx + entry;
3591
3592                 /* read the status of the incoming frame */
3593                 status = stmmac_rx_status(priv, &priv->dev->stats,
3594                                 &priv->xstats, p);
3595                 /* check if managed by the DMA otherwise go ahead */
3596                 if (unlikely(status & dma_own))
3597                         break;
3598
3599                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3600                 next_entry = rx_q->cur_rx;
3601
3602                 if (priv->extend_desc)
3603                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3604                 else
3605                         np = rx_q->dma_rx + next_entry;
3606
3607                 prefetch(np);
3608
3609                 if (priv->extend_desc)
3610                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3611                                         &priv->xstats, rx_q->dma_erx + entry);
3612                 if (unlikely(status == discard_frame)) {
3613                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3614                         buf->page = NULL;
3615                         error = 1;
3616                         if (!priv->hwts_rx_en)
3617                                 priv->dev->stats.rx_errors++;
3618                 }
3619
3620                 if (unlikely(error && (status & rx_not_ls)))
3621                         goto read_again;
3622                 if (unlikely(error)) {
3623                         dev_kfree_skb(skb);
3624                         skb = NULL;
3625                         count++;
3626                         continue;
3627                 }
3628
3629                 /* Buffer is good. Go on. */
3630
3631                 prefetch(page_address(buf->page));
3632                 if (buf->sec_page)
3633                         prefetch(page_address(buf->sec_page));
3634
3635                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3636                 len += buf1_len;
3637                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3638                 len += buf2_len;
3639
3640                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3641                  * Type frames (LLC/LLC-SNAP)
3642                  *
3643                  * llc_snap is never checked in GMAC >= 4, so this ACS
3644                  * feature is always disabled and packets need to be
3645                  * stripped manually.
3646                  */
3647                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3648                     unlikely(status != llc_snap)) {
3649                         if (buf2_len)
3650                                 buf2_len -= ETH_FCS_LEN;
3651                         else
3652                                 buf1_len -= ETH_FCS_LEN;
3653
3654                         len -= ETH_FCS_LEN;
3655                 }
3656
3657                 if (!skb) {
3658                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3659                         if (!skb) {
3660                                 priv->dev->stats.rx_dropped++;
3661                                 count++;
3662                                 goto drain_data;
3663                         }
3664
3665                         dma_sync_single_for_cpu(priv->device, buf->addr,
3666                                                 buf1_len, DMA_FROM_DEVICE);
3667                         skb_copy_to_linear_data(skb, page_address(buf->page),
3668                                                 buf1_len);
3669                         skb_put(skb, buf1_len);
3670
3671                         /* Data payload copied into SKB, page ready for recycle */
3672                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3673                         buf->page = NULL;
3674                 } else if (buf1_len) {
3675                         dma_sync_single_for_cpu(priv->device, buf->addr,
3676                                                 buf1_len, DMA_FROM_DEVICE);
3677                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3678                                         buf->page, 0, buf1_len,
3679                                         priv->dma_buf_sz);
3680
3681                         /* Data payload appended into SKB */
3682                         page_pool_release_page(rx_q->page_pool, buf->page);
3683                         buf->page = NULL;
3684                 }
3685
3686                 if (buf2_len) {
3687                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3688                                                 buf2_len, DMA_FROM_DEVICE);
3689                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3690                                         buf->sec_page, 0, buf2_len,
3691                                         priv->dma_buf_sz);
3692
3693                         /* Data payload appended into SKB */
3694                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3695                         buf->sec_page = NULL;
3696                 }
3697
3698 drain_data:
3699                 if (likely(status & rx_not_ls))
3700                         goto read_again;
3701                 if (!skb)
3702                         continue;
3703
3704                 /* Got entire packet into SKB. Finish it. */
3705
3706                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3707                 stmmac_rx_vlan(priv->dev, skb);
3708                 skb->protocol = eth_type_trans(skb, priv->dev);
3709
3710                 if (unlikely(!coe))
3711                         skb_checksum_none_assert(skb);
3712                 else
3713                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3714
3715                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3716                         skb_set_hash(skb, hash, hash_type);
3717
3718                 skb_record_rx_queue(skb, queue);
3719                 napi_gro_receive(&ch->rx_napi, skb);
3720                 skb = NULL;
3721
3722                 priv->dev->stats.rx_packets++;
3723                 priv->dev->stats.rx_bytes += len;
3724                 count++;
3725         }
3726
3727         if (status & rx_not_ls || skb) {
3728                 rx_q->state_saved = true;
3729                 rx_q->state.skb = skb;
3730                 rx_q->state.error = error;
3731                 rx_q->state.len = len;
3732         }
3733
3734         stmmac_rx_refill(priv, queue);
3735
3736         priv->xstats.rx_pkt_n += count;
3737
3738         return count;
3739 }
3740
3741 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3742 {
3743         struct stmmac_channel *ch =
3744                 container_of(napi, struct stmmac_channel, rx_napi);
3745         struct stmmac_priv *priv = ch->priv_data;
3746         u32 chan = ch->index;
3747         int work_done;
3748
3749         priv->xstats.napi_poll++;
3750
3751         work_done = stmmac_rx(priv, budget, chan);
3752         if (work_done < budget && napi_complete_done(napi, work_done))
3753                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3754         return work_done;
3755 }
3756
3757 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3758 {
3759         struct stmmac_channel *ch =
3760                 container_of(napi, struct stmmac_channel, tx_napi);
3761         struct stmmac_priv *priv = ch->priv_data;
3762         struct stmmac_tx_queue *tx_q;
3763         u32 chan = ch->index;
3764         int work_done;
3765
3766         priv->xstats.napi_poll++;
3767
3768         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3769         work_done = min(work_done, budget);
3770
3771         if (work_done < budget)
3772                 napi_complete_done(napi, work_done);
3773
3774         /* Force transmission restart */
3775         tx_q = &priv->tx_queue[chan];
3776         if (tx_q->cur_tx != tx_q->dirty_tx) {
3777                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3778                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3779                                        chan);
3780         }
3781
3782         return work_done;
3783 }
3784
3785 /**
3786  *  stmmac_tx_timeout
3787  *  @dev : Pointer to net device structure
3788  *  Description: this function is called when a packet transmission fails to
3789  *   complete within a reasonable time. The driver will mark the error in the
3790  *   netdev structure and arrange for the device to be reset to a sane state
3791  *   in order to transmit a new packet.
3792  */
3793 static void stmmac_tx_timeout(struct net_device *dev)
3794 {
3795         struct stmmac_priv *priv = netdev_priv(dev);
3796
3797         stmmac_global_err(priv);
3798 }
3799
3800 /**
3801  *  stmmac_set_rx_mode - entry point for multicast addressing
3802  *  @dev : pointer to the device structure
3803  *  Description:
3804  *  This function is a driver entry point which gets called by the kernel
3805  *  whenever multicast addresses must be enabled/disabled.
3806  *  Return value:
3807  *  void.
3808  */
3809 static void stmmac_set_rx_mode(struct net_device *dev)
3810 {
3811         struct stmmac_priv *priv = netdev_priv(dev);
3812
3813         stmmac_set_filter(priv, priv->hw, dev);
3814 }
3815
3816 /**
3817  *  stmmac_change_mtu - entry point to change MTU size for the device.
3818  *  @dev : device pointer.
3819  *  @new_mtu : the new MTU size for the device.
3820  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3821  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3822  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3823  *  Return value:
3824  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3825  *  file on failure.
3826  */
3827 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3828 {
3829         struct stmmac_priv *priv = netdev_priv(dev);
3830
3831         if (netif_running(dev)) {
3832                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3833                 return -EBUSY;
3834         }
3835
3836         dev->mtu = new_mtu;
3837
3838         netdev_update_features(dev);
3839
3840         return 0;
3841 }
3842
3843 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3844                                              netdev_features_t features)
3845 {
3846         struct stmmac_priv *priv = netdev_priv(dev);
3847
3848         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3849                 features &= ~NETIF_F_RXCSUM;
3850
3851         if (!priv->plat->tx_coe)
3852                 features &= ~NETIF_F_CSUM_MASK;
3853
3854         /* Some GMAC devices have a bugged Jumbo frame support that
3855          * needs to have the Tx COE disabled for oversized frames
3856          * (due to limited buffer sizes). In this case we disable
3857          * the TX csum insertion in the TDES and not use SF.
3858          */
3859         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3860                 features &= ~NETIF_F_CSUM_MASK;
3861
3862         /* Disable tso if asked by ethtool */
3863         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3864                 if (features & NETIF_F_TSO)
3865                         priv->tso = true;
3866                 else
3867                         priv->tso = false;
3868         }
3869
3870         return features;
3871 }
3872
3873 static int stmmac_set_features(struct net_device *netdev,
3874                                netdev_features_t features)
3875 {
3876         struct stmmac_priv *priv = netdev_priv(netdev);
3877         bool sph_en;
3878         u32 chan;
3879
3880         /* Keep the COE Type in case of csum is supporting */
3881         if (features & NETIF_F_RXCSUM)
3882                 priv->hw->rx_csum = priv->plat->rx_coe;
3883         else
3884                 priv->hw->rx_csum = 0;
3885         /* No check needed because rx_coe has been set before and it will be
3886          * fixed in case of issue.
3887          */
3888         stmmac_rx_ipc(priv, priv->hw);
3889
3890         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3891         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3892                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3893
3894         return 0;
3895 }
3896
3897 /**
3898  *  stmmac_interrupt - main ISR
3899  *  @irq: interrupt number.
3900  *  @dev_id: to pass the net device pointer.
3901  *  Description: this is the main driver interrupt service routine.
3902  *  It can call:
3903  *  o DMA service routine (to manage incoming frame reception and transmission
3904  *    status)
3905  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3906  *    interrupts.
3907  */
3908 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3909 {
3910         struct net_device *dev = (struct net_device *)dev_id;
3911         struct stmmac_priv *priv = netdev_priv(dev);
3912         u32 rx_cnt = priv->plat->rx_queues_to_use;
3913         u32 tx_cnt = priv->plat->tx_queues_to_use;
3914         u32 queues_count;
3915         u32 queue;
3916         bool xmac;
3917
3918         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3919         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3920
3921         if (priv->irq_wake)
3922                 pm_wakeup_event(priv->device, 0);
3923
3924         if (unlikely(!dev)) {
3925                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3926                 return IRQ_NONE;
3927         }
3928
3929         /* Check if adapter is up */
3930         if (test_bit(STMMAC_DOWN, &priv->state))
3931                 return IRQ_HANDLED;
3932         /* Check if a fatal error happened */
3933         if (stmmac_safety_feat_interrupt(priv))
3934                 return IRQ_HANDLED;
3935
3936         /* To handle GMAC own interrupts */
3937         if ((priv->plat->has_gmac) || xmac) {
3938                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3939                 int mtl_status;
3940
3941                 if (unlikely(status)) {
3942                         /* For LPI we need to save the tx status */
3943                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3944                                 priv->tx_path_in_lpi_mode = true;
3945                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3946                                 priv->tx_path_in_lpi_mode = false;
3947                 }
3948
3949                 for (queue = 0; queue < queues_count; queue++) {
3950                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3951
3952                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3953                                                                 queue);
3954                         if (mtl_status != -EINVAL)
3955                                 status |= mtl_status;
3956
3957                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3958                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3959                                                        rx_q->rx_tail_addr,
3960                                                        queue);
3961                 }
3962
3963                 /* PCS link status */
3964                 if (priv->hw->pcs) {
3965                         if (priv->xstats.pcs_link)
3966                                 netif_carrier_on(dev);
3967                         else
3968                                 netif_carrier_off(dev);
3969                 }
3970         }
3971
3972         /* To handle DMA interrupts */
3973         stmmac_dma_interrupt(priv);
3974
3975         return IRQ_HANDLED;
3976 }
3977
3978 #ifdef CONFIG_NET_POLL_CONTROLLER
3979 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3980  * to allow network I/O with interrupts disabled.
3981  */
3982 static void stmmac_poll_controller(struct net_device *dev)
3983 {
3984         disable_irq(dev->irq);
3985         stmmac_interrupt(dev->irq, dev);
3986         enable_irq(dev->irq);
3987 }
3988 #endif
3989
3990 /**
3991  *  stmmac_ioctl - Entry point for the Ioctl
3992  *  @dev: Device pointer.
3993  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3994  *  a proprietary structure used to pass information to the driver.
3995  *  @cmd: IOCTL command
3996  *  Description:
3997  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3998  */
3999 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4000 {
4001         struct stmmac_priv *priv = netdev_priv (dev);
4002         int ret = -EOPNOTSUPP;
4003
4004         if (!netif_running(dev))
4005                 return -EINVAL;
4006
4007         switch (cmd) {
4008         case SIOCGMIIPHY:
4009         case SIOCGMIIREG:
4010         case SIOCSMIIREG:
4011                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4012                 break;
4013         case SIOCSHWTSTAMP:
4014                 ret = stmmac_hwtstamp_set(dev, rq);
4015                 break;
4016         case SIOCGHWTSTAMP:
4017                 ret = stmmac_hwtstamp_get(dev, rq);
4018                 break;
4019         default:
4020                 break;
4021         }
4022
4023         return ret;
4024 }
4025
4026 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4027                                     void *cb_priv)
4028 {
4029         struct stmmac_priv *priv = cb_priv;
4030         int ret = -EOPNOTSUPP;
4031
4032         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4033                 return ret;
4034
4035         stmmac_disable_all_queues(priv);
4036
4037         switch (type) {
4038         case TC_SETUP_CLSU32:
4039                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4040                 break;
4041         case TC_SETUP_CLSFLOWER:
4042                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4043                 break;
4044         default:
4045                 break;
4046         }
4047
4048         stmmac_enable_all_queues(priv);
4049         return ret;
4050 }
4051
4052 static LIST_HEAD(stmmac_block_cb_list);
4053
4054 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4055                            void *type_data)
4056 {
4057         struct stmmac_priv *priv = netdev_priv(ndev);
4058
4059         switch (type) {
4060         case TC_SETUP_BLOCK:
4061                 return flow_block_cb_setup_simple(type_data,
4062                                                   &stmmac_block_cb_list,
4063                                                   stmmac_setup_tc_block_cb,
4064                                                   priv, priv, true);
4065         case TC_SETUP_QDISC_CBS:
4066                 return stmmac_tc_setup_cbs(priv, priv, type_data);
4067         default:
4068                 return -EOPNOTSUPP;
4069         }
4070 }
4071
4072 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4073                                struct net_device *sb_dev)
4074 {
4075         int gso = skb_shinfo(skb)->gso_type;
4076
4077         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4078                 /*
4079                  * There is no way to determine the number of TSO/USO
4080                  * capable Queues. Let's use always the Queue 0
4081                  * because if TSO/USO is supported then at least this
4082                  * one will be capable.
4083                  */
4084                 return 0;
4085         }
4086
4087         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4088 }
4089
4090 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4091 {
4092         struct stmmac_priv *priv = netdev_priv(ndev);
4093         int ret = 0;
4094
4095         ret = eth_mac_addr(ndev, addr);
4096         if (ret)
4097                 return ret;
4098
4099         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4100
4101         return ret;
4102 }
4103
4104 #ifdef CONFIG_DEBUG_FS
4105 static struct dentry *stmmac_fs_dir;
4106
4107 static void sysfs_display_ring(void *head, int size, int extend_desc,
4108                                struct seq_file *seq)
4109 {
4110         int i;
4111         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4112         struct dma_desc *p = (struct dma_desc *)head;
4113
4114         for (i = 0; i < size; i++) {
4115                 if (extend_desc) {
4116                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4117                                    i, (unsigned int)virt_to_phys(ep),
4118                                    le32_to_cpu(ep->basic.des0),
4119                                    le32_to_cpu(ep->basic.des1),
4120                                    le32_to_cpu(ep->basic.des2),
4121                                    le32_to_cpu(ep->basic.des3));
4122                         ep++;
4123                 } else {
4124                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4125                                    i, (unsigned int)virt_to_phys(p),
4126                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4127                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4128                         p++;
4129                 }
4130                 seq_printf(seq, "\n");
4131         }
4132 }
4133
4134 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4135 {
4136         struct net_device *dev = seq->private;
4137         struct stmmac_priv *priv = netdev_priv(dev);
4138         u32 rx_count = priv->plat->rx_queues_to_use;
4139         u32 tx_count = priv->plat->tx_queues_to_use;
4140         u32 queue;
4141
4142         if ((dev->flags & IFF_UP) == 0)
4143                 return 0;
4144
4145         for (queue = 0; queue < rx_count; queue++) {
4146                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4147
4148                 seq_printf(seq, "RX Queue %d:\n", queue);
4149
4150                 if (priv->extend_desc) {
4151                         seq_printf(seq, "Extended descriptor ring:\n");
4152                         sysfs_display_ring((void *)rx_q->dma_erx,
4153                                            DMA_RX_SIZE, 1, seq);
4154                 } else {
4155                         seq_printf(seq, "Descriptor ring:\n");
4156                         sysfs_display_ring((void *)rx_q->dma_rx,
4157                                            DMA_RX_SIZE, 0, seq);
4158                 }
4159         }
4160
4161         for (queue = 0; queue < tx_count; queue++) {
4162                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4163
4164                 seq_printf(seq, "TX Queue %d:\n", queue);
4165
4166                 if (priv->extend_desc) {
4167                         seq_printf(seq, "Extended descriptor ring:\n");
4168                         sysfs_display_ring((void *)tx_q->dma_etx,
4169                                            DMA_TX_SIZE, 1, seq);
4170                 } else {
4171                         seq_printf(seq, "Descriptor ring:\n");
4172                         sysfs_display_ring((void *)tx_q->dma_tx,
4173                                            DMA_TX_SIZE, 0, seq);
4174                 }
4175         }
4176
4177         return 0;
4178 }
4179 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4180
4181 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4182 {
4183         struct net_device *dev = seq->private;
4184         struct stmmac_priv *priv = netdev_priv(dev);
4185
4186         if (!priv->hw_cap_support) {
4187                 seq_printf(seq, "DMA HW features not supported\n");
4188                 return 0;
4189         }
4190
4191         seq_printf(seq, "==============================\n");
4192         seq_printf(seq, "\tDMA HW features\n");
4193         seq_printf(seq, "==============================\n");
4194
4195         seq_printf(seq, "\t10/100 Mbps: %s\n",
4196                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4197         seq_printf(seq, "\t1000 Mbps: %s\n",
4198                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4199         seq_printf(seq, "\tHalf duplex: %s\n",
4200                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4201         seq_printf(seq, "\tHash Filter: %s\n",
4202                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4203         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4204                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4205         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4206                    (priv->dma_cap.pcs) ? "Y" : "N");
4207         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4208                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4209         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4210                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4211         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4212                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4213         seq_printf(seq, "\tRMON module: %s\n",
4214                    (priv->dma_cap.rmon) ? "Y" : "N");
4215         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4216                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4217         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4218                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4219         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4220                    (priv->dma_cap.eee) ? "Y" : "N");
4221         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4222         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4223                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4224         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4225                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4226                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4227         } else {
4228                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4229                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4230                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4231                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4232         }
4233         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4234                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4235         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4236                    priv->dma_cap.number_rx_channel);
4237         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4238                    priv->dma_cap.number_tx_channel);
4239         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4240                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4241
4242         return 0;
4243 }
4244 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4245
4246 static void stmmac_init_fs(struct net_device *dev)
4247 {
4248         struct stmmac_priv *priv = netdev_priv(dev);
4249
4250         /* Create per netdev entries */
4251         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4252
4253         /* Entry to report DMA RX/TX rings */
4254         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4255                             &stmmac_rings_status_fops);
4256
4257         /* Entry to report the DMA HW features */
4258         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4259                             &stmmac_dma_cap_fops);
4260 }
4261
4262 static void stmmac_exit_fs(struct net_device *dev)
4263 {
4264         struct stmmac_priv *priv = netdev_priv(dev);
4265
4266         debugfs_remove_recursive(priv->dbgfs_dir);
4267 }
4268 #endif /* CONFIG_DEBUG_FS */
4269
4270 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4271 {
4272         unsigned char *data = (unsigned char *)&vid_le;
4273         unsigned char data_byte = 0;
4274         u32 crc = ~0x0;
4275         u32 temp = 0;
4276         int i, bits;
4277
4278         bits = get_bitmask_order(VLAN_VID_MASK);
4279         for (i = 0; i < bits; i++) {
4280                 if ((i % 8) == 0)
4281                         data_byte = data[i / 8];
4282
4283                 temp = ((crc & 1) ^ data_byte) & 1;
4284                 crc >>= 1;
4285                 data_byte >>= 1;
4286
4287                 if (temp)
4288                         crc ^= 0xedb88320;
4289         }
4290
4291         return crc;
4292 }
4293
4294 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4295 {
4296         u32 crc, hash = 0;
4297         __le16 pmatch = 0;
4298         int count = 0;
4299         u16 vid = 0;
4300
4301         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4302                 __le16 vid_le = cpu_to_le16(vid);
4303                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4304                 hash |= (1 << crc);
4305                 count++;
4306         }
4307
4308         if (!priv->dma_cap.vlhash) {
4309                 if (count > 2) /* VID = 0 always passes filter */
4310                         return -EOPNOTSUPP;
4311
4312                 pmatch = cpu_to_le16(vid);
4313                 hash = 0;
4314         }
4315
4316         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4317 }
4318
4319 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4320 {
4321         struct stmmac_priv *priv = netdev_priv(ndev);
4322         bool is_double = false;
4323         int ret;
4324
4325         if (be16_to_cpu(proto) == ETH_P_8021AD)
4326                 is_double = true;
4327
4328         set_bit(vid, priv->active_vlans);
4329         ret = stmmac_vlan_update(priv, is_double);
4330         if (ret) {
4331                 clear_bit(vid, priv->active_vlans);
4332                 return ret;
4333         }
4334
4335         return ret;
4336 }
4337
4338 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4339 {
4340         struct stmmac_priv *priv = netdev_priv(ndev);
4341         bool is_double = false;
4342
4343         if (be16_to_cpu(proto) == ETH_P_8021AD)
4344                 is_double = true;
4345
4346         clear_bit(vid, priv->active_vlans);
4347         return stmmac_vlan_update(priv, is_double);
4348 }
4349
4350 static const struct net_device_ops stmmac_netdev_ops = {
4351         .ndo_open = stmmac_open,
4352         .ndo_start_xmit = stmmac_xmit,
4353         .ndo_stop = stmmac_release,
4354         .ndo_change_mtu = stmmac_change_mtu,
4355         .ndo_fix_features = stmmac_fix_features,
4356         .ndo_set_features = stmmac_set_features,
4357         .ndo_set_rx_mode = stmmac_set_rx_mode,
4358         .ndo_tx_timeout = stmmac_tx_timeout,
4359         .ndo_do_ioctl = stmmac_ioctl,
4360         .ndo_setup_tc = stmmac_setup_tc,
4361         .ndo_select_queue = stmmac_select_queue,
4362 #ifdef CONFIG_NET_POLL_CONTROLLER
4363         .ndo_poll_controller = stmmac_poll_controller,
4364 #endif
4365         .ndo_set_mac_address = stmmac_set_mac_address,
4366         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4367         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4368 };
4369
4370 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4371 {
4372         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4373                 return;
4374         if (test_bit(STMMAC_DOWN, &priv->state))
4375                 return;
4376
4377         netdev_err(priv->dev, "Reset adapter.\n");
4378
4379         rtnl_lock();
4380         netif_trans_update(priv->dev);
4381         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4382                 usleep_range(1000, 2000);
4383
4384         set_bit(STMMAC_DOWN, &priv->state);
4385         dev_close(priv->dev);
4386         dev_open(priv->dev, NULL);
4387         clear_bit(STMMAC_DOWN, &priv->state);
4388         clear_bit(STMMAC_RESETING, &priv->state);
4389         rtnl_unlock();
4390 }
4391
4392 static void stmmac_service_task(struct work_struct *work)
4393 {
4394         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4395                         service_task);
4396
4397         stmmac_reset_subtask(priv);
4398         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4399 }
4400
4401 /**
4402  *  stmmac_hw_init - Init the MAC device
4403  *  @priv: driver private structure
4404  *  Description: this function is to configure the MAC device according to
4405  *  some platform parameters or the HW capability register. It prepares the
4406  *  driver to use either ring or chain modes and to setup either enhanced or
4407  *  normal descriptors.
4408  */
4409 static int stmmac_hw_init(struct stmmac_priv *priv)
4410 {
4411         int ret;
4412
4413         /* dwmac-sun8i only work in chain mode */
4414         if (priv->plat->has_sun8i)
4415                 chain_mode = 1;
4416         priv->chain_mode = chain_mode;
4417
4418         /* Initialize HW Interface */
4419         ret = stmmac_hwif_init(priv);
4420         if (ret)
4421                 return ret;
4422
4423         /* Get the HW capability (new GMAC newer than 3.50a) */
4424         priv->hw_cap_support = stmmac_get_hw_features(priv);
4425         if (priv->hw_cap_support) {
4426                 dev_info(priv->device, "DMA HW capability register supported\n");
4427
4428                 /* We can override some gmac/dma configuration fields: e.g.
4429                  * enh_desc, tx_coe (e.g. that are passed through the
4430                  * platform) with the values from the HW capability
4431                  * register (if supported).
4432                  */
4433                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4434                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4435                 priv->hw->pmt = priv->plat->pmt;
4436                 if (priv->dma_cap.hash_tb_sz) {
4437                         priv->hw->multicast_filter_bins =
4438                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4439                         priv->hw->mcast_bits_log2 =
4440                                         ilog2(priv->hw->multicast_filter_bins);
4441                 }
4442
4443                 /* TXCOE doesn't work in thresh DMA mode */
4444                 if (priv->plat->force_thresh_dma_mode)
4445                         priv->plat->tx_coe = 0;
4446                 else
4447                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4448
4449                 /* In case of GMAC4 rx_coe is from HW cap register. */
4450                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4451
4452                 if (priv->dma_cap.rx_coe_type2)
4453                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4454                 else if (priv->dma_cap.rx_coe_type1)
4455                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4456
4457         } else {
4458                 dev_info(priv->device, "No HW DMA feature register supported\n");
4459         }
4460
4461         if (priv->plat->rx_coe) {
4462                 priv->hw->rx_csum = priv->plat->rx_coe;
4463                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4464                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4465                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4466         }
4467         if (priv->plat->tx_coe)
4468                 dev_info(priv->device, "TX Checksum insertion supported\n");
4469
4470         if (priv->plat->pmt) {
4471                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4472                 device_set_wakeup_capable(priv->device, 1);
4473         }
4474
4475         if (priv->dma_cap.tsoen)
4476                 dev_info(priv->device, "TSO supported\n");
4477
4478         /* Run HW quirks, if any */
4479         if (priv->hwif_quirks) {
4480                 ret = priv->hwif_quirks(priv);
4481                 if (ret)
4482                         return ret;
4483         }
4484
4485         /* Rx Watchdog is available in the COREs newer than the 3.40.
4486          * In some case, for example on bugged HW this feature
4487          * has to be disable and this can be done by passing the
4488          * riwt_off field from the platform.
4489          */
4490         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4491             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4492                 priv->use_riwt = 1;
4493                 dev_info(priv->device,
4494                          "Enable RX Mitigation via HW Watchdog Timer\n");
4495         }
4496
4497         return 0;
4498 }
4499
4500 /**
4501  * stmmac_dvr_probe
4502  * @device: device pointer
4503  * @plat_dat: platform data pointer
4504  * @res: stmmac resource pointer
4505  * Description: this is the main probe function used to
4506  * call the alloc_etherdev, allocate the priv structure.
4507  * Return:
4508  * returns 0 on success, otherwise errno.
4509  */
4510 int stmmac_dvr_probe(struct device *device,
4511                      struct plat_stmmacenet_data *plat_dat,
4512                      struct stmmac_resources *res)
4513 {
4514         struct net_device *ndev = NULL;
4515         struct stmmac_priv *priv;
4516         u32 queue, rxq, maxq;
4517         int i, ret = 0;
4518
4519         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4520                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4521         if (!ndev)
4522                 return -ENOMEM;
4523
4524         SET_NETDEV_DEV(ndev, device);
4525
4526         priv = netdev_priv(ndev);
4527         priv->device = device;
4528         priv->dev = ndev;
4529
4530         stmmac_set_ethtool_ops(ndev);
4531         priv->pause = pause;
4532         priv->plat = plat_dat;
4533         priv->ioaddr = res->addr;
4534         priv->dev->base_addr = (unsigned long)res->addr;
4535
4536         priv->dev->irq = res->irq;
4537         priv->wol_irq = res->wol_irq;
4538         priv->lpi_irq = res->lpi_irq;
4539
4540         if (!IS_ERR_OR_NULL(res->mac))
4541                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4542
4543         dev_set_drvdata(device, priv->dev);
4544
4545         /* Verify driver arguments */
4546         stmmac_verify_args();
4547
4548         /* Allocate workqueue */
4549         priv->wq = create_singlethread_workqueue("stmmac_wq");
4550         if (!priv->wq) {
4551                 dev_err(priv->device, "failed to create workqueue\n");
4552                 return -ENOMEM;
4553         }
4554
4555         INIT_WORK(&priv->service_task, stmmac_service_task);
4556
4557         /* Override with kernel parameters if supplied XXX CRS XXX
4558          * this needs to have multiple instances
4559          */
4560         if ((phyaddr >= 0) && (phyaddr <= 31))
4561                 priv->plat->phy_addr = phyaddr;
4562
4563         if (priv->plat->stmmac_rst) {
4564                 ret = reset_control_assert(priv->plat->stmmac_rst);
4565                 reset_control_deassert(priv->plat->stmmac_rst);
4566                 /* Some reset controllers have only reset callback instead of
4567                  * assert + deassert callbacks pair.
4568                  */
4569                 if (ret == -ENOTSUPP)
4570                         reset_control_reset(priv->plat->stmmac_rst);
4571         }
4572
4573         /* Init MAC and get the capabilities */
4574         ret = stmmac_hw_init(priv);
4575         if (ret)
4576                 goto error_hw_init;
4577
4578         stmmac_check_ether_addr(priv);
4579
4580         /* Configure real RX and TX queues */
4581         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4582         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4583
4584         ndev->netdev_ops = &stmmac_netdev_ops;
4585
4586         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587                             NETIF_F_RXCSUM;
4588
4589         ret = stmmac_tc_init(priv, priv);
4590         if (!ret) {
4591                 ndev->hw_features |= NETIF_F_HW_TC;
4592         }
4593
4594         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4595                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4596                 if (priv->plat->has_gmac4)
4597                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4598                 priv->tso = true;
4599                 dev_info(priv->device, "TSO feature enabled\n");
4600         }
4601
4602         if (priv->dma_cap.sphen) {
4603                 ndev->hw_features |= NETIF_F_GRO;
4604                 priv->sph = true;
4605                 dev_info(priv->device, "SPH feature enabled\n");
4606         }
4607
4608         if (priv->dma_cap.addr64) {
4609                 ret = dma_set_mask_and_coherent(device,
4610                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4611                 if (!ret) {
4612                         dev_info(priv->device, "Using %d bits DMA width\n",
4613                                  priv->dma_cap.addr64);
4614
4615                         /*
4616                          * If more than 32 bits can be addressed, make sure to
4617                          * enable enhanced addressing mode.
4618                          */
4619                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4620                                 priv->plat->dma_cfg->eame = true;
4621                 } else {
4622                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4623                         if (ret) {
4624                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4625                                 goto error_hw_init;
4626                         }
4627
4628                         priv->dma_cap.addr64 = 32;
4629                 }
4630         }
4631
4632         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4633         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4634 #ifdef STMMAC_VLAN_TAG_USED
4635         /* Both mac100 and gmac support receive VLAN tag detection */
4636         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4637         if (priv->dma_cap.vlhash) {
4638                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4639                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4640         }
4641         if (priv->dma_cap.vlins) {
4642                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4643                 if (priv->dma_cap.dvlan)
4644                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4645         }
4646 #endif
4647         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4648
4649         /* Initialize RSS */
4650         rxq = priv->plat->rx_queues_to_use;
4651         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4652         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4653                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4654
4655         if (priv->dma_cap.rssen && priv->plat->rss_en)
4656                 ndev->features |= NETIF_F_RXHASH;
4657
4658         /* MTU range: 46 - hw-specific max */
4659         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4660         if (priv->plat->has_xgmac)
4661                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4662         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4663                 ndev->max_mtu = JUMBO_LEN;
4664         else
4665                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4666         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4667          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4668          */
4669         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4670             (priv->plat->maxmtu >= ndev->min_mtu))
4671                 ndev->max_mtu = priv->plat->maxmtu;
4672         else if (priv->plat->maxmtu < ndev->min_mtu)
4673                 dev_warn(priv->device,
4674                          "%s: warning: maxmtu having invalid value (%d)\n",
4675                          __func__, priv->plat->maxmtu);
4676
4677         if (flow_ctrl)
4678                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4679
4680         /* Setup channels NAPI */
4681         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4682
4683         for (queue = 0; queue < maxq; queue++) {
4684                 struct stmmac_channel *ch = &priv->channel[queue];
4685
4686                 ch->priv_data = priv;
4687                 ch->index = queue;
4688
4689                 if (queue < priv->plat->rx_queues_to_use) {
4690                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4691                                        NAPI_POLL_WEIGHT);
4692                 }
4693                 if (queue < priv->plat->tx_queues_to_use) {
4694                         netif_tx_napi_add(ndev, &ch->tx_napi,
4695                                           stmmac_napi_poll_tx,
4696                                           NAPI_POLL_WEIGHT);
4697                 }
4698         }
4699
4700         mutex_init(&priv->lock);
4701
4702         /* If a specific clk_csr value is passed from the platform
4703          * this means that the CSR Clock Range selection cannot be
4704          * changed at run-time and it is fixed. Viceversa the driver'll try to
4705          * set the MDC clock dynamically according to the csr actual
4706          * clock input.
4707          */
4708         if (priv->plat->clk_csr >= 0)
4709                 priv->clk_csr = priv->plat->clk_csr;
4710         else
4711                 stmmac_clk_csr_set(priv);
4712
4713         stmmac_check_pcs_mode(priv);
4714
4715         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4716             priv->hw->pcs != STMMAC_PCS_TBI &&
4717             priv->hw->pcs != STMMAC_PCS_RTBI) {
4718                 /* MDIO bus Registration */
4719                 ret = stmmac_mdio_register(ndev);
4720                 if (ret < 0) {
4721                         dev_err(priv->device,
4722                                 "%s: MDIO bus (id: %d) registration failed",
4723                                 __func__, priv->plat->bus_id);
4724                         goto error_mdio_register;
4725                 }
4726         }
4727
4728         ret = stmmac_phy_setup(priv);
4729         if (ret) {
4730                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4731                 goto error_phy_setup;
4732         }
4733
4734         ret = register_netdev(ndev);
4735         if (ret) {
4736                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4737                         __func__, ret);
4738                 goto error_netdev_register;
4739         }
4740
4741 #ifdef CONFIG_DEBUG_FS
4742         stmmac_init_fs(ndev);
4743 #endif
4744
4745         return ret;
4746
4747 error_netdev_register:
4748         phylink_destroy(priv->phylink);
4749 error_phy_setup:
4750         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4751             priv->hw->pcs != STMMAC_PCS_TBI &&
4752             priv->hw->pcs != STMMAC_PCS_RTBI)
4753                 stmmac_mdio_unregister(ndev);
4754 error_mdio_register:
4755         for (queue = 0; queue < maxq; queue++) {
4756                 struct stmmac_channel *ch = &priv->channel[queue];
4757
4758                 if (queue < priv->plat->rx_queues_to_use)
4759                         netif_napi_del(&ch->rx_napi);
4760                 if (queue < priv->plat->tx_queues_to_use)
4761                         netif_napi_del(&ch->tx_napi);
4762         }
4763 error_hw_init:
4764         destroy_workqueue(priv->wq);
4765
4766         return ret;
4767 }
4768 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4769
4770 /**
4771  * stmmac_dvr_remove
4772  * @dev: device pointer
4773  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4774  * changes the link status, releases the DMA descriptor rings.
4775  */
4776 int stmmac_dvr_remove(struct device *dev)
4777 {
4778         struct net_device *ndev = dev_get_drvdata(dev);
4779         struct stmmac_priv *priv = netdev_priv(ndev);
4780
4781         netdev_info(priv->dev, "%s: removing driver", __func__);
4782
4783 #ifdef CONFIG_DEBUG_FS
4784         stmmac_exit_fs(ndev);
4785 #endif
4786         stmmac_stop_all_dma(priv);
4787
4788         stmmac_mac_set(priv, priv->ioaddr, false);
4789         netif_carrier_off(ndev);
4790         unregister_netdev(ndev);
4791         phylink_destroy(priv->phylink);
4792         if (priv->plat->stmmac_rst)
4793                 reset_control_assert(priv->plat->stmmac_rst);
4794         clk_disable_unprepare(priv->plat->pclk);
4795         clk_disable_unprepare(priv->plat->stmmac_clk);
4796         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4797             priv->hw->pcs != STMMAC_PCS_TBI &&
4798             priv->hw->pcs != STMMAC_PCS_RTBI)
4799                 stmmac_mdio_unregister(ndev);
4800         destroy_workqueue(priv->wq);
4801         mutex_destroy(&priv->lock);
4802
4803         return 0;
4804 }
4805 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4806
4807 /**
4808  * stmmac_suspend - suspend callback
4809  * @dev: device pointer
4810  * Description: this is the function to suspend the device and it is called
4811  * by the platform driver to stop the network queue, release the resources,
4812  * program the PMT register (for WoL), clean and release driver resources.
4813  */
4814 int stmmac_suspend(struct device *dev)
4815 {
4816         struct net_device *ndev = dev_get_drvdata(dev);
4817         struct stmmac_priv *priv = netdev_priv(ndev);
4818
4819         if (!ndev || !netif_running(ndev))
4820                 return 0;
4821
4822         phylink_mac_change(priv->phylink, false);
4823
4824         mutex_lock(&priv->lock);
4825
4826         netif_device_detach(ndev);
4827         stmmac_stop_all_queues(priv);
4828
4829         stmmac_disable_all_queues(priv);
4830
4831         /* Stop TX/RX DMA */
4832         stmmac_stop_all_dma(priv);
4833
4834         /* Enable Power down mode by programming the PMT regs */
4835         if (device_may_wakeup(priv->device)) {
4836                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4837                 priv->irq_wake = 1;
4838         } else {
4839                 mutex_unlock(&priv->lock);
4840                 rtnl_lock();
4841                 phylink_stop(priv->phylink);
4842                 rtnl_unlock();
4843                 mutex_lock(&priv->lock);
4844
4845                 stmmac_mac_set(priv, priv->ioaddr, false);
4846                 pinctrl_pm_select_sleep_state(priv->device);
4847                 /* Disable clock in case of PWM is off */
4848                 if (priv->plat->clk_ptp_ref)
4849                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
4850                 clk_disable_unprepare(priv->plat->pclk);
4851                 clk_disable_unprepare(priv->plat->stmmac_clk);
4852         }
4853         mutex_unlock(&priv->lock);
4854
4855         priv->speed = SPEED_UNKNOWN;
4856         return 0;
4857 }
4858 EXPORT_SYMBOL_GPL(stmmac_suspend);
4859
4860 /**
4861  * stmmac_reset_queues_param - reset queue parameters
4862  * @dev: device pointer
4863  */
4864 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4865 {
4866         u32 rx_cnt = priv->plat->rx_queues_to_use;
4867         u32 tx_cnt = priv->plat->tx_queues_to_use;
4868         u32 queue;
4869
4870         for (queue = 0; queue < rx_cnt; queue++) {
4871                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4872
4873                 rx_q->cur_rx = 0;
4874                 rx_q->dirty_rx = 0;
4875         }
4876
4877         for (queue = 0; queue < tx_cnt; queue++) {
4878                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4879
4880                 tx_q->cur_tx = 0;
4881                 tx_q->dirty_tx = 0;
4882                 tx_q->mss = 0;
4883         }
4884 }
4885
4886 /**
4887  * stmmac_resume - resume callback
4888  * @dev: device pointer
4889  * Description: when resume this function is invoked to setup the DMA and CORE
4890  * in a usable state.
4891  */
4892 int stmmac_resume(struct device *dev)
4893 {
4894         struct net_device *ndev = dev_get_drvdata(dev);
4895         struct stmmac_priv *priv = netdev_priv(ndev);
4896
4897         if (!netif_running(ndev))
4898                 return 0;
4899
4900         /* Power Down bit, into the PM register, is cleared
4901          * automatically as soon as a magic packet or a Wake-up frame
4902          * is received. Anyway, it's better to manually clear
4903          * this bit because it can generate problems while resuming
4904          * from another devices (e.g. serial console).
4905          */
4906         if (device_may_wakeup(priv->device)) {
4907                 mutex_lock(&priv->lock);
4908                 stmmac_pmt(priv, priv->hw, 0);
4909                 mutex_unlock(&priv->lock);
4910                 priv->irq_wake = 0;
4911         } else {
4912                 pinctrl_pm_select_default_state(priv->device);
4913                 /* enable the clk previously disabled */
4914                 clk_prepare_enable(priv->plat->stmmac_clk);
4915                 clk_prepare_enable(priv->plat->pclk);
4916                 if (priv->plat->clk_ptp_ref)
4917                         clk_prepare_enable(priv->plat->clk_ptp_ref);
4918                 /* reset the phy so that it's ready */
4919                 if (priv->mii)
4920                         stmmac_mdio_reset(priv->mii);
4921         }
4922
4923         netif_device_attach(ndev);
4924
4925         mutex_lock(&priv->lock);
4926
4927         stmmac_reset_queues_param(priv);
4928
4929         stmmac_clear_descriptors(priv);
4930
4931         stmmac_hw_setup(ndev, false);
4932         stmmac_init_coalesce(priv);
4933         stmmac_set_rx_mode(ndev);
4934
4935         stmmac_enable_all_queues(priv);
4936
4937         stmmac_start_all_queues(priv);
4938
4939         mutex_unlock(&priv->lock);
4940
4941         if (!device_may_wakeup(priv->device)) {
4942                 rtnl_lock();
4943                 phylink_start(priv->phylink);
4944                 rtnl_unlock();
4945         }
4946
4947         phylink_mac_change(priv->phylink, true);
4948
4949         return 0;
4950 }
4951 EXPORT_SYMBOL_GPL(stmmac_resume);
4952
4953 #ifndef MODULE
4954 static int __init stmmac_cmdline_opt(char *str)
4955 {
4956         char *opt;
4957
4958         if (!str || !*str)
4959                 return -EINVAL;
4960         while ((opt = strsep(&str, ",")) != NULL) {
4961                 if (!strncmp(opt, "debug:", 6)) {
4962                         if (kstrtoint(opt + 6, 0, &debug))
4963                                 goto err;
4964                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4965                         if (kstrtoint(opt + 8, 0, &phyaddr))
4966                                 goto err;
4967                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4968                         if (kstrtoint(opt + 7, 0, &buf_sz))
4969                                 goto err;
4970                 } else if (!strncmp(opt, "tc:", 3)) {
4971                         if (kstrtoint(opt + 3, 0, &tc))
4972                                 goto err;
4973                 } else if (!strncmp(opt, "watchdog:", 9)) {
4974                         if (kstrtoint(opt + 9, 0, &watchdog))
4975                                 goto err;
4976                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4977                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4978                                 goto err;
4979                 } else if (!strncmp(opt, "pause:", 6)) {
4980                         if (kstrtoint(opt + 6, 0, &pause))
4981                                 goto err;
4982                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4983                         if (kstrtoint(opt + 10, 0, &eee_timer))
4984                                 goto err;
4985                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4986                         if (kstrtoint(opt + 11, 0, &chain_mode))
4987                                 goto err;
4988                 }
4989         }
4990         return 0;
4991
4992 err:
4993         pr_err("%s: ERROR broken module parameter conversion", __func__);
4994         return -EINVAL;
4995 }
4996
4997 __setup("stmmaceth=", stmmac_cmdline_opt);
4998 #endif /* MODULE */
4999
5000 static int __init stmmac_init(void)
5001 {
5002 #ifdef CONFIG_DEBUG_FS
5003         /* Create debugfs main directory if it doesn't exist yet */
5004         if (!stmmac_fs_dir)
5005                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5006 #endif
5007
5008         return 0;
5009 }
5010
5011 static void __exit stmmac_exit(void)
5012 {
5013 #ifdef CONFIG_DEBUG_FS
5014         debugfs_remove_recursive(stmmac_fs_dir);
5015 #endif
5016 }
5017
5018 module_init(stmmac_init)
5019 module_exit(stmmac_exit)
5020
5021 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5022 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5023 MODULE_LICENSE("GPL");