OSDN Git Service

296ddf247e92c1e49c6d2acb6f863763102a376c
[android-x86/kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG      (NETIF_MSG_HW           | NETIF_MSG_WOL         | \
47                          NETIF_MSG_DRV          | NETIF_MSG_LINK        | \
48                          NETIF_MSG_IFUP         | NETIF_MSG_INTR        | \
49                          NETIF_MSG_PROBE        | NETIF_MSG_TIMER       | \
50                          NETIF_MSG_IFDOWN       | NETIF_MSG_RX_ERR      | \
51                          NETIF_MSG_TX_ERR       | NETIF_MSG_TX_DONE     | \
52                          NETIF_MSG_PKTDATA      | NETIF_MSG_TX_QUEUED   | \
53                          NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...)              \
56 do {                                                            \
57         if (netif_msg_##type(priv) && net_ratelimit())          \
58                 dev_info(priv->dev, format, ## __VA_ARGS__);    \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...)               \
62 do {                                                            \
63         if (netif_msg_##type(priv) && net_ratelimit())          \
64                 dev_err(priv->dev, format, ## __VA_ARGS__);     \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...)               \
68 do {                                                            \
69         if (netif_msg_##type(priv) && net_ratelimit())          \
70                 dev_dbg(priv->dev, format, ## __VA_ARGS__);     \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...)            \
74 do {                                                            \
75         if (netif_msg_##type(priv) && net_ratelimit())          \
76                 dev_notice(priv->dev, format, ## __VA_ARGS__);  \
77 } while (0)
78
79 #define ALE_ALL_PORTS           0x7
80
81 #define CPSW_MAJOR_VERSION(reg)         (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)         (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)           ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1          0x19010a
86 #define CPSW_VERSION_2          0x19010c
87 #define CPSW_VERSION_3          0x19010f
88 #define CPSW_VERSION_4          0x190112
89
90 #define HOST_PORT_NUM           0
91 #define SLIVER_SIZE             0x40
92
93 #define CPSW1_HOST_PORT_OFFSET  0x028
94 #define CPSW1_SLAVE_OFFSET      0x050
95 #define CPSW1_SLAVE_SIZE        0x040
96 #define CPSW1_CPDMA_OFFSET      0x100
97 #define CPSW1_STATERAM_OFFSET   0x200
98 #define CPSW1_HW_STATS          0x400
99 #define CPSW1_CPTS_OFFSET       0x500
100 #define CPSW1_ALE_OFFSET        0x600
101 #define CPSW1_SLIVER_OFFSET     0x700
102
103 #define CPSW2_HOST_PORT_OFFSET  0x108
104 #define CPSW2_SLAVE_OFFSET      0x200
105 #define CPSW2_SLAVE_SIZE        0x100
106 #define CPSW2_CPDMA_OFFSET      0x800
107 #define CPSW2_HW_STATS          0x900
108 #define CPSW2_STATERAM_OFFSET   0xa00
109 #define CPSW2_CPTS_OFFSET       0xc00
110 #define CPSW2_ALE_OFFSET        0xd00
111 #define CPSW2_SLIVER_OFFSET     0xd80
112 #define CPSW2_BD_OFFSET         0x2000
113
114 #define CPDMA_RXTHRESH          0x0c0
115 #define CPDMA_RXFREE            0x0e0
116 #define CPDMA_TXHDP             0x00
117 #define CPDMA_RXHDP             0x20
118 #define CPDMA_TXCP              0x40
119 #define CPDMA_RXCP              0x60
120
121 #define CPSW_POLL_WEIGHT        64
122 #define CPSW_MIN_PACKET_SIZE    60
123 #define CPSW_MAX_PACKET_SIZE    (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING     0x76543210
126 #define TX_PRIORITY_MAPPING     0x33221100
127 #define CPDMA_TX_PRIORITY_MAP   0x01234567
128
129 #define CPSW_VLAN_AWARE         BIT(1)
130 #define CPSW_ALE_VLAN_AWARE     1
131
132 #define CPSW_FIFO_NORMAL_MODE           (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE         (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE       (2 << 16)
135
136 #define CPSW_INTPACEEN          (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK   (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT       63
139 #define CPSW_CMINTMIN_CNT       2
140 #define CPSW_CMINTMAX_INTVL     (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL     ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv)                            \
144                 ((cpsw->data.dual_emac) ? priv->emac_port :     \
145                 cpsw->data.active_slave)
146 #define IRQ_NUM                 2
147 #define CPSW_MAX_QUEUES         8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165
166 struct cpsw_wr_regs {
167         u32     id_ver;
168         u32     soft_reset;
169         u32     control;
170         u32     int_control;
171         u32     rx_thresh_en;
172         u32     rx_en;
173         u32     tx_en;
174         u32     misc_en;
175         u32     mem_allign1[8];
176         u32     rx_thresh_stat;
177         u32     rx_stat;
178         u32     tx_stat;
179         u32     misc_stat;
180         u32     mem_allign2[8];
181         u32     rx_imax;
182         u32     tx_imax;
183
184 };
185
186 struct cpsw_ss_regs {
187         u32     id_ver;
188         u32     control;
189         u32     soft_reset;
190         u32     stat_port_en;
191         u32     ptype;
192         u32     soft_idle;
193         u32     thru_rate;
194         u32     gap_thresh;
195         u32     tx_start_wds;
196         u32     flow_control;
197         u32     vlan_ltype;
198         u32     ts_ltype;
199         u32     dlr_ltype;
200 };
201
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
211
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL       0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
220
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
225
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
241 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
253 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
254
255 #define CTRL_V2_TS_BITS \
256         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257          TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
262
263
264 #define CTRL_V3_TS_BITS \
265         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266          TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267          TS_LTYPE1_EN)
268
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK      (0xffff)
278
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN                BIT(0)
284 #define CPSW_V1_TS_TX_EN                BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS            16
286
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT        16
289
290 struct cpsw_host_regs {
291         u32     max_blks;
292         u32     blk_cnt;
293         u32     tx_in_ctl;
294         u32     port_vlan;
295         u32     tx_pri_map;
296         u32     cpdma_tx_pri_map;
297         u32     cpdma_rx_chan_map;
298 };
299
300 struct cpsw_sliver_regs {
301         u32     id_ver;
302         u32     mac_control;
303         u32     mac_status;
304         u32     soft_reset;
305         u32     rx_maxlen;
306         u32     __reserved_0;
307         u32     rx_pause;
308         u32     tx_pause;
309         u32     __reserved_1;
310         u32     rx_pri_map;
311 };
312
313 struct cpsw_hw_stats {
314         u32     rxgoodframes;
315         u32     rxbroadcastframes;
316         u32     rxmulticastframes;
317         u32     rxpauseframes;
318         u32     rxcrcerrors;
319         u32     rxaligncodeerrors;
320         u32     rxoversizedframes;
321         u32     rxjabberframes;
322         u32     rxundersizedframes;
323         u32     rxfragments;
324         u32     __pad_0[2];
325         u32     rxoctets;
326         u32     txgoodframes;
327         u32     txbroadcastframes;
328         u32     txmulticastframes;
329         u32     txpauseframes;
330         u32     txdeferredframes;
331         u32     txcollisionframes;
332         u32     txsinglecollframes;
333         u32     txmultcollframes;
334         u32     txexcessivecollisions;
335         u32     txlatecollisions;
336         u32     txunderrun;
337         u32     txcarriersenseerrors;
338         u32     txoctets;
339         u32     octetframes64;
340         u32     octetframes65t127;
341         u32     octetframes128t255;
342         u32     octetframes256t511;
343         u32     octetframes512t1023;
344         u32     octetframes1024tup;
345         u32     netoctets;
346         u32     rxsofoverruns;
347         u32     rxmofoverruns;
348         u32     rxdmaoverruns;
349 };
350
351 struct cpsw_slave {
352         void __iomem                    *regs;
353         struct cpsw_sliver_regs __iomem *sliver;
354         int                             slave_num;
355         u32                             mac_control;
356         struct cpsw_slave_data          *data;
357         struct phy_device               *phy;
358         struct net_device               *ndev;
359         u32                             port_vlan;
360         u32                             open_stat;
361 };
362
363 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
364 {
365         return __raw_readl(slave->regs + offset);
366 }
367
368 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
369 {
370         __raw_writel(val, slave->regs + offset);
371 }
372
373 struct cpsw_vector {
374         struct cpdma_chan *ch;
375         int budget;
376 };
377
378 struct cpsw_common {
379         struct device                   *dev;
380         struct cpsw_platform_data       data;
381         struct napi_struct              napi_rx;
382         struct napi_struct              napi_tx;
383         struct cpsw_ss_regs __iomem     *regs;
384         struct cpsw_wr_regs __iomem     *wr_regs;
385         u8 __iomem                      *hw_stats;
386         struct cpsw_host_regs __iomem   *host_port_regs;
387         u32                             version;
388         u32                             coal_intvl;
389         u32                             bus_freq_mhz;
390         int                             rx_packet_max;
391         struct cpsw_slave               *slaves;
392         struct cpdma_ctlr               *dma;
393         struct cpsw_vector              txv[CPSW_MAX_QUEUES];
394         struct cpsw_vector              rxv[CPSW_MAX_QUEUES];
395         struct cpsw_ale                 *ale;
396         bool                            quirk_irq;
397         bool                            rx_irq_disabled;
398         bool                            tx_irq_disabled;
399         u32 irqs_table[IRQ_NUM];
400         struct cpts                     *cpts;
401         int                             rx_ch_num, tx_ch_num;
402         int                             speed;
403 };
404
405 struct cpsw_priv {
406         struct net_device               *ndev;
407         struct device                   *dev;
408         u32                             msg_enable;
409         u8                              mac_addr[ETH_ALEN];
410         bool                            rx_pause;
411         bool                            tx_pause;
412         u32 emac_port;
413         struct cpsw_common *cpsw;
414 };
415
416 struct cpsw_stats {
417         char stat_string[ETH_GSTRING_LEN];
418         int type;
419         int sizeof_stat;
420         int stat_offset;
421 };
422
423 enum {
424         CPSW_STATS,
425         CPDMA_RX_STATS,
426         CPDMA_TX_STATS,
427 };
428
429 #define CPSW_STAT(m)            CPSW_STATS,                             \
430                                 sizeof(((struct cpsw_hw_stats *)0)->m), \
431                                 offsetof(struct cpsw_hw_stats, m)
432 #define CPDMA_RX_STAT(m)        CPDMA_RX_STATS,                            \
433                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
434                                 offsetof(struct cpdma_chan_stats, m)
435 #define CPDMA_TX_STAT(m)        CPDMA_TX_STATS,                            \
436                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
437                                 offsetof(struct cpdma_chan_stats, m)
438
439 static const struct cpsw_stats cpsw_gstrings_stats[] = {
440         { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
441         { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
442         { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
443         { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
444         { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
445         { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
446         { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
447         { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
448         { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
449         { "Rx Fragments", CPSW_STAT(rxfragments) },
450         { "Rx Octets", CPSW_STAT(rxoctets) },
451         { "Good Tx Frames", CPSW_STAT(txgoodframes) },
452         { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
453         { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
454         { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
455         { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
456         { "Collisions", CPSW_STAT(txcollisionframes) },
457         { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
458         { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
459         { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
460         { "Late Collisions", CPSW_STAT(txlatecollisions) },
461         { "Tx Underrun", CPSW_STAT(txunderrun) },
462         { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
463         { "Tx Octets", CPSW_STAT(txoctets) },
464         { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
465         { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
466         { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
467         { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
468         { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
469         { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
470         { "Net Octets", CPSW_STAT(netoctets) },
471         { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
472         { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
473         { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
474 };
475
476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
477         { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
478         { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
479         { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
480         { "misqueued", CPDMA_RX_STAT(misqueued) },
481         { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
482         { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
483         { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
484         { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
485         { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
486         { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
487         { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
488         { "requeue", CPDMA_RX_STAT(requeue) },
489         { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
490 };
491
492 #define CPSW_STATS_COMMON_LEN   ARRAY_SIZE(cpsw_gstrings_stats)
493 #define CPSW_STATS_CH_LEN       ARRAY_SIZE(cpsw_gstrings_ch_stats)
494
495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496 #define napi_to_cpsw(napi)      container_of(napi, struct cpsw_common, napi)
497 #define for_each_slave(priv, func, arg...)                              \
498         do {                                                            \
499                 struct cpsw_slave *slave;                               \
500                 struct cpsw_common *cpsw = (priv)->cpsw;                \
501                 int n;                                                  \
502                 if (cpsw->data.dual_emac)                               \
503                         (func)((cpsw)->slaves + priv->emac_port, ##arg);\
504                 else                                                    \
505                         for (n = cpsw->data.slaves,                     \
506                                         slave = cpsw->slaves;           \
507                                         n; n--)                         \
508                                 (func)(slave++, ##arg);                 \
509         } while (0)
510
511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)         \
512         do {                                                            \
513                 if (!cpsw->data.dual_emac)                              \
514                         break;                                          \
515                 if (CPDMA_RX_SOURCE_PORT(status) == 1) {                \
516                         ndev = cpsw->slaves[0].ndev;                    \
517                         skb->dev = ndev;                                \
518                 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) {         \
519                         ndev = cpsw->slaves[1].ndev;                    \
520                         skb->dev = ndev;                                \
521                 }                                                       \
522         } while (0)
523 #define cpsw_add_mcast(cpsw, priv, addr)                                \
524         do {                                                            \
525                 if (cpsw->data.dual_emac) {                             \
526                         struct cpsw_slave *slave = cpsw->slaves +       \
527                                                 priv->emac_port;        \
528                         int slave_port = cpsw_get_slave_port(           \
529                                                 slave->slave_num);      \
530                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
531                                 1 << slave_port | ALE_PORT_HOST,        \
532                                 ALE_VLAN, slave->port_vlan, 0);         \
533                 } else {                                                \
534                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
535                                 ALE_ALL_PORTS,                          \
536                                 0, 0, 0);                               \
537                 }                                                       \
538         } while (0)
539
540 static inline int cpsw_get_slave_port(u32 slave_num)
541 {
542         return slave_num + 1;
543 }
544
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
548         struct cpsw_ale *ale = cpsw->ale;
549         int i;
550
551         if (cpsw->data.dual_emac) {
552                 bool flag = false;
553
554                 /* Enabling promiscuous mode for one interface will be
555                  * common for both the interface as the interface shares
556                  * the same hardware resource.
557                  */
558                 for (i = 0; i < cpsw->data.slaves; i++)
559                         if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560                                 flag = true;
561
562                 if (!enable && flag) {
563                         enable = true;
564                         dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565                 }
566
567                 if (enable) {
568                         /* Enable Bypass */
569                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570
571                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
572                 } else {
573                         /* Disable Bypass */
574                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
576                 }
577         } else {
578                 if (enable) {
579                         unsigned long timeout = jiffies + HZ;
580
581                         /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582                         for (i = 0; i <= cpsw->data.slaves; i++) {
583                                 cpsw_ale_control_set(ale, i,
584                                                      ALE_PORT_NOLEARN, 1);
585                                 cpsw_ale_control_set(ale, i,
586                                                      ALE_PORT_NO_SA_UPDATE, 1);
587                         }
588
589                         /* Clear All Untouched entries */
590                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591                         do {
592                                 cpu_relax();
593                                 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594                                         break;
595                         } while (time_after(timeout, jiffies));
596                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597
598                         /* Clear all mcast from ALE */
599                         cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600
601                         /* Flood All Unicast Packets to Host port */
602                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
604                 } else {
605                         /* Don't Flood All Unicast Packets to Host port */
606                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607
608                         /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609                         for (i = 0; i <= cpsw->data.slaves; i++) {
610                                 cpsw_ale_control_set(ale, i,
611                                                      ALE_PORT_NOLEARN, 0);
612                                 cpsw_ale_control_set(ale, i,
613                                                      ALE_PORT_NO_SA_UPDATE, 0);
614                         }
615                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
616                 }
617         }
618 }
619
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622         struct cpsw_priv *priv = netdev_priv(ndev);
623         struct cpsw_common *cpsw = priv->cpsw;
624         int vid;
625
626         if (cpsw->data.dual_emac)
627                 vid = cpsw->slaves[priv->emac_port].port_vlan;
628         else
629                 vid = cpsw->data.default_vlan;
630
631         if (ndev->flags & IFF_PROMISC) {
632                 /* Enable promiscuous mode */
633                 cpsw_set_promiscious(ndev, true);
634                 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635                 return;
636         } else {
637                 /* Disable promiscuous mode */
638                 cpsw_set_promiscious(ndev, false);
639         }
640
641         /* Restore allmulti on vlans if necessary */
642         cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643
644         /* Clear all mcast from ALE */
645         cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646
647         if (!netdev_mc_empty(ndev)) {
648                 struct netdev_hw_addr *ha;
649
650                 /* program multicast address list into ALE register */
651                 netdev_for_each_mc_addr(ha, ndev) {
652                         cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653                 }
654         }
655 }
656
657 static void cpsw_intr_enable(struct cpsw_common *cpsw)
658 {
659         __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
660         __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661
662         cpdma_ctlr_int_ctrl(cpsw->dma, true);
663         return;
664 }
665
666 static void cpsw_intr_disable(struct cpsw_common *cpsw)
667 {
668         __raw_writel(0, &cpsw->wr_regs->tx_en);
669         __raw_writel(0, &cpsw->wr_regs->rx_en);
670
671         cpdma_ctlr_int_ctrl(cpsw->dma, false);
672         return;
673 }
674
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677         struct netdev_queue     *txq;
678         struct sk_buff          *skb = token;
679         struct net_device       *ndev = skb->dev;
680         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
681
682         /* Check whether the queue is stopped due to stalled tx dma, if the
683          * queue is stopped then start the queue as we have free desc for tx
684          */
685         txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
686         if (unlikely(netif_tx_queue_stopped(txq)))
687                 netif_tx_wake_queue(txq);
688
689         cpts_tx_timestamp(cpsw->cpts, skb);
690         ndev->stats.tx_packets++;
691         ndev->stats.tx_bytes += len;
692         dev_kfree_skb_any(skb);
693 }
694
695 static void cpsw_rx_handler(void *token, int len, int status)
696 {
697         struct cpdma_chan       *ch;
698         struct sk_buff          *skb = token;
699         struct sk_buff          *new_skb;
700         struct net_device       *ndev = skb->dev;
701         int                     ret = 0;
702         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
703
704         cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705
706         if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707                 bool ndev_status = false;
708                 struct cpsw_slave *slave = cpsw->slaves;
709                 int n;
710
711                 if (cpsw->data.dual_emac) {
712                         /* In dual emac mode check for all interfaces */
713                         for (n = cpsw->data.slaves; n; n--, slave++)
714                                 if (netif_running(slave->ndev))
715                                         ndev_status = true;
716                 }
717
718                 if (ndev_status && (status >= 0)) {
719                         /* The packet received is for the interface which
720                          * is already down and the other interface is up
721                          * and running, instead of freeing which results
722                          * in reducing of the number of rx descriptor in
723                          * DMA engine, requeue skb back to cpdma.
724                          */
725                         new_skb = skb;
726                         goto requeue;
727                 }
728
729                 /* the interface is going down, skbs are purged */
730                 dev_kfree_skb_any(skb);
731                 return;
732         }
733
734         new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
735         if (new_skb) {
736                 skb_copy_queue_mapping(new_skb, skb);
737                 skb_put(skb, len);
738                 cpts_rx_timestamp(cpsw->cpts, skb);
739                 skb->protocol = eth_type_trans(skb, ndev);
740                 netif_receive_skb(skb);
741                 ndev->stats.rx_bytes += len;
742                 ndev->stats.rx_packets++;
743                 kmemleak_not_leak(new_skb);
744         } else {
745                 ndev->stats.rx_dropped++;
746                 new_skb = skb;
747         }
748
749 requeue:
750         if (netif_dormant(ndev)) {
751                 dev_kfree_skb_any(new_skb);
752                 return;
753         }
754
755         ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
756         ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
757                                 skb_tailroom(new_skb), 0);
758         if (WARN_ON(ret < 0))
759                 dev_kfree_skb_any(new_skb);
760 }
761
762 static void cpsw_split_res(struct net_device *ndev)
763 {
764         struct cpsw_priv *priv = netdev_priv(ndev);
765         u32 consumed_rate = 0, bigest_rate = 0;
766         struct cpsw_common *cpsw = priv->cpsw;
767         struct cpsw_vector *txv = cpsw->txv;
768         int i, ch_weight, rlim_ch_num = 0;
769         int budget, bigest_rate_ch = 0;
770         u32 ch_rate, max_rate;
771         int ch_budget = 0;
772
773         for (i = 0; i < cpsw->tx_ch_num; i++) {
774                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
775                 if (!ch_rate)
776                         continue;
777
778                 rlim_ch_num++;
779                 consumed_rate += ch_rate;
780         }
781
782         if (cpsw->tx_ch_num == rlim_ch_num) {
783                 max_rate = consumed_rate;
784         } else if (!rlim_ch_num) {
785                 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
786                 bigest_rate = 0;
787                 max_rate = consumed_rate;
788         } else {
789                 max_rate = cpsw->speed * 1000;
790
791                 /* if max_rate is less then expected due to reduced link speed,
792                  * split proportionally according next potential max speed
793                  */
794                 if (max_rate < consumed_rate)
795                         max_rate *= 10;
796
797                 if (max_rate < consumed_rate)
798                         max_rate *= 10;
799
800                 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
801                 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
802                             (cpsw->tx_ch_num - rlim_ch_num);
803                 bigest_rate = (max_rate - consumed_rate) /
804                               (cpsw->tx_ch_num - rlim_ch_num);
805         }
806
807         /* split tx weight/budget */
808         budget = CPSW_POLL_WEIGHT;
809         for (i = 0; i < cpsw->tx_ch_num; i++) {
810                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
811                 if (ch_rate) {
812                         txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
813                         if (!txv[i].budget)
814                                 txv[i].budget++;
815                         if (ch_rate > bigest_rate) {
816                                 bigest_rate_ch = i;
817                                 bigest_rate = ch_rate;
818                         }
819
820                         ch_weight = (ch_rate * 100) / max_rate;
821                         if (!ch_weight)
822                                 ch_weight++;
823                         cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
824                 } else {
825                         txv[i].budget = ch_budget;
826                         if (!bigest_rate_ch)
827                                 bigest_rate_ch = i;
828                         cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
829                 }
830
831                 budget -= txv[i].budget;
832         }
833
834         if (budget)
835                 txv[bigest_rate_ch].budget += budget;
836
837         /* split rx budget */
838         budget = CPSW_POLL_WEIGHT;
839         ch_budget = budget / cpsw->rx_ch_num;
840         for (i = 0; i < cpsw->rx_ch_num; i++) {
841                 cpsw->rxv[i].budget = ch_budget;
842                 budget -= ch_budget;
843         }
844
845         if (budget)
846                 cpsw->rxv[0].budget += budget;
847 }
848
849 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
850 {
851         struct cpsw_common *cpsw = dev_id;
852
853         writel(0, &cpsw->wr_regs->tx_en);
854         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
855
856         if (cpsw->quirk_irq) {
857                 disable_irq_nosync(cpsw->irqs_table[1]);
858                 cpsw->tx_irq_disabled = true;
859         }
860
861         napi_schedule(&cpsw->napi_tx);
862         return IRQ_HANDLED;
863 }
864
865 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
866 {
867         struct cpsw_common *cpsw = dev_id;
868
869         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
870         writel(0, &cpsw->wr_regs->rx_en);
871
872         if (cpsw->quirk_irq) {
873                 disable_irq_nosync(cpsw->irqs_table[0]);
874                 cpsw->rx_irq_disabled = true;
875         }
876
877         napi_schedule(&cpsw->napi_rx);
878         return IRQ_HANDLED;
879 }
880
881 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
882 {
883         u32                     ch_map;
884         int                     num_tx, cur_budget, ch;
885         struct cpsw_common      *cpsw = napi_to_cpsw(napi_tx);
886         struct cpsw_vector      *txv;
887
888         /* process every unprocessed channel */
889         ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
890         for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
891                 if (!(ch_map & 0x01))
892                         continue;
893
894                 txv = &cpsw->txv[ch];
895                 if (unlikely(txv->budget > budget - num_tx))
896                         cur_budget = budget - num_tx;
897                 else
898                         cur_budget = txv->budget;
899
900                 num_tx += cpdma_chan_process(txv->ch, cur_budget);
901                 if (num_tx >= budget)
902                         break;
903         }
904
905         if (num_tx < budget) {
906                 napi_complete(napi_tx);
907                 writel(0xff, &cpsw->wr_regs->tx_en);
908                 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
909                         cpsw->tx_irq_disabled = false;
910                         enable_irq(cpsw->irqs_table[1]);
911                 }
912         }
913
914         return num_tx;
915 }
916
917 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
918 {
919         u32                     ch_map;
920         int                     num_rx, cur_budget, ch;
921         struct cpsw_common      *cpsw = napi_to_cpsw(napi_rx);
922         struct cpsw_vector      *rxv;
923
924         /* process every unprocessed channel */
925         ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
926         for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
927                 if (!(ch_map & 0x01))
928                         continue;
929
930                 rxv = &cpsw->rxv[ch];
931                 if (unlikely(rxv->budget > budget - num_rx))
932                         cur_budget = budget - num_rx;
933                 else
934                         cur_budget = rxv->budget;
935
936                 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
937                 if (num_rx >= budget)
938                         break;
939         }
940
941         if (num_rx < budget) {
942                 napi_complete(napi_rx);
943                 writel(0xff, &cpsw->wr_regs->rx_en);
944                 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
945                         cpsw->rx_irq_disabled = false;
946                         enable_irq(cpsw->irqs_table[0]);
947                 }
948         }
949
950         return num_rx;
951 }
952
953 static inline void soft_reset(const char *module, void __iomem *reg)
954 {
955         unsigned long timeout = jiffies + HZ;
956
957         __raw_writel(1, reg);
958         do {
959                 cpu_relax();
960         } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
961
962         WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
963 }
964
965 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
966                          ((mac)[2] << 16) | ((mac)[3] << 24))
967 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
968
969 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
970                                struct cpsw_priv *priv)
971 {
972         slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
973         slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
974 }
975
976 static void _cpsw_adjust_link(struct cpsw_slave *slave,
977                               struct cpsw_priv *priv, bool *link)
978 {
979         struct phy_device       *phy = slave->phy;
980         u32                     mac_control = 0;
981         u32                     slave_port;
982         struct cpsw_common *cpsw = priv->cpsw;
983
984         if (!phy)
985                 return;
986
987         slave_port = cpsw_get_slave_port(slave->slave_num);
988
989         if (phy->link) {
990                 mac_control = cpsw->data.mac_control;
991
992                 /* enable forwarding */
993                 cpsw_ale_control_set(cpsw->ale, slave_port,
994                                      ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
995
996                 if (phy->speed == 1000)
997                         mac_control |= BIT(7);  /* GIGABITEN    */
998                 if (phy->duplex)
999                         mac_control |= BIT(0);  /* FULLDUPLEXEN */
1000
1001                 /* set speed_in input in case RMII mode is used in 100Mbps */
1002                 if (phy->speed == 100)
1003                         mac_control |= BIT(15);
1004                 else if (phy->speed == 10)
1005                         mac_control |= BIT(18); /* In Band mode */
1006
1007                 if (priv->rx_pause)
1008                         mac_control |= BIT(3);
1009
1010                 if (priv->tx_pause)
1011                         mac_control |= BIT(4);
1012
1013                 *link = true;
1014         } else {
1015                 mac_control = 0;
1016                 /* disable forwarding */
1017                 cpsw_ale_control_set(cpsw->ale, slave_port,
1018                                      ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1019         }
1020
1021         if (mac_control != slave->mac_control) {
1022                 phy_print_status(phy);
1023                 __raw_writel(mac_control, &slave->sliver->mac_control);
1024         }
1025
1026         slave->mac_control = mac_control;
1027 }
1028
1029 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1030 {
1031         int i, speed;
1032
1033         for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1034                 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1035                         speed += cpsw->slaves[i].phy->speed;
1036
1037         return speed;
1038 }
1039
1040 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1041 {
1042         int i, rlim_ch_num;
1043         int speed, ch_rate;
1044
1045         /* re-split resources only in case speed was changed */
1046         speed = cpsw_get_common_speed(cpsw);
1047         if (speed == cpsw->speed || !speed)
1048                 return 0;
1049
1050         cpsw->speed = speed;
1051
1052         for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1053                 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1054                 if (!ch_rate)
1055                         break;
1056
1057                 rlim_ch_num++;
1058         }
1059
1060         /* cases not dependent on speed */
1061         if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1062                 return 0;
1063
1064         return 1;
1065 }
1066
1067 static void cpsw_adjust_link(struct net_device *ndev)
1068 {
1069         struct cpsw_priv        *priv = netdev_priv(ndev);
1070         struct cpsw_common      *cpsw = priv->cpsw;
1071         bool                    link = false;
1072
1073         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1074
1075         if (link) {
1076                 if (cpsw_need_resplit(cpsw))
1077                         cpsw_split_res(ndev);
1078
1079                 netif_carrier_on(ndev);
1080                 if (netif_running(ndev))
1081                         netif_tx_wake_all_queues(ndev);
1082         } else {
1083                 netif_carrier_off(ndev);
1084                 netif_tx_stop_all_queues(ndev);
1085         }
1086 }
1087
1088 static int cpsw_get_coalesce(struct net_device *ndev,
1089                                 struct ethtool_coalesce *coal)
1090 {
1091         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1092
1093         coal->rx_coalesce_usecs = cpsw->coal_intvl;
1094         return 0;
1095 }
1096
1097 static int cpsw_set_coalesce(struct net_device *ndev,
1098                                 struct ethtool_coalesce *coal)
1099 {
1100         struct cpsw_priv *priv = netdev_priv(ndev);
1101         u32 int_ctrl;
1102         u32 num_interrupts = 0;
1103         u32 prescale = 0;
1104         u32 addnl_dvdr = 1;
1105         u32 coal_intvl = 0;
1106         struct cpsw_common *cpsw = priv->cpsw;
1107
1108         coal_intvl = coal->rx_coalesce_usecs;
1109
1110         int_ctrl =  readl(&cpsw->wr_regs->int_control);
1111         prescale = cpsw->bus_freq_mhz * 4;
1112
1113         if (!coal->rx_coalesce_usecs) {
1114                 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1115                 goto update_return;
1116         }
1117
1118         if (coal_intvl < CPSW_CMINTMIN_INTVL)
1119                 coal_intvl = CPSW_CMINTMIN_INTVL;
1120
1121         if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1122                 /* Interrupt pacer works with 4us Pulse, we can
1123                  * throttle further by dilating the 4us pulse.
1124                  */
1125                 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1126
1127                 if (addnl_dvdr > 1) {
1128                         prescale *= addnl_dvdr;
1129                         if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1130                                 coal_intvl = (CPSW_CMINTMAX_INTVL
1131                                                 * addnl_dvdr);
1132                 } else {
1133                         addnl_dvdr = 1;
1134                         coal_intvl = CPSW_CMINTMAX_INTVL;
1135                 }
1136         }
1137
1138         num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1139         writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1140         writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1141
1142         int_ctrl |= CPSW_INTPACEEN;
1143         int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1144         int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1145
1146 update_return:
1147         writel(int_ctrl, &cpsw->wr_regs->int_control);
1148
1149         cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1150         cpsw->coal_intvl = coal_intvl;
1151
1152         return 0;
1153 }
1154
1155 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1156 {
1157         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1158
1159         switch (sset) {
1160         case ETH_SS_STATS:
1161                 return (CPSW_STATS_COMMON_LEN +
1162                        (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1163                        CPSW_STATS_CH_LEN);
1164         default:
1165                 return -EOPNOTSUPP;
1166         }
1167 }
1168
1169 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1170 {
1171         int ch_stats_len;
1172         int line;
1173         int i;
1174
1175         ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1176         for (i = 0; i < ch_stats_len; i++) {
1177                 line = i % CPSW_STATS_CH_LEN;
1178                 snprintf(*p, ETH_GSTRING_LEN,
1179                          "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1180                          i / CPSW_STATS_CH_LEN,
1181                          cpsw_gstrings_ch_stats[line].stat_string);
1182                 *p += ETH_GSTRING_LEN;
1183         }
1184 }
1185
1186 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1187 {
1188         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1189         u8 *p = data;
1190         int i;
1191
1192         switch (stringset) {
1193         case ETH_SS_STATS:
1194                 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1195                         memcpy(p, cpsw_gstrings_stats[i].stat_string,
1196                                ETH_GSTRING_LEN);
1197                         p += ETH_GSTRING_LEN;
1198                 }
1199
1200                 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1201                 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1202                 break;
1203         }
1204 }
1205
1206 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1207                                     struct ethtool_stats *stats, u64 *data)
1208 {
1209         u8 *p;
1210         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1211         struct cpdma_chan_stats ch_stats;
1212         int i, l, ch;
1213
1214         /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1215         for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1216                 data[l] = readl(cpsw->hw_stats +
1217                                 cpsw_gstrings_stats[l].stat_offset);
1218
1219         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1220                 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1221                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1222                         p = (u8 *)&ch_stats +
1223                                 cpsw_gstrings_ch_stats[i].stat_offset;
1224                         data[l] = *(u32 *)p;
1225                 }
1226         }
1227
1228         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1229                 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1230                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1231                         p = (u8 *)&ch_stats +
1232                                 cpsw_gstrings_ch_stats[i].stat_offset;
1233                         data[l] = *(u32 *)p;
1234                 }
1235         }
1236 }
1237
1238 static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1239 {
1240         u32 i;
1241         u32 usage_count = 0;
1242
1243         for (i = 0; i < cpsw->data.slaves; i++)
1244                 if (cpsw->slaves[i].open_stat)
1245                         usage_count++;
1246
1247         return usage_count;
1248 }
1249
1250 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1251                                         struct sk_buff *skb,
1252                                         struct cpdma_chan *txch)
1253 {
1254         struct cpsw_common *cpsw = priv->cpsw;
1255
1256         return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1257                                  priv->emac_port + cpsw->data.dual_emac);
1258 }
1259
1260 static inline void cpsw_add_dual_emac_def_ale_entries(
1261                 struct cpsw_priv *priv, struct cpsw_slave *slave,
1262                 u32 slave_port)
1263 {
1264         struct cpsw_common *cpsw = priv->cpsw;
1265         u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1266
1267         if (cpsw->version == CPSW_VERSION_1)
1268                 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1269         else
1270                 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1271         cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1272                           port_mask, port_mask, 0);
1273         cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1274                            port_mask, ALE_VLAN, slave->port_vlan, 0);
1275         cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1276                            HOST_PORT_NUM, ALE_VLAN |
1277                            ALE_SECURE, slave->port_vlan);
1278 }
1279
1280 static void soft_reset_slave(struct cpsw_slave *slave)
1281 {
1282         char name[32];
1283
1284         snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1285         soft_reset(name, &slave->sliver->soft_reset);
1286 }
1287
1288 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1289 {
1290         u32 slave_port;
1291         struct cpsw_common *cpsw = priv->cpsw;
1292
1293         soft_reset_slave(slave);
1294
1295         /* setup priority mapping */
1296         __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1297
1298         switch (cpsw->version) {
1299         case CPSW_VERSION_1:
1300                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1301                 break;
1302         case CPSW_VERSION_2:
1303         case CPSW_VERSION_3:
1304         case CPSW_VERSION_4:
1305                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1306                 break;
1307         }
1308
1309         /* setup max packet size, and mac address */
1310         __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1311         cpsw_set_slave_mac(slave, priv);
1312
1313         slave->mac_control = 0; /* no link yet */
1314
1315         slave_port = cpsw_get_slave_port(slave->slave_num);
1316
1317         if (cpsw->data.dual_emac)
1318                 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1319         else
1320                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1321                                    1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1322
1323         if (slave->data->phy_node) {
1324                 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1325                                  &cpsw_adjust_link, 0, slave->data->phy_if);
1326                 if (!slave->phy) {
1327                         dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1328                                 slave->data->phy_node->full_name,
1329                                 slave->slave_num);
1330                         return;
1331                 }
1332         } else {
1333                 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1334                                  &cpsw_adjust_link, slave->data->phy_if);
1335                 if (IS_ERR(slave->phy)) {
1336                         dev_err(priv->dev,
1337                                 "phy \"%s\" not found on slave %d, err %ld\n",
1338                                 slave->data->phy_id, slave->slave_num,
1339                                 PTR_ERR(slave->phy));
1340                         slave->phy = NULL;
1341                         return;
1342                 }
1343         }
1344
1345         phy_attached_info(slave->phy);
1346
1347         phy_start(slave->phy);
1348
1349         /* Configure GMII_SEL register */
1350         cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1351 }
1352
1353 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1354 {
1355         struct cpsw_common *cpsw = priv->cpsw;
1356         const int vlan = cpsw->data.default_vlan;
1357         u32 reg;
1358         int i;
1359         int unreg_mcast_mask;
1360
1361         reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1362                CPSW2_PORT_VLAN;
1363
1364         writel(vlan, &cpsw->host_port_regs->port_vlan);
1365
1366         for (i = 0; i < cpsw->data.slaves; i++)
1367                 slave_write(cpsw->slaves + i, vlan, reg);
1368
1369         if (priv->ndev->flags & IFF_ALLMULTI)
1370                 unreg_mcast_mask = ALE_ALL_PORTS;
1371         else
1372                 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1373
1374         cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1375                           ALE_ALL_PORTS, ALE_ALL_PORTS,
1376                           unreg_mcast_mask);
1377 }
1378
1379 static void cpsw_init_host_port(struct cpsw_priv *priv)
1380 {
1381         u32 fifo_mode;
1382         u32 control_reg;
1383         struct cpsw_common *cpsw = priv->cpsw;
1384
1385         /* soft reset the controller and initialize ale */
1386         soft_reset("cpsw", &cpsw->regs->soft_reset);
1387         cpsw_ale_start(cpsw->ale);
1388
1389         /* switch to vlan unaware mode */
1390         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1391                              CPSW_ALE_VLAN_AWARE);
1392         control_reg = readl(&cpsw->regs->control);
1393         control_reg |= CPSW_VLAN_AWARE;
1394         writel(control_reg, &cpsw->regs->control);
1395         fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1396                      CPSW_FIFO_NORMAL_MODE;
1397         writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1398
1399         /* setup host port priority mapping */
1400         __raw_writel(CPDMA_TX_PRIORITY_MAP,
1401                      &cpsw->host_port_regs->cpdma_tx_pri_map);
1402         __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1403
1404         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1405                              ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1406
1407         if (!cpsw->data.dual_emac) {
1408                 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1409                                    0, 0);
1410                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1411                                    ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1412         }
1413 }
1414
1415 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1416 {
1417         struct cpsw_common *cpsw = priv->cpsw;
1418         struct sk_buff *skb;
1419         int ch_buf_num;
1420         int ch, i, ret;
1421
1422         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1423                 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1424                 for (i = 0; i < ch_buf_num; i++) {
1425                         skb = __netdev_alloc_skb_ip_align(priv->ndev,
1426                                                           cpsw->rx_packet_max,
1427                                                           GFP_KERNEL);
1428                         if (!skb) {
1429                                 cpsw_err(priv, ifup, "cannot allocate skb\n");
1430                                 return -ENOMEM;
1431                         }
1432
1433                         skb_set_queue_mapping(skb, ch);
1434                         ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1435                                                 skb->data, skb_tailroom(skb),
1436                                                 0);
1437                         if (ret < 0) {
1438                                 cpsw_err(priv, ifup,
1439                                          "cannot submit skb to channel %d rx, error %d\n",
1440                                          ch, ret);
1441                                 kfree_skb(skb);
1442                                 return ret;
1443                         }
1444                         kmemleak_not_leak(skb);
1445                 }
1446
1447                 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1448                           ch, ch_buf_num);
1449         }
1450
1451         return 0;
1452 }
1453
1454 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1455 {
1456         u32 slave_port;
1457
1458         slave_port = cpsw_get_slave_port(slave->slave_num);
1459
1460         if (!slave->phy)
1461                 return;
1462         phy_stop(slave->phy);
1463         phy_disconnect(slave->phy);
1464         slave->phy = NULL;
1465         cpsw_ale_control_set(cpsw->ale, slave_port,
1466                              ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1467         soft_reset_slave(slave);
1468 }
1469
1470 static int cpsw_ndo_open(struct net_device *ndev)
1471 {
1472         struct cpsw_priv *priv = netdev_priv(ndev);
1473         struct cpsw_common *cpsw = priv->cpsw;
1474         int ret;
1475         u32 reg;
1476
1477         ret = pm_runtime_get_sync(cpsw->dev);
1478         if (ret < 0) {
1479                 pm_runtime_put_noidle(cpsw->dev);
1480                 return ret;
1481         }
1482
1483         if (!cpsw_common_res_usage_state(cpsw))
1484                 cpsw_intr_disable(cpsw);
1485         netif_carrier_off(ndev);
1486
1487         /* Notify the stack of the actual queue counts. */
1488         ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1489         if (ret) {
1490                 dev_err(priv->dev, "cannot set real number of tx queues\n");
1491                 goto err_cleanup;
1492         }
1493
1494         ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1495         if (ret) {
1496                 dev_err(priv->dev, "cannot set real number of rx queues\n");
1497                 goto err_cleanup;
1498         }
1499
1500         reg = cpsw->version;
1501
1502         dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1503                  CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1504                  CPSW_RTL_VERSION(reg));
1505
1506         /* initialize host and slave ports */
1507         if (!cpsw_common_res_usage_state(cpsw))
1508                 cpsw_init_host_port(priv);
1509         for_each_slave(priv, cpsw_slave_open, priv);
1510
1511         /* Add default VLAN */
1512         if (!cpsw->data.dual_emac)
1513                 cpsw_add_default_vlan(priv);
1514         else
1515                 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1516                                   ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1517
1518         if (!cpsw_common_res_usage_state(cpsw)) {
1519                 /* disable priority elevation */
1520                 __raw_writel(0, &cpsw->regs->ptype);
1521
1522                 /* enable statistics collection only on all ports */
1523                 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1524
1525                 /* Enable internal fifo flow control */
1526                 writel(0x7, &cpsw->regs->flow_control);
1527
1528                 napi_enable(&cpsw->napi_rx);
1529                 napi_enable(&cpsw->napi_tx);
1530
1531                 if (cpsw->tx_irq_disabled) {
1532                         cpsw->tx_irq_disabled = false;
1533                         enable_irq(cpsw->irqs_table[1]);
1534                 }
1535
1536                 if (cpsw->rx_irq_disabled) {
1537                         cpsw->rx_irq_disabled = false;
1538                         enable_irq(cpsw->irqs_table[0]);
1539                 }
1540
1541                 ret = cpsw_fill_rx_channels(priv);
1542                 if (ret < 0)
1543                         goto err_cleanup;
1544
1545                 if (cpts_register(cpsw->cpts))
1546                         dev_err(priv->dev, "error registering cpts device\n");
1547
1548         }
1549
1550         /* Enable Interrupt pacing if configured */
1551         if (cpsw->coal_intvl != 0) {
1552                 struct ethtool_coalesce coal;
1553
1554                 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1555                 cpsw_set_coalesce(ndev, &coal);
1556         }
1557
1558         cpdma_ctlr_start(cpsw->dma);
1559         cpsw_intr_enable(cpsw);
1560
1561         if (cpsw->data.dual_emac)
1562                 cpsw->slaves[priv->emac_port].open_stat = true;
1563
1564         return 0;
1565
1566 err_cleanup:
1567         cpdma_ctlr_stop(cpsw->dma);
1568         for_each_slave(priv, cpsw_slave_stop, cpsw);
1569         pm_runtime_put_sync(cpsw->dev);
1570         netif_carrier_off(priv->ndev);
1571         return ret;
1572 }
1573
1574 static int cpsw_ndo_stop(struct net_device *ndev)
1575 {
1576         struct cpsw_priv *priv = netdev_priv(ndev);
1577         struct cpsw_common *cpsw = priv->cpsw;
1578
1579         cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1580         netif_tx_stop_all_queues(priv->ndev);
1581         netif_carrier_off(priv->ndev);
1582
1583         if (cpsw_common_res_usage_state(cpsw) <= 1) {
1584                 napi_disable(&cpsw->napi_rx);
1585                 napi_disable(&cpsw->napi_tx);
1586                 cpts_unregister(cpsw->cpts);
1587                 cpsw_intr_disable(cpsw);
1588                 cpdma_ctlr_stop(cpsw->dma);
1589                 cpsw_ale_stop(cpsw->ale);
1590         }
1591         for_each_slave(priv, cpsw_slave_stop, cpsw);
1592
1593         if (cpsw_need_resplit(cpsw))
1594                 cpsw_split_res(ndev);
1595
1596         pm_runtime_put_sync(cpsw->dev);
1597         if (cpsw->data.dual_emac)
1598                 cpsw->slaves[priv->emac_port].open_stat = false;
1599         return 0;
1600 }
1601
1602 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1603                                        struct net_device *ndev)
1604 {
1605         struct cpsw_priv *priv = netdev_priv(ndev);
1606         struct cpsw_common *cpsw = priv->cpsw;
1607         struct netdev_queue *txq;
1608         struct cpdma_chan *txch;
1609         int ret, q_idx;
1610
1611         netif_trans_update(ndev);
1612
1613         if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1614                 cpsw_err(priv, tx_err, "packet pad failed\n");
1615                 ndev->stats.tx_dropped++;
1616                 return NETDEV_TX_OK;
1617         }
1618
1619         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1620             cpts_is_tx_enabled(cpsw->cpts))
1621                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1622
1623         skb_tx_timestamp(skb);
1624
1625         q_idx = skb_get_queue_mapping(skb);
1626         if (q_idx >= cpsw->tx_ch_num)
1627                 q_idx = q_idx % cpsw->tx_ch_num;
1628
1629         txch = cpsw->txv[q_idx].ch;
1630         ret = cpsw_tx_packet_submit(priv, skb, txch);
1631         if (unlikely(ret != 0)) {
1632                 cpsw_err(priv, tx_err, "desc submit failed\n");
1633                 goto fail;
1634         }
1635
1636         /* If there is no more tx desc left free then we need to
1637          * tell the kernel to stop sending us tx frames.
1638          */
1639         if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1640                 txq = netdev_get_tx_queue(ndev, q_idx);
1641                 netif_tx_stop_queue(txq);
1642         }
1643
1644         return NETDEV_TX_OK;
1645 fail:
1646         ndev->stats.tx_dropped++;
1647         txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1648         netif_tx_stop_queue(txq);
1649         return NETDEV_TX_BUSY;
1650 }
1651
1652 #if IS_ENABLED(CONFIG_TI_CPTS)
1653
1654 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1655 {
1656         struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1657         u32 ts_en, seq_id;
1658
1659         if (!cpts_is_tx_enabled(cpsw->cpts) &&
1660             !cpts_is_rx_enabled(cpsw->cpts)) {
1661                 slave_write(slave, 0, CPSW1_TS_CTL);
1662                 return;
1663         }
1664
1665         seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1666         ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1667
1668         if (cpts_is_tx_enabled(cpsw->cpts))
1669                 ts_en |= CPSW_V1_TS_TX_EN;
1670
1671         if (cpts_is_rx_enabled(cpsw->cpts))
1672                 ts_en |= CPSW_V1_TS_RX_EN;
1673
1674         slave_write(slave, ts_en, CPSW1_TS_CTL);
1675         slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1676 }
1677
1678 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1679 {
1680         struct cpsw_slave *slave;
1681         struct cpsw_common *cpsw = priv->cpsw;
1682         u32 ctrl, mtype;
1683
1684         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1685
1686         ctrl = slave_read(slave, CPSW2_CONTROL);
1687         switch (cpsw->version) {
1688         case CPSW_VERSION_2:
1689                 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1690
1691                 if (cpts_is_tx_enabled(cpsw->cpts))
1692                         ctrl |= CTRL_V2_TX_TS_BITS;
1693
1694                 if (cpts_is_rx_enabled(cpsw->cpts))
1695                         ctrl |= CTRL_V2_RX_TS_BITS;
1696                 break;
1697         case CPSW_VERSION_3:
1698         default:
1699                 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1700
1701                 if (cpts_is_tx_enabled(cpsw->cpts))
1702                         ctrl |= CTRL_V3_TX_TS_BITS;
1703
1704                 if (cpts_is_rx_enabled(cpsw->cpts))
1705                         ctrl |= CTRL_V3_RX_TS_BITS;
1706                 break;
1707         }
1708
1709         mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1710
1711         slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1712         slave_write(slave, ctrl, CPSW2_CONTROL);
1713         __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1714 }
1715
1716 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1717 {
1718         struct cpsw_priv *priv = netdev_priv(dev);
1719         struct hwtstamp_config cfg;
1720         struct cpsw_common *cpsw = priv->cpsw;
1721         struct cpts *cpts = cpsw->cpts;
1722
1723         if (cpsw->version != CPSW_VERSION_1 &&
1724             cpsw->version != CPSW_VERSION_2 &&
1725             cpsw->version != CPSW_VERSION_3)
1726                 return -EOPNOTSUPP;
1727
1728         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1729                 return -EFAULT;
1730
1731         /* reserved for future extensions */
1732         if (cfg.flags)
1733                 return -EINVAL;
1734
1735         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1736                 return -ERANGE;
1737
1738         switch (cfg.rx_filter) {
1739         case HWTSTAMP_FILTER_NONE:
1740                 cpts_rx_enable(cpts, 0);
1741                 break;
1742         case HWTSTAMP_FILTER_ALL:
1743         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1744         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1745         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1746                 return -ERANGE;
1747         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1748         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1749         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1750         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1751         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1752         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1753         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1754         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1755         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1756                 cpts_rx_enable(cpts, 1);
1757                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1758                 break;
1759         default:
1760                 return -ERANGE;
1761         }
1762
1763         cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1764
1765         switch (cpsw->version) {
1766         case CPSW_VERSION_1:
1767                 cpsw_hwtstamp_v1(cpsw);
1768                 break;
1769         case CPSW_VERSION_2:
1770         case CPSW_VERSION_3:
1771                 cpsw_hwtstamp_v2(priv);
1772                 break;
1773         default:
1774                 WARN_ON(1);
1775         }
1776
1777         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1778 }
1779
1780 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1781 {
1782         struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1783         struct cpts *cpts = cpsw->cpts;
1784         struct hwtstamp_config cfg;
1785
1786         if (cpsw->version != CPSW_VERSION_1 &&
1787             cpsw->version != CPSW_VERSION_2 &&
1788             cpsw->version != CPSW_VERSION_3)
1789                 return -EOPNOTSUPP;
1790
1791         cfg.flags = 0;
1792         cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1793                       HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1794         cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1795                          HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1796
1797         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1798 }
1799 #else
1800 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1801 {
1802         return -EOPNOTSUPP;
1803 }
1804
1805 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1806 {
1807         return -EOPNOTSUPP;
1808 }
1809 #endif /*CONFIG_TI_CPTS*/
1810
1811 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1812 {
1813         struct cpsw_priv *priv = netdev_priv(dev);
1814         struct cpsw_common *cpsw = priv->cpsw;
1815         int slave_no = cpsw_slave_index(cpsw, priv);
1816
1817         if (!netif_running(dev))
1818                 return -EINVAL;
1819
1820         switch (cmd) {
1821         case SIOCSHWTSTAMP:
1822                 return cpsw_hwtstamp_set(dev, req);
1823         case SIOCGHWTSTAMP:
1824                 return cpsw_hwtstamp_get(dev, req);
1825         }
1826
1827         if (!cpsw->slaves[slave_no].phy)
1828                 return -EOPNOTSUPP;
1829         return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1830 }
1831
1832 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1833 {
1834         struct cpsw_priv *priv = netdev_priv(ndev);
1835         struct cpsw_common *cpsw = priv->cpsw;
1836         int ch;
1837
1838         cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1839         ndev->stats.tx_errors++;
1840         cpsw_intr_disable(cpsw);
1841         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1842                 cpdma_chan_stop(cpsw->txv[ch].ch);
1843                 cpdma_chan_start(cpsw->txv[ch].ch);
1844         }
1845
1846         cpsw_intr_enable(cpsw);
1847 }
1848
1849 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1850 {
1851         struct cpsw_priv *priv = netdev_priv(ndev);
1852         struct sockaddr *addr = (struct sockaddr *)p;
1853         struct cpsw_common *cpsw = priv->cpsw;
1854         int flags = 0;
1855         u16 vid = 0;
1856         int ret;
1857
1858         if (!is_valid_ether_addr(addr->sa_data))
1859                 return -EADDRNOTAVAIL;
1860
1861         ret = pm_runtime_get_sync(cpsw->dev);
1862         if (ret < 0) {
1863                 pm_runtime_put_noidle(cpsw->dev);
1864                 return ret;
1865         }
1866
1867         if (cpsw->data.dual_emac) {
1868                 vid = cpsw->slaves[priv->emac_port].port_vlan;
1869                 flags = ALE_VLAN;
1870         }
1871
1872         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1873                            flags, vid);
1874         cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1875                            flags, vid);
1876
1877         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1878         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1879         for_each_slave(priv, cpsw_set_slave_mac, priv);
1880
1881         pm_runtime_put(cpsw->dev);
1882
1883         return 0;
1884 }
1885
1886 #ifdef CONFIG_NET_POLL_CONTROLLER
1887 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1888 {
1889         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1890
1891         cpsw_intr_disable(cpsw);
1892         cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1893         cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1894         cpsw_intr_enable(cpsw);
1895 }
1896 #endif
1897
1898 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1899                                 unsigned short vid)
1900 {
1901         int ret;
1902         int unreg_mcast_mask = 0;
1903         u32 port_mask;
1904         struct cpsw_common *cpsw = priv->cpsw;
1905
1906         if (cpsw->data.dual_emac) {
1907                 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1908
1909                 if (priv->ndev->flags & IFF_ALLMULTI)
1910                         unreg_mcast_mask = port_mask;
1911         } else {
1912                 port_mask = ALE_ALL_PORTS;
1913
1914                 if (priv->ndev->flags & IFF_ALLMULTI)
1915                         unreg_mcast_mask = ALE_ALL_PORTS;
1916                 else
1917                         unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1918         }
1919
1920         ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1921                                 unreg_mcast_mask);
1922         if (ret != 0)
1923                 return ret;
1924
1925         ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1926                                  HOST_PORT_NUM, ALE_VLAN, vid);
1927         if (ret != 0)
1928                 goto clean_vid;
1929
1930         ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1931                                  port_mask, ALE_VLAN, vid, 0);
1932         if (ret != 0)
1933                 goto clean_vlan_ucast;
1934         return 0;
1935
1936 clean_vlan_ucast:
1937         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1938                            HOST_PORT_NUM, ALE_VLAN, vid);
1939 clean_vid:
1940         cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1941         return ret;
1942 }
1943
1944 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1945                                     __be16 proto, u16 vid)
1946 {
1947         struct cpsw_priv *priv = netdev_priv(ndev);
1948         struct cpsw_common *cpsw = priv->cpsw;
1949         int ret;
1950
1951         if (vid == cpsw->data.default_vlan)
1952                 return 0;
1953
1954         ret = pm_runtime_get_sync(cpsw->dev);
1955         if (ret < 0) {
1956                 pm_runtime_put_noidle(cpsw->dev);
1957                 return ret;
1958         }
1959
1960         if (cpsw->data.dual_emac) {
1961                 /* In dual EMAC, reserved VLAN id should not be used for
1962                  * creating VLAN interfaces as this can break the dual
1963                  * EMAC port separation
1964                  */
1965                 int i;
1966
1967                 for (i = 0; i < cpsw->data.slaves; i++) {
1968                         if (vid == cpsw->slaves[i].port_vlan)
1969                                 return -EINVAL;
1970                 }
1971         }
1972
1973         dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1974         ret = cpsw_add_vlan_ale_entry(priv, vid);
1975
1976         pm_runtime_put(cpsw->dev);
1977         return ret;
1978 }
1979
1980 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1981                                      __be16 proto, u16 vid)
1982 {
1983         struct cpsw_priv *priv = netdev_priv(ndev);
1984         struct cpsw_common *cpsw = priv->cpsw;
1985         int ret;
1986
1987         if (vid == cpsw->data.default_vlan)
1988                 return 0;
1989
1990         ret = pm_runtime_get_sync(cpsw->dev);
1991         if (ret < 0) {
1992                 pm_runtime_put_noidle(cpsw->dev);
1993                 return ret;
1994         }
1995
1996         if (cpsw->data.dual_emac) {
1997                 int i;
1998
1999                 for (i = 0; i < cpsw->data.slaves; i++) {
2000                         if (vid == cpsw->slaves[i].port_vlan)
2001                                 return -EINVAL;
2002                 }
2003         }
2004
2005         dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2006         ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2007         if (ret != 0)
2008                 return ret;
2009
2010         ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2011                                  HOST_PORT_NUM, ALE_VLAN, vid);
2012         if (ret != 0)
2013                 return ret;
2014
2015         ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2016                                  0, ALE_VLAN, vid);
2017         pm_runtime_put(cpsw->dev);
2018         return ret;
2019 }
2020
2021 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2022 {
2023         struct cpsw_priv *priv = netdev_priv(ndev);
2024         struct cpsw_common *cpsw = priv->cpsw;
2025         struct cpsw_slave *slave;
2026         u32 min_rate;
2027         u32 ch_rate;
2028         int i, ret;
2029
2030         ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2031         if (ch_rate == rate)
2032                 return 0;
2033
2034         ch_rate = rate * 1000;
2035         min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2036         if ((ch_rate < min_rate && ch_rate)) {
2037                 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2038                         min_rate);
2039                 return -EINVAL;
2040         }
2041
2042         if (rate > cpsw->speed) {
2043                 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2044                 return -EINVAL;
2045         }
2046
2047         ret = pm_runtime_get_sync(cpsw->dev);
2048         if (ret < 0) {
2049                 pm_runtime_put_noidle(cpsw->dev);
2050                 return ret;
2051         }
2052
2053         ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2054         pm_runtime_put(cpsw->dev);
2055
2056         if (ret)
2057                 return ret;
2058
2059         /* update rates for slaves tx queues */
2060         for (i = 0; i < cpsw->data.slaves; i++) {
2061                 slave = &cpsw->slaves[i];
2062                 if (!slave->ndev)
2063                         continue;
2064
2065                 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2066         }
2067
2068         cpsw_split_res(ndev);
2069         return ret;
2070 }
2071
2072 static const struct net_device_ops cpsw_netdev_ops = {
2073         .ndo_open               = cpsw_ndo_open,
2074         .ndo_stop               = cpsw_ndo_stop,
2075         .ndo_start_xmit         = cpsw_ndo_start_xmit,
2076         .ndo_set_mac_address    = cpsw_ndo_set_mac_address,
2077         .ndo_do_ioctl           = cpsw_ndo_ioctl,
2078         .ndo_validate_addr      = eth_validate_addr,
2079         .ndo_tx_timeout         = cpsw_ndo_tx_timeout,
2080         .ndo_set_rx_mode        = cpsw_ndo_set_rx_mode,
2081         .ndo_set_tx_maxrate     = cpsw_ndo_set_tx_maxrate,
2082 #ifdef CONFIG_NET_POLL_CONTROLLER
2083         .ndo_poll_controller    = cpsw_ndo_poll_controller,
2084 #endif
2085         .ndo_vlan_rx_add_vid    = cpsw_ndo_vlan_rx_add_vid,
2086         .ndo_vlan_rx_kill_vid   = cpsw_ndo_vlan_rx_kill_vid,
2087 };
2088
2089 static int cpsw_get_regs_len(struct net_device *ndev)
2090 {
2091         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2092
2093         return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2094 }
2095
2096 static void cpsw_get_regs(struct net_device *ndev,
2097                           struct ethtool_regs *regs, void *p)
2098 {
2099         u32 *reg = p;
2100         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2101
2102         /* update CPSW IP version */
2103         regs->version = cpsw->version;
2104
2105         cpsw_ale_dump(cpsw->ale, reg);
2106 }
2107
2108 static void cpsw_get_drvinfo(struct net_device *ndev,
2109                              struct ethtool_drvinfo *info)
2110 {
2111         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2112         struct platform_device  *pdev = to_platform_device(cpsw->dev);
2113
2114         strlcpy(info->driver, "cpsw", sizeof(info->driver));
2115         strlcpy(info->version, "1.0", sizeof(info->version));
2116         strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2117 }
2118
2119 static u32 cpsw_get_msglevel(struct net_device *ndev)
2120 {
2121         struct cpsw_priv *priv = netdev_priv(ndev);
2122         return priv->msg_enable;
2123 }
2124
2125 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2126 {
2127         struct cpsw_priv *priv = netdev_priv(ndev);
2128         priv->msg_enable = value;
2129 }
2130
2131 #if IS_ENABLED(CONFIG_TI_CPTS)
2132 static int cpsw_get_ts_info(struct net_device *ndev,
2133                             struct ethtool_ts_info *info)
2134 {
2135         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2136
2137         info->so_timestamping =
2138                 SOF_TIMESTAMPING_TX_HARDWARE |
2139                 SOF_TIMESTAMPING_TX_SOFTWARE |
2140                 SOF_TIMESTAMPING_RX_HARDWARE |
2141                 SOF_TIMESTAMPING_RX_SOFTWARE |
2142                 SOF_TIMESTAMPING_SOFTWARE |
2143                 SOF_TIMESTAMPING_RAW_HARDWARE;
2144         info->phc_index = cpsw->cpts->phc_index;
2145         info->tx_types =
2146                 (1 << HWTSTAMP_TX_OFF) |
2147                 (1 << HWTSTAMP_TX_ON);
2148         info->rx_filters =
2149                 (1 << HWTSTAMP_FILTER_NONE) |
2150                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2151         return 0;
2152 }
2153 #else
2154 static int cpsw_get_ts_info(struct net_device *ndev,
2155                             struct ethtool_ts_info *info)
2156 {
2157         info->so_timestamping =
2158                 SOF_TIMESTAMPING_TX_SOFTWARE |
2159                 SOF_TIMESTAMPING_RX_SOFTWARE |
2160                 SOF_TIMESTAMPING_SOFTWARE;
2161         info->phc_index = -1;
2162         info->tx_types = 0;
2163         info->rx_filters = 0;
2164         return 0;
2165 }
2166 #endif
2167
2168 static int cpsw_get_link_ksettings(struct net_device *ndev,
2169                                    struct ethtool_link_ksettings *ecmd)
2170 {
2171         struct cpsw_priv *priv = netdev_priv(ndev);
2172         struct cpsw_common *cpsw = priv->cpsw;
2173         int slave_no = cpsw_slave_index(cpsw, priv);
2174
2175         if (cpsw->slaves[slave_no].phy)
2176                 return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2177                                                  ecmd);
2178         else
2179                 return -EOPNOTSUPP;
2180 }
2181
2182 static int cpsw_set_link_ksettings(struct net_device *ndev,
2183                                    const struct ethtool_link_ksettings *ecmd)
2184 {
2185         struct cpsw_priv *priv = netdev_priv(ndev);
2186         struct cpsw_common *cpsw = priv->cpsw;
2187         int slave_no = cpsw_slave_index(cpsw, priv);
2188
2189         if (cpsw->slaves[slave_no].phy)
2190                 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2191                                                  ecmd);
2192         else
2193                 return -EOPNOTSUPP;
2194 }
2195
2196 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2197 {
2198         struct cpsw_priv *priv = netdev_priv(ndev);
2199         struct cpsw_common *cpsw = priv->cpsw;
2200         int slave_no = cpsw_slave_index(cpsw, priv);
2201
2202         wol->supported = 0;
2203         wol->wolopts = 0;
2204
2205         if (cpsw->slaves[slave_no].phy)
2206                 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2207 }
2208
2209 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2210 {
2211         struct cpsw_priv *priv = netdev_priv(ndev);
2212         struct cpsw_common *cpsw = priv->cpsw;
2213         int slave_no = cpsw_slave_index(cpsw, priv);
2214
2215         if (cpsw->slaves[slave_no].phy)
2216                 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2217         else
2218                 return -EOPNOTSUPP;
2219 }
2220
2221 static void cpsw_get_pauseparam(struct net_device *ndev,
2222                                 struct ethtool_pauseparam *pause)
2223 {
2224         struct cpsw_priv *priv = netdev_priv(ndev);
2225
2226         pause->autoneg = AUTONEG_DISABLE;
2227         pause->rx_pause = priv->rx_pause ? true : false;
2228         pause->tx_pause = priv->tx_pause ? true : false;
2229 }
2230
2231 static int cpsw_set_pauseparam(struct net_device *ndev,
2232                                struct ethtool_pauseparam *pause)
2233 {
2234         struct cpsw_priv *priv = netdev_priv(ndev);
2235         bool link;
2236
2237         priv->rx_pause = pause->rx_pause ? true : false;
2238         priv->tx_pause = pause->tx_pause ? true : false;
2239
2240         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2241         return 0;
2242 }
2243
2244 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2245 {
2246         struct cpsw_priv *priv = netdev_priv(ndev);
2247         struct cpsw_common *cpsw = priv->cpsw;
2248         int ret;
2249
2250         ret = pm_runtime_get_sync(cpsw->dev);
2251         if (ret < 0) {
2252                 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2253                 pm_runtime_put_noidle(cpsw->dev);
2254         }
2255
2256         return ret;
2257 }
2258
2259 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2260 {
2261         struct cpsw_priv *priv = netdev_priv(ndev);
2262         int ret;
2263
2264         ret = pm_runtime_put(priv->cpsw->dev);
2265         if (ret < 0)
2266                 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2267 }
2268
2269 static void cpsw_get_channels(struct net_device *ndev,
2270                               struct ethtool_channels *ch)
2271 {
2272         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2273
2274         ch->max_combined = 0;
2275         ch->max_rx = CPSW_MAX_QUEUES;
2276         ch->max_tx = CPSW_MAX_QUEUES;
2277         ch->max_other = 0;
2278         ch->other_count = 0;
2279         ch->rx_count = cpsw->rx_ch_num;
2280         ch->tx_count = cpsw->tx_ch_num;
2281         ch->combined_count = 0;
2282 }
2283
2284 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2285                                   struct ethtool_channels *ch)
2286 {
2287         if (ch->combined_count)
2288                 return -EINVAL;
2289
2290         /* verify we have at least one channel in each direction */
2291         if (!ch->rx_count || !ch->tx_count)
2292                 return -EINVAL;
2293
2294         if (ch->rx_count > cpsw->data.channels ||
2295             ch->tx_count > cpsw->data.channels)
2296                 return -EINVAL;
2297
2298         return 0;
2299 }
2300
2301 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2302 {
2303         int (*poll)(struct napi_struct *, int);
2304         struct cpsw_common *cpsw = priv->cpsw;
2305         void (*handler)(void *, int, int);
2306         struct netdev_queue *queue;
2307         struct cpsw_vector *vec;
2308         int ret, *ch;
2309
2310         if (rx) {
2311                 ch = &cpsw->rx_ch_num;
2312                 vec = cpsw->rxv;
2313                 handler = cpsw_rx_handler;
2314                 poll = cpsw_rx_poll;
2315         } else {
2316                 ch = &cpsw->tx_ch_num;
2317                 vec = cpsw->txv;
2318                 handler = cpsw_tx_handler;
2319                 poll = cpsw_tx_poll;
2320         }
2321
2322         while (*ch < ch_num) {
2323                 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2324                 queue = netdev_get_tx_queue(priv->ndev, *ch);
2325                 queue->tx_maxrate = 0;
2326
2327                 if (IS_ERR(vec[*ch].ch))
2328                         return PTR_ERR(vec[*ch].ch);
2329
2330                 if (!vec[*ch].ch)
2331                         return -EINVAL;
2332
2333                 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2334                           (rx ? "rx" : "tx"));
2335                 (*ch)++;
2336         }
2337
2338         while (*ch > ch_num) {
2339                 (*ch)--;
2340
2341                 ret = cpdma_chan_destroy(vec[*ch].ch);
2342                 if (ret)
2343                         return ret;
2344
2345                 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2346                           (rx ? "rx" : "tx"));
2347         }
2348
2349         return 0;
2350 }
2351
2352 static int cpsw_update_channels(struct cpsw_priv *priv,
2353                                 struct ethtool_channels *ch)
2354 {
2355         int ret;
2356
2357         ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2358         if (ret)
2359                 return ret;
2360
2361         ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2362         if (ret)
2363                 return ret;
2364
2365         return 0;
2366 }
2367
2368 static int cpsw_set_channels(struct net_device *ndev,
2369                              struct ethtool_channels *chs)
2370 {
2371         struct cpsw_priv *priv = netdev_priv(ndev);
2372         struct cpsw_common *cpsw = priv->cpsw;
2373         struct cpsw_slave *slave;
2374         int i, ret;
2375
2376         ret = cpsw_check_ch_settings(cpsw, chs);
2377         if (ret < 0)
2378                 return ret;
2379
2380         /* Disable NAPI scheduling */
2381         cpsw_intr_disable(cpsw);
2382
2383         /* Stop all transmit queues for every network device.
2384          * Disable re-using rx descriptors with dormant_on.
2385          */
2386         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2387                 if (!(slave->ndev && netif_running(slave->ndev)))
2388                         continue;
2389
2390                 netif_tx_stop_all_queues(slave->ndev);
2391                 netif_dormant_on(slave->ndev);
2392         }
2393
2394         /* Handle rest of tx packets and stop cpdma channels */
2395         cpdma_ctlr_stop(cpsw->dma);
2396         ret = cpsw_update_channels(priv, chs);
2397         if (ret)
2398                 goto err;
2399
2400         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2401                 if (!(slave->ndev && netif_running(slave->ndev)))
2402                         continue;
2403
2404                 /* Inform stack about new count of queues */
2405                 ret = netif_set_real_num_tx_queues(slave->ndev,
2406                                                    cpsw->tx_ch_num);
2407                 if (ret) {
2408                         dev_err(priv->dev, "cannot set real number of tx queues\n");
2409                         goto err;
2410                 }
2411
2412                 ret = netif_set_real_num_rx_queues(slave->ndev,
2413                                                    cpsw->rx_ch_num);
2414                 if (ret) {
2415                         dev_err(priv->dev, "cannot set real number of rx queues\n");
2416                         goto err;
2417                 }
2418
2419                 /* Enable rx packets handling */
2420                 netif_dormant_off(slave->ndev);
2421         }
2422
2423         if (cpsw_common_res_usage_state(cpsw)) {
2424                 ret = cpsw_fill_rx_channels(priv);
2425                 if (ret)
2426                         goto err;
2427
2428                 cpsw_split_res(ndev);
2429
2430                 /* After this receive is started */
2431                 cpdma_ctlr_start(cpsw->dma);
2432                 cpsw_intr_enable(cpsw);
2433         }
2434
2435         /* Resume transmit for every affected interface */
2436         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2437                 if (!(slave->ndev && netif_running(slave->ndev)))
2438                         continue;
2439                 netif_tx_start_all_queues(slave->ndev);
2440         }
2441         return 0;
2442 err:
2443         dev_err(priv->dev, "cannot update channels number, closing device\n");
2444         dev_close(ndev);
2445         return ret;
2446 }
2447
2448 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2449 {
2450         struct cpsw_priv *priv = netdev_priv(ndev);
2451         struct cpsw_common *cpsw = priv->cpsw;
2452         int slave_no = cpsw_slave_index(cpsw, priv);
2453
2454         if (cpsw->slaves[slave_no].phy)
2455                 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2456         else
2457                 return -EOPNOTSUPP;
2458 }
2459
2460 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2461 {
2462         struct cpsw_priv *priv = netdev_priv(ndev);
2463         struct cpsw_common *cpsw = priv->cpsw;
2464         int slave_no = cpsw_slave_index(cpsw, priv);
2465
2466         if (cpsw->slaves[slave_no].phy)
2467                 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2468         else
2469                 return -EOPNOTSUPP;
2470 }
2471
2472 static int cpsw_nway_reset(struct net_device *ndev)
2473 {
2474         struct cpsw_priv *priv = netdev_priv(ndev);
2475         struct cpsw_common *cpsw = priv->cpsw;
2476         int slave_no = cpsw_slave_index(cpsw, priv);
2477
2478         if (cpsw->slaves[slave_no].phy)
2479                 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2480         else
2481                 return -EOPNOTSUPP;
2482 }
2483
2484 static void cpsw_get_ringparam(struct net_device *ndev,
2485                                struct ethtool_ringparam *ering)
2486 {
2487         struct cpsw_priv *priv = netdev_priv(ndev);
2488         struct cpsw_common *cpsw = priv->cpsw;
2489
2490         /* not supported */
2491         ering->tx_max_pending = 0;
2492         ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2493         ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2494         ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2495 }
2496
2497 static int cpsw_set_ringparam(struct net_device *ndev,
2498                               struct ethtool_ringparam *ering)
2499 {
2500         struct cpsw_priv *priv = netdev_priv(ndev);
2501         struct cpsw_common *cpsw = priv->cpsw;
2502         struct cpsw_slave *slave;
2503         int i, ret;
2504
2505         /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2506
2507         if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2508             ering->rx_pending < CPSW_MAX_QUEUES ||
2509             ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2510                 return -EINVAL;
2511
2512         if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2513                 return 0;
2514
2515         /* Disable NAPI scheduling */
2516         cpsw_intr_disable(cpsw);
2517
2518         /* Stop all transmit queues for every network device.
2519          * Disable re-using rx descriptors with dormant_on.
2520          */
2521         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2522                 if (!(slave->ndev && netif_running(slave->ndev)))
2523                         continue;
2524
2525                 netif_tx_stop_all_queues(slave->ndev);
2526                 netif_dormant_on(slave->ndev);
2527         }
2528
2529         /* Handle rest of tx packets and stop cpdma channels */
2530         cpdma_ctlr_stop(cpsw->dma);
2531
2532         cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2533
2534         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2535                 if (!(slave->ndev && netif_running(slave->ndev)))
2536                         continue;
2537
2538                 /* Enable rx packets handling */
2539                 netif_dormant_off(slave->ndev);
2540         }
2541
2542         if (cpsw_common_res_usage_state(cpsw)) {
2543                 cpdma_chan_split_pool(cpsw->dma);
2544
2545                 ret = cpsw_fill_rx_channels(priv);
2546                 if (ret)
2547                         goto err;
2548
2549                 /* After this receive is started */
2550                 cpdma_ctlr_start(cpsw->dma);
2551                 cpsw_intr_enable(cpsw);
2552         }
2553
2554         /* Resume transmit for every affected interface */
2555         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2556                 if (!(slave->ndev && netif_running(slave->ndev)))
2557                         continue;
2558                 netif_tx_start_all_queues(slave->ndev);
2559         }
2560         return 0;
2561 err:
2562         dev_err(priv->dev, "cannot set ring params, closing device\n");
2563         dev_close(ndev);
2564         return ret;
2565 }
2566
2567 static const struct ethtool_ops cpsw_ethtool_ops = {
2568         .get_drvinfo    = cpsw_get_drvinfo,
2569         .get_msglevel   = cpsw_get_msglevel,
2570         .set_msglevel   = cpsw_set_msglevel,
2571         .get_link       = ethtool_op_get_link,
2572         .get_ts_info    = cpsw_get_ts_info,
2573         .get_coalesce   = cpsw_get_coalesce,
2574         .set_coalesce   = cpsw_set_coalesce,
2575         .get_sset_count         = cpsw_get_sset_count,
2576         .get_strings            = cpsw_get_strings,
2577         .get_ethtool_stats      = cpsw_get_ethtool_stats,
2578         .get_pauseparam         = cpsw_get_pauseparam,
2579         .set_pauseparam         = cpsw_set_pauseparam,
2580         .get_wol        = cpsw_get_wol,
2581         .set_wol        = cpsw_set_wol,
2582         .get_regs_len   = cpsw_get_regs_len,
2583         .get_regs       = cpsw_get_regs,
2584         .begin          = cpsw_ethtool_op_begin,
2585         .complete       = cpsw_ethtool_op_complete,
2586         .get_channels   = cpsw_get_channels,
2587         .set_channels   = cpsw_set_channels,
2588         .get_link_ksettings     = cpsw_get_link_ksettings,
2589         .set_link_ksettings     = cpsw_set_link_ksettings,
2590         .get_eee        = cpsw_get_eee,
2591         .set_eee        = cpsw_set_eee,
2592         .nway_reset     = cpsw_nway_reset,
2593         .get_ringparam = cpsw_get_ringparam,
2594         .set_ringparam = cpsw_set_ringparam,
2595 };
2596
2597 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2598                             u32 slave_reg_ofs, u32 sliver_reg_ofs)
2599 {
2600         void __iomem            *regs = cpsw->regs;
2601         int                     slave_num = slave->slave_num;
2602         struct cpsw_slave_data  *data = cpsw->data.slave_data + slave_num;
2603
2604         slave->data     = data;
2605         slave->regs     = regs + slave_reg_ofs;
2606         slave->sliver   = regs + sliver_reg_ofs;
2607         slave->port_vlan = data->dual_emac_res_vlan;
2608 }
2609
2610 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2611                          struct platform_device *pdev)
2612 {
2613         struct device_node *node = pdev->dev.of_node;
2614         struct device_node *slave_node;
2615         int i = 0, ret;
2616         u32 prop;
2617
2618         if (!node)
2619                 return -EINVAL;
2620
2621         if (of_property_read_u32(node, "slaves", &prop)) {
2622                 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2623                 return -EINVAL;
2624         }
2625         data->slaves = prop;
2626
2627         if (of_property_read_u32(node, "active_slave", &prop)) {
2628                 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2629                 return -EINVAL;
2630         }
2631         data->active_slave = prop;
2632
2633         data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2634                                         * sizeof(struct cpsw_slave_data),
2635                                         GFP_KERNEL);
2636         if (!data->slave_data)
2637                 return -ENOMEM;
2638
2639         if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2640                 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2641                 return -EINVAL;
2642         }
2643         data->channels = prop;
2644
2645         if (of_property_read_u32(node, "ale_entries", &prop)) {
2646                 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2647                 return -EINVAL;
2648         }
2649         data->ale_entries = prop;
2650
2651         if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2652                 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2653                 return -EINVAL;
2654         }
2655         data->bd_ram_size = prop;
2656
2657         if (of_property_read_u32(node, "mac_control", &prop)) {
2658                 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2659                 return -EINVAL;
2660         }
2661         data->mac_control = prop;
2662
2663         if (of_property_read_bool(node, "dual_emac"))
2664                 data->dual_emac = 1;
2665
2666         /*
2667          * Populate all the child nodes here...
2668          */
2669         ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2670         /* We do not want to force this, as in some cases may not have child */
2671         if (ret)
2672                 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2673
2674         for_each_available_child_of_node(node, slave_node) {
2675                 struct cpsw_slave_data *slave_data = data->slave_data + i;
2676                 const void *mac_addr = NULL;
2677                 int lenp;
2678                 const __be32 *parp;
2679
2680                 /* This is no slave child node, continue */
2681                 if (strcmp(slave_node->name, "slave"))
2682                         continue;
2683
2684                 slave_data->phy_node = of_parse_phandle(slave_node,
2685                                                         "phy-handle", 0);
2686                 parp = of_get_property(slave_node, "phy_id", &lenp);
2687                 if (slave_data->phy_node) {
2688                         dev_dbg(&pdev->dev,
2689                                 "slave[%d] using phy-handle=\"%s\"\n",
2690                                 i, slave_data->phy_node->full_name);
2691                 } else if (of_phy_is_fixed_link(slave_node)) {
2692                         /* In the case of a fixed PHY, the DT node associated
2693                          * to the PHY is the Ethernet MAC DT node.
2694                          */
2695                         ret = of_phy_register_fixed_link(slave_node);
2696                         if (ret) {
2697                                 if (ret != -EPROBE_DEFER)
2698                                         dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2699                                 return ret;
2700                         }
2701                         slave_data->phy_node = of_node_get(slave_node);
2702                 } else if (parp) {
2703                         u32 phyid;
2704                         struct device_node *mdio_node;
2705                         struct platform_device *mdio;
2706
2707                         if (lenp != (sizeof(__be32) * 2)) {
2708                                 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2709                                 goto no_phy_slave;
2710                         }
2711                         mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2712                         phyid = be32_to_cpup(parp+1);
2713                         mdio = of_find_device_by_node(mdio_node);
2714                         of_node_put(mdio_node);
2715                         if (!mdio) {
2716                                 dev_err(&pdev->dev, "Missing mdio platform device\n");
2717                                 return -EINVAL;
2718                         }
2719                         snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2720                                  PHY_ID_FMT, mdio->name, phyid);
2721                         put_device(&mdio->dev);
2722                 } else {
2723                         dev_err(&pdev->dev,
2724                                 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2725                                 i);
2726                         goto no_phy_slave;
2727                 }
2728                 slave_data->phy_if = of_get_phy_mode(slave_node);
2729                 if (slave_data->phy_if < 0) {
2730                         dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2731                                 i);
2732                         return slave_data->phy_if;
2733                 }
2734
2735 no_phy_slave:
2736                 mac_addr = of_get_mac_address(slave_node);
2737                 if (mac_addr) {
2738                         memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2739                 } else {
2740                         ret = ti_cm_get_macid(&pdev->dev, i,
2741                                               slave_data->mac_addr);
2742                         if (ret)
2743                                 return ret;
2744                 }
2745                 if (data->dual_emac) {
2746                         if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2747                                                  &prop)) {
2748                                 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2749                                 slave_data->dual_emac_res_vlan = i+1;
2750                                 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2751                                         slave_data->dual_emac_res_vlan, i);
2752                         } else {
2753                                 slave_data->dual_emac_res_vlan = prop;
2754                         }
2755                 }
2756
2757                 i++;
2758                 if (i == data->slaves)
2759                         break;
2760         }
2761
2762         return 0;
2763 }
2764
2765 static void cpsw_remove_dt(struct platform_device *pdev)
2766 {
2767         struct net_device *ndev = platform_get_drvdata(pdev);
2768         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2769         struct cpsw_platform_data *data = &cpsw->data;
2770         struct device_node *node = pdev->dev.of_node;
2771         struct device_node *slave_node;
2772         int i = 0;
2773
2774         for_each_available_child_of_node(node, slave_node) {
2775                 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2776
2777                 if (strcmp(slave_node->name, "slave"))
2778                         continue;
2779
2780                 if (of_phy_is_fixed_link(slave_node))
2781                         of_phy_deregister_fixed_link(slave_node);
2782
2783                 of_node_put(slave_data->phy_node);
2784
2785                 i++;
2786                 if (i == data->slaves)
2787                         break;
2788         }
2789
2790         of_platform_depopulate(&pdev->dev);
2791 }
2792
2793 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2794 {
2795         struct cpsw_common              *cpsw = priv->cpsw;
2796         struct cpsw_platform_data       *data = &cpsw->data;
2797         struct net_device               *ndev;
2798         struct cpsw_priv                *priv_sl2;
2799         int ret = 0;
2800
2801         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2802         if (!ndev) {
2803                 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2804                 return -ENOMEM;
2805         }
2806
2807         priv_sl2 = netdev_priv(ndev);
2808         priv_sl2->cpsw = cpsw;
2809         priv_sl2->ndev = ndev;
2810         priv_sl2->dev  = &ndev->dev;
2811         priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2812
2813         if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2814                 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2815                         ETH_ALEN);
2816                 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2817                          priv_sl2->mac_addr);
2818         } else {
2819                 random_ether_addr(priv_sl2->mac_addr);
2820                 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2821                          priv_sl2->mac_addr);
2822         }
2823         memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2824
2825         priv_sl2->emac_port = 1;
2826         cpsw->slaves[1].ndev = ndev;
2827         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2828
2829         ndev->netdev_ops = &cpsw_netdev_ops;
2830         ndev->ethtool_ops = &cpsw_ethtool_ops;
2831
2832         /* register the network device */
2833         SET_NETDEV_DEV(ndev, cpsw->dev);
2834         ret = register_netdev(ndev);
2835         if (ret) {
2836                 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2837                 free_netdev(ndev);
2838                 ret = -ENODEV;
2839         }
2840
2841         return ret;
2842 }
2843
2844 #define CPSW_QUIRK_IRQ          BIT(0)
2845
2846 static struct platform_device_id cpsw_devtype[] = {
2847         {
2848                 /* keep it for existing comaptibles */
2849                 .name = "cpsw",
2850                 .driver_data = CPSW_QUIRK_IRQ,
2851         }, {
2852                 .name = "am335x-cpsw",
2853                 .driver_data = CPSW_QUIRK_IRQ,
2854         }, {
2855                 .name = "am4372-cpsw",
2856                 .driver_data = 0,
2857         }, {
2858                 .name = "dra7-cpsw",
2859                 .driver_data = 0,
2860         }, {
2861                 /* sentinel */
2862         }
2863 };
2864 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2865
2866 enum ti_cpsw_type {
2867         CPSW = 0,
2868         AM335X_CPSW,
2869         AM4372_CPSW,
2870         DRA7_CPSW,
2871 };
2872
2873 static const struct of_device_id cpsw_of_mtable[] = {
2874         { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2875         { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2876         { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2877         { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2878         { /* sentinel */ },
2879 };
2880 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2881
2882 static int cpsw_probe(struct platform_device *pdev)
2883 {
2884         struct clk                      *clk;
2885         struct cpsw_platform_data       *data;
2886         struct net_device               *ndev;
2887         struct cpsw_priv                *priv;
2888         struct cpdma_params             dma_params;
2889         struct cpsw_ale_params          ale_params;
2890         void __iomem                    *ss_regs;
2891         void __iomem                    *cpts_regs;
2892         struct resource                 *res, *ss_res;
2893         const struct of_device_id       *of_id;
2894         struct gpio_descs               *mode;
2895         u32 slave_offset, sliver_offset, slave_size;
2896         struct cpsw_common              *cpsw;
2897         int ret = 0, i;
2898         int irq;
2899
2900         cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2901         if (!cpsw)
2902                 return -ENOMEM;
2903
2904         cpsw->dev = &pdev->dev;
2905
2906         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2907         if (!ndev) {
2908                 dev_err(&pdev->dev, "error allocating net_device\n");
2909                 return -ENOMEM;
2910         }
2911
2912         platform_set_drvdata(pdev, ndev);
2913         priv = netdev_priv(ndev);
2914         priv->cpsw = cpsw;
2915         priv->ndev = ndev;
2916         priv->dev  = &ndev->dev;
2917         priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2918         cpsw->rx_packet_max = max(rx_packet_max, 128);
2919
2920         mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2921         if (IS_ERR(mode)) {
2922                 ret = PTR_ERR(mode);
2923                 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2924                 goto clean_ndev_ret;
2925         }
2926
2927         /*
2928          * This may be required here for child devices.
2929          */
2930         pm_runtime_enable(&pdev->dev);
2931
2932         /* Select default pin state */
2933         pinctrl_pm_select_default_state(&pdev->dev);
2934
2935         /* Need to enable clocks with runtime PM api to access module
2936          * registers
2937          */
2938         ret = pm_runtime_get_sync(&pdev->dev);
2939         if (ret < 0) {
2940                 pm_runtime_put_noidle(&pdev->dev);
2941                 goto clean_runtime_disable_ret;
2942         }
2943
2944         ret = cpsw_probe_dt(&cpsw->data, pdev);
2945         if (ret)
2946                 goto clean_dt_ret;
2947
2948         data = &cpsw->data;
2949         cpsw->rx_ch_num = 1;
2950         cpsw->tx_ch_num = 1;
2951
2952         if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2953                 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2954                 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2955         } else {
2956                 eth_random_addr(priv->mac_addr);
2957                 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2958         }
2959
2960         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2961
2962         cpsw->slaves = devm_kzalloc(&pdev->dev,
2963                                     sizeof(struct cpsw_slave) * data->slaves,
2964                                     GFP_KERNEL);
2965         if (!cpsw->slaves) {
2966                 ret = -ENOMEM;
2967                 goto clean_dt_ret;
2968         }
2969         for (i = 0; i < data->slaves; i++)
2970                 cpsw->slaves[i].slave_num = i;
2971
2972         cpsw->slaves[0].ndev = ndev;
2973         priv->emac_port = 0;
2974
2975         clk = devm_clk_get(&pdev->dev, "fck");
2976         if (IS_ERR(clk)) {
2977                 dev_err(priv->dev, "fck is not found\n");
2978                 ret = -ENODEV;
2979                 goto clean_dt_ret;
2980         }
2981         cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2982
2983         ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2984         ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2985         if (IS_ERR(ss_regs)) {
2986                 ret = PTR_ERR(ss_regs);
2987                 goto clean_dt_ret;
2988         }
2989         cpsw->regs = ss_regs;
2990
2991         cpsw->version = readl(&cpsw->regs->id_ver);
2992
2993         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2994         cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2995         if (IS_ERR(cpsw->wr_regs)) {
2996                 ret = PTR_ERR(cpsw->wr_regs);
2997                 goto clean_dt_ret;
2998         }
2999
3000         memset(&dma_params, 0, sizeof(dma_params));
3001         memset(&ale_params, 0, sizeof(ale_params));
3002
3003         switch (cpsw->version) {
3004         case CPSW_VERSION_1:
3005                 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3006                 cpts_regs               = ss_regs + CPSW1_CPTS_OFFSET;
3007                 cpsw->hw_stats       = ss_regs + CPSW1_HW_STATS;
3008                 dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3009                 dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3010                 ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3011                 slave_offset         = CPSW1_SLAVE_OFFSET;
3012                 slave_size           = CPSW1_SLAVE_SIZE;
3013                 sliver_offset        = CPSW1_SLIVER_OFFSET;
3014                 dma_params.desc_mem_phys = 0;
3015                 break;
3016         case CPSW_VERSION_2:
3017         case CPSW_VERSION_3:
3018         case CPSW_VERSION_4:
3019                 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3020                 cpts_regs               = ss_regs + CPSW2_CPTS_OFFSET;
3021                 cpsw->hw_stats       = ss_regs + CPSW2_HW_STATS;
3022                 dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3023                 dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3024                 ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3025                 slave_offset         = CPSW2_SLAVE_OFFSET;
3026                 slave_size           = CPSW2_SLAVE_SIZE;
3027                 sliver_offset        = CPSW2_SLIVER_OFFSET;
3028                 dma_params.desc_mem_phys =
3029                         (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3030                 break;
3031         default:
3032                 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3033                 ret = -ENODEV;
3034                 goto clean_dt_ret;
3035         }
3036         for (i = 0; i < cpsw->data.slaves; i++) {
3037                 struct cpsw_slave *slave = &cpsw->slaves[i];
3038
3039                 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3040                 slave_offset  += slave_size;
3041                 sliver_offset += SLIVER_SIZE;
3042         }
3043
3044         dma_params.dev          = &pdev->dev;
3045         dma_params.rxthresh     = dma_params.dmaregs + CPDMA_RXTHRESH;
3046         dma_params.rxfree       = dma_params.dmaregs + CPDMA_RXFREE;
3047         dma_params.rxhdp        = dma_params.txhdp + CPDMA_RXHDP;
3048         dma_params.txcp         = dma_params.txhdp + CPDMA_TXCP;
3049         dma_params.rxcp         = dma_params.txhdp + CPDMA_RXCP;
3050
3051         dma_params.num_chan             = data->channels;
3052         dma_params.has_soft_reset       = true;
3053         dma_params.min_packet_size      = CPSW_MIN_PACKET_SIZE;
3054         dma_params.desc_mem_size        = data->bd_ram_size;
3055         dma_params.desc_align           = 16;
3056         dma_params.has_ext_regs         = true;
3057         dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3058         dma_params.bus_freq_mhz         = cpsw->bus_freq_mhz;
3059         dma_params.descs_pool_size      = descs_pool_size;
3060
3061         cpsw->dma = cpdma_ctlr_create(&dma_params);
3062         if (!cpsw->dma) {
3063                 dev_err(priv->dev, "error initializing dma\n");
3064                 ret = -ENOMEM;
3065                 goto clean_dt_ret;
3066         }
3067
3068         cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3069         cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3070         if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3071                 dev_err(priv->dev, "error initializing dma channels\n");
3072                 ret = -ENOMEM;
3073                 goto clean_dma_ret;
3074         }
3075
3076         ale_params.dev                  = &ndev->dev;
3077         ale_params.ale_ageout           = ale_ageout;
3078         ale_params.ale_entries          = data->ale_entries;
3079         ale_params.ale_ports            = data->slaves;
3080
3081         cpsw->ale = cpsw_ale_create(&ale_params);
3082         if (!cpsw->ale) {
3083                 dev_err(priv->dev, "error initializing ale engine\n");
3084                 ret = -ENODEV;
3085                 goto clean_dma_ret;
3086         }
3087
3088         cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3089         if (IS_ERR(cpsw->cpts)) {
3090                 ret = PTR_ERR(cpsw->cpts);
3091                 goto clean_ale_ret;
3092         }
3093
3094         ndev->irq = platform_get_irq(pdev, 1);
3095         if (ndev->irq < 0) {
3096                 dev_err(priv->dev, "error getting irq resource\n");
3097                 ret = ndev->irq;
3098                 goto clean_ale_ret;
3099         }
3100
3101         of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3102         if (of_id) {
3103                 pdev->id_entry = of_id->data;
3104                 if (pdev->id_entry->driver_data)
3105                         cpsw->quirk_irq = true;
3106         }
3107
3108         /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3109          * MISC IRQs which are always kept disabled with this driver so
3110          * we will not request them.
3111          *
3112          * If anyone wants to implement support for those, make sure to
3113          * first request and append them to irqs_table array.
3114          */
3115
3116         /* RX IRQ */
3117         irq = platform_get_irq(pdev, 1);
3118         if (irq < 0) {
3119                 ret = irq;
3120                 goto clean_ale_ret;
3121         }
3122
3123         cpsw->irqs_table[0] = irq;
3124         ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3125                                0, dev_name(&pdev->dev), cpsw);
3126         if (ret < 0) {
3127                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3128                 goto clean_ale_ret;
3129         }
3130
3131         /* TX IRQ */
3132         irq = platform_get_irq(pdev, 2);
3133         if (irq < 0) {
3134                 ret = irq;
3135                 goto clean_ale_ret;
3136         }
3137
3138         cpsw->irqs_table[1] = irq;
3139         ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3140                                0, dev_name(&pdev->dev), cpsw);
3141         if (ret < 0) {
3142                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3143                 goto clean_ale_ret;
3144         }
3145
3146         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3147
3148         ndev->netdev_ops = &cpsw_netdev_ops;
3149         ndev->ethtool_ops = &cpsw_ethtool_ops;
3150         netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3151         netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3152         cpsw_split_res(ndev);
3153
3154         /* register the network device */
3155         SET_NETDEV_DEV(ndev, &pdev->dev);
3156         ret = register_netdev(ndev);
3157         if (ret) {
3158                 dev_err(priv->dev, "error registering net device\n");
3159                 ret = -ENODEV;
3160                 goto clean_ale_ret;
3161         }
3162
3163         cpsw_notice(priv, probe,
3164                     "initialized device (regs %pa, irq %d, pool size %d)\n",
3165                     &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3166         if (cpsw->data.dual_emac) {
3167                 ret = cpsw_probe_dual_emac(priv);
3168                 if (ret) {
3169                         cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3170                         goto clean_unregister_netdev_ret;
3171                 }
3172         }
3173
3174         pm_runtime_put(&pdev->dev);
3175
3176         return 0;
3177
3178 clean_unregister_netdev_ret:
3179         unregister_netdev(ndev);
3180 clean_ale_ret:
3181         cpsw_ale_destroy(cpsw->ale);
3182 clean_dma_ret:
3183         cpdma_ctlr_destroy(cpsw->dma);
3184 clean_dt_ret:
3185         cpsw_remove_dt(pdev);
3186         pm_runtime_put_sync(&pdev->dev);
3187 clean_runtime_disable_ret:
3188         pm_runtime_disable(&pdev->dev);
3189 clean_ndev_ret:
3190         free_netdev(priv->ndev);
3191         return ret;
3192 }
3193
3194 static int cpsw_remove(struct platform_device *pdev)
3195 {
3196         struct net_device *ndev = platform_get_drvdata(pdev);
3197         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3198         int ret;
3199
3200         ret = pm_runtime_get_sync(&pdev->dev);
3201         if (ret < 0) {
3202                 pm_runtime_put_noidle(&pdev->dev);
3203                 return ret;
3204         }
3205
3206         if (cpsw->data.dual_emac)
3207                 unregister_netdev(cpsw->slaves[1].ndev);
3208         unregister_netdev(ndev);
3209
3210         cpts_release(cpsw->cpts);
3211         cpsw_ale_destroy(cpsw->ale);
3212         cpdma_ctlr_destroy(cpsw->dma);
3213         cpsw_remove_dt(pdev);
3214         pm_runtime_put_sync(&pdev->dev);
3215         pm_runtime_disable(&pdev->dev);
3216         if (cpsw->data.dual_emac)
3217                 free_netdev(cpsw->slaves[1].ndev);
3218         free_netdev(ndev);
3219         return 0;
3220 }
3221
3222 #ifdef CONFIG_PM_SLEEP
3223 static int cpsw_suspend(struct device *dev)
3224 {
3225         struct platform_device  *pdev = to_platform_device(dev);
3226         struct net_device       *ndev = platform_get_drvdata(pdev);
3227         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3228
3229         if (cpsw->data.dual_emac) {
3230                 int i;
3231
3232                 for (i = 0; i < cpsw->data.slaves; i++) {
3233                         if (netif_running(cpsw->slaves[i].ndev))
3234                                 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3235                 }
3236         } else {
3237                 if (netif_running(ndev))
3238                         cpsw_ndo_stop(ndev);
3239         }
3240
3241         /* Select sleep pin state */
3242         pinctrl_pm_select_sleep_state(dev);
3243
3244         return 0;
3245 }
3246
3247 static int cpsw_resume(struct device *dev)
3248 {
3249         struct platform_device  *pdev = to_platform_device(dev);
3250         struct net_device       *ndev = platform_get_drvdata(pdev);
3251         struct cpsw_common      *cpsw = netdev_priv(ndev);
3252
3253         /* Select default pin state */
3254         pinctrl_pm_select_default_state(dev);
3255
3256         /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3257         rtnl_lock();
3258         if (cpsw->data.dual_emac) {
3259                 int i;
3260
3261                 for (i = 0; i < cpsw->data.slaves; i++) {
3262                         if (netif_running(cpsw->slaves[i].ndev))
3263                                 cpsw_ndo_open(cpsw->slaves[i].ndev);
3264                 }
3265         } else {
3266                 if (netif_running(ndev))
3267                         cpsw_ndo_open(ndev);
3268         }
3269         rtnl_unlock();
3270
3271         return 0;
3272 }
3273 #endif
3274
3275 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3276
3277 static struct platform_driver cpsw_driver = {
3278         .driver = {
3279                 .name    = "cpsw",
3280                 .pm      = &cpsw_pm_ops,
3281                 .of_match_table = cpsw_of_mtable,
3282         },
3283         .probe = cpsw_probe,
3284         .remove = cpsw_remove,
3285 };
3286
3287 module_platform_driver(cpsw_driver);
3288
3289 MODULE_LICENSE("GPL");
3290 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3291 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3292 MODULE_DESCRIPTION("TI CPSW Ethernet driver");