OSDN Git Service

net: netcp: Fix ethss driver probe issue
[uclinux-h8/linux.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 struct netcp_tx_cb {
104         void    *ts_context;
105         void    (*txtstamp)(void *context, struct sk_buff *skb);
106 };
107
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118                          struct knav_dma_desc *desc)
119 {
120         *buff_len = le32_to_cpu(desc->buff_len);
121         *buff = le32_to_cpu(desc->buff);
122         *ndesc = le32_to_cpu(desc->next_desc);
123 }
124
125 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
126                           struct knav_dma_desc *desc)
127 {
128         *desc_info = le32_to_cpu(desc->desc_info);
129         *pkt_info = le32_to_cpu(desc->packet_info);
130 }
131
132 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
133 {
134         /* No Endian conversion needed as this data is untouched by hw */
135         return desc->sw_data[index];
136 }
137
138 /* use these macros to get sw data */
139 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
140 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
141 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
142 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
143
144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
145                              struct knav_dma_desc *desc)
146 {
147         *buff = le32_to_cpu(desc->orig_buff);
148         *buff_len = le32_to_cpu(desc->orig_len);
149 }
150
151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
152 {
153         int i;
154
155         for (i = 0; i < num_words; i++)
156                 words[i] = le32_to_cpu(desc[i]);
157 }
158
159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
160                          struct knav_dma_desc *desc)
161 {
162         desc->buff_len = cpu_to_le32(buff_len);
163         desc->buff = cpu_to_le32(buff);
164         desc->next_desc = cpu_to_le32(ndesc);
165 }
166
167 static void set_desc_info(u32 desc_info, u32 pkt_info,
168                           struct knav_dma_desc *desc)
169 {
170         desc->desc_info = cpu_to_le32(desc_info);
171         desc->packet_info = cpu_to_le32(pkt_info);
172 }
173
174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
175 {
176         /* No Endian conversion needed as this data is untouched by hw */
177         desc->sw_data[index] = data;
178 }
179
180 /* use these macros to set sw data */
181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
185
186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
187                              struct knav_dma_desc *desc)
188 {
189         desc->orig_buff = cpu_to_le32(buff);
190         desc->orig_len = cpu_to_le32(buff_len);
191 }
192
193 static void set_words(u32 *words, int num_words, __le32 *desc)
194 {
195         int i;
196
197         for (i = 0; i < num_words; i++)
198                 desc[i] = cpu_to_le32(words[i]);
199 }
200
201 /* Read the e-fuse value as 32 bit values to be endian independent */
202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
203 {
204         unsigned int addr0, addr1;
205
206         addr1 = readl(efuse_mac + 4);
207         addr0 = readl(efuse_mac);
208
209         switch (swap) {
210         case NETCP_EFUSE_ADDR_SWAP:
211                 addr0 = addr1;
212                 addr1 = readl(efuse_mac);
213                 break;
214         default:
215                 break;
216         }
217
218         x[0] = (addr1 & 0x0000ff00) >> 8;
219         x[1] = addr1 & 0x000000ff;
220         x[2] = (addr0 & 0xff000000) >> 24;
221         x[3] = (addr0 & 0x00ff0000) >> 16;
222         x[4] = (addr0 & 0x0000ff00) >> 8;
223         x[5] = addr0 & 0x000000ff;
224
225         return 0;
226 }
227
228 /* Module management routines */
229 static int netcp_register_interface(struct netcp_intf *netcp)
230 {
231         int ret;
232
233         ret = register_netdev(netcp->ndev);
234         if (!ret)
235                 netcp->netdev_registered = true;
236         return ret;
237 }
238
239 static int netcp_module_probe(struct netcp_device *netcp_device,
240                               struct netcp_module *module)
241 {
242         struct device *dev = netcp_device->device;
243         struct device_node *devices, *interface, *node = dev->of_node;
244         struct device_node *child;
245         struct netcp_inst_modpriv *inst_modpriv;
246         struct netcp_intf *netcp_intf;
247         struct netcp_module *tmp;
248         bool primary_module_registered = false;
249         int ret;
250
251         /* Find this module in the sub-tree for this device */
252         devices = of_get_child_by_name(node, "netcp-devices");
253         if (!devices) {
254                 dev_err(dev, "could not find netcp-devices node\n");
255                 return NETCP_MOD_PROBE_SKIPPED;
256         }
257
258         for_each_available_child_of_node(devices, child) {
259                 const char *name;
260                 char node_name[32];
261
262                 if (of_property_read_string(child, "label", &name) < 0) {
263                         snprintf(node_name, sizeof(node_name), "%pOFn", child);
264                         name = node_name;
265                 }
266                 if (!strcasecmp(module->name, name))
267                         break;
268         }
269
270         of_node_put(devices);
271         /* If module not used for this device, skip it */
272         if (!child) {
273                 dev_warn(dev, "module(%s) not used for device\n", module->name);
274                 return NETCP_MOD_PROBE_SKIPPED;
275         }
276
277         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
278         if (!inst_modpriv) {
279                 of_node_put(child);
280                 return -ENOMEM;
281         }
282
283         inst_modpriv->netcp_device = netcp_device;
284         inst_modpriv->netcp_module = module;
285         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
286
287         ret = module->probe(netcp_device, dev, child,
288                             &inst_modpriv->module_priv);
289         of_node_put(child);
290         if (ret) {
291                 dev_err(dev, "Probe of module(%s) failed with %d\n",
292                         module->name, ret);
293                 list_del(&inst_modpriv->inst_list);
294                 devm_kfree(dev, inst_modpriv);
295                 return NETCP_MOD_PROBE_FAILED;
296         }
297
298         /* Attach modules only if the primary module is probed */
299         for_each_netcp_module(tmp) {
300                 if (tmp->primary)
301                         primary_module_registered = true;
302         }
303
304         if (!primary_module_registered)
305                 return 0;
306
307         /* Attach module to interfaces */
308         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
309                             interface_list) {
310                 struct netcp_intf_modpriv *intf_modpriv;
311
312                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
313                                             GFP_KERNEL);
314                 if (!intf_modpriv)
315                         return -ENOMEM;
316
317                 interface = of_parse_phandle(netcp_intf->node_interface,
318                                              module->name, 0);
319
320                 if (!interface) {
321                         devm_kfree(dev, intf_modpriv);
322                         continue;
323                 }
324
325                 intf_modpriv->netcp_priv = netcp_intf;
326                 intf_modpriv->netcp_module = module;
327                 list_add_tail(&intf_modpriv->intf_list,
328                               &netcp_intf->module_head);
329
330                 ret = module->attach(inst_modpriv->module_priv,
331                                      netcp_intf->ndev, interface,
332                                      &intf_modpriv->module_priv);
333                 of_node_put(interface);
334                 if (ret) {
335                         dev_dbg(dev, "Attach of module %s declined with %d\n",
336                                 module->name, ret);
337                         list_del(&intf_modpriv->intf_list);
338                         devm_kfree(dev, intf_modpriv);
339                         continue;
340                 }
341         }
342
343         /* Now register the interface with netdev */
344         list_for_each_entry(netcp_intf,
345                             &netcp_device->interface_head,
346                             interface_list) {
347                 /* If interface not registered then register now */
348                 if (!netcp_intf->netdev_registered) {
349                         ret = netcp_register_interface(netcp_intf);
350                         if (ret)
351                                 return -ENODEV;
352                 }
353         }
354         return 0;
355 }
356
357 int netcp_register_module(struct netcp_module *module)
358 {
359         struct netcp_device *netcp_device;
360         struct netcp_module *tmp;
361         int ret;
362
363         if (!module->name) {
364                 WARN(1, "error registering netcp module: no name\n");
365                 return -EINVAL;
366         }
367
368         if (!module->probe) {
369                 WARN(1, "error registering netcp module: no probe\n");
370                 return -EINVAL;
371         }
372
373         mutex_lock(&netcp_modules_lock);
374
375         for_each_netcp_module(tmp) {
376                 if (!strcasecmp(tmp->name, module->name)) {
377                         mutex_unlock(&netcp_modules_lock);
378                         return -EEXIST;
379                 }
380         }
381         list_add_tail(&module->module_list, &netcp_modules);
382
383         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
384                 ret = netcp_module_probe(netcp_device, module);
385                 if (ret < 0)
386                         goto fail;
387         }
388         mutex_unlock(&netcp_modules_lock);
389         return 0;
390
391 fail:
392         mutex_unlock(&netcp_modules_lock);
393         netcp_unregister_module(module);
394         return ret;
395 }
396 EXPORT_SYMBOL_GPL(netcp_register_module);
397
398 static void netcp_release_module(struct netcp_device *netcp_device,
399                                  struct netcp_module *module)
400 {
401         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
402         struct netcp_intf *netcp_intf, *netcp_tmp;
403         struct device *dev = netcp_device->device;
404
405         /* Release the module from each interface */
406         list_for_each_entry_safe(netcp_intf, netcp_tmp,
407                                  &netcp_device->interface_head,
408                                  interface_list) {
409                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
410
411                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
412                                          &netcp_intf->module_head,
413                                          intf_list) {
414                         if (intf_modpriv->netcp_module == module) {
415                                 module->release(intf_modpriv->module_priv);
416                                 list_del(&intf_modpriv->intf_list);
417                                 devm_kfree(dev, intf_modpriv);
418                                 break;
419                         }
420                 }
421         }
422
423         /* Remove the module from each instance */
424         list_for_each_entry_safe(inst_modpriv, inst_tmp,
425                                  &netcp_device->modpriv_head, inst_list) {
426                 if (inst_modpriv->netcp_module == module) {
427                         module->remove(netcp_device,
428                                        inst_modpriv->module_priv);
429                         list_del(&inst_modpriv->inst_list);
430                         devm_kfree(dev, inst_modpriv);
431                         break;
432                 }
433         }
434 }
435
436 void netcp_unregister_module(struct netcp_module *module)
437 {
438         struct netcp_device *netcp_device;
439         struct netcp_module *module_tmp;
440
441         mutex_lock(&netcp_modules_lock);
442
443         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
444                 netcp_release_module(netcp_device, module);
445         }
446
447         /* Remove the module from the module list */
448         for_each_netcp_module(module_tmp) {
449                 if (module == module_tmp) {
450                         list_del(&module->module_list);
451                         break;
452                 }
453         }
454
455         mutex_unlock(&netcp_modules_lock);
456 }
457 EXPORT_SYMBOL_GPL(netcp_unregister_module);
458
459 void *netcp_module_get_intf_data(struct netcp_module *module,
460                                  struct netcp_intf *intf)
461 {
462         struct netcp_intf_modpriv *intf_modpriv;
463
464         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
465                 if (intf_modpriv->netcp_module == module)
466                         return intf_modpriv->module_priv;
467         return NULL;
468 }
469 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
470
471 /* Module TX and RX Hook management */
472 struct netcp_hook_list {
473         struct list_head         list;
474         netcp_hook_rtn          *hook_rtn;
475         void                    *hook_data;
476         int                      order;
477 };
478
479 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
480                           netcp_hook_rtn *hook_rtn, void *hook_data)
481 {
482         struct netcp_hook_list *entry;
483         struct netcp_hook_list *next;
484         unsigned long flags;
485
486         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
487         if (!entry)
488                 return -ENOMEM;
489
490         entry->hook_rtn  = hook_rtn;
491         entry->hook_data = hook_data;
492         entry->order     = order;
493
494         spin_lock_irqsave(&netcp_priv->lock, flags);
495         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
496                 if (next->order > order)
497                         break;
498         }
499         __list_add(&entry->list, next->list.prev, &next->list);
500         spin_unlock_irqrestore(&netcp_priv->lock, flags);
501
502         return 0;
503 }
504 EXPORT_SYMBOL_GPL(netcp_register_txhook);
505
506 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
507                             netcp_hook_rtn *hook_rtn, void *hook_data)
508 {
509         struct netcp_hook_list *next, *n;
510         unsigned long flags;
511
512         spin_lock_irqsave(&netcp_priv->lock, flags);
513         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
514                 if ((next->order     == order) &&
515                     (next->hook_rtn  == hook_rtn) &&
516                     (next->hook_data == hook_data)) {
517                         list_del(&next->list);
518                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
519                         devm_kfree(netcp_priv->dev, next);
520                         return 0;
521                 }
522         }
523         spin_unlock_irqrestore(&netcp_priv->lock, flags);
524         return -ENOENT;
525 }
526 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
527
528 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
529                           netcp_hook_rtn *hook_rtn, void *hook_data)
530 {
531         struct netcp_hook_list *entry;
532         struct netcp_hook_list *next;
533         unsigned long flags;
534
535         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
536         if (!entry)
537                 return -ENOMEM;
538
539         entry->hook_rtn  = hook_rtn;
540         entry->hook_data = hook_data;
541         entry->order     = order;
542
543         spin_lock_irqsave(&netcp_priv->lock, flags);
544         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
545                 if (next->order > order)
546                         break;
547         }
548         __list_add(&entry->list, next->list.prev, &next->list);
549         spin_unlock_irqrestore(&netcp_priv->lock, flags);
550
551         return 0;
552 }
553 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
554
555 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
556                             netcp_hook_rtn *hook_rtn, void *hook_data)
557 {
558         struct netcp_hook_list *next, *n;
559         unsigned long flags;
560
561         spin_lock_irqsave(&netcp_priv->lock, flags);
562         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
563                 if ((next->order     == order) &&
564                     (next->hook_rtn  == hook_rtn) &&
565                     (next->hook_data == hook_data)) {
566                         list_del(&next->list);
567                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
568                         devm_kfree(netcp_priv->dev, next);
569                         return 0;
570                 }
571         }
572         spin_unlock_irqrestore(&netcp_priv->lock, flags);
573
574         return -ENOENT;
575 }
576 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
577
578 static void netcp_frag_free(bool is_frag, void *ptr)
579 {
580         if (is_frag)
581                 skb_free_frag(ptr);
582         else
583                 kfree(ptr);
584 }
585
586 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
587                                      struct knav_dma_desc *desc)
588 {
589         struct knav_dma_desc *ndesc;
590         dma_addr_t dma_desc, dma_buf;
591         unsigned int buf_len, dma_sz = sizeof(*ndesc);
592         void *buf_ptr;
593         u32 tmp;
594
595         get_words(&dma_desc, 1, &desc->next_desc);
596
597         while (dma_desc) {
598                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
599                 if (unlikely(!ndesc)) {
600                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
601                         break;
602                 }
603                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
604                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
605                  * field as a 32bit value. Will not work on 64bit machines
606                  */
607                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
608                 buf_len = (int)GET_SW_DATA1(desc);
609                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
610                 __free_page(buf_ptr);
611                 knav_pool_desc_put(netcp->rx_pool, desc);
612         }
613         /* warning!!!! We are retrieving the virtual ptr in the sw_data
614          * field as a 32bit value. Will not work on 64bit machines
615          */
616         buf_ptr = (void *)GET_SW_DATA0(desc);
617         buf_len = (int)GET_SW_DATA1(desc);
618
619         if (buf_ptr)
620                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
621         knav_pool_desc_put(netcp->rx_pool, desc);
622 }
623
624 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
625 {
626         struct netcp_stats *rx_stats = &netcp->stats;
627         struct knav_dma_desc *desc;
628         unsigned int dma_sz;
629         dma_addr_t dma;
630
631         for (; ;) {
632                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
633                 if (!dma)
634                         break;
635
636                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
637                 if (unlikely(!desc)) {
638                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
639                                 __func__);
640                         rx_stats->rx_errors++;
641                         continue;
642                 }
643                 netcp_free_rx_desc_chain(netcp, desc);
644                 rx_stats->rx_dropped++;
645         }
646 }
647
648 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
649 {
650         struct netcp_stats *rx_stats = &netcp->stats;
651         unsigned int dma_sz, buf_len, org_buf_len;
652         struct knav_dma_desc *desc, *ndesc;
653         unsigned int pkt_sz = 0, accum_sz;
654         struct netcp_hook_list *rx_hook;
655         dma_addr_t dma_desc, dma_buff;
656         struct netcp_packet p_info;
657         struct sk_buff *skb;
658         void *org_buf_ptr;
659         u32 tmp;
660
661         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
662         if (!dma_desc)
663                 return -1;
664
665         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
666         if (unlikely(!desc)) {
667                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
668                 return 0;
669         }
670
671         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
672         /* warning!!!! We are retrieving the virtual ptr in the sw_data
673          * field as a 32bit value. Will not work on 64bit machines
674          */
675         org_buf_ptr = (void *)GET_SW_DATA0(desc);
676         org_buf_len = (int)GET_SW_DATA1(desc);
677
678         if (unlikely(!org_buf_ptr)) {
679                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
680                 goto free_desc;
681         }
682
683         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
684         accum_sz = buf_len;
685         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
686
687         /* Build a new sk_buff for the primary buffer */
688         skb = build_skb(org_buf_ptr, org_buf_len);
689         if (unlikely(!skb)) {
690                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
691                 goto free_desc;
692         }
693
694         /* update data, tail and len */
695         skb_reserve(skb, NETCP_SOP_OFFSET);
696         __skb_put(skb, buf_len);
697
698         /* Fill in the page fragment list */
699         while (dma_desc) {
700                 struct page *page;
701
702                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
703                 if (unlikely(!ndesc)) {
704                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
705                         goto free_desc;
706                 }
707
708                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
709                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
710                  * field as a 32bit value. Will not work on 64bit machines
711                  */
712                 page = (struct page *)GET_SW_DATA0(ndesc);
713
714                 if (likely(dma_buff && buf_len && page)) {
715                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
716                                        DMA_FROM_DEVICE);
717                 } else {
718                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
719                                 &dma_buff, buf_len, page);
720                         goto free_desc;
721                 }
722
723                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
724                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
725                 accum_sz += buf_len;
726
727                 /* Free the descriptor */
728                 knav_pool_desc_put(netcp->rx_pool, ndesc);
729         }
730
731         /* check for packet len and warn */
732         if (unlikely(pkt_sz != accum_sz))
733                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
734                         pkt_sz, accum_sz);
735
736         /* Newer version of the Ethernet switch can trim the Ethernet FCS
737          * from the packet and is indicated in hw_cap. So trim it only for
738          * older h/w
739          */
740         if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
741                 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
742
743         /* Call each of the RX hooks */
744         p_info.skb = skb;
745         skb->dev = netcp->ndev;
746         p_info.rxtstamp_complete = false;
747         get_desc_info(&tmp, &p_info.eflags, desc);
748         p_info.epib = desc->epib;
749         p_info.psdata = (u32 __force *)desc->psdata;
750         p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
751                          KNAV_DMA_DESC_EFLAGS_MASK);
752         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
753                 int ret;
754
755                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
756                                         &p_info);
757                 if (unlikely(ret)) {
758                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
759                                 rx_hook->order, ret);
760                         /* Free the primary descriptor */
761                         rx_stats->rx_dropped++;
762                         knav_pool_desc_put(netcp->rx_pool, desc);
763                         dev_kfree_skb(skb);
764                         return 0;
765                 }
766         }
767         /* Free the primary descriptor */
768         knav_pool_desc_put(netcp->rx_pool, desc);
769
770         u64_stats_update_begin(&rx_stats->syncp_rx);
771         rx_stats->rx_packets++;
772         rx_stats->rx_bytes += skb->len;
773         u64_stats_update_end(&rx_stats->syncp_rx);
774
775         /* push skb up the stack */
776         skb->protocol = eth_type_trans(skb, netcp->ndev);
777         netif_receive_skb(skb);
778         return 0;
779
780 free_desc:
781         netcp_free_rx_desc_chain(netcp, desc);
782         rx_stats->rx_errors++;
783         return 0;
784 }
785
786 static int netcp_process_rx_packets(struct netcp_intf *netcp,
787                                     unsigned int budget)
788 {
789         int i;
790
791         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
792                 ;
793         return i;
794 }
795
796 /* Release descriptors and attached buffers from Rx FDQ */
797 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
798 {
799         struct knav_dma_desc *desc;
800         unsigned int buf_len, dma_sz;
801         dma_addr_t dma;
802         void *buf_ptr;
803
804         /* Allocate descriptor */
805         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
806                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
807                 if (unlikely(!desc)) {
808                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
809                         continue;
810                 }
811
812                 get_org_pkt_info(&dma, &buf_len, desc);
813                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
814                  * field as a 32bit value. Will not work on 64bit machines
815                  */
816                 buf_ptr = (void *)GET_SW_DATA0(desc);
817
818                 if (unlikely(!dma)) {
819                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
820                         knav_pool_desc_put(netcp->rx_pool, desc);
821                         continue;
822                 }
823
824                 if (unlikely(!buf_ptr)) {
825                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
826                         knav_pool_desc_put(netcp->rx_pool, desc);
827                         continue;
828                 }
829
830                 if (fdq == 0) {
831                         dma_unmap_single(netcp->dev, dma, buf_len,
832                                          DMA_FROM_DEVICE);
833                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
834                 } else {
835                         dma_unmap_page(netcp->dev, dma, buf_len,
836                                        DMA_FROM_DEVICE);
837                         __free_page(buf_ptr);
838                 }
839
840                 knav_pool_desc_put(netcp->rx_pool, desc);
841         }
842 }
843
844 static void netcp_rxpool_free(struct netcp_intf *netcp)
845 {
846         int i;
847
848         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
849              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
850                 netcp_free_rx_buf(netcp, i);
851
852         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
853                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
854                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
855
856         knav_pool_destroy(netcp->rx_pool);
857         netcp->rx_pool = NULL;
858 }
859
860 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
861 {
862         struct knav_dma_desc *hwdesc;
863         unsigned int buf_len, dma_sz;
864         u32 desc_info, pkt_info;
865         struct page *page;
866         dma_addr_t dma;
867         void *bufptr;
868         u32 sw_data[2];
869
870         /* Allocate descriptor */
871         hwdesc = knav_pool_desc_get(netcp->rx_pool);
872         if (IS_ERR_OR_NULL(hwdesc)) {
873                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
874                 return -ENOMEM;
875         }
876
877         if (likely(fdq == 0)) {
878                 unsigned int primary_buf_len;
879                 /* Allocate a primary receive queue entry */
880                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
881                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
882                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
883
884                 bufptr = netdev_alloc_frag(primary_buf_len);
885                 sw_data[1] = primary_buf_len;
886
887                 if (unlikely(!bufptr)) {
888                         dev_warn_ratelimited(netcp->ndev_dev,
889                                              "Primary RX buffer alloc failed\n");
890                         goto fail;
891                 }
892                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
893                                      DMA_TO_DEVICE);
894                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
895                         goto fail;
896
897                 /* warning!!!! We are saving the virtual ptr in the sw_data
898                  * field as a 32bit value. Will not work on 64bit machines
899                  */
900                 sw_data[0] = (u32)bufptr;
901         } else {
902                 /* Allocate a secondary receive queue entry */
903                 page = alloc_page(GFP_ATOMIC | GFP_DMA);
904                 if (unlikely(!page)) {
905                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
906                         goto fail;
907                 }
908                 buf_len = PAGE_SIZE;
909                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
910                 /* warning!!!! We are saving the virtual ptr in the sw_data
911                  * field as a 32bit value. Will not work on 64bit machines
912                  */
913                 sw_data[0] = (u32)page;
914                 sw_data[1] = 0;
915         }
916
917         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
918         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
919         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
920         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
921         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
922                     KNAV_DMA_DESC_RETQ_SHIFT;
923         set_org_pkt_info(dma, buf_len, hwdesc);
924         SET_SW_DATA0(sw_data[0], hwdesc);
925         SET_SW_DATA1(sw_data[1], hwdesc);
926         set_desc_info(desc_info, pkt_info, hwdesc);
927
928         /* Push to FDQs */
929         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
930                            &dma_sz);
931         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
932         return 0;
933
934 fail:
935         knav_pool_desc_put(netcp->rx_pool, hwdesc);
936         return -ENOMEM;
937 }
938
939 /* Refill Rx FDQ with descriptors & attached buffers */
940 static void netcp_rxpool_refill(struct netcp_intf *netcp)
941 {
942         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
943         int i, ret = 0;
944
945         /* Calculate the FDQ deficit and refill */
946         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
947                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
948                                  knav_queue_get_count(netcp->rx_fdq[i]);
949
950                 while (fdq_deficit[i]-- && !ret)
951                         ret = netcp_allocate_rx_buf(netcp, i);
952         } /* end for fdqs */
953 }
954
955 /* NAPI poll */
956 static int netcp_rx_poll(struct napi_struct *napi, int budget)
957 {
958         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
959                                                 rx_napi);
960         unsigned int packets;
961
962         packets = netcp_process_rx_packets(netcp, budget);
963
964         netcp_rxpool_refill(netcp);
965         if (packets < budget) {
966                 napi_complete_done(&netcp->rx_napi, packets);
967                 knav_queue_enable_notify(netcp->rx_queue);
968         }
969
970         return packets;
971 }
972
973 static void netcp_rx_notify(void *arg)
974 {
975         struct netcp_intf *netcp = arg;
976
977         knav_queue_disable_notify(netcp->rx_queue);
978         napi_schedule(&netcp->rx_napi);
979 }
980
981 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
982                                      struct knav_dma_desc *desc,
983                                      unsigned int desc_sz)
984 {
985         struct knav_dma_desc *ndesc = desc;
986         dma_addr_t dma_desc, dma_buf;
987         unsigned int buf_len;
988
989         while (ndesc) {
990                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
991
992                 if (dma_buf && buf_len)
993                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
994                                          DMA_TO_DEVICE);
995                 else
996                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
997                                  &dma_buf, buf_len);
998
999                 knav_pool_desc_put(netcp->tx_pool, ndesc);
1000                 ndesc = NULL;
1001                 if (dma_desc) {
1002                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
1003                                                      desc_sz);
1004                         if (!ndesc)
1005                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1006                 }
1007         }
1008 }
1009
1010 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1011                                           unsigned int budget)
1012 {
1013         struct netcp_stats *tx_stats = &netcp->stats;
1014         struct knav_dma_desc *desc;
1015         struct netcp_tx_cb *tx_cb;
1016         struct sk_buff *skb;
1017         unsigned int dma_sz;
1018         dma_addr_t dma;
1019         int pkts = 0;
1020
1021         while (budget--) {
1022                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1023                 if (!dma)
1024                         break;
1025                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1026                 if (unlikely(!desc)) {
1027                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1028                         tx_stats->tx_errors++;
1029                         continue;
1030                 }
1031
1032                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1033                  * field as a 32bit value. Will not work on 64bit machines
1034                  */
1035                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1036                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1037                 if (!skb) {
1038                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1039                         tx_stats->tx_errors++;
1040                         continue;
1041                 }
1042
1043                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1044                 if (tx_cb->txtstamp)
1045                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1046
1047                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1048                     netif_running(netcp->ndev) &&
1049                     (knav_pool_count(netcp->tx_pool) >
1050                     netcp->tx_resume_threshold)) {
1051                         u16 subqueue = skb_get_queue_mapping(skb);
1052
1053                         netif_wake_subqueue(netcp->ndev, subqueue);
1054                 }
1055
1056                 u64_stats_update_begin(&tx_stats->syncp_tx);
1057                 tx_stats->tx_packets++;
1058                 tx_stats->tx_bytes += skb->len;
1059                 u64_stats_update_end(&tx_stats->syncp_tx);
1060                 dev_kfree_skb(skb);
1061                 pkts++;
1062         }
1063         return pkts;
1064 }
1065
1066 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1067 {
1068         int packets;
1069         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1070                                                 tx_napi);
1071
1072         packets = netcp_process_tx_compl_packets(netcp, budget);
1073         if (packets < budget) {
1074                 napi_complete(&netcp->tx_napi);
1075                 knav_queue_enable_notify(netcp->tx_compl_q);
1076         }
1077
1078         return packets;
1079 }
1080
1081 static void netcp_tx_notify(void *arg)
1082 {
1083         struct netcp_intf *netcp = arg;
1084
1085         knav_queue_disable_notify(netcp->tx_compl_q);
1086         napi_schedule(&netcp->tx_napi);
1087 }
1088
1089 static struct knav_dma_desc*
1090 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1091 {
1092         struct knav_dma_desc *desc, *ndesc, *pdesc;
1093         unsigned int pkt_len = skb_headlen(skb);
1094         struct device *dev = netcp->dev;
1095         dma_addr_t dma_addr;
1096         unsigned int dma_sz;
1097         int i;
1098
1099         /* Map the linear buffer */
1100         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1101         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1102                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1103                 return NULL;
1104         }
1105
1106         desc = knav_pool_desc_get(netcp->tx_pool);
1107         if (IS_ERR_OR_NULL(desc)) {
1108                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1109                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1110                 return NULL;
1111         }
1112
1113         set_pkt_info(dma_addr, pkt_len, 0, desc);
1114         if (skb_is_nonlinear(skb)) {
1115                 prefetchw(skb_shinfo(skb));
1116         } else {
1117                 desc->next_desc = 0;
1118                 goto upd_pkt_len;
1119         }
1120
1121         pdesc = desc;
1122
1123         /* Handle the case where skb is fragmented in pages */
1124         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1125                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126                 struct page *page = skb_frag_page(frag);
1127                 u32 page_offset = frag->page_offset;
1128                 u32 buf_len = skb_frag_size(frag);
1129                 dma_addr_t desc_dma;
1130                 u32 desc_dma_32;
1131
1132                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1133                                         DMA_TO_DEVICE);
1134                 if (unlikely(!dma_addr)) {
1135                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1136                         goto free_descs;
1137                 }
1138
1139                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1140                 if (IS_ERR_OR_NULL(ndesc)) {
1141                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1142                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1143                         goto free_descs;
1144                 }
1145
1146                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1147                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1148                 desc_dma_32 = (u32)desc_dma;
1149                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1150                 pkt_len += buf_len;
1151                 if (pdesc != desc)
1152                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1153                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1154                 pdesc = ndesc;
1155         }
1156         if (pdesc != desc)
1157                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1158                                    &dma_addr, &dma_sz);
1159
1160         /* frag list based linkage is not supported for now. */
1161         if (skb_shinfo(skb)->frag_list) {
1162                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1163                 goto free_descs;
1164         }
1165
1166 upd_pkt_len:
1167         WARN_ON(pkt_len != skb->len);
1168
1169         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1170         set_words(&pkt_len, 1, &desc->desc_info);
1171         return desc;
1172
1173 free_descs:
1174         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1175         return NULL;
1176 }
1177
1178 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1179                                struct sk_buff *skb,
1180                                struct knav_dma_desc *desc)
1181 {
1182         struct netcp_tx_pipe *tx_pipe = NULL;
1183         struct netcp_hook_list *tx_hook;
1184         struct netcp_packet p_info;
1185         struct netcp_tx_cb *tx_cb;
1186         unsigned int dma_sz;
1187         dma_addr_t dma;
1188         u32 tmp = 0;
1189         int ret = 0;
1190
1191         p_info.netcp = netcp;
1192         p_info.skb = skb;
1193         p_info.tx_pipe = NULL;
1194         p_info.psdata_len = 0;
1195         p_info.ts_context = NULL;
1196         p_info.txtstamp = NULL;
1197         p_info.epib = desc->epib;
1198         p_info.psdata = (u32 __force *)desc->psdata;
1199         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1200
1201         /* Find out where to inject the packet for transmission */
1202         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1203                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1204                                         &p_info);
1205                 if (unlikely(ret != 0)) {
1206                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1207                                 tx_hook->order, ret);
1208                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1209                         goto out;
1210                 }
1211         }
1212
1213         /* Make sure some TX hook claimed the packet */
1214         tx_pipe = p_info.tx_pipe;
1215         if (!tx_pipe) {
1216                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1217                 ret = -ENXIO;
1218                 goto out;
1219         }
1220
1221         tx_cb = (struct netcp_tx_cb *)skb->cb;
1222         tx_cb->ts_context = p_info.ts_context;
1223         tx_cb->txtstamp = p_info.txtstamp;
1224
1225         /* update descriptor */
1226         if (p_info.psdata_len) {
1227                 /* psdata points to both native-endian and device-endian data */
1228                 __le32 *psdata = (void __force *)p_info.psdata;
1229
1230                 set_words((u32 *)psdata +
1231                           (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1232                           p_info.psdata_len, psdata);
1233                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1234                         KNAV_DMA_DESC_PSLEN_SHIFT;
1235         }
1236
1237         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1238                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1239                 KNAV_DMA_DESC_RETQ_SHIFT);
1240
1241         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1242                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1243                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1244         }
1245
1246         set_words(&tmp, 1, &desc->packet_info);
1247         /* warning!!!! We are saving the virtual ptr in the sw_data
1248          * field as a 32bit value. Will not work on 64bit machines
1249          */
1250         SET_SW_DATA0((u32)skb, desc);
1251
1252         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1253                 tmp = tx_pipe->switch_to_port;
1254                 set_words(&tmp, 1, &desc->tag_info);
1255         }
1256
1257         /* submit packet descriptor */
1258         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1259                                  &dma_sz);
1260         if (unlikely(ret)) {
1261                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1262                 ret = -ENOMEM;
1263                 goto out;
1264         }
1265         skb_tx_timestamp(skb);
1266         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1267
1268 out:
1269         return ret;
1270 }
1271
1272 /* Submit the packet */
1273 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1274 {
1275         struct netcp_intf *netcp = netdev_priv(ndev);
1276         struct netcp_stats *tx_stats = &netcp->stats;
1277         int subqueue = skb_get_queue_mapping(skb);
1278         struct knav_dma_desc *desc;
1279         int desc_count, ret = 0;
1280
1281         if (unlikely(skb->len <= 0)) {
1282                 dev_kfree_skb(skb);
1283                 return NETDEV_TX_OK;
1284         }
1285
1286         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1287                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1288                 if (ret < 0) {
1289                         /* If we get here, the skb has already been dropped */
1290                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1291                                  ret);
1292                         tx_stats->tx_dropped++;
1293                         return ret;
1294                 }
1295                 skb->len = NETCP_MIN_PACKET_SIZE;
1296         }
1297
1298         desc = netcp_tx_map_skb(skb, netcp);
1299         if (unlikely(!desc)) {
1300                 netif_stop_subqueue(ndev, subqueue);
1301                 ret = -ENOBUFS;
1302                 goto drop;
1303         }
1304
1305         ret = netcp_tx_submit_skb(netcp, skb, desc);
1306         if (ret)
1307                 goto drop;
1308
1309         /* Check Tx pool count & stop subqueue if needed */
1310         desc_count = knav_pool_count(netcp->tx_pool);
1311         if (desc_count < netcp->tx_pause_threshold) {
1312                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1313                 netif_stop_subqueue(ndev, subqueue);
1314         }
1315         return NETDEV_TX_OK;
1316
1317 drop:
1318         tx_stats->tx_dropped++;
1319         if (desc)
1320                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1321         dev_kfree_skb(skb);
1322         return ret;
1323 }
1324
1325 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1326 {
1327         if (tx_pipe->dma_channel) {
1328                 knav_dma_close_channel(tx_pipe->dma_channel);
1329                 tx_pipe->dma_channel = NULL;
1330         }
1331         return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1334
1335 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1336 {
1337         struct device *dev = tx_pipe->netcp_device->device;
1338         struct knav_dma_cfg config;
1339         int ret = 0;
1340         u8 name[16];
1341
1342         memset(&config, 0, sizeof(config));
1343         config.direction = DMA_MEM_TO_DEV;
1344         config.u.tx.filt_einfo = false;
1345         config.u.tx.filt_pswords = false;
1346         config.u.tx.priority = DMA_PRIO_MED_L;
1347
1348         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1349                                 tx_pipe->dma_chan_name, &config);
1350         if (IS_ERR(tx_pipe->dma_channel)) {
1351                 dev_err(dev, "failed opening tx chan(%s)\n",
1352                         tx_pipe->dma_chan_name);
1353                 ret = PTR_ERR(tx_pipe->dma_channel);
1354                 goto err;
1355         }
1356
1357         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1358         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1359                                              KNAV_QUEUE_SHARED);
1360         if (IS_ERR(tx_pipe->dma_queue)) {
1361                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1362                         name, ret);
1363                 ret = PTR_ERR(tx_pipe->dma_queue);
1364                 goto err;
1365         }
1366
1367         dev_dbg(dev, "opened tx pipe %s\n", name);
1368         return 0;
1369
1370 err:
1371         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1372                 knav_dma_close_channel(tx_pipe->dma_channel);
1373         tx_pipe->dma_channel = NULL;
1374         return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1377
1378 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1379                       struct netcp_device *netcp_device,
1380                       const char *dma_chan_name, unsigned int dma_queue_id)
1381 {
1382         memset(tx_pipe, 0, sizeof(*tx_pipe));
1383         tx_pipe->netcp_device = netcp_device;
1384         tx_pipe->dma_chan_name = dma_chan_name;
1385         tx_pipe->dma_queue_id = dma_queue_id;
1386         return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1389
1390 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1391                                           const u8 *addr,
1392                                           enum netcp_addr_type type)
1393 {
1394         struct netcp_addr *naddr;
1395
1396         list_for_each_entry(naddr, &netcp->addr_list, node) {
1397                 if (naddr->type != type)
1398                         continue;
1399                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1400                         continue;
1401                 return naddr;
1402         }
1403
1404         return NULL;
1405 }
1406
1407 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1408                                          const u8 *addr,
1409                                          enum netcp_addr_type type)
1410 {
1411         struct netcp_addr *naddr;
1412
1413         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1414         if (!naddr)
1415                 return NULL;
1416
1417         naddr->type = type;
1418         naddr->flags = 0;
1419         naddr->netcp = netcp;
1420         if (addr)
1421                 ether_addr_copy(naddr->addr, addr);
1422         else
1423                 eth_zero_addr(naddr->addr);
1424         list_add_tail(&naddr->node, &netcp->addr_list);
1425
1426         return naddr;
1427 }
1428
1429 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1430 {
1431         list_del(&naddr->node);
1432         devm_kfree(netcp->dev, naddr);
1433 }
1434
1435 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1436 {
1437         struct netcp_addr *naddr;
1438
1439         list_for_each_entry(naddr, &netcp->addr_list, node)
1440                 naddr->flags = 0;
1441 }
1442
1443 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1444                                 enum netcp_addr_type type)
1445 {
1446         struct netcp_addr *naddr;
1447
1448         naddr = netcp_addr_find(netcp, addr, type);
1449         if (naddr) {
1450                 naddr->flags |= ADDR_VALID;
1451                 return;
1452         }
1453
1454         naddr = netcp_addr_add(netcp, addr, type);
1455         if (!WARN_ON(!naddr))
1456                 naddr->flags |= ADDR_NEW;
1457 }
1458
1459 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1460 {
1461         struct netcp_addr *naddr, *tmp;
1462         struct netcp_intf_modpriv *priv;
1463         struct netcp_module *module;
1464         int error;
1465
1466         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1467                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1468                         continue;
1469                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1470                         naddr->addr, naddr->type);
1471                 for_each_module(netcp, priv) {
1472                         module = priv->netcp_module;
1473                         if (!module->del_addr)
1474                                 continue;
1475                         error = module->del_addr(priv->module_priv,
1476                                                  naddr);
1477                         WARN_ON(error);
1478                 }
1479                 netcp_addr_del(netcp, naddr);
1480         }
1481 }
1482
1483 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1484 {
1485         struct netcp_addr *naddr, *tmp;
1486         struct netcp_intf_modpriv *priv;
1487         struct netcp_module *module;
1488         int error;
1489
1490         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1491                 if (!(naddr->flags & ADDR_NEW))
1492                         continue;
1493                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1494                         naddr->addr, naddr->type);
1495
1496                 for_each_module(netcp, priv) {
1497                         module = priv->netcp_module;
1498                         if (!module->add_addr)
1499                                 continue;
1500                         error = module->add_addr(priv->module_priv, naddr);
1501                         WARN_ON(error);
1502                 }
1503         }
1504 }
1505
1506 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1507 {
1508         struct netcp_intf_modpriv *priv;
1509         struct netcp_module *module;
1510         int error;
1511
1512         for_each_module(netcp, priv) {
1513                 module = priv->netcp_module;
1514                 if (!module->set_rx_mode)
1515                         continue;
1516
1517                 error = module->set_rx_mode(priv->module_priv, promisc);
1518                 if (error)
1519                         return error;
1520         }
1521         return 0;
1522 }
1523
1524 static void netcp_set_rx_mode(struct net_device *ndev)
1525 {
1526         struct netcp_intf *netcp = netdev_priv(ndev);
1527         struct netdev_hw_addr *ndev_addr;
1528         bool promisc;
1529
1530         promisc = (ndev->flags & IFF_PROMISC ||
1531                    ndev->flags & IFF_ALLMULTI ||
1532                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1533
1534         spin_lock(&netcp->lock);
1535         /* first clear all marks */
1536         netcp_addr_clear_mark(netcp);
1537
1538         /* next add new entries, mark existing ones */
1539         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1540         for_each_dev_addr(ndev, ndev_addr)
1541                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1542         netdev_for_each_uc_addr(ndev_addr, ndev)
1543                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1544         netdev_for_each_mc_addr(ndev_addr, ndev)
1545                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1546
1547         if (promisc)
1548                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1549
1550         /* finally sweep and callout into modules */
1551         netcp_addr_sweep_del(netcp);
1552         netcp_addr_sweep_add(netcp);
1553         netcp_set_promiscuous(netcp, promisc);
1554         spin_unlock(&netcp->lock);
1555 }
1556
1557 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1558 {
1559         int i;
1560
1561         if (netcp->rx_channel) {
1562                 knav_dma_close_channel(netcp->rx_channel);
1563                 netcp->rx_channel = NULL;
1564         }
1565
1566         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1567                 netcp_rxpool_free(netcp);
1568
1569         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1570                 knav_queue_close(netcp->rx_queue);
1571                 netcp->rx_queue = NULL;
1572         }
1573
1574         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1575              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1576                 knav_queue_close(netcp->rx_fdq[i]);
1577                 netcp->rx_fdq[i] = NULL;
1578         }
1579
1580         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1581                 knav_queue_close(netcp->tx_compl_q);
1582                 netcp->tx_compl_q = NULL;
1583         }
1584
1585         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1586                 knav_pool_destroy(netcp->tx_pool);
1587                 netcp->tx_pool = NULL;
1588         }
1589 }
1590
1591 static int netcp_setup_navigator_resources(struct net_device *ndev)
1592 {
1593         struct netcp_intf *netcp = netdev_priv(ndev);
1594         struct knav_queue_notify_config notify_cfg;
1595         struct knav_dma_cfg config;
1596         u32 last_fdq = 0;
1597         u8 name[16];
1598         int ret;
1599         int i;
1600
1601         /* Create Rx/Tx descriptor pools */
1602         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1603         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1604                                                 netcp->rx_pool_region_id);
1605         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1606                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1607                 ret = PTR_ERR(netcp->rx_pool);
1608                 goto fail;
1609         }
1610
1611         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1612         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1613                                                 netcp->tx_pool_region_id);
1614         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1615                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1616                 ret = PTR_ERR(netcp->tx_pool);
1617                 goto fail;
1618         }
1619
1620         /* open Tx completion queue */
1621         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1622         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1623         if (IS_ERR(netcp->tx_compl_q)) {
1624                 ret = PTR_ERR(netcp->tx_compl_q);
1625                 goto fail;
1626         }
1627         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1628
1629         /* Set notification for Tx completion */
1630         notify_cfg.fn = netcp_tx_notify;
1631         notify_cfg.fn_arg = netcp;
1632         ret = knav_queue_device_control(netcp->tx_compl_q,
1633                                         KNAV_QUEUE_SET_NOTIFIER,
1634                                         (unsigned long)&notify_cfg);
1635         if (ret)
1636                 goto fail;
1637
1638         knav_queue_disable_notify(netcp->tx_compl_q);
1639
1640         /* open Rx completion queue */
1641         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1642         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1643         if (IS_ERR(netcp->rx_queue)) {
1644                 ret = PTR_ERR(netcp->rx_queue);
1645                 goto fail;
1646         }
1647         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1648
1649         /* Set notification for Rx completion */
1650         notify_cfg.fn = netcp_rx_notify;
1651         notify_cfg.fn_arg = netcp;
1652         ret = knav_queue_device_control(netcp->rx_queue,
1653                                         KNAV_QUEUE_SET_NOTIFIER,
1654                                         (unsigned long)&notify_cfg);
1655         if (ret)
1656                 goto fail;
1657
1658         knav_queue_disable_notify(netcp->rx_queue);
1659
1660         /* open Rx FDQs */
1661         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1662              ++i) {
1663                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1664                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1665                 if (IS_ERR(netcp->rx_fdq[i])) {
1666                         ret = PTR_ERR(netcp->rx_fdq[i]);
1667                         goto fail;
1668                 }
1669         }
1670
1671         memset(&config, 0, sizeof(config));
1672         config.direction                = DMA_DEV_TO_MEM;
1673         config.u.rx.einfo_present       = true;
1674         config.u.rx.psinfo_present      = true;
1675         config.u.rx.err_mode            = DMA_DROP;
1676         config.u.rx.desc_type           = DMA_DESC_HOST;
1677         config.u.rx.psinfo_at_sop       = false;
1678         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1679         config.u.rx.dst_q               = netcp->rx_queue_id;
1680         config.u.rx.thresh              = DMA_THRESH_NONE;
1681
1682         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1683                 if (netcp->rx_fdq[i])
1684                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1685                 config.u.rx.fdq[i] = last_fdq;
1686         }
1687
1688         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1689                                         netcp->dma_chan_name, &config);
1690         if (IS_ERR(netcp->rx_channel)) {
1691                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1692                         netcp->dma_chan_name);
1693                 ret = PTR_ERR(netcp->rx_channel);
1694                 goto fail;
1695         }
1696
1697         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1698         return 0;
1699
1700 fail:
1701         netcp_free_navigator_resources(netcp);
1702         return ret;
1703 }
1704
1705 /* Open the device */
1706 static int netcp_ndo_open(struct net_device *ndev)
1707 {
1708         struct netcp_intf *netcp = netdev_priv(ndev);
1709         struct netcp_intf_modpriv *intf_modpriv;
1710         struct netcp_module *module;
1711         int ret;
1712
1713         netif_carrier_off(ndev);
1714         ret = netcp_setup_navigator_resources(ndev);
1715         if (ret) {
1716                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1717                 goto fail;
1718         }
1719
1720         for_each_module(netcp, intf_modpriv) {
1721                 module = intf_modpriv->netcp_module;
1722                 if (module->open) {
1723                         ret = module->open(intf_modpriv->module_priv, ndev);
1724                         if (ret != 0) {
1725                                 dev_err(netcp->ndev_dev, "module open failed\n");
1726                                 goto fail_open;
1727                         }
1728                 }
1729         }
1730
1731         napi_enable(&netcp->rx_napi);
1732         napi_enable(&netcp->tx_napi);
1733         knav_queue_enable_notify(netcp->tx_compl_q);
1734         knav_queue_enable_notify(netcp->rx_queue);
1735         netcp_rxpool_refill(netcp);
1736         netif_tx_wake_all_queues(ndev);
1737         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1738         return 0;
1739
1740 fail_open:
1741         for_each_module(netcp, intf_modpriv) {
1742                 module = intf_modpriv->netcp_module;
1743                 if (module->close)
1744                         module->close(intf_modpriv->module_priv, ndev);
1745         }
1746
1747 fail:
1748         netcp_free_navigator_resources(netcp);
1749         return ret;
1750 }
1751
1752 /* Close the device */
1753 static int netcp_ndo_stop(struct net_device *ndev)
1754 {
1755         struct netcp_intf *netcp = netdev_priv(ndev);
1756         struct netcp_intf_modpriv *intf_modpriv;
1757         struct netcp_module *module;
1758         int err = 0;
1759
1760         netif_tx_stop_all_queues(ndev);
1761         netif_carrier_off(ndev);
1762         netcp_addr_clear_mark(netcp);
1763         netcp_addr_sweep_del(netcp);
1764         knav_queue_disable_notify(netcp->rx_queue);
1765         knav_queue_disable_notify(netcp->tx_compl_q);
1766         napi_disable(&netcp->rx_napi);
1767         napi_disable(&netcp->tx_napi);
1768
1769         for_each_module(netcp, intf_modpriv) {
1770                 module = intf_modpriv->netcp_module;
1771                 if (module->close) {
1772                         err = module->close(intf_modpriv->module_priv, ndev);
1773                         if (err != 0)
1774                                 dev_err(netcp->ndev_dev, "Close failed\n");
1775                 }
1776         }
1777
1778         /* Recycle Rx descriptors from completion queue */
1779         netcp_empty_rx_queue(netcp);
1780
1781         /* Recycle Tx descriptors from completion queue */
1782         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1783
1784         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1785                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1786                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1787
1788         netcp_free_navigator_resources(netcp);
1789         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1790         return 0;
1791 }
1792
1793 static int netcp_ndo_ioctl(struct net_device *ndev,
1794                            struct ifreq *req, int cmd)
1795 {
1796         struct netcp_intf *netcp = netdev_priv(ndev);
1797         struct netcp_intf_modpriv *intf_modpriv;
1798         struct netcp_module *module;
1799         int ret = -1, err = -EOPNOTSUPP;
1800
1801         if (!netif_running(ndev))
1802                 return -EINVAL;
1803
1804         for_each_module(netcp, intf_modpriv) {
1805                 module = intf_modpriv->netcp_module;
1806                 if (!module->ioctl)
1807                         continue;
1808
1809                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1810                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1811                         ret = err;
1812                         goto out;
1813                 }
1814                 if (err == 0)
1815                         ret = err;
1816         }
1817
1818 out:
1819         return (ret == 0) ? 0 : err;
1820 }
1821
1822 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1823 {
1824         struct netcp_intf *netcp = netdev_priv(ndev);
1825         unsigned int descs = knav_pool_count(netcp->tx_pool);
1826
1827         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1828         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1829         netif_trans_update(ndev);
1830         netif_tx_wake_all_queues(ndev);
1831 }
1832
1833 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1834 {
1835         struct netcp_intf *netcp = netdev_priv(ndev);
1836         struct netcp_intf_modpriv *intf_modpriv;
1837         struct netcp_module *module;
1838         unsigned long flags;
1839         int err = 0;
1840
1841         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1842
1843         spin_lock_irqsave(&netcp->lock, flags);
1844         for_each_module(netcp, intf_modpriv) {
1845                 module = intf_modpriv->netcp_module;
1846                 if ((module->add_vid) && (vid != 0)) {
1847                         err = module->add_vid(intf_modpriv->module_priv, vid);
1848                         if (err != 0) {
1849                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1850                                         vid);
1851                                 break;
1852                         }
1853                 }
1854         }
1855         spin_unlock_irqrestore(&netcp->lock, flags);
1856
1857         return err;
1858 }
1859
1860 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1861 {
1862         struct netcp_intf *netcp = netdev_priv(ndev);
1863         struct netcp_intf_modpriv *intf_modpriv;
1864         struct netcp_module *module;
1865         unsigned long flags;
1866         int err = 0;
1867
1868         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1869
1870         spin_lock_irqsave(&netcp->lock, flags);
1871         for_each_module(netcp, intf_modpriv) {
1872                 module = intf_modpriv->netcp_module;
1873                 if (module->del_vid) {
1874                         err = module->del_vid(intf_modpriv->module_priv, vid);
1875                         if (err != 0) {
1876                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1877                                         vid);
1878                                 break;
1879                         }
1880                 }
1881         }
1882         spin_unlock_irqrestore(&netcp->lock, flags);
1883         return err;
1884 }
1885
1886 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1887                           void *type_data)
1888 {
1889         struct tc_mqprio_qopt *mqprio = type_data;
1890         u8 num_tc;
1891         int i;
1892
1893         /* setup tc must be called under rtnl lock */
1894         ASSERT_RTNL();
1895
1896         if (type != TC_SETUP_QDISC_MQPRIO)
1897                 return -EOPNOTSUPP;
1898
1899         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1900         num_tc = mqprio->num_tc;
1901
1902         /* Sanity-check the number of traffic classes requested */
1903         if ((dev->real_num_tx_queues <= 1) ||
1904             (dev->real_num_tx_queues < num_tc))
1905                 return -EINVAL;
1906
1907         /* Configure traffic class to queue mappings */
1908         if (num_tc) {
1909                 netdev_set_num_tc(dev, num_tc);
1910                 for (i = 0; i < num_tc; i++)
1911                         netdev_set_tc_queue(dev, i, 1, i);
1912         } else {
1913                 netdev_reset_tc(dev);
1914         }
1915
1916         return 0;
1917 }
1918
1919 static void
1920 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1921 {
1922         struct netcp_intf *netcp = netdev_priv(ndev);
1923         struct netcp_stats *p = &netcp->stats;
1924         u64 rxpackets, rxbytes, txpackets, txbytes;
1925         unsigned int start;
1926
1927         do {
1928                 start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1929                 rxpackets       = p->rx_packets;
1930                 rxbytes         = p->rx_bytes;
1931         } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1932
1933         do {
1934                 start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1935                 txpackets       = p->tx_packets;
1936                 txbytes         = p->tx_bytes;
1937         } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1938
1939         stats->rx_packets = rxpackets;
1940         stats->rx_bytes = rxbytes;
1941         stats->tx_packets = txpackets;
1942         stats->tx_bytes = txbytes;
1943
1944         /* The following are stored as 32 bit */
1945         stats->rx_errors = p->rx_errors;
1946         stats->rx_dropped = p->rx_dropped;
1947         stats->tx_dropped = p->tx_dropped;
1948 }
1949
1950 static const struct net_device_ops netcp_netdev_ops = {
1951         .ndo_open               = netcp_ndo_open,
1952         .ndo_stop               = netcp_ndo_stop,
1953         .ndo_start_xmit         = netcp_ndo_start_xmit,
1954         .ndo_set_rx_mode        = netcp_set_rx_mode,
1955         .ndo_do_ioctl           = netcp_ndo_ioctl,
1956         .ndo_get_stats64        = netcp_get_stats,
1957         .ndo_set_mac_address    = eth_mac_addr,
1958         .ndo_validate_addr      = eth_validate_addr,
1959         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1960         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1961         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1962         .ndo_select_queue       = dev_pick_tx_zero,
1963         .ndo_setup_tc           = netcp_setup_tc,
1964 };
1965
1966 static int netcp_create_interface(struct netcp_device *netcp_device,
1967                                   struct device_node *node_interface)
1968 {
1969         struct device *dev = netcp_device->device;
1970         struct device_node *node = dev->of_node;
1971         struct netcp_intf *netcp;
1972         struct net_device *ndev;
1973         resource_size_t size;
1974         struct resource res;
1975         void __iomem *efuse = NULL;
1976         u32 efuse_mac = 0;
1977         const void *mac_addr;
1978         u8 efuse_mac_addr[6];
1979         u32 temp[2];
1980         int ret = 0;
1981
1982         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1983         if (!ndev) {
1984                 dev_err(dev, "Error allocating netdev\n");
1985                 return -ENOMEM;
1986         }
1987
1988         ndev->features |= NETIF_F_SG;
1989         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1990         ndev->hw_features = ndev->features;
1991         ndev->vlan_features |=  NETIF_F_SG;
1992
1993         /* MTU range: 68 - 9486 */
1994         ndev->min_mtu = ETH_MIN_MTU;
1995         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1996
1997         netcp = netdev_priv(ndev);
1998         spin_lock_init(&netcp->lock);
1999         INIT_LIST_HEAD(&netcp->module_head);
2000         INIT_LIST_HEAD(&netcp->txhook_list_head);
2001         INIT_LIST_HEAD(&netcp->rxhook_list_head);
2002         INIT_LIST_HEAD(&netcp->addr_list);
2003         u64_stats_init(&netcp->stats.syncp_rx);
2004         u64_stats_init(&netcp->stats.syncp_tx);
2005         netcp->netcp_device = netcp_device;
2006         netcp->dev = netcp_device->device;
2007         netcp->ndev = ndev;
2008         netcp->ndev_dev  = &ndev->dev;
2009         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2010         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2011         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2012         netcp->node_interface = node_interface;
2013
2014         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2015         if (efuse_mac) {
2016                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2017                         dev_err(dev, "could not find efuse-mac reg resource\n");
2018                         ret = -ENODEV;
2019                         goto quit;
2020                 }
2021                 size = resource_size(&res);
2022
2023                 if (!devm_request_mem_region(dev, res.start, size,
2024                                              dev_name(dev))) {
2025                         dev_err(dev, "could not reserve resource\n");
2026                         ret = -ENOMEM;
2027                         goto quit;
2028                 }
2029
2030                 efuse = devm_ioremap_nocache(dev, res.start, size);
2031                 if (!efuse) {
2032                         dev_err(dev, "could not map resource\n");
2033                         devm_release_mem_region(dev, res.start, size);
2034                         ret = -ENOMEM;
2035                         goto quit;
2036                 }
2037
2038                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2039                 if (is_valid_ether_addr(efuse_mac_addr))
2040                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2041                 else
2042                         eth_random_addr(ndev->dev_addr);
2043
2044                 devm_iounmap(dev, efuse);
2045                 devm_release_mem_region(dev, res.start, size);
2046         } else {
2047                 mac_addr = of_get_mac_address(node_interface);
2048                 if (mac_addr)
2049                         ether_addr_copy(ndev->dev_addr, mac_addr);
2050                 else
2051                         eth_random_addr(ndev->dev_addr);
2052         }
2053
2054         ret = of_property_read_string(node_interface, "rx-channel",
2055                                       &netcp->dma_chan_name);
2056         if (ret < 0) {
2057                 dev_err(dev, "missing \"rx-channel\" parameter\n");
2058                 ret = -ENODEV;
2059                 goto quit;
2060         }
2061
2062         ret = of_property_read_u32(node_interface, "rx-queue",
2063                                    &netcp->rx_queue_id);
2064         if (ret < 0) {
2065                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2066                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2067         }
2068
2069         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2070                                          netcp->rx_queue_depths,
2071                                          KNAV_DMA_FDQ_PER_CHAN);
2072         if (ret < 0) {
2073                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2074                 netcp->rx_queue_depths[0] = 128;
2075         }
2076
2077         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2078         if (ret < 0) {
2079                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2080                 ret = -ENODEV;
2081                 goto quit;
2082         }
2083         netcp->rx_pool_size = temp[0];
2084         netcp->rx_pool_region_id = temp[1];
2085
2086         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2087         if (ret < 0) {
2088                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2089                 ret = -ENODEV;
2090                 goto quit;
2091         }
2092         netcp->tx_pool_size = temp[0];
2093         netcp->tx_pool_region_id = temp[1];
2094
2095         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2096                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2097                         MAX_SKB_FRAGS);
2098                 ret = -ENODEV;
2099                 goto quit;
2100         }
2101
2102         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2103                                    &netcp->tx_compl_qid);
2104         if (ret < 0) {
2105                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2106                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2107         }
2108
2109         /* NAPI register */
2110         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2111         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2112
2113         /* Register the network device */
2114         ndev->dev_id            = 0;
2115         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2116         ndev->netdev_ops        = &netcp_netdev_ops;
2117         SET_NETDEV_DEV(ndev, dev);
2118
2119         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2120         return 0;
2121
2122 quit:
2123         free_netdev(ndev);
2124         return ret;
2125 }
2126
2127 static void netcp_delete_interface(struct netcp_device *netcp_device,
2128                                    struct net_device *ndev)
2129 {
2130         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2131         struct netcp_intf *netcp = netdev_priv(ndev);
2132         struct netcp_module *module;
2133
2134         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2135                 ndev->name);
2136
2137         /* Notify each of the modules that the interface is going away */
2138         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2139                                  intf_list) {
2140                 module = intf_modpriv->netcp_module;
2141                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2142                         module->name);
2143                 if (module->release)
2144                         module->release(intf_modpriv->module_priv);
2145                 list_del(&intf_modpriv->intf_list);
2146         }
2147         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2148              ndev->name);
2149
2150         list_del(&netcp->interface_list);
2151
2152         of_node_put(netcp->node_interface);
2153         unregister_netdev(ndev);
2154         free_netdev(ndev);
2155 }
2156
2157 static int netcp_probe(struct platform_device *pdev)
2158 {
2159         struct device_node *node = pdev->dev.of_node;
2160         struct netcp_intf *netcp_intf, *netcp_tmp;
2161         struct device_node *child, *interfaces;
2162         struct netcp_device *netcp_device;
2163         struct device *dev = &pdev->dev;
2164         struct netcp_module *module;
2165         int ret;
2166
2167         if (!knav_dma_device_ready() ||
2168             !knav_qmss_device_ready())
2169                 return -EPROBE_DEFER;
2170
2171         if (!node) {
2172                 dev_err(dev, "could not find device info\n");
2173                 return -ENODEV;
2174         }
2175
2176         /* Allocate a new NETCP device instance */
2177         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2178         if (!netcp_device)
2179                 return -ENOMEM;
2180
2181         pm_runtime_enable(&pdev->dev);
2182         ret = pm_runtime_get_sync(&pdev->dev);
2183         if (ret < 0) {
2184                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2185                 pm_runtime_disable(&pdev->dev);
2186                 return ret;
2187         }
2188
2189         /* Initialize the NETCP device instance */
2190         INIT_LIST_HEAD(&netcp_device->interface_head);
2191         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2192         netcp_device->device = dev;
2193         platform_set_drvdata(pdev, netcp_device);
2194
2195         /* create interfaces */
2196         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2197         if (!interfaces) {
2198                 dev_err(dev, "could not find netcp-interfaces node\n");
2199                 ret = -ENODEV;
2200                 goto probe_quit;
2201         }
2202
2203         for_each_available_child_of_node(interfaces, child) {
2204                 ret = netcp_create_interface(netcp_device, child);
2205                 if (ret) {
2206                         dev_err(dev, "could not create interface(%pOFn)\n",
2207                                 child);
2208                         goto probe_quit_interface;
2209                 }
2210         }
2211
2212         of_node_put(interfaces);
2213
2214         /* Add the device instance to the list */
2215         list_add_tail(&netcp_device->device_list, &netcp_devices);
2216
2217         /* Probe & attach any modules already registered */
2218         mutex_lock(&netcp_modules_lock);
2219         for_each_netcp_module(module) {
2220                 ret = netcp_module_probe(netcp_device, module);
2221                 if (ret < 0)
2222                         dev_err(dev, "module(%s) probe failed\n", module->name);
2223         }
2224         mutex_unlock(&netcp_modules_lock);
2225         return 0;
2226
2227 probe_quit_interface:
2228         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2229                                  &netcp_device->interface_head,
2230                                  interface_list) {
2231                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2232         }
2233
2234         of_node_put(interfaces);
2235
2236 probe_quit:
2237         pm_runtime_put_sync(&pdev->dev);
2238         pm_runtime_disable(&pdev->dev);
2239         platform_set_drvdata(pdev, NULL);
2240         return ret;
2241 }
2242
2243 static int netcp_remove(struct platform_device *pdev)
2244 {
2245         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2246         struct netcp_intf *netcp_intf, *netcp_tmp;
2247         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2248         struct netcp_module *module;
2249
2250         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2251                                  inst_list) {
2252                 module = inst_modpriv->netcp_module;
2253                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2254                 module->remove(netcp_device, inst_modpriv->module_priv);
2255                 list_del(&inst_modpriv->inst_list);
2256         }
2257
2258         /* now that all modules are removed, clean up the interfaces */
2259         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2260                                  &netcp_device->interface_head,
2261                                  interface_list) {
2262                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2263         }
2264
2265         WARN(!list_empty(&netcp_device->interface_head),
2266              "%s interface list not empty!\n", pdev->name);
2267
2268         pm_runtime_put_sync(&pdev->dev);
2269         pm_runtime_disable(&pdev->dev);
2270         platform_set_drvdata(pdev, NULL);
2271         return 0;
2272 }
2273
2274 static const struct of_device_id of_match[] = {
2275         { .compatible = "ti,netcp-1.0", },
2276         {},
2277 };
2278 MODULE_DEVICE_TABLE(of, of_match);
2279
2280 static struct platform_driver netcp_driver = {
2281         .driver = {
2282                 .name           = "netcp-1.0",
2283                 .of_match_table = of_match,
2284         },
2285         .probe = netcp_probe,
2286         .remove = netcp_remove,
2287 };
2288 module_platform_driver(netcp_driver);
2289
2290 MODULE_LICENSE("GPL v2");
2291 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2292 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");