OSDN Git Service

c65620adab522049514784200a5083f132dbc7d2
[uclinux-h8/linux.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN   64
50 #define RETRY_US_LO     5000
51 #define RETRY_US_HI     10000
52 #define RETRY_MAX       2000    /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
64                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65                                 NETIF_MSG_TX_ERR;
66
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static LIST_HEAD(netvsc_dev_list);
72
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75         struct net_device_context *ndev_ctx = netdev_priv(net);
76         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77         int inc;
78
79         if (!vf_netdev)
80                 return;
81
82         if (change & IFF_PROMISC) {
83                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84                 dev_set_promiscuity(vf_netdev, inc);
85         }
86
87         if (change & IFF_ALLMULTI) {
88                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89                 dev_set_allmulti(vf_netdev, inc);
90         }
91 }
92
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95         struct net_device_context *ndev_ctx = netdev_priv(net);
96         struct net_device *vf_netdev;
97         struct netvsc_device *nvdev;
98
99         rcu_read_lock();
100         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101         if (vf_netdev) {
102                 dev_uc_sync(vf_netdev, net);
103                 dev_mc_sync(vf_netdev, net);
104         }
105
106         nvdev = rcu_dereference(ndev_ctx->nvdev);
107         if (nvdev)
108                 rndis_filter_update(nvdev);
109         rcu_read_unlock();
110 }
111
112 static int netvsc_open(struct net_device *net)
113 {
114         struct net_device_context *ndev_ctx = netdev_priv(net);
115         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117         struct rndis_device *rdev;
118         int ret = 0;
119
120         netif_carrier_off(net);
121
122         /* Open up the device */
123         ret = rndis_filter_open(nvdev);
124         if (ret != 0) {
125                 netdev_err(net, "unable to open device (ret %d).\n", ret);
126                 return ret;
127         }
128
129         rdev = nvdev->extension;
130         if (!rdev->link_state) {
131                 netif_carrier_on(net);
132                 netif_tx_wake_all_queues(net);
133         }
134
135         if (vf_netdev) {
136                 /* Setting synthetic device up transparently sets
137                  * slave as up. If open fails, then slave will be
138                  * still be offline (and not used).
139                  */
140                 ret = dev_open(vf_netdev, NULL);
141                 if (ret)
142                         netdev_warn(net,
143                                     "unable to open slave: %s: %d\n",
144                                     vf_netdev->name, ret);
145         }
146         return 0;
147 }
148
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151         unsigned int retry = 0;
152         int i;
153
154         /* Ensure pending bytes in ring are read */
155         for (;;) {
156                 u32 aread = 0;
157
158                 for (i = 0; i < nvdev->num_chn; i++) {
159                         struct vmbus_channel *chn
160                                 = nvdev->chan_table[i].channel;
161
162                         if (!chn)
163                                 continue;
164
165                         /* make sure receive not running now */
166                         napi_synchronize(&nvdev->chan_table[i].napi);
167
168                         aread = hv_get_bytes_to_read(&chn->inbound);
169                         if (aread)
170                                 break;
171
172                         aread = hv_get_bytes_to_read(&chn->outbound);
173                         if (aread)
174                                 break;
175                 }
176
177                 if (aread == 0)
178                         return 0;
179
180                 if (++retry > RETRY_MAX)
181                         return -ETIMEDOUT;
182
183                 usleep_range(RETRY_US_LO, RETRY_US_HI);
184         }
185 }
186
187 static int netvsc_close(struct net_device *net)
188 {
189         struct net_device_context *net_device_ctx = netdev_priv(net);
190         struct net_device *vf_netdev
191                 = rtnl_dereference(net_device_ctx->vf_netdev);
192         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
193         int ret;
194
195         netif_tx_disable(net);
196
197         /* No need to close rndis filter if it is removed already */
198         if (!nvdev)
199                 return 0;
200
201         ret = rndis_filter_close(nvdev);
202         if (ret != 0) {
203                 netdev_err(net, "unable to close device (ret %d).\n", ret);
204                 return ret;
205         }
206
207         ret = netvsc_wait_until_empty(nvdev);
208         if (ret)
209                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
210
211         if (vf_netdev)
212                 dev_close(vf_netdev);
213
214         return ret;
215 }
216
217 static inline void *init_ppi_data(struct rndis_message *msg,
218                                   u32 ppi_size, u32 pkt_type)
219 {
220         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
221         struct rndis_per_packet_info *ppi;
222
223         rndis_pkt->data_offset += ppi_size;
224         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
225                 + rndis_pkt->per_pkt_info_len;
226
227         ppi->size = ppi_size;
228         ppi->type = pkt_type;
229         ppi->internal = 0;
230         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
231
232         rndis_pkt->per_pkt_info_len += ppi_size;
233
234         return ppi + 1;
235 }
236
237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
238  * packets. We can use ethtool to change UDP hash level when necessary.
239  */
240 static inline u32 netvsc_get_hash(
241         struct sk_buff *skb,
242         const struct net_device_context *ndc)
243 {
244         struct flow_keys flow;
245         u32 hash, pkt_proto = 0;
246         static u32 hashrnd __read_mostly;
247
248         net_get_random_once(&hashrnd, sizeof(hashrnd));
249
250         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
251                 return 0;
252
253         switch (flow.basic.ip_proto) {
254         case IPPROTO_TCP:
255                 if (flow.basic.n_proto == htons(ETH_P_IP))
256                         pkt_proto = HV_TCP4_L4HASH;
257                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
258                         pkt_proto = HV_TCP6_L4HASH;
259
260                 break;
261
262         case IPPROTO_UDP:
263                 if (flow.basic.n_proto == htons(ETH_P_IP))
264                         pkt_proto = HV_UDP4_L4HASH;
265                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266                         pkt_proto = HV_UDP6_L4HASH;
267
268                 break;
269         }
270
271         if (pkt_proto & ndc->l4_hash) {
272                 return skb_get_hash(skb);
273         } else {
274                 if (flow.basic.n_proto == htons(ETH_P_IP))
275                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
276                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
278                 else
279                         hash = 0;
280
281                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
282         }
283
284         return hash;
285 }
286
287 static inline int netvsc_get_tx_queue(struct net_device *ndev,
288                                       struct sk_buff *skb, int old_idx)
289 {
290         const struct net_device_context *ndc = netdev_priv(ndev);
291         struct sock *sk = skb->sk;
292         int q_idx;
293
294         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
295                               (VRSS_SEND_TAB_SIZE - 1)];
296
297         /* If queue index changed record the new value */
298         if (q_idx != old_idx &&
299             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
300                 sk_tx_queue_set(sk, q_idx);
301
302         return q_idx;
303 }
304
305 /*
306  * Select queue for transmit.
307  *
308  * If a valid queue has already been assigned, then use that.
309  * Otherwise compute tx queue based on hash and the send table.
310  *
311  * This is basically similar to default (__netdev_pick_tx) with the added step
312  * of using the host send_table when no other queue has been assigned.
313  *
314  * TODO support XPS - but get_xps_queue not exported
315  */
316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
317 {
318         int q_idx = sk_tx_queue_get(skb->sk);
319
320         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
321                 /* If forwarding a packet, we use the recorded queue when
322                  * available for better cache locality.
323                  */
324                 if (skb_rx_queue_recorded(skb))
325                         q_idx = skb_get_rx_queue(skb);
326                 else
327                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
328         }
329
330         return q_idx;
331 }
332
333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
334                                struct net_device *sb_dev,
335                                select_queue_fallback_t fallback)
336 {
337         struct net_device_context *ndc = netdev_priv(ndev);
338         struct net_device *vf_netdev;
339         u16 txq;
340
341         rcu_read_lock();
342         vf_netdev = rcu_dereference(ndc->vf_netdev);
343         if (vf_netdev) {
344                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
345
346                 if (vf_ops->ndo_select_queue)
347                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
348                                                        sb_dev, fallback);
349                 else
350                         txq = fallback(vf_netdev, skb, NULL);
351
352                 /* Record the queue selected by VF so that it can be
353                  * used for common case where VF has more queues than
354                  * the synthetic device.
355                  */
356                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
357         } else {
358                 txq = netvsc_pick_tx(ndev, skb);
359         }
360         rcu_read_unlock();
361
362         while (unlikely(txq >= ndev->real_num_tx_queues))
363                 txq -= ndev->real_num_tx_queues;
364
365         return txq;
366 }
367
368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
369                        struct hv_page_buffer *pb)
370 {
371         int j = 0;
372
373         /* Deal with compund pages by ignoring unused part
374          * of the page.
375          */
376         page += (offset >> PAGE_SHIFT);
377         offset &= ~PAGE_MASK;
378
379         while (len > 0) {
380                 unsigned long bytes;
381
382                 bytes = PAGE_SIZE - offset;
383                 if (bytes > len)
384                         bytes = len;
385                 pb[j].pfn = page_to_pfn(page);
386                 pb[j].offset = offset;
387                 pb[j].len = bytes;
388
389                 offset += bytes;
390                 len -= bytes;
391
392                 if (offset == PAGE_SIZE && len) {
393                         page++;
394                         offset = 0;
395                         j++;
396                 }
397         }
398
399         return j + 1;
400 }
401
402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
403                            struct hv_netvsc_packet *packet,
404                            struct hv_page_buffer *pb)
405 {
406         u32 slots_used = 0;
407         char *data = skb->data;
408         int frags = skb_shinfo(skb)->nr_frags;
409         int i;
410
411         /* The packet is laid out thus:
412          * 1. hdr: RNDIS header and PPI
413          * 2. skb linear data
414          * 3. skb fragment data
415          */
416         slots_used += fill_pg_buf(virt_to_page(hdr),
417                                   offset_in_page(hdr),
418                                   len, &pb[slots_used]);
419
420         packet->rmsg_size = len;
421         packet->rmsg_pgcnt = slots_used;
422
423         slots_used += fill_pg_buf(virt_to_page(data),
424                                 offset_in_page(data),
425                                 skb_headlen(skb), &pb[slots_used]);
426
427         for (i = 0; i < frags; i++) {
428                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
429
430                 slots_used += fill_pg_buf(skb_frag_page(frag),
431                                         frag->page_offset,
432                                         skb_frag_size(frag), &pb[slots_used]);
433         }
434         return slots_used;
435 }
436
437 static int count_skb_frag_slots(struct sk_buff *skb)
438 {
439         int i, frags = skb_shinfo(skb)->nr_frags;
440         int pages = 0;
441
442         for (i = 0; i < frags; i++) {
443                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
444                 unsigned long size = skb_frag_size(frag);
445                 unsigned long offset = frag->page_offset;
446
447                 /* Skip unused frames from start of page */
448                 offset &= ~PAGE_MASK;
449                 pages += PFN_UP(offset + size);
450         }
451         return pages;
452 }
453
454 static int netvsc_get_slots(struct sk_buff *skb)
455 {
456         char *data = skb->data;
457         unsigned int offset = offset_in_page(data);
458         unsigned int len = skb_headlen(skb);
459         int slots;
460         int frag_slots;
461
462         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
463         frag_slots = count_skb_frag_slots(skb);
464         return slots + frag_slots;
465 }
466
467 static u32 net_checksum_info(struct sk_buff *skb)
468 {
469         if (skb->protocol == htons(ETH_P_IP)) {
470                 struct iphdr *ip = ip_hdr(skb);
471
472                 if (ip->protocol == IPPROTO_TCP)
473                         return TRANSPORT_INFO_IPV4_TCP;
474                 else if (ip->protocol == IPPROTO_UDP)
475                         return TRANSPORT_INFO_IPV4_UDP;
476         } else {
477                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
478
479                 if (ip6->nexthdr == IPPROTO_TCP)
480                         return TRANSPORT_INFO_IPV6_TCP;
481                 else if (ip6->nexthdr == IPPROTO_UDP)
482                         return TRANSPORT_INFO_IPV6_UDP;
483         }
484
485         return TRANSPORT_INFO_NOT_IP;
486 }
487
488 /* Send skb on the slave VF device. */
489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
490                           struct sk_buff *skb)
491 {
492         struct net_device_context *ndev_ctx = netdev_priv(net);
493         unsigned int len = skb->len;
494         int rc;
495
496         skb->dev = vf_netdev;
497         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
498
499         rc = dev_queue_xmit(skb);
500         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
501                 struct netvsc_vf_pcpu_stats *pcpu_stats
502                         = this_cpu_ptr(ndev_ctx->vf_stats);
503
504                 u64_stats_update_begin(&pcpu_stats->syncp);
505                 pcpu_stats->tx_packets++;
506                 pcpu_stats->tx_bytes += len;
507                 u64_stats_update_end(&pcpu_stats->syncp);
508         } else {
509                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
510         }
511
512         return rc;
513 }
514
515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
516 {
517         struct net_device_context *net_device_ctx = netdev_priv(net);
518         struct hv_netvsc_packet *packet = NULL;
519         int ret;
520         unsigned int num_data_pgs;
521         struct rndis_message *rndis_msg;
522         struct net_device *vf_netdev;
523         u32 rndis_msg_size;
524         u32 hash;
525         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
526
527         /* if VF is present and up then redirect packets
528          * already called with rcu_read_lock_bh
529          */
530         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
531         if (vf_netdev && netif_running(vf_netdev) &&
532             !netpoll_tx_running(net))
533                 return netvsc_vf_xmit(net, vf_netdev, skb);
534
535         /* We will atmost need two pages to describe the rndis
536          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
537          * of pages in a single packet. If skb is scattered around
538          * more pages we try linearizing it.
539          */
540
541         num_data_pgs = netvsc_get_slots(skb) + 2;
542
543         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
544                 ++net_device_ctx->eth_stats.tx_scattered;
545
546                 if (skb_linearize(skb))
547                         goto no_memory;
548
549                 num_data_pgs = netvsc_get_slots(skb) + 2;
550                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
551                         ++net_device_ctx->eth_stats.tx_too_big;
552                         goto drop;
553                 }
554         }
555
556         /*
557          * Place the rndis header in the skb head room and
558          * the skb->cb will be used for hv_netvsc_packet
559          * structure.
560          */
561         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
562         if (ret)
563                 goto no_memory;
564
565         /* Use the skb control buffer for building up the packet */
566         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
567                         FIELD_SIZEOF(struct sk_buff, cb));
568         packet = (struct hv_netvsc_packet *)skb->cb;
569
570         packet->q_idx = skb_get_queue_mapping(skb);
571
572         packet->total_data_buflen = skb->len;
573         packet->total_bytes = skb->len;
574         packet->total_packets = 1;
575
576         rndis_msg = (struct rndis_message *)skb->head;
577
578         /* Add the rndis header */
579         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
580         rndis_msg->msg_len = packet->total_data_buflen;
581
582         rndis_msg->msg.pkt = (struct rndis_packet) {
583                 .data_offset = sizeof(struct rndis_packet),
584                 .data_len = packet->total_data_buflen,
585                 .per_pkt_info_offset = sizeof(struct rndis_packet),
586         };
587
588         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
589
590         hash = skb_get_hash_raw(skb);
591         if (hash != 0 && net->real_num_tx_queues > 1) {
592                 u32 *hash_info;
593
594                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
595                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
596                                           NBL_HASH_VALUE);
597                 *hash_info = hash;
598         }
599
600         if (skb_vlan_tag_present(skb)) {
601                 struct ndis_pkt_8021q_info *vlan;
602
603                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
604                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
605                                      IEEE_8021Q_INFO);
606
607                 vlan->value = 0;
608                 vlan->vlanid = skb_vlan_tag_get_id(skb);
609                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
610                 vlan->pri = skb_vlan_tag_get_prio(skb);
611         }
612
613         if (skb_is_gso(skb)) {
614                 struct ndis_tcp_lso_info *lso_info;
615
616                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
617                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
618                                          TCP_LARGESEND_PKTINFO);
619
620                 lso_info->value = 0;
621                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
622                 if (skb->protocol == htons(ETH_P_IP)) {
623                         lso_info->lso_v2_transmit.ip_version =
624                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
625                         ip_hdr(skb)->tot_len = 0;
626                         ip_hdr(skb)->check = 0;
627                         tcp_hdr(skb)->check =
628                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
629                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
630                 } else {
631                         lso_info->lso_v2_transmit.ip_version =
632                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
633                         ipv6_hdr(skb)->payload_len = 0;
634                         tcp_hdr(skb)->check =
635                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
636                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637                 }
638                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
639                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
640         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
641                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
642                         struct ndis_tcp_ip_checksum_info *csum_info;
643
644                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
645                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
646                                                   TCPIP_CHKSUM_PKTINFO);
647
648                         csum_info->value = 0;
649                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
650
651                         if (skb->protocol == htons(ETH_P_IP)) {
652                                 csum_info->transmit.is_ipv4 = 1;
653
654                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
655                                         csum_info->transmit.tcp_checksum = 1;
656                                 else
657                                         csum_info->transmit.udp_checksum = 1;
658                         } else {
659                                 csum_info->transmit.is_ipv6 = 1;
660
661                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
662                                         csum_info->transmit.tcp_checksum = 1;
663                                 else
664                                         csum_info->transmit.udp_checksum = 1;
665                         }
666                 } else {
667                         /* Can't do offload of this type of checksum */
668                         if (skb_checksum_help(skb))
669                                 goto drop;
670                 }
671         }
672
673         /* Start filling in the page buffers with the rndis hdr */
674         rndis_msg->msg_len += rndis_msg_size;
675         packet->total_data_buflen = rndis_msg->msg_len;
676         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
677                                                skb, packet, pb);
678
679         /* timestamp packet in software */
680         skb_tx_timestamp(skb);
681
682         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
683         if (likely(ret == 0))
684                 return NETDEV_TX_OK;
685
686         if (ret == -EAGAIN) {
687                 ++net_device_ctx->eth_stats.tx_busy;
688                 return NETDEV_TX_BUSY;
689         }
690
691         if (ret == -ENOSPC)
692                 ++net_device_ctx->eth_stats.tx_no_space;
693
694 drop:
695         dev_kfree_skb_any(skb);
696         net->stats.tx_dropped++;
697
698         return NETDEV_TX_OK;
699
700 no_memory:
701         ++net_device_ctx->eth_stats.tx_no_memory;
702         goto drop;
703 }
704
705 /*
706  * netvsc_linkstatus_callback - Link up/down notification
707  */
708 void netvsc_linkstatus_callback(struct net_device *net,
709                                 struct rndis_message *resp)
710 {
711         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
712         struct net_device_context *ndev_ctx = netdev_priv(net);
713         struct netvsc_reconfig *event;
714         unsigned long flags;
715
716         /* Update the physical link speed when changing to another vSwitch */
717         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
718                 u32 speed;
719
720                 speed = *(u32 *)((void *)indicate
721                                  + indicate->status_buf_offset) / 10000;
722                 ndev_ctx->speed = speed;
723                 return;
724         }
725
726         /* Handle these link change statuses below */
727         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
728             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
729             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
730                 return;
731
732         if (net->reg_state != NETREG_REGISTERED)
733                 return;
734
735         event = kzalloc(sizeof(*event), GFP_ATOMIC);
736         if (!event)
737                 return;
738         event->event = indicate->status;
739
740         spin_lock_irqsave(&ndev_ctx->lock, flags);
741         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
742         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
743
744         schedule_delayed_work(&ndev_ctx->dwork, 0);
745 }
746
747 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
748                                              struct netvsc_channel *nvchan)
749 {
750         struct napi_struct *napi = &nvchan->napi;
751         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
752         const struct ndis_tcp_ip_checksum_info *csum_info =
753                                                 nvchan->rsc.csum_info;
754         struct sk_buff *skb;
755         int i;
756
757         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
758         if (!skb)
759                 return skb;
760
761         /*
762          * Copy to skb. This copy is needed here since the memory pointed by
763          * hv_netvsc_packet cannot be deallocated
764          */
765         for (i = 0; i < nvchan->rsc.cnt; i++)
766                 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
767
768         skb->protocol = eth_type_trans(skb, net);
769
770         /* skb is already created with CHECKSUM_NONE */
771         skb_checksum_none_assert(skb);
772
773         /*
774          * In Linux, the IP checksum is always checked.
775          * Do L4 checksum offload if enabled and present.
776          */
777         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
778                 if (csum_info->receive.tcp_checksum_succeeded ||
779                     csum_info->receive.udp_checksum_succeeded)
780                         skb->ip_summed = CHECKSUM_UNNECESSARY;
781         }
782
783         if (vlan) {
784                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
785                         (vlan->cfi ? VLAN_CFI_MASK : 0);
786
787                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
788                                        vlan_tci);
789         }
790
791         return skb;
792 }
793
794 /*
795  * netvsc_recv_callback -  Callback when we receive a packet from the
796  * "wire" on the specified device.
797  */
798 int netvsc_recv_callback(struct net_device *net,
799                          struct netvsc_device *net_device,
800                          struct netvsc_channel *nvchan)
801 {
802         struct net_device_context *net_device_ctx = netdev_priv(net);
803         struct vmbus_channel *channel = nvchan->channel;
804         u16 q_idx = channel->offermsg.offer.sub_channel_index;
805         struct sk_buff *skb;
806         struct netvsc_stats *rx_stats;
807
808         if (net->reg_state != NETREG_REGISTERED)
809                 return NVSP_STAT_FAIL;
810
811         /* Allocate a skb - TODO direct I/O to pages? */
812         skb = netvsc_alloc_recv_skb(net, nvchan);
813
814         if (unlikely(!skb)) {
815                 ++net_device_ctx->eth_stats.rx_no_memory;
816                 rcu_read_unlock();
817                 return NVSP_STAT_FAIL;
818         }
819
820         skb_record_rx_queue(skb, q_idx);
821
822         /*
823          * Even if injecting the packet, record the statistics
824          * on the synthetic device because modifying the VF device
825          * statistics will not work correctly.
826          */
827         rx_stats = &nvchan->rx_stats;
828         u64_stats_update_begin(&rx_stats->syncp);
829         rx_stats->packets++;
830         rx_stats->bytes += nvchan->rsc.pktlen;
831
832         if (skb->pkt_type == PACKET_BROADCAST)
833                 ++rx_stats->broadcast;
834         else if (skb->pkt_type == PACKET_MULTICAST)
835                 ++rx_stats->multicast;
836         u64_stats_update_end(&rx_stats->syncp);
837
838         napi_gro_receive(&nvchan->napi, skb);
839         return NVSP_STAT_SUCCESS;
840 }
841
842 static void netvsc_get_drvinfo(struct net_device *net,
843                                struct ethtool_drvinfo *info)
844 {
845         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
846         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
847 }
848
849 static void netvsc_get_channels(struct net_device *net,
850                                 struct ethtool_channels *channel)
851 {
852         struct net_device_context *net_device_ctx = netdev_priv(net);
853         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
854
855         if (nvdev) {
856                 channel->max_combined   = nvdev->max_chn;
857                 channel->combined_count = nvdev->num_chn;
858         }
859 }
860
861 static int netvsc_detach(struct net_device *ndev,
862                          struct netvsc_device *nvdev)
863 {
864         struct net_device_context *ndev_ctx = netdev_priv(ndev);
865         struct hv_device *hdev = ndev_ctx->device_ctx;
866         int ret;
867
868         /* Don't try continuing to try and setup sub channels */
869         if (cancel_work_sync(&nvdev->subchan_work))
870                 nvdev->num_chn = 1;
871
872         /* If device was up (receiving) then shutdown */
873         if (netif_running(ndev)) {
874                 netif_tx_disable(ndev);
875
876                 ret = rndis_filter_close(nvdev);
877                 if (ret) {
878                         netdev_err(ndev,
879                                    "unable to close device (ret %d).\n", ret);
880                         return ret;
881                 }
882
883                 ret = netvsc_wait_until_empty(nvdev);
884                 if (ret) {
885                         netdev_err(ndev,
886                                    "Ring buffer not empty after closing rndis\n");
887                         return ret;
888                 }
889         }
890
891         netif_device_detach(ndev);
892
893         rndis_filter_device_remove(hdev, nvdev);
894
895         return 0;
896 }
897
898 static int netvsc_attach(struct net_device *ndev,
899                          struct netvsc_device_info *dev_info)
900 {
901         struct net_device_context *ndev_ctx = netdev_priv(ndev);
902         struct hv_device *hdev = ndev_ctx->device_ctx;
903         struct netvsc_device *nvdev;
904         struct rndis_device *rdev;
905         int ret;
906
907         nvdev = rndis_filter_device_add(hdev, dev_info);
908         if (IS_ERR(nvdev))
909                 return PTR_ERR(nvdev);
910
911         if (nvdev->num_chn > 1) {
912                 ret = rndis_set_subchannel(ndev, nvdev);
913
914                 /* if unavailable, just proceed with one queue */
915                 if (ret) {
916                         nvdev->max_chn = 1;
917                         nvdev->num_chn = 1;
918                 }
919         }
920
921         /* In any case device is now ready */
922         netif_device_attach(ndev);
923
924         /* Note: enable and attach happen when sub-channels setup */
925         netif_carrier_off(ndev);
926
927         if (netif_running(ndev)) {
928                 ret = rndis_filter_open(nvdev);
929                 if (ret)
930                         return ret;
931
932                 rdev = nvdev->extension;
933                 if (!rdev->link_state)
934                         netif_carrier_on(ndev);
935         }
936
937         return 0;
938 }
939
940 static int netvsc_set_channels(struct net_device *net,
941                                struct ethtool_channels *channels)
942 {
943         struct net_device_context *net_device_ctx = netdev_priv(net);
944         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
945         unsigned int orig, count = channels->combined_count;
946         struct netvsc_device_info device_info;
947         int ret;
948
949         /* We do not support separate count for rx, tx, or other */
950         if (count == 0 ||
951             channels->rx_count || channels->tx_count || channels->other_count)
952                 return -EINVAL;
953
954         if (!nvdev || nvdev->destroy)
955                 return -ENODEV;
956
957         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
958                 return -EINVAL;
959
960         if (count > nvdev->max_chn)
961                 return -EINVAL;
962
963         orig = nvdev->num_chn;
964
965         memset(&device_info, 0, sizeof(device_info));
966         device_info.num_chn = count;
967         device_info.send_sections = nvdev->send_section_cnt;
968         device_info.send_section_size = nvdev->send_section_size;
969         device_info.recv_sections = nvdev->recv_section_cnt;
970         device_info.recv_section_size = nvdev->recv_section_size;
971
972         ret = netvsc_detach(net, nvdev);
973         if (ret)
974                 return ret;
975
976         ret = netvsc_attach(net, &device_info);
977         if (ret) {
978                 device_info.num_chn = orig;
979                 if (netvsc_attach(net, &device_info))
980                         netdev_err(net, "restoring channel setting failed\n");
981         }
982
983         return ret;
984 }
985
986 static bool
987 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
988 {
989         struct ethtool_link_ksettings diff1 = *cmd;
990         struct ethtool_link_ksettings diff2 = {};
991
992         diff1.base.speed = 0;
993         diff1.base.duplex = 0;
994         /* advertising and cmd are usually set */
995         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
996         diff1.base.cmd = 0;
997         /* We set port to PORT_OTHER */
998         diff2.base.port = PORT_OTHER;
999
1000         return !memcmp(&diff1, &diff2, sizeof(diff1));
1001 }
1002
1003 static void netvsc_init_settings(struct net_device *dev)
1004 {
1005         struct net_device_context *ndc = netdev_priv(dev);
1006
1007         ndc->l4_hash = HV_DEFAULT_L4HASH;
1008
1009         ndc->speed = SPEED_UNKNOWN;
1010         ndc->duplex = DUPLEX_FULL;
1011
1012         dev->features = NETIF_F_LRO;
1013 }
1014
1015 static int netvsc_get_link_ksettings(struct net_device *dev,
1016                                      struct ethtool_link_ksettings *cmd)
1017 {
1018         struct net_device_context *ndc = netdev_priv(dev);
1019
1020         cmd->base.speed = ndc->speed;
1021         cmd->base.duplex = ndc->duplex;
1022         cmd->base.port = PORT_OTHER;
1023
1024         return 0;
1025 }
1026
1027 static int netvsc_set_link_ksettings(struct net_device *dev,
1028                                      const struct ethtool_link_ksettings *cmd)
1029 {
1030         struct net_device_context *ndc = netdev_priv(dev);
1031         u32 speed;
1032
1033         speed = cmd->base.speed;
1034         if (!ethtool_validate_speed(speed) ||
1035             !ethtool_validate_duplex(cmd->base.duplex) ||
1036             !netvsc_validate_ethtool_ss_cmd(cmd))
1037                 return -EINVAL;
1038
1039         ndc->speed = speed;
1040         ndc->duplex = cmd->base.duplex;
1041
1042         return 0;
1043 }
1044
1045 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1046 {
1047         struct net_device_context *ndevctx = netdev_priv(ndev);
1048         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1049         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1050         int orig_mtu = ndev->mtu;
1051         struct netvsc_device_info device_info;
1052         int ret = 0;
1053
1054         if (!nvdev || nvdev->destroy)
1055                 return -ENODEV;
1056
1057         /* Change MTU of underlying VF netdev first. */
1058         if (vf_netdev) {
1059                 ret = dev_set_mtu(vf_netdev, mtu);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         memset(&device_info, 0, sizeof(device_info));
1065         device_info.num_chn = nvdev->num_chn;
1066         device_info.send_sections = nvdev->send_section_cnt;
1067         device_info.send_section_size = nvdev->send_section_size;
1068         device_info.recv_sections = nvdev->recv_section_cnt;
1069         device_info.recv_section_size = nvdev->recv_section_size;
1070
1071         ret = netvsc_detach(ndev, nvdev);
1072         if (ret)
1073                 goto rollback_vf;
1074
1075         ndev->mtu = mtu;
1076
1077         ret = netvsc_attach(ndev, &device_info);
1078         if (ret)
1079                 goto rollback;
1080
1081         return 0;
1082
1083 rollback:
1084         /* Attempt rollback to original MTU */
1085         ndev->mtu = orig_mtu;
1086
1087         if (netvsc_attach(ndev, &device_info))
1088                 netdev_err(ndev, "restoring mtu failed\n");
1089 rollback_vf:
1090         if (vf_netdev)
1091                 dev_set_mtu(vf_netdev, orig_mtu);
1092
1093         return ret;
1094 }
1095
1096 static void netvsc_get_vf_stats(struct net_device *net,
1097                                 struct netvsc_vf_pcpu_stats *tot)
1098 {
1099         struct net_device_context *ndev_ctx = netdev_priv(net);
1100         int i;
1101
1102         memset(tot, 0, sizeof(*tot));
1103
1104         for_each_possible_cpu(i) {
1105                 const struct netvsc_vf_pcpu_stats *stats
1106                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1107                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1108                 unsigned int start;
1109
1110                 do {
1111                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1112                         rx_packets = stats->rx_packets;
1113                         tx_packets = stats->tx_packets;
1114                         rx_bytes = stats->rx_bytes;
1115                         tx_bytes = stats->tx_bytes;
1116                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1117
1118                 tot->rx_packets += rx_packets;
1119                 tot->tx_packets += tx_packets;
1120                 tot->rx_bytes   += rx_bytes;
1121                 tot->tx_bytes   += tx_bytes;
1122                 tot->tx_dropped += stats->tx_dropped;
1123         }
1124 }
1125
1126 static void netvsc_get_pcpu_stats(struct net_device *net,
1127                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1128 {
1129         struct net_device_context *ndev_ctx = netdev_priv(net);
1130         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1131         int i;
1132
1133         /* fetch percpu stats of vf */
1134         for_each_possible_cpu(i) {
1135                 const struct netvsc_vf_pcpu_stats *stats =
1136                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1137                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1138                 unsigned int start;
1139
1140                 do {
1141                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1142                         this_tot->vf_rx_packets = stats->rx_packets;
1143                         this_tot->vf_tx_packets = stats->tx_packets;
1144                         this_tot->vf_rx_bytes = stats->rx_bytes;
1145                         this_tot->vf_tx_bytes = stats->tx_bytes;
1146                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1147                 this_tot->rx_packets = this_tot->vf_rx_packets;
1148                 this_tot->tx_packets = this_tot->vf_tx_packets;
1149                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1150                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1151         }
1152
1153         /* fetch percpu stats of netvsc */
1154         for (i = 0; i < nvdev->num_chn; i++) {
1155                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1156                 const struct netvsc_stats *stats;
1157                 struct netvsc_ethtool_pcpu_stats *this_tot =
1158                         &pcpu_tot[nvchan->channel->target_cpu];
1159                 u64 packets, bytes;
1160                 unsigned int start;
1161
1162                 stats = &nvchan->tx_stats;
1163                 do {
1164                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1165                         packets = stats->packets;
1166                         bytes = stats->bytes;
1167                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1168
1169                 this_tot->tx_bytes      += bytes;
1170                 this_tot->tx_packets    += packets;
1171
1172                 stats = &nvchan->rx_stats;
1173                 do {
1174                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1175                         packets = stats->packets;
1176                         bytes = stats->bytes;
1177                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179                 this_tot->rx_bytes      += bytes;
1180                 this_tot->rx_packets    += packets;
1181         }
1182 }
1183
1184 static void netvsc_get_stats64(struct net_device *net,
1185                                struct rtnl_link_stats64 *t)
1186 {
1187         struct net_device_context *ndev_ctx = netdev_priv(net);
1188         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1189         struct netvsc_vf_pcpu_stats vf_tot;
1190         int i;
1191
1192         if (!nvdev)
1193                 return;
1194
1195         netdev_stats_to_stats64(t, &net->stats);
1196
1197         netvsc_get_vf_stats(net, &vf_tot);
1198         t->rx_packets += vf_tot.rx_packets;
1199         t->tx_packets += vf_tot.tx_packets;
1200         t->rx_bytes   += vf_tot.rx_bytes;
1201         t->tx_bytes   += vf_tot.tx_bytes;
1202         t->tx_dropped += vf_tot.tx_dropped;
1203
1204         for (i = 0; i < nvdev->num_chn; i++) {
1205                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1206                 const struct netvsc_stats *stats;
1207                 u64 packets, bytes, multicast;
1208                 unsigned int start;
1209
1210                 stats = &nvchan->tx_stats;
1211                 do {
1212                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1213                         packets = stats->packets;
1214                         bytes = stats->bytes;
1215                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1216
1217                 t->tx_bytes     += bytes;
1218                 t->tx_packets   += packets;
1219
1220                 stats = &nvchan->rx_stats;
1221                 do {
1222                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1223                         packets = stats->packets;
1224                         bytes = stats->bytes;
1225                         multicast = stats->multicast + stats->broadcast;
1226                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1227
1228                 t->rx_bytes     += bytes;
1229                 t->rx_packets   += packets;
1230                 t->multicast    += multicast;
1231         }
1232 }
1233
1234 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1235 {
1236         struct net_device_context *ndc = netdev_priv(ndev);
1237         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1238         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1239         struct sockaddr *addr = p;
1240         int err;
1241
1242         err = eth_prepare_mac_addr_change(ndev, p);
1243         if (err)
1244                 return err;
1245
1246         if (!nvdev)
1247                 return -ENODEV;
1248
1249         if (vf_netdev) {
1250                 err = dev_set_mac_address(vf_netdev, addr);
1251                 if (err)
1252                         return err;
1253         }
1254
1255         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1256         if (!err) {
1257                 eth_commit_mac_addr_change(ndev, p);
1258         } else if (vf_netdev) {
1259                 /* rollback change on VF */
1260                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1261                 dev_set_mac_address(vf_netdev, addr);
1262         }
1263
1264         return err;
1265 }
1266
1267 static const struct {
1268         char name[ETH_GSTRING_LEN];
1269         u16 offset;
1270 } netvsc_stats[] = {
1271         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1272         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1273         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1274         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1275         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1276         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1277         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1278         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1279         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1280         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1281 }, pcpu_stats[] = {
1282         { "cpu%u_rx_packets",
1283                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1284         { "cpu%u_rx_bytes",
1285                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1286         { "cpu%u_tx_packets",
1287                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1288         { "cpu%u_tx_bytes",
1289                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1290         { "cpu%u_vf_rx_packets",
1291                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1292         { "cpu%u_vf_rx_bytes",
1293                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1294         { "cpu%u_vf_tx_packets",
1295                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1296         { "cpu%u_vf_tx_bytes",
1297                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1298 }, vf_stats[] = {
1299         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1300         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1301         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1302         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1303         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1304 };
1305
1306 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1307 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1308
1309 /* statistics per queue (rx/tx packets/bytes) */
1310 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1311
1312 /* 4 statistics per queue (rx/tx packets/bytes) */
1313 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1314
1315 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1316 {
1317         struct net_device_context *ndc = netdev_priv(dev);
1318         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1319
1320         if (!nvdev)
1321                 return -ENODEV;
1322
1323         switch (string_set) {
1324         case ETH_SS_STATS:
1325                 return NETVSC_GLOBAL_STATS_LEN
1326                         + NETVSC_VF_STATS_LEN
1327                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1328                         + NETVSC_PCPU_STATS_LEN;
1329         default:
1330                 return -EINVAL;
1331         }
1332 }
1333
1334 static void netvsc_get_ethtool_stats(struct net_device *dev,
1335                                      struct ethtool_stats *stats, u64 *data)
1336 {
1337         struct net_device_context *ndc = netdev_priv(dev);
1338         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1339         const void *nds = &ndc->eth_stats;
1340         const struct netvsc_stats *qstats;
1341         struct netvsc_vf_pcpu_stats sum;
1342         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1343         unsigned int start;
1344         u64 packets, bytes;
1345         int i, j, cpu;
1346
1347         if (!nvdev)
1348                 return;
1349
1350         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1351                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1352
1353         netvsc_get_vf_stats(dev, &sum);
1354         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1355                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1356
1357         for (j = 0; j < nvdev->num_chn; j++) {
1358                 qstats = &nvdev->chan_table[j].tx_stats;
1359
1360                 do {
1361                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1362                         packets = qstats->packets;
1363                         bytes = qstats->bytes;
1364                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1365                 data[i++] = packets;
1366                 data[i++] = bytes;
1367
1368                 qstats = &nvdev->chan_table[j].rx_stats;
1369                 do {
1370                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1371                         packets = qstats->packets;
1372                         bytes = qstats->bytes;
1373                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1374                 data[i++] = packets;
1375                 data[i++] = bytes;
1376         }
1377
1378         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1379                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1380                                   GFP_KERNEL);
1381         netvsc_get_pcpu_stats(dev, pcpu_sum);
1382         for_each_present_cpu(cpu) {
1383                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1384
1385                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1386                         data[i++] = *(u64 *)((void *)this_sum
1387                                              + pcpu_stats[j].offset);
1388         }
1389         kvfree(pcpu_sum);
1390 }
1391
1392 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1393 {
1394         struct net_device_context *ndc = netdev_priv(dev);
1395         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1396         u8 *p = data;
1397         int i, cpu;
1398
1399         if (!nvdev)
1400                 return;
1401
1402         switch (stringset) {
1403         case ETH_SS_STATS:
1404                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1405                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1406                         p += ETH_GSTRING_LEN;
1407                 }
1408
1409                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1410                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1411                         p += ETH_GSTRING_LEN;
1412                 }
1413
1414                 for (i = 0; i < nvdev->num_chn; i++) {
1415                         sprintf(p, "tx_queue_%u_packets", i);
1416                         p += ETH_GSTRING_LEN;
1417                         sprintf(p, "tx_queue_%u_bytes", i);
1418                         p += ETH_GSTRING_LEN;
1419                         sprintf(p, "rx_queue_%u_packets", i);
1420                         p += ETH_GSTRING_LEN;
1421                         sprintf(p, "rx_queue_%u_bytes", i);
1422                         p += ETH_GSTRING_LEN;
1423                 }
1424
1425                 for_each_present_cpu(cpu) {
1426                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1427                                 sprintf(p, pcpu_stats[i].name, cpu);
1428                                 p += ETH_GSTRING_LEN;
1429                         }
1430                 }
1431
1432                 break;
1433         }
1434 }
1435
1436 static int
1437 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1438                          struct ethtool_rxnfc *info)
1439 {
1440         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1441
1442         info->data = RXH_IP_SRC | RXH_IP_DST;
1443
1444         switch (info->flow_type) {
1445         case TCP_V4_FLOW:
1446                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1447                         info->data |= l4_flag;
1448
1449                 break;
1450
1451         case TCP_V6_FLOW:
1452                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1453                         info->data |= l4_flag;
1454
1455                 break;
1456
1457         case UDP_V4_FLOW:
1458                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1459                         info->data |= l4_flag;
1460
1461                 break;
1462
1463         case UDP_V6_FLOW:
1464                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1465                         info->data |= l4_flag;
1466
1467                 break;
1468
1469         case IPV4_FLOW:
1470         case IPV6_FLOW:
1471                 break;
1472         default:
1473                 info->data = 0;
1474                 break;
1475         }
1476
1477         return 0;
1478 }
1479
1480 static int
1481 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1482                  u32 *rules)
1483 {
1484         struct net_device_context *ndc = netdev_priv(dev);
1485         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1486
1487         if (!nvdev)
1488                 return -ENODEV;
1489
1490         switch (info->cmd) {
1491         case ETHTOOL_GRXRINGS:
1492                 info->data = nvdev->num_chn;
1493                 return 0;
1494
1495         case ETHTOOL_GRXFH:
1496                 return netvsc_get_rss_hash_opts(ndc, info);
1497         }
1498         return -EOPNOTSUPP;
1499 }
1500
1501 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1502                                     struct ethtool_rxnfc *info)
1503 {
1504         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1505                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1506                 switch (info->flow_type) {
1507                 case TCP_V4_FLOW:
1508                         ndc->l4_hash |= HV_TCP4_L4HASH;
1509                         break;
1510
1511                 case TCP_V6_FLOW:
1512                         ndc->l4_hash |= HV_TCP6_L4HASH;
1513                         break;
1514
1515                 case UDP_V4_FLOW:
1516                         ndc->l4_hash |= HV_UDP4_L4HASH;
1517                         break;
1518
1519                 case UDP_V6_FLOW:
1520                         ndc->l4_hash |= HV_UDP6_L4HASH;
1521                         break;
1522
1523                 default:
1524                         return -EOPNOTSUPP;
1525                 }
1526
1527                 return 0;
1528         }
1529
1530         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1531                 switch (info->flow_type) {
1532                 case TCP_V4_FLOW:
1533                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1534                         break;
1535
1536                 case TCP_V6_FLOW:
1537                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1538                         break;
1539
1540                 case UDP_V4_FLOW:
1541                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1542                         break;
1543
1544                 case UDP_V6_FLOW:
1545                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1546                         break;
1547
1548                 default:
1549                         return -EOPNOTSUPP;
1550                 }
1551
1552                 return 0;
1553         }
1554
1555         return -EOPNOTSUPP;
1556 }
1557
1558 static int
1559 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1560 {
1561         struct net_device_context *ndc = netdev_priv(ndev);
1562
1563         if (info->cmd == ETHTOOL_SRXFH)
1564                 return netvsc_set_rss_hash_opts(ndc, info);
1565
1566         return -EOPNOTSUPP;
1567 }
1568
1569 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1570 {
1571         return NETVSC_HASH_KEYLEN;
1572 }
1573
1574 static u32 netvsc_rss_indir_size(struct net_device *dev)
1575 {
1576         return ITAB_NUM;
1577 }
1578
1579 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1580                            u8 *hfunc)
1581 {
1582         struct net_device_context *ndc = netdev_priv(dev);
1583         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1584         struct rndis_device *rndis_dev;
1585         int i;
1586
1587         if (!ndev)
1588                 return -ENODEV;
1589
1590         if (hfunc)
1591                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1592
1593         rndis_dev = ndev->extension;
1594         if (indir) {
1595                 for (i = 0; i < ITAB_NUM; i++)
1596                         indir[i] = rndis_dev->rx_table[i];
1597         }
1598
1599         if (key)
1600                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1601
1602         return 0;
1603 }
1604
1605 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1606                            const u8 *key, const u8 hfunc)
1607 {
1608         struct net_device_context *ndc = netdev_priv(dev);
1609         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1610         struct rndis_device *rndis_dev;
1611         int i;
1612
1613         if (!ndev)
1614                 return -ENODEV;
1615
1616         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1617                 return -EOPNOTSUPP;
1618
1619         rndis_dev = ndev->extension;
1620         if (indir) {
1621                 for (i = 0; i < ITAB_NUM; i++)
1622                         if (indir[i] >= ndev->num_chn)
1623                                 return -EINVAL;
1624
1625                 for (i = 0; i < ITAB_NUM; i++)
1626                         rndis_dev->rx_table[i] = indir[i];
1627         }
1628
1629         if (!key) {
1630                 if (!indir)
1631                         return 0;
1632
1633                 key = rndis_dev->rss_key;
1634         }
1635
1636         return rndis_filter_set_rss_param(rndis_dev, key);
1637 }
1638
1639 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1640  * It does have pre-allocated receive area which is divided into sections.
1641  */
1642 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1643                                    struct ethtool_ringparam *ring)
1644 {
1645         u32 max_buf_size;
1646
1647         ring->rx_pending = nvdev->recv_section_cnt;
1648         ring->tx_pending = nvdev->send_section_cnt;
1649
1650         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1651                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1652         else
1653                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1654
1655         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1656         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1657                 / nvdev->send_section_size;
1658 }
1659
1660 static void netvsc_get_ringparam(struct net_device *ndev,
1661                                  struct ethtool_ringparam *ring)
1662 {
1663         struct net_device_context *ndevctx = netdev_priv(ndev);
1664         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1665
1666         if (!nvdev)
1667                 return;
1668
1669         __netvsc_get_ringparam(nvdev, ring);
1670 }
1671
1672 static int netvsc_set_ringparam(struct net_device *ndev,
1673                                 struct ethtool_ringparam *ring)
1674 {
1675         struct net_device_context *ndevctx = netdev_priv(ndev);
1676         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1677         struct netvsc_device_info device_info;
1678         struct ethtool_ringparam orig;
1679         u32 new_tx, new_rx;
1680         int ret = 0;
1681
1682         if (!nvdev || nvdev->destroy)
1683                 return -ENODEV;
1684
1685         memset(&orig, 0, sizeof(orig));
1686         __netvsc_get_ringparam(nvdev, &orig);
1687
1688         new_tx = clamp_t(u32, ring->tx_pending,
1689                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1690         new_rx = clamp_t(u32, ring->rx_pending,
1691                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1692
1693         if (new_tx == orig.tx_pending &&
1694             new_rx == orig.rx_pending)
1695                 return 0;        /* no change */
1696
1697         memset(&device_info, 0, sizeof(device_info));
1698         device_info.num_chn = nvdev->num_chn;
1699         device_info.send_sections = new_tx;
1700         device_info.send_section_size = nvdev->send_section_size;
1701         device_info.recv_sections = new_rx;
1702         device_info.recv_section_size = nvdev->recv_section_size;
1703
1704         ret = netvsc_detach(ndev, nvdev);
1705         if (ret)
1706                 return ret;
1707
1708         ret = netvsc_attach(ndev, &device_info);
1709         if (ret) {
1710                 device_info.send_sections = orig.tx_pending;
1711                 device_info.recv_sections = orig.rx_pending;
1712
1713                 if (netvsc_attach(ndev, &device_info))
1714                         netdev_err(ndev, "restoring ringparam failed");
1715         }
1716
1717         return ret;
1718 }
1719
1720 static int netvsc_set_features(struct net_device *ndev,
1721                                netdev_features_t features)
1722 {
1723         netdev_features_t change = features ^ ndev->features;
1724         struct net_device_context *ndevctx = netdev_priv(ndev);
1725         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1726         struct ndis_offload_params offloads;
1727
1728         if (!nvdev || nvdev->destroy)
1729                 return -ENODEV;
1730
1731         if (!(change & NETIF_F_LRO))
1732                 return 0;
1733
1734         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1735
1736         if (features & NETIF_F_LRO) {
1737                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1738                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1739         } else {
1740                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1741                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1742         }
1743
1744         return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1745 }
1746
1747 static u32 netvsc_get_msglevel(struct net_device *ndev)
1748 {
1749         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1750
1751         return ndev_ctx->msg_enable;
1752 }
1753
1754 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1755 {
1756         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1757
1758         ndev_ctx->msg_enable = val;
1759 }
1760
1761 static const struct ethtool_ops ethtool_ops = {
1762         .get_drvinfo    = netvsc_get_drvinfo,
1763         .get_msglevel   = netvsc_get_msglevel,
1764         .set_msglevel   = netvsc_set_msglevel,
1765         .get_link       = ethtool_op_get_link,
1766         .get_ethtool_stats = netvsc_get_ethtool_stats,
1767         .get_sset_count = netvsc_get_sset_count,
1768         .get_strings    = netvsc_get_strings,
1769         .get_channels   = netvsc_get_channels,
1770         .set_channels   = netvsc_set_channels,
1771         .get_ts_info    = ethtool_op_get_ts_info,
1772         .get_rxnfc      = netvsc_get_rxnfc,
1773         .set_rxnfc      = netvsc_set_rxnfc,
1774         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1775         .get_rxfh_indir_size = netvsc_rss_indir_size,
1776         .get_rxfh       = netvsc_get_rxfh,
1777         .set_rxfh       = netvsc_set_rxfh,
1778         .get_link_ksettings = netvsc_get_link_ksettings,
1779         .set_link_ksettings = netvsc_set_link_ksettings,
1780         .get_ringparam  = netvsc_get_ringparam,
1781         .set_ringparam  = netvsc_set_ringparam,
1782 };
1783
1784 static const struct net_device_ops device_ops = {
1785         .ndo_open =                     netvsc_open,
1786         .ndo_stop =                     netvsc_close,
1787         .ndo_start_xmit =               netvsc_start_xmit,
1788         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1789         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1790         .ndo_set_features =             netvsc_set_features,
1791         .ndo_change_mtu =               netvsc_change_mtu,
1792         .ndo_validate_addr =            eth_validate_addr,
1793         .ndo_set_mac_address =          netvsc_set_mac_addr,
1794         .ndo_select_queue =             netvsc_select_queue,
1795         .ndo_get_stats64 =              netvsc_get_stats64,
1796 };
1797
1798 /*
1799  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1800  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1801  * present send GARP packet to network peers with netif_notify_peers().
1802  */
1803 static void netvsc_link_change(struct work_struct *w)
1804 {
1805         struct net_device_context *ndev_ctx =
1806                 container_of(w, struct net_device_context, dwork.work);
1807         struct hv_device *device_obj = ndev_ctx->device_ctx;
1808         struct net_device *net = hv_get_drvdata(device_obj);
1809         struct netvsc_device *net_device;
1810         struct rndis_device *rdev;
1811         struct netvsc_reconfig *event = NULL;
1812         bool notify = false, reschedule = false;
1813         unsigned long flags, next_reconfig, delay;
1814
1815         /* if changes are happening, comeback later */
1816         if (!rtnl_trylock()) {
1817                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1818                 return;
1819         }
1820
1821         net_device = rtnl_dereference(ndev_ctx->nvdev);
1822         if (!net_device)
1823                 goto out_unlock;
1824
1825         rdev = net_device->extension;
1826
1827         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1828         if (time_is_after_jiffies(next_reconfig)) {
1829                 /* link_watch only sends one notification with current state
1830                  * per second, avoid doing reconfig more frequently. Handle
1831                  * wrap around.
1832                  */
1833                 delay = next_reconfig - jiffies;
1834                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1835                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1836                 goto out_unlock;
1837         }
1838         ndev_ctx->last_reconfig = jiffies;
1839
1840         spin_lock_irqsave(&ndev_ctx->lock, flags);
1841         if (!list_empty(&ndev_ctx->reconfig_events)) {
1842                 event = list_first_entry(&ndev_ctx->reconfig_events,
1843                                          struct netvsc_reconfig, list);
1844                 list_del(&event->list);
1845                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1846         }
1847         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1848
1849         if (!event)
1850                 goto out_unlock;
1851
1852         switch (event->event) {
1853                 /* Only the following events are possible due to the check in
1854                  * netvsc_linkstatus_callback()
1855                  */
1856         case RNDIS_STATUS_MEDIA_CONNECT:
1857                 if (rdev->link_state) {
1858                         rdev->link_state = false;
1859                         netif_carrier_on(net);
1860                         netif_tx_wake_all_queues(net);
1861                 } else {
1862                         notify = true;
1863                 }
1864                 kfree(event);
1865                 break;
1866         case RNDIS_STATUS_MEDIA_DISCONNECT:
1867                 if (!rdev->link_state) {
1868                         rdev->link_state = true;
1869                         netif_carrier_off(net);
1870                         netif_tx_stop_all_queues(net);
1871                 }
1872                 kfree(event);
1873                 break;
1874         case RNDIS_STATUS_NETWORK_CHANGE:
1875                 /* Only makes sense if carrier is present */
1876                 if (!rdev->link_state) {
1877                         rdev->link_state = true;
1878                         netif_carrier_off(net);
1879                         netif_tx_stop_all_queues(net);
1880                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1881                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1882                         list_add(&event->list, &ndev_ctx->reconfig_events);
1883                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1884                         reschedule = true;
1885                 }
1886                 break;
1887         }
1888
1889         rtnl_unlock();
1890
1891         if (notify)
1892                 netdev_notify_peers(net);
1893
1894         /* link_watch only sends one notification with current state per
1895          * second, handle next reconfig event in 2 seconds.
1896          */
1897         if (reschedule)
1898                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1899
1900         return;
1901
1902 out_unlock:
1903         rtnl_unlock();
1904 }
1905
1906 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1907 {
1908         struct net_device_context *net_device_ctx;
1909         struct net_device *dev;
1910
1911         dev = netdev_master_upper_dev_get(vf_netdev);
1912         if (!dev || dev->netdev_ops != &device_ops)
1913                 return NULL;    /* not a netvsc device */
1914
1915         net_device_ctx = netdev_priv(dev);
1916         if (!rtnl_dereference(net_device_ctx->nvdev))
1917                 return NULL;    /* device is removed */
1918
1919         return dev;
1920 }
1921
1922 /* Called when VF is injecting data into network stack.
1923  * Change the associated network device from VF to netvsc.
1924  * note: already called with rcu_read_lock
1925  */
1926 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1927 {
1928         struct sk_buff *skb = *pskb;
1929         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1930         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1931         struct netvsc_vf_pcpu_stats *pcpu_stats
1932                  = this_cpu_ptr(ndev_ctx->vf_stats);
1933
1934         skb->dev = ndev;
1935
1936         u64_stats_update_begin(&pcpu_stats->syncp);
1937         pcpu_stats->rx_packets++;
1938         pcpu_stats->rx_bytes += skb->len;
1939         u64_stats_update_end(&pcpu_stats->syncp);
1940
1941         return RX_HANDLER_ANOTHER;
1942 }
1943
1944 static int netvsc_vf_join(struct net_device *vf_netdev,
1945                           struct net_device *ndev)
1946 {
1947         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1948         int ret;
1949
1950         ret = netdev_rx_handler_register(vf_netdev,
1951                                          netvsc_vf_handle_frame, ndev);
1952         if (ret != 0) {
1953                 netdev_err(vf_netdev,
1954                            "can not register netvsc VF receive handler (err = %d)\n",
1955                            ret);
1956                 goto rx_handler_failed;
1957         }
1958
1959         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1960                                            NULL, NULL, NULL);
1961         if (ret != 0) {
1962                 netdev_err(vf_netdev,
1963                            "can not set master device %s (err = %d)\n",
1964                            ndev->name, ret);
1965                 goto upper_link_failed;
1966         }
1967
1968         /* set slave flag before open to prevent IPv6 addrconf */
1969         vf_netdev->flags |= IFF_SLAVE;
1970
1971         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1972
1973         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1974
1975         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1976         return 0;
1977
1978 upper_link_failed:
1979         netdev_rx_handler_unregister(vf_netdev);
1980 rx_handler_failed:
1981         return ret;
1982 }
1983
1984 static void __netvsc_vf_setup(struct net_device *ndev,
1985                               struct net_device *vf_netdev)
1986 {
1987         int ret;
1988
1989         /* Align MTU of VF with master */
1990         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1991         if (ret)
1992                 netdev_warn(vf_netdev,
1993                             "unable to change mtu to %u\n", ndev->mtu);
1994
1995         /* set multicast etc flags on VF */
1996         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1997
1998         /* sync address list from ndev to VF */
1999         netif_addr_lock_bh(ndev);
2000         dev_uc_sync(vf_netdev, ndev);
2001         dev_mc_sync(vf_netdev, ndev);
2002         netif_addr_unlock_bh(ndev);
2003
2004         if (netif_running(ndev)) {
2005                 ret = dev_open(vf_netdev, NULL);
2006                 if (ret)
2007                         netdev_warn(vf_netdev,
2008                                     "unable to open: %d\n", ret);
2009         }
2010 }
2011
2012 /* Setup VF as slave of the synthetic device.
2013  * Runs in workqueue to avoid recursion in netlink callbacks.
2014  */
2015 static void netvsc_vf_setup(struct work_struct *w)
2016 {
2017         struct net_device_context *ndev_ctx
2018                 = container_of(w, struct net_device_context, vf_takeover.work);
2019         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2020         struct net_device *vf_netdev;
2021
2022         if (!rtnl_trylock()) {
2023                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2024                 return;
2025         }
2026
2027         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2028         if (vf_netdev)
2029                 __netvsc_vf_setup(ndev, vf_netdev);
2030
2031         rtnl_unlock();
2032 }
2033
2034 /* Find netvsc by VF serial number.
2035  * The PCI hyperv controller records the serial number as the slot kobj name.
2036  */
2037 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2038 {
2039         struct device *parent = vf_netdev->dev.parent;
2040         struct net_device_context *ndev_ctx;
2041         struct pci_dev *pdev;
2042         u32 serial;
2043
2044         if (!parent || !dev_is_pci(parent))
2045                 return NULL; /* not a PCI device */
2046
2047         pdev = to_pci_dev(parent);
2048         if (!pdev->slot) {
2049                 netdev_notice(vf_netdev, "no PCI slot information\n");
2050                 return NULL;
2051         }
2052
2053         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2054                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2055                               pci_slot_name(pdev->slot));
2056                 return NULL;
2057         }
2058
2059         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2060                 if (!ndev_ctx->vf_alloc)
2061                         continue;
2062
2063                 if (ndev_ctx->vf_serial == serial)
2064                         return hv_get_drvdata(ndev_ctx->device_ctx);
2065         }
2066
2067         netdev_notice(vf_netdev,
2068                       "no netdev found for vf serial:%u\n", serial);
2069         return NULL;
2070 }
2071
2072 static int netvsc_register_vf(struct net_device *vf_netdev)
2073 {
2074         struct net_device_context *net_device_ctx;
2075         struct netvsc_device *netvsc_dev;
2076         struct net_device *ndev;
2077         int ret;
2078
2079         if (vf_netdev->addr_len != ETH_ALEN)
2080                 return NOTIFY_DONE;
2081
2082         ndev = get_netvsc_byslot(vf_netdev);
2083         if (!ndev)
2084                 return NOTIFY_DONE;
2085
2086         net_device_ctx = netdev_priv(ndev);
2087         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2088         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2089                 return NOTIFY_DONE;
2090
2091         /* if syntihetic interface is a different namespace,
2092          * then move the VF to that namespace; join will be
2093          * done again in that context.
2094          */
2095         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2096                 ret = dev_change_net_namespace(vf_netdev,
2097                                                dev_net(ndev), "eth%d");
2098                 if (ret)
2099                         netdev_err(vf_netdev,
2100                                    "could not move to same namespace as %s: %d\n",
2101                                    ndev->name, ret);
2102                 else
2103                         netdev_info(vf_netdev,
2104                                     "VF moved to namespace with: %s\n",
2105                                     ndev->name);
2106                 return NOTIFY_DONE;
2107         }
2108
2109         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2110
2111         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2112                 return NOTIFY_DONE;
2113
2114         dev_hold(vf_netdev);
2115         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2116         return NOTIFY_OK;
2117 }
2118
2119 /* VF up/down change detected, schedule to change data path */
2120 static int netvsc_vf_changed(struct net_device *vf_netdev)
2121 {
2122         struct net_device_context *net_device_ctx;
2123         struct netvsc_device *netvsc_dev;
2124         struct net_device *ndev;
2125         bool vf_is_up = netif_running(vf_netdev);
2126
2127         ndev = get_netvsc_byref(vf_netdev);
2128         if (!ndev)
2129                 return NOTIFY_DONE;
2130
2131         net_device_ctx = netdev_priv(ndev);
2132         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2133         if (!netvsc_dev)
2134                 return NOTIFY_DONE;
2135
2136         netvsc_switch_datapath(ndev, vf_is_up);
2137         netdev_info(ndev, "Data path switched %s VF: %s\n",
2138                     vf_is_up ? "to" : "from", vf_netdev->name);
2139
2140         return NOTIFY_OK;
2141 }
2142
2143 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2144 {
2145         struct net_device *ndev;
2146         struct net_device_context *net_device_ctx;
2147
2148         ndev = get_netvsc_byref(vf_netdev);
2149         if (!ndev)
2150                 return NOTIFY_DONE;
2151
2152         net_device_ctx = netdev_priv(ndev);
2153         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2154
2155         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2156
2157         netdev_rx_handler_unregister(vf_netdev);
2158         netdev_upper_dev_unlink(vf_netdev, ndev);
2159         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2160         dev_put(vf_netdev);
2161
2162         return NOTIFY_OK;
2163 }
2164
2165 static int netvsc_probe(struct hv_device *dev,
2166                         const struct hv_vmbus_device_id *dev_id)
2167 {
2168         struct net_device *net = NULL;
2169         struct net_device_context *net_device_ctx;
2170         struct netvsc_device_info device_info;
2171         struct netvsc_device *nvdev;
2172         int ret = -ENOMEM;
2173
2174         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2175                                 VRSS_CHANNEL_MAX);
2176         if (!net)
2177                 goto no_net;
2178
2179         netif_carrier_off(net);
2180
2181         netvsc_init_settings(net);
2182
2183         net_device_ctx = netdev_priv(net);
2184         net_device_ctx->device_ctx = dev;
2185         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2186         if (netif_msg_probe(net_device_ctx))
2187                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2188                            net_device_ctx->msg_enable);
2189
2190         hv_set_drvdata(dev, net);
2191
2192         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2193
2194         spin_lock_init(&net_device_ctx->lock);
2195         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2196         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2197
2198         net_device_ctx->vf_stats
2199                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2200         if (!net_device_ctx->vf_stats)
2201                 goto no_stats;
2202
2203         net->netdev_ops = &device_ops;
2204         net->ethtool_ops = &ethtool_ops;
2205         SET_NETDEV_DEV(net, &dev->device);
2206
2207         /* We always need headroom for rndis header */
2208         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2209
2210         /* Initialize the number of queues to be 1, we may change it if more
2211          * channels are offered later.
2212          */
2213         netif_set_real_num_tx_queues(net, 1);
2214         netif_set_real_num_rx_queues(net, 1);
2215
2216         /* Notify the netvsc driver of the new device */
2217         memset(&device_info, 0, sizeof(device_info));
2218         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2219         device_info.send_sections = NETVSC_DEFAULT_TX;
2220         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2221         device_info.recv_sections = NETVSC_DEFAULT_RX;
2222         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2223
2224         nvdev = rndis_filter_device_add(dev, &device_info);
2225         if (IS_ERR(nvdev)) {
2226                 ret = PTR_ERR(nvdev);
2227                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2228                 goto rndis_failed;
2229         }
2230
2231         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2232
2233         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2234          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2235          * all subchannels to show up, but that may not happen because
2236          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2237          * -> ... -> device_add() -> ... -> __device_attach() can't get
2238          * the device lock, so all the subchannels can't be processed --
2239          * finally netvsc_subchan_work() hangs for ever.
2240          */
2241         rtnl_lock();
2242
2243         if (nvdev->num_chn > 1)
2244                 schedule_work(&nvdev->subchan_work);
2245
2246         /* hw_features computed in rndis_netdev_set_hwcaps() */
2247         net->features = net->hw_features |
2248                 NETIF_F_HIGHDMA | NETIF_F_SG |
2249                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2250         net->vlan_features = net->features;
2251
2252         netdev_lockdep_set_classes(net);
2253
2254         /* MTU range: 68 - 1500 or 65521 */
2255         net->min_mtu = NETVSC_MTU_MIN;
2256         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2257                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2258         else
2259                 net->max_mtu = ETH_DATA_LEN;
2260
2261         ret = register_netdevice(net);
2262         if (ret != 0) {
2263                 pr_err("Unable to register netdev.\n");
2264                 goto register_failed;
2265         }
2266
2267         list_add(&net_device_ctx->list, &netvsc_dev_list);
2268         rtnl_unlock();
2269         return 0;
2270
2271 register_failed:
2272         rtnl_unlock();
2273         rndis_filter_device_remove(dev, nvdev);
2274 rndis_failed:
2275         free_percpu(net_device_ctx->vf_stats);
2276 no_stats:
2277         hv_set_drvdata(dev, NULL);
2278         free_netdev(net);
2279 no_net:
2280         return ret;
2281 }
2282
2283 static int netvsc_remove(struct hv_device *dev)
2284 {
2285         struct net_device_context *ndev_ctx;
2286         struct net_device *vf_netdev, *net;
2287         struct netvsc_device *nvdev;
2288
2289         net = hv_get_drvdata(dev);
2290         if (net == NULL) {
2291                 dev_err(&dev->device, "No net device to remove\n");
2292                 return 0;
2293         }
2294
2295         ndev_ctx = netdev_priv(net);
2296
2297         cancel_delayed_work_sync(&ndev_ctx->dwork);
2298
2299         rtnl_lock();
2300         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2301         if (nvdev)
2302                 cancel_work_sync(&nvdev->subchan_work);
2303
2304         /*
2305          * Call to the vsc driver to let it know that the device is being
2306          * removed. Also blocks mtu and channel changes.
2307          */
2308         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2309         if (vf_netdev)
2310                 netvsc_unregister_vf(vf_netdev);
2311
2312         if (nvdev)
2313                 rndis_filter_device_remove(dev, nvdev);
2314
2315         unregister_netdevice(net);
2316         list_del(&ndev_ctx->list);
2317
2318         rtnl_unlock();
2319
2320         hv_set_drvdata(dev, NULL);
2321
2322         free_percpu(ndev_ctx->vf_stats);
2323         free_netdev(net);
2324         return 0;
2325 }
2326
2327 static const struct hv_vmbus_device_id id_table[] = {
2328         /* Network guid */
2329         { HV_NIC_GUID, },
2330         { },
2331 };
2332
2333 MODULE_DEVICE_TABLE(vmbus, id_table);
2334
2335 /* The one and only one */
2336 static struct  hv_driver netvsc_drv = {
2337         .name = KBUILD_MODNAME,
2338         .id_table = id_table,
2339         .probe = netvsc_probe,
2340         .remove = netvsc_remove,
2341         .driver = {
2342                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2343         },
2344 };
2345
2346 /*
2347  * On Hyper-V, every VF interface is matched with a corresponding
2348  * synthetic interface. The synthetic interface is presented first
2349  * to the guest. When the corresponding VF instance is registered,
2350  * we will take care of switching the data path.
2351  */
2352 static int netvsc_netdev_event(struct notifier_block *this,
2353                                unsigned long event, void *ptr)
2354 {
2355         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2356
2357         /* Skip our own events */
2358         if (event_dev->netdev_ops == &device_ops)
2359                 return NOTIFY_DONE;
2360
2361         /* Avoid non-Ethernet type devices */
2362         if (event_dev->type != ARPHRD_ETHER)
2363                 return NOTIFY_DONE;
2364
2365         /* Avoid Vlan dev with same MAC registering as VF */
2366         if (is_vlan_dev(event_dev))
2367                 return NOTIFY_DONE;
2368
2369         /* Avoid Bonding master dev with same MAC registering as VF */
2370         if ((event_dev->priv_flags & IFF_BONDING) &&
2371             (event_dev->flags & IFF_MASTER))
2372                 return NOTIFY_DONE;
2373
2374         switch (event) {
2375         case NETDEV_REGISTER:
2376                 return netvsc_register_vf(event_dev);
2377         case NETDEV_UNREGISTER:
2378                 return netvsc_unregister_vf(event_dev);
2379         case NETDEV_UP:
2380         case NETDEV_DOWN:
2381                 return netvsc_vf_changed(event_dev);
2382         default:
2383                 return NOTIFY_DONE;
2384         }
2385 }
2386
2387 static struct notifier_block netvsc_netdev_notifier = {
2388         .notifier_call = netvsc_netdev_event,
2389 };
2390
2391 static void __exit netvsc_drv_exit(void)
2392 {
2393         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2394         vmbus_driver_unregister(&netvsc_drv);
2395 }
2396
2397 static int __init netvsc_drv_init(void)
2398 {
2399         int ret;
2400
2401         if (ring_size < RING_SIZE_MIN) {
2402                 ring_size = RING_SIZE_MIN;
2403                 pr_info("Increased ring_size to %u (min allowed)\n",
2404                         ring_size);
2405         }
2406         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2407
2408         ret = vmbus_driver_register(&netvsc_drv);
2409         if (ret)
2410                 return ret;
2411
2412         register_netdevice_notifier(&netvsc_netdev_notifier);
2413         return 0;
2414 }
2415
2416 MODULE_LICENSE("GPL");
2417 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2418
2419 module_init(netvsc_drv_init);
2420 module_exit(netvsc_drv_exit);