OSDN Git Service

39dac9797e48ab376ef70d936762d8da5cefa5e5
[uclinux-h8/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK            22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
28
29 static void ar9002_hw_attach_ops(struct ath_hw *ah);
30 static void ar9003_hw_attach_ops(struct ath_hw *ah);
31
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /* Private hardware callbacks */
52
53 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
54 {
55         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
56 }
57
58 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
59 {
60         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
61 }
62
63 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
64 {
65         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
66
67         return priv_ops->macversion_supported(ah->hw_version.macVersion);
68 }
69
70 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
71                                         struct ath9k_channel *chan)
72 {
73         return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
74 }
75
76 /********************/
77 /* Helper Functions */
78 /********************/
79
80 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
81 {
82         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
83
84         if (!ah->curchan) /* should really check for CCK instead */
85                 return usecs *ATH9K_CLOCK_RATE_CCK;
86         if (conf->channel->band == IEEE80211_BAND_2GHZ)
87                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
88         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
89 }
90
91 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
92 {
93         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95         if (conf_is_ht40(conf))
96                 return ath9k_hw_mac_clks(ah, usecs) * 2;
97         else
98                 return ath9k_hw_mac_clks(ah, usecs);
99 }
100
101 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
102 {
103         int i;
104
105         BUG_ON(timeout < AH_TIME_QUANTUM);
106
107         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
108                 if ((REG_READ(ah, reg) & mask) == val)
109                         return true;
110
111                 udelay(AH_TIME_QUANTUM);
112         }
113
114         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
115                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
116                   timeout, reg, REG_READ(ah, reg), mask, val);
117
118         return false;
119 }
120 EXPORT_SYMBOL(ath9k_hw_wait);
121
122 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
123 {
124         u32 retval;
125         int i;
126
127         for (i = 0, retval = 0; i < n; i++) {
128                 retval = (retval << 1) | (val & 1);
129                 val >>= 1;
130         }
131         return retval;
132 }
133
134 bool ath9k_get_channel_edges(struct ath_hw *ah,
135                              u16 flags, u16 *low,
136                              u16 *high)
137 {
138         struct ath9k_hw_capabilities *pCap = &ah->caps;
139
140         if (flags & CHANNEL_5GHZ) {
141                 *low = pCap->low_5ghz_chan;
142                 *high = pCap->high_5ghz_chan;
143                 return true;
144         }
145         if ((flags & CHANNEL_2GHZ)) {
146                 *low = pCap->low_2ghz_chan;
147                 *high = pCap->high_2ghz_chan;
148                 return true;
149         }
150         return false;
151 }
152
153 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
154                            u8 phy, int kbps,
155                            u32 frameLen, u16 rateix,
156                            bool shortPreamble)
157 {
158         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
159
160         if (kbps == 0)
161                 return 0;
162
163         switch (phy) {
164         case WLAN_RC_PHY_CCK:
165                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166                 if (shortPreamble)
167                         phyTime >>= 1;
168                 numBits = frameLen << 3;
169                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
170                 break;
171         case WLAN_RC_PHY_OFDM:
172                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
173                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
174                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
175                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176                         txTime = OFDM_SIFS_TIME_QUARTER
177                                 + OFDM_PREAMBLE_TIME_QUARTER
178                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
179                 } else if (ah->curchan &&
180                            IS_CHAN_HALF_RATE(ah->curchan)) {
181                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
182                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
183                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184                         txTime = OFDM_SIFS_TIME_HALF +
185                                 OFDM_PREAMBLE_TIME_HALF
186                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
187                 } else {
188                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
192                                 + (numSymbols * OFDM_SYMBOL_TIME);
193                 }
194                 break;
195         default:
196                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
197                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
198                 txTime = 0;
199                 break;
200         }
201
202         return txTime;
203 }
204 EXPORT_SYMBOL(ath9k_hw_computetxtime);
205
206 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
207                                   struct ath9k_channel *chan,
208                                   struct chan_centers *centers)
209 {
210         int8_t extoff;
211
212         if (!IS_CHAN_HT40(chan)) {
213                 centers->ctl_center = centers->ext_center =
214                         centers->synth_center = chan->channel;
215                 return;
216         }
217
218         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
219             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
220                 centers->synth_center =
221                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
222                 extoff = 1;
223         } else {
224                 centers->synth_center =
225                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
226                 extoff = -1;
227         }
228
229         centers->ctl_center =
230                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
231         /* 25 MHz spacing is supported by hw but not on upper layers */
232         centers->ext_center =
233                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
234 }
235
236 /******************/
237 /* Chip Revisions */
238 /******************/
239
240 static void ath9k_hw_read_revisions(struct ath_hw *ah)
241 {
242         u32 val;
243
244         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
245
246         if (val == 0xFF) {
247                 val = REG_READ(ah, AR_SREV);
248                 ah->hw_version.macVersion =
249                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
250                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
251                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
252         } else {
253                 if (!AR_SREV_9100(ah))
254                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
255
256                 ah->hw_version.macRev = val & AR_SREV_REVISION;
257
258                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
259                         ah->is_pciexpress = true;
260         }
261 }
262
263 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
264 {
265         u32 val;
266         int i;
267
268         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
269
270         for (i = 0; i < 8; i++)
271                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
272         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
273         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
274
275         return ath9k_hw_reverse_bits(val, 8);
276 }
277
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284         if (AR_SREV_9100(ah))
285                 return;
286
287         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
294         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
295         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
296
297         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
298 }
299
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302         struct ath_common *common = ath9k_hw_common(ah);
303         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
304         u32 regHold[2];
305         u32 patternData[4] = { 0x55555555,
306                                0xaaaaaaaa,
307                                0x66666666,
308                                0x99999999 };
309         int i, j;
310
311         for (i = 0; i < 2; i++) {
312                 u32 addr = regAddr[i];
313                 u32 wrData, rdData;
314
315                 regHold[i] = REG_READ(ah, addr);
316                 for (j = 0; j < 0x100; j++) {
317                         wrData = (j << 16) | j;
318                         REG_WRITE(ah, addr, wrData);
319                         rdData = REG_READ(ah, addr);
320                         if (rdData != wrData) {
321                                 ath_print(common, ATH_DBG_FATAL,
322                                           "address test failed "
323                                           "addr: 0x%08x - wr:0x%08x != "
324                                           "rd:0x%08x\n",
325                                           addr, wrData, rdData);
326                                 return false;
327                         }
328                 }
329                 for (j = 0; j < 4; j++) {
330                         wrData = patternData[j];
331                         REG_WRITE(ah, addr, wrData);
332                         rdData = REG_READ(ah, addr);
333                         if (wrData != rdData) {
334                                 ath_print(common, ATH_DBG_FATAL,
335                                           "address test failed "
336                                           "addr: 0x%08x - wr:0x%08x != "
337                                           "rd:0x%08x\n",
338                                           addr, wrData, rdData);
339                                 return false;
340                         }
341                 }
342                 REG_WRITE(ah, regAddr[i], regHold[i]);
343         }
344         udelay(100);
345
346         return true;
347 }
348
349 static void ath9k_hw_init_config(struct ath_hw *ah)
350 {
351         int i;
352
353         ah->config.dma_beacon_response_time = 2;
354         ah->config.sw_beacon_response_time = 10;
355         ah->config.additional_swba_backoff = 0;
356         ah->config.ack_6mb = 0x0;
357         ah->config.cwm_ignore_extcca = 0;
358         ah->config.pcie_powersave_enable = 0;
359         ah->config.pcie_clock_req = 0;
360         ah->config.pcie_waen = 0;
361         ah->config.analog_shiftreg = 1;
362         ah->config.ofdm_trig_low = 200;
363         ah->config.ofdm_trig_high = 500;
364         ah->config.cck_trig_high = 200;
365         ah->config.cck_trig_low = 100;
366
367         /*
368          * For now ANI is disabled for AR9003, it is still
369          * being tested.
370          */
371         if (!AR_SREV_9300_20_OR_LATER(ah))
372                 ah->config.enable_ani = 1;
373
374         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
375                 ah->config.spurchans[i][0] = AR_NO_SPUR;
376                 ah->config.spurchans[i][1] = AR_NO_SPUR;
377         }
378
379         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
380                 ah->config.ht_enable = 1;
381         else
382                 ah->config.ht_enable = 0;
383
384         ah->config.rx_intr_mitigation = true;
385
386         /*
387          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
388          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
389          * This means we use it for all AR5416 devices, and the few
390          * minor PCI AR9280 devices out there.
391          *
392          * Serialization is required because these devices do not handle
393          * well the case of two concurrent reads/writes due to the latency
394          * involved. During one read/write another read/write can be issued
395          * on another CPU while the previous read/write may still be working
396          * on our hardware, if we hit this case the hardware poops in a loop.
397          * We prevent this by serializing reads and writes.
398          *
399          * This issue is not present on PCI-Express devices or pre-AR5416
400          * devices (legacy, 802.11abg).
401          */
402         if (num_possible_cpus() > 1)
403                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
404 }
405
406 static void ath9k_hw_init_defaults(struct ath_hw *ah)
407 {
408         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
409
410         regulatory->country_code = CTRY_DEFAULT;
411         regulatory->power_limit = MAX_RATE_POWER;
412         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
413
414         ah->hw_version.magic = AR5416_MAGIC;
415         ah->hw_version.subvendorid = 0;
416
417         ah->ah_flags = 0;
418         if (!AR_SREV_9100(ah))
419                 ah->ah_flags = AH_USE_EEPROM;
420
421         ah->atim_window = 0;
422         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
423         ah->beacon_interval = 100;
424         ah->enable_32kHz_clock = DONT_USE_32KHZ;
425         ah->slottime = (u32) -1;
426         ah->globaltxtimeout = (u32) -1;
427         ah->power_mode = ATH9K_PM_UNDEFINED;
428 }
429
430 static int ath9k_hw_rf_claim(struct ath_hw *ah)
431 {
432         u32 val;
433
434         REG_WRITE(ah, AR_PHY(0), 0x00000007);
435
436         val = ath9k_hw_get_radiorev(ah);
437         switch (val & AR_RADIO_SREV_MAJOR) {
438         case 0:
439                 val = AR_RAD5133_SREV_MAJOR;
440                 break;
441         case AR_RAD5133_SREV_MAJOR:
442         case AR_RAD5122_SREV_MAJOR:
443         case AR_RAD2133_SREV_MAJOR:
444         case AR_RAD2122_SREV_MAJOR:
445                 break;
446         default:
447                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
448                           "Radio Chip Rev 0x%02X not supported\n",
449                           val & AR_RADIO_SREV_MAJOR);
450                 return -EOPNOTSUPP;
451         }
452
453         ah->hw_version.analog5GhzRev = val;
454
455         return 0;
456 }
457
458 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
459 {
460         struct ath_common *common = ath9k_hw_common(ah);
461         u32 sum;
462         int i;
463         u16 eeval;
464
465         sum = 0;
466         for (i = 0; i < 3; i++) {
467                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
468                 sum += eeval;
469                 common->macaddr[2 * i] = eeval >> 8;
470                 common->macaddr[2 * i + 1] = eeval & 0xff;
471         }
472         if (sum == 0 || sum == 0xffff * 3)
473                 return -EADDRNOTAVAIL;
474
475         return 0;
476 }
477
478 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
479 {
480         u32 rxgain_type;
481
482         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
483                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
484
485                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
486                         INIT_INI_ARRAY(&ah->iniModesRxGain,
487                         ar9280Modes_backoff_13db_rxgain_9280_2,
488                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
489                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
490                         INIT_INI_ARRAY(&ah->iniModesRxGain,
491                         ar9280Modes_backoff_23db_rxgain_9280_2,
492                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
493                 else
494                         INIT_INI_ARRAY(&ah->iniModesRxGain,
495                         ar9280Modes_original_rxgain_9280_2,
496                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
497         } else {
498                 INIT_INI_ARRAY(&ah->iniModesRxGain,
499                         ar9280Modes_original_rxgain_9280_2,
500                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
501         }
502 }
503
504 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
505 {
506         u32 txgain_type;
507
508         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
509                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
510
511                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
512                         INIT_INI_ARRAY(&ah->iniModesTxGain,
513                         ar9280Modes_high_power_tx_gain_9280_2,
514                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
515                 else
516                         INIT_INI_ARRAY(&ah->iniModesTxGain,
517                         ar9280Modes_original_tx_gain_9280_2,
518                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
519         } else {
520                 INIT_INI_ARRAY(&ah->iniModesTxGain,
521                 ar9280Modes_original_tx_gain_9280_2,
522                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
523         }
524 }
525
526 static int ath9k_hw_post_init(struct ath_hw *ah)
527 {
528         int ecode;
529
530         if (!AR_SREV_9271(ah)) {
531                 if (!ath9k_hw_chip_test(ah))
532                         return -ENODEV;
533         }
534
535         ecode = ath9k_hw_rf_claim(ah);
536         if (ecode != 0)
537                 return ecode;
538
539         ecode = ath9k_hw_eeprom_init(ah);
540         if (ecode != 0)
541                 return ecode;
542
543         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
544                   "Eeprom VER: %d, REV: %d\n",
545                   ah->eep_ops->get_eeprom_ver(ah),
546                   ah->eep_ops->get_eeprom_rev(ah));
547
548         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
549         if (ecode) {
550                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
551                           "Failed allocating banks for "
552                           "external radio\n");
553                 return ecode;
554         }
555
556         if (!AR_SREV_9100(ah)) {
557                 ath9k_hw_ani_setup(ah);
558                 ath9k_hw_ani_init(ah);
559         }
560
561         return 0;
562 }
563
564 static bool ar9002_hw_macversion_supported(u32 macversion)
565 {
566         switch (macversion) {
567         case AR_SREV_VERSION_5416_PCI:
568         case AR_SREV_VERSION_5416_PCIE:
569         case AR_SREV_VERSION_9160:
570         case AR_SREV_VERSION_9100:
571         case AR_SREV_VERSION_9280:
572         case AR_SREV_VERSION_9285:
573         case AR_SREV_VERSION_9287:
574         case AR_SREV_VERSION_9271:
575                 return true;
576         default:
577                 break;
578         }
579         return false;
580 }
581
582 static bool ar9003_hw_macversion_supported(u32 macversion)
583 {
584         switch (macversion) {
585         case AR_SREV_VERSION_9300:
586                 return true;
587         default:
588                 break;
589         }
590         return false;
591 }
592
593 static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
594 {
595         if (AR_SREV_9160_10_OR_LATER(ah)) {
596                 if (AR_SREV_9280_10_OR_LATER(ah)) {
597                         ah->iq_caldata.calData = &iq_cal_single_sample;
598                         ah->adcgain_caldata.calData =
599                                 &adc_gain_cal_single_sample;
600                         ah->adcdc_caldata.calData =
601                                 &adc_dc_cal_single_sample;
602                         ah->adcdc_calinitdata.calData =
603                                 &adc_init_dc_cal;
604                 } else {
605                         ah->iq_caldata.calData = &iq_cal_multi_sample;
606                         ah->adcgain_caldata.calData =
607                                 &adc_gain_cal_multi_sample;
608                         ah->adcdc_caldata.calData =
609                                 &adc_dc_cal_multi_sample;
610                         ah->adcdc_calinitdata.calData =
611                                 &adc_init_dc_cal;
612                 }
613                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
614         }
615 }
616
617 static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
618 {
619         if (AR_SREV_9271(ah)) {
620                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
621                                ARRAY_SIZE(ar9271Modes_9271), 6);
622                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
623                                ARRAY_SIZE(ar9271Common_9271), 2);
624                 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
625                                ar9271Common_normal_cck_fir_coeff_9271,
626                                ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
627                 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
628                                ar9271Common_japan_2484_cck_fir_coeff_9271,
629                                ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
630                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
631                                ar9271Modes_9271_1_0_only,
632                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
633                 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
634                                ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
635                 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
636                                ar9271Modes_high_power_tx_gain_9271,
637                                ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
638                 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
639                                ar9271Modes_normal_power_tx_gain_9271,
640                                ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
641                 return;
642         }
643
644         if (AR_SREV_9287_11_OR_LATER(ah)) {
645                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
646                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
647                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
648                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
649                 if (ah->config.pcie_clock_req)
650                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
651                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
652                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
653                 else
654                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
655                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
656                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
657                                         2);
658         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
659                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
660                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
661                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
662                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
663
664                 if (ah->config.pcie_clock_req)
665                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
666                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
667                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
668                 else
669                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
670                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
671                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
672                                   2);
673         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
674
675
676                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
677                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
678                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
679                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
680
681                 if (ah->config.pcie_clock_req) {
682                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
683                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
684                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
685                 } else {
686                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
687                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
688                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
689                                   2);
690                 }
691         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
692                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
693                                ARRAY_SIZE(ar9285Modes_9285), 6);
694                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
695                                ARRAY_SIZE(ar9285Common_9285), 2);
696
697                 if (ah->config.pcie_clock_req) {
698                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
699                         ar9285PciePhy_clkreq_off_L1_9285,
700                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
701                 } else {
702                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
703                         ar9285PciePhy_clkreq_always_on_L1_9285,
704                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
705                 }
706         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
707                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
708                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
709                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
710                                ARRAY_SIZE(ar9280Common_9280_2), 2);
711
712                 if (ah->config.pcie_clock_req) {
713                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
714                                ar9280PciePhy_clkreq_off_L1_9280,
715                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
716                 } else {
717                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
718                                ar9280PciePhy_clkreq_always_on_L1_9280,
719                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
720                 }
721                 INIT_INI_ARRAY(&ah->iniModesAdditional,
722                                ar9280Modes_fast_clock_9280_2,
723                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
724         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
725                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
726                                ARRAY_SIZE(ar9280Modes_9280), 6);
727                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
728                                ARRAY_SIZE(ar9280Common_9280), 2);
729         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
730                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
731                                ARRAY_SIZE(ar5416Modes_9160), 6);
732                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
733                                ARRAY_SIZE(ar5416Common_9160), 2);
734                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
735                                ARRAY_SIZE(ar5416Bank0_9160), 2);
736                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
737                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
738                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
739                                ARRAY_SIZE(ar5416Bank1_9160), 2);
740                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
741                                ARRAY_SIZE(ar5416Bank2_9160), 2);
742                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
743                                ARRAY_SIZE(ar5416Bank3_9160), 3);
744                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
745                                ARRAY_SIZE(ar5416Bank6_9160), 3);
746                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
747                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
748                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
749                                ARRAY_SIZE(ar5416Bank7_9160), 2);
750                 if (AR_SREV_9160_11(ah)) {
751                         INIT_INI_ARRAY(&ah->iniAddac,
752                                        ar5416Addac_91601_1,
753                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
754                 } else {
755                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
756                                        ARRAY_SIZE(ar5416Addac_9160), 2);
757                 }
758         } else if (AR_SREV_9100_OR_LATER(ah)) {
759                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
760                                ARRAY_SIZE(ar5416Modes_9100), 6);
761                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
762                                ARRAY_SIZE(ar5416Common_9100), 2);
763                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
764                                ARRAY_SIZE(ar5416Bank0_9100), 2);
765                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
766                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
767                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
768                                ARRAY_SIZE(ar5416Bank1_9100), 2);
769                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
770                                ARRAY_SIZE(ar5416Bank2_9100), 2);
771                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
772                                ARRAY_SIZE(ar5416Bank3_9100), 3);
773                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
774                                ARRAY_SIZE(ar5416Bank6_9100), 3);
775                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
776                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
777                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
778                                ARRAY_SIZE(ar5416Bank7_9100), 2);
779                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
780                                ARRAY_SIZE(ar5416Addac_9100), 2);
781         } else {
782                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
783                                ARRAY_SIZE(ar5416Modes), 6);
784                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
785                                ARRAY_SIZE(ar5416Common), 2);
786                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
787                                ARRAY_SIZE(ar5416Bank0), 2);
788                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
789                                ARRAY_SIZE(ar5416BB_RfGain), 3);
790                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
791                                ARRAY_SIZE(ar5416Bank1), 2);
792                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
793                                ARRAY_SIZE(ar5416Bank2), 2);
794                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
795                                ARRAY_SIZE(ar5416Bank3), 3);
796                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
797                                ARRAY_SIZE(ar5416Bank6), 3);
798                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
799                                ARRAY_SIZE(ar5416Bank6TPC), 3);
800                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
801                                ARRAY_SIZE(ar5416Bank7), 2);
802                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
803                                ARRAY_SIZE(ar5416Addac), 2);
804         }
805 }
806
807 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
808 {
809         if (AR_SREV_9287_11_OR_LATER(ah))
810                 INIT_INI_ARRAY(&ah->iniModesRxGain,
811                 ar9287Modes_rx_gain_9287_1_1,
812                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
813         else if (AR_SREV_9287_10(ah))
814                 INIT_INI_ARRAY(&ah->iniModesRxGain,
815                 ar9287Modes_rx_gain_9287_1_0,
816                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
817         else if (AR_SREV_9280_20(ah))
818                 ath9k_hw_init_rxgain_ini(ah);
819
820         if (AR_SREV_9287_11_OR_LATER(ah)) {
821                 INIT_INI_ARRAY(&ah->iniModesTxGain,
822                 ar9287Modes_tx_gain_9287_1_1,
823                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
824         } else if (AR_SREV_9287_10(ah)) {
825                 INIT_INI_ARRAY(&ah->iniModesTxGain,
826                 ar9287Modes_tx_gain_9287_1_0,
827                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
828         } else if (AR_SREV_9280_20(ah)) {
829                 ath9k_hw_init_txgain_ini(ah);
830         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
831                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
832
833                 /* txgain table */
834                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
835                         if (AR_SREV_9285E_20(ah)) {
836                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
837                                 ar9285Modes_XE2_0_high_power,
838                                 ARRAY_SIZE(
839                                   ar9285Modes_XE2_0_high_power), 6);
840                         } else {
841                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
842                                 ar9285Modes_high_power_tx_gain_9285_1_2,
843                                 ARRAY_SIZE(
844                                   ar9285Modes_high_power_tx_gain_9285_1_2), 6);
845                         }
846                 } else {
847                         if (AR_SREV_9285E_20(ah)) {
848                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
849                                 ar9285Modes_XE2_0_normal_power,
850                                 ARRAY_SIZE(
851                                   ar9285Modes_XE2_0_normal_power), 6);
852                         } else {
853                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
854                                 ar9285Modes_original_tx_gain_9285_1_2,
855                                 ARRAY_SIZE(
856                                   ar9285Modes_original_tx_gain_9285_1_2), 6);
857                         }
858                 }
859         }
860 }
861
862 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
863 {
864         struct base_eep_header *pBase = &(ah->eeprom.def.baseEepHeader);
865         struct ath_common *common = ath9k_hw_common(ah);
866
867         ah->need_an_top2_fixup = (ah->hw_version.devid == AR9280_DEVID_PCI) &&
868                                  (ah->eep_map != EEP_MAP_4KBITS) &&
869                                  ((pBase->version & 0xff) > 0x0a) &&
870                                  (pBase->pwdclkind == 0);
871
872         if (ah->need_an_top2_fixup)
873                 ath_print(common, ATH_DBG_EEPROM,
874                           "needs fixup for AR_AN_TOP2 register\n");
875 }
876
877 static void ath9k_hw_attach_ops(struct ath_hw *ah)
878 {
879         if (AR_SREV_9300_20_OR_LATER(ah))
880                 ar9003_hw_attach_ops(ah);
881         else
882                 ar9002_hw_attach_ops(ah);
883 }
884
885 /* Called for all hardware families */
886 static int __ath9k_hw_init(struct ath_hw *ah)
887 {
888         struct ath_common *common = ath9k_hw_common(ah);
889         int r = 0;
890
891         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
892                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
893
894         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
895                 ath_print(common, ATH_DBG_FATAL,
896                           "Couldn't reset chip\n");
897                 return -EIO;
898         }
899
900         ath9k_hw_init_defaults(ah);
901         ath9k_hw_init_config(ah);
902
903         ath9k_hw_attach_ops(ah);
904
905         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
906                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
907                 return -EIO;
908         }
909
910         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
911                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
912                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
913                         ah->config.serialize_regmode =
914                                 SER_REG_MODE_ON;
915                 } else {
916                         ah->config.serialize_regmode =
917                                 SER_REG_MODE_OFF;
918                 }
919         }
920
921         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
922                 ah->config.serialize_regmode);
923
924         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
925                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
926         else
927                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
928
929         if (!ath9k_hw_macversion_supported(ah)) {
930                 ath_print(common, ATH_DBG_FATAL,
931                           "Mac Chip Rev 0x%02x.%x is not supported by "
932                           "this driver\n", ah->hw_version.macVersion,
933                           ah->hw_version.macRev);
934                 return -EOPNOTSUPP;
935         }
936
937         if (AR_SREV_9100(ah)) {
938                 ah->iq_caldata.calData = &iq_cal_multi_sample;
939                 ah->supp_cals = IQ_MISMATCH_CAL;
940                 ah->is_pciexpress = false;
941         }
942
943         if (AR_SREV_9271(ah))
944                 ah->is_pciexpress = false;
945
946         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
947         ath9k_hw_init_cal_settings(ah);
948
949         ah->ani_function = ATH9K_ANI_ALL;
950         if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
951                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
952
953         ath9k_hw_init_mode_regs(ah);
954
955         if (ah->is_pciexpress)
956                 ath9k_hw_configpcipowersave(ah, 0, 0);
957         else
958                 ath9k_hw_disablepcie(ah);
959
960         /* Support for Japan ch.14 (2484) spread */
961         if (AR_SREV_9287_11_OR_LATER(ah)) {
962                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
963                        ar9287Common_normal_cck_fir_coeff_92871_1,
964                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
965                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
966                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
967                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
968         }
969
970         r = ath9k_hw_post_init(ah);
971         if (r)
972                 return r;
973
974         ath9k_hw_init_mode_gain_regs(ah);
975         r = ath9k_hw_fill_cap_info(ah);
976         if (r)
977                 return r;
978
979         ath9k_hw_init_eeprom_fix(ah);
980
981         r = ath9k_hw_init_macaddr(ah);
982         if (r) {
983                 ath_print(common, ATH_DBG_FATAL,
984                           "Failed to initialize MAC address\n");
985                 return r;
986         }
987
988         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
989                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
990         else
991                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
992
993         ath9k_init_nfcal_hist_buffer(ah);
994
995         common->state = ATH_HW_INITIALIZED;
996
997         return 0;
998 }
999
1000 int ath9k_hw_init(struct ath_hw *ah)
1001 {
1002         int ret;
1003         struct ath_common *common = ath9k_hw_common(ah);
1004
1005         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
1006         switch (ah->hw_version.devid) {
1007         case AR5416_DEVID_PCI:
1008         case AR5416_DEVID_PCIE:
1009         case AR5416_AR9100_DEVID:
1010         case AR9160_DEVID_PCI:
1011         case AR9280_DEVID_PCI:
1012         case AR9280_DEVID_PCIE:
1013         case AR9285_DEVID_PCIE:
1014         case AR9287_DEVID_PCI:
1015         case AR9287_DEVID_PCIE:
1016         case AR2427_DEVID_PCIE:
1017         case AR9300_DEVID_PCIE:
1018                 break;
1019         default:
1020                 if (common->bus_ops->ath_bus_type == ATH_USB)
1021                         break;
1022                 ath_print(common, ATH_DBG_FATAL,
1023                           "Hardware device ID 0x%04x not supported\n",
1024                           ah->hw_version.devid);
1025                 return -EOPNOTSUPP;
1026         }
1027
1028         ret = __ath9k_hw_init(ah);
1029         if (ret) {
1030                 ath_print(common, ATH_DBG_FATAL,
1031                           "Unable to initialize hardware; "
1032                           "initialization status: %d\n", ret);
1033                 return ret;
1034         }
1035
1036         return 0;
1037 }
1038 EXPORT_SYMBOL(ath9k_hw_init);
1039
1040 static void ath9k_hw_init_qos(struct ath_hw *ah)
1041 {
1042         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1043         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1044
1045         REG_WRITE(ah, AR_QOS_NO_ACK,
1046                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1047                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1048                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1049
1050         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1051         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1052         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1053         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1054         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1055 }
1056
1057 static void ath9k_hw_init_pll(struct ath_hw *ah,
1058                               struct ath9k_channel *chan)
1059 {
1060         u32 pll = ath9k_hw_compute_pll_control(ah, chan);
1061
1062         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1063
1064         /* Switch the core clock for ar9271 to 117Mhz */
1065         if (AR_SREV_9271(ah)) {
1066                 udelay(500);
1067                 REG_WRITE(ah, 0x50040, 0x304);
1068         }
1069
1070         udelay(RTC_PLL_SETTLE_DELAY);
1071
1072         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1073 }
1074
1075 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1076                                           enum nl80211_iftype opmode)
1077 {
1078         u32 imr_reg = AR_IMR_TXERR |
1079                 AR_IMR_TXURN |
1080                 AR_IMR_RXERR |
1081                 AR_IMR_RXORN |
1082                 AR_IMR_BCNMISC;
1083
1084         if (ah->config.rx_intr_mitigation)
1085                 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1086         else
1087                 imr_reg |= AR_IMR_RXOK;
1088
1089         imr_reg |= AR_IMR_TXOK;
1090
1091         if (opmode == NL80211_IFTYPE_AP)
1092                 imr_reg |= AR_IMR_MIB;
1093
1094         REG_WRITE(ah, AR_IMR, imr_reg);
1095         ah->imrs2_reg |= AR_IMR_S2_GTT;
1096         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1097
1098         if (!AR_SREV_9100(ah)) {
1099                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1100                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1101                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1102         }
1103 }
1104
1105 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1106 {
1107         u32 val = ath9k_hw_mac_to_clks(ah, us);
1108         val = min(val, (u32) 0xFFFF);
1109         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1110 }
1111
1112 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1113 {
1114         u32 val = ath9k_hw_mac_to_clks(ah, us);
1115         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1116         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1117 }
1118
1119 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1120 {
1121         u32 val = ath9k_hw_mac_to_clks(ah, us);
1122         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1123         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1124 }
1125
1126 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1127 {
1128         if (tu > 0xFFFF) {
1129                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1130                           "bad global tx timeout %u\n", tu);
1131                 ah->globaltxtimeout = (u32) -1;
1132                 return false;
1133         } else {
1134                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1135                 ah->globaltxtimeout = tu;
1136                 return true;
1137         }
1138 }
1139
1140 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1141 {
1142         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1143         int acktimeout;
1144         int slottime;
1145         int sifstime;
1146
1147         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1148                   ah->misc_mode);
1149
1150         if (ah->misc_mode != 0)
1151                 REG_WRITE(ah, AR_PCU_MISC,
1152                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1153
1154         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1155                 sifstime = 16;
1156         else
1157                 sifstime = 10;
1158
1159         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1160         slottime = ah->slottime + 3 * ah->coverage_class;
1161         acktimeout = slottime + sifstime;
1162
1163         /*
1164          * Workaround for early ACK timeouts, add an offset to match the
1165          * initval's 64us ack timeout value.
1166          * This was initially only meant to work around an issue with delayed
1167          * BA frames in some implementations, but it has been found to fix ACK
1168          * timeout issues in other cases as well.
1169          */
1170         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1171                 acktimeout += 64 - sifstime - ah->slottime;
1172
1173         ath9k_hw_setslottime(ah, slottime);
1174         ath9k_hw_set_ack_timeout(ah, acktimeout);
1175         ath9k_hw_set_cts_timeout(ah, acktimeout);
1176         if (ah->globaltxtimeout != (u32) -1)
1177                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1178 }
1179 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1180
1181 void ath9k_hw_deinit(struct ath_hw *ah)
1182 {
1183         struct ath_common *common = ath9k_hw_common(ah);
1184
1185         if (common->state < ATH_HW_INITIALIZED)
1186                 goto free_hw;
1187
1188         if (!AR_SREV_9100(ah))
1189                 ath9k_hw_ani_disable(ah);
1190
1191         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1192
1193 free_hw:
1194         ath9k_hw_rf_free_ext_banks(ah);
1195 }
1196 EXPORT_SYMBOL(ath9k_hw_deinit);
1197
1198 /*******/
1199 /* INI */
1200 /*******/
1201
1202 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1203 {
1204         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1205
1206         if (IS_CHAN_B(chan))
1207                 ctl |= CTL_11B;
1208         else if (IS_CHAN_G(chan))
1209                 ctl |= CTL_11G;
1210         else
1211                 ctl |= CTL_11A;
1212
1213         return ctl;
1214 }
1215
1216 /****************************************/
1217 /* Reset and Channel Switching Routines */
1218 /****************************************/
1219
1220 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1221 {
1222         u32 regval;
1223
1224         /*
1225          * set AHB_MODE not to do cacheline prefetches
1226         */
1227         regval = REG_READ(ah, AR_AHB_MODE);
1228         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1229
1230         /*
1231          * let mac dma reads be in 128 byte chunks
1232          */
1233         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1234         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1235
1236         /*
1237          * Restore TX Trigger Level to its pre-reset value.
1238          * The initial value depends on whether aggregation is enabled, and is
1239          * adjusted whenever underruns are detected.
1240          */
1241         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1242
1243         /*
1244          * let mac dma writes be in 128 byte chunks
1245          */
1246         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1247         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1248
1249         /*
1250          * Setup receive FIFO threshold to hold off TX activities
1251          */
1252         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1253
1254         /*
1255          * reduce the number of usable entries in PCU TXBUF to avoid
1256          * wrap around issues.
1257          */
1258         if (AR_SREV_9285(ah)) {
1259                 /* For AR9285 the number of Fifos are reduced to half.
1260                  * So set the usable tx buf size also to half to
1261                  * avoid data/delimiter underruns
1262                  */
1263                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1264                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1265         } else if (!AR_SREV_9271(ah)) {
1266                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1267                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1268         }
1269 }
1270
1271 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1272 {
1273         u32 val;
1274
1275         val = REG_READ(ah, AR_STA_ID1);
1276         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1277         switch (opmode) {
1278         case NL80211_IFTYPE_AP:
1279                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1280                           | AR_STA_ID1_KSRCH_MODE);
1281                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1282                 break;
1283         case NL80211_IFTYPE_ADHOC:
1284         case NL80211_IFTYPE_MESH_POINT:
1285                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1286                           | AR_STA_ID1_KSRCH_MODE);
1287                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288                 break;
1289         case NL80211_IFTYPE_STATION:
1290         case NL80211_IFTYPE_MONITOR:
1291                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1292                 break;
1293         }
1294 }
1295
1296 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1297                                    u32 *coef_mantissa, u32 *coef_exponent)
1298 {
1299         u32 coef_exp, coef_man;
1300
1301         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1302                 if ((coef_scaled >> coef_exp) & 0x1)
1303                         break;
1304
1305         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1306
1307         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1308
1309         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1310         *coef_exponent = coef_exp - 16;
1311 }
1312
1313 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1314 {
1315         u32 rst_flags;
1316         u32 tmpReg;
1317
1318         if (AR_SREV_9100(ah)) {
1319                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1320                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1321                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1322                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1323                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1324         }
1325
1326         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1327                   AR_RTC_FORCE_WAKE_ON_INT);
1328
1329         if (AR_SREV_9100(ah)) {
1330                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1331                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1332         } else {
1333                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1334                 if (tmpReg &
1335                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1336                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1337                         u32 val;
1338                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1339
1340                         val = AR_RC_HOSTIF;
1341                         if (!AR_SREV_9300_20_OR_LATER(ah))
1342                                 val |= AR_RC_AHB;
1343                         REG_WRITE(ah, AR_RC, val);
1344
1345                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1346                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1347
1348                 rst_flags = AR_RTC_RC_MAC_WARM;
1349                 if (type == ATH9K_RESET_COLD)
1350                         rst_flags |= AR_RTC_RC_MAC_COLD;
1351         }
1352
1353         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1354         udelay(50);
1355
1356         REG_WRITE(ah, AR_RTC_RC, 0);
1357         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1358                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1359                           "RTC stuck in MAC reset\n");
1360                 return false;
1361         }
1362
1363         if (!AR_SREV_9100(ah))
1364                 REG_WRITE(ah, AR_RC, 0);
1365
1366         if (AR_SREV_9100(ah))
1367                 udelay(50);
1368
1369         return true;
1370 }
1371
1372 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1373 {
1374         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1375                   AR_RTC_FORCE_WAKE_ON_INT);
1376
1377         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1378                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1379
1380         REG_WRITE(ah, AR_RTC_RESET, 0);
1381         udelay(2);
1382
1383         if (!AR_SREV_9100(ah))
1384                 REG_WRITE(ah, AR_RC, 0);
1385
1386         REG_WRITE(ah, AR_RTC_RESET, 1);
1387
1388         if (!ath9k_hw_wait(ah,
1389                            AR_RTC_STATUS,
1390                            AR_RTC_STATUS_M,
1391                            AR_RTC_STATUS_ON,
1392                            AH_WAIT_TIMEOUT)) {
1393                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1394                           "RTC not waking up\n");
1395                 return false;
1396         }
1397
1398         ath9k_hw_read_revisions(ah);
1399
1400         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1401 }
1402
1403 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1404 {
1405         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1406                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1407
1408         switch (type) {
1409         case ATH9K_RESET_POWER_ON:
1410                 return ath9k_hw_set_reset_power_on(ah);
1411         case ATH9K_RESET_WARM:
1412         case ATH9K_RESET_COLD:
1413                 return ath9k_hw_set_reset(ah, type);
1414         default:
1415                 return false;
1416         }
1417 }
1418
1419 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1420                                 struct ath9k_channel *chan)
1421 {
1422         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1423                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1424                         return false;
1425         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1426                 return false;
1427
1428         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1429                 return false;
1430
1431         ah->chip_fullsleep = false;
1432         ath9k_hw_init_pll(ah, chan);
1433         ath9k_hw_set_rfmode(ah, chan);
1434
1435         return true;
1436 }
1437
1438 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1439                                     struct ath9k_channel *chan)
1440 {
1441         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1442         struct ath_common *common = ath9k_hw_common(ah);
1443         struct ieee80211_channel *channel = chan->chan;
1444         u32 qnum;
1445         int r;
1446
1447         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1448                 if (ath9k_hw_numtxpending(ah, qnum)) {
1449                         ath_print(common, ATH_DBG_QUEUE,
1450                                   "Transmit frames pending on "
1451                                   "queue %d\n", qnum);
1452                         return false;
1453                 }
1454         }
1455
1456         if (!ath9k_hw_rfbus_req(ah)) {
1457                 ath_print(common, ATH_DBG_FATAL,
1458                           "Could not kill baseband RX\n");
1459                 return false;
1460         }
1461
1462         ath9k_hw_set_channel_regs(ah, chan);
1463
1464         r = ath9k_hw_rf_set_freq(ah, chan);
1465         if (r) {
1466                 ath_print(common, ATH_DBG_FATAL,
1467                           "Failed to set channel\n");
1468                 return false;
1469         }
1470
1471         ah->eep_ops->set_txpower(ah, chan,
1472                              ath9k_regd_get_ctl(regulatory, chan),
1473                              channel->max_antenna_gain * 2,
1474                              channel->max_power * 2,
1475                              min((u32) MAX_RATE_POWER,
1476                              (u32) regulatory->power_limit));
1477
1478         ath9k_hw_rfbus_done(ah);
1479
1480         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1481                 ath9k_hw_set_delta_slope(ah, chan);
1482
1483         ath9k_hw_spur_mitigate_freq(ah, chan);
1484
1485         if (!chan->oneTimeCalsDone)
1486                 chan->oneTimeCalsDone = true;
1487
1488         return true;
1489 }
1490
1491 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1492                     bool bChannelChange)
1493 {
1494         struct ath_common *common = ath9k_hw_common(ah);
1495         u32 saveLedState;
1496         struct ath9k_channel *curchan = ah->curchan;
1497         u32 saveDefAntenna;
1498         u32 macStaId1;
1499         u64 tsf = 0;
1500         int i, r;
1501
1502         ah->txchainmask = common->tx_chainmask;
1503         ah->rxchainmask = common->rx_chainmask;
1504
1505         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1506                 return -EIO;
1507
1508         if (curchan && !ah->chip_fullsleep)
1509                 ath9k_hw_getnf(ah, curchan);
1510
1511         if (bChannelChange &&
1512             (ah->chip_fullsleep != true) &&
1513             (ah->curchan != NULL) &&
1514             (chan->channel != ah->curchan->channel) &&
1515             ((chan->channelFlags & CHANNEL_ALL) ==
1516              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1517              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1518              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1519
1520                 if (ath9k_hw_channel_change(ah, chan)) {
1521                         ath9k_hw_loadnf(ah, ah->curchan);
1522                         ath9k_hw_start_nfcal(ah);
1523                         return 0;
1524                 }
1525         }
1526
1527         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1528         if (saveDefAntenna == 0)
1529                 saveDefAntenna = 1;
1530
1531         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1532
1533         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1534         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1535                 tsf = ath9k_hw_gettsf64(ah);
1536
1537         saveLedState = REG_READ(ah, AR_CFG_LED) &
1538                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1539                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1540
1541         ath9k_hw_mark_phy_inactive(ah);
1542
1543         /* Only required on the first reset */
1544         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1545                 REG_WRITE(ah,
1546                           AR9271_RESET_POWER_DOWN_CONTROL,
1547                           AR9271_RADIO_RF_RST);
1548                 udelay(50);
1549         }
1550
1551         if (!ath9k_hw_chip_reset(ah, chan)) {
1552                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1553                 return -EINVAL;
1554         }
1555
1556         /* Only required on the first reset */
1557         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1558                 ah->htc_reset_init = false;
1559                 REG_WRITE(ah,
1560                           AR9271_RESET_POWER_DOWN_CONTROL,
1561                           AR9271_GATE_MAC_CTL);
1562                 udelay(50);
1563         }
1564
1565         /* Restore TSF */
1566         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1567                 ath9k_hw_settsf64(ah, tsf);
1568
1569         if (AR_SREV_9280_10_OR_LATER(ah))
1570                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1571
1572         r = ath9k_hw_process_ini(ah, chan);
1573         if (r)
1574                 return r;
1575
1576         /* Setup MFP options for CCMP */
1577         if (AR_SREV_9280_20_OR_LATER(ah)) {
1578                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1579                  * frames when constructing CCMP AAD. */
1580                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1581                               0xc7ff);
1582                 ah->sw_mgmt_crypto = false;
1583         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1584                 /* Disable hardware crypto for management frames */
1585                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1586                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1587                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1588                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1589                 ah->sw_mgmt_crypto = true;
1590         } else
1591                 ah->sw_mgmt_crypto = true;
1592
1593         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1594                 ath9k_hw_set_delta_slope(ah, chan);
1595
1596         ath9k_hw_spur_mitigate_freq(ah, chan);
1597         ah->eep_ops->set_board_values(ah, chan);
1598
1599         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1600         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1601                   | macStaId1
1602                   | AR_STA_ID1_RTS_USE_DEF
1603                   | (ah->config.
1604                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1605                   | ah->sta_id1_defaults);
1606         ath9k_hw_set_operating_mode(ah, ah->opmode);
1607
1608         ath_hw_setbssidmask(common);
1609
1610         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1611
1612         ath9k_hw_write_associd(ah);
1613
1614         REG_WRITE(ah, AR_ISR, ~0);
1615
1616         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1617
1618         r = ath9k_hw_rf_set_freq(ah, chan);
1619         if (r)
1620                 return r;
1621
1622         for (i = 0; i < AR_NUM_DCU; i++)
1623                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1624
1625         ah->intr_txqs = 0;
1626         for (i = 0; i < ah->caps.total_queues; i++)
1627                 ath9k_hw_resettxqueue(ah, i);
1628
1629         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1630         ath9k_hw_init_qos(ah);
1631
1632         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1633                 ath9k_enable_rfkill(ah);
1634
1635         ath9k_hw_init_global_settings(ah);
1636
1637         if (AR_SREV_9287_12_OR_LATER(ah)) {
1638                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
1639                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
1640                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
1641                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
1642                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
1643                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
1644
1645                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
1646                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
1647
1648                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1649                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1650                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1651                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1652         }
1653         if (AR_SREV_9287_12_OR_LATER(ah)) {
1654                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1655                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1656         }
1657
1658         REG_WRITE(ah, AR_STA_ID1,
1659                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1660
1661         ath9k_hw_set_dma(ah);
1662
1663         REG_WRITE(ah, AR_OBS, 8);
1664
1665         if (ah->config.rx_intr_mitigation) {
1666                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1667                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1668         }
1669
1670         ath9k_hw_init_bb(ah, chan);
1671
1672         if (!ath9k_hw_init_cal(ah, chan))
1673                 return -EIO;
1674
1675         ath9k_hw_restore_chainmask(ah);
1676         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1677
1678         /*
1679          * For big endian systems turn on swapping for descriptors
1680          */
1681         if (AR_SREV_9100(ah)) {
1682                 u32 mask;
1683                 mask = REG_READ(ah, AR_CFG);
1684                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685                         ath_print(common, ATH_DBG_RESET,
1686                                 "CFG Byte Swap Set 0x%x\n", mask);
1687                 } else {
1688                         mask =
1689                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690                         REG_WRITE(ah, AR_CFG, mask);
1691                         ath_print(common, ATH_DBG_RESET,
1692                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693                 }
1694         } else {
1695                 /* Configure AR9271 target WLAN */
1696                 if (AR_SREV_9271(ah))
1697                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1698 #ifdef __BIG_ENDIAN
1699                 else
1700                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701 #endif
1702         }
1703
1704         if (ah->btcoex_hw.enabled)
1705                 ath9k_hw_btcoex_enable(ah);
1706
1707         return 0;
1708 }
1709 EXPORT_SYMBOL(ath9k_hw_reset);
1710
1711 /************************/
1712 /* Key Cache Management */
1713 /************************/
1714
1715 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1716 {
1717         u32 keyType;
1718
1719         if (entry >= ah->caps.keycache_size) {
1720                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1721                           "keychache entry %u out of range\n", entry);
1722                 return false;
1723         }
1724
1725         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1726
1727         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1728         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1729         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1730         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1731         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1732         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1733         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1734         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1735
1736         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1737                 u16 micentry = entry + 64;
1738
1739                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1740                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1741                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1742                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1743
1744         }
1745
1746         return true;
1747 }
1748 EXPORT_SYMBOL(ath9k_hw_keyreset);
1749
1750 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1751 {
1752         u32 macHi, macLo;
1753
1754         if (entry >= ah->caps.keycache_size) {
1755                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1756                           "keychache entry %u out of range\n", entry);
1757                 return false;
1758         }
1759
1760         if (mac != NULL) {
1761                 macHi = (mac[5] << 8) | mac[4];
1762                 macLo = (mac[3] << 24) |
1763                         (mac[2] << 16) |
1764                         (mac[1] << 8) |
1765                         mac[0];
1766                 macLo >>= 1;
1767                 macLo |= (macHi & 1) << 31;
1768                 macHi >>= 1;
1769         } else {
1770                 macLo = macHi = 0;
1771         }
1772         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1773         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
1774
1775         return true;
1776 }
1777 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1778
1779 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1780                                  const struct ath9k_keyval *k,
1781                                  const u8 *mac)
1782 {
1783         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1784         struct ath_common *common = ath9k_hw_common(ah);
1785         u32 key0, key1, key2, key3, key4;
1786         u32 keyType;
1787
1788         if (entry >= pCap->keycache_size) {
1789                 ath_print(common, ATH_DBG_FATAL,
1790                           "keycache entry %u out of range\n", entry);
1791                 return false;
1792         }
1793
1794         switch (k->kv_type) {
1795         case ATH9K_CIPHER_AES_OCB:
1796                 keyType = AR_KEYTABLE_TYPE_AES;
1797                 break;
1798         case ATH9K_CIPHER_AES_CCM:
1799                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1800                         ath_print(common, ATH_DBG_ANY,
1801                                   "AES-CCM not supported by mac rev 0x%x\n",
1802                                   ah->hw_version.macRev);
1803                         return false;
1804                 }
1805                 keyType = AR_KEYTABLE_TYPE_CCM;
1806                 break;
1807         case ATH9K_CIPHER_TKIP:
1808                 keyType = AR_KEYTABLE_TYPE_TKIP;
1809                 if (ATH9K_IS_MIC_ENABLED(ah)
1810                     && entry + 64 >= pCap->keycache_size) {
1811                         ath_print(common, ATH_DBG_ANY,
1812                                   "entry %u inappropriate for TKIP\n", entry);
1813                         return false;
1814                 }
1815                 break;
1816         case ATH9K_CIPHER_WEP:
1817                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1818                         ath_print(common, ATH_DBG_ANY,
1819                                   "WEP key length %u too small\n", k->kv_len);
1820                         return false;
1821                 }
1822                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1823                         keyType = AR_KEYTABLE_TYPE_40;
1824                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1825                         keyType = AR_KEYTABLE_TYPE_104;
1826                 else
1827                         keyType = AR_KEYTABLE_TYPE_128;
1828                 break;
1829         case ATH9K_CIPHER_CLR:
1830                 keyType = AR_KEYTABLE_TYPE_CLR;
1831                 break;
1832         default:
1833                 ath_print(common, ATH_DBG_FATAL,
1834                           "cipher %u not supported\n", k->kv_type);
1835                 return false;
1836         }
1837
1838         key0 = get_unaligned_le32(k->kv_val + 0);
1839         key1 = get_unaligned_le16(k->kv_val + 4);
1840         key2 = get_unaligned_le32(k->kv_val + 6);
1841         key3 = get_unaligned_le16(k->kv_val + 10);
1842         key4 = get_unaligned_le32(k->kv_val + 12);
1843         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1844                 key4 &= 0xff;
1845
1846         /*
1847          * Note: Key cache registers access special memory area that requires
1848          * two 32-bit writes to actually update the values in the internal
1849          * memory. Consequently, the exact order and pairs used here must be
1850          * maintained.
1851          */
1852
1853         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1854                 u16 micentry = entry + 64;
1855
1856                 /*
1857                  * Write inverted key[47:0] first to avoid Michael MIC errors
1858                  * on frames that could be sent or received at the same time.
1859                  * The correct key will be written in the end once everything
1860                  * else is ready.
1861                  */
1862                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1863                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1864
1865                 /* Write key[95:48] */
1866                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1867                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1868
1869                 /* Write key[127:96] and key type */
1870                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1871                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1872
1873                 /* Write MAC address for the entry */
1874                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1875
1876                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1877                         /*
1878                          * TKIP uses two key cache entries:
1879                          * Michael MIC TX/RX keys in the same key cache entry
1880                          * (idx = main index + 64):
1881                          * key0 [31:0] = RX key [31:0]
1882                          * key1 [15:0] = TX key [31:16]
1883                          * key1 [31:16] = reserved
1884                          * key2 [31:0] = RX key [63:32]
1885                          * key3 [15:0] = TX key [15:0]
1886                          * key3 [31:16] = reserved
1887                          * key4 [31:0] = TX key [63:32]
1888                          */
1889                         u32 mic0, mic1, mic2, mic3, mic4;
1890
1891                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1892                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1893                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1894                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1895                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1896
1897                         /* Write RX[31:0] and TX[31:16] */
1898                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1899                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1900
1901                         /* Write RX[63:32] and TX[15:0] */
1902                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1903                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1904
1905                         /* Write TX[63:32] and keyType(reserved) */
1906                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1907                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1908                                   AR_KEYTABLE_TYPE_CLR);
1909
1910                 } else {
1911                         /*
1912                          * TKIP uses four key cache entries (two for group
1913                          * keys):
1914                          * Michael MIC TX/RX keys are in different key cache
1915                          * entries (idx = main index + 64 for TX and
1916                          * main index + 32 + 96 for RX):
1917                          * key0 [31:0] = TX/RX MIC key [31:0]
1918                          * key1 [31:0] = reserved
1919                          * key2 [31:0] = TX/RX MIC key [63:32]
1920                          * key3 [31:0] = reserved
1921                          * key4 [31:0] = reserved
1922                          *
1923                          * Upper layer code will call this function separately
1924                          * for TX and RX keys when these registers offsets are
1925                          * used.
1926                          */
1927                         u32 mic0, mic2;
1928
1929                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1930                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1931
1932                         /* Write MIC key[31:0] */
1933                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1934                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1935
1936                         /* Write MIC key[63:32] */
1937                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1938                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1939
1940                         /* Write TX[63:32] and keyType(reserved) */
1941                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1942                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1943                                   AR_KEYTABLE_TYPE_CLR);
1944                 }
1945
1946                 /* MAC address registers are reserved for the MIC entry */
1947                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1948                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1949
1950                 /*
1951                  * Write the correct (un-inverted) key[47:0] last to enable
1952                  * TKIP now that all other registers are set with correct
1953                  * values.
1954                  */
1955                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1956                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1957         } else {
1958                 /* Write key[47:0] */
1959                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1960                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1961
1962                 /* Write key[95:48] */
1963                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1964                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1965
1966                 /* Write key[127:96] and key type */
1967                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1968                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1969
1970                 /* Write MAC address for the entry */
1971                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1972         }
1973
1974         return true;
1975 }
1976 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1977
1978 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1979 {
1980         if (entry < ah->caps.keycache_size) {
1981                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1982                 if (val & AR_KEYTABLE_VALID)
1983                         return true;
1984         }
1985         return false;
1986 }
1987 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1988
1989 /******************************/
1990 /* Power Management (Chipset) */
1991 /******************************/
1992
1993 /*
1994  * Notify Power Mgt is disabled in self-generated frames.
1995  * If requested, force chip to sleep.
1996  */
1997 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1998 {
1999         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2000         if (setChip) {
2001                 /*
2002                  * Clear the RTC force wake bit to allow the
2003                  * mac to go to sleep.
2004                  */
2005                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2006                             AR_RTC_FORCE_WAKE_EN);
2007                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2008                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2009
2010                 /* Shutdown chip. Active low */
2011                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2012                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2013                                     AR_RTC_RESET_EN);
2014         }
2015 }
2016
2017 /*
2018  * Notify Power Management is enabled in self-generating
2019  * frames. If request, set power mode of chip to
2020  * auto/normal.  Duration in units of 128us (1/8 TU).
2021  */
2022 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2023 {
2024         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2025         if (setChip) {
2026                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2027
2028                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2029                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
2030                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2031                                   AR_RTC_FORCE_WAKE_ON_INT);
2032                 } else {
2033                         /*
2034                          * Clear the RTC force wake bit to allow the
2035                          * mac to go to sleep.
2036                          */
2037                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2038                                     AR_RTC_FORCE_WAKE_EN);
2039                 }
2040         }
2041 }
2042
2043 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2044 {
2045         u32 val;
2046         int i;
2047
2048         if (setChip) {
2049                 if ((REG_READ(ah, AR_RTC_STATUS) &
2050                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2051                         if (ath9k_hw_set_reset_reg(ah,
2052                                            ATH9K_RESET_POWER_ON) != true) {
2053                                 return false;
2054                         }
2055                         if (!AR_SREV_9300_20_OR_LATER(ah))
2056                                 ath9k_hw_init_pll(ah, NULL);
2057                 }
2058                 if (AR_SREV_9100(ah))
2059                         REG_SET_BIT(ah, AR_RTC_RESET,
2060                                     AR_RTC_RESET_EN);
2061
2062                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2063                             AR_RTC_FORCE_WAKE_EN);
2064                 udelay(50);
2065
2066                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2067                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2068                         if (val == AR_RTC_STATUS_ON)
2069                                 break;
2070                         udelay(50);
2071                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2072                                     AR_RTC_FORCE_WAKE_EN);
2073                 }
2074                 if (i == 0) {
2075                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2076                                   "Failed to wakeup in %uus\n",
2077                                   POWER_UP_TIME / 20);
2078                         return false;
2079                 }
2080         }
2081
2082         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2083
2084         return true;
2085 }
2086
2087 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2088 {
2089         struct ath_common *common = ath9k_hw_common(ah);
2090         int status = true, setChip = true;
2091         static const char *modes[] = {
2092                 "AWAKE",
2093                 "FULL-SLEEP",
2094                 "NETWORK SLEEP",
2095                 "UNDEFINED"
2096         };
2097
2098         if (ah->power_mode == mode)
2099                 return status;
2100
2101         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2102                   modes[ah->power_mode], modes[mode]);
2103
2104         switch (mode) {
2105         case ATH9K_PM_AWAKE:
2106                 status = ath9k_hw_set_power_awake(ah, setChip);
2107                 break;
2108         case ATH9K_PM_FULL_SLEEP:
2109                 ath9k_set_power_sleep(ah, setChip);
2110                 ah->chip_fullsleep = true;
2111                 break;
2112         case ATH9K_PM_NETWORK_SLEEP:
2113                 ath9k_set_power_network_sleep(ah, setChip);
2114                 break;
2115         default:
2116                 ath_print(common, ATH_DBG_FATAL,
2117                           "Unknown power mode %u\n", mode);
2118                 return false;
2119         }
2120         ah->power_mode = mode;
2121
2122         return status;
2123 }
2124 EXPORT_SYMBOL(ath9k_hw_setpower);
2125
2126 /*
2127  * Helper for ASPM support.
2128  *
2129  * Disable PLL when in L0s as well as receiver clock when in L1.
2130  * This power saving option must be enabled through the SerDes.
2131  *
2132  * Programming the SerDes must go through the same 288 bit serial shift
2133  * register as the other analog registers.  Hence the 9 writes.
2134  */
2135 static void ar9002_hw_configpcipowersave(struct ath_hw *ah,
2136                                          int restore,
2137                                          int power_off)
2138 {
2139         u8 i;
2140         u32 val;
2141
2142         if (ah->is_pciexpress != true)
2143                 return;
2144
2145         /* Do not touch SerDes registers */
2146         if (ah->config.pcie_powersave_enable == 2)
2147                 return;
2148
2149         /* Nothing to do on restore for 11N */
2150         if (!restore) {
2151                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2152                         /*
2153                          * AR9280 2.0 or later chips use SerDes values from the
2154                          * initvals.h initialized depending on chipset during
2155                          * __ath9k_hw_init()
2156                          */
2157                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2158                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2159                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2160                         }
2161                 } else if (AR_SREV_9280(ah) &&
2162                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2163                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2164                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2165
2166                         /* RX shut off when elecidle is asserted */
2167                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2168                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2169                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2170
2171                         /* Shut off CLKREQ active in L1 */
2172                         if (ah->config.pcie_clock_req)
2173                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2174                         else
2175                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2176
2177                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2178                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2179                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2180
2181                         /* Load the new settings */
2182                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2183
2184                 } else {
2185                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2186                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2187
2188                         /* RX shut off when elecidle is asserted */
2189                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2190                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2191                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2192
2193                         /*
2194                          * Ignore ah->ah_config.pcie_clock_req setting for
2195                          * pre-AR9280 11n
2196                          */
2197                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2198
2199                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2200                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2201                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2202
2203                         /* Load the new settings */
2204                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2205                 }
2206
2207                 udelay(1000);
2208
2209                 /* set bit 19 to allow forcing of pcie core into L1 state */
2210                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2211
2212                 /* Several PCIe massages to ensure proper behaviour */
2213                 if (ah->config.pcie_waen) {
2214                         val = ah->config.pcie_waen;
2215                         if (!power_off)
2216                                 val &= (~AR_WA_D3_L1_DISABLE);
2217                 } else {
2218                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2219                             AR_SREV_9287(ah)) {
2220                                 val = AR9285_WA_DEFAULT;
2221                                 if (!power_off)
2222                                         val &= (~AR_WA_D3_L1_DISABLE);
2223                         } else if (AR_SREV_9280(ah)) {
2224                                 /*
2225                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2226                                  * set otherwise card may disappear.
2227                                  */
2228                                 val = AR9280_WA_DEFAULT;
2229                                 if (!power_off)
2230                                         val &= (~AR_WA_D3_L1_DISABLE);
2231                         } else
2232                                 val = AR_WA_DEFAULT;
2233                 }
2234
2235                 REG_WRITE(ah, AR_WA, val);
2236         }
2237
2238         if (power_off) {
2239                 /*
2240                  * Set PCIe workaround bits
2241                  * bit 14 in WA register (disable L1) should only
2242                  * be set when device enters D3 and be cleared
2243                  * when device comes back to D0.
2244                  */
2245                 if (ah->config.pcie_waen) {
2246                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2247                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2248                 } else {
2249                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2250                               AR_SREV_9287(ah)) &&
2251                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2252                             (AR_SREV_9280(ah) &&
2253                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2254                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2255                         }
2256                 }
2257         }
2258 }
2259
2260 /**********************/
2261 /* Interrupt Handling */
2262 /**********************/
2263
2264 bool ath9k_hw_intrpend(struct ath_hw *ah)
2265 {
2266         u32 host_isr;
2267
2268         if (AR_SREV_9100(ah))
2269                 return true;
2270
2271         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2272         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2273                 return true;
2274
2275         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2276         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2277             && (host_isr != AR_INTR_SPURIOUS))
2278                 return true;
2279
2280         return false;
2281 }
2282 EXPORT_SYMBOL(ath9k_hw_intrpend);
2283
2284 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2285 {
2286         u32 isr = 0;
2287         u32 mask2 = 0;
2288         struct ath9k_hw_capabilities *pCap = &ah->caps;
2289         u32 sync_cause = 0;
2290         bool fatal_int = false;
2291         struct ath_common *common = ath9k_hw_common(ah);
2292
2293         if (!AR_SREV_9100(ah)) {
2294                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2295                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2296                             == AR_RTC_STATUS_ON) {
2297                                 isr = REG_READ(ah, AR_ISR);
2298                         }
2299                 }
2300
2301                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2302                         AR_INTR_SYNC_DEFAULT;
2303
2304                 *masked = 0;
2305
2306                 if (!isr && !sync_cause)
2307                         return false;
2308         } else {
2309                 *masked = 0;
2310                 isr = REG_READ(ah, AR_ISR);
2311         }
2312
2313         if (isr) {
2314                 if (isr & AR_ISR_BCNMISC) {
2315                         u32 isr2;
2316                         isr2 = REG_READ(ah, AR_ISR_S2);
2317                         if (isr2 & AR_ISR_S2_TIM)
2318                                 mask2 |= ATH9K_INT_TIM;
2319                         if (isr2 & AR_ISR_S2_DTIM)
2320                                 mask2 |= ATH9K_INT_DTIM;
2321                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2322                                 mask2 |= ATH9K_INT_DTIMSYNC;
2323                         if (isr2 & (AR_ISR_S2_CABEND))
2324                                 mask2 |= ATH9K_INT_CABEND;
2325                         if (isr2 & AR_ISR_S2_GTT)
2326                                 mask2 |= ATH9K_INT_GTT;
2327                         if (isr2 & AR_ISR_S2_CST)
2328                                 mask2 |= ATH9K_INT_CST;
2329                         if (isr2 & AR_ISR_S2_TSFOOR)
2330                                 mask2 |= ATH9K_INT_TSFOOR;
2331                 }
2332
2333                 isr = REG_READ(ah, AR_ISR_RAC);
2334                 if (isr == 0xffffffff) {
2335                         *masked = 0;
2336                         return false;
2337                 }
2338
2339                 *masked = isr & ATH9K_INT_COMMON;
2340
2341                 if (ah->config.rx_intr_mitigation) {
2342                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2343                                 *masked |= ATH9K_INT_RX;
2344                 }
2345
2346                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2347                         *masked |= ATH9K_INT_RX;
2348                 if (isr &
2349                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2350                      AR_ISR_TXEOL)) {
2351                         u32 s0_s, s1_s;
2352
2353                         *masked |= ATH9K_INT_TX;
2354
2355                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2356                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2357                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2358
2359                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2360                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2361                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2362                 }
2363
2364                 if (isr & AR_ISR_RXORN) {
2365                         ath_print(common, ATH_DBG_INTERRUPT,
2366                                   "receive FIFO overrun interrupt\n");
2367                 }
2368
2369                 if (!AR_SREV_9100(ah)) {
2370                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2371                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2372                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2373                                         *masked |= ATH9K_INT_TIM_TIMER;
2374                         }
2375                 }
2376
2377                 *masked |= mask2;
2378         }
2379
2380         if (AR_SREV_9100(ah))
2381                 return true;
2382
2383         if (isr & AR_ISR_GENTMR) {
2384                 u32 s5_s;
2385
2386                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2387                 if (isr & AR_ISR_GENTMR) {
2388                         ah->intr_gen_timer_trigger =
2389                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2390
2391                         ah->intr_gen_timer_thresh =
2392                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2393
2394                         if (ah->intr_gen_timer_trigger)
2395                                 *masked |= ATH9K_INT_GENTIMER;
2396
2397                 }
2398         }
2399
2400         if (sync_cause) {
2401                 fatal_int =
2402                         (sync_cause &
2403                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2404                         ? true : false;
2405
2406                 if (fatal_int) {
2407                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2408                                 ath_print(common, ATH_DBG_ANY,
2409                                           "received PCI FATAL interrupt\n");
2410                         }
2411                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2412                                 ath_print(common, ATH_DBG_ANY,
2413                                           "received PCI PERR interrupt\n");
2414                         }
2415                         *masked |= ATH9K_INT_FATAL;
2416                 }
2417                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2418                         ath_print(common, ATH_DBG_INTERRUPT,
2419                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2420                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2421                         REG_WRITE(ah, AR_RC, 0);
2422                         *masked |= ATH9K_INT_FATAL;
2423                 }
2424                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2425                         ath_print(common, ATH_DBG_INTERRUPT,
2426                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2427                 }
2428
2429                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2430                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2431         }
2432
2433         return true;
2434 }
2435 EXPORT_SYMBOL(ath9k_hw_getisr);
2436
2437 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2438 {
2439         enum ath9k_int omask = ah->imask;
2440         u32 mask, mask2;
2441         struct ath9k_hw_capabilities *pCap = &ah->caps;
2442         struct ath_common *common = ath9k_hw_common(ah);
2443
2444         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2445
2446         if (omask & ATH9K_INT_GLOBAL) {
2447                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2448                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2449                 (void) REG_READ(ah, AR_IER);
2450                 if (!AR_SREV_9100(ah)) {
2451                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2452                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2453
2454                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2455                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2456                 }
2457         }
2458
2459         mask = ints & ATH9K_INT_COMMON;
2460         mask2 = 0;
2461
2462         if (ints & ATH9K_INT_TX) {
2463                 if (ah->txok_interrupt_mask)
2464                         mask |= AR_IMR_TXOK;
2465                 if (ah->txdesc_interrupt_mask)
2466                         mask |= AR_IMR_TXDESC;
2467                 if (ah->txerr_interrupt_mask)
2468                         mask |= AR_IMR_TXERR;
2469                 if (ah->txeol_interrupt_mask)
2470                         mask |= AR_IMR_TXEOL;
2471         }
2472         if (ints & ATH9K_INT_RX) {
2473                 mask |= AR_IMR_RXERR;
2474                 if (ah->config.rx_intr_mitigation)
2475                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2476                 else
2477                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2478                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2479                         mask |= AR_IMR_GENTMR;
2480         }
2481
2482         if (ints & (ATH9K_INT_BMISC)) {
2483                 mask |= AR_IMR_BCNMISC;
2484                 if (ints & ATH9K_INT_TIM)
2485                         mask2 |= AR_IMR_S2_TIM;
2486                 if (ints & ATH9K_INT_DTIM)
2487                         mask2 |= AR_IMR_S2_DTIM;
2488                 if (ints & ATH9K_INT_DTIMSYNC)
2489                         mask2 |= AR_IMR_S2_DTIMSYNC;
2490                 if (ints & ATH9K_INT_CABEND)
2491                         mask2 |= AR_IMR_S2_CABEND;
2492                 if (ints & ATH9K_INT_TSFOOR)
2493                         mask2 |= AR_IMR_S2_TSFOOR;
2494         }
2495
2496         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2497                 mask |= AR_IMR_BCNMISC;
2498                 if (ints & ATH9K_INT_GTT)
2499                         mask2 |= AR_IMR_S2_GTT;
2500                 if (ints & ATH9K_INT_CST)
2501                         mask2 |= AR_IMR_S2_CST;
2502         }
2503
2504         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2505         REG_WRITE(ah, AR_IMR, mask);
2506         ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2507                            AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2508                            AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2509         ah->imrs2_reg |= mask2;
2510         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2511
2512         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2513                 if (ints & ATH9K_INT_TIM_TIMER)
2514                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2515                 else
2516                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2517         }
2518
2519         if (ints & ATH9K_INT_GLOBAL) {
2520                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2521                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2522                 if (!AR_SREV_9100(ah)) {
2523                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2524                                   AR_INTR_MAC_IRQ);
2525                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2526
2527
2528                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2529                                   AR_INTR_SYNC_DEFAULT);
2530                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2531                                   AR_INTR_SYNC_DEFAULT);
2532                 }
2533                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2534                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2535         }
2536
2537         return omask;
2538 }
2539 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2540
2541 /*******************/
2542 /* Beacon Handling */
2543 /*******************/
2544
2545 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2546 {
2547         int flags = 0;
2548
2549         ah->beacon_interval = beacon_period;
2550
2551         switch (ah->opmode) {
2552         case NL80211_IFTYPE_STATION:
2553         case NL80211_IFTYPE_MONITOR:
2554                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2555                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2556                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2557                 flags |= AR_TBTT_TIMER_EN;
2558                 break;
2559         case NL80211_IFTYPE_ADHOC:
2560         case NL80211_IFTYPE_MESH_POINT:
2561                 REG_SET_BIT(ah, AR_TXCFG,
2562                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2563                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2564                           TU_TO_USEC(next_beacon +
2565                                      (ah->atim_window ? ah->
2566                                       atim_window : 1)));
2567                 flags |= AR_NDP_TIMER_EN;
2568         case NL80211_IFTYPE_AP:
2569                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2570                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2571                           TU_TO_USEC(next_beacon -
2572                                      ah->config.
2573                                      dma_beacon_response_time));
2574                 REG_WRITE(ah, AR_NEXT_SWBA,
2575                           TU_TO_USEC(next_beacon -
2576                                      ah->config.
2577                                      sw_beacon_response_time));
2578                 flags |=
2579                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2580                 break;
2581         default:
2582                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2583                           "%s: unsupported opmode: %d\n",
2584                           __func__, ah->opmode);
2585                 return;
2586                 break;
2587         }
2588
2589         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2590         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2591         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2592         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2593
2594         beacon_period &= ~ATH9K_BEACON_ENA;
2595         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
2596                 ath9k_hw_reset_tsf(ah);
2597         }
2598
2599         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2600 }
2601 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2602
2603 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2604                                     const struct ath9k_beacon_state *bs)
2605 {
2606         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2607         struct ath9k_hw_capabilities *pCap = &ah->caps;
2608         struct ath_common *common = ath9k_hw_common(ah);
2609
2610         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2611
2612         REG_WRITE(ah, AR_BEACON_PERIOD,
2613                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2614         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2615                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2616
2617         REG_RMW_FIELD(ah, AR_RSSI_THR,
2618                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2619
2620         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
2621
2622         if (bs->bs_sleepduration > beaconintval)
2623                 beaconintval = bs->bs_sleepduration;
2624
2625         dtimperiod = bs->bs_dtimperiod;
2626         if (bs->bs_sleepduration > dtimperiod)
2627                 dtimperiod = bs->bs_sleepduration;
2628
2629         if (beaconintval == dtimperiod)
2630                 nextTbtt = bs->bs_nextdtim;
2631         else
2632                 nextTbtt = bs->bs_nexttbtt;
2633
2634         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2635         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2636         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2637         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2638
2639         REG_WRITE(ah, AR_NEXT_DTIM,
2640                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2641         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2642
2643         REG_WRITE(ah, AR_SLEEP1,
2644                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2645                   | AR_SLEEP1_ASSUME_DTIM);
2646
2647         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2648                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2649         else
2650                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2651
2652         REG_WRITE(ah, AR_SLEEP2,
2653                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2654
2655         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2656         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2657
2658         REG_SET_BIT(ah, AR_TIMER_MODE,
2659                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2660                     AR_DTIM_TIMER_EN);
2661
2662         /* TSF Out of Range Threshold */
2663         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2664 }
2665 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2666
2667 /*******************/
2668 /* HW Capabilities */
2669 /*******************/
2670
2671 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2672 {
2673         struct ath9k_hw_capabilities *pCap = &ah->caps;
2674         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2675         struct ath_common *common = ath9k_hw_common(ah);
2676         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2677
2678         u16 capField = 0, eeval;
2679
2680         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2681         regulatory->current_rd = eeval;
2682
2683         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2684         if (AR_SREV_9285_10_OR_LATER(ah))
2685                 eeval |= AR9285_RDEXT_DEFAULT;
2686         regulatory->current_rd_ext = eeval;
2687
2688         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2689
2690         if (ah->opmode != NL80211_IFTYPE_AP &&
2691             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2692                 if (regulatory->current_rd == 0x64 ||
2693                     regulatory->current_rd == 0x65)
2694                         regulatory->current_rd += 5;
2695                 else if (regulatory->current_rd == 0x41)
2696                         regulatory->current_rd = 0x43;
2697                 ath_print(common, ATH_DBG_REGULATORY,
2698                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2699         }
2700
2701         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2702         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2703                 ath_print(common, ATH_DBG_FATAL,
2704                           "no band has been marked as supported in EEPROM.\n");
2705                 return -EINVAL;
2706         }
2707
2708         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2709
2710         if (eeval & AR5416_OPFLAGS_11A) {
2711                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2712                 if (ah->config.ht_enable) {
2713                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2714                                 set_bit(ATH9K_MODE_11NA_HT20,
2715                                         pCap->wireless_modes);
2716                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2717                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2718                                         pCap->wireless_modes);
2719                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2720                                         pCap->wireless_modes);
2721                         }
2722                 }
2723         }
2724
2725         if (eeval & AR5416_OPFLAGS_11G) {
2726                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2727                 if (ah->config.ht_enable) {
2728                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2729                                 set_bit(ATH9K_MODE_11NG_HT20,
2730                                         pCap->wireless_modes);
2731                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2732                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2733                                         pCap->wireless_modes);
2734                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2735                                         pCap->wireless_modes);
2736                         }
2737                 }
2738         }
2739
2740         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2741         /*
2742          * For AR9271 we will temporarilly uses the rx chainmax as read from
2743          * the EEPROM.
2744          */
2745         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2746             !(eeval & AR5416_OPFLAGS_11A) &&
2747             !(AR_SREV_9271(ah)))
2748                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2749                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2750         else
2751                 /* Use rx_chainmask from EEPROM. */
2752                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2753
2754         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2755                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2756
2757         pCap->low_2ghz_chan = 2312;
2758         pCap->high_2ghz_chan = 2732;
2759
2760         pCap->low_5ghz_chan = 4920;
2761         pCap->high_5ghz_chan = 6100;
2762
2763         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2764         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2765         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2766
2767         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2768         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2769         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2770
2771         if (ah->config.ht_enable)
2772                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2773         else
2774                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2775
2776         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2777         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2778         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2779         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2780
2781         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2782                 pCap->total_queues =
2783                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2784         else
2785                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2786
2787         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2788                 pCap->keycache_size =
2789                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2790         else
2791                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2792
2793         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2794
2795         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2796                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2797         else
2798                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2799
2800         if (AR_SREV_9271(ah))
2801                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2802         else if (AR_SREV_9285_10_OR_LATER(ah))
2803                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2804         else if (AR_SREV_9280_10_OR_LATER(ah))
2805                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2806         else
2807                 pCap->num_gpio_pins = AR_NUM_GPIO;
2808
2809         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2810                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2811                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2812         } else {
2813                 pCap->rts_aggr_limit = (8 * 1024);
2814         }
2815
2816         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2817
2818 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2819         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2820         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2821                 ah->rfkill_gpio =
2822                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2823                 ah->rfkill_polarity =
2824                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2825
2826                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2827         }
2828 #endif
2829         if (AR_SREV_9271(ah))
2830                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2831         else
2832                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2833
2834         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2835                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2836         else
2837                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2838
2839         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2840                 pCap->reg_cap =
2841                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2842                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2843                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2844                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2845         } else {
2846                 pCap->reg_cap =
2847                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2848                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2849         }
2850
2851         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2852         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2853             AR_SREV_5416(ah))
2854                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2855
2856         pCap->num_antcfg_5ghz =
2857                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2858         pCap->num_antcfg_2ghz =
2859                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2860
2861         if (AR_SREV_9280_10_OR_LATER(ah) &&
2862             ath9k_hw_btcoex_supported(ah)) {
2863                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2864                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2865
2866                 if (AR_SREV_9285(ah)) {
2867                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2868                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2869                 } else {
2870                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2871                 }
2872         } else {
2873                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2874         }
2875
2876         return 0;
2877 }
2878
2879 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2880                             u32 capability, u32 *result)
2881 {
2882         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2883         switch (type) {
2884         case ATH9K_CAP_CIPHER:
2885                 switch (capability) {
2886                 case ATH9K_CIPHER_AES_CCM:
2887                 case ATH9K_CIPHER_AES_OCB:
2888                 case ATH9K_CIPHER_TKIP:
2889                 case ATH9K_CIPHER_WEP:
2890                 case ATH9K_CIPHER_MIC:
2891                 case ATH9K_CIPHER_CLR:
2892                         return true;
2893                 default:
2894                         return false;
2895                 }
2896         case ATH9K_CAP_TKIP_MIC:
2897                 switch (capability) {
2898                 case 0:
2899                         return true;
2900                 case 1:
2901                         return (ah->sta_id1_defaults &
2902                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2903                         false;
2904                 }
2905         case ATH9K_CAP_TKIP_SPLIT:
2906                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2907                         false : true;
2908         case ATH9K_CAP_MCAST_KEYSRCH:
2909                 switch (capability) {
2910                 case 0:
2911                         return true;
2912                 case 1:
2913                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2914                                 return false;
2915                         } else {
2916                                 return (ah->sta_id1_defaults &
2917                                         AR_STA_ID1_MCAST_KSRCH) ? true :
2918                                         false;
2919                         }
2920                 }
2921                 return false;
2922         case ATH9K_CAP_TXPOW:
2923                 switch (capability) {
2924                 case 0:
2925                         return 0;
2926                 case 1:
2927                         *result = regulatory->power_limit;
2928                         return 0;
2929                 case 2:
2930                         *result = regulatory->max_power_level;
2931                         return 0;
2932                 case 3:
2933                         *result = regulatory->tp_scale;
2934                         return 0;
2935                 }
2936                 return false;
2937         case ATH9K_CAP_DS:
2938                 return (AR_SREV_9280_20_OR_LATER(ah) &&
2939                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2940                         ? false : true;
2941         default:
2942                 return false;
2943         }
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_getcapability);
2946
2947 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2948                             u32 capability, u32 setting, int *status)
2949 {
2950         switch (type) {
2951         case ATH9K_CAP_TKIP_MIC:
2952                 if (setting)
2953                         ah->sta_id1_defaults |=
2954                                 AR_STA_ID1_CRPT_MIC_ENABLE;
2955                 else
2956                         ah->sta_id1_defaults &=
2957                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2958                 return true;
2959         case ATH9K_CAP_MCAST_KEYSRCH:
2960                 if (setting)
2961                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2962                 else
2963                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2964                 return true;
2965         default:
2966                 return false;
2967         }
2968 }
2969 EXPORT_SYMBOL(ath9k_hw_setcapability);
2970
2971 /****************************/
2972 /* GPIO / RFKILL / Antennae */
2973 /****************************/
2974
2975 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2976                                          u32 gpio, u32 type)
2977 {
2978         int addr;
2979         u32 gpio_shift, tmp;
2980
2981         if (gpio > 11)
2982                 addr = AR_GPIO_OUTPUT_MUX3;
2983         else if (gpio > 5)
2984                 addr = AR_GPIO_OUTPUT_MUX2;
2985         else
2986                 addr = AR_GPIO_OUTPUT_MUX1;
2987
2988         gpio_shift = (gpio % 6) * 5;
2989
2990         if (AR_SREV_9280_20_OR_LATER(ah)
2991             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2992                 REG_RMW(ah, addr, (type << gpio_shift),
2993                         (0x1f << gpio_shift));
2994         } else {
2995                 tmp = REG_READ(ah, addr);
2996                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2997                 tmp &= ~(0x1f << gpio_shift);
2998                 tmp |= (type << gpio_shift);
2999                 REG_WRITE(ah, addr, tmp);
3000         }
3001 }
3002
3003 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3004 {
3005         u32 gpio_shift;
3006
3007         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3008
3009         gpio_shift = gpio << 1;
3010
3011         REG_RMW(ah,
3012                 AR_GPIO_OE_OUT,
3013                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3014                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3015 }
3016 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3017
3018 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3019 {
3020 #define MS_REG_READ(x, y) \
3021         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3022
3023         if (gpio >= ah->caps.num_gpio_pins)
3024                 return 0xffffffff;
3025
3026         if (AR_SREV_9300_20_OR_LATER(ah))
3027                 return MS_REG_READ(AR9300, gpio) != 0;
3028         else if (AR_SREV_9271(ah))
3029                 return MS_REG_READ(AR9271, gpio) != 0;
3030         else if (AR_SREV_9287_10_OR_LATER(ah))
3031                 return MS_REG_READ(AR9287, gpio) != 0;
3032         else if (AR_SREV_9285_10_OR_LATER(ah))
3033                 return MS_REG_READ(AR9285, gpio) != 0;
3034         else if (AR_SREV_9280_10_OR_LATER(ah))
3035                 return MS_REG_READ(AR928X, gpio) != 0;
3036         else
3037                 return MS_REG_READ(AR, gpio) != 0;
3038 }
3039 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3040
3041 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3042                          u32 ah_signal_type)
3043 {
3044         u32 gpio_shift;
3045
3046         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3047
3048         gpio_shift = 2 * gpio;
3049
3050         REG_RMW(ah,
3051                 AR_GPIO_OE_OUT,
3052                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3053                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3054 }
3055 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3056
3057 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3058 {
3059         if (AR_SREV_9271(ah))
3060                 val = ~val;
3061
3062         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3063                 AR_GPIO_BIT(gpio));
3064 }
3065 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3066
3067 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3068 {
3069         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3070 }
3071 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3072
3073 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3074 {
3075         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3076 }
3077 EXPORT_SYMBOL(ath9k_hw_setantenna);
3078
3079 /*********************/
3080 /* General Operation */
3081 /*********************/
3082
3083 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3084 {
3085         u32 bits = REG_READ(ah, AR_RX_FILTER);
3086         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3087
3088         if (phybits & AR_PHY_ERR_RADAR)
3089                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3090         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3091                 bits |= ATH9K_RX_FILTER_PHYERR;
3092
3093         return bits;
3094 }
3095 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3096
3097 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3098 {
3099         u32 phybits;
3100
3101         REG_WRITE(ah, AR_RX_FILTER, bits);
3102
3103         phybits = 0;
3104         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3105                 phybits |= AR_PHY_ERR_RADAR;
3106         if (bits & ATH9K_RX_FILTER_PHYERR)
3107                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3108         REG_WRITE(ah, AR_PHY_ERR, phybits);
3109
3110         if (phybits)
3111                 REG_WRITE(ah, AR_RXCFG,
3112                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3113         else
3114                 REG_WRITE(ah, AR_RXCFG,
3115                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3116 }
3117 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3118
3119 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3120 {
3121         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3122                 return false;
3123
3124         ath9k_hw_init_pll(ah, NULL);
3125         return true;
3126 }
3127 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3128
3129 bool ath9k_hw_disable(struct ath_hw *ah)
3130 {
3131         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3132                 return false;
3133
3134         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3135                 return false;
3136
3137         ath9k_hw_init_pll(ah, NULL);
3138         return true;
3139 }
3140 EXPORT_SYMBOL(ath9k_hw_disable);
3141
3142 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3143 {
3144         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3145         struct ath9k_channel *chan = ah->curchan;
3146         struct ieee80211_channel *channel = chan->chan;
3147
3148         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3149
3150         ah->eep_ops->set_txpower(ah, chan,
3151                                  ath9k_regd_get_ctl(regulatory, chan),
3152                                  channel->max_antenna_gain * 2,
3153                                  channel->max_power * 2,
3154                                  min((u32) MAX_RATE_POWER,
3155                                  (u32) regulatory->power_limit));
3156 }
3157 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3158
3159 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3160 {
3161         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3162 }
3163 EXPORT_SYMBOL(ath9k_hw_setmac);
3164
3165 void ath9k_hw_setopmode(struct ath_hw *ah)
3166 {
3167         ath9k_hw_set_operating_mode(ah, ah->opmode);
3168 }
3169 EXPORT_SYMBOL(ath9k_hw_setopmode);
3170
3171 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3172 {
3173         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3174         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3175 }
3176 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3177
3178 void ath9k_hw_write_associd(struct ath_hw *ah)
3179 {
3180         struct ath_common *common = ath9k_hw_common(ah);
3181
3182         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3183         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3184                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3185 }
3186 EXPORT_SYMBOL(ath9k_hw_write_associd);
3187
3188 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3189 {
3190         u64 tsf;
3191
3192         tsf = REG_READ(ah, AR_TSF_U32);
3193         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3194
3195         return tsf;
3196 }
3197 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3198
3199 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3200 {
3201         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3202         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3203 }
3204 EXPORT_SYMBOL(ath9k_hw_settsf64);
3205
3206 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3207 {
3208         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3209                            AH_TSF_WRITE_TIMEOUT))
3210                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3211                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3212
3213         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3214 }
3215 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3216
3217 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3218 {
3219         if (setting)
3220                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3221         else
3222                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3223 }
3224 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3225
3226 /*
3227  *  Extend 15-bit time stamp from rx descriptor to
3228  *  a full 64-bit TSF using the current h/w TSF.
3229 */
3230 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3231 {
3232         u64 tsf;
3233
3234         tsf = ath9k_hw_gettsf64(ah);
3235         if ((tsf & 0x7fff) < rstamp)
3236                 tsf -= 0x8000;
3237         return (tsf & ~0x7fff) | rstamp;
3238 }
3239 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3240
3241 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3242 {
3243         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3244         u32 macmode;
3245
3246         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3247                 macmode = AR_2040_JOINED_RX_CLEAR;
3248         else
3249                 macmode = 0;
3250
3251         REG_WRITE(ah, AR_2040_MODE, macmode);
3252 }
3253
3254 /* HW Generic timers configuration */
3255
3256 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3257 {
3258         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3259         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3260         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3261         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3262         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3263         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3264         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3265         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3266         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3267         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3268                                 AR_NDP2_TIMER_MODE, 0x0002},
3269         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3270                                 AR_NDP2_TIMER_MODE, 0x0004},
3271         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3272                                 AR_NDP2_TIMER_MODE, 0x0008},
3273         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3274                                 AR_NDP2_TIMER_MODE, 0x0010},
3275         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3276                                 AR_NDP2_TIMER_MODE, 0x0020},
3277         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3278                                 AR_NDP2_TIMER_MODE, 0x0040},
3279         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3280                                 AR_NDP2_TIMER_MODE, 0x0080}
3281 };
3282
3283 /* HW generic timer primitives */
3284
3285 /* compute and clear index of rightmost 1 */
3286 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3287 {
3288         u32 b;
3289
3290         b = *mask;
3291         b &= (0-b);
3292         *mask &= ~b;
3293         b *= debruijn32;
3294         b >>= 27;
3295
3296         return timer_table->gen_timer_index[b];
3297 }
3298
3299 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3300 {
3301         return REG_READ(ah, AR_TSF_L32);
3302 }
3303 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3304
3305 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3306                                           void (*trigger)(void *),
3307                                           void (*overflow)(void *),
3308                                           void *arg,
3309                                           u8 timer_index)
3310 {
3311         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3312         struct ath_gen_timer *timer;
3313
3314         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3315
3316         if (timer == NULL) {
3317                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3318                           "Failed to allocate memory"
3319                           "for hw timer[%d]\n", timer_index);
3320                 return NULL;
3321         }
3322
3323         /* allocate a hardware generic timer slot */
3324         timer_table->timers[timer_index] = timer;
3325         timer->index = timer_index;
3326         timer->trigger = trigger;
3327         timer->overflow = overflow;
3328         timer->arg = arg;
3329
3330         return timer;
3331 }
3332 EXPORT_SYMBOL(ath_gen_timer_alloc);
3333
3334 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3335                               struct ath_gen_timer *timer,
3336                               u32 timer_next,
3337                               u32 timer_period)
3338 {
3339         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3340         u32 tsf;
3341
3342         BUG_ON(!timer_period);
3343
3344         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3345
3346         tsf = ath9k_hw_gettsf32(ah);
3347
3348         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3349                   "curent tsf %x period %x"
3350                   "timer_next %x\n", tsf, timer_period, timer_next);
3351
3352         /*
3353          * Pull timer_next forward if the current TSF already passed it
3354          * because of software latency
3355          */
3356         if (timer_next < tsf)
3357                 timer_next = tsf + timer_period;
3358
3359         /*
3360          * Program generic timer registers
3361          */
3362         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3363                  timer_next);
3364         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3365                   timer_period);
3366         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3367                     gen_tmr_configuration[timer->index].mode_mask);
3368
3369         /* Enable both trigger and thresh interrupt masks */
3370         REG_SET_BIT(ah, AR_IMR_S5,
3371                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3372                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3373 }
3374 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3375
3376 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3377 {
3378         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3379
3380         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3381                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3382                 return;
3383         }
3384
3385         /* Clear generic timer enable bits. */
3386         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3387                         gen_tmr_configuration[timer->index].mode_mask);
3388
3389         /* Disable both trigger and thresh interrupt masks */
3390         REG_CLR_BIT(ah, AR_IMR_S5,
3391                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3392                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3393
3394         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3395 }
3396 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3397
3398 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3399 {
3400         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3401
3402         /* free the hardware generic timer slot */
3403         timer_table->timers[timer->index] = NULL;
3404         kfree(timer);
3405 }
3406 EXPORT_SYMBOL(ath_gen_timer_free);
3407
3408 /*
3409  * Generic Timer Interrupts handling
3410  */
3411 void ath_gen_timer_isr(struct ath_hw *ah)
3412 {
3413         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3414         struct ath_gen_timer *timer;
3415         struct ath_common *common = ath9k_hw_common(ah);
3416         u32 trigger_mask, thresh_mask, index;
3417
3418         /* get hardware generic timer interrupt status */
3419         trigger_mask = ah->intr_gen_timer_trigger;
3420         thresh_mask = ah->intr_gen_timer_thresh;
3421         trigger_mask &= timer_table->timer_mask.val;
3422         thresh_mask &= timer_table->timer_mask.val;
3423
3424         trigger_mask &= ~thresh_mask;
3425
3426         while (thresh_mask) {
3427                 index = rightmost_index(timer_table, &thresh_mask);
3428                 timer = timer_table->timers[index];
3429                 BUG_ON(!timer);
3430                 ath_print(common, ATH_DBG_HWTIMER,
3431                           "TSF overflow for Gen timer %d\n", index);
3432                 timer->overflow(timer->arg);
3433         }
3434
3435         while (trigger_mask) {
3436                 index = rightmost_index(timer_table, &trigger_mask);
3437                 timer = timer_table->timers[index];
3438                 BUG_ON(!timer);
3439                 ath_print(common, ATH_DBG_HWTIMER,
3440                           "Gen timer[%d] trigger\n", index);
3441                 timer->trigger(timer->arg);
3442         }
3443 }
3444 EXPORT_SYMBOL(ath_gen_timer_isr);
3445
3446 /********/
3447 /* HTC  */
3448 /********/
3449
3450 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3451 {
3452         ah->htc_reset_init = true;
3453 }
3454 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3455
3456 static struct {
3457         u32 version;
3458         const char * name;
3459 } ath_mac_bb_names[] = {
3460         /* Devices with external radios */
3461         { AR_SREV_VERSION_5416_PCI,     "5416" },
3462         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3463         { AR_SREV_VERSION_9100,         "9100" },
3464         { AR_SREV_VERSION_9160,         "9160" },
3465         /* Single-chip solutions */
3466         { AR_SREV_VERSION_9280,         "9280" },
3467         { AR_SREV_VERSION_9285,         "9285" },
3468         { AR_SREV_VERSION_9287,         "9287" },
3469         { AR_SREV_VERSION_9271,         "9271" },
3470 };
3471
3472 /* For devices with external radios */
3473 static struct {
3474         u16 version;
3475         const char * name;
3476 } ath_rf_names[] = {
3477         { 0,                            "5133" },
3478         { AR_RAD5133_SREV_MAJOR,        "5133" },
3479         { AR_RAD5122_SREV_MAJOR,        "5122" },
3480         { AR_RAD2133_SREV_MAJOR,        "2133" },
3481         { AR_RAD2122_SREV_MAJOR,        "2122" }
3482 };
3483
3484 /*
3485  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3486  */
3487 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3488 {
3489         int i;
3490
3491         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3492                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3493                         return ath_mac_bb_names[i].name;
3494                 }
3495         }
3496
3497         return "????";
3498 }
3499
3500 /*
3501  * Return the RF name. "????" is returned if the RF is unknown.
3502  * Used for devices with external radios.
3503  */
3504 static const char *ath9k_hw_rf_name(u16 rf_version)
3505 {
3506         int i;
3507
3508         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3509                 if (ath_rf_names[i].version == rf_version) {
3510                         return ath_rf_names[i].name;
3511                 }
3512         }
3513
3514         return "????";
3515 }
3516
3517 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3518 {
3519         int used;
3520
3521         /* chipsets >= AR9280 are single-chip */
3522         if (AR_SREV_9280_10_OR_LATER(ah)) {
3523                 used = snprintf(hw_name, len,
3524                                "Atheros AR%s Rev:%x",
3525                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3526                                ah->hw_version.macRev);
3527         }
3528         else {
3529                 used = snprintf(hw_name, len,
3530                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3531                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3532                                ah->hw_version.macRev,
3533                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3534                                                 AR_RADIO_SREV_MAJOR)),
3535                                ah->hw_version.phyRev);
3536         }
3537
3538         hw_name[used] = '\0';
3539 }
3540 EXPORT_SYMBOL(ath9k_hw_name);
3541
3542 /* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
3543 static void ar9002_hw_attach_ops(struct ath_hw *ah)
3544 {
3545         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3546         struct ath_hw_ops *ops = ath9k_hw_ops(ah);
3547
3548         priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
3549         priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
3550         priv_ops->macversion_supported = ar9002_hw_macversion_supported;
3551
3552         ops->config_pci_powersave = ar9002_hw_configpcipowersave;
3553
3554         ar5008_hw_attach_phy_ops(ah);
3555         if (AR_SREV_9280_10_OR_LATER(ah))
3556                 ar9002_hw_attach_phy_ops(ah);
3557 }
3558
3559 /* Sets up the AR9003 hardware familiy callbacks */
3560 static void ar9003_hw_attach_ops(struct ath_hw *ah)
3561 {
3562         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3563
3564         priv_ops->macversion_supported = ar9003_hw_macversion_supported;
3565
3566         ar9003_hw_attach_phy_ops(ah);
3567 }