OSDN Git Service

5ef6f87a48ac738c919fbf492263b7c21bba636b
[tomoyo/tomoyo-test1.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11
12
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17 ******************************************************************************/
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24
25
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93         'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100
101 static struct ieee80211_rate ipw2200_rates[] = {
102         { .bitrate = 10 },
103         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106         { .bitrate = 60 },
107         { .bitrate = 90 },
108         { .bitrate = 120 },
109         { .bitrate = 180 },
110         { .bitrate = 240 },
111         { .bitrate = 360 },
112         { .bitrate = 480 },
113         { .bitrate = 540 }
114 };
115
116 #define ipw2200_a_rates         (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates     8
118 #define ipw2200_bg_rates        (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates    12
120
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125         (((x) <= 14) ? \
126         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127         ((x) + 1000) * 5)
128
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138          QOS_TX3_CW_MIN_OFDM},
139         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140          QOS_TX3_CW_MAX_OFDM},
141         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149          QOS_TX3_CW_MIN_CCK},
150         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151          QOS_TX3_CW_MAX_CCK},
152         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155          QOS_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160          DEF_TX3_CW_MIN_OFDM},
161         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162          DEF_TX3_CW_MAX_OFDM},
163         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168
169 static struct libipw_qos_parameters def_parameters_CCK = {
170         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171          DEF_TX3_CW_MIN_CCK},
172         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173          DEF_TX3_CW_MAX_CCK},
174         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177          DEF_TX3_TXOP_LIMIT_CCK}
178 };
179
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182 static int from_priority_to_tx_queue[] = {
183         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190                                        *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192                                      *qos_param);
193 #endif                          /* CONFIG_IPW2200_QOS */
194
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199                                 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203                              int len, int sync);
204
205 static void ipw_tx_queue_free(struct ipw_priv *);
206
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216                                 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219
220 static int snprint_line(char *buf, size_t count,
221                         const u8 * data, u32 len, u32 ofs)
222 {
223         int out, i, j, l;
224         char c;
225
226         out = snprintf(buf, count, "%08X", ofs);
227
228         for (l = 0, i = 0; i < 2; i++) {
229                 out += snprintf(buf + out, count - out, " ");
230                 for (j = 0; j < 8 && l < len; j++, l++)
231                         out += snprintf(buf + out, count - out, "%02X ",
232                                         data[(i * 8 + j)]);
233                 for (; j < 8; j++)
234                         out += snprintf(buf + out, count - out, "   ");
235         }
236
237         out += snprintf(buf + out, count - out, " ");
238         for (l = 0, i = 0; i < 2; i++) {
239                 out += snprintf(buf + out, count - out, " ");
240                 for (j = 0; j < 8 && l < len; j++, l++) {
241                         c = data[(i * 8 + j)];
242                         if (!isascii(c) || !isprint(c))
243                                 c = '.';
244
245                         out += snprintf(buf + out, count - out, "%c", c);
246                 }
247
248                 for (; j < 8; j++)
249                         out += snprintf(buf + out, count - out, " ");
250         }
251
252         return out;
253 }
254
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257         char line[81];
258         u32 ofs = 0;
259         if (!(ipw_debug_level & level))
260                 return;
261
262         while (len) {
263                 snprint_line(line, sizeof(line), &data[ofs],
264                              min(len, 16U), ofs);
265                 printk(KERN_DEBUG "%s\n", line);
266                 ofs += 16;
267                 len -= min(len, 16U);
268         }
269 }
270
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273         size_t out = size;
274         u32 ofs = 0;
275         int total = 0;
276
277         while (size && len) {
278                 out = snprint_line(output, size, &data[ofs],
279                                    min_t(size_t, len, 16U), ofs);
280
281                 ofs += 16;
282                 output += out;
283                 size -= out;
284                 len -= min_t(size_t, len, 16U);
285                 total += out;
286         }
287         return total;
288 }
289
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303                      __LINE__, (u32) (b), (u32) (c));
304         _ipw_write_reg8(a, b, c);
305 }
306
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312                      __LINE__, (u32) (b), (u32) (c));
313         _ipw_write_reg16(a, b, c);
314 }
315
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321                      __LINE__, (u32) (b), (u32) (c));
322         _ipw_write_reg32(a, b, c);
323 }
324
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327                 u8 val)
328 {
329         writeb(val, ipw->hw_base + ofs);
330 }
331
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335                         __LINE__, (u32)(ofs), (u32)(val)); \
336         _ipw_write8(ipw, ofs, val); \
337 } while (0)
338
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341                 u16 val)
342 {
343         writew(val, ipw->hw_base + ofs);
344 }
345
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write16(ipw, ofs, val); \
351 } while (0)
352
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355                 u32 val)
356 {
357         writel(val, ipw->hw_base + ofs);
358 }
359
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write32(ipw, ofs, val); \
365 } while (0)
366
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370         return readb(ipw->hw_base + ofs);
371 }
372
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376                         (u32)(ofs)); \
377         _ipw_read8(ipw, ofs); \
378 })
379
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383         return readw(ipw->hw_base + ofs);
384 }
385
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389                         (u32)(ofs)); \
390         _ipw_read16(ipw, ofs); \
391 })
392
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396         return readl(ipw->hw_base + ofs);
397 }
398
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402                         (u32)(ofs)); \
403         _ipw_read32(ipw, ofs); \
404 })
405
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410                         __LINE__, (u32)(b), (u32)(d)); \
411         _ipw_read_indirect(a, b, c, d); \
412 })
413
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416                                 int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419                         __LINE__, (u32)(b), (u32)(d)); \
420         _ipw_write_indirect(a, b, c, d); \
421 } while (0)
422
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
435         u32 dif_len = reg - aligned_addr;
436
437         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
446         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447
448         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456         u32 word;
457         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460         return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466         u32 value;
467
468         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469
470         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473         return value;
474 }
475
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /*    for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479                                int num)
480 {
481         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
482         u32 dif_len = addr - aligned_addr;
483         u32 i;
484
485         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486
487         if (num <= 0) {
488                 return;
489         }
490
491         /* Read the first dword (or portion) byte by byte */
492         if (unlikely(dif_len)) {
493                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494                 /* Start reading at aligned_addr + dif_len */
495                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497                 aligned_addr += 4;
498         }
499
500         /* Read all of the middle dwords as dwords, with auto-increment */
501         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504
505         /* Read the last dword (or portion) byte by byte */
506         if (unlikely(num)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 for (i = 0; num > 0; i++, num--)
509                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510         }
511 }
512
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /*    for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516                                 int num)
517 {
518         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
519         u32 dif_len = addr - aligned_addr;
520         u32 i;
521
522         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523
524         if (num <= 0) {
525                 return;
526         }
527
528         /* Write the first dword (or portion) byte by byte */
529         if (unlikely(dif_len)) {
530                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531                 /* Start writing at aligned_addr + dif_len */
532                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534                 aligned_addr += 4;
535         }
536
537         /* Write all of the middle dwords as dwords, with auto-increment */
538         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541
542         /* Write the last dword (or portion) byte by byte */
543         if (unlikely(num)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 for (i = 0; num > 0; i++, num--, buf++)
546                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547         }
548 }
549
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /*    for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553                              int num)
554 {
555         memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572         if (priv->status & STATUS_INT_ENABLED)
573                 return;
574         priv->status |= STATUS_INT_ENABLED;
575         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580         if (!(priv->status & STATUS_INT_ENABLED))
581                 return;
582         priv->status &= ~STATUS_INT_ENABLED;
583         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588         unsigned long flags;
589
590         spin_lock_irqsave(&priv->irq_lock, flags);
591         __ipw_enable_interrupts(priv);
592         spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597         unsigned long flags;
598
599         spin_lock_irqsave(&priv->irq_lock, flags);
600         __ipw_disable_interrupts(priv);
601         spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603
604 static char *ipw_error_desc(u32 val)
605 {
606         switch (val) {
607         case IPW_FW_ERROR_OK:
608                 return "ERROR_OK";
609         case IPW_FW_ERROR_FAIL:
610                 return "ERROR_FAIL";
611         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612                 return "MEMORY_UNDERFLOW";
613         case IPW_FW_ERROR_MEMORY_OVERFLOW:
614                 return "MEMORY_OVERFLOW";
615         case IPW_FW_ERROR_BAD_PARAM:
616                 return "BAD_PARAM";
617         case IPW_FW_ERROR_BAD_CHECKSUM:
618                 return "BAD_CHECKSUM";
619         case IPW_FW_ERROR_NMI_INTERRUPT:
620                 return "NMI_INTERRUPT";
621         case IPW_FW_ERROR_BAD_DATABASE:
622                 return "BAD_DATABASE";
623         case IPW_FW_ERROR_ALLOC_FAIL:
624                 return "ALLOC_FAIL";
625         case IPW_FW_ERROR_DMA_UNDERRUN:
626                 return "DMA_UNDERRUN";
627         case IPW_FW_ERROR_DMA_STATUS:
628                 return "DMA_STATUS";
629         case IPW_FW_ERROR_DINO_ERROR:
630                 return "DINO_ERROR";
631         case IPW_FW_ERROR_EEPROM_ERROR:
632                 return "EEPROM_ERROR";
633         case IPW_FW_ERROR_SYSASSERT:
634                 return "SYSASSERT";
635         case IPW_FW_ERROR_FATAL_ERROR:
636                 return "FATAL_ERROR";
637         default:
638                 return "UNKNOWN_ERROR";
639         }
640 }
641
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643                                struct ipw_fw_error *error)
644 {
645         u32 i;
646
647         if (!error) {
648                 IPW_ERROR("Error allocating and capturing error log.  "
649                           "Nothing to dump.\n");
650                 return;
651         }
652
653         IPW_ERROR("Start IPW Error Log Dump:\n");
654         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655                   error->status, error->config);
656
657         for (i = 0; i < error->elem_len; i++)
658                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659                           ipw_error_desc(error->elem[i].desc),
660                           error->elem[i].time,
661                           error->elem[i].blink1,
662                           error->elem[i].blink2,
663                           error->elem[i].link1,
664                           error->elem[i].link2, error->elem[i].data);
665         for (i = 0; i < error->log_len; i++)
666                 IPW_ERROR("%i\t0x%08x\t%i\n",
667                           error->log[i].time,
668                           error->log[i].data, error->log[i].event);
669 }
670
671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673         return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678         u32 addr, field_info, field_len, field_count, total_len;
679
680         IPW_DEBUG_ORD("ordinal = %i\n", ord);
681
682         if (!priv || !val || !len) {
683                 IPW_DEBUG_ORD("Invalid argument\n");
684                 return -EINVAL;
685         }
686
687         /* verify device ordinal tables have been initialized */
688         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
690                 return -EINVAL;
691         }
692
693         switch (IPW_ORD_TABLE_ID_MASK & ord) {
694         case IPW_ORD_TABLE_0_MASK:
695                 /*
696                  * TABLE 0: Direct access to a table of 32 bit values
697                  *
698                  * This is a very simple table with the data directly
699                  * read from the table
700                  */
701
702                 /* remove the table id from the ordinal */
703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705                 /* boundary check */
706                 if (ord > priv->table0_len) {
707                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
708                                       "max (%i)\n", ord, priv->table0_len);
709                         return -EINVAL;
710                 }
711
712                 /* verify we have enough room to store the value */
713                 if (*len < sizeof(u32)) {
714                         IPW_DEBUG_ORD("ordinal buffer length too small, "
715                                       "need %zd\n", sizeof(u32));
716                         return -EINVAL;
717                 }
718
719                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720                               ord, priv->table0_addr + (ord << 2));
721
722                 *len = sizeof(u32);
723                 ord <<= 2;
724                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725                 break;
726
727         case IPW_ORD_TABLE_1_MASK:
728                 /*
729                  * TABLE 1: Indirect access to a table of 32 bit values
730                  *
731                  * This is a fairly large table of u32 values each
732                  * representing starting addr for the data (which is
733                  * also a u32)
734                  */
735
736                 /* remove the table id from the ordinal */
737                 ord &= IPW_ORD_TABLE_VALUE_MASK;
738
739                 /* boundary check */
740                 if (ord > priv->table1_len) {
741                         IPW_DEBUG_ORD("ordinal value too long\n");
742                         return -EINVAL;
743                 }
744
745                 /* verify we have enough room to store the value */
746                 if (*len < sizeof(u32)) {
747                         IPW_DEBUG_ORD("ordinal buffer length too small, "
748                                       "need %zd\n", sizeof(u32));
749                         return -EINVAL;
750                 }
751
752                 *((u32 *) val) =
753                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754                 *len = sizeof(u32);
755                 break;
756
757         case IPW_ORD_TABLE_2_MASK:
758                 /*
759                  * TABLE 2: Indirect access to a table of variable sized values
760                  *
761                  * This table consist of six values, each containing
762                  *     - dword containing the starting offset of the data
763                  *     - dword containing the lengh in the first 16bits
764                  *       and the count in the second 16bits
765                  */
766
767                 /* remove the table id from the ordinal */
768                 ord &= IPW_ORD_TABLE_VALUE_MASK;
769
770                 /* boundary check */
771                 if (ord > priv->table2_len) {
772                         IPW_DEBUG_ORD("ordinal value too long\n");
773                         return -EINVAL;
774                 }
775
776                 /* get the address of statistic */
777                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778
779                 /* get the second DW of statistics ;
780                  * two 16-bit words - first is length, second is count */
781                 field_info =
782                     ipw_read_reg32(priv,
783                                    priv->table2_addr + (ord << 3) +
784                                    sizeof(u32));
785
786                 /* get each entry length */
787                 field_len = *((u16 *) & field_info);
788
789                 /* get number of entries */
790                 field_count = *(((u16 *) & field_info) + 1);
791
792                 /* abort if not enough memory */
793                 total_len = field_len * field_count;
794                 if (total_len > *len) {
795                         *len = total_len;
796                         return -EINVAL;
797                 }
798
799                 *len = total_len;
800                 if (!total_len)
801                         return 0;
802
803                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804                               "field_info = 0x%08x\n",
805                               addr, total_len, field_info);
806                 ipw_read_indirect(priv, addr, val, total_len);
807                 break;
808
809         default:
810                 IPW_DEBUG_ORD("Invalid ordinal!\n");
811                 return -EINVAL;
812
813         }
814
815         return 0;
816 }
817
818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821         priv->table0_len = ipw_read32(priv, priv->table0_addr);
822
823         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824                       priv->table0_addr, priv->table0_len);
825
826         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828
829         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830                       priv->table1_addr, priv->table1_len);
831
832         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834         priv->table2_len &= 0x0000ffff; /* use first two bytes */
835
836         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837                       priv->table2_addr, priv->table2_len);
838
839 }
840
841 static u32 ipw_register_toggle(u32 reg)
842 {
843         reg &= ~IPW_START_STANDBY;
844         if (reg & IPW_GATE_ODMA)
845                 reg &= ~IPW_GATE_ODMA;
846         if (reg & IPW_GATE_IDMA)
847                 reg &= ~IPW_GATE_IDMA;
848         if (reg & IPW_GATE_ADMA)
849                 reg &= ~IPW_GATE_ADMA;
850         return reg;
851 }
852
853 /*
854  * LED behavior:
855  * - On radio ON, turn on any LEDs that require to be on during start
856  * - On initialization, start unassociated blink
857  * - On association, disable unassociated blink
858  * - On disassociation, start unassociated blink
859  * - On radio OFF, turn off any LEDs started during radio on
860  *
861  */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865
866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868         unsigned long flags;
869         u32 led;
870
871         /* If configured to not use LEDs, or nic_type is 1,
872          * then we don't toggle a LINK led */
873         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874                 return;
875
876         spin_lock_irqsave(&priv->lock, flags);
877
878         if (!(priv->status & STATUS_RF_KILL_MASK) &&
879             !(priv->status & STATUS_LED_LINK_ON)) {
880                 IPW_DEBUG_LED("Link LED On\n");
881                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
882                 led |= priv->led_association_on;
883
884                 led = ipw_register_toggle(led);
885
886                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
888
889                 priv->status |= STATUS_LED_LINK_ON;
890
891                 /* If we aren't associated, schedule turning the LED off */
892                 if (!(priv->status & STATUS_ASSOCIATED))
893                         schedule_delayed_work(&priv->led_link_off,
894                                               LD_TIME_LINK_ON);
895         }
896
897         spin_unlock_irqrestore(&priv->lock, flags);
898 }
899
900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902         struct ipw_priv *priv =
903                 container_of(work, struct ipw_priv, led_link_on.work);
904         mutex_lock(&priv->mutex);
905         ipw_led_link_on(priv);
906         mutex_unlock(&priv->mutex);
907 }
908
909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911         unsigned long flags;
912         u32 led;
913
914         /* If configured not to use LEDs, or nic type is 1,
915          * then we don't goggle the LINK led. */
916         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917                 return;
918
919         spin_lock_irqsave(&priv->lock, flags);
920
921         if (priv->status & STATUS_LED_LINK_ON) {
922                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
923                 led &= priv->led_association_off;
924                 led = ipw_register_toggle(led);
925
926                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
928
929                 IPW_DEBUG_LED("Link LED Off\n");
930
931                 priv->status &= ~STATUS_LED_LINK_ON;
932
933                 /* If we aren't associated and the radio is on, schedule
934                  * turning the LED on (blink while unassociated) */
935                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
936                     !(priv->status & STATUS_ASSOCIATED))
937                         schedule_delayed_work(&priv->led_link_on,
938                                               LD_TIME_LINK_OFF);
939
940         }
941
942         spin_unlock_irqrestore(&priv->lock, flags);
943 }
944
945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947         struct ipw_priv *priv =
948                 container_of(work, struct ipw_priv, led_link_off.work);
949         mutex_lock(&priv->mutex);
950         ipw_led_link_off(priv);
951         mutex_unlock(&priv->mutex);
952 }
953
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         u32 led;
957
958         if (priv->config & CFG_NO_LED)
959                 return;
960
961         if (priv->status & STATUS_RF_KILL_MASK)
962                 return;
963
964         if (!(priv->status & STATUS_LED_ACT_ON)) {
965                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
966                 led |= priv->led_activity_on;
967
968                 led = ipw_register_toggle(led);
969
970                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
972
973                 IPW_DEBUG_LED("Activity LED On\n");
974
975                 priv->status |= STATUS_LED_ACT_ON;
976
977                 cancel_delayed_work(&priv->led_act_off);
978                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979         } else {
980                 /* Reschedule LED off for full time period */
981                 cancel_delayed_work(&priv->led_act_off);
982                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983         }
984 }
985
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989         unsigned long flags;
990         spin_lock_irqsave(&priv->lock, flags);
991         __ipw_led_activity_on(priv);
992         spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif  /*  0  */
995
996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998         unsigned long flags;
999         u32 led;
1000
1001         if (priv->config & CFG_NO_LED)
1002                 return;
1003
1004         spin_lock_irqsave(&priv->lock, flags);
1005
1006         if (priv->status & STATUS_LED_ACT_ON) {
1007                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008                 led &= priv->led_activity_off;
1009
1010                 led = ipw_register_toggle(led);
1011
1012                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015                 IPW_DEBUG_LED("Activity LED Off\n");
1016
1017                 priv->status &= ~STATUS_LED_ACT_ON;
1018         }
1019
1020         spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025         struct ipw_priv *priv =
1026                 container_of(work, struct ipw_priv, led_act_off.work);
1027         mutex_lock(&priv->mutex);
1028         ipw_led_activity_off(priv);
1029         mutex_unlock(&priv->mutex);
1030 }
1031
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034         unsigned long flags;
1035         u32 led;
1036
1037         /* Only nic type 1 supports mode LEDs */
1038         if (priv->config & CFG_NO_LED ||
1039             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040                 return;
1041
1042         spin_lock_irqsave(&priv->lock, flags);
1043
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         if (priv->assoc_network->mode == IEEE_A) {
1046                 led |= priv->led_ofdm_on;
1047                 led &= priv->led_association_off;
1048                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049         } else if (priv->assoc_network->mode == IEEE_G) {
1050                 led |= priv->led_ofdm_on;
1051                 led |= priv->led_association_on;
1052                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053         } else {
1054                 led &= priv->led_ofdm_off;
1055                 led |= priv->led_association_on;
1056                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057         }
1058
1059         led = ipw_register_toggle(led);
1060
1061         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064         spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069         unsigned long flags;
1070         u32 led;
1071
1072         /* Only nic type 1 supports mode LEDs */
1073         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074                 return;
1075
1076         spin_lock_irqsave(&priv->lock, flags);
1077
1078         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079         led &= priv->led_ofdm_off;
1080         led &= priv->led_association_off;
1081
1082         led = ipw_register_toggle(led);
1083
1084         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087         spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092         ipw_led_link_on(priv);
1093 }
1094
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097         ipw_led_activity_off(priv);
1098         ipw_led_link_off(priv);
1099 }
1100
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103         /* Set the Link Led on for all nic types */
1104         ipw_led_link_on(priv);
1105 }
1106
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109         ipw_led_activity_off(priv);
1110         ipw_led_link_off(priv);
1111
1112         if (priv->status & STATUS_RF_KILL_MASK)
1113                 ipw_led_radio_off(priv);
1114 }
1115
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120         /* Set the default PINs for the link and activity leds */
1121         priv->led_activity_on = IPW_ACTIVITY_LED;
1122         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124         priv->led_association_on = IPW_ASSOCIATED_LED;
1125         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127         /* Set the default PINs for the OFDM leds */
1128         priv->led_ofdm_on = IPW_OFDM_LED;
1129         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131         switch (priv->nic_type) {
1132         case EEPROM_NIC_TYPE_1:
1133                 /* In this NIC type, the LEDs are reversed.... */
1134                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136                 priv->led_association_on = IPW_ACTIVITY_LED;
1137                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139                 if (!(priv->config & CFG_NO_LED))
1140                         ipw_led_band_on(priv);
1141
1142                 /* And we don't blink link LEDs for this nic, so
1143                  * just return here */
1144                 return;
1145
1146         case EEPROM_NIC_TYPE_3:
1147         case EEPROM_NIC_TYPE_2:
1148         case EEPROM_NIC_TYPE_4:
1149         case EEPROM_NIC_TYPE_0:
1150                 break;
1151
1152         default:
1153                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154                                priv->nic_type);
1155                 priv->nic_type = EEPROM_NIC_TYPE_0;
1156                 break;
1157         }
1158
1159         if (!(priv->config & CFG_NO_LED)) {
1160                 if (priv->status & STATUS_ASSOCIATED)
1161                         ipw_led_link_on(priv);
1162                 else
1163                         ipw_led_link_off(priv);
1164         }
1165 }
1166
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169         ipw_led_activity_off(priv);
1170         ipw_led_link_off(priv);
1171         ipw_led_band_off(priv);
1172         cancel_delayed_work(&priv->led_link_on);
1173         cancel_delayed_work(&priv->led_link_off);
1174         cancel_delayed_work(&priv->led_act_off);
1175 }
1176
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190                                  size_t count)
1191 {
1192         char *p = (char *)buf;
1193         u32 val;
1194
1195         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196                 p++;
1197                 if (p[0] == 'x' || p[0] == 'X')
1198                         p++;
1199                 val = simple_strtoul(p, &p, 16);
1200         } else
1201                 val = simple_strtoul(p, &p, 10);
1202         if (p == buf)
1203                 printk(KERN_INFO DRV_NAME
1204                        ": %s is not in hex or decimal form.\n", buf);
1205         else
1206                 ipw_debug_level = val;
1207
1208         return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214         /* length = 1st dword in log */
1215         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219                                   u32 log_len, struct ipw_event *log)
1220 {
1221         u32 base;
1222
1223         if (log_len) {
1224                 base = ipw_read32(priv, IPW_EVENT_LOG);
1225                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226                                   (u8 *) log, sizeof(*log) * log_len);
1227         }
1228 }
1229
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232         struct ipw_fw_error *error;
1233         u32 log_len = ipw_get_event_log_len(priv);
1234         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235         u32 elem_len = ipw_read_reg32(priv, base);
1236
1237         error = kmalloc(sizeof(*error) +
1238                         sizeof(*error->elem) * elem_len +
1239                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1240         if (!error) {
1241                 IPW_ERROR("Memory allocation for firmware error log "
1242                           "failed.\n");
1243                 return NULL;
1244         }
1245         error->jiffies = jiffies;
1246         error->status = priv->status;
1247         error->config = priv->config;
1248         error->elem_len = elem_len;
1249         error->log_len = log_len;
1250         error->elem = (struct ipw_error_elem *)error->payload;
1251         error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253         ipw_capture_event_log(priv, log_len, error->log);
1254
1255         if (elem_len)
1256                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257                                   sizeof(*error->elem) * elem_len);
1258
1259         return error;
1260 }
1261
1262 static ssize_t show_event_log(struct device *d,
1263                               struct device_attribute *attr, char *buf)
1264 {
1265         struct ipw_priv *priv = dev_get_drvdata(d);
1266         u32 log_len = ipw_get_event_log_len(priv);
1267         u32 log_size;
1268         struct ipw_event *log;
1269         u32 len = 0, i;
1270
1271         /* not using min() because of its strict type checking */
1272         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273                         sizeof(*log) * log_len : PAGE_SIZE;
1274         log = kzalloc(log_size, GFP_KERNEL);
1275         if (!log) {
1276                 IPW_ERROR("Unable to allocate memory for log\n");
1277                 return 0;
1278         }
1279         log_len = log_size / sizeof(*log);
1280         ipw_capture_event_log(priv, log_len, log);
1281
1282         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283         for (i = 0; i < log_len; i++)
1284                 len += snprintf(buf + len, PAGE_SIZE - len,
1285                                 "\n%08X%08X%08X",
1286                                 log[i].time, log[i].event, log[i].data);
1287         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288         kfree(log);
1289         return len;
1290 }
1291
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293
1294 static ssize_t show_error(struct device *d,
1295                           struct device_attribute *attr, char *buf)
1296 {
1297         struct ipw_priv *priv = dev_get_drvdata(d);
1298         u32 len = 0, i;
1299         if (!priv->error)
1300                 return 0;
1301         len += snprintf(buf + len, PAGE_SIZE - len,
1302                         "%08lX%08X%08X%08X",
1303                         priv->error->jiffies,
1304                         priv->error->status,
1305                         priv->error->config, priv->error->elem_len);
1306         for (i = 0; i < priv->error->elem_len; i++)
1307                 len += snprintf(buf + len, PAGE_SIZE - len,
1308                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1309                                 priv->error->elem[i].time,
1310                                 priv->error->elem[i].desc,
1311                                 priv->error->elem[i].blink1,
1312                                 priv->error->elem[i].blink2,
1313                                 priv->error->elem[i].link1,
1314                                 priv->error->elem[i].link2,
1315                                 priv->error->elem[i].data);
1316
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "\n%08X", priv->error->log_len);
1319         for (i = 0; i < priv->error->log_len; i++)
1320                 len += snprintf(buf + len, PAGE_SIZE - len,
1321                                 "\n%08X%08X%08X",
1322                                 priv->error->log[i].time,
1323                                 priv->error->log[i].event,
1324                                 priv->error->log[i].data);
1325         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326         return len;
1327 }
1328
1329 static ssize_t clear_error(struct device *d,
1330                            struct device_attribute *attr,
1331                            const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335         kfree(priv->error);
1336         priv->error = NULL;
1337         return count;
1338 }
1339
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341
1342 static ssize_t show_cmd_log(struct device *d,
1343                             struct device_attribute *attr, char *buf)
1344 {
1345         struct ipw_priv *priv = dev_get_drvdata(d);
1346         u32 len = 0, i;
1347         if (!priv->cmdlog)
1348                 return 0;
1349         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351              i = (i + 1) % priv->cmdlog_len) {
1352                 len +=
1353                     snprintf(buf + len, PAGE_SIZE - len,
1354                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356                              priv->cmdlog[i].cmd.len);
1357                 len +=
1358                     snprintk_buf(buf + len, PAGE_SIZE - len,
1359                                  (u8 *) priv->cmdlog[i].cmd.param,
1360                                  priv->cmdlog[i].cmd.len);
1361                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1362         }
1363         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364         return len;
1365 }
1366
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373                          struct device_attribute *attr,
1374                          const char *buf, size_t count)
1375 {
1376         struct ipw_priv *priv = dev_get_drvdata(d);
1377         int rc = 0;
1378
1379         if (count < 1)
1380                 return -EINVAL;
1381
1382         switch (buf[0]) {
1383         case '0':
1384                 if (!rtap_iface)
1385                         return count;
1386
1387                 if (netif_running(priv->prom_net_dev)) {
1388                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389                         return count;
1390                 }
1391
1392                 ipw_prom_free(priv);
1393                 rtap_iface = 0;
1394                 break;
1395
1396         case '1':
1397                 if (rtap_iface)
1398                         return count;
1399
1400                 rc = ipw_prom_alloc(priv);
1401                 if (!rc)
1402                         rtap_iface = 1;
1403                 break;
1404
1405         default:
1406                 return -EINVAL;
1407         }
1408
1409         if (rc) {
1410                 IPW_ERROR("Failed to register promiscuous network "
1411                           "device (error %d).\n", rc);
1412         }
1413
1414         return count;
1415 }
1416
1417 static ssize_t show_rtap_iface(struct device *d,
1418                         struct device_attribute *attr,
1419                         char *buf)
1420 {
1421         struct ipw_priv *priv = dev_get_drvdata(d);
1422         if (rtap_iface)
1423                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424         else {
1425                 buf[0] = '-';
1426                 buf[1] = '1';
1427                 buf[2] = '\0';
1428                 return 3;
1429         }
1430 }
1431
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433
1434 static ssize_t store_rtap_filter(struct device *d,
1435                          struct device_attribute *attr,
1436                          const char *buf, size_t count)
1437 {
1438         struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440         if (!priv->prom_priv) {
1441                 IPW_ERROR("Attempting to set filter without "
1442                           "rtap_iface enabled.\n");
1443                 return -EPERM;
1444         }
1445
1446         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449                        BIT_ARG16(priv->prom_priv->filter));
1450
1451         return count;
1452 }
1453
1454 static ssize_t show_rtap_filter(struct device *d,
1455                         struct device_attribute *attr,
1456                         char *buf)
1457 {
1458         struct ipw_priv *priv = dev_get_drvdata(d);
1459         return sprintf(buf, "0x%04X",
1460                        priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467                              char *buf)
1468 {
1469         struct ipw_priv *priv = dev_get_drvdata(d);
1470         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474                               const char *buf, size_t count)
1475 {
1476         struct ipw_priv *priv = dev_get_drvdata(d);
1477         struct net_device *dev = priv->net_dev;
1478         char buffer[] = "00000000";
1479         unsigned long len =
1480             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481         unsigned long val;
1482         char *p = buffer;
1483
1484         IPW_DEBUG_INFO("enter\n");
1485
1486         strncpy(buffer, buf, len);
1487         buffer[len] = 0;
1488
1489         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490                 p++;
1491                 if (p[0] == 'x' || p[0] == 'X')
1492                         p++;
1493                 val = simple_strtoul(p, &p, 16);
1494         } else
1495                 val = simple_strtoul(p, &p, 10);
1496         if (p == buffer) {
1497                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498         } else {
1499                 priv->ieee->scan_age = val;
1500                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501         }
1502
1503         IPW_DEBUG_INFO("exit\n");
1504         return len;
1505 }
1506
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510                         char *buf)
1511 {
1512         struct ipw_priv *priv = dev_get_drvdata(d);
1513         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517                          const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521         IPW_DEBUG_INFO("enter\n");
1522
1523         if (count == 0)
1524                 return 0;
1525
1526         if (*buf == 0) {
1527                 IPW_DEBUG_LED("Disabling LED control.\n");
1528                 priv->config |= CFG_NO_LED;
1529                 ipw_led_shutdown(priv);
1530         } else {
1531                 IPW_DEBUG_LED("Enabling LED control.\n");
1532                 priv->config &= ~CFG_NO_LED;
1533                 ipw_led_init(priv);
1534         }
1535
1536         IPW_DEBUG_INFO("exit\n");
1537         return count;
1538 }
1539
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541
1542 static ssize_t show_status(struct device *d,
1543                            struct device_attribute *attr, char *buf)
1544 {
1545         struct ipw_priv *p = dev_get_drvdata(d);
1546         return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552                         char *buf)
1553 {
1554         struct ipw_priv *p = dev_get_drvdata(d);
1555         return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559
1560 static ssize_t show_nic_type(struct device *d,
1561                              struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *priv = dev_get_drvdata(d);
1564         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568
1569 static ssize_t show_ucode_version(struct device *d,
1570                                   struct device_attribute *attr, char *buf)
1571 {
1572         u32 len = sizeof(u32), tmp = 0;
1573         struct ipw_priv *p = dev_get_drvdata(d);
1574
1575         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576                 return 0;
1577
1578         return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584                         char *buf)
1585 {
1586         u32 len = sizeof(u32), tmp = 0;
1587         struct ipw_priv *p = dev_get_drvdata(d);
1588
1589         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590                 return 0;
1591
1592         return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602                                  struct device_attribute *attr, char *buf)
1603 {
1604         struct ipw_priv *p = dev_get_drvdata(d);
1605         int n = p->eeprom_delay;
1606         return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609                                   struct device_attribute *attr,
1610                                   const char *buf, size_t count)
1611 {
1612         struct ipw_priv *p = dev_get_drvdata(d);
1613         sscanf(buf, "%i", &p->eeprom_delay);
1614         return strnlen(buf, count);
1615 }
1616
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618
1619 static ssize_t show_command_event_reg(struct device *d,
1620                                       struct device_attribute *attr, char *buf)
1621 {
1622         u32 reg = 0;
1623         struct ipw_priv *p = dev_get_drvdata(d);
1624
1625         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626         return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629                                        struct device_attribute *attr,
1630                                        const char *buf, size_t count)
1631 {
1632         u32 reg;
1633         struct ipw_priv *p = dev_get_drvdata(d);
1634
1635         sscanf(buf, "%x", &reg);
1636         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637         return strnlen(buf, count);
1638 }
1639
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641                    show_command_event_reg, store_command_event_reg);
1642
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644                                  struct device_attribute *attr, char *buf)
1645 {
1646         u32 reg = 0;
1647         struct ipw_priv *p = dev_get_drvdata(d);
1648
1649         reg = ipw_read_reg32(p, 0x301100);
1650         return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653                                   struct device_attribute *attr,
1654                                   const char *buf, size_t count)
1655 {
1656         u32 reg;
1657         struct ipw_priv *p = dev_get_drvdata(d);
1658
1659         sscanf(buf, "%x", &reg);
1660         ipw_write_reg32(p, 0x301100, reg);
1661         return strnlen(buf, count);
1662 }
1663
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665
1666 static ssize_t show_indirect_dword(struct device *d,
1667                                    struct device_attribute *attr, char *buf)
1668 {
1669         u32 reg = 0;
1670         struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672         if (priv->status & STATUS_INDIRECT_DWORD)
1673                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1674         else
1675                 reg = 0;
1676
1677         return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680                                     struct device_attribute *attr,
1681                                     const char *buf, size_t count)
1682 {
1683         struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685         sscanf(buf, "%x", &priv->indirect_dword);
1686         priv->status |= STATUS_INDIRECT_DWORD;
1687         return strnlen(buf, count);
1688 }
1689
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691                    show_indirect_dword, store_indirect_dword);
1692
1693 static ssize_t show_indirect_byte(struct device *d,
1694                                   struct device_attribute *attr, char *buf)
1695 {
1696         u8 reg = 0;
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         if (priv->status & STATUS_INDIRECT_BYTE)
1700                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1701         else
1702                 reg = 0;
1703
1704         return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707                                    struct device_attribute *attr,
1708                                    const char *buf, size_t count)
1709 {
1710         struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712         sscanf(buf, "%x", &priv->indirect_byte);
1713         priv->status |= STATUS_INDIRECT_BYTE;
1714         return strnlen(buf, count);
1715 }
1716
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718                    show_indirect_byte, store_indirect_byte);
1719
1720 static ssize_t show_direct_dword(struct device *d,
1721                                  struct device_attribute *attr, char *buf)
1722 {
1723         u32 reg = 0;
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         if (priv->status & STATUS_DIRECT_DWORD)
1727                 reg = ipw_read32(priv, priv->direct_dword);
1728         else
1729                 reg = 0;
1730
1731         return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734                                   struct device_attribute *attr,
1735                                   const char *buf, size_t count)
1736 {
1737         struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739         sscanf(buf, "%x", &priv->direct_dword);
1740         priv->status |= STATUS_DIRECT_DWORD;
1741         return strnlen(buf, count);
1742 }
1743
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749                 priv->status |= STATUS_RF_KILL_HW;
1750                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751         } else {
1752                 priv->status &= ~STATUS_RF_KILL_HW;
1753                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754         }
1755
1756         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760                             char *buf)
1761 {
1762         /* 0 - RF kill not enabled
1763            1 - SW based RF kill active (sysfs)
1764            2 - HW based RF kill active
1765            3 - Both HW and SW baed RF kill active */
1766         struct ipw_priv *priv = dev_get_drvdata(d);
1767         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768             (rf_kill_active(priv) ? 0x2 : 0x0);
1769         return sprintf(buf, "%i\n", val);
1770 }
1771
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774         if ((disable_radio ? 1 : 0) ==
1775             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776                 return 0;
1777
1778         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779                           disable_radio ? "OFF" : "ON");
1780
1781         if (disable_radio) {
1782                 priv->status |= STATUS_RF_KILL_SW;
1783
1784                 cancel_delayed_work(&priv->request_scan);
1785                 cancel_delayed_work(&priv->request_direct_scan);
1786                 cancel_delayed_work(&priv->request_passive_scan);
1787                 cancel_delayed_work(&priv->scan_event);
1788                 schedule_work(&priv->down);
1789         } else {
1790                 priv->status &= ~STATUS_RF_KILL_SW;
1791                 if (rf_kill_active(priv)) {
1792                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793                                           "disabled by HW switch\n");
1794                         /* Make sure the RF_KILL check timer is running */
1795                         cancel_delayed_work(&priv->rf_kill);
1796                         schedule_delayed_work(&priv->rf_kill,
1797                                               round_jiffies_relative(2 * HZ));
1798                 } else
1799                         schedule_work(&priv->up);
1800         }
1801
1802         return 1;
1803 }
1804
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806                              const char *buf, size_t count)
1807 {
1808         struct ipw_priv *priv = dev_get_drvdata(d);
1809
1810         ipw_radio_kill_sw(priv, buf[0] == '1');
1811
1812         return count;
1813 }
1814
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818                                char *buf)
1819 {
1820         struct ipw_priv *priv = dev_get_drvdata(d);
1821         int pos = 0, len = 0;
1822         if (priv->config & CFG_SPEED_SCAN) {
1823                 while (priv->speed_scan[pos] != 0)
1824                         len += sprintf(&buf[len], "%d ",
1825                                        priv->speed_scan[pos++]);
1826                 return len + sprintf(&buf[len], "\n");
1827         }
1828
1829         return sprintf(buf, "0\n");
1830 }
1831
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833                                 const char *buf, size_t count)
1834 {
1835         struct ipw_priv *priv = dev_get_drvdata(d);
1836         int channel, pos = 0;
1837         const char *p = buf;
1838
1839         /* list of space separated channels to scan, optionally ending with 0 */
1840         while ((channel = simple_strtol(p, NULL, 0))) {
1841                 if (pos == MAX_SPEED_SCAN - 1) {
1842                         priv->speed_scan[pos] = 0;
1843                         break;
1844                 }
1845
1846                 if (libipw_is_valid_channel(priv->ieee, channel))
1847                         priv->speed_scan[pos++] = channel;
1848                 else
1849                         IPW_WARNING("Skipping invalid channel request: %d\n",
1850                                     channel);
1851                 p = strchr(p, ' ');
1852                 if (!p)
1853                         break;
1854                 while (*p == ' ' || *p == '\t')
1855                         p++;
1856         }
1857
1858         if (pos == 0)
1859                 priv->config &= ~CFG_SPEED_SCAN;
1860         else {
1861                 priv->speed_scan_pos = 0;
1862                 priv->config |= CFG_SPEED_SCAN;
1863         }
1864
1865         return count;
1866 }
1867
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871                               char *buf)
1872 {
1873         struct ipw_priv *priv = dev_get_drvdata(d);
1874         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878                                const char *buf, size_t count)
1879 {
1880         struct ipw_priv *priv = dev_get_drvdata(d);
1881         if (buf[0] == '1')
1882                 priv->config |= CFG_NET_STATS;
1883         else
1884                 priv->config &= ~CFG_NET_STATS;
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890
1891 static ssize_t show_channels(struct device *d,
1892                              struct device_attribute *attr,
1893                              char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897         int len = 0, i;
1898
1899         len = sprintf(&buf[len],
1900                       "Displaying %d channels in 2.4Ghz band "
1901                       "(802.11bg):\n", geo->bg_channels);
1902
1903         for (i = 0; i < geo->bg_channels; i++) {
1904                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905                                geo->bg[i].channel,
1906                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907                                " (radar spectrum)" : "",
1908                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910                                ? "" : ", IBSS",
1911                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912                                "passive only" : "active/passive",
1913                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914                                "B" : "B/G");
1915         }
1916
1917         len += sprintf(&buf[len],
1918                        "Displaying %d channels in 5.2Ghz band "
1919                        "(802.11a):\n", geo->a_channels);
1920         for (i = 0; i < geo->a_channels; i++) {
1921                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922                                geo->a[i].channel,
1923                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924                                " (radar spectrum)" : "",
1925                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927                                ? "" : ", IBSS",
1928                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929                                "passive only" : "active/passive");
1930         }
1931
1932         return len;
1933 }
1934
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939         union iwreq_data wrqu;
1940         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941         if (priv->status & STATUS_ASSOCIATED)
1942                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943         else
1944                 eth_zero_addr(wrqu.ap_addr.sa_data);
1945         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947
1948 static void ipw_irq_tasklet(unsigned long data)
1949 {
1950         struct ipw_priv *priv = (struct ipw_priv *)data;
1951         u32 inta, inta_mask, handled = 0;
1952         unsigned long flags;
1953         int rc = 0;
1954
1955         spin_lock_irqsave(&priv->irq_lock, flags);
1956
1957         inta = ipw_read32(priv, IPW_INTA_RW);
1958         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1959
1960         if (inta == 0xFFFFFFFF) {
1961                 /* Hardware disappeared */
1962                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1963                 /* Only handle the cached INTA values */
1964                 inta = 0;
1965         }
1966         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1967
1968         /* Add any cached INTA values that need to be handled */
1969         inta |= priv->isr_inta;
1970
1971         spin_unlock_irqrestore(&priv->irq_lock, flags);
1972
1973         spin_lock_irqsave(&priv->lock, flags);
1974
1975         /* handle all the justifications for the interrupt */
1976         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1977                 ipw_rx(priv);
1978                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1979         }
1980
1981         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1982                 IPW_DEBUG_HC("Command completed.\n");
1983                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1984                 priv->status &= ~STATUS_HCMD_ACTIVE;
1985                 wake_up_interruptible(&priv->wait_command_queue);
1986                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1987         }
1988
1989         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1990                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1991                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1992                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1993         }
1994
1995         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1996                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1997                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1998                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1999         }
2000
2001         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2002                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2003                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2004                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2005         }
2006
2007         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2008                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2009                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2010                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2011         }
2012
2013         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2014                 IPW_WARNING("STATUS_CHANGE\n");
2015                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2016         }
2017
2018         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2019                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2020                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2024                 IPW_WARNING("HOST_CMD_DONE\n");
2025                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2026         }
2027
2028         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2029                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2030                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2034                 IPW_WARNING("PHY_OFF_DONE\n");
2035                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2036         }
2037
2038         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2039                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2040                 priv->status |= STATUS_RF_KILL_HW;
2041                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2042                 wake_up_interruptible(&priv->wait_command_queue);
2043                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2044                 cancel_delayed_work(&priv->request_scan);
2045                 cancel_delayed_work(&priv->request_direct_scan);
2046                 cancel_delayed_work(&priv->request_passive_scan);
2047                 cancel_delayed_work(&priv->scan_event);
2048                 schedule_work(&priv->link_down);
2049                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2050                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2051         }
2052
2053         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2054                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2055                 if (priv->error) {
2056                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2057                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2058                                 struct ipw_fw_error *error =
2059                                     ipw_alloc_error_log(priv);
2060                                 ipw_dump_error_log(priv, error);
2061                                 kfree(error);
2062                         }
2063                 } else {
2064                         priv->error = ipw_alloc_error_log(priv);
2065                         if (priv->error)
2066                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2067                         else
2068                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2069                                              "log.\n");
2070                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2071                                 ipw_dump_error_log(priv, priv->error);
2072                 }
2073
2074                 /* XXX: If hardware encryption is for WPA/WPA2,
2075                  * we have to notify the supplicant. */
2076                 if (priv->ieee->sec.encrypt) {
2077                         priv->status &= ~STATUS_ASSOCIATED;
2078                         notify_wx_assoc_event(priv);
2079                 }
2080
2081                 /* Keep the restart process from trying to send host
2082                  * commands by clearing the INIT status bit */
2083                 priv->status &= ~STATUS_INIT;
2084
2085                 /* Cancel currently queued command. */
2086                 priv->status &= ~STATUS_HCMD_ACTIVE;
2087                 wake_up_interruptible(&priv->wait_command_queue);
2088
2089                 schedule_work(&priv->adapter_restart);
2090                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2091         }
2092
2093         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2094                 IPW_ERROR("Parity error\n");
2095                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2096         }
2097
2098         if (handled != inta) {
2099                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2100         }
2101
2102         spin_unlock_irqrestore(&priv->lock, flags);
2103
2104         /* enable all interrupts */
2105         ipw_enable_interrupts(priv);
2106 }
2107
2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2109 static char *get_cmd_string(u8 cmd)
2110 {
2111         switch (cmd) {
2112                 IPW_CMD(HOST_COMPLETE);
2113                 IPW_CMD(POWER_DOWN);
2114                 IPW_CMD(SYSTEM_CONFIG);
2115                 IPW_CMD(MULTICAST_ADDRESS);
2116                 IPW_CMD(SSID);
2117                 IPW_CMD(ADAPTER_ADDRESS);
2118                 IPW_CMD(PORT_TYPE);
2119                 IPW_CMD(RTS_THRESHOLD);
2120                 IPW_CMD(FRAG_THRESHOLD);
2121                 IPW_CMD(POWER_MODE);
2122                 IPW_CMD(WEP_KEY);
2123                 IPW_CMD(TGI_TX_KEY);
2124                 IPW_CMD(SCAN_REQUEST);
2125                 IPW_CMD(SCAN_REQUEST_EXT);
2126                 IPW_CMD(ASSOCIATE);
2127                 IPW_CMD(SUPPORTED_RATES);
2128                 IPW_CMD(SCAN_ABORT);
2129                 IPW_CMD(TX_FLUSH);
2130                 IPW_CMD(QOS_PARAMETERS);
2131                 IPW_CMD(DINO_CONFIG);
2132                 IPW_CMD(RSN_CAPABILITIES);
2133                 IPW_CMD(RX_KEY);
2134                 IPW_CMD(CARD_DISABLE);
2135                 IPW_CMD(SEED_NUMBER);
2136                 IPW_CMD(TX_POWER);
2137                 IPW_CMD(COUNTRY_INFO);
2138                 IPW_CMD(AIRONET_INFO);
2139                 IPW_CMD(AP_TX_POWER);
2140                 IPW_CMD(CCKM_INFO);
2141                 IPW_CMD(CCX_VER_INFO);
2142                 IPW_CMD(SET_CALIBRATION);
2143                 IPW_CMD(SENSITIVITY_CALIB);
2144                 IPW_CMD(RETRY_LIMIT);
2145                 IPW_CMD(IPW_PRE_POWER_DOWN);
2146                 IPW_CMD(VAP_BEACON_TEMPLATE);
2147                 IPW_CMD(VAP_DTIM_PERIOD);
2148                 IPW_CMD(EXT_SUPPORTED_RATES);
2149                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2150                 IPW_CMD(VAP_QUIET_INTERVALS);
2151                 IPW_CMD(VAP_CHANNEL_SWITCH);
2152                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2153                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2154                 IPW_CMD(VAP_CF_PARAM_SET);
2155                 IPW_CMD(VAP_SET_BEACONING_STATE);
2156                 IPW_CMD(MEASUREMENT);
2157                 IPW_CMD(POWER_CAPABILITY);
2158                 IPW_CMD(SUPPORTED_CHANNELS);
2159                 IPW_CMD(TPC_REPORT);
2160                 IPW_CMD(WME_INFO);
2161                 IPW_CMD(PRODUCTION_COMMAND);
2162         default:
2163                 return "UNKNOWN";
2164         }
2165 }
2166
2167 #define HOST_COMPLETE_TIMEOUT HZ
2168
2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2170 {
2171         int rc = 0;
2172         unsigned long flags;
2173         unsigned long now, end;
2174
2175         spin_lock_irqsave(&priv->lock, flags);
2176         if (priv->status & STATUS_HCMD_ACTIVE) {
2177                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2178                           get_cmd_string(cmd->cmd));
2179                 spin_unlock_irqrestore(&priv->lock, flags);
2180                 return -EAGAIN;
2181         }
2182
2183         priv->status |= STATUS_HCMD_ACTIVE;
2184
2185         if (priv->cmdlog) {
2186                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2187                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2188                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2189                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2190                        cmd->len);
2191                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2192         }
2193
2194         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2195                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2196                      priv->status);
2197
2198 #ifndef DEBUG_CMD_WEP_KEY
2199         if (cmd->cmd == IPW_CMD_WEP_KEY)
2200                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2201         else
2202 #endif
2203                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2204
2205         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2206         if (rc) {
2207                 priv->status &= ~STATUS_HCMD_ACTIVE;
2208                 IPW_ERROR("Failed to send %s: Reason %d\n",
2209                           get_cmd_string(cmd->cmd), rc);
2210                 spin_unlock_irqrestore(&priv->lock, flags);
2211                 goto exit;
2212         }
2213         spin_unlock_irqrestore(&priv->lock, flags);
2214
2215         now = jiffies;
2216         end = now + HOST_COMPLETE_TIMEOUT;
2217 again:
2218         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2219                                               !(priv->
2220                                                 status & STATUS_HCMD_ACTIVE),
2221                                               end - now);
2222         if (rc < 0) {
2223                 now = jiffies;
2224                 if (time_before(now, end))
2225                         goto again;
2226                 rc = 0;
2227         }
2228
2229         if (rc == 0) {
2230                 spin_lock_irqsave(&priv->lock, flags);
2231                 if (priv->status & STATUS_HCMD_ACTIVE) {
2232                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2233                                   get_cmd_string(cmd->cmd));
2234                         priv->status &= ~STATUS_HCMD_ACTIVE;
2235                         spin_unlock_irqrestore(&priv->lock, flags);
2236                         rc = -EIO;
2237                         goto exit;
2238                 }
2239                 spin_unlock_irqrestore(&priv->lock, flags);
2240         } else
2241                 rc = 0;
2242
2243         if (priv->status & STATUS_RF_KILL_HW) {
2244                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2245                           get_cmd_string(cmd->cmd));
2246                 rc = -EIO;
2247                 goto exit;
2248         }
2249
2250       exit:
2251         if (priv->cmdlog) {
2252                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2253                 priv->cmdlog_pos %= priv->cmdlog_len;
2254         }
2255         return rc;
2256 }
2257
2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2259 {
2260         struct host_cmd cmd = {
2261                 .cmd = command,
2262         };
2263
2264         return __ipw_send_cmd(priv, &cmd);
2265 }
2266
2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2268                             void *data)
2269 {
2270         struct host_cmd cmd = {
2271                 .cmd = command,
2272                 .len = len,
2273                 .param = data,
2274         };
2275
2276         return __ipw_send_cmd(priv, &cmd);
2277 }
2278
2279 static int ipw_send_host_complete(struct ipw_priv *priv)
2280 {
2281         if (!priv) {
2282                 IPW_ERROR("Invalid args\n");
2283                 return -1;
2284         }
2285
2286         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2287 }
2288
2289 static int ipw_send_system_config(struct ipw_priv *priv)
2290 {
2291         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2292                                 sizeof(priv->sys_config),
2293                                 &priv->sys_config);
2294 }
2295
2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2297 {
2298         if (!priv || !ssid) {
2299                 IPW_ERROR("Invalid args\n");
2300                 return -1;
2301         }
2302
2303         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2304                                 ssid);
2305 }
2306
2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2308 {
2309         if (!priv || !mac) {
2310                 IPW_ERROR("Invalid args\n");
2311                 return -1;
2312         }
2313
2314         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2315                        priv->net_dev->name, mac);
2316
2317         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2318 }
2319
2320 static void ipw_adapter_restart(void *adapter)
2321 {
2322         struct ipw_priv *priv = adapter;
2323
2324         if (priv->status & STATUS_RF_KILL_MASK)
2325                 return;
2326
2327         ipw_down(priv);
2328
2329         if (priv->assoc_network &&
2330             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2331                 ipw_remove_current_network(priv);
2332
2333         if (ipw_up(priv)) {
2334                 IPW_ERROR("Failed to up device\n");
2335                 return;
2336         }
2337 }
2338
2339 static void ipw_bg_adapter_restart(struct work_struct *work)
2340 {
2341         struct ipw_priv *priv =
2342                 container_of(work, struct ipw_priv, adapter_restart);
2343         mutex_lock(&priv->mutex);
2344         ipw_adapter_restart(priv);
2345         mutex_unlock(&priv->mutex);
2346 }
2347
2348 static void ipw_abort_scan(struct ipw_priv *priv);
2349
2350 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2351
2352 static void ipw_scan_check(void *data)
2353 {
2354         struct ipw_priv *priv = data;
2355
2356         if (priv->status & STATUS_SCAN_ABORTING) {
2357                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358                                "adapter after (%dms).\n",
2359                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360                 schedule_work(&priv->adapter_restart);
2361         } else if (priv->status & STATUS_SCANNING) {
2362                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2363                                "after (%dms).\n",
2364                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2365                 ipw_abort_scan(priv);
2366                 schedule_delayed_work(&priv->scan_check, HZ);
2367         }
2368 }
2369
2370 static void ipw_bg_scan_check(struct work_struct *work)
2371 {
2372         struct ipw_priv *priv =
2373                 container_of(work, struct ipw_priv, scan_check.work);
2374         mutex_lock(&priv->mutex);
2375         ipw_scan_check(priv);
2376         mutex_unlock(&priv->mutex);
2377 }
2378
2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2380                                      struct ipw_scan_request_ext *request)
2381 {
2382         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2383                                 sizeof(*request), request);
2384 }
2385
2386 static int ipw_send_scan_abort(struct ipw_priv *priv)
2387 {
2388         if (!priv) {
2389                 IPW_ERROR("Invalid args\n");
2390                 return -1;
2391         }
2392
2393         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2394 }
2395
2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2397 {
2398         struct ipw_sensitivity_calib calib = {
2399                 .beacon_rssi_raw = cpu_to_le16(sens),
2400         };
2401
2402         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2403                                 &calib);
2404 }
2405
2406 static int ipw_send_associate(struct ipw_priv *priv,
2407                               struct ipw_associate *associate)
2408 {
2409         if (!priv || !associate) {
2410                 IPW_ERROR("Invalid args\n");
2411                 return -1;
2412         }
2413
2414         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2415                                 associate);
2416 }
2417
2418 static int ipw_send_supported_rates(struct ipw_priv *priv,
2419                                     struct ipw_supported_rates *rates)
2420 {
2421         if (!priv || !rates) {
2422                 IPW_ERROR("Invalid args\n");
2423                 return -1;
2424         }
2425
2426         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2427                                 rates);
2428 }
2429
2430 static int ipw_set_random_seed(struct ipw_priv *priv)
2431 {
2432         u32 val;
2433
2434         if (!priv) {
2435                 IPW_ERROR("Invalid args\n");
2436                 return -1;
2437         }
2438
2439         get_random_bytes(&val, sizeof(val));
2440
2441         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2442 }
2443
2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2445 {
2446         __le32 v = cpu_to_le32(phy_off);
2447         if (!priv) {
2448                 IPW_ERROR("Invalid args\n");
2449                 return -1;
2450         }
2451
2452         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2453 }
2454
2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2456 {
2457         if (!priv || !power) {
2458                 IPW_ERROR("Invalid args\n");
2459                 return -1;
2460         }
2461
2462         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2463 }
2464
2465 static int ipw_set_tx_power(struct ipw_priv *priv)
2466 {
2467         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2468         struct ipw_tx_power tx_power;
2469         s8 max_power;
2470         int i;
2471
2472         memset(&tx_power, 0, sizeof(tx_power));
2473
2474         /* configure device for 'G' band */
2475         tx_power.ieee_mode = IPW_G_MODE;
2476         tx_power.num_channels = geo->bg_channels;
2477         for (i = 0; i < geo->bg_channels; i++) {
2478                 max_power = geo->bg[i].max_power;
2479                 tx_power.channels_tx_power[i].channel_number =
2480                     geo->bg[i].channel;
2481                 tx_power.channels_tx_power[i].tx_power = max_power ?
2482                     min(max_power, priv->tx_power) : priv->tx_power;
2483         }
2484         if (ipw_send_tx_power(priv, &tx_power))
2485                 return -EIO;
2486
2487         /* configure device to also handle 'B' band */
2488         tx_power.ieee_mode = IPW_B_MODE;
2489         if (ipw_send_tx_power(priv, &tx_power))
2490                 return -EIO;
2491
2492         /* configure device to also handle 'A' band */
2493         if (priv->ieee->abg_true) {
2494                 tx_power.ieee_mode = IPW_A_MODE;
2495                 tx_power.num_channels = geo->a_channels;
2496                 for (i = 0; i < tx_power.num_channels; i++) {
2497                         max_power = geo->a[i].max_power;
2498                         tx_power.channels_tx_power[i].channel_number =
2499                             geo->a[i].channel;
2500                         tx_power.channels_tx_power[i].tx_power = max_power ?
2501                             min(max_power, priv->tx_power) : priv->tx_power;
2502                 }
2503                 if (ipw_send_tx_power(priv, &tx_power))
2504                         return -EIO;
2505         }
2506         return 0;
2507 }
2508
2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2510 {
2511         struct ipw_rts_threshold rts_threshold = {
2512                 .rts_threshold = cpu_to_le16(rts),
2513         };
2514
2515         if (!priv) {
2516                 IPW_ERROR("Invalid args\n");
2517                 return -1;
2518         }
2519
2520         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2521                                 sizeof(rts_threshold), &rts_threshold);
2522 }
2523
2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2525 {
2526         struct ipw_frag_threshold frag_threshold = {
2527                 .frag_threshold = cpu_to_le16(frag),
2528         };
2529
2530         if (!priv) {
2531                 IPW_ERROR("Invalid args\n");
2532                 return -1;
2533         }
2534
2535         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2536                                 sizeof(frag_threshold), &frag_threshold);
2537 }
2538
2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2540 {
2541         __le32 param;
2542
2543         if (!priv) {
2544                 IPW_ERROR("Invalid args\n");
2545                 return -1;
2546         }
2547
2548         /* If on battery, set to 3, if AC set to CAM, else user
2549          * level */
2550         switch (mode) {
2551         case IPW_POWER_BATTERY:
2552                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2553                 break;
2554         case IPW_POWER_AC:
2555                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2556                 break;
2557         default:
2558                 param = cpu_to_le32(mode);
2559                 break;
2560         }
2561
2562         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2563                                 &param);
2564 }
2565
2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2567 {
2568         struct ipw_retry_limit retry_limit = {
2569                 .short_retry_limit = slimit,
2570                 .long_retry_limit = llimit
2571         };
2572
2573         if (!priv) {
2574                 IPW_ERROR("Invalid args\n");
2575                 return -1;
2576         }
2577
2578         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2579                                 &retry_limit);
2580 }
2581
2582 /*
2583  * The IPW device contains a Microwire compatible EEPROM that stores
2584  * various data like the MAC address.  Usually the firmware has exclusive
2585  * access to the eeprom, but during device initialization (before the
2586  * device driver has sent the HostComplete command to the firmware) the
2587  * device driver has read access to the EEPROM by way of indirect addressing
2588  * through a couple of memory mapped registers.
2589  *
2590  * The following is a simplified implementation for pulling data out of the
2591  * the eeprom, along with some helper functions to find information in
2592  * the per device private data's copy of the eeprom.
2593  *
2594  * NOTE: To better understand how these functions work (i.e what is a chip
2595  *       select and why do have to keep driving the eeprom clock?), read
2596  *       just about any data sheet for a Microwire compatible EEPROM.
2597  */
2598
2599 /* write a 32 bit value into the indirect accessor register */
2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2601 {
2602         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2603
2604         /* the eeprom requires some time to complete the operation */
2605         udelay(p->eeprom_delay);
2606 }
2607
2608 /* perform a chip select operation */
2609 static void eeprom_cs(struct ipw_priv *priv)
2610 {
2611         eeprom_write_reg(priv, 0);
2612         eeprom_write_reg(priv, EEPROM_BIT_CS);
2613         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2614         eeprom_write_reg(priv, EEPROM_BIT_CS);
2615 }
2616
2617 /* perform a chip select operation */
2618 static void eeprom_disable_cs(struct ipw_priv *priv)
2619 {
2620         eeprom_write_reg(priv, EEPROM_BIT_CS);
2621         eeprom_write_reg(priv, 0);
2622         eeprom_write_reg(priv, EEPROM_BIT_SK);
2623 }
2624
2625 /* push a single bit down to the eeprom */
2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2627 {
2628         int d = (bit ? EEPROM_BIT_DI : 0);
2629         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2630         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2631 }
2632
2633 /* push an opcode followed by an address down to the eeprom */
2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2635 {
2636         int i;
2637
2638         eeprom_cs(priv);
2639         eeprom_write_bit(priv, 1);
2640         eeprom_write_bit(priv, op & 2);
2641         eeprom_write_bit(priv, op & 1);
2642         for (i = 7; i >= 0; i--) {
2643                 eeprom_write_bit(priv, addr & (1 << i));
2644         }
2645 }
2646
2647 /* pull 16 bits off the eeprom, one bit at a time */
2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2649 {
2650         int i;
2651         u16 r = 0;
2652
2653         /* Send READ Opcode */
2654         eeprom_op(priv, EEPROM_CMD_READ, addr);
2655
2656         /* Send dummy bit */
2657         eeprom_write_reg(priv, EEPROM_BIT_CS);
2658
2659         /* Read the byte off the eeprom one bit at a time */
2660         for (i = 0; i < 16; i++) {
2661                 u32 data = 0;
2662                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2663                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2664                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2665                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2666         }
2667
2668         /* Send another dummy bit */
2669         eeprom_write_reg(priv, 0);
2670         eeprom_disable_cs(priv);
2671
2672         return r;
2673 }
2674
2675 /* helper function for pulling the mac address out of the private */
2676 /* data's copy of the eeprom data                                 */
2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2678 {
2679         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2680 }
2681
2682 static void ipw_read_eeprom(struct ipw_priv *priv)
2683 {
2684         int i;
2685         __le16 *eeprom = (__le16 *) priv->eeprom;
2686
2687         IPW_DEBUG_TRACE(">>\n");
2688
2689         /* read entire contents of eeprom into private buffer */
2690         for (i = 0; i < 128; i++)
2691                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2692
2693         IPW_DEBUG_TRACE("<<\n");
2694 }
2695
2696 /*
2697  * Either the device driver (i.e. the host) or the firmware can
2698  * load eeprom data into the designated region in SRAM.  If neither
2699  * happens then the FW will shutdown with a fatal error.
2700  *
2701  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2702  * bit needs region of shared SRAM needs to be non-zero.
2703  */
2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2705 {
2706         int i;
2707
2708         IPW_DEBUG_TRACE(">>\n");
2709
2710         /*
2711            If the data looks correct, then copy it to our private
2712            copy.  Otherwise let the firmware know to perform the operation
2713            on its own.
2714          */
2715         if (priv->eeprom[EEPROM_VERSION] != 0) {
2716                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2717
2718                 /* write the eeprom data to sram */
2719                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2720                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2721
2722                 /* Do not load eeprom data on fatal error or suspend */
2723                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2724         } else {
2725                 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2726
2727                 /* Load eeprom data on fatal error or suspend */
2728                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2729         }
2730
2731         IPW_DEBUG_TRACE("<<\n");
2732 }
2733
2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2735 {
2736         count >>= 2;
2737         if (!count)
2738                 return;
2739         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2740         while (count--)
2741                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2742 }
2743
2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2745 {
2746         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2747                         CB_NUMBER_OF_ELEMENTS_SMALL *
2748                         sizeof(struct command_block));
2749 }
2750
2751 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2752 {                               /* start dma engine but no transfers yet */
2753
2754         IPW_DEBUG_FW(">> :\n");
2755
2756         /* Start the dma */
2757         ipw_fw_dma_reset_command_blocks(priv);
2758
2759         /* Write CB base address */
2760         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2761
2762         IPW_DEBUG_FW("<< :\n");
2763         return 0;
2764 }
2765
2766 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2767 {
2768         u32 control = 0;
2769
2770         IPW_DEBUG_FW(">> :\n");
2771
2772         /* set the Stop and Abort bit */
2773         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2774         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2775         priv->sram_desc.last_cb_index = 0;
2776
2777         IPW_DEBUG_FW("<<\n");
2778 }
2779
2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2781                                           struct command_block *cb)
2782 {
2783         u32 address =
2784             IPW_SHARED_SRAM_DMA_CONTROL +
2785             (sizeof(struct command_block) * index);
2786         IPW_DEBUG_FW(">> :\n");
2787
2788         ipw_write_indirect(priv, address, (u8 *) cb,
2789                            (int)sizeof(struct command_block));
2790
2791         IPW_DEBUG_FW("<< :\n");
2792         return 0;
2793
2794 }
2795
2796 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2797 {
2798         u32 control = 0;
2799         u32 index = 0;
2800
2801         IPW_DEBUG_FW(">> :\n");
2802
2803         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2804                 ipw_fw_dma_write_command_block(priv, index,
2805                                                &priv->sram_desc.cb_list[index]);
2806
2807         /* Enable the DMA in the CSR register */
2808         ipw_clear_bit(priv, IPW_RESET_REG,
2809                       IPW_RESET_REG_MASTER_DISABLED |
2810                       IPW_RESET_REG_STOP_MASTER);
2811
2812         /* Set the Start bit. */
2813         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2814         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2815
2816         IPW_DEBUG_FW("<< :\n");
2817         return 0;
2818 }
2819
2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2821 {
2822         u32 address;
2823         u32 register_value = 0;
2824         u32 cb_fields_address = 0;
2825
2826         IPW_DEBUG_FW(">> :\n");
2827         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2828         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2829
2830         /* Read the DMA Controlor register */
2831         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2832         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2833
2834         /* Print the CB values */
2835         cb_fields_address = address;
2836         register_value = ipw_read_reg32(priv, cb_fields_address);
2837         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2838
2839         cb_fields_address += sizeof(u32);
2840         register_value = ipw_read_reg32(priv, cb_fields_address);
2841         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2842
2843         cb_fields_address += sizeof(u32);
2844         register_value = ipw_read_reg32(priv, cb_fields_address);
2845         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2846                           register_value);
2847
2848         cb_fields_address += sizeof(u32);
2849         register_value = ipw_read_reg32(priv, cb_fields_address);
2850         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2851
2852         IPW_DEBUG_FW(">> :\n");
2853 }
2854
2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2856 {
2857         u32 current_cb_address = 0;
2858         u32 current_cb_index = 0;
2859
2860         IPW_DEBUG_FW("<< :\n");
2861         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2862
2863         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2864             sizeof(struct command_block);
2865
2866         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2867                           current_cb_index, current_cb_address);
2868
2869         IPW_DEBUG_FW(">> :\n");
2870         return current_cb_index;
2871
2872 }
2873
2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2875                                         u32 src_address,
2876                                         u32 dest_address,
2877                                         u32 length,
2878                                         int interrupt_enabled, int is_last)
2879 {
2880
2881         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2882             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2883             CB_DEST_SIZE_LONG;
2884         struct command_block *cb;
2885         u32 last_cb_element = 0;
2886
2887         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2888                           src_address, dest_address, length);
2889
2890         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2891                 return -1;
2892
2893         last_cb_element = priv->sram_desc.last_cb_index;
2894         cb = &priv->sram_desc.cb_list[last_cb_element];
2895         priv->sram_desc.last_cb_index++;
2896
2897         /* Calculate the new CB control word */
2898         if (interrupt_enabled)
2899                 control |= CB_INT_ENABLED;
2900
2901         if (is_last)
2902                 control |= CB_LAST_VALID;
2903
2904         control |= length;
2905
2906         /* Calculate the CB Element's checksum value */
2907         cb->status = control ^ src_address ^ dest_address;
2908
2909         /* Copy the Source and Destination addresses */
2910         cb->dest_addr = dest_address;
2911         cb->source_addr = src_address;
2912
2913         /* Copy the Control Word last */
2914         cb->control = control;
2915
2916         return 0;
2917 }
2918
2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2920                                  int nr, u32 dest_address, u32 len)
2921 {
2922         int ret, i;
2923         u32 size;
2924
2925         IPW_DEBUG_FW(">>\n");
2926         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2927                           nr, dest_address, len);
2928
2929         for (i = 0; i < nr; i++) {
2930                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2931                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2932                                                    dest_address +
2933                                                    i * CB_MAX_LENGTH, size,
2934                                                    0, 0);
2935                 if (ret) {
2936                         IPW_DEBUG_FW_INFO(": Failed\n");
2937                         return -1;
2938                 } else
2939                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2940         }
2941
2942         IPW_DEBUG_FW("<<\n");
2943         return 0;
2944 }
2945
2946 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2947 {
2948         u32 current_index = 0, previous_index;
2949         u32 watchdog = 0;
2950
2951         IPW_DEBUG_FW(">> :\n");
2952
2953         current_index = ipw_fw_dma_command_block_index(priv);
2954         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2955                           (int)priv->sram_desc.last_cb_index);
2956
2957         while (current_index < priv->sram_desc.last_cb_index) {
2958                 udelay(50);
2959                 previous_index = current_index;
2960                 current_index = ipw_fw_dma_command_block_index(priv);
2961
2962                 if (previous_index < current_index) {
2963                         watchdog = 0;
2964                         continue;
2965                 }
2966                 if (++watchdog > 400) {
2967                         IPW_DEBUG_FW_INFO("Timeout\n");
2968                         ipw_fw_dma_dump_command_block(priv);
2969                         ipw_fw_dma_abort(priv);
2970                         return -1;
2971                 }
2972         }
2973
2974         ipw_fw_dma_abort(priv);
2975
2976         /*Disable the DMA in the CSR register */
2977         ipw_set_bit(priv, IPW_RESET_REG,
2978                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2979
2980         IPW_DEBUG_FW("<< dmaWaitSync\n");
2981         return 0;
2982 }
2983
2984 static void ipw_remove_current_network(struct ipw_priv *priv)
2985 {
2986         struct list_head *element, *safe;
2987         struct libipw_network *network = NULL;
2988         unsigned long flags;
2989
2990         spin_lock_irqsave(&priv->ieee->lock, flags);
2991         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2992                 network = list_entry(element, struct libipw_network, list);
2993                 if (ether_addr_equal(network->bssid, priv->bssid)) {
2994                         list_del(element);
2995                         list_add_tail(&network->list,
2996                                       &priv->ieee->network_free_list);
2997                 }
2998         }
2999         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3000 }
3001
3002 /**
3003  * Check that card is still alive.
3004  * Reads debug register from domain0.
3005  * If card is present, pre-defined value should
3006  * be found there.
3007  *
3008  * @param priv
3009  * @return 1 if card is present, 0 otherwise
3010  */
3011 static inline int ipw_alive(struct ipw_priv *priv)
3012 {
3013         return ipw_read32(priv, 0x90) == 0xd55555d5;
3014 }
3015
3016 /* timeout in msec, attempted in 10-msec quanta */
3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018                                int timeout)
3019 {
3020         int i = 0;
3021
3022         do {
3023                 if ((ipw_read32(priv, addr) & mask) == mask)
3024                         return i;
3025                 mdelay(10);
3026                 i += 10;
3027         } while (i < timeout);
3028
3029         return -ETIME;
3030 }
3031
3032 /* These functions load the firmware and micro code for the operation of
3033  * the ipw hardware.  It assumes the buffer has all the bits for the
3034  * image and the caller is handling the memory allocation and clean up.
3035  */
3036
3037 static int ipw_stop_master(struct ipw_priv *priv)
3038 {
3039         int rc;
3040
3041         IPW_DEBUG_TRACE(">>\n");
3042         /* stop master. typical delay - 0 */
3043         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3044
3045         /* timeout is in msec, polled in 10-msec quanta */
3046         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3047                           IPW_RESET_REG_MASTER_DISABLED, 100);
3048         if (rc < 0) {
3049                 IPW_ERROR("wait for stop master failed after 100ms\n");
3050                 return -1;
3051         }
3052
3053         IPW_DEBUG_INFO("stop master %dms\n", rc);
3054
3055         return rc;
3056 }
3057
3058 static void ipw_arc_release(struct ipw_priv *priv)
3059 {
3060         IPW_DEBUG_TRACE(">>\n");
3061         mdelay(5);
3062
3063         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3064
3065         /* no one knows timing, for safety add some delay */
3066         mdelay(5);
3067 }
3068
3069 struct fw_chunk {
3070         __le32 address;
3071         __le32 length;
3072 };
3073
3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3075 {
3076         int rc = 0, i, addr;
3077         u8 cr = 0;
3078         __le16 *image;
3079
3080         image = (__le16 *) data;
3081
3082         IPW_DEBUG_TRACE(">>\n");
3083
3084         rc = ipw_stop_master(priv);
3085
3086         if (rc < 0)
3087                 return rc;
3088
3089         for (addr = IPW_SHARED_LOWER_BOUND;
3090              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3091                 ipw_write32(priv, addr, 0);
3092         }
3093
3094         /* no ucode (yet) */
3095         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3096         /* destroy DMA queues */
3097         /* reset sequence */
3098
3099         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3100         ipw_arc_release(priv);
3101         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3102         mdelay(1);
3103
3104         /* reset PHY */
3105         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3106         mdelay(1);
3107
3108         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3109         mdelay(1);
3110
3111         /* enable ucode store */
3112         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3113         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114         mdelay(1);
3115
3116         /* write ucode */
3117         /**
3118          * @bug
3119          * Do NOT set indirect address register once and then
3120          * store data to indirect data register in the loop.
3121          * It seems very reasonable, but in this case DINO do not
3122          * accept ucode. It is essential to set address each time.
3123          */
3124         /* load new ipw uCode */
3125         for (i = 0; i < len / 2; i++)
3126                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3127                                 le16_to_cpu(image[i]));
3128
3129         /* enable DINO */
3130         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3131         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3132
3133         /* this is where the igx / win driver deveates from the VAP driver. */
3134
3135         /* wait for alive response */
3136         for (i = 0; i < 100; i++) {
3137                 /* poll for incoming data */
3138                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3139                 if (cr & DINO_RXFIFO_DATA)
3140                         break;
3141                 mdelay(1);
3142         }
3143
3144         if (cr & DINO_RXFIFO_DATA) {
3145                 /* alive_command_responce size is NOT multiple of 4 */
3146                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3147
3148                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3149                         response_buffer[i] =
3150                             cpu_to_le32(ipw_read_reg32(priv,
3151                                                        IPW_BASEBAND_RX_FIFO_READ));
3152                 memcpy(&priv->dino_alive, response_buffer,
3153                        sizeof(priv->dino_alive));
3154                 if (priv->dino_alive.alive_command == 1
3155                     && priv->dino_alive.ucode_valid == 1) {
3156                         rc = 0;
3157                         IPW_DEBUG_INFO
3158                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3159                              "of %02d/%02d/%02d %02d:%02d\n",
3160                              priv->dino_alive.software_revision,
3161                              priv->dino_alive.software_revision,
3162                              priv->dino_alive.device_identifier,
3163                              priv->dino_alive.device_identifier,
3164                              priv->dino_alive.time_stamp[0],
3165                              priv->dino_alive.time_stamp[1],
3166                              priv->dino_alive.time_stamp[2],
3167                              priv->dino_alive.time_stamp[3],
3168                              priv->dino_alive.time_stamp[4]);
3169                 } else {
3170                         IPW_DEBUG_INFO("Microcode is not alive\n");
3171                         rc = -EINVAL;
3172                 }
3173         } else {
3174                 IPW_DEBUG_INFO("No alive response from DINO\n");
3175                 rc = -ETIME;
3176         }
3177
3178         /* disable DINO, otherwise for some reason
3179            firmware have problem getting alive resp. */
3180         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3181
3182         return rc;
3183 }
3184
3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3186 {
3187         int ret = -1;
3188         int offset = 0;
3189         struct fw_chunk *chunk;
3190         int total_nr = 0;
3191         int i;
3192         struct dma_pool *pool;
3193         void **virts;
3194         dma_addr_t *phys;
3195
3196         IPW_DEBUG_TRACE("<< :\n");
3197
3198         virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3199                               GFP_KERNEL);
3200         if (!virts)
3201                 return -ENOMEM;
3202
3203         phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3204                              GFP_KERNEL);
3205         if (!phys) {
3206                 kfree(virts);
3207                 return -ENOMEM;
3208         }
3209         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3210                                0);
3211         if (!pool) {
3212                 IPW_ERROR("dma_pool_create failed\n");
3213                 kfree(phys);
3214                 kfree(virts);
3215                 return -ENOMEM;
3216         }
3217
3218         /* Start the Dma */
3219         ret = ipw_fw_dma_enable(priv);
3220
3221         /* the DMA is already ready this would be a bug. */
3222         BUG_ON(priv->sram_desc.last_cb_index > 0);
3223
3224         do {
3225                 u32 chunk_len;
3226                 u8 *start;
3227                 int size;
3228                 int nr = 0;
3229
3230                 chunk = (struct fw_chunk *)(data + offset);
3231                 offset += sizeof(struct fw_chunk);
3232                 chunk_len = le32_to_cpu(chunk->length);
3233                 start = data + offset;
3234
3235                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3236                 for (i = 0; i < nr; i++) {
3237                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3238                                                          &phys[total_nr]);
3239                         if (!virts[total_nr]) {
3240                                 ret = -ENOMEM;
3241                                 goto out;
3242                         }
3243                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3244                                      CB_MAX_LENGTH);
3245                         memcpy(virts[total_nr], start, size);
3246                         start += size;
3247                         total_nr++;
3248                         /* We don't support fw chunk larger than 64*8K */
3249                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3250                 }
3251
3252                 /* build DMA packet and queue up for sending */
3253                 /* dma to chunk->address, the chunk->length bytes from data +
3254                  * offeset*/
3255                 /* Dma loading */
3256                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3257                                             nr, le32_to_cpu(chunk->address),
3258                                             chunk_len);
3259                 if (ret) {
3260                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3261                         goto out;
3262                 }
3263
3264                 offset += chunk_len;
3265         } while (offset < len);
3266
3267         /* Run the DMA and wait for the answer */
3268         ret = ipw_fw_dma_kick(priv);
3269         if (ret) {
3270                 IPW_ERROR("dmaKick Failed\n");
3271                 goto out;
3272         }
3273
3274         ret = ipw_fw_dma_wait(priv);
3275         if (ret) {
3276                 IPW_ERROR("dmaWaitSync Failed\n");
3277                 goto out;
3278         }
3279  out:
3280         for (i = 0; i < total_nr; i++)
3281                 dma_pool_free(pool, virts[i], phys[i]);
3282
3283         dma_pool_destroy(pool);
3284         kfree(phys);
3285         kfree(virts);
3286
3287         return ret;
3288 }
3289
3290 /* stop nic */
3291 static int ipw_stop_nic(struct ipw_priv *priv)
3292 {
3293         int rc = 0;
3294
3295         /* stop */
3296         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3297
3298         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3299                           IPW_RESET_REG_MASTER_DISABLED, 500);
3300         if (rc < 0) {
3301                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3302                 return rc;
3303         }
3304
3305         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3306
3307         return rc;
3308 }
3309
3310 static void ipw_start_nic(struct ipw_priv *priv)
3311 {
3312         IPW_DEBUG_TRACE(">>\n");
3313
3314         /* prvHwStartNic  release ARC */
3315         ipw_clear_bit(priv, IPW_RESET_REG,
3316                       IPW_RESET_REG_MASTER_DISABLED |
3317                       IPW_RESET_REG_STOP_MASTER |
3318                       CBD_RESET_REG_PRINCETON_RESET);
3319
3320         /* enable power management */
3321         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3322                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3323
3324         IPW_DEBUG_TRACE("<<\n");
3325 }
3326
3327 static int ipw_init_nic(struct ipw_priv *priv)
3328 {
3329         int rc;
3330
3331         IPW_DEBUG_TRACE(">>\n");
3332         /* reset */
3333         /*prvHwInitNic */
3334         /* set "initialization complete" bit to move adapter to D0 state */
3335         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3336
3337         /* low-level PLL activation */
3338         ipw_write32(priv, IPW_READ_INT_REGISTER,
3339                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3340
3341         /* wait for clock stabilization */
3342         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3343                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3344         if (rc < 0)
3345                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3346
3347         /* assert SW reset */
3348         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3349
3350         udelay(10);
3351
3352         /* set "initialization complete" bit to move adapter to D0 state */
3353         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3354
3355         IPW_DEBUG_TRACE(">>\n");
3356         return 0;
3357 }
3358
3359 /* Call this function from process context, it will sleep in request_firmware.
3360  * Probe is an ok place to call this from.
3361  */
3362 static int ipw_reset_nic(struct ipw_priv *priv)
3363 {
3364         int rc = 0;
3365         unsigned long flags;
3366
3367         IPW_DEBUG_TRACE(">>\n");
3368
3369         rc = ipw_init_nic(priv);
3370
3371         spin_lock_irqsave(&priv->lock, flags);
3372         /* Clear the 'host command active' bit... */
3373         priv->status &= ~STATUS_HCMD_ACTIVE;
3374         wake_up_interruptible(&priv->wait_command_queue);
3375         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3376         wake_up_interruptible(&priv->wait_state);
3377         spin_unlock_irqrestore(&priv->lock, flags);
3378
3379         IPW_DEBUG_TRACE("<<\n");
3380         return rc;
3381 }
3382
3383
3384 struct ipw_fw {
3385         __le32 ver;
3386         __le32 boot_size;
3387         __le32 ucode_size;
3388         __le32 fw_size;
3389         u8 data[0];
3390 };
3391
3392 static int ipw_get_fw(struct ipw_priv *priv,
3393                       const struct firmware **raw, const char *name)
3394 {
3395         struct ipw_fw *fw;
3396         int rc;
3397
3398         /* ask firmware_class module to get the boot firmware off disk */
3399         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3400         if (rc < 0) {
3401                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3402                 return rc;
3403         }
3404
3405         if ((*raw)->size < sizeof(*fw)) {
3406                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3407                 return -EINVAL;
3408         }
3409
3410         fw = (void *)(*raw)->data;
3411
3412         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3413             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3414                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3415                           name, (*raw)->size);
3416                 return -EINVAL;
3417         }
3418
3419         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3420                        name,
3421                        le32_to_cpu(fw->ver) >> 16,
3422                        le32_to_cpu(fw->ver) & 0xff,
3423                        (*raw)->size - sizeof(*fw));
3424         return 0;
3425 }
3426
3427 #define IPW_RX_BUF_SIZE (3000)
3428
3429 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3430                                       struct ipw_rx_queue *rxq)
3431 {
3432         unsigned long flags;
3433         int i;
3434
3435         spin_lock_irqsave(&rxq->lock, flags);
3436
3437         INIT_LIST_HEAD(&rxq->rx_free);
3438         INIT_LIST_HEAD(&rxq->rx_used);
3439
3440         /* Fill the rx_used queue with _all_ of the Rx buffers */
3441         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3442                 /* In the reset function, these buffers may have been allocated
3443                  * to an SKB, so we need to unmap and free potential storage */
3444                 if (rxq->pool[i].skb != NULL) {
3445                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3446                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3447                         dev_kfree_skb(rxq->pool[i].skb);
3448                         rxq->pool[i].skb = NULL;
3449                 }
3450                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451         }
3452
3453         /* Set us so that we have processed and used all buffers, but have
3454          * not restocked the Rx queue with fresh buffers */
3455         rxq->read = rxq->write = 0;
3456         rxq->free_count = 0;
3457         spin_unlock_irqrestore(&rxq->lock, flags);
3458 }
3459
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3463
3464 static void free_firmware(void)
3465 {
3466         if (fw_loaded) {
3467                 release_firmware(raw);
3468                 raw = NULL;
3469                 fw_loaded = 0;
3470         }
3471 }
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3475
3476 static int ipw_load(struct ipw_priv *priv)
3477 {
3478 #ifndef CONFIG_PM
3479         const struct firmware *raw = NULL;
3480 #endif
3481         struct ipw_fw *fw;
3482         u8 *boot_img, *ucode_img, *fw_img;
3483         u8 *name = NULL;
3484         int rc = 0, retries = 3;
3485
3486         switch (priv->ieee->iw_mode) {
3487         case IW_MODE_ADHOC:
3488                 name = "ipw2200-ibss.fw";
3489                 break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491         case IW_MODE_MONITOR:
3492                 name = "ipw2200-sniffer.fw";
3493                 break;
3494 #endif
3495         case IW_MODE_INFRA:
3496                 name = "ipw2200-bss.fw";
3497                 break;
3498         }
3499
3500         if (!name) {
3501                 rc = -EINVAL;
3502                 goto error;
3503         }
3504
3505 #ifdef CONFIG_PM
3506         if (!fw_loaded) {
3507 #endif
3508                 rc = ipw_get_fw(priv, &raw, name);
3509                 if (rc < 0)
3510                         goto error;
3511 #ifdef CONFIG_PM
3512         }
3513 #endif
3514
3515         fw = (void *)raw->data;
3516         boot_img = &fw->data[0];
3517         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519                            le32_to_cpu(fw->ucode_size)];
3520
3521         if (!priv->rxq)
3522                 priv->rxq = ipw_rx_queue_alloc(priv);
3523         else
3524                 ipw_rx_queue_reset(priv, priv->rxq);
3525         if (!priv->rxq) {
3526                 IPW_ERROR("Unable to initialize Rx queue\n");
3527                 rc = -ENOMEM;
3528                 goto error;
3529         }
3530
3531       retry:
3532         /* Ensure interrupts are disabled */
3533         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534         priv->status &= ~STATUS_INT_ENABLED;
3535
3536         /* ack pending interrupts */
3537         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538
3539         ipw_stop_nic(priv);
3540
3541         rc = ipw_reset_nic(priv);
3542         if (rc < 0) {
3543                 IPW_ERROR("Unable to reset NIC\n");
3544                 goto error;
3545         }
3546
3547         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549
3550         /* DMA the initial boot firmware into the device */
3551         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552         if (rc < 0) {
3553                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554                 goto error;
3555         }
3556
3557         /* kick start the device */
3558         ipw_start_nic(priv);
3559
3560         /* wait for the device to finish its initial startup sequence */
3561         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563         if (rc < 0) {
3564                 IPW_ERROR("device failed to boot initial fw image\n");
3565                 goto error;
3566         }
3567         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568
3569         /* ack fw init done interrupt */
3570         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571
3572         /* DMA the ucode into the device */
3573         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574         if (rc < 0) {
3575                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3576                 goto error;
3577         }
3578
3579         /* stop nic */
3580         ipw_stop_nic(priv);
3581
3582         /* DMA bss firmware into the device */
3583         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584         if (rc < 0) {
3585                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3586                 goto error;
3587         }
3588 #ifdef CONFIG_PM
3589         fw_loaded = 1;
3590 #endif
3591
3592         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593
3594         rc = ipw_queue_reset(priv);
3595         if (rc < 0) {
3596                 IPW_ERROR("Unable to initialize queues\n");
3597                 goto error;
3598         }
3599
3600         /* Ensure interrupts are disabled */
3601         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602         /* ack pending interrupts */
3603         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604
3605         /* kick start the device */
3606         ipw_start_nic(priv);
3607
3608         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609                 if (retries > 0) {
3610                         IPW_WARNING("Parity error.  Retrying init.\n");
3611                         retries--;
3612                         goto retry;
3613                 }
3614
3615                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616                 rc = -EIO;
3617                 goto error;
3618         }
3619
3620         /* wait for the device */
3621         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623         if (rc < 0) {
3624                 IPW_ERROR("device failed to start within 500ms\n");
3625                 goto error;
3626         }
3627         IPW_DEBUG_INFO("device response after %dms\n", rc);
3628
3629         /* ack fw init done interrupt */
3630         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631
3632         /* read eeprom data */
3633         priv->eeprom_delay = 1;
3634         ipw_read_eeprom(priv);
3635         /* initialize the eeprom region of sram */
3636         ipw_eeprom_init_sram(priv);
3637
3638         /* enable interrupts */
3639         ipw_enable_interrupts(priv);
3640
3641         /* Ensure our queue has valid packets */
3642         ipw_rx_queue_replenish(priv);
3643
3644         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645
3646         /* ack pending interrupts */
3647         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648
3649 #ifndef CONFIG_PM
3650         release_firmware(raw);
3651 #endif
3652         return 0;
3653
3654       error:
3655         if (priv->rxq) {
3656                 ipw_rx_queue_free(priv, priv->rxq);
3657                 priv->rxq = NULL;
3658         }
3659         ipw_tx_queue_free(priv);
3660         release_firmware(raw);
3661 #ifdef CONFIG_PM
3662         fw_loaded = 0;
3663         raw = NULL;
3664 #endif
3665
3666         return rc;
3667 }
3668
3669 /**
3670  * DMA services
3671  *
3672  * Theory of operation
3673  *
3674  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675  * 2 empty entries always kept in the buffer to protect from overflow.
3676  *
3677  * For Tx queue, there are low mark and high mark limits. If, after queuing
3678  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680  * Tx queue resumed.
3681  *
3682  * The IPW operates with six queues, one receive queue in the device's
3683  * sram, one transmit queue for sending commands to the device firmware,
3684  * and four transmit queues for data.
3685  *
3686  * The four transmit queues allow for performing quality of service (qos)
3687  * transmissions as per the 802.11 protocol.  Currently Linux does not
3688  * provide a mechanism to the user for utilizing prioritized queues, so
3689  * we only utilize the first data transmit queue (queue1).
3690  */
3691
3692 /**
3693  * Driver allocates buffers of this size for Rx
3694  */
3695
3696 /**
3697  * ipw_rx_queue_space - Return number of free slots available in queue.
3698  */
3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700 {
3701         int s = q->read - q->write;
3702         if (s <= 0)
3703                 s += RX_QUEUE_SIZE;
3704         /* keep some buffer to not confuse full and empty queue */
3705         s -= 2;
3706         if (s < 0)
3707                 s = 0;
3708         return s;
3709 }
3710
3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712 {
3713         int s = q->last_used - q->first_empty;
3714         if (s <= 0)
3715                 s += q->n_bd;
3716         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3717         if (s < 0)
3718                 s = 0;
3719         return s;
3720 }
3721
3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723 {
3724         return (++index == n_bd) ? 0 : index;
3725 }
3726
3727 /**
3728  * Initialize common DMA queue structure
3729  *
3730  * @param q                queue to init
3731  * @param count            Number of BD's to allocate. Should be power of 2
3732  * @param read_register    Address for 'read' register
3733  *                         (not offset within BAR, full address)
3734  * @param write_register   Address for 'write' register
3735  *                         (not offset within BAR, full address)
3736  * @param base_register    Address for 'base' register
3737  *                         (not offset within BAR, full address)
3738  * @param size             Address for 'size' register
3739  *                         (not offset within BAR, full address)
3740  */
3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742                            int count, u32 read, u32 write, u32 base, u32 size)
3743 {
3744         q->n_bd = count;
3745
3746         q->low_mark = q->n_bd / 4;
3747         if (q->low_mark < 4)
3748                 q->low_mark = 4;
3749
3750         q->high_mark = q->n_bd / 8;
3751         if (q->high_mark < 2)
3752                 q->high_mark = 2;
3753
3754         q->first_empty = q->last_used = 0;
3755         q->reg_r = read;
3756         q->reg_w = write;
3757
3758         ipw_write32(priv, base, q->dma_addr);
3759         ipw_write32(priv, size, count);
3760         ipw_write32(priv, read, 0);
3761         ipw_write32(priv, write, 0);
3762
3763         _ipw_read32(priv, 0x90);
3764 }
3765
3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767                              struct clx2_tx_queue *q,
3768                              int count, u32 read, u32 write, u32 base, u32 size)
3769 {
3770         struct pci_dev *dev = priv->pci_dev;
3771
3772         q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773         if (!q->txb) {
3774                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3775                 return -ENOMEM;
3776         }
3777
3778         q->bd =
3779             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3780         if (!q->bd) {
3781                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3782                           sizeof(q->bd[0]) * count);
3783                 kfree(q->txb);
3784                 q->txb = NULL;
3785                 return -ENOMEM;
3786         }
3787
3788         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3789         return 0;
3790 }
3791
3792 /**
3793  * Free one TFD, those at index [txq->q.last_used].
3794  * Do NOT advance any indexes
3795  *
3796  * @param dev
3797  * @param txq
3798  */
3799 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3800                                   struct clx2_tx_queue *txq)
3801 {
3802         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3803         struct pci_dev *dev = priv->pci_dev;
3804         int i;
3805
3806         /* classify bd */
3807         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3808                 /* nothing to cleanup after for host commands */
3809                 return;
3810
3811         /* sanity check */
3812         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3813                 IPW_ERROR("Too many chunks: %i\n",
3814                           le32_to_cpu(bd->u.data.num_chunks));
3815                 /** @todo issue fatal error, it is quite serious situation */
3816                 return;
3817         }
3818
3819         /* unmap chunks if any */
3820         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3821                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3823                                  PCI_DMA_TODEVICE);
3824                 if (txq->txb[txq->q.last_used]) {
3825                         libipw_txb_free(txq->txb[txq->q.last_used]);
3826                         txq->txb[txq->q.last_used] = NULL;
3827                 }
3828         }
3829 }
3830
3831 /**
3832  * Deallocate DMA queue.
3833  *
3834  * Empty queue by removing and destroying all BD's.
3835  * Free all buffers.
3836  *
3837  * @param dev
3838  * @param q
3839  */
3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841 {
3842         struct clx2_queue *q = &txq->q;
3843         struct pci_dev *dev = priv->pci_dev;
3844
3845         if (q->n_bd == 0)
3846                 return;
3847
3848         /* first, empty all BD's */
3849         for (; q->first_empty != q->last_used;
3850              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851                 ipw_queue_tx_free_tfd(priv, txq);
3852         }
3853
3854         /* free buffers belonging to queue itself */
3855         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856                             q->dma_addr);
3857         kfree(txq->txb);
3858
3859         /* 0 fill whole structure */
3860         memset(txq, 0, sizeof(*txq));
3861 }
3862
3863 /**
3864  * Destroy all DMA queues and structures
3865  *
3866  * @param priv
3867  */
3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3869 {
3870         /* Tx CMD queue */
3871         ipw_queue_tx_free(priv, &priv->txq_cmd);
3872
3873         /* Tx queues */
3874         ipw_queue_tx_free(priv, &priv->txq[0]);
3875         ipw_queue_tx_free(priv, &priv->txq[1]);
3876         ipw_queue_tx_free(priv, &priv->txq[2]);
3877         ipw_queue_tx_free(priv, &priv->txq[3]);
3878 }
3879
3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881 {
3882         /* First 3 bytes are manufacturer */
3883         bssid[0] = priv->mac_addr[0];
3884         bssid[1] = priv->mac_addr[1];
3885         bssid[2] = priv->mac_addr[2];
3886
3887         /* Last bytes are random */
3888         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889
3890         bssid[0] &= 0xfe;       /* clear multicast bit */
3891         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3892 }
3893
3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895 {
3896         struct ipw_station_entry entry;
3897         int i;
3898
3899         for (i = 0; i < priv->num_stations; i++) {
3900                 if (ether_addr_equal(priv->stations[i], bssid)) {
3901                         /* Another node is active in network */
3902                         priv->missed_adhoc_beacons = 0;
3903                         if (!(priv->config & CFG_STATIC_CHANNEL))
3904                                 /* when other nodes drop out, we drop out */
3905                                 priv->config &= ~CFG_ADHOC_PERSIST;
3906
3907                         return i;
3908                 }
3909         }
3910
3911         if (i == MAX_STATIONS)
3912                 return IPW_INVALID_STATION;
3913
3914         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915
3916         entry.reserved = 0;
3917         entry.support_mode = 0;
3918         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919         memcpy(priv->stations[i], bssid, ETH_ALEN);
3920         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921                          &entry, sizeof(entry));
3922         priv->num_stations++;
3923
3924         return i;
3925 }
3926
3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928 {
3929         int i;
3930
3931         for (i = 0; i < priv->num_stations; i++)
3932                 if (ether_addr_equal(priv->stations[i], bssid))
3933                         return i;
3934
3935         return IPW_INVALID_STATION;
3936 }
3937
3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939 {
3940         int err;
3941
3942         if (priv->status & STATUS_ASSOCIATING) {
3943                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944                 schedule_work(&priv->disassociate);
3945                 return;
3946         }
3947
3948         if (!(priv->status & STATUS_ASSOCIATED)) {
3949                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950                 return;
3951         }
3952
3953         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954                         "on channel %d.\n",
3955                         priv->assoc_request.bssid,
3956                         priv->assoc_request.channel);
3957
3958         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959         priv->status |= STATUS_DISASSOCIATING;
3960
3961         if (quiet)
3962                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963         else
3964                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965
3966         err = ipw_send_associate(priv, &priv->assoc_request);
3967         if (err) {
3968                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969                              "failed.\n");
3970                 return;
3971         }
3972
3973 }
3974
3975 static int ipw_disassociate(void *data)
3976 {
3977         struct ipw_priv *priv = data;
3978         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979                 return 0;
3980         ipw_send_disassociate(data, 0);
3981         netif_carrier_off(priv->net_dev);
3982         return 1;
3983 }
3984
3985 static void ipw_bg_disassociate(struct work_struct *work)
3986 {
3987         struct ipw_priv *priv =
3988                 container_of(work, struct ipw_priv, disassociate);
3989         mutex_lock(&priv->mutex);
3990         ipw_disassociate(priv);
3991         mutex_unlock(&priv->mutex);
3992 }
3993
3994 static void ipw_system_config(struct work_struct *work)
3995 {
3996         struct ipw_priv *priv =
3997                 container_of(work, struct ipw_priv, system_config);
3998
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001                 priv->sys_config.accept_all_data_frames = 1;
4002                 priv->sys_config.accept_non_directed_frames = 1;
4003                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4004                 priv->sys_config.accept_all_mgmt_frames = 1;
4005         }
4006 #endif
4007
4008         ipw_send_system_config(priv);
4009 }
4010
4011 struct ipw_status_code {
4012         u16 status;
4013         const char *reason;
4014 };
4015
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017         {0x00, "Successful"},
4018         {0x01, "Unspecified failure"},
4019         {0x0A, "Cannot support all requested capabilities in the "
4020          "Capability information field"},
4021         {0x0B, "Reassociation denied due to inability to confirm that "
4022          "association exists"},
4023         {0x0C, "Association denied due to reason outside the scope of this "
4024          "standard"},
4025         {0x0D,
4026          "Responding station does not support the specified authentication "
4027          "algorithm"},
4028         {0x0E,
4029          "Received an Authentication frame with authentication sequence "
4030          "transaction sequence number out of expected sequence"},
4031         {0x0F, "Authentication rejected because of challenge failure"},
4032         {0x10, "Authentication rejected due to timeout waiting for next "
4033          "frame in sequence"},
4034         {0x11, "Association denied because AP is unable to handle additional "
4035          "associated stations"},
4036         {0x12,
4037          "Association denied due to requesting station not supporting all "
4038          "of the datarates in the BSSBasicServiceSet Parameter"},
4039         {0x13,
4040          "Association denied due to requesting station not supporting "
4041          "short preamble operation"},
4042         {0x14,
4043          "Association denied due to requesting station not supporting "
4044          "PBCC encoding"},
4045         {0x15,
4046          "Association denied due to requesting station not supporting "
4047          "channel agility"},
4048         {0x19,
4049          "Association denied due to requesting station not supporting "
4050          "short slot operation"},
4051         {0x1A,
4052          "Association denied due to requesting station not supporting "
4053          "DSSS-OFDM operation"},
4054         {0x28, "Invalid Information Element"},
4055         {0x29, "Group Cipher is not valid"},
4056         {0x2A, "Pairwise Cipher is not valid"},
4057         {0x2B, "AKMP is not valid"},
4058         {0x2C, "Unsupported RSN IE version"},
4059         {0x2D, "Invalid RSN IE Capabilities"},
4060         {0x2E, "Cipher suite is rejected per security policy"},
4061 };
4062
4063 static const char *ipw_get_status_code(u16 status)
4064 {
4065         int i;
4066         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067                 if (ipw_status_codes[i].status == (status & 0xff))
4068                         return ipw_status_codes[i].reason;
4069         return "Unknown status value.";
4070 }
4071
4072 static inline void average_init(struct average *avg)
4073 {
4074         memset(avg, 0, sizeof(*avg));
4075 }
4076
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080 {
4081         return ((depth-1)*prev_avg +  val)/depth;
4082 }
4083
4084 static void average_add(struct average *avg, s16 val)
4085 {
4086         avg->sum -= avg->entries[avg->pos];
4087         avg->sum += val;
4088         avg->entries[avg->pos++] = val;
4089         if (unlikely(avg->pos == AVG_ENTRIES)) {
4090                 avg->init = 1;
4091                 avg->pos = 0;
4092         }
4093 }
4094
4095 static s16 average_value(struct average *avg)
4096 {
4097         if (!unlikely(avg->init)) {
4098                 if (avg->pos)
4099                         return avg->sum / avg->pos;
4100                 return 0;
4101         }
4102
4103         return avg->sum / AVG_ENTRIES;
4104 }
4105
4106 static void ipw_reset_stats(struct ipw_priv *priv)
4107 {
4108         u32 len = sizeof(u32);
4109
4110         priv->quality = 0;
4111
4112         average_init(&priv->average_missed_beacons);
4113         priv->exp_avg_rssi = -60;
4114         priv->exp_avg_noise = -85 + 0x100;
4115
4116         priv->last_rate = 0;
4117         priv->last_missed_beacons = 0;
4118         priv->last_rx_packets = 0;
4119         priv->last_tx_packets = 0;
4120         priv->last_tx_failures = 0;
4121
4122         /* Firmware managed, reset only when NIC is restarted, so we have to
4123          * normalize on the current value */
4124         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125                         &priv->last_rx_err, &len);
4126         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127                         &priv->last_tx_failures, &len);
4128
4129         /* Driver managed, reset with each association */
4130         priv->missed_adhoc_beacons = 0;
4131         priv->missed_beacons = 0;
4132         priv->tx_packets = 0;
4133         priv->rx_packets = 0;
4134
4135 }
4136
4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138 {
4139         u32 i = 0x80000000;
4140         u32 mask = priv->rates_mask;
4141         /* If currently associated in B mode, restrict the maximum
4142          * rate match to B rates */
4143         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144                 mask &= LIBIPW_CCK_RATES_MASK;
4145
4146         /* TODO: Verify that the rate is supported by the current rates
4147          * list. */
4148
4149         while (i && !(mask & i))
4150                 i >>= 1;
4151         switch (i) {
4152         case LIBIPW_CCK_RATE_1MB_MASK:
4153                 return 1000000;
4154         case LIBIPW_CCK_RATE_2MB_MASK:
4155                 return 2000000;
4156         case LIBIPW_CCK_RATE_5MB_MASK:
4157                 return 5500000;
4158         case LIBIPW_OFDM_RATE_6MB_MASK:
4159                 return 6000000;
4160         case LIBIPW_OFDM_RATE_9MB_MASK:
4161                 return 9000000;
4162         case LIBIPW_CCK_RATE_11MB_MASK:
4163                 return 11000000;
4164         case LIBIPW_OFDM_RATE_12MB_MASK:
4165                 return 12000000;
4166         case LIBIPW_OFDM_RATE_18MB_MASK:
4167                 return 18000000;
4168         case LIBIPW_OFDM_RATE_24MB_MASK:
4169                 return 24000000;
4170         case LIBIPW_OFDM_RATE_36MB_MASK:
4171                 return 36000000;
4172         case LIBIPW_OFDM_RATE_48MB_MASK:
4173                 return 48000000;
4174         case LIBIPW_OFDM_RATE_54MB_MASK:
4175                 return 54000000;
4176         }
4177
4178         if (priv->ieee->mode == IEEE_B)
4179                 return 11000000;
4180         else
4181                 return 54000000;
4182 }
4183
4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185 {
4186         u32 rate, len = sizeof(rate);
4187         int err;
4188
4189         if (!(priv->status & STATUS_ASSOCIATED))
4190                 return 0;
4191
4192         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194                                       &len);
4195                 if (err) {
4196                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4197                         return 0;
4198                 }
4199         } else
4200                 return ipw_get_max_rate(priv);
4201
4202         switch (rate) {
4203         case IPW_TX_RATE_1MB:
4204                 return 1000000;
4205         case IPW_TX_RATE_2MB:
4206                 return 2000000;
4207         case IPW_TX_RATE_5MB:
4208                 return 5500000;
4209         case IPW_TX_RATE_6MB:
4210                 return 6000000;
4211         case IPW_TX_RATE_9MB:
4212                 return 9000000;
4213         case IPW_TX_RATE_11MB:
4214                 return 11000000;
4215         case IPW_TX_RATE_12MB:
4216                 return 12000000;
4217         case IPW_TX_RATE_18MB:
4218                 return 18000000;
4219         case IPW_TX_RATE_24MB:
4220                 return 24000000;
4221         case IPW_TX_RATE_36MB:
4222                 return 36000000;
4223         case IPW_TX_RATE_48MB:
4224                 return 48000000;
4225         case IPW_TX_RATE_54MB:
4226                 return 54000000;
4227         }
4228
4229         return 0;
4230 }
4231
4232 #define IPW_STATS_INTERVAL (2 * HZ)
4233 static void ipw_gather_stats(struct ipw_priv *priv)
4234 {
4235         u32 rx_err, rx_err_delta, rx_packets_delta;
4236         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237         u32 missed_beacons_percent, missed_beacons_delta;
4238         u32 quality = 0;
4239         u32 len = sizeof(u32);
4240         s16 rssi;
4241         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242             rate_quality;
4243         u32 max_rate;
4244
4245         if (!(priv->status & STATUS_ASSOCIATED)) {
4246                 priv->quality = 0;
4247                 return;
4248         }
4249
4250         /* Update the statistics */
4251         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252                         &priv->missed_beacons, &len);
4253         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254         priv->last_missed_beacons = priv->missed_beacons;
4255         if (priv->assoc_request.beacon_interval) {
4256                 missed_beacons_percent = missed_beacons_delta *
4257                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258                     (IPW_STATS_INTERVAL * 10);
4259         } else {
4260                 missed_beacons_percent = 0;
4261         }
4262         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263
4264         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265         rx_err_delta = rx_err - priv->last_rx_err;
4266         priv->last_rx_err = rx_err;
4267
4268         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269         tx_failures_delta = tx_failures - priv->last_tx_failures;
4270         priv->last_tx_failures = tx_failures;
4271
4272         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273         priv->last_rx_packets = priv->rx_packets;
4274
4275         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276         priv->last_tx_packets = priv->tx_packets;
4277
4278         /* Calculate quality based on the following:
4279          *
4280          * Missed beacon: 100% = 0, 0% = 70% missed
4281          * Rate: 60% = 1Mbs, 100% = Max
4282          * Rx and Tx errors represent a straight % of total Rx/Tx
4283          * RSSI: 100% = > -50,  0% = < -80
4284          * Rx errors: 100% = 0, 0% = 50% missed
4285          *
4286          * The lowest computed quality is used.
4287          *
4288          */
4289 #define BEACON_THRESHOLD 5
4290         beacon_quality = 100 - missed_beacons_percent;
4291         if (beacon_quality < BEACON_THRESHOLD)
4292                 beacon_quality = 0;
4293         else
4294                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295                     (100 - BEACON_THRESHOLD);
4296         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297                         beacon_quality, missed_beacons_percent);
4298
4299         priv->last_rate = ipw_get_current_rate(priv);
4300         max_rate = ipw_get_max_rate(priv);
4301         rate_quality = priv->last_rate * 40 / max_rate + 60;
4302         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303                         rate_quality, priv->last_rate / 1000000);
4304
4305         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306                 rx_quality = 100 - (rx_err_delta * 100) /
4307                     (rx_packets_delta + rx_err_delta);
4308         else
4309                 rx_quality = 100;
4310         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311                         rx_quality, rx_err_delta, rx_packets_delta);
4312
4313         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314                 tx_quality = 100 - (tx_failures_delta * 100) /
4315                     (tx_packets_delta + tx_failures_delta);
4316         else
4317                 tx_quality = 100;
4318         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319                         tx_quality, tx_failures_delta, tx_packets_delta);
4320
4321         rssi = priv->exp_avg_rssi;
4322         signal_quality =
4323             (100 *
4324              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326              (priv->ieee->perfect_rssi - rssi) *
4327              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328               62 * (priv->ieee->perfect_rssi - rssi))) /
4329             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331         if (signal_quality > 100)
4332                 signal_quality = 100;
4333         else if (signal_quality < 1)
4334                 signal_quality = 0;
4335
4336         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337                         signal_quality, rssi);
4338
4339         quality = min(rx_quality, signal_quality);
4340         quality = min(tx_quality, quality);
4341         quality = min(rate_quality, quality);
4342         quality = min(beacon_quality, quality);
4343         if (quality == beacon_quality)
4344                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345                                 quality);
4346         if (quality == rate_quality)
4347                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348                                 quality);
4349         if (quality == tx_quality)
4350                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351                                 quality);
4352         if (quality == rx_quality)
4353                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354                                 quality);
4355         if (quality == signal_quality)
4356                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357                                 quality);
4358
4359         priv->quality = quality;
4360
4361         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362 }
4363
4364 static void ipw_bg_gather_stats(struct work_struct *work)
4365 {
4366         struct ipw_priv *priv =
4367                 container_of(work, struct ipw_priv, gather_stats.work);
4368         mutex_lock(&priv->mutex);
4369         ipw_gather_stats(priv);
4370         mutex_unlock(&priv->mutex);
4371 }
4372
4373 /* Missed beacon behavior:
4374  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376  * Above disassociate threshold, give up and stop scanning.
4377  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379                                             int missed_count)
4380 {
4381         priv->notif_missed_beacons = missed_count;
4382
4383         if (missed_count > priv->disassociate_threshold &&
4384             priv->status & STATUS_ASSOCIATED) {
4385                 /* If associated and we've hit the missed
4386                  * beacon threshold, disassociate, turn
4387                  * off roaming, and abort any active scans */
4388                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389                           IPW_DL_STATE | IPW_DL_ASSOC,
4390                           "Missed beacon: %d - disassociate\n", missed_count);
4391                 priv->status &= ~STATUS_ROAMING;
4392                 if (priv->status & STATUS_SCANNING) {
4393                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394                                   IPW_DL_STATE,
4395                                   "Aborting scan with missed beacon.\n");
4396                         schedule_work(&priv->abort_scan);
4397                 }
4398
4399                 schedule_work(&priv->disassociate);
4400                 return;
4401         }
4402
4403         if (priv->status & STATUS_ROAMING) {
4404                 /* If we are currently roaming, then just
4405                  * print a debug statement... */
4406                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407                           "Missed beacon: %d - roam in progress\n",
4408                           missed_count);
4409                 return;
4410         }
4411
4412         if (roaming &&
4413             (missed_count > priv->roaming_threshold &&
4414              missed_count <= priv->disassociate_threshold)) {
4415                 /* If we are not already roaming, set the ROAM
4416                  * bit in the status and kick off a scan.
4417                  * This can happen several times before we reach
4418                  * disassociate_threshold. */
4419                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420                           "Missed beacon: %d - initiate "
4421                           "roaming\n", missed_count);
4422                 if (!(priv->status & STATUS_ROAMING)) {
4423                         priv->status |= STATUS_ROAMING;
4424                         if (!(priv->status & STATUS_SCANNING))
4425                                 schedule_delayed_work(&priv->request_scan, 0);
4426                 }
4427                 return;
4428         }
4429
4430         if (priv->status & STATUS_SCANNING &&
4431             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432                 /* Stop scan to keep fw from getting
4433                  * stuck (only if we aren't roaming --
4434                  * otherwise we'll never scan more than 2 or 3
4435                  * channels..) */
4436                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437                           "Aborting scan with missed beacon.\n");
4438                 schedule_work(&priv->abort_scan);
4439         }
4440
4441         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442 }
4443
4444 static void ipw_scan_event(struct work_struct *work)
4445 {
4446         union iwreq_data wrqu;
4447
4448         struct ipw_priv *priv =
4449                 container_of(work, struct ipw_priv, scan_event.work);
4450
4451         wrqu.data.length = 0;
4452         wrqu.data.flags = 0;
4453         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454 }
4455
4456 static void handle_scan_event(struct ipw_priv *priv)
4457 {
4458         /* Only userspace-requested scan completion events go out immediately */
4459         if (!priv->user_requested_scan) {
4460                 schedule_delayed_work(&priv->scan_event,
4461                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4462         } else {
4463                 priv->user_requested_scan = 0;
4464                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4465         }
4466 }
4467
4468 /**
4469  * Handle host notification packet.
4470  * Called from interrupt routine
4471  */
4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473                                        struct ipw_rx_notification *notif)
4474 {
4475         u16 size = le16_to_cpu(notif->size);
4476
4477         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478
4479         switch (notif->subtype) {
4480         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481                         struct notif_association *assoc = &notif->u.assoc;
4482
4483                         switch (assoc->state) {
4484                         case CMAS_ASSOCIATED:{
4485                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486                                                   IPW_DL_ASSOC,
4487                                                   "associated: '%*pE' %pM\n",
4488                                                   priv->essid_len, priv->essid,
4489                                                   priv->bssid);
4490
4491                                         switch (priv->ieee->iw_mode) {
4492                                         case IW_MODE_INFRA:
4493                                                 memcpy(priv->ieee->bssid,
4494                                                        priv->bssid, ETH_ALEN);
4495                                                 break;
4496
4497                                         case IW_MODE_ADHOC:
4498                                                 memcpy(priv->ieee->bssid,
4499                                                        priv->bssid, ETH_ALEN);
4500
4501                                                 /* clear out the station table */
4502                                                 priv->num_stations = 0;
4503
4504                                                 IPW_DEBUG_ASSOC
4505                                                     ("queueing adhoc check\n");
4506                                                 schedule_delayed_work(
4507                                                         &priv->adhoc_check,
4508                                                         le16_to_cpu(priv->
4509                                                         assoc_request.
4510                                                         beacon_interval));
4511                                                 break;
4512                                         }
4513
4514                                         priv->status &= ~STATUS_ASSOCIATING;
4515                                         priv->status |= STATUS_ASSOCIATED;
4516                                         schedule_work(&priv->system_config);
4517
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521                                         if ((priv->status & STATUS_AUTH) &&
4522                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4524                                                 if ((sizeof
4525                                                      (struct
4526                                                       libipw_assoc_response)
4527                                                      <= size)
4528                                                     && (size <= 2314)) {
4529                                                         struct
4530                                                         libipw_rx_stats
4531                                                             stats = {
4532                                                                 .len = size - 1,
4533                                                         };
4534
4535                                                         IPW_DEBUG_QOS
4536                                                             ("QoS Associate "
4537                                                              "size %d\n", size);
4538                                                         libipw_rx_mgt(priv->
4539                                                                          ieee,
4540                                                                          (struct
4541                                                                           libipw_hdr_4addr
4542                                                                           *)
4543                                                                          &notif->u.raw, &stats);
4544                                                 }
4545                                         }
4546 #endif
4547
4548                                         schedule_work(&priv->link_up);
4549
4550                                         break;
4551                                 }
4552
4553                         case CMAS_AUTHENTICATED:{
4554                                         if (priv->
4555                                             status & (STATUS_ASSOCIATED |
4556                                                       STATUS_AUTH)) {
4557                                                 struct notif_authenticate *auth
4558                                                     = &notif->u.auth;
4559                                                 IPW_DEBUG(IPW_DL_NOTIF |
4560                                                           IPW_DL_STATE |
4561                                                           IPW_DL_ASSOC,
4562                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563                                                           priv->essid_len,
4564                                                           priv->essid,
4565                                                           priv->bssid,
4566                                                           le16_to_cpu(auth->status),
4567                                                           ipw_get_status_code
4568                                                           (le16_to_cpu
4569                                                            (auth->status)));
4570
4571                                                 priv->status &=
4572                                                     ~(STATUS_ASSOCIATING |
4573                                                       STATUS_AUTH |
4574                                                       STATUS_ASSOCIATED);
4575
4576                                                 schedule_work(&priv->link_down);
4577                                                 break;
4578                                         }
4579
4580                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581                                                   IPW_DL_ASSOC,
4582                                                   "authenticated: '%*pE' %pM\n",
4583                                                   priv->essid_len, priv->essid,
4584                                                   priv->bssid);
4585                                         break;
4586                                 }
4587
4588                         case CMAS_INIT:{
4589                                         if (priv->status & STATUS_AUTH) {
4590                                                 struct
4591                                                     libipw_assoc_response
4592                                                 *resp;
4593                                                 resp =
4594                                                     (struct
4595                                                      libipw_assoc_response
4596                                                      *)&notif->u.raw;
4597                                                 IPW_DEBUG(IPW_DL_NOTIF |
4598                                                           IPW_DL_STATE |
4599                                                           IPW_DL_ASSOC,
4600                                                           "association failed (0x%04X): %s\n",
4601                                                           le16_to_cpu(resp->status),
4602                                                           ipw_get_status_code
4603                                                           (le16_to_cpu
4604                                                            (resp->status)));
4605                                         }
4606
4607                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608                                                   IPW_DL_ASSOC,
4609                                                   "disassociated: '%*pE' %pM\n",
4610                                                   priv->essid_len, priv->essid,
4611                                                   priv->bssid);
4612
4613                                         priv->status &=
4614                                             ~(STATUS_DISASSOCIATING |
4615                                               STATUS_ASSOCIATING |
4616                                               STATUS_ASSOCIATED | STATUS_AUTH);
4617                                         if (priv->assoc_network
4618                                             && (priv->assoc_network->
4619                                                 capability &
4620                                                 WLAN_CAPABILITY_IBSS))
4621                                                 ipw_remove_current_network
4622                                                     (priv);
4623
4624                                         schedule_work(&priv->link_down);
4625
4626                                         break;
4627                                 }
4628
4629                         case CMAS_RX_ASSOC_RESP:
4630                                 break;
4631
4632                         default:
4633                                 IPW_ERROR("assoc: unknown (%d)\n",
4634                                           assoc->state);
4635                                 break;
4636                         }
4637
4638                         break;
4639                 }
4640
4641         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642                         struct notif_authenticate *auth = &notif->u.auth;
4643                         switch (auth->state) {
4644                         case CMAS_AUTHENTICATED:
4645                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646                                           "authenticated: '%*pE' %pM\n",
4647                                           priv->essid_len, priv->essid,
4648                                           priv->bssid);
4649                                 priv->status |= STATUS_AUTH;
4650                                 break;
4651
4652                         case CMAS_INIT:
4653                                 if (priv->status & STATUS_AUTH) {
4654                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                                   IPW_DL_ASSOC,
4656                                                   "authentication failed (0x%04X): %s\n",
4657                                                   le16_to_cpu(auth->status),
4658                                                   ipw_get_status_code(le16_to_cpu
4659                                                                       (auth->
4660                                                                        status)));
4661                                 }
4662                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663                                           IPW_DL_ASSOC,
4664                                           "deauthenticated: '%*pE' %pM\n",
4665                                           priv->essid_len, priv->essid,
4666                                           priv->bssid);
4667
4668                                 priv->status &= ~(STATUS_ASSOCIATING |
4669                                                   STATUS_AUTH |
4670                                                   STATUS_ASSOCIATED);
4671
4672                                 schedule_work(&priv->link_down);
4673                                 break;
4674
4675                         case CMAS_TX_AUTH_SEQ_1:
4676                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678                                 break;
4679                         case CMAS_RX_AUTH_SEQ_2:
4680                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682                                 break;
4683                         case CMAS_AUTH_SEQ_1_PASS:
4684                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686                                 break;
4687                         case CMAS_AUTH_SEQ_1_FAIL:
4688                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690                                 break;
4691                         case CMAS_TX_AUTH_SEQ_3:
4692                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694                                 break;
4695                         case CMAS_RX_AUTH_SEQ_4:
4696                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698                                 break;
4699                         case CMAS_AUTH_SEQ_2_PASS:
4700                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702                                 break;
4703                         case CMAS_AUTH_SEQ_2_FAIL:
4704                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706                                 break;
4707                         case CMAS_TX_ASSOC:
4708                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4710                                 break;
4711                         case CMAS_RX_ASSOC_RESP:
4712                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714
4715                                 break;
4716                         case CMAS_ASSOCIATED:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4719                                 break;
4720                         default:
4721                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722                                                 auth->state);
4723                                 break;
4724                         }
4725                         break;
4726                 }
4727
4728         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729                         struct notif_channel_result *x =
4730                             &notif->u.channel_result;
4731
4732                         if (size == sizeof(*x)) {
4733                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734                                                x->channel_num);
4735                         } else {
4736                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737                                                "(should be %zd)\n",
4738                                                size, sizeof(*x));
4739                         }
4740                         break;
4741                 }
4742
4743         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744                         struct notif_scan_complete *x = &notif->u.scan_complete;
4745                         if (size == sizeof(*x)) {
4746                                 IPW_DEBUG_SCAN
4747                                     ("Scan completed: type %d, %d channels, "
4748                                      "%d status\n", x->scan_type,
4749                                      x->num_channels, x->status);
4750                         } else {
4751                                 IPW_ERROR("Scan completed of wrong size %d "
4752                                           "(should be %zd)\n",
4753                                           size, sizeof(*x));
4754                         }
4755
4756                         priv->status &=
4757                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758
4759                         wake_up_interruptible(&priv->wait_state);
4760                         cancel_delayed_work(&priv->scan_check);
4761
4762                         if (priv->status & STATUS_EXIT_PENDING)
4763                                 break;
4764
4765                         priv->ieee->scans++;
4766
4767 #ifdef CONFIG_IPW2200_MONITOR
4768                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769                                 priv->status |= STATUS_SCAN_FORCED;
4770                                 schedule_delayed_work(&priv->request_scan, 0);
4771                                 break;
4772                         }
4773                         priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif                          /* CONFIG_IPW2200_MONITOR */
4775
4776                         /* Do queued direct scans first */
4777                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4779
4780                         if (!(priv->status & (STATUS_ASSOCIATED |
4781                                               STATUS_ASSOCIATING |
4782                                               STATUS_ROAMING |
4783                                               STATUS_DISASSOCIATING)))
4784                                 schedule_work(&priv->associate);
4785                         else if (priv->status & STATUS_ROAMING) {
4786                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787                                         /* If a scan completed and we are in roam mode, then
4788                                          * the scan that completed was the one requested as a
4789                                          * result of entering roam... so, schedule the
4790                                          * roam work */
4791                                         schedule_work(&priv->roam);
4792                                 else
4793                                         /* Don't schedule if we aborted the scan */
4794                                         priv->status &= ~STATUS_ROAMING;
4795                         } else if (priv->status & STATUS_SCAN_PENDING)
4796                                 schedule_delayed_work(&priv->request_scan, 0);
4797                         else if (priv->config & CFG_BACKGROUND_SCAN
4798                                  && priv->status & STATUS_ASSOCIATED)
4799                                 schedule_delayed_work(&priv->request_scan,
4800                                                       round_jiffies_relative(HZ));
4801
4802                         /* Send an empty event to user space.
4803                          * We don't send the received data on the event because
4804                          * it would require us to do complex transcoding, and
4805                          * we want to minimise the work done in the irq handler
4806                          * Use a request to extract the data.
4807                          * Also, we generate this even for any scan, regardless
4808                          * on how the scan was initiated. User space can just
4809                          * sync on periodic scan to get fresh data...
4810                          * Jean II */
4811                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812                                 handle_scan_event(priv);
4813                         break;
4814                 }
4815
4816         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817                         struct notif_frag_length *x = &notif->u.frag_len;
4818
4819                         if (size == sizeof(*x))
4820                                 IPW_ERROR("Frag length: %d\n",
4821                                           le16_to_cpu(x->frag_length));
4822                         else
4823                                 IPW_ERROR("Frag length of wrong size %d "
4824                                           "(should be %zd)\n",
4825                                           size, sizeof(*x));
4826                         break;
4827                 }
4828
4829         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830                         struct notif_link_deterioration *x =
4831                             &notif->u.link_deterioration;
4832
4833                         if (size == sizeof(*x)) {
4834                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835                                         "link deterioration: type %d, cnt %d\n",
4836                                         x->silence_notification_type,
4837                                         x->silence_count);
4838                                 memcpy(&priv->last_link_deterioration, x,
4839                                        sizeof(*x));
4840                         } else {
4841                                 IPW_ERROR("Link Deterioration of wrong size %d "
4842                                           "(should be %zd)\n",
4843                                           size, sizeof(*x));
4844                         }
4845                         break;
4846                 }
4847
4848         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849                         IPW_ERROR("Dino config\n");
4850                         if (priv->hcmd
4851                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853
4854                         break;
4855                 }
4856
4857         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858                         struct notif_beacon_state *x = &notif->u.beacon_state;
4859                         if (size != sizeof(*x)) {
4860                                 IPW_ERROR
4861                                     ("Beacon state of wrong size %d (should "
4862                                      "be %zd)\n", size, sizeof(*x));
4863                                 break;
4864                         }
4865
4866                         if (le32_to_cpu(x->state) ==
4867                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868                                 ipw_handle_missed_beacon(priv,
4869                                                          le32_to_cpu(x->
4870                                                                      number));
4871
4872                         break;
4873                 }
4874
4875         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877                         if (size == sizeof(*x)) {
4878                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879                                           "0x%02x station %d\n",
4880                                           x->key_state, x->security_type,
4881                                           x->station_index);
4882                                 break;
4883                         }
4884
4885                         IPW_ERROR
4886                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887                              size, sizeof(*x));
4888                         break;
4889                 }
4890
4891         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892                         struct notif_calibration *x = &notif->u.calibration;
4893
4894                         if (size == sizeof(*x)) {
4895                                 memcpy(&priv->calib, x, sizeof(*x));
4896                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4897                                 break;
4898                         }
4899
4900                         IPW_ERROR
4901                             ("Calibration of wrong size %d (should be %zd)\n",
4902                              size, sizeof(*x));
4903                         break;
4904                 }
4905
4906         case HOST_NOTIFICATION_NOISE_STATS:{
4907                         if (size == sizeof(u32)) {
4908                                 priv->exp_avg_noise =
4909                                     exponential_average(priv->exp_avg_noise,
4910                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911                                     DEPTH_NOISE);
4912                                 break;
4913                         }
4914
4915                         IPW_ERROR
4916                             ("Noise stat is wrong size %d (should be %zd)\n",
4917                              size, sizeof(u32));
4918                         break;
4919                 }
4920
4921         default:
4922                 IPW_DEBUG_NOTIF("Unknown notification: "
4923                                 "subtype=%d,flags=0x%2x,size=%d\n",
4924                                 notif->subtype, notif->flags, size);
4925         }
4926 }
4927
4928 /**
4929  * Destroys all DMA structures and initialise them again
4930  *
4931  * @param priv
4932  * @return error code
4933  */
4934 static int ipw_queue_reset(struct ipw_priv *priv)
4935 {
4936         int rc = 0;
4937         /** @todo customize queue sizes */
4938         int nTx = 64, nTxCmd = 8;
4939         ipw_tx_queue_free(priv);
4940         /* Tx CMD queue */
4941         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942                                IPW_TX_CMD_QUEUE_READ_INDEX,
4943                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944                                IPW_TX_CMD_QUEUE_BD_BASE,
4945                                IPW_TX_CMD_QUEUE_BD_SIZE);
4946         if (rc) {
4947                 IPW_ERROR("Tx Cmd queue init failed\n");
4948                 goto error;
4949         }
4950         /* Tx queue(s) */
4951         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952                                IPW_TX_QUEUE_0_READ_INDEX,
4953                                IPW_TX_QUEUE_0_WRITE_INDEX,
4954                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955         if (rc) {
4956                 IPW_ERROR("Tx 0 queue init failed\n");
4957                 goto error;
4958         }
4959         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960                                IPW_TX_QUEUE_1_READ_INDEX,
4961                                IPW_TX_QUEUE_1_WRITE_INDEX,
4962                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963         if (rc) {
4964                 IPW_ERROR("Tx 1 queue init failed\n");
4965                 goto error;
4966         }
4967         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968                                IPW_TX_QUEUE_2_READ_INDEX,
4969                                IPW_TX_QUEUE_2_WRITE_INDEX,
4970                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971         if (rc) {
4972                 IPW_ERROR("Tx 2 queue init failed\n");
4973                 goto error;
4974         }
4975         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976                                IPW_TX_QUEUE_3_READ_INDEX,
4977                                IPW_TX_QUEUE_3_WRITE_INDEX,
4978                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979         if (rc) {
4980                 IPW_ERROR("Tx 3 queue init failed\n");
4981                 goto error;
4982         }
4983         /* statistics */
4984         priv->rx_bufs_min = 0;
4985         priv->rx_pend_max = 0;
4986         return rc;
4987
4988       error:
4989         ipw_tx_queue_free(priv);
4990         return rc;
4991 }
4992
4993 /**
4994  * Reclaim Tx queue entries no more used by NIC.
4995  *
4996  * When FW advances 'R' index, all entries between old and
4997  * new 'R' index need to be reclaimed. As result, some free space
4998  * forms. If there is enough free space (> low mark), wake Tx queue.
4999  *
5000  * @note Need to protect against garbage in 'R' index
5001  * @param priv
5002  * @param txq
5003  * @param qindex
5004  * @return Number of used entries remains in the queue
5005  */
5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007                                 struct clx2_tx_queue *txq, int qindex)
5008 {
5009         u32 hw_tail;
5010         int used;
5011         struct clx2_queue *q = &txq->q;
5012
5013         hw_tail = ipw_read32(priv, q->reg_r);
5014         if (hw_tail >= q->n_bd) {
5015                 IPW_ERROR
5016                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017                      hw_tail, q->n_bd);
5018                 goto done;
5019         }
5020         for (; q->last_used != hw_tail;
5021              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022                 ipw_queue_tx_free_tfd(priv, txq);
5023                 priv->tx_packets++;
5024         }
5025       done:
5026         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027             (qindex >= 0))
5028                 netif_wake_queue(priv->net_dev);
5029         used = q->first_empty - q->last_used;
5030         if (used < 0)
5031                 used += q->n_bd;
5032
5033         return used;
5034 }
5035
5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037                              int len, int sync)
5038 {
5039         struct clx2_tx_queue *txq = &priv->txq_cmd;
5040         struct clx2_queue *q = &txq->q;
5041         struct tfd_frame *tfd;
5042
5043         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044                 IPW_ERROR("No space for Tx\n");
5045                 return -EBUSY;
5046         }
5047
5048         tfd = &txq->bd[q->first_empty];
5049         txq->txb[q->first_empty] = NULL;
5050
5051         memset(tfd, 0, sizeof(*tfd));
5052         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054         priv->hcmd_seq++;
5055         tfd->u.cmd.index = hcmd;
5056         tfd->u.cmd.length = len;
5057         memcpy(tfd->u.cmd.payload, buf, len);
5058         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059         ipw_write32(priv, q->reg_w, q->first_empty);
5060         _ipw_read32(priv, 0x90);
5061
5062         return 0;
5063 }
5064
5065 /*
5066  * Rx theory of operation
5067  *
5068  * The host allocates 32 DMA target addresses and passes the host address
5069  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070  * 0 to 31
5071  *
5072  * Rx Queue Indexes
5073  * The host/firmware share two index registers for managing the Rx buffers.
5074  *
5075  * The READ index maps to the first position that the firmware may be writing
5076  * to -- the driver can read up to (but not including) this position and get
5077  * good data.
5078  * The READ index is managed by the firmware once the card is enabled.
5079  *
5080  * The WRITE index maps to the last position the driver has read from -- the
5081  * position preceding WRITE is the last slot the firmware can place a packet.
5082  *
5083  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084  * WRITE = READ.
5085  *
5086  * During initialization the host sets up the READ queue position to the first
5087  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088  *
5089  * When the firmware places a packet in a buffer it will advance the READ index
5090  * and fire the RX interrupt.  The driver can then query the READ index and
5091  * process as many packets as possible, moving the WRITE index forward as it
5092  * resets the Rx queue buffers with new memory.
5093  *
5094  * The management in the driver is as follows:
5095  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097  *   to replensish the ipw->rxq->rx_free.
5098  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100  *   'processed' and 'read' driver indexes as well)
5101  * + A received packet is processed and handed to the kernel network stack,
5102  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106  *   were enough free buffers and RX_STALLED is set it is cleared.
5107  *
5108  *
5109  * Driver sequence:
5110  *
5111  * ipw_rx_queue_alloc()       Allocates rx_free
5112  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113  *                            ipw_rx_queue_restock
5114  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115  *                            queue, updates firmware pointers, and updates
5116  *                            the WRITE index.  If insufficient rx_free buffers
5117  *                            are available, schedules ipw_rx_queue_replenish
5118  *
5119  * -- enable interrupts --
5120  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121  *                            READ INDEX, detaching the SKB from the pool.
5122  *                            Moves the packet buffer from queue to rx_used.
5123  *                            Calls ipw_rx_queue_restock to refill any empty
5124  *                            slots.
5125  * ...
5126  *
5127  */
5128
5129 /*
5130  * If there are slots in the RX queue that  need to be restocked,
5131  * and we have free pre-allocated buffers, fill the ranks as much
5132  * as we can pulling from rx_free.
5133  *
5134  * This moves the 'write' index forward to catch up with 'processed', and
5135  * also updates the memory address in the firmware to reference the new
5136  * target buffer.
5137  */
5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139 {
5140         struct ipw_rx_queue *rxq = priv->rxq;
5141         struct list_head *element;
5142         struct ipw_rx_mem_buffer *rxb;
5143         unsigned long flags;
5144         int write;
5145
5146         spin_lock_irqsave(&rxq->lock, flags);
5147         write = rxq->write;
5148         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149                 element = rxq->rx_free.next;
5150                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151                 list_del(element);
5152
5153                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154                             rxb->dma_addr);
5155                 rxq->queue[rxq->write] = rxb;
5156                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157                 rxq->free_count--;
5158         }
5159         spin_unlock_irqrestore(&rxq->lock, flags);
5160
5161         /* If the pre-allocated buffer pool is dropping low, schedule to
5162          * refill it */
5163         if (rxq->free_count <= RX_LOW_WATERMARK)
5164                 schedule_work(&priv->rx_replenish);
5165
5166         /* If we've added more space for the firmware to place data, tell it */
5167         if (write != rxq->write)
5168                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169 }
5170
5171 /*
5172  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173  * Also restock the Rx queue via ipw_rx_queue_restock.
5174  *
5175  * This is called as a scheduled work item (except for during initialization)
5176  */
5177 static void ipw_rx_queue_replenish(void *data)
5178 {
5179         struct ipw_priv *priv = data;
5180         struct ipw_rx_queue *rxq = priv->rxq;
5181         struct list_head *element;
5182         struct ipw_rx_mem_buffer *rxb;
5183         unsigned long flags;
5184
5185         spin_lock_irqsave(&rxq->lock, flags);
5186         while (!list_empty(&rxq->rx_used)) {
5187                 element = rxq->rx_used.next;
5188                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190                 if (!rxb->skb) {
5191                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192                                priv->net_dev->name);
5193                         /* We don't reschedule replenish work here -- we will
5194                          * call the restock method and if it still needs
5195                          * more buffers it will schedule replenish */
5196                         break;
5197                 }
5198                 list_del(element);
5199
5200                 rxb->dma_addr =
5201                     pci_map_single(priv->pci_dev, rxb->skb->data,
5202                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5203
5204                 list_add_tail(&rxb->list, &rxq->rx_free);
5205                 rxq->free_count++;
5206         }
5207         spin_unlock_irqrestore(&rxq->lock, flags);
5208
5209         ipw_rx_queue_restock(priv);
5210 }
5211
5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213 {
5214         struct ipw_priv *priv =
5215                 container_of(work, struct ipw_priv, rx_replenish);
5216         mutex_lock(&priv->mutex);
5217         ipw_rx_queue_replenish(priv);
5218         mutex_unlock(&priv->mutex);
5219 }
5220
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223  * This free routine walks the list of POOL entries and if SKB is set to
5224  * non NULL it is unmapped and freed
5225  */
5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227 {
5228         int i;
5229
5230         if (!rxq)
5231                 return;
5232
5233         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234                 if (rxq->pool[i].skb != NULL) {
5235                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5236                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5237                         dev_kfree_skb(rxq->pool[i].skb);
5238                 }
5239         }
5240
5241         kfree(rxq);
5242 }
5243
5244 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5245 {
5246         struct ipw_rx_queue *rxq;
5247         int i;
5248
5249         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5250         if (unlikely(!rxq)) {
5251                 IPW_ERROR("memory allocation failed\n");
5252                 return NULL;
5253         }
5254         spin_lock_init(&rxq->lock);
5255         INIT_LIST_HEAD(&rxq->rx_free);
5256         INIT_LIST_HEAD(&rxq->rx_used);
5257
5258         /* Fill the rx_used queue with _all_ of the Rx buffers */
5259         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5260                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5261
5262         /* Set us so that we have processed and used all buffers, but have
5263          * not restocked the Rx queue with fresh buffers */
5264         rxq->read = rxq->write = 0;
5265         rxq->free_count = 0;
5266
5267         return rxq;
5268 }
5269
5270 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5271 {
5272         rate &= ~LIBIPW_BASIC_RATE_MASK;
5273         if (ieee_mode == IEEE_A) {
5274                 switch (rate) {
5275                 case LIBIPW_OFDM_RATE_6MB:
5276                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5277                             1 : 0;
5278                 case LIBIPW_OFDM_RATE_9MB:
5279                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5280                             1 : 0;
5281                 case LIBIPW_OFDM_RATE_12MB:
5282                         return priv->
5283                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5284                 case LIBIPW_OFDM_RATE_18MB:
5285                         return priv->
5286                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5287                 case LIBIPW_OFDM_RATE_24MB:
5288                         return priv->
5289                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5290                 case LIBIPW_OFDM_RATE_36MB:
5291                         return priv->
5292                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5293                 case LIBIPW_OFDM_RATE_48MB:
5294                         return priv->
5295                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5296                 case LIBIPW_OFDM_RATE_54MB:
5297                         return priv->
5298                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5299                 default:
5300                         return 0;
5301                 }
5302         }
5303
5304         /* B and G mixed */
5305         switch (rate) {
5306         case LIBIPW_CCK_RATE_1MB:
5307                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5308         case LIBIPW_CCK_RATE_2MB:
5309                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5310         case LIBIPW_CCK_RATE_5MB:
5311                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5312         case LIBIPW_CCK_RATE_11MB:
5313                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5314         }
5315
5316         /* If we are limited to B modulations, bail at this point */
5317         if (ieee_mode == IEEE_B)
5318                 return 0;
5319
5320         /* G */
5321         switch (rate) {
5322         case LIBIPW_OFDM_RATE_6MB:
5323                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5324         case LIBIPW_OFDM_RATE_9MB:
5325                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5326         case LIBIPW_OFDM_RATE_12MB:
5327                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5328         case LIBIPW_OFDM_RATE_18MB:
5329                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5330         case LIBIPW_OFDM_RATE_24MB:
5331                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5332         case LIBIPW_OFDM_RATE_36MB:
5333                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334         case LIBIPW_OFDM_RATE_48MB:
5335                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5336         case LIBIPW_OFDM_RATE_54MB:
5337                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5338         }
5339
5340         return 0;
5341 }
5342
5343 static int ipw_compatible_rates(struct ipw_priv *priv,
5344                                 const struct libipw_network *network,
5345                                 struct ipw_supported_rates *rates)
5346 {
5347         int num_rates, i;
5348
5349         memset(rates, 0, sizeof(*rates));
5350         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5351         rates->num_rates = 0;
5352         for (i = 0; i < num_rates; i++) {
5353                 if (!ipw_is_rate_in_mask(priv, network->mode,
5354                                          network->rates[i])) {
5355
5356                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5357                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5358                                                "rate %02X\n",
5359                                                network->rates[i]);
5360                                 rates->supported_rates[rates->num_rates++] =
5361                                     network->rates[i];
5362                                 continue;
5363                         }
5364
5365                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5366                                        network->rates[i], priv->rates_mask);
5367                         continue;
5368                 }
5369
5370                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5371         }
5372
5373         num_rates = min(network->rates_ex_len,
5374                         (u8) (IPW_MAX_RATES - num_rates));
5375         for (i = 0; i < num_rates; i++) {
5376                 if (!ipw_is_rate_in_mask(priv, network->mode,
5377                                          network->rates_ex[i])) {
5378                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5379                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5380                                                "rate %02X\n",
5381                                                network->rates_ex[i]);
5382                                 rates->supported_rates[rates->num_rates++] =
5383                                     network->rates[i];
5384                                 continue;
5385                         }
5386
5387                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5388                                        network->rates_ex[i], priv->rates_mask);
5389                         continue;
5390                 }
5391
5392                 rates->supported_rates[rates->num_rates++] =
5393                     network->rates_ex[i];
5394         }
5395
5396         return 1;
5397 }
5398
5399 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5400                                   const struct ipw_supported_rates *src)
5401 {
5402         u8 i;
5403         for (i = 0; i < src->num_rates; i++)
5404                 dest->supported_rates[i] = src->supported_rates[i];
5405         dest->num_rates = src->num_rates;
5406 }
5407
5408 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5409  * mask should ever be used -- right now all callers to add the scan rates are
5410  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5411 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5412                                    u8 modulation, u32 rate_mask)
5413 {
5414         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5415             LIBIPW_BASIC_RATE_MASK : 0;
5416
5417         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5418                 rates->supported_rates[rates->num_rates++] =
5419                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5420
5421         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5422                 rates->supported_rates[rates->num_rates++] =
5423                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5424
5425         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5426                 rates->supported_rates[rates->num_rates++] = basic_mask |
5427                     LIBIPW_CCK_RATE_5MB;
5428
5429         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5430                 rates->supported_rates[rates->num_rates++] = basic_mask |
5431                     LIBIPW_CCK_RATE_11MB;
5432 }
5433
5434 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5435                                     u8 modulation, u32 rate_mask)
5436 {
5437         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5438             LIBIPW_BASIC_RATE_MASK : 0;
5439
5440         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5441                 rates->supported_rates[rates->num_rates++] = basic_mask |
5442                     LIBIPW_OFDM_RATE_6MB;
5443
5444         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5445                 rates->supported_rates[rates->num_rates++] =
5446                     LIBIPW_OFDM_RATE_9MB;
5447
5448         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5449                 rates->supported_rates[rates->num_rates++] = basic_mask |
5450                     LIBIPW_OFDM_RATE_12MB;
5451
5452         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5453                 rates->supported_rates[rates->num_rates++] =
5454                     LIBIPW_OFDM_RATE_18MB;
5455
5456         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5457                 rates->supported_rates[rates->num_rates++] = basic_mask |
5458                     LIBIPW_OFDM_RATE_24MB;
5459
5460         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5461                 rates->supported_rates[rates->num_rates++] =
5462                     LIBIPW_OFDM_RATE_36MB;
5463
5464         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] =
5466                     LIBIPW_OFDM_RATE_48MB;
5467
5468         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5469                 rates->supported_rates[rates->num_rates++] =
5470                     LIBIPW_OFDM_RATE_54MB;
5471 }
5472
5473 struct ipw_network_match {
5474         struct libipw_network *network;
5475         struct ipw_supported_rates rates;
5476 };
5477
5478 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5479                                   struct ipw_network_match *match,
5480                                   struct libipw_network *network,
5481                                   int roaming)
5482 {
5483         struct ipw_supported_rates rates;
5484
5485         /* Verify that this network's capability is compatible with the
5486          * current mode (AdHoc or Infrastructure) */
5487         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5488              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5489                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5490                                 network->ssid_len, network->ssid,
5491                                 network->bssid);
5492                 return 0;
5493         }
5494
5495         if (unlikely(roaming)) {
5496                 /* If we are roaming, then ensure check if this is a valid
5497                  * network to try and roam to */
5498                 if ((network->ssid_len != match->network->ssid_len) ||
5499                     memcmp(network->ssid, match->network->ssid,
5500                            network->ssid_len)) {
5501                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5502                                         network->ssid_len, network->ssid,
5503                                         network->bssid);
5504                         return 0;
5505                 }
5506         } else {
5507                 /* If an ESSID has been configured then compare the broadcast
5508                  * ESSID to ours */
5509                 if ((priv->config & CFG_STATIC_ESSID) &&
5510                     ((network->ssid_len != priv->essid_len) ||
5511                      memcmp(network->ssid, priv->essid,
5512                             min(network->ssid_len, priv->essid_len)))) {
5513                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5514                                         network->ssid_len, network->ssid,
5515                                         network->bssid, priv->essid_len,
5516                                         priv->essid);
5517                         return 0;
5518                 }
5519         }
5520
5521         /* If the old network rate is better than this one, don't bother
5522          * testing everything else. */
5523
5524         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5525                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5526                                 match->network->ssid_len, match->network->ssid);
5527                 return 0;
5528         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5529                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5530                                 match->network->ssid_len, match->network->ssid);
5531                 return 0;
5532         }
5533
5534         /* Now go through and see if the requested network is valid... */
5535         if (priv->ieee->scan_age != 0 &&
5536             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5537                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5538                                 network->ssid_len, network->ssid,
5539                                 network->bssid,
5540                                 jiffies_to_msecs(jiffies -
5541                                                  network->last_scanned));
5542                 return 0;
5543         }
5544
5545         if ((priv->config & CFG_STATIC_CHANNEL) &&
5546             (network->channel != priv->channel)) {
5547                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5548                                 network->ssid_len, network->ssid,
5549                                 network->bssid,
5550                                 network->channel, priv->channel);
5551                 return 0;
5552         }
5553
5554         /* Verify privacy compatibility */
5555         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5556             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5557                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5558                                 network->ssid_len, network->ssid,
5559                                 network->bssid,
5560                                 priv->
5561                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5562                                 network->
5563                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5564                                 "off");
5565                 return 0;
5566         }
5567
5568         if (ether_addr_equal(network->bssid, priv->bssid)) {
5569                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5570                                 network->ssid_len, network->ssid,
5571                                 network->bssid, priv->bssid);
5572                 return 0;
5573         }
5574
5575         /* Filter out any incompatible freq / mode combinations */
5576         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5577                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5578                                 network->ssid_len, network->ssid,
5579                                 network->bssid);
5580                 return 0;
5581         }
5582
5583         /* Ensure that the rates supported by the driver are compatible with
5584          * this AP, including verification of basic rates (mandatory) */
5585         if (!ipw_compatible_rates(priv, network, &rates)) {
5586                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5587                                 network->ssid_len, network->ssid,
5588                                 network->bssid);
5589                 return 0;
5590         }
5591
5592         if (rates.num_rates == 0) {
5593                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5594                                 network->ssid_len, network->ssid,
5595                                 network->bssid);
5596                 return 0;
5597         }
5598
5599         /* TODO: Perform any further minimal comparititive tests.  We do not
5600          * want to put too much policy logic here; intelligent scan selection
5601          * should occur within a generic IEEE 802.11 user space tool.  */
5602
5603         /* Set up 'new' AP to this network */
5604         ipw_copy_rates(&match->rates, &rates);
5605         match->network = network;
5606         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5607                         network->ssid_len, network->ssid, network->bssid);
5608
5609         return 1;
5610 }
5611
5612 static void ipw_merge_adhoc_network(struct work_struct *work)
5613 {
5614         struct ipw_priv *priv =
5615                 container_of(work, struct ipw_priv, merge_networks);
5616         struct libipw_network *network = NULL;
5617         struct ipw_network_match match = {
5618                 .network = priv->assoc_network
5619         };
5620
5621         if ((priv->status & STATUS_ASSOCIATED) &&
5622             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5623                 /* First pass through ROAM process -- look for a better
5624                  * network */
5625                 unsigned long flags;
5626
5627                 spin_lock_irqsave(&priv->ieee->lock, flags);
5628                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5629                         if (network != priv->assoc_network)
5630                                 ipw_find_adhoc_network(priv, &match, network,
5631                                                        1);
5632                 }
5633                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5634
5635                 if (match.network == priv->assoc_network) {
5636                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5637                                         "merge to.\n");
5638                         return;
5639                 }
5640
5641                 mutex_lock(&priv->mutex);
5642                 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5643                         IPW_DEBUG_MERGE("remove network %*pE\n",
5644                                         priv->essid_len, priv->essid);
5645                         ipw_remove_current_network(priv);
5646                 }
5647
5648                 ipw_disassociate(priv);
5649                 priv->assoc_network = match.network;
5650                 mutex_unlock(&priv->mutex);
5651                 return;
5652         }
5653 }
5654
5655 static int ipw_best_network(struct ipw_priv *priv,
5656                             struct ipw_network_match *match,
5657                             struct libipw_network *network, int roaming)
5658 {
5659         struct ipw_supported_rates rates;
5660
5661         /* Verify that this network's capability is compatible with the
5662          * current mode (AdHoc or Infrastructure) */
5663         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5664              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5665             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5666              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5667                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5668                                 network->ssid_len, network->ssid,
5669                                 network->bssid);
5670                 return 0;
5671         }
5672
5673         if (unlikely(roaming)) {
5674                 /* If we are roaming, then ensure check if this is a valid
5675                  * network to try and roam to */
5676                 if ((network->ssid_len != match->network->ssid_len) ||
5677                     memcmp(network->ssid, match->network->ssid,
5678                            network->ssid_len)) {
5679                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5680                                         network->ssid_len, network->ssid,
5681                                         network->bssid);
5682                         return 0;
5683                 }
5684         } else {
5685                 /* If an ESSID has been configured then compare the broadcast
5686                  * ESSID to ours */
5687                 if ((priv->config & CFG_STATIC_ESSID) &&
5688                     ((network->ssid_len != priv->essid_len) ||
5689                      memcmp(network->ssid, priv->essid,
5690                             min(network->ssid_len, priv->essid_len)))) {
5691                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5692                                         network->ssid_len, network->ssid,
5693                                         network->bssid, priv->essid_len,
5694                                         priv->essid);
5695                         return 0;
5696                 }
5697         }
5698
5699         /* If the old network rate is better than this one, don't bother
5700          * testing everything else. */
5701         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5702                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5703                                 network->ssid_len, network->ssid,
5704                                 network->bssid, match->network->ssid_len,
5705                                 match->network->ssid, match->network->bssid);
5706                 return 0;
5707         }
5708
5709         /* If this network has already had an association attempt within the
5710          * last 3 seconds, do not try and associate again... */
5711         if (network->last_associate &&
5712             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5713                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5714                                 network->ssid_len, network->ssid,
5715                                 network->bssid,
5716                                 jiffies_to_msecs(jiffies -
5717                                                  network->last_associate));
5718                 return 0;
5719         }
5720
5721         /* Now go through and see if the requested network is valid... */
5722         if (priv->ieee->scan_age != 0 &&
5723             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5725                                 network->ssid_len, network->ssid,
5726                                 network->bssid,
5727                                 jiffies_to_msecs(jiffies -
5728                                                  network->last_scanned));
5729                 return 0;
5730         }
5731
5732         if ((priv->config & CFG_STATIC_CHANNEL) &&
5733             (network->channel != priv->channel)) {
5734                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5735                                 network->ssid_len, network->ssid,
5736                                 network->bssid,
5737                                 network->channel, priv->channel);
5738                 return 0;
5739         }
5740
5741         /* Verify privacy compatibility */
5742         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5743             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5744                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5745                                 network->ssid_len, network->ssid,
5746                                 network->bssid,
5747                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5748                                 "off",
5749                                 network->capability &
5750                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5751                 return 0;
5752         }
5753
5754         if ((priv->config & CFG_STATIC_BSSID) &&
5755             !ether_addr_equal(network->bssid, priv->bssid)) {
5756                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5757                                 network->ssid_len, network->ssid,
5758                                 network->bssid, priv->bssid);
5759                 return 0;
5760         }
5761
5762         /* Filter out any incompatible freq / mode combinations */
5763         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5764                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5765                                 network->ssid_len, network->ssid,
5766                                 network->bssid);
5767                 return 0;
5768         }
5769
5770         /* Filter out invalid channel in current GEO */
5771         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5772                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5773                                 network->ssid_len, network->ssid,
5774                                 network->bssid);
5775                 return 0;
5776         }
5777
5778         /* Ensure that the rates supported by the driver are compatible with
5779          * this AP, including verification of basic rates (mandatory) */
5780         if (!ipw_compatible_rates(priv, network, &rates)) {
5781                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5782                                 network->ssid_len, network->ssid,
5783                                 network->bssid);
5784                 return 0;
5785         }
5786
5787         if (rates.num_rates == 0) {
5788                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5789                                 network->ssid_len, network->ssid,
5790                                 network->bssid);
5791                 return 0;
5792         }
5793
5794         /* TODO: Perform any further minimal comparititive tests.  We do not
5795          * want to put too much policy logic here; intelligent scan selection
5796          * should occur within a generic IEEE 802.11 user space tool.  */
5797
5798         /* Set up 'new' AP to this network */
5799         ipw_copy_rates(&match->rates, &rates);
5800         match->network = network;
5801
5802         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5803                         network->ssid_len, network->ssid, network->bssid);
5804
5805         return 1;
5806 }
5807
5808 static void ipw_adhoc_create(struct ipw_priv *priv,
5809                              struct libipw_network *network)
5810 {
5811         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5812         int i;
5813
5814         /*
5815          * For the purposes of scanning, we can set our wireless mode
5816          * to trigger scans across combinations of bands, but when it
5817          * comes to creating a new ad-hoc network, we have tell the FW
5818          * exactly which band to use.
5819          *
5820          * We also have the possibility of an invalid channel for the
5821          * chossen band.  Attempting to create a new ad-hoc network
5822          * with an invalid channel for wireless mode will trigger a
5823          * FW fatal error.
5824          *
5825          */
5826         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5827         case LIBIPW_52GHZ_BAND:
5828                 network->mode = IEEE_A;
5829                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5830                 BUG_ON(i == -1);
5831                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5832                         IPW_WARNING("Overriding invalid channel\n");
5833                         priv->channel = geo->a[0].channel;
5834                 }
5835                 break;
5836
5837         case LIBIPW_24GHZ_BAND:
5838                 if (priv->ieee->mode & IEEE_G)
5839                         network->mode = IEEE_G;
5840                 else
5841                         network->mode = IEEE_B;
5842                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5843                 BUG_ON(i == -1);
5844                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845                         IPW_WARNING("Overriding invalid channel\n");
5846                         priv->channel = geo->bg[0].channel;
5847                 }
5848                 break;
5849
5850         default:
5851                 IPW_WARNING("Overriding invalid channel\n");
5852                 if (priv->ieee->mode & IEEE_A) {
5853                         network->mode = IEEE_A;
5854                         priv->channel = geo->a[0].channel;
5855                 } else if (priv->ieee->mode & IEEE_G) {
5856                         network->mode = IEEE_G;
5857                         priv->channel = geo->bg[0].channel;
5858                 } else {
5859                         network->mode = IEEE_B;
5860                         priv->channel = geo->bg[0].channel;
5861                 }
5862                 break;
5863         }
5864
5865         network->channel = priv->channel;
5866         priv->config |= CFG_ADHOC_PERSIST;
5867         ipw_create_bssid(priv, network->bssid);
5868         network->ssid_len = priv->essid_len;
5869         memcpy(network->ssid, priv->essid, priv->essid_len);
5870         memset(&network->stats, 0, sizeof(network->stats));
5871         network->capability = WLAN_CAPABILITY_IBSS;
5872         if (!(priv->config & CFG_PREAMBLE_LONG))
5873                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5874         if (priv->capability & CAP_PRIVACY_ON)
5875                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5876         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5877         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5878         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5879         memcpy(network->rates_ex,
5880                &priv->rates.supported_rates[network->rates_len],
5881                network->rates_ex_len);
5882         network->last_scanned = 0;
5883         network->flags = 0;
5884         network->last_associate = 0;
5885         network->time_stamp[0] = 0;
5886         network->time_stamp[1] = 0;
5887         network->beacon_interval = 100; /* Default */
5888         network->listen_interval = 10;  /* Default */
5889         network->atim_window = 0;       /* Default */
5890         network->wpa_ie_len = 0;
5891         network->rsn_ie_len = 0;
5892 }
5893
5894 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5895 {
5896         struct ipw_tgi_tx_key key;
5897
5898         if (!(priv->ieee->sec.flags & (1 << index)))
5899                 return;
5900
5901         key.key_id = index;
5902         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5903         key.security_type = type;
5904         key.station_index = 0;  /* always 0 for BSS */
5905         key.flags = 0;
5906         /* 0 for new key; previous value of counter (after fatal error) */
5907         key.tx_counter[0] = cpu_to_le32(0);
5908         key.tx_counter[1] = cpu_to_le32(0);
5909
5910         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5911 }
5912
5913 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5914 {
5915         struct ipw_wep_key key;
5916         int i;
5917
5918         key.cmd_id = DINO_CMD_WEP_KEY;
5919         key.seq_num = 0;
5920
5921         /* Note: AES keys cannot be set for multiple times.
5922          * Only set it at the first time. */
5923         for (i = 0; i < 4; i++) {
5924                 key.key_index = i | type;
5925                 if (!(priv->ieee->sec.flags & (1 << i))) {
5926                         key.key_size = 0;
5927                         continue;
5928                 }
5929
5930                 key.key_size = priv->ieee->sec.key_sizes[i];
5931                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5932
5933                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5934         }
5935 }
5936
5937 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5938 {
5939         if (priv->ieee->host_encrypt)
5940                 return;
5941
5942         switch (level) {
5943         case SEC_LEVEL_3:
5944                 priv->sys_config.disable_unicast_decryption = 0;
5945                 priv->ieee->host_decrypt = 0;
5946                 break;
5947         case SEC_LEVEL_2:
5948                 priv->sys_config.disable_unicast_decryption = 1;
5949                 priv->ieee->host_decrypt = 1;
5950                 break;
5951         case SEC_LEVEL_1:
5952                 priv->sys_config.disable_unicast_decryption = 0;
5953                 priv->ieee->host_decrypt = 0;
5954                 break;
5955         case SEC_LEVEL_0:
5956                 priv->sys_config.disable_unicast_decryption = 1;
5957                 break;
5958         default:
5959                 break;
5960         }
5961 }
5962
5963 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5964 {
5965         if (priv->ieee->host_encrypt)
5966                 return;
5967
5968         switch (level) {
5969         case SEC_LEVEL_3:
5970                 priv->sys_config.disable_multicast_decryption = 0;
5971                 break;
5972         case SEC_LEVEL_2:
5973                 priv->sys_config.disable_multicast_decryption = 1;
5974                 break;
5975         case SEC_LEVEL_1:
5976                 priv->sys_config.disable_multicast_decryption = 0;
5977                 break;
5978         case SEC_LEVEL_0:
5979                 priv->sys_config.disable_multicast_decryption = 1;
5980                 break;
5981         default:
5982                 break;
5983         }
5984 }
5985
5986 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5987 {
5988         switch (priv->ieee->sec.level) {
5989         case SEC_LEVEL_3:
5990                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5991                         ipw_send_tgi_tx_key(priv,
5992                                             DCT_FLAG_EXT_SECURITY_CCM,
5993                                             priv->ieee->sec.active_key);
5994
5995                 if (!priv->ieee->host_mc_decrypt)
5996                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5997                 break;
5998         case SEC_LEVEL_2:
5999                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6000                         ipw_send_tgi_tx_key(priv,
6001                                             DCT_FLAG_EXT_SECURITY_TKIP,
6002                                             priv->ieee->sec.active_key);
6003                 break;
6004         case SEC_LEVEL_1:
6005                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6006                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6007                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6008                 break;
6009         case SEC_LEVEL_0:
6010         default:
6011                 break;
6012         }
6013 }
6014
6015 static void ipw_adhoc_check(void *data)
6016 {
6017         struct ipw_priv *priv = data;
6018
6019         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6020             !(priv->config & CFG_ADHOC_PERSIST)) {
6021                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6022                           IPW_DL_STATE | IPW_DL_ASSOC,
6023                           "Missed beacon: %d - disassociate\n",
6024                           priv->missed_adhoc_beacons);
6025                 ipw_remove_current_network(priv);
6026                 ipw_disassociate(priv);
6027                 return;
6028         }
6029
6030         schedule_delayed_work(&priv->adhoc_check,
6031                               le16_to_cpu(priv->assoc_request.beacon_interval));
6032 }
6033
6034 static void ipw_bg_adhoc_check(struct work_struct *work)
6035 {
6036         struct ipw_priv *priv =
6037                 container_of(work, struct ipw_priv, adhoc_check.work);
6038         mutex_lock(&priv->mutex);
6039         ipw_adhoc_check(priv);
6040         mutex_unlock(&priv->mutex);
6041 }
6042
6043 static void ipw_debug_config(struct ipw_priv *priv)
6044 {
6045         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6046                        "[CFG 0x%08X]\n", priv->config);
6047         if (priv->config & CFG_STATIC_CHANNEL)
6048                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6049         else
6050                 IPW_DEBUG_INFO("Channel unlocked.\n");
6051         if (priv->config & CFG_STATIC_ESSID)
6052                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6053                                priv->essid_len, priv->essid);
6054         else
6055                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6056         if (priv->config & CFG_STATIC_BSSID)
6057                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6058         else
6059                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6060         if (priv->capability & CAP_PRIVACY_ON)
6061                 IPW_DEBUG_INFO("PRIVACY on\n");
6062         else
6063                 IPW_DEBUG_INFO("PRIVACY off\n");
6064         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6065 }
6066
6067 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6068 {
6069         /* TODO: Verify that this works... */
6070         struct ipw_fixed_rate fr;
6071         u32 reg;
6072         u16 mask = 0;
6073         u16 new_tx_rates = priv->rates_mask;
6074
6075         /* Identify 'current FW band' and match it with the fixed
6076          * Tx rates */
6077
6078         switch (priv->ieee->freq_band) {
6079         case LIBIPW_52GHZ_BAND: /* A only */
6080                 /* IEEE_A */
6081                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6082                         /* Invalid fixed rate mask */
6083                         IPW_DEBUG_WX
6084                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085                         new_tx_rates = 0;
6086                         break;
6087                 }
6088
6089                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6090                 break;
6091
6092         default:                /* 2.4Ghz or Mixed */
6093                 /* IEEE_B */
6094                 if (mode == IEEE_B) {
6095                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6096                                 /* Invalid fixed rate mask */
6097                                 IPW_DEBUG_WX
6098                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6099                                 new_tx_rates = 0;
6100                         }
6101                         break;
6102                 }
6103
6104                 /* IEEE_G */
6105                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6106                                     LIBIPW_OFDM_RATES_MASK)) {
6107                         /* Invalid fixed rate mask */
6108                         IPW_DEBUG_WX
6109                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6110                         new_tx_rates = 0;
6111                         break;
6112                 }
6113
6114                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6115                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6116                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6117                 }
6118
6119                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6120                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6121                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6122                 }
6123
6124                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6125                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6126                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6127                 }
6128
6129                 new_tx_rates |= mask;
6130                 break;
6131         }
6132
6133         fr.tx_rates = cpu_to_le16(new_tx_rates);
6134
6135         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6136         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6137 }
6138
6139 static void ipw_abort_scan(struct ipw_priv *priv)
6140 {
6141         int err;
6142
6143         if (priv->status & STATUS_SCAN_ABORTING) {
6144                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6145                 return;
6146         }
6147         priv->status |= STATUS_SCAN_ABORTING;
6148
6149         err = ipw_send_scan_abort(priv);
6150         if (err)
6151                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6152 }
6153
6154 static void ipw_add_scan_channels(struct ipw_priv *priv,
6155                                   struct ipw_scan_request_ext *scan,
6156                                   int scan_type)
6157 {
6158         int channel_index = 0;
6159         const struct libipw_geo *geo;
6160         int i;
6161
6162         geo = libipw_get_geo(priv->ieee);
6163
6164         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6165                 int start = channel_index;
6166                 for (i = 0; i < geo->a_channels; i++) {
6167                         if ((priv->status & STATUS_ASSOCIATED) &&
6168                             geo->a[i].channel == priv->channel)
6169                                 continue;
6170                         channel_index++;
6171                         scan->channels_list[channel_index] = geo->a[i].channel;
6172                         ipw_set_scan_type(scan, channel_index,
6173                                           geo->a[i].
6174                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6175                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6176                                           scan_type);
6177                 }
6178
6179                 if (start != channel_index) {
6180                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6181                             (channel_index - start);
6182                         channel_index++;
6183                 }
6184         }
6185
6186         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6187                 int start = channel_index;
6188                 if (priv->config & CFG_SPEED_SCAN) {
6189                         int index;
6190                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6191                                 /* nop out the list */
6192                                 [0] = 0
6193                         };
6194
6195                         u8 channel;
6196                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6197                                 channel =
6198                                     priv->speed_scan[priv->speed_scan_pos];
6199                                 if (channel == 0) {
6200                                         priv->speed_scan_pos = 0;
6201                                         channel = priv->speed_scan[0];
6202                                 }
6203                                 if ((priv->status & STATUS_ASSOCIATED) &&
6204                                     channel == priv->channel) {
6205                                         priv->speed_scan_pos++;
6206                                         continue;
6207                                 }
6208
6209                                 /* If this channel has already been
6210                                  * added in scan, break from loop
6211                                  * and this will be the first channel
6212                                  * in the next scan.
6213                                  */
6214                                 if (channels[channel - 1] != 0)
6215                                         break;
6216
6217                                 channels[channel - 1] = 1;
6218                                 priv->speed_scan_pos++;
6219                                 channel_index++;
6220                                 scan->channels_list[channel_index] = channel;
6221                                 index =
6222                                     libipw_channel_to_index(priv->ieee, channel);
6223                                 ipw_set_scan_type(scan, channel_index,
6224                                                   geo->bg[index].
6225                                                   flags &
6226                                                   LIBIPW_CH_PASSIVE_ONLY ?
6227                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6228                                                   : scan_type);
6229                         }
6230                 } else {
6231                         for (i = 0; i < geo->bg_channels; i++) {
6232                                 if ((priv->status & STATUS_ASSOCIATED) &&
6233                                     geo->bg[i].channel == priv->channel)
6234                                         continue;
6235                                 channel_index++;
6236                                 scan->channels_list[channel_index] =
6237                                     geo->bg[i].channel;
6238                                 ipw_set_scan_type(scan, channel_index,
6239                                                   geo->bg[i].
6240                                                   flags &
6241                                                   LIBIPW_CH_PASSIVE_ONLY ?
6242                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6243                                                   : scan_type);
6244                         }
6245                 }
6246
6247                 if (start != channel_index) {
6248                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6249                             (channel_index - start);
6250                 }
6251         }
6252 }
6253
6254 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6255 {
6256         /* staying on passive channels longer than the DTIM interval during a
6257          * scan, while associated, causes the firmware to cancel the scan
6258          * without notification. Hence, don't stay on passive channels longer
6259          * than the beacon interval.
6260          */
6261         if (priv->status & STATUS_ASSOCIATED
6262             && priv->assoc_network->beacon_interval > 10)
6263                 return priv->assoc_network->beacon_interval - 10;
6264         else
6265                 return 120;
6266 }
6267
6268 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6269 {
6270         struct ipw_scan_request_ext scan;
6271         int err = 0, scan_type;
6272
6273         if (!(priv->status & STATUS_INIT) ||
6274             (priv->status & STATUS_EXIT_PENDING))
6275                 return 0;
6276
6277         mutex_lock(&priv->mutex);
6278
6279         if (direct && (priv->direct_scan_ssid_len == 0)) {
6280                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6281                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6282                 goto done;
6283         }
6284
6285         if (priv->status & STATUS_SCANNING) {
6286                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6287                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6288                                         STATUS_SCAN_PENDING;
6289                 goto done;
6290         }
6291
6292         if (!(priv->status & STATUS_SCAN_FORCED) &&
6293             priv->status & STATUS_SCAN_ABORTING) {
6294                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6295                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6296                                         STATUS_SCAN_PENDING;
6297                 goto done;
6298         }
6299
6300         if (priv->status & STATUS_RF_KILL_MASK) {
6301                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6302                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6303                                         STATUS_SCAN_PENDING;
6304                 goto done;
6305         }
6306
6307         memset(&scan, 0, sizeof(scan));
6308         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6309
6310         if (type == IW_SCAN_TYPE_PASSIVE) {
6311                 IPW_DEBUG_WX("use passive scanning\n");
6312                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6313                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6314                         cpu_to_le16(ipw_passive_dwell_time(priv));
6315                 ipw_add_scan_channels(priv, &scan, scan_type);
6316                 goto send_request;
6317         }
6318
6319         /* Use active scan by default. */
6320         if (priv->config & CFG_SPEED_SCAN)
6321                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322                         cpu_to_le16(30);
6323         else
6324                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325                         cpu_to_le16(20);
6326
6327         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328                 cpu_to_le16(20);
6329
6330         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6331                 cpu_to_le16(ipw_passive_dwell_time(priv));
6332         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6333
6334 #ifdef CONFIG_IPW2200_MONITOR
6335         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6336                 u8 channel;
6337                 u8 band = 0;
6338
6339                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6340                 case LIBIPW_52GHZ_BAND:
6341                         band = (u8) (IPW_A_MODE << 6) | 1;
6342                         channel = priv->channel;
6343                         break;
6344
6345                 case LIBIPW_24GHZ_BAND:
6346                         band = (u8) (IPW_B_MODE << 6) | 1;
6347                         channel = priv->channel;
6348                         break;
6349
6350                 default:
6351                         band = (u8) (IPW_B_MODE << 6) | 1;
6352                         channel = 9;
6353                         break;
6354                 }
6355
6356                 scan.channels_list[0] = band;
6357                 scan.channels_list[1] = channel;
6358                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6359
6360                 /* NOTE:  The card will sit on this channel for this time
6361                  * period.  Scan aborts are timing sensitive and frequently
6362                  * result in firmware restarts.  As such, it is best to
6363                  * set a small dwell_time here and just keep re-issuing
6364                  * scans.  Otherwise fast channel hopping will not actually
6365                  * hop channels.
6366                  *
6367                  * TODO: Move SPEED SCAN support to all modes and bands */
6368                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6369                         cpu_to_le16(2000);
6370         } else {
6371 #endif                          /* CONFIG_IPW2200_MONITOR */
6372                 /* Honor direct scans first, otherwise if we are roaming make
6373                  * this a direct scan for the current network.  Finally,
6374                  * ensure that every other scan is a fast channel hop scan */
6375                 if (direct) {
6376                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6377                                             priv->direct_scan_ssid_len);
6378                         if (err) {
6379                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6380                                              "failed\n");
6381                                 goto done;
6382                         }
6383
6384                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6385                 } else if ((priv->status & STATUS_ROAMING)
6386                            || (!(priv->status & STATUS_ASSOCIATED)
6387                                && (priv->config & CFG_STATIC_ESSID)
6388                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6389                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6390                         if (err) {
6391                                 IPW_DEBUG_HC("Attempt to send SSID command "
6392                                              "failed.\n");
6393                                 goto done;
6394                         }
6395
6396                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6397                 } else
6398                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6399
6400                 ipw_add_scan_channels(priv, &scan, scan_type);
6401 #ifdef CONFIG_IPW2200_MONITOR
6402         }
6403 #endif
6404
6405 send_request:
6406         err = ipw_send_scan_request_ext(priv, &scan);
6407         if (err) {
6408                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6409                 goto done;
6410         }
6411
6412         priv->status |= STATUS_SCANNING;
6413         if (direct) {
6414                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6415                 priv->direct_scan_ssid_len = 0;
6416         } else
6417                 priv->status &= ~STATUS_SCAN_PENDING;
6418
6419         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6420 done:
6421         mutex_unlock(&priv->mutex);
6422         return err;
6423 }
6424
6425 static void ipw_request_passive_scan(struct work_struct *work)
6426 {
6427         struct ipw_priv *priv =
6428                 container_of(work, struct ipw_priv, request_passive_scan.work);
6429         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6430 }
6431
6432 static void ipw_request_scan(struct work_struct *work)
6433 {
6434         struct ipw_priv *priv =
6435                 container_of(work, struct ipw_priv, request_scan.work);
6436         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6437 }
6438
6439 static void ipw_request_direct_scan(struct work_struct *work)
6440 {
6441         struct ipw_priv *priv =
6442                 container_of(work, struct ipw_priv, request_direct_scan.work);
6443         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6444 }
6445
6446 static void ipw_bg_abort_scan(struct work_struct *work)
6447 {
6448         struct ipw_priv *priv =
6449                 container_of(work, struct ipw_priv, abort_scan);
6450         mutex_lock(&priv->mutex);
6451         ipw_abort_scan(priv);
6452         mutex_unlock(&priv->mutex);
6453 }
6454
6455 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6456 {
6457         /* This is called when wpa_supplicant loads and closes the driver
6458          * interface. */
6459         priv->ieee->wpa_enabled = value;
6460         return 0;
6461 }
6462
6463 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6464 {
6465         struct libipw_device *ieee = priv->ieee;
6466         struct libipw_security sec = {
6467                 .flags = SEC_AUTH_MODE,
6468         };
6469         int ret = 0;
6470
6471         if (value & IW_AUTH_ALG_SHARED_KEY) {
6472                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6473                 ieee->open_wep = 0;
6474         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6475                 sec.auth_mode = WLAN_AUTH_OPEN;
6476                 ieee->open_wep = 1;
6477         } else if (value & IW_AUTH_ALG_LEAP) {
6478                 sec.auth_mode = WLAN_AUTH_LEAP;
6479                 ieee->open_wep = 1;
6480         } else
6481                 return -EINVAL;
6482
6483         if (ieee->set_security)
6484                 ieee->set_security(ieee->dev, &sec);
6485         else
6486                 ret = -EOPNOTSUPP;
6487
6488         return ret;
6489 }
6490
6491 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6492                                 int wpa_ie_len)
6493 {
6494         /* make sure WPA is enabled */
6495         ipw_wpa_enable(priv, 1);
6496 }
6497
6498 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6499                             char *capabilities, int length)
6500 {
6501         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6502
6503         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6504                                 capabilities);
6505 }
6506
6507 /*
6508  * WE-18 support
6509  */
6510
6511 /* SIOCSIWGENIE */
6512 static int ipw_wx_set_genie(struct net_device *dev,
6513                             struct iw_request_info *info,
6514                             union iwreq_data *wrqu, char *extra)
6515 {
6516         struct ipw_priv *priv = libipw_priv(dev);
6517         struct libipw_device *ieee = priv->ieee;
6518         u8 *buf;
6519         int err = 0;
6520
6521         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6522             (wrqu->data.length && extra == NULL))
6523                 return -EINVAL;
6524
6525         if (wrqu->data.length) {
6526                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6527                 if (buf == NULL) {
6528                         err = -ENOMEM;
6529                         goto out;
6530                 }
6531
6532                 kfree(ieee->wpa_ie);
6533                 ieee->wpa_ie = buf;
6534                 ieee->wpa_ie_len = wrqu->data.length;
6535         } else {
6536                 kfree(ieee->wpa_ie);
6537                 ieee->wpa_ie = NULL;
6538                 ieee->wpa_ie_len = 0;
6539         }
6540
6541         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6542       out:
6543         return err;
6544 }
6545
6546 /* SIOCGIWGENIE */
6547 static int ipw_wx_get_genie(struct net_device *dev,
6548                             struct iw_request_info *info,
6549                             union iwreq_data *wrqu, char *extra)
6550 {
6551         struct ipw_priv *priv = libipw_priv(dev);
6552         struct libipw_device *ieee = priv->ieee;
6553         int err = 0;
6554
6555         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6556                 wrqu->data.length = 0;
6557                 goto out;
6558         }
6559
6560         if (wrqu->data.length < ieee->wpa_ie_len) {
6561                 err = -E2BIG;
6562                 goto out;
6563         }
6564
6565         wrqu->data.length = ieee->wpa_ie_len;
6566         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6567
6568       out:
6569         return err;
6570 }
6571
6572 static int wext_cipher2level(int cipher)
6573 {
6574         switch (cipher) {
6575         case IW_AUTH_CIPHER_NONE:
6576                 return SEC_LEVEL_0;
6577         case IW_AUTH_CIPHER_WEP40:
6578         case IW_AUTH_CIPHER_WEP104:
6579                 return SEC_LEVEL_1;
6580         case IW_AUTH_CIPHER_TKIP:
6581                 return SEC_LEVEL_2;
6582         case IW_AUTH_CIPHER_CCMP:
6583                 return SEC_LEVEL_3;
6584         default:
6585                 return -1;
6586         }
6587 }
6588
6589 /* SIOCSIWAUTH */
6590 static int ipw_wx_set_auth(struct net_device *dev,
6591                            struct iw_request_info *info,
6592                            union iwreq_data *wrqu, char *extra)
6593 {
6594         struct ipw_priv *priv = libipw_priv(dev);
6595         struct libipw_device *ieee = priv->ieee;
6596         struct iw_param *param = &wrqu->param;
6597         struct lib80211_crypt_data *crypt;
6598         unsigned long flags;
6599         int ret = 0;
6600
6601         switch (param->flags & IW_AUTH_INDEX) {
6602         case IW_AUTH_WPA_VERSION:
6603                 break;
6604         case IW_AUTH_CIPHER_PAIRWISE:
6605                 ipw_set_hw_decrypt_unicast(priv,
6606                                            wext_cipher2level(param->value));
6607                 break;
6608         case IW_AUTH_CIPHER_GROUP:
6609                 ipw_set_hw_decrypt_multicast(priv,
6610                                              wext_cipher2level(param->value));
6611                 break;
6612         case IW_AUTH_KEY_MGMT:
6613                 /*
6614                  * ipw2200 does not use these parameters
6615                  */
6616                 break;
6617
6618         case IW_AUTH_TKIP_COUNTERMEASURES:
6619                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6620                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6621                         break;
6622
6623                 flags = crypt->ops->get_flags(crypt->priv);
6624
6625                 if (param->value)
6626                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6627                 else
6628                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6629
6630                 crypt->ops->set_flags(flags, crypt->priv);
6631
6632                 break;
6633
6634         case IW_AUTH_DROP_UNENCRYPTED:{
6635                         /* HACK:
6636                          *
6637                          * wpa_supplicant calls set_wpa_enabled when the driver
6638                          * is loaded and unloaded, regardless of if WPA is being
6639                          * used.  No other calls are made which can be used to
6640                          * determine if encryption will be used or not prior to
6641                          * association being expected.  If encryption is not being
6642                          * used, drop_unencrypted is set to false, else true -- we
6643                          * can use this to determine if the CAP_PRIVACY_ON bit should
6644                          * be set.
6645                          */
6646                         struct libipw_security sec = {
6647                                 .flags = SEC_ENABLED,
6648                                 .enabled = param->value,
6649                         };
6650                         priv->ieee->drop_unencrypted = param->value;
6651                         /* We only change SEC_LEVEL for open mode. Others
6652                          * are set by ipw_wpa_set_encryption.
6653                          */
6654                         if (!param->value) {
6655                                 sec.flags |= SEC_LEVEL;
6656                                 sec.level = SEC_LEVEL_0;
6657                         } else {
6658                                 sec.flags |= SEC_LEVEL;
6659                                 sec.level = SEC_LEVEL_1;
6660                         }
6661                         if (priv->ieee->set_security)
6662                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6663                         break;
6664                 }
6665
6666         case IW_AUTH_80211_AUTH_ALG:
6667                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6668                 break;
6669
6670         case IW_AUTH_WPA_ENABLED:
6671                 ret = ipw_wpa_enable(priv, param->value);
6672                 ipw_disassociate(priv);
6673                 break;
6674
6675         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6676                 ieee->ieee802_1x = param->value;
6677                 break;
6678
6679         case IW_AUTH_PRIVACY_INVOKED:
6680                 ieee->privacy_invoked = param->value;
6681                 break;
6682
6683         default:
6684                 return -EOPNOTSUPP;
6685         }
6686         return ret;
6687 }
6688
6689 /* SIOCGIWAUTH */
6690 static int ipw_wx_get_auth(struct net_device *dev,
6691                            struct iw_request_info *info,
6692                            union iwreq_data *wrqu, char *extra)
6693 {
6694         struct ipw_priv *priv = libipw_priv(dev);
6695         struct libipw_device *ieee = priv->ieee;
6696         struct lib80211_crypt_data *crypt;
6697         struct iw_param *param = &wrqu->param;
6698
6699         switch (param->flags & IW_AUTH_INDEX) {
6700         case IW_AUTH_WPA_VERSION:
6701         case IW_AUTH_CIPHER_PAIRWISE:
6702         case IW_AUTH_CIPHER_GROUP:
6703         case IW_AUTH_KEY_MGMT:
6704                 /*
6705                  * wpa_supplicant will control these internally
6706                  */
6707                 return -EOPNOTSUPP;
6708
6709         case IW_AUTH_TKIP_COUNTERMEASURES:
6710                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6711                 if (!crypt || !crypt->ops->get_flags)
6712                         break;
6713
6714                 param->value = (crypt->ops->get_flags(crypt->priv) &
6715                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6716
6717                 break;
6718
6719         case IW_AUTH_DROP_UNENCRYPTED:
6720                 param->value = ieee->drop_unencrypted;
6721                 break;
6722
6723         case IW_AUTH_80211_AUTH_ALG:
6724                 param->value = ieee->sec.auth_mode;
6725                 break;
6726
6727         case IW_AUTH_WPA_ENABLED:
6728                 param->value = ieee->wpa_enabled;
6729                 break;
6730
6731         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6732                 param->value = ieee->ieee802_1x;
6733                 break;
6734
6735         case IW_AUTH_ROAMING_CONTROL:
6736         case IW_AUTH_PRIVACY_INVOKED:
6737                 param->value = ieee->privacy_invoked;
6738                 break;
6739
6740         default:
6741                 return -EOPNOTSUPP;
6742         }
6743         return 0;
6744 }
6745
6746 /* SIOCSIWENCODEEXT */
6747 static int ipw_wx_set_encodeext(struct net_device *dev,
6748                                 struct iw_request_info *info,
6749                                 union iwreq_data *wrqu, char *extra)
6750 {
6751         struct ipw_priv *priv = libipw_priv(dev);
6752         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6753
6754         if (hwcrypto) {
6755                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6756                         /* IPW HW can't build TKIP MIC,
6757                            host decryption still needed */
6758                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6759                                 priv->ieee->host_mc_decrypt = 1;
6760                         else {
6761                                 priv->ieee->host_encrypt = 0;
6762                                 priv->ieee->host_encrypt_msdu = 1;
6763                                 priv->ieee->host_decrypt = 1;
6764                         }
6765                 } else {
6766                         priv->ieee->host_encrypt = 0;
6767                         priv->ieee->host_encrypt_msdu = 0;
6768                         priv->ieee->host_decrypt = 0;
6769                         priv->ieee->host_mc_decrypt = 0;
6770                 }
6771         }
6772
6773         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6774 }
6775
6776 /* SIOCGIWENCODEEXT */
6777 static int ipw_wx_get_encodeext(struct net_device *dev,
6778                                 struct iw_request_info *info,
6779                                 union iwreq_data *wrqu, char *extra)
6780 {
6781         struct ipw_priv *priv = libipw_priv(dev);
6782         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6783 }
6784
6785 /* SIOCSIWMLME */
6786 static int ipw_wx_set_mlme(struct net_device *dev,
6787                            struct iw_request_info *info,
6788                            union iwreq_data *wrqu, char *extra)
6789 {
6790         struct ipw_priv *priv = libipw_priv(dev);
6791         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6792
6793         switch (mlme->cmd) {
6794         case IW_MLME_DEAUTH:
6795                 /* silently ignore */
6796                 break;
6797
6798         case IW_MLME_DISASSOC:
6799                 ipw_disassociate(priv);
6800                 break;
6801
6802         default:
6803                 return -EOPNOTSUPP;
6804         }
6805         return 0;
6806 }
6807
6808 #ifdef CONFIG_IPW2200_QOS
6809
6810 /* QoS */
6811 /*
6812 * get the modulation type of the current network or
6813 * the card current mode
6814 */
6815 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6816 {
6817         u8 mode = 0;
6818
6819         if (priv->status & STATUS_ASSOCIATED) {
6820                 unsigned long flags;
6821
6822                 spin_lock_irqsave(&priv->ieee->lock, flags);
6823                 mode = priv->assoc_network->mode;
6824                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6825         } else {
6826                 mode = priv->ieee->mode;
6827         }
6828         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6829         return mode;
6830 }
6831
6832 /*
6833 * Handle management frame beacon and probe response
6834 */
6835 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6836                                          int active_network,
6837                                          struct libipw_network *network)
6838 {
6839         u32 size = sizeof(struct libipw_qos_parameters);
6840
6841         if (network->capability & WLAN_CAPABILITY_IBSS)
6842                 network->qos_data.active = network->qos_data.supported;
6843
6844         if (network->flags & NETWORK_HAS_QOS_MASK) {
6845                 if (active_network &&
6846                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6847                         network->qos_data.active = network->qos_data.supported;
6848
6849                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6850                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6851                     (network->qos_data.old_param_count !=
6852                      network->qos_data.param_count)) {
6853                         network->qos_data.old_param_count =
6854                             network->qos_data.param_count;
6855                         schedule_work(&priv->qos_activate);
6856                         IPW_DEBUG_QOS("QoS parameters change call "
6857                                       "qos_activate\n");
6858                 }
6859         } else {
6860                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6861                         memcpy(&network->qos_data.parameters,
6862                                &def_parameters_CCK, size);
6863                 else
6864                         memcpy(&network->qos_data.parameters,
6865                                &def_parameters_OFDM, size);
6866
6867                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6868                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6869                         schedule_work(&priv->qos_activate);
6870                 }
6871
6872                 network->qos_data.active = 0;
6873                 network->qos_data.supported = 0;
6874         }
6875         if ((priv->status & STATUS_ASSOCIATED) &&
6876             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6877                 if (!ether_addr_equal(network->bssid, priv->bssid))
6878                         if (network->capability & WLAN_CAPABILITY_IBSS)
6879                                 if ((network->ssid_len ==
6880                                      priv->assoc_network->ssid_len) &&
6881                                     !memcmp(network->ssid,
6882                                             priv->assoc_network->ssid,
6883                                             network->ssid_len)) {
6884                                         schedule_work(&priv->merge_networks);
6885                                 }
6886         }
6887
6888         return 0;
6889 }
6890
6891 /*
6892 * This function set up the firmware to support QoS. It sends
6893 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6894 */
6895 static int ipw_qos_activate(struct ipw_priv *priv,
6896                             struct libipw_qos_data *qos_network_data)
6897 {
6898         int err;
6899         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6900         struct libipw_qos_parameters *active_one = NULL;
6901         u32 size = sizeof(struct libipw_qos_parameters);
6902         u32 burst_duration;
6903         int i;
6904         u8 type;
6905
6906         type = ipw_qos_current_mode(priv);
6907
6908         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6909         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6910         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6911         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6912
6913         if (qos_network_data == NULL) {
6914                 if (type == IEEE_B) {
6915                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6916                         active_one = &def_parameters_CCK;
6917                 } else
6918                         active_one = &def_parameters_OFDM;
6919
6920                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6921                 burst_duration = ipw_qos_get_burst_duration(priv);
6922                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6923                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6924                             cpu_to_le16(burst_duration);
6925         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6926                 if (type == IEEE_B) {
6927                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6928                                       type);
6929                         if (priv->qos_data.qos_enable == 0)
6930                                 active_one = &def_parameters_CCK;
6931                         else
6932                                 active_one = priv->qos_data.def_qos_parm_CCK;
6933                 } else {
6934                         if (priv->qos_data.qos_enable == 0)
6935                                 active_one = &def_parameters_OFDM;
6936                         else
6937                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6938                 }
6939                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6940         } else {
6941                 unsigned long flags;
6942                 int active;
6943
6944                 spin_lock_irqsave(&priv->ieee->lock, flags);
6945                 active_one = &(qos_network_data->parameters);
6946                 qos_network_data->old_param_count =
6947                     qos_network_data->param_count;
6948                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6949                 active = qos_network_data->supported;
6950                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6951
6952                 if (active == 0) {
6953                         burst_duration = ipw_qos_get_burst_duration(priv);
6954                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6955                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6956                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6957                 }
6958         }
6959
6960         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6961         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6962         if (err)
6963                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6964
6965         return err;
6966 }
6967
6968 /*
6969 * send IPW_CMD_WME_INFO to the firmware
6970 */
6971 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6972 {
6973         int ret = 0;
6974         struct libipw_qos_information_element qos_info;
6975
6976         if (priv == NULL)
6977                 return -1;
6978
6979         qos_info.elementID = QOS_ELEMENT_ID;
6980         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6981
6982         qos_info.version = QOS_VERSION_1;
6983         qos_info.ac_info = 0;
6984
6985         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6986         qos_info.qui_type = QOS_OUI_TYPE;
6987         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6988
6989         ret = ipw_send_qos_info_command(priv, &qos_info);
6990         if (ret != 0) {
6991                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6992         }
6993         return ret;
6994 }
6995
6996 /*
6997 * Set the QoS parameter with the association request structure
6998 */
6999 static int ipw_qos_association(struct ipw_priv *priv,
7000                                struct libipw_network *network)
7001 {
7002         int err = 0;
7003         struct libipw_qos_data *qos_data = NULL;
7004         struct libipw_qos_data ibss_data = {
7005                 .supported = 1,
7006                 .active = 1,
7007         };
7008
7009         switch (priv->ieee->iw_mode) {
7010         case IW_MODE_ADHOC:
7011                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7012
7013                 qos_data = &ibss_data;
7014                 break;
7015
7016         case IW_MODE_INFRA:
7017                 qos_data = &network->qos_data;
7018                 break;
7019
7020         default:
7021                 BUG();
7022                 break;
7023         }
7024
7025         err = ipw_qos_activate(priv, qos_data);
7026         if (err) {
7027                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7028                 return err;
7029         }
7030
7031         if (priv->qos_data.qos_enable && qos_data->supported) {
7032                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7033                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7034                 return ipw_qos_set_info_element(priv);
7035         }
7036
7037         return 0;
7038 }
7039
7040 /*
7041 * handling the beaconing responses. if we get different QoS setting
7042 * off the network from the associated setting, adjust the QoS
7043 * setting
7044 */
7045 static int ipw_qos_association_resp(struct ipw_priv *priv,
7046                                     struct libipw_network *network)
7047 {
7048         int ret = 0;
7049         unsigned long flags;
7050         u32 size = sizeof(struct libipw_qos_parameters);
7051         int set_qos_param = 0;
7052
7053         if ((priv == NULL) || (network == NULL) ||
7054             (priv->assoc_network == NULL))
7055                 return ret;
7056
7057         if (!(priv->status & STATUS_ASSOCIATED))
7058                 return ret;
7059
7060         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061                 return ret;
7062
7063         spin_lock_irqsave(&priv->ieee->lock, flags);
7064         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066                        sizeof(struct libipw_qos_data));
7067                 priv->assoc_network->qos_data.active = 1;
7068                 if ((network->qos_data.old_param_count !=
7069                      network->qos_data.param_count)) {
7070                         set_qos_param = 1;
7071                         network->qos_data.old_param_count =
7072                             network->qos_data.param_count;
7073                 }
7074
7075         } else {
7076                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077                         memcpy(&priv->assoc_network->qos_data.parameters,
7078                                &def_parameters_CCK, size);
7079                 else
7080                         memcpy(&priv->assoc_network->qos_data.parameters,
7081                                &def_parameters_OFDM, size);
7082                 priv->assoc_network->qos_data.active = 0;
7083                 priv->assoc_network->qos_data.supported = 0;
7084                 set_qos_param = 1;
7085         }
7086
7087         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088
7089         if (set_qos_param == 1)
7090                 schedule_work(&priv->qos_activate);
7091
7092         return ret;
7093 }
7094
7095 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7096 {
7097         u32 ret = 0;
7098
7099         if (!priv)
7100                 return 0;
7101
7102         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7103                 ret = priv->qos_data.burst_duration_CCK;
7104         else
7105                 ret = priv->qos_data.burst_duration_OFDM;
7106
7107         return ret;
7108 }
7109
7110 /*
7111 * Initialize the setting of QoS global
7112 */
7113 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7114                          int burst_enable, u32 burst_duration_CCK,
7115                          u32 burst_duration_OFDM)
7116 {
7117         priv->qos_data.qos_enable = enable;
7118
7119         if (priv->qos_data.qos_enable) {
7120                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7121                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7122                 IPW_DEBUG_QOS("QoS is enabled\n");
7123         } else {
7124                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7125                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7126                 IPW_DEBUG_QOS("QoS is not enabled\n");
7127         }
7128
7129         priv->qos_data.burst_enable = burst_enable;
7130
7131         if (burst_enable) {
7132                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7133                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7134         } else {
7135                 priv->qos_data.burst_duration_CCK = 0;
7136                 priv->qos_data.burst_duration_OFDM = 0;
7137         }
7138 }
7139
7140 /*
7141 * map the packet priority to the right TX Queue
7142 */
7143 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7144 {
7145         if (priority > 7 || !priv->qos_data.qos_enable)
7146                 priority = 0;
7147
7148         return from_priority_to_tx_queue[priority] - 1;
7149 }
7150
7151 static int ipw_is_qos_active(struct net_device *dev,
7152                              struct sk_buff *skb)
7153 {
7154         struct ipw_priv *priv = libipw_priv(dev);
7155         struct libipw_qos_data *qos_data = NULL;
7156         int active, supported;
7157         u8 *daddr = skb->data + ETH_ALEN;
7158         int unicast = !is_multicast_ether_addr(daddr);
7159
7160         if (!(priv->status & STATUS_ASSOCIATED))
7161                 return 0;
7162
7163         qos_data = &priv->assoc_network->qos_data;
7164
7165         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7166                 if (unicast == 0)
7167                         qos_data->active = 0;
7168                 else
7169                         qos_data->active = qos_data->supported;
7170         }
7171         active = qos_data->active;
7172         supported = qos_data->supported;
7173         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7174                       "unicast %d\n",
7175                       priv->qos_data.qos_enable, active, supported, unicast);
7176         if (active && priv->qos_data.qos_enable)
7177                 return 1;
7178
7179         return 0;
7180
7181 }
7182 /*
7183 * add QoS parameter to the TX command
7184 */
7185 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7186                                         u16 priority,
7187                                         struct tfd_data *tfd)
7188 {
7189         int tx_queue_id = 0;
7190
7191
7192         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7193         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7194
7195         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7196                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7197                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7198         }
7199         return 0;
7200 }
7201
7202 /*
7203 * background support to run QoS activate functionality
7204 */
7205 static void ipw_bg_qos_activate(struct work_struct *work)
7206 {
7207         struct ipw_priv *priv =
7208                 container_of(work, struct ipw_priv, qos_activate);
7209
7210         mutex_lock(&priv->mutex);
7211
7212         if (priv->status & STATUS_ASSOCIATED)
7213                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7214
7215         mutex_unlock(&priv->mutex);
7216 }
7217
7218 static int ipw_handle_probe_response(struct net_device *dev,
7219                                      struct libipw_probe_response *resp,
7220                                      struct libipw_network *network)
7221 {
7222         struct ipw_priv *priv = libipw_priv(dev);
7223         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7224                               (network == priv->assoc_network));
7225
7226         ipw_qos_handle_probe_response(priv, active_network, network);
7227
7228         return 0;
7229 }
7230
7231 static int ipw_handle_beacon(struct net_device *dev,
7232                              struct libipw_beacon *resp,
7233                              struct libipw_network *network)
7234 {
7235         struct ipw_priv *priv = libipw_priv(dev);
7236         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7237                               (network == priv->assoc_network));
7238
7239         ipw_qos_handle_probe_response(priv, active_network, network);
7240
7241         return 0;
7242 }
7243
7244 static int ipw_handle_assoc_response(struct net_device *dev,
7245                                      struct libipw_assoc_response *resp,
7246                                      struct libipw_network *network)
7247 {
7248         struct ipw_priv *priv = libipw_priv(dev);
7249         ipw_qos_association_resp(priv, network);
7250         return 0;
7251 }
7252
7253 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7254                                        *qos_param)
7255 {
7256         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7257                                 sizeof(*qos_param) * 3, qos_param);
7258 }
7259
7260 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7261                                      *qos_param)
7262 {
7263         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7264                                 qos_param);
7265 }
7266
7267 #endif                          /* CONFIG_IPW2200_QOS */
7268
7269 static int ipw_associate_network(struct ipw_priv *priv,
7270                                  struct libipw_network *network,
7271                                  struct ipw_supported_rates *rates, int roaming)
7272 {
7273         int err;
7274
7275         if (priv->config & CFG_FIXED_RATE)
7276                 ipw_set_fixed_rate(priv, network->mode);
7277
7278         if (!(priv->config & CFG_STATIC_ESSID)) {
7279                 priv->essid_len = min(network->ssid_len,
7280                                       (u8) IW_ESSID_MAX_SIZE);
7281                 memcpy(priv->essid, network->ssid, priv->essid_len);
7282         }
7283
7284         network->last_associate = jiffies;
7285
7286         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7287         priv->assoc_request.channel = network->channel;
7288         priv->assoc_request.auth_key = 0;
7289
7290         if ((priv->capability & CAP_PRIVACY_ON) &&
7291             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7292                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7293                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7294
7295                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7296                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7297
7298         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7299                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7300                 priv->assoc_request.auth_type = AUTH_LEAP;
7301         else
7302                 priv->assoc_request.auth_type = AUTH_OPEN;
7303
7304         if (priv->ieee->wpa_ie_len) {
7305                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7306                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7307                                  priv->ieee->wpa_ie_len);
7308         }
7309
7310         /*
7311          * It is valid for our ieee device to support multiple modes, but
7312          * when it comes to associating to a given network we have to choose
7313          * just one mode.
7314          */
7315         if (network->mode & priv->ieee->mode & IEEE_A)
7316                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7317         else if (network->mode & priv->ieee->mode & IEEE_G)
7318                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7319         else if (network->mode & priv->ieee->mode & IEEE_B)
7320                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7321
7322         priv->assoc_request.capability = cpu_to_le16(network->capability);
7323         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7324             && !(priv->config & CFG_PREAMBLE_LONG)) {
7325                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7326         } else {
7327                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7328
7329                 /* Clear the short preamble if we won't be supporting it */
7330                 priv->assoc_request.capability &=
7331                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7332         }
7333
7334         /* Clear capability bits that aren't used in Ad Hoc */
7335         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7336                 priv->assoc_request.capability &=
7337                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7338
7339         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7340                         roaming ? "Rea" : "A",
7341                         priv->essid_len, priv->essid,
7342                         network->channel,
7343                         ipw_modes[priv->assoc_request.ieee_mode],
7344                         rates->num_rates,
7345                         (priv->assoc_request.preamble_length ==
7346                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7347                         network->capability &
7348                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7349                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7350                         priv->capability & CAP_PRIVACY_ON ?
7351                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7352                          "(open)") : "",
7353                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7354                         priv->capability & CAP_PRIVACY_ON ?
7355                         '1' + priv->ieee->sec.active_key : '.',
7356                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7357
7358         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7359         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7360             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7361                 priv->assoc_request.assoc_type = HC_IBSS_START;
7362                 priv->assoc_request.assoc_tsf_msw = 0;
7363                 priv->assoc_request.assoc_tsf_lsw = 0;
7364         } else {
7365                 if (unlikely(roaming))
7366                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7367                 else
7368                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7369                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7370                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7371         }
7372
7373         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7374
7375         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7376                 eth_broadcast_addr(priv->assoc_request.dest);
7377                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7378         } else {
7379                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7380                 priv->assoc_request.atim_window = 0;
7381         }
7382
7383         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7384
7385         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7386         if (err) {
7387                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7388                 return err;
7389         }
7390
7391         rates->ieee_mode = priv->assoc_request.ieee_mode;
7392         rates->purpose = IPW_RATE_CONNECT;
7393         ipw_send_supported_rates(priv, rates);
7394
7395         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7396                 priv->sys_config.dot11g_auto_detection = 1;
7397         else
7398                 priv->sys_config.dot11g_auto_detection = 0;
7399
7400         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7401                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7402         else
7403                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7404
7405         err = ipw_send_system_config(priv);
7406         if (err) {
7407                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7408                 return err;
7409         }
7410
7411         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7412         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7413         if (err) {
7414                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7415                 return err;
7416         }
7417
7418         /*
7419          * If preemption is enabled, it is possible for the association
7420          * to complete before we return from ipw_send_associate.  Therefore
7421          * we have to be sure and update our priviate data first.
7422          */
7423         priv->channel = network->channel;
7424         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7425         priv->status |= STATUS_ASSOCIATING;
7426         priv->status &= ~STATUS_SECURITY_UPDATED;
7427
7428         priv->assoc_network = network;
7429
7430 #ifdef CONFIG_IPW2200_QOS
7431         ipw_qos_association(priv, network);
7432 #endif
7433
7434         err = ipw_send_associate(priv, &priv->assoc_request);
7435         if (err) {
7436                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7437                 return err;
7438         }
7439
7440         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7441                   priv->essid_len, priv->essid, priv->bssid);
7442
7443         return 0;
7444 }
7445
7446 static void ipw_roam(void *data)
7447 {
7448         struct ipw_priv *priv = data;
7449         struct libipw_network *network = NULL;
7450         struct ipw_network_match match = {
7451                 .network = priv->assoc_network
7452         };
7453
7454         /* The roaming process is as follows:
7455          *
7456          * 1.  Missed beacon threshold triggers the roaming process by
7457          *     setting the status ROAM bit and requesting a scan.
7458          * 2.  When the scan completes, it schedules the ROAM work
7459          * 3.  The ROAM work looks at all of the known networks for one that
7460          *     is a better network than the currently associated.  If none
7461          *     found, the ROAM process is over (ROAM bit cleared)
7462          * 4.  If a better network is found, a disassociation request is
7463          *     sent.
7464          * 5.  When the disassociation completes, the roam work is again
7465          *     scheduled.  The second time through, the driver is no longer
7466          *     associated, and the newly selected network is sent an
7467          *     association request.
7468          * 6.  At this point ,the roaming process is complete and the ROAM
7469          *     status bit is cleared.
7470          */
7471
7472         /* If we are no longer associated, and the roaming bit is no longer
7473          * set, then we are not actively roaming, so just return */
7474         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475                 return;
7476
7477         if (priv->status & STATUS_ASSOCIATED) {
7478                 /* First pass through ROAM process -- look for a better
7479                  * network */
7480                 unsigned long flags;
7481                 u8 rssi = priv->assoc_network->stats.rssi;
7482                 priv->assoc_network->stats.rssi = -128;
7483                 spin_lock_irqsave(&priv->ieee->lock, flags);
7484                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7485                         if (network != priv->assoc_network)
7486                                 ipw_best_network(priv, &match, network, 1);
7487                 }
7488                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489                 priv->assoc_network->stats.rssi = rssi;
7490
7491                 if (match.network == priv->assoc_network) {
7492                         IPW_DEBUG_ASSOC("No better APs in this network to "
7493                                         "roam to.\n");
7494                         priv->status &= ~STATUS_ROAMING;
7495                         ipw_debug_config(priv);
7496                         return;
7497                 }
7498
7499                 ipw_send_disassociate(priv, 1);
7500                 priv->assoc_network = match.network;
7501
7502                 return;
7503         }
7504
7505         /* Second pass through ROAM process -- request association */
7506         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508         priv->status &= ~STATUS_ROAMING;
7509 }
7510
7511 static void ipw_bg_roam(struct work_struct *work)
7512 {
7513         struct ipw_priv *priv =
7514                 container_of(work, struct ipw_priv, roam);
7515         mutex_lock(&priv->mutex);
7516         ipw_roam(priv);
7517         mutex_unlock(&priv->mutex);
7518 }
7519
7520 static int ipw_associate(void *data)
7521 {
7522         struct ipw_priv *priv = data;
7523
7524         struct libipw_network *network = NULL;
7525         struct ipw_network_match match = {
7526                 .network = NULL
7527         };
7528         struct ipw_supported_rates *rates;
7529         struct list_head *element;
7530         unsigned long flags;
7531
7532         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534                 return 0;
7535         }
7536
7537         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7539                                 "progress)\n");
7540                 return 0;
7541         }
7542
7543         if (priv->status & STATUS_DISASSOCIATING) {
7544                 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7545                 schedule_work(&priv->associate);
7546                 return 0;
7547         }
7548
7549         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7550                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7551                                 "initialized)\n");
7552                 return 0;
7553         }
7554
7555         if (!(priv->config & CFG_ASSOCIATE) &&
7556             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7557                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7558                 return 0;
7559         }
7560
7561         /* Protect our use of the network_list */
7562         spin_lock_irqsave(&priv->ieee->lock, flags);
7563         list_for_each_entry(network, &priv->ieee->network_list, list)
7564             ipw_best_network(priv, &match, network, 0);
7565
7566         network = match.network;
7567         rates = &match.rates;
7568
7569         if (network == NULL &&
7570             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7571             priv->config & CFG_ADHOC_CREATE &&
7572             priv->config & CFG_STATIC_ESSID &&
7573             priv->config & CFG_STATIC_CHANNEL) {
7574                 /* Use oldest network if the free list is empty */
7575                 if (list_empty(&priv->ieee->network_free_list)) {
7576                         struct libipw_network *oldest = NULL;
7577                         struct libipw_network *target;
7578
7579                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7580                                 if ((oldest == NULL) ||
7581                                     (target->last_scanned < oldest->last_scanned))
7582                                         oldest = target;
7583                         }
7584
7585                         /* If there are no more slots, expire the oldest */
7586                         list_del(&oldest->list);
7587                         target = oldest;
7588                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7589                                         target->ssid_len, target->ssid,
7590                                         target->bssid);
7591                         list_add_tail(&target->list,
7592                                       &priv->ieee->network_free_list);
7593                 }
7594
7595                 element = priv->ieee->network_free_list.next;
7596                 network = list_entry(element, struct libipw_network, list);
7597                 ipw_adhoc_create(priv, network);
7598                 rates = &priv->rates;
7599                 list_del(element);
7600                 list_add_tail(&network->list, &priv->ieee->network_list);
7601         }
7602         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7603
7604         /* If we reached the end of the list, then we don't have any valid
7605          * matching APs */
7606         if (!network) {
7607                 ipw_debug_config(priv);
7608
7609                 if (!(priv->status & STATUS_SCANNING)) {
7610                         if (!(priv->config & CFG_SPEED_SCAN))
7611                                 schedule_delayed_work(&priv->request_scan,
7612                                                       SCAN_INTERVAL);
7613                         else
7614                                 schedule_delayed_work(&priv->request_scan, 0);
7615                 }
7616
7617                 return 0;
7618         }
7619
7620         ipw_associate_network(priv, network, rates, 0);
7621
7622         return 1;
7623 }
7624
7625 static void ipw_bg_associate(struct work_struct *work)
7626 {
7627         struct ipw_priv *priv =
7628                 container_of(work, struct ipw_priv, associate);
7629         mutex_lock(&priv->mutex);
7630         ipw_associate(priv);
7631         mutex_unlock(&priv->mutex);
7632 }
7633
7634 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7635                                       struct sk_buff *skb)
7636 {
7637         struct ieee80211_hdr *hdr;
7638         u16 fc;
7639
7640         hdr = (struct ieee80211_hdr *)skb->data;
7641         fc = le16_to_cpu(hdr->frame_control);
7642         if (!(fc & IEEE80211_FCTL_PROTECTED))
7643                 return;
7644
7645         fc &= ~IEEE80211_FCTL_PROTECTED;
7646         hdr->frame_control = cpu_to_le16(fc);
7647         switch (priv->ieee->sec.level) {
7648         case SEC_LEVEL_3:
7649                 /* Remove CCMP HDR */
7650                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7651                         skb->data + LIBIPW_3ADDR_LEN + 8,
7652                         skb->len - LIBIPW_3ADDR_LEN - 8);
7653                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7654                 break;
7655         case SEC_LEVEL_2:
7656                 break;
7657         case SEC_LEVEL_1:
7658                 /* Remove IV */
7659                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7660                         skb->data + LIBIPW_3ADDR_LEN + 4,
7661                         skb->len - LIBIPW_3ADDR_LEN - 4);
7662                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7663                 break;
7664         case SEC_LEVEL_0:
7665                 break;
7666         default:
7667                 printk(KERN_ERR "Unknown security level %d\n",
7668                        priv->ieee->sec.level);
7669                 break;
7670         }
7671 }
7672
7673 static void ipw_handle_data_packet(struct ipw_priv *priv,
7674                                    struct ipw_rx_mem_buffer *rxb,
7675                                    struct libipw_rx_stats *stats)
7676 {
7677         struct net_device *dev = priv->net_dev;
7678         struct libipw_hdr_4addr *hdr;
7679         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7680
7681         /* We received data from the HW, so stop the watchdog */
7682         netif_trans_update(dev);
7683
7684         /* We only process data packets if the
7685          * interface is open */
7686         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7687                      skb_tailroom(rxb->skb))) {
7688                 dev->stats.rx_errors++;
7689                 priv->wstats.discard.misc++;
7690                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7691                 return;
7692         } else if (unlikely(!netif_running(priv->net_dev))) {
7693                 dev->stats.rx_dropped++;
7694                 priv->wstats.discard.misc++;
7695                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7696                 return;
7697         }
7698
7699         /* Advance skb->data to the start of the actual payload */
7700         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7701
7702         /* Set the size of the skb to the size of the frame */
7703         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7704
7705         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7706
7707         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7708         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7709         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7710             (is_multicast_ether_addr(hdr->addr1) ?
7711              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7712                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7713
7714         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7715                 dev->stats.rx_errors++;
7716         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7717                 rxb->skb = NULL;
7718                 __ipw_led_activity_on(priv);
7719         }
7720 }
7721
7722 #ifdef CONFIG_IPW2200_RADIOTAP
7723 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7724                                            struct ipw_rx_mem_buffer *rxb,
7725                                            struct libipw_rx_stats *stats)
7726 {
7727         struct net_device *dev = priv->net_dev;
7728         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7729         struct ipw_rx_frame *frame = &pkt->u.frame;
7730
7731         /* initial pull of some data */
7732         u16 received_channel = frame->received_channel;
7733         u8 antennaAndPhy = frame->antennaAndPhy;
7734         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7735         u16 pktrate = frame->rate;
7736
7737         /* Magic struct that slots into the radiotap header -- no reason
7738          * to build this manually element by element, we can write it much
7739          * more efficiently than we can parse it. ORDER MATTERS HERE */
7740         struct ipw_rt_hdr *ipw_rt;
7741
7742         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7743
7744         /* We received data from the HW, so stop the watchdog */
7745         netif_trans_update(dev);
7746
7747         /* We only process data packets if the
7748          * interface is open */
7749         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7750                      skb_tailroom(rxb->skb))) {
7751                 dev->stats.rx_errors++;
7752                 priv->wstats.discard.misc++;
7753                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7754                 return;
7755         } else if (unlikely(!netif_running(priv->net_dev))) {
7756                 dev->stats.rx_dropped++;
7757                 priv->wstats.discard.misc++;
7758                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7759                 return;
7760         }
7761
7762         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7763          * that now */
7764         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7765                 /* FIXME: Should alloc bigger skb instead */
7766                 dev->stats.rx_dropped++;
7767                 priv->wstats.discard.misc++;
7768                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7769                 return;
7770         }
7771
7772         /* copy the frame itself */
7773         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7774                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7775
7776         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7777
7778         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7779         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7780         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7781
7782         /* Big bitfield of all the fields we provide in radiotap */
7783         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7784              (1 << IEEE80211_RADIOTAP_TSFT) |
7785              (1 << IEEE80211_RADIOTAP_FLAGS) |
7786              (1 << IEEE80211_RADIOTAP_RATE) |
7787              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7788              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7789              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7790              (1 << IEEE80211_RADIOTAP_ANTENNA));
7791
7792         /* Zero the flags, we'll add to them as we go */
7793         ipw_rt->rt_flags = 0;
7794         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7795                                frame->parent_tsf[2] << 16 |
7796                                frame->parent_tsf[1] << 8  |
7797                                frame->parent_tsf[0]);
7798
7799         /* Convert signal to DBM */
7800         ipw_rt->rt_dbmsignal = antsignal;
7801         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7802
7803         /* Convert the channel data and set the flags */
7804         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7805         if (received_channel > 14) {    /* 802.11a */
7806                 ipw_rt->rt_chbitmask =
7807                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7808         } else if (antennaAndPhy & 32) {        /* 802.11b */
7809                 ipw_rt->rt_chbitmask =
7810                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7811         } else {                /* 802.11g */
7812                 ipw_rt->rt_chbitmask =
7813                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7814         }
7815
7816         /* set the rate in multiples of 500k/s */
7817         switch (pktrate) {
7818         case IPW_TX_RATE_1MB:
7819                 ipw_rt->rt_rate = 2;
7820                 break;
7821         case IPW_TX_RATE_2MB:
7822                 ipw_rt->rt_rate = 4;
7823                 break;
7824         case IPW_TX_RATE_5MB:
7825                 ipw_rt->rt_rate = 10;
7826                 break;
7827         case IPW_TX_RATE_6MB:
7828                 ipw_rt->rt_rate = 12;
7829                 break;
7830         case IPW_TX_RATE_9MB:
7831                 ipw_rt->rt_rate = 18;
7832                 break;
7833         case IPW_TX_RATE_11MB:
7834                 ipw_rt->rt_rate = 22;
7835                 break;
7836         case IPW_TX_RATE_12MB:
7837                 ipw_rt->rt_rate = 24;
7838                 break;
7839         case IPW_TX_RATE_18MB:
7840                 ipw_rt->rt_rate = 36;
7841                 break;
7842         case IPW_TX_RATE_24MB:
7843                 ipw_rt->rt_rate = 48;
7844                 break;
7845         case IPW_TX_RATE_36MB:
7846                 ipw_rt->rt_rate = 72;
7847                 break;
7848         case IPW_TX_RATE_48MB:
7849                 ipw_rt->rt_rate = 96;
7850                 break;
7851         case IPW_TX_RATE_54MB:
7852                 ipw_rt->rt_rate = 108;
7853                 break;
7854         default:
7855                 ipw_rt->rt_rate = 0;
7856                 break;
7857         }
7858
7859         /* antenna number */
7860         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7861
7862         /* set the preamble flag if we have it */
7863         if ((antennaAndPhy & 64))
7864                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7865
7866         /* Set the size of the skb to the size of the frame */
7867         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7868
7869         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7870
7871         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7872                 dev->stats.rx_errors++;
7873         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7874                 rxb->skb = NULL;
7875                 /* no LED during capture */
7876         }
7877 }
7878 #endif
7879
7880 #ifdef CONFIG_IPW2200_PROMISCUOUS
7881 #define libipw_is_probe_response(fc) \
7882    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7883     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7884
7885 #define libipw_is_management(fc) \
7886    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7887
7888 #define libipw_is_control(fc) \
7889    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7890
7891 #define libipw_is_data(fc) \
7892    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7893
7894 #define libipw_is_assoc_request(fc) \
7895    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7896
7897 #define libipw_is_reassoc_request(fc) \
7898    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7899
7900 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7901                                       struct ipw_rx_mem_buffer *rxb,
7902                                       struct libipw_rx_stats *stats)
7903 {
7904         struct net_device *dev = priv->prom_net_dev;
7905         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7906         struct ipw_rx_frame *frame = &pkt->u.frame;
7907         struct ipw_rt_hdr *ipw_rt;
7908
7909         /* First cache any information we need before we overwrite
7910          * the information provided in the skb from the hardware */
7911         struct ieee80211_hdr *hdr;
7912         u16 channel = frame->received_channel;
7913         u8 phy_flags = frame->antennaAndPhy;
7914         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7915         s8 noise = (s8) le16_to_cpu(frame->noise);
7916         u8 rate = frame->rate;
7917         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7918         struct sk_buff *skb;
7919         int hdr_only = 0;
7920         u16 filter = priv->prom_priv->filter;
7921
7922         /* If the filter is set to not include Rx frames then return */
7923         if (filter & IPW_PROM_NO_RX)
7924                 return;
7925
7926         /* We received data from the HW, so stop the watchdog */
7927         netif_trans_update(dev);
7928
7929         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7930                 dev->stats.rx_errors++;
7931                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7932                 return;
7933         }
7934
7935         /* We only process data packets if the interface is open */
7936         if (unlikely(!netif_running(dev))) {
7937                 dev->stats.rx_dropped++;
7938                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7939                 return;
7940         }
7941
7942         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7943          * that now */
7944         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7945                 /* FIXME: Should alloc bigger skb instead */
7946                 dev->stats.rx_dropped++;
7947                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7948                 return;
7949         }
7950
7951         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7952         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7953                 if (filter & IPW_PROM_NO_MGMT)
7954                         return;
7955                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7956                         hdr_only = 1;
7957         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7958                 if (filter & IPW_PROM_NO_CTL)
7959                         return;
7960                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7961                         hdr_only = 1;
7962         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7963                 if (filter & IPW_PROM_NO_DATA)
7964                         return;
7965                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7966                         hdr_only = 1;
7967         }
7968
7969         /* Copy the SKB since this is for the promiscuous side */
7970         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7971         if (skb == NULL) {
7972                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7973                 return;
7974         }
7975
7976         /* copy the frame data to write after where the radiotap header goes */
7977         ipw_rt = (void *)skb->data;
7978
7979         if (hdr_only)
7980                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7981
7982         memcpy(ipw_rt->payload, hdr, len);
7983
7984         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7985         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7986         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
7987
7988         /* Set the size of the skb to the size of the frame */
7989         skb_put(skb, sizeof(*ipw_rt) + len);
7990
7991         /* Big bitfield of all the fields we provide in radiotap */
7992         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7993              (1 << IEEE80211_RADIOTAP_TSFT) |
7994              (1 << IEEE80211_RADIOTAP_FLAGS) |
7995              (1 << IEEE80211_RADIOTAP_RATE) |
7996              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7997              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7998              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7999              (1 << IEEE80211_RADIOTAP_ANTENNA));
8000
8001         /* Zero the flags, we'll add to them as we go */
8002         ipw_rt->rt_flags = 0;
8003         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8004                                frame->parent_tsf[2] << 16 |
8005                                frame->parent_tsf[1] << 8  |
8006                                frame->parent_tsf[0]);
8007
8008         /* Convert to DBM */
8009         ipw_rt->rt_dbmsignal = signal;
8010         ipw_rt->rt_dbmnoise = noise;
8011
8012         /* Convert the channel data and set the flags */
8013         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8014         if (channel > 14) {     /* 802.11a */
8015                 ipw_rt->rt_chbitmask =
8016                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8017         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8018                 ipw_rt->rt_chbitmask =
8019                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8020         } else {                /* 802.11g */
8021                 ipw_rt->rt_chbitmask =
8022                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8023         }
8024
8025         /* set the rate in multiples of 500k/s */
8026         switch (rate) {
8027         case IPW_TX_RATE_1MB:
8028                 ipw_rt->rt_rate = 2;
8029                 break;
8030         case IPW_TX_RATE_2MB:
8031                 ipw_rt->rt_rate = 4;
8032                 break;
8033         case IPW_TX_RATE_5MB:
8034                 ipw_rt->rt_rate = 10;
8035                 break;
8036         case IPW_TX_RATE_6MB:
8037                 ipw_rt->rt_rate = 12;
8038                 break;
8039         case IPW_TX_RATE_9MB:
8040                 ipw_rt->rt_rate = 18;
8041                 break;
8042         case IPW_TX_RATE_11MB:
8043                 ipw_rt->rt_rate = 22;
8044                 break;
8045         case IPW_TX_RATE_12MB:
8046                 ipw_rt->rt_rate = 24;
8047                 break;
8048         case IPW_TX_RATE_18MB:
8049                 ipw_rt->rt_rate = 36;
8050                 break;
8051         case IPW_TX_RATE_24MB:
8052                 ipw_rt->rt_rate = 48;
8053                 break;
8054         case IPW_TX_RATE_36MB:
8055                 ipw_rt->rt_rate = 72;
8056                 break;
8057         case IPW_TX_RATE_48MB:
8058                 ipw_rt->rt_rate = 96;
8059                 break;
8060         case IPW_TX_RATE_54MB:
8061                 ipw_rt->rt_rate = 108;
8062                 break;
8063         default:
8064                 ipw_rt->rt_rate = 0;
8065                 break;
8066         }
8067
8068         /* antenna number */
8069         ipw_rt->rt_antenna = (phy_flags & 3);
8070
8071         /* set the preamble flag if we have it */
8072         if (phy_flags & (1 << 6))
8073                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8074
8075         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8076
8077         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8078                 dev->stats.rx_errors++;
8079                 dev_kfree_skb_any(skb);
8080         }
8081 }
8082 #endif
8083
8084 static int is_network_packet(struct ipw_priv *priv,
8085                                     struct libipw_hdr_4addr *header)
8086 {
8087         /* Filter incoming packets to determine if they are targeted toward
8088          * this network, discarding packets coming from ourselves */
8089         switch (priv->ieee->iw_mode) {
8090         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8091                 /* packets from our adapter are dropped (echo) */
8092                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8093                         return 0;
8094
8095                 /* {broad,multi}cast packets to our BSSID go through */
8096                 if (is_multicast_ether_addr(header->addr1))
8097                         return ether_addr_equal(header->addr3, priv->bssid);
8098
8099                 /* packets to our adapter go through */
8100                 return ether_addr_equal(header->addr1,
8101                                         priv->net_dev->dev_addr);
8102
8103         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8104                 /* packets from our adapter are dropped (echo) */
8105                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8106                         return 0;
8107
8108                 /* {broad,multi}cast packets to our BSS go through */
8109                 if (is_multicast_ether_addr(header->addr1))
8110                         return ether_addr_equal(header->addr2, priv->bssid);
8111
8112                 /* packets to our adapter go through */
8113                 return ether_addr_equal(header->addr1,
8114                                         priv->net_dev->dev_addr);
8115         }
8116
8117         return 1;
8118 }
8119
8120 #define IPW_PACKET_RETRY_TIME HZ
8121
8122 static  int is_duplicate_packet(struct ipw_priv *priv,
8123                                       struct libipw_hdr_4addr *header)
8124 {
8125         u16 sc = le16_to_cpu(header->seq_ctl);
8126         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8127         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8128         u16 *last_seq, *last_frag;
8129         unsigned long *last_time;
8130
8131         switch (priv->ieee->iw_mode) {
8132         case IW_MODE_ADHOC:
8133                 {
8134                         struct list_head *p;
8135                         struct ipw_ibss_seq *entry = NULL;
8136                         u8 *mac = header->addr2;
8137                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8138
8139                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8140                                 entry =
8141                                     list_entry(p, struct ipw_ibss_seq, list);
8142                                 if (ether_addr_equal(entry->mac, mac))
8143                                         break;
8144                         }
8145                         if (p == &priv->ibss_mac_hash[index]) {
8146                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8147                                 if (!entry) {
8148                                         IPW_ERROR
8149                                             ("Cannot malloc new mac entry\n");
8150                                         return 0;
8151                                 }
8152                                 memcpy(entry->mac, mac, ETH_ALEN);
8153                                 entry->seq_num = seq;
8154                                 entry->frag_num = frag;
8155                                 entry->packet_time = jiffies;
8156                                 list_add(&entry->list,
8157                                          &priv->ibss_mac_hash[index]);
8158                                 return 0;
8159                         }
8160                         last_seq = &entry->seq_num;
8161                         last_frag = &entry->frag_num;
8162                         last_time = &entry->packet_time;
8163                         break;
8164                 }
8165         case IW_MODE_INFRA:
8166                 last_seq = &priv->last_seq_num;
8167                 last_frag = &priv->last_frag_num;
8168                 last_time = &priv->last_packet_time;
8169                 break;
8170         default:
8171                 return 0;
8172         }
8173         if ((*last_seq == seq) &&
8174             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8175                 if (*last_frag == frag)
8176                         goto drop;
8177                 if (*last_frag + 1 != frag)
8178                         /* out-of-order fragment */
8179                         goto drop;
8180         } else
8181                 *last_seq = seq;
8182
8183         *last_frag = frag;
8184         *last_time = jiffies;
8185         return 0;
8186
8187       drop:
8188         /* Comment this line now since we observed the card receives
8189          * duplicate packets but the FCTL_RETRY bit is not set in the
8190          * IBSS mode with fragmentation enabled.
8191          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8192         return 1;
8193 }
8194
8195 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8196                                    struct ipw_rx_mem_buffer *rxb,
8197                                    struct libipw_rx_stats *stats)
8198 {
8199         struct sk_buff *skb = rxb->skb;
8200         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8201         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8202             (skb->data + IPW_RX_FRAME_SIZE);
8203
8204         libipw_rx_mgt(priv->ieee, header, stats);
8205
8206         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8207             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208               IEEE80211_STYPE_PROBE_RESP) ||
8209              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8210               IEEE80211_STYPE_BEACON))) {
8211                 if (ether_addr_equal(header->addr3, priv->bssid))
8212                         ipw_add_station(priv, header->addr2);
8213         }
8214
8215         if (priv->config & CFG_NET_STATS) {
8216                 IPW_DEBUG_HC("sending stat packet\n");
8217
8218                 /* Set the size of the skb to the size of the full
8219                  * ipw header and 802.11 frame */
8220                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8221                         IPW_RX_FRAME_SIZE);
8222
8223                 /* Advance past the ipw packet header to the 802.11 frame */
8224                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8225
8226                 /* Push the libipw_rx_stats before the 802.11 frame */
8227                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8228
8229                 skb->dev = priv->ieee->dev;
8230
8231                 /* Point raw at the libipw_stats */
8232                 skb_reset_mac_header(skb);
8233
8234                 skb->pkt_type = PACKET_OTHERHOST;
8235                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8236                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8237                 netif_rx(skb);
8238                 rxb->skb = NULL;
8239         }
8240 }
8241
8242 /*
8243  * Main entry function for receiving a packet with 80211 headers.  This
8244  * should be called when ever the FW has notified us that there is a new
8245  * skb in the receive queue.
8246  */
8247 static void ipw_rx(struct ipw_priv *priv)
8248 {
8249         struct ipw_rx_mem_buffer *rxb;
8250         struct ipw_rx_packet *pkt;
8251         struct libipw_hdr_4addr *header;
8252         u32 r, w, i;
8253         u8 network_packet;
8254         u8 fill_rx = 0;
8255
8256         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8257         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8258         i = priv->rxq->read;
8259
8260         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8261                 fill_rx = 1;
8262
8263         while (i != r) {
8264                 rxb = priv->rxq->queue[i];
8265                 if (unlikely(rxb == NULL)) {
8266                         printk(KERN_CRIT "Queue not allocated!\n");
8267                         break;
8268                 }
8269                 priv->rxq->queue[i] = NULL;
8270
8271                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8272                                             IPW_RX_BUF_SIZE,
8273                                             PCI_DMA_FROMDEVICE);
8274
8275                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8276                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8277                              pkt->header.message_type,
8278                              pkt->header.rx_seq_num, pkt->header.control_bits);
8279
8280                 switch (pkt->header.message_type) {
8281                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8282                                 struct libipw_rx_stats stats = {
8283                                         .rssi = pkt->u.frame.rssi_dbm -
8284                                             IPW_RSSI_TO_DBM,
8285                                         .signal =
8286                                             pkt->u.frame.rssi_dbm -
8287                                             IPW_RSSI_TO_DBM + 0x100,
8288                                         .noise =
8289                                             le16_to_cpu(pkt->u.frame.noise),
8290                                         .rate = pkt->u.frame.rate,
8291                                         .mac_time = jiffies,
8292                                         .received_channel =
8293                                             pkt->u.frame.received_channel,
8294                                         .freq =
8295                                             (pkt->u.frame.
8296                                              control & (1 << 0)) ?
8297                                             LIBIPW_24GHZ_BAND :
8298                                             LIBIPW_52GHZ_BAND,
8299                                         .len = le16_to_cpu(pkt->u.frame.length),
8300                                 };
8301
8302                                 if (stats.rssi != 0)
8303                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8304                                 if (stats.signal != 0)
8305                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8306                                 if (stats.noise != 0)
8307                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8308                                 if (stats.rate != 0)
8309                                         stats.mask |= LIBIPW_STATMASK_RATE;
8310
8311                                 priv->rx_packets++;
8312
8313 #ifdef CONFIG_IPW2200_PROMISCUOUS
8314         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8315                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8316 #endif
8317
8318 #ifdef CONFIG_IPW2200_MONITOR
8319                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8320 #ifdef CONFIG_IPW2200_RADIOTAP
8321
8322                 ipw_handle_data_packet_monitor(priv,
8323                                                rxb,
8324                                                &stats);
8325 #else
8326                 ipw_handle_data_packet(priv, rxb,
8327                                        &stats);
8328 #endif
8329                                         break;
8330                                 }
8331 #endif
8332
8333                                 header =
8334                                     (struct libipw_hdr_4addr *)(rxb->skb->
8335                                                                    data +
8336                                                                    IPW_RX_FRAME_SIZE);
8337                                 /* TODO: Check Ad-Hoc dest/source and make sure
8338                                  * that we are actually parsing these packets
8339                                  * correctly -- we should probably use the
8340                                  * frame control of the packet and disregard
8341                                  * the current iw_mode */
8342
8343                                 network_packet =
8344                                     is_network_packet(priv, header);
8345                                 if (network_packet && priv->assoc_network) {
8346                                         priv->assoc_network->stats.rssi =
8347                                             stats.rssi;
8348                                         priv->exp_avg_rssi =
8349                                             exponential_average(priv->exp_avg_rssi,
8350                                             stats.rssi, DEPTH_RSSI);
8351                                 }
8352
8353                                 IPW_DEBUG_RX("Frame: len=%u\n",
8354                                              le16_to_cpu(pkt->u.frame.length));
8355
8356                                 if (le16_to_cpu(pkt->u.frame.length) <
8357                                     libipw_get_hdrlen(le16_to_cpu(
8358                                                     header->frame_ctl))) {
8359                                         IPW_DEBUG_DROP
8360                                             ("Received packet is too small. "
8361                                              "Dropping.\n");
8362                                         priv->net_dev->stats.rx_errors++;
8363                                         priv->wstats.discard.misc++;
8364                                         break;
8365                                 }
8366
8367                                 switch (WLAN_FC_GET_TYPE
8368                                         (le16_to_cpu(header->frame_ctl))) {
8369
8370                                 case IEEE80211_FTYPE_MGMT:
8371                                         ipw_handle_mgmt_packet(priv, rxb,
8372                                                                &stats);
8373                                         break;
8374
8375                                 case IEEE80211_FTYPE_CTL:
8376                                         break;
8377
8378                                 case IEEE80211_FTYPE_DATA:
8379                                         if (unlikely(!network_packet ||
8380                                                      is_duplicate_packet(priv,
8381                                                                          header)))
8382                                         {
8383                                                 IPW_DEBUG_DROP("Dropping: "
8384                                                                "%pM, "
8385                                                                "%pM, "
8386                                                                "%pM\n",
8387                                                                header->addr1,
8388                                                                header->addr2,
8389                                                                header->addr3);
8390                                                 break;
8391                                         }
8392
8393                                         ipw_handle_data_packet(priv, rxb,
8394                                                                &stats);
8395
8396                                         break;
8397                                 }
8398                                 break;
8399                         }
8400
8401                 case RX_HOST_NOTIFICATION_TYPE:{
8402                                 IPW_DEBUG_RX
8403                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8404                                      pkt->u.notification.subtype,
8405                                      pkt->u.notification.flags,
8406                                      le16_to_cpu(pkt->u.notification.size));
8407                                 ipw_rx_notification(priv, &pkt->u.notification);
8408                                 break;
8409                         }
8410
8411                 default:
8412                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8413                                      pkt->header.message_type);
8414                         break;
8415                 }
8416
8417                 /* For now we just don't re-use anything.  We can tweak this
8418                  * later to try and re-use notification packets and SKBs that
8419                  * fail to Rx correctly */
8420                 if (rxb->skb != NULL) {
8421                         dev_kfree_skb_any(rxb->skb);
8422                         rxb->skb = NULL;
8423                 }
8424
8425                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8426                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8427                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8428
8429                 i = (i + 1) % RX_QUEUE_SIZE;
8430
8431                 /* If there are a lot of unsued frames, restock the Rx queue
8432                  * so the ucode won't assert */
8433                 if (fill_rx) {
8434                         priv->rxq->read = i;
8435                         ipw_rx_queue_replenish(priv);
8436                 }
8437         }
8438
8439         /* Backtrack one entry */
8440         priv->rxq->read = i;
8441         ipw_rx_queue_restock(priv);
8442 }
8443
8444 #define DEFAULT_RTS_THRESHOLD     2304U
8445 #define MIN_RTS_THRESHOLD         1U
8446 #define MAX_RTS_THRESHOLD         2304U
8447 #define DEFAULT_BEACON_INTERVAL   100U
8448 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8449 #define DEFAULT_LONG_RETRY_LIMIT  4U
8450
8451 /**
8452  * ipw_sw_reset
8453  * @option: options to control different reset behaviour
8454  *          0 = reset everything except the 'disable' module_param
8455  *          1 = reset everything and print out driver info (for probe only)
8456  *          2 = reset everything
8457  */
8458 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8459 {
8460         int band, modulation;
8461         int old_mode = priv->ieee->iw_mode;
8462
8463         /* Initialize module parameter values here */
8464         priv->config = 0;
8465
8466         /* We default to disabling the LED code as right now it causes
8467          * too many systems to lock up... */
8468         if (!led_support)
8469                 priv->config |= CFG_NO_LED;
8470
8471         if (associate)
8472                 priv->config |= CFG_ASSOCIATE;
8473         else
8474                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8475
8476         if (auto_create)
8477                 priv->config |= CFG_ADHOC_CREATE;
8478         else
8479                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8480
8481         priv->config &= ~CFG_STATIC_ESSID;
8482         priv->essid_len = 0;
8483         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8484
8485         if (disable && option) {
8486                 priv->status |= STATUS_RF_KILL_SW;
8487                 IPW_DEBUG_INFO("Radio disabled.\n");
8488         }
8489
8490         if (default_channel != 0) {
8491                 priv->config |= CFG_STATIC_CHANNEL;
8492                 priv->channel = default_channel;
8493                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8494                 /* TODO: Validate that provided channel is in range */
8495         }
8496 #ifdef CONFIG_IPW2200_QOS
8497         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8498                      burst_duration_CCK, burst_duration_OFDM);
8499 #endif                          /* CONFIG_IPW2200_QOS */
8500
8501         switch (network_mode) {
8502         case 1:
8503                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8504                 priv->net_dev->type = ARPHRD_ETHER;
8505
8506                 break;
8507 #ifdef CONFIG_IPW2200_MONITOR
8508         case 2:
8509                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8510 #ifdef CONFIG_IPW2200_RADIOTAP
8511                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8512 #else
8513                 priv->net_dev->type = ARPHRD_IEEE80211;
8514 #endif
8515                 break;
8516 #endif
8517         default:
8518         case 0:
8519                 priv->net_dev->type = ARPHRD_ETHER;
8520                 priv->ieee->iw_mode = IW_MODE_INFRA;
8521                 break;
8522         }
8523
8524         if (hwcrypto) {
8525                 priv->ieee->host_encrypt = 0;
8526                 priv->ieee->host_encrypt_msdu = 0;
8527                 priv->ieee->host_decrypt = 0;
8528                 priv->ieee->host_mc_decrypt = 0;
8529         }
8530         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8531
8532         /* IPW2200/2915 is abled to do hardware fragmentation. */
8533         priv->ieee->host_open_frag = 0;
8534
8535         if ((priv->pci_dev->device == 0x4223) ||
8536             (priv->pci_dev->device == 0x4224)) {
8537                 if (option == 1)
8538                         printk(KERN_INFO DRV_NAME
8539                                ": Detected Intel PRO/Wireless 2915ABG Network "
8540                                "Connection\n");
8541                 priv->ieee->abg_true = 1;
8542                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8543                 modulation = LIBIPW_OFDM_MODULATION |
8544                     LIBIPW_CCK_MODULATION;
8545                 priv->adapter = IPW_2915ABG;
8546                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8547         } else {
8548                 if (option == 1)
8549                         printk(KERN_INFO DRV_NAME
8550                                ": Detected Intel PRO/Wireless 2200BG Network "
8551                                "Connection\n");
8552
8553                 priv->ieee->abg_true = 0;
8554                 band = LIBIPW_24GHZ_BAND;
8555                 modulation = LIBIPW_OFDM_MODULATION |
8556                     LIBIPW_CCK_MODULATION;
8557                 priv->adapter = IPW_2200BG;
8558                 priv->ieee->mode = IEEE_G | IEEE_B;
8559         }
8560
8561         priv->ieee->freq_band = band;
8562         priv->ieee->modulation = modulation;
8563
8564         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8565
8566         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8567         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8568
8569         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8570         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8571         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8572
8573         /* If power management is turned on, default to AC mode */
8574         priv->power_mode = IPW_POWER_AC;
8575         priv->tx_power = IPW_TX_POWER_DEFAULT;
8576
8577         return old_mode == priv->ieee->iw_mode;
8578 }
8579
8580 /*
8581  * This file defines the Wireless Extension handlers.  It does not
8582  * define any methods of hardware manipulation and relies on the
8583  * functions defined in ipw_main to provide the HW interaction.
8584  *
8585  * The exception to this is the use of the ipw_get_ordinal()
8586  * function used to poll the hardware vs. making unnecessary calls.
8587  *
8588  */
8589
8590 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8591 {
8592         if (channel == 0) {
8593                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8594                 priv->config &= ~CFG_STATIC_CHANNEL;
8595                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8596                                 "parameters.\n");
8597                 ipw_associate(priv);
8598                 return 0;
8599         }
8600
8601         priv->config |= CFG_STATIC_CHANNEL;
8602
8603         if (priv->channel == channel) {
8604                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8605                                channel);
8606                 return 0;
8607         }
8608
8609         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8610         priv->channel = channel;
8611
8612 #ifdef CONFIG_IPW2200_MONITOR
8613         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8614                 int i;
8615                 if (priv->status & STATUS_SCANNING) {
8616                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8617                                        "channel change.\n");
8618                         ipw_abort_scan(priv);
8619                 }
8620
8621                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8622                         udelay(10);
8623
8624                 if (priv->status & STATUS_SCANNING)
8625                         IPW_DEBUG_SCAN("Still scanning...\n");
8626                 else
8627                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8628                                        1000 - i);
8629
8630                 return 0;
8631         }
8632 #endif                          /* CONFIG_IPW2200_MONITOR */
8633
8634         /* Network configuration changed -- force [re]association */
8635         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8636         if (!ipw_disassociate(priv))
8637                 ipw_associate(priv);
8638
8639         return 0;
8640 }
8641
8642 static int ipw_wx_set_freq(struct net_device *dev,
8643                            struct iw_request_info *info,
8644                            union iwreq_data *wrqu, char *extra)
8645 {
8646         struct ipw_priv *priv = libipw_priv(dev);
8647         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8648         struct iw_freq *fwrq = &wrqu->freq;
8649         int ret = 0, i;
8650         u8 channel, flags;
8651         int band;
8652
8653         if (fwrq->m == 0) {
8654                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8655                 mutex_lock(&priv->mutex);
8656                 ret = ipw_set_channel(priv, 0);
8657                 mutex_unlock(&priv->mutex);
8658                 return ret;
8659         }
8660         /* if setting by freq convert to channel */
8661         if (fwrq->e == 1) {
8662                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8663                 if (channel == 0)
8664                         return -EINVAL;
8665         } else
8666                 channel = fwrq->m;
8667
8668         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8669                 return -EINVAL;
8670
8671         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8672                 i = libipw_channel_to_index(priv->ieee, channel);
8673                 if (i == -1)
8674                         return -EINVAL;
8675
8676                 flags = (band == LIBIPW_24GHZ_BAND) ?
8677                     geo->bg[i].flags : geo->a[i].flags;
8678                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8679                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8680                         return -EINVAL;
8681                 }
8682         }
8683
8684         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8685         mutex_lock(&priv->mutex);
8686         ret = ipw_set_channel(priv, channel);
8687         mutex_unlock(&priv->mutex);
8688         return ret;
8689 }
8690
8691 static int ipw_wx_get_freq(struct net_device *dev,
8692                            struct iw_request_info *info,
8693                            union iwreq_data *wrqu, char *extra)
8694 {
8695         struct ipw_priv *priv = libipw_priv(dev);
8696
8697         wrqu->freq.e = 0;
8698
8699         /* If we are associated, trying to associate, or have a statically
8700          * configured CHANNEL then return that; otherwise return ANY */
8701         mutex_lock(&priv->mutex);
8702         if (priv->config & CFG_STATIC_CHANNEL ||
8703             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8704                 int i;
8705
8706                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8707                 BUG_ON(i == -1);
8708                 wrqu->freq.e = 1;
8709
8710                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8711                 case LIBIPW_52GHZ_BAND:
8712                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8713                         break;
8714
8715                 case LIBIPW_24GHZ_BAND:
8716                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8717                         break;
8718
8719                 default:
8720                         BUG();
8721                 }
8722         } else
8723                 wrqu->freq.m = 0;
8724
8725         mutex_unlock(&priv->mutex);
8726         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8727         return 0;
8728 }
8729
8730 static int ipw_wx_set_mode(struct net_device *dev,
8731                            struct iw_request_info *info,
8732                            union iwreq_data *wrqu, char *extra)
8733 {
8734         struct ipw_priv *priv = libipw_priv(dev);
8735         int err = 0;
8736
8737         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8738
8739         switch (wrqu->mode) {
8740 #ifdef CONFIG_IPW2200_MONITOR
8741         case IW_MODE_MONITOR:
8742 #endif
8743         case IW_MODE_ADHOC:
8744         case IW_MODE_INFRA:
8745                 break;
8746         case IW_MODE_AUTO:
8747                 wrqu->mode = IW_MODE_INFRA;
8748                 break;
8749         default:
8750                 return -EINVAL;
8751         }
8752         if (wrqu->mode == priv->ieee->iw_mode)
8753                 return 0;
8754
8755         mutex_lock(&priv->mutex);
8756
8757         ipw_sw_reset(priv, 0);
8758
8759 #ifdef CONFIG_IPW2200_MONITOR
8760         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8761                 priv->net_dev->type = ARPHRD_ETHER;
8762
8763         if (wrqu->mode == IW_MODE_MONITOR)
8764 #ifdef CONFIG_IPW2200_RADIOTAP
8765                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8766 #else
8767                 priv->net_dev->type = ARPHRD_IEEE80211;
8768 #endif
8769 #endif                          /* CONFIG_IPW2200_MONITOR */
8770
8771         /* Free the existing firmware and reset the fw_loaded
8772          * flag so ipw_load() will bring in the new firmware */
8773         free_firmware();
8774
8775         priv->ieee->iw_mode = wrqu->mode;
8776
8777         schedule_work(&priv->adapter_restart);
8778         mutex_unlock(&priv->mutex);
8779         return err;
8780 }
8781
8782 static int ipw_wx_get_mode(struct net_device *dev,
8783                            struct iw_request_info *info,
8784                            union iwreq_data *wrqu, char *extra)
8785 {
8786         struct ipw_priv *priv = libipw_priv(dev);
8787         mutex_lock(&priv->mutex);
8788         wrqu->mode = priv->ieee->iw_mode;
8789         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8790         mutex_unlock(&priv->mutex);
8791         return 0;
8792 }
8793
8794 /* Values are in microsecond */
8795 static const s32 timeout_duration[] = {
8796         350000,
8797         250000,
8798         75000,
8799         37000,
8800         25000,
8801 };
8802
8803 static const s32 period_duration[] = {
8804         400000,
8805         700000,
8806         1000000,
8807         1000000,
8808         1000000
8809 };
8810
8811 static int ipw_wx_get_range(struct net_device *dev,
8812                             struct iw_request_info *info,
8813                             union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = libipw_priv(dev);
8816         struct iw_range *range = (struct iw_range *)extra;
8817         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8818         int i = 0, j;
8819
8820         wrqu->data.length = sizeof(*range);
8821         memset(range, 0, sizeof(*range));
8822
8823         /* 54Mbs == ~27 Mb/s real (802.11g) */
8824         range->throughput = 27 * 1000 * 1000;
8825
8826         range->max_qual.qual = 100;
8827         /* TODO: Find real max RSSI and stick here */
8828         range->max_qual.level = 0;
8829         range->max_qual.noise = 0;
8830         range->max_qual.updated = 7;    /* Updated all three */
8831
8832         range->avg_qual.qual = 70;
8833         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8834         range->avg_qual.level = 0;      /* FIXME to real average level */
8835         range->avg_qual.noise = 0;
8836         range->avg_qual.updated = 7;    /* Updated all three */
8837         mutex_lock(&priv->mutex);
8838         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8839
8840         for (i = 0; i < range->num_bitrates; i++)
8841                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8842                     500000;
8843
8844         range->max_rts = DEFAULT_RTS_THRESHOLD;
8845         range->min_frag = MIN_FRAG_THRESHOLD;
8846         range->max_frag = MAX_FRAG_THRESHOLD;
8847
8848         range->encoding_size[0] = 5;
8849         range->encoding_size[1] = 13;
8850         range->num_encoding_sizes = 2;
8851         range->max_encoding_tokens = WEP_KEYS;
8852
8853         /* Set the Wireless Extension versions */
8854         range->we_version_compiled = WIRELESS_EXT;
8855         range->we_version_source = 18;
8856
8857         i = 0;
8858         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8859                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8860                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8861                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8862                                 continue;
8863
8864                         range->freq[i].i = geo->bg[j].channel;
8865                         range->freq[i].m = geo->bg[j].freq * 100000;
8866                         range->freq[i].e = 1;
8867                         i++;
8868                 }
8869         }
8870
8871         if (priv->ieee->mode & IEEE_A) {
8872                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8873                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8874                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8875                                 continue;
8876
8877                         range->freq[i].i = geo->a[j].channel;
8878                         range->freq[i].m = geo->a[j].freq * 100000;
8879                         range->freq[i].e = 1;
8880                         i++;
8881                 }
8882         }
8883
8884         range->num_channels = i;
8885         range->num_frequency = i;
8886
8887         mutex_unlock(&priv->mutex);
8888
8889         /* Event capability (kernel + driver) */
8890         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8891                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8892                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8893                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8894         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8895
8896         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8897                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8898
8899         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8900
8901         IPW_DEBUG_WX("GET Range\n");
8902         return 0;
8903 }
8904
8905 static int ipw_wx_set_wap(struct net_device *dev,
8906                           struct iw_request_info *info,
8907                           union iwreq_data *wrqu, char *extra)
8908 {
8909         struct ipw_priv *priv = libipw_priv(dev);
8910
8911         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8912                 return -EINVAL;
8913         mutex_lock(&priv->mutex);
8914         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8915             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8916                 /* we disable mandatory BSSID association */
8917                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8918                 priv->config &= ~CFG_STATIC_BSSID;
8919                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8920                                 "parameters.\n");
8921                 ipw_associate(priv);
8922                 mutex_unlock(&priv->mutex);
8923                 return 0;
8924         }
8925
8926         priv->config |= CFG_STATIC_BSSID;
8927         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8928                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8929                 mutex_unlock(&priv->mutex);
8930                 return 0;
8931         }
8932
8933         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8934                      wrqu->ap_addr.sa_data);
8935
8936         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8937
8938         /* Network configuration changed -- force [re]association */
8939         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8940         if (!ipw_disassociate(priv))
8941                 ipw_associate(priv);
8942
8943         mutex_unlock(&priv->mutex);
8944         return 0;
8945 }
8946
8947 static int ipw_wx_get_wap(struct net_device *dev,
8948                           struct iw_request_info *info,
8949                           union iwreq_data *wrqu, char *extra)
8950 {
8951         struct ipw_priv *priv = libipw_priv(dev);
8952
8953         /* If we are associated, trying to associate, or have a statically
8954          * configured BSSID then return that; otherwise return ANY */
8955         mutex_lock(&priv->mutex);
8956         if (priv->config & CFG_STATIC_BSSID ||
8957             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8958                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8959                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8960         } else
8961                 eth_zero_addr(wrqu->ap_addr.sa_data);
8962
8963         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8964                      wrqu->ap_addr.sa_data);
8965         mutex_unlock(&priv->mutex);
8966         return 0;
8967 }
8968
8969 static int ipw_wx_set_essid(struct net_device *dev,
8970                             struct iw_request_info *info,
8971                             union iwreq_data *wrqu, char *extra)
8972 {
8973         struct ipw_priv *priv = libipw_priv(dev);
8974         int length;
8975
8976         mutex_lock(&priv->mutex);
8977
8978         if (!wrqu->essid.flags)
8979         {
8980                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8981                 ipw_disassociate(priv);
8982                 priv->config &= ~CFG_STATIC_ESSID;
8983                 ipw_associate(priv);
8984                 mutex_unlock(&priv->mutex);
8985                 return 0;
8986         }
8987
8988         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8989
8990         priv->config |= CFG_STATIC_ESSID;
8991
8992         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8993             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8994                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8995                 mutex_unlock(&priv->mutex);
8996                 return 0;
8997         }
8998
8999         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9000
9001         priv->essid_len = length;
9002         memcpy(priv->essid, extra, priv->essid_len);
9003
9004         /* Network configuration changed -- force [re]association */
9005         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9006         if (!ipw_disassociate(priv))
9007                 ipw_associate(priv);
9008
9009         mutex_unlock(&priv->mutex);
9010         return 0;
9011 }
9012
9013 static int ipw_wx_get_essid(struct net_device *dev,
9014                             struct iw_request_info *info,
9015                             union iwreq_data *wrqu, char *extra)
9016 {
9017         struct ipw_priv *priv = libipw_priv(dev);
9018
9019         /* If we are associated, trying to associate, or have a statically
9020          * configured ESSID then return that; otherwise return ANY */
9021         mutex_lock(&priv->mutex);
9022         if (priv->config & CFG_STATIC_ESSID ||
9023             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9024                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9025                              priv->essid_len, priv->essid);
9026                 memcpy(extra, priv->essid, priv->essid_len);
9027                 wrqu->essid.length = priv->essid_len;
9028                 wrqu->essid.flags = 1;  /* active */
9029         } else {
9030                 IPW_DEBUG_WX("Getting essid: ANY\n");
9031                 wrqu->essid.length = 0;
9032                 wrqu->essid.flags = 0;  /* active */
9033         }
9034         mutex_unlock(&priv->mutex);
9035         return 0;
9036 }
9037
9038 static int ipw_wx_set_nick(struct net_device *dev,
9039                            struct iw_request_info *info,
9040                            union iwreq_data *wrqu, char *extra)
9041 {
9042         struct ipw_priv *priv = libipw_priv(dev);
9043
9044         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9045         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9046                 return -E2BIG;
9047         mutex_lock(&priv->mutex);
9048         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9049         memset(priv->nick, 0, sizeof(priv->nick));
9050         memcpy(priv->nick, extra, wrqu->data.length);
9051         IPW_DEBUG_TRACE("<<\n");
9052         mutex_unlock(&priv->mutex);
9053         return 0;
9054
9055 }
9056
9057 static int ipw_wx_get_nick(struct net_device *dev,
9058                            struct iw_request_info *info,
9059                            union iwreq_data *wrqu, char *extra)
9060 {
9061         struct ipw_priv *priv = libipw_priv(dev);
9062         IPW_DEBUG_WX("Getting nick\n");
9063         mutex_lock(&priv->mutex);
9064         wrqu->data.length = strlen(priv->nick);
9065         memcpy(extra, priv->nick, wrqu->data.length);
9066         wrqu->data.flags = 1;   /* active */
9067         mutex_unlock(&priv->mutex);
9068         return 0;
9069 }
9070
9071 static int ipw_wx_set_sens(struct net_device *dev,
9072                             struct iw_request_info *info,
9073                             union iwreq_data *wrqu, char *extra)
9074 {
9075         struct ipw_priv *priv = libipw_priv(dev);
9076         int err = 0;
9077
9078         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9079         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9080         mutex_lock(&priv->mutex);
9081
9082         if (wrqu->sens.fixed == 0)
9083         {
9084                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9085                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9086                 goto out;
9087         }
9088         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9089             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9090                 err = -EINVAL;
9091                 goto out;
9092         }
9093
9094         priv->roaming_threshold = wrqu->sens.value;
9095         priv->disassociate_threshold = 3*wrqu->sens.value;
9096       out:
9097         mutex_unlock(&priv->mutex);
9098         return err;
9099 }
9100
9101 static int ipw_wx_get_sens(struct net_device *dev,
9102                             struct iw_request_info *info,
9103                             union iwreq_data *wrqu, char *extra)
9104 {
9105         struct ipw_priv *priv = libipw_priv(dev);
9106         mutex_lock(&priv->mutex);
9107         wrqu->sens.fixed = 1;
9108         wrqu->sens.value = priv->roaming_threshold;
9109         mutex_unlock(&priv->mutex);
9110
9111         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9112                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9113
9114         return 0;
9115 }
9116
9117 static int ipw_wx_set_rate(struct net_device *dev,
9118                            struct iw_request_info *info,
9119                            union iwreq_data *wrqu, char *extra)
9120 {
9121         /* TODO: We should use semaphores or locks for access to priv */
9122         struct ipw_priv *priv = libipw_priv(dev);
9123         u32 target_rate = wrqu->bitrate.value;
9124         u32 fixed, mask;
9125
9126         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9127         /* value = X, fixed = 1 means only rate X */
9128         /* value = X, fixed = 0 means all rates lower equal X */
9129
9130         if (target_rate == -1) {
9131                 fixed = 0;
9132                 mask = LIBIPW_DEFAULT_RATES_MASK;
9133                 /* Now we should reassociate */
9134                 goto apply;
9135         }
9136
9137         mask = 0;
9138         fixed = wrqu->bitrate.fixed;
9139
9140         if (target_rate == 1000000 || !fixed)
9141                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9142         if (target_rate == 1000000)
9143                 goto apply;
9144
9145         if (target_rate == 2000000 || !fixed)
9146                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9147         if (target_rate == 2000000)
9148                 goto apply;
9149
9150         if (target_rate == 5500000 || !fixed)
9151                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9152         if (target_rate == 5500000)
9153                 goto apply;
9154
9155         if (target_rate == 6000000 || !fixed)
9156                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9157         if (target_rate == 6000000)
9158                 goto apply;
9159
9160         if (target_rate == 9000000 || !fixed)
9161                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9162         if (target_rate == 9000000)
9163                 goto apply;
9164
9165         if (target_rate == 11000000 || !fixed)
9166                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9167         if (target_rate == 11000000)
9168                 goto apply;
9169
9170         if (target_rate == 12000000 || !fixed)
9171                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9172         if (target_rate == 12000000)
9173                 goto apply;
9174
9175         if (target_rate == 18000000 || !fixed)
9176                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9177         if (target_rate == 18000000)
9178                 goto apply;
9179
9180         if (target_rate == 24000000 || !fixed)
9181                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9182         if (target_rate == 24000000)
9183                 goto apply;
9184
9185         if (target_rate == 36000000 || !fixed)
9186                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9187         if (target_rate == 36000000)
9188                 goto apply;
9189
9190         if (target_rate == 48000000 || !fixed)
9191                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9192         if (target_rate == 48000000)
9193                 goto apply;
9194
9195         if (target_rate == 54000000 || !fixed)
9196                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9197         if (target_rate == 54000000)
9198                 goto apply;
9199
9200         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9201         return -EINVAL;
9202
9203       apply:
9204         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9205                      mask, fixed ? "fixed" : "sub-rates");
9206         mutex_lock(&priv->mutex);
9207         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9208                 priv->config &= ~CFG_FIXED_RATE;
9209                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9210         } else
9211                 priv->config |= CFG_FIXED_RATE;
9212
9213         if (priv->rates_mask == mask) {
9214                 IPW_DEBUG_WX("Mask set to current mask.\n");
9215                 mutex_unlock(&priv->mutex);
9216                 return 0;
9217         }
9218
9219         priv->rates_mask = mask;
9220
9221         /* Network configuration changed -- force [re]association */
9222         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9223         if (!ipw_disassociate(priv))
9224                 ipw_associate(priv);
9225
9226         mutex_unlock(&priv->mutex);
9227         return 0;
9228 }
9229
9230 static int ipw_wx_get_rate(struct net_device *dev,
9231                            struct iw_request_info *info,
9232                            union iwreq_data *wrqu, char *extra)
9233 {
9234         struct ipw_priv *priv = libipw_priv(dev);
9235         mutex_lock(&priv->mutex);
9236         wrqu->bitrate.value = priv->last_rate;
9237         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9238         mutex_unlock(&priv->mutex);
9239         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9240         return 0;
9241 }
9242
9243 static int ipw_wx_set_rts(struct net_device *dev,
9244                           struct iw_request_info *info,
9245                           union iwreq_data *wrqu, char *extra)
9246 {
9247         struct ipw_priv *priv = libipw_priv(dev);
9248         mutex_lock(&priv->mutex);
9249         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9250                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9251         else {
9252                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9253                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9254                         mutex_unlock(&priv->mutex);
9255                         return -EINVAL;
9256                 }
9257                 priv->rts_threshold = wrqu->rts.value;
9258         }
9259
9260         ipw_send_rts_threshold(priv, priv->rts_threshold);
9261         mutex_unlock(&priv->mutex);
9262         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9263         return 0;
9264 }
9265
9266 static int ipw_wx_get_rts(struct net_device *dev,
9267                           struct iw_request_info *info,
9268                           union iwreq_data *wrqu, char *extra)
9269 {
9270         struct ipw_priv *priv = libipw_priv(dev);
9271         mutex_lock(&priv->mutex);
9272         wrqu->rts.value = priv->rts_threshold;
9273         wrqu->rts.fixed = 0;    /* no auto select */
9274         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9275         mutex_unlock(&priv->mutex);
9276         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9277         return 0;
9278 }
9279
9280 static int ipw_wx_set_txpow(struct net_device *dev,
9281                             struct iw_request_info *info,
9282                             union iwreq_data *wrqu, char *extra)
9283 {
9284         struct ipw_priv *priv = libipw_priv(dev);
9285         int err = 0;
9286
9287         mutex_lock(&priv->mutex);
9288         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9289                 err = -EINPROGRESS;
9290                 goto out;
9291         }
9292
9293         if (!wrqu->power.fixed)
9294                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9295
9296         if (wrqu->power.flags != IW_TXPOW_DBM) {
9297                 err = -EINVAL;
9298                 goto out;
9299         }
9300
9301         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9302             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9303                 err = -EINVAL;
9304                 goto out;
9305         }
9306
9307         priv->tx_power = wrqu->power.value;
9308         err = ipw_set_tx_power(priv);
9309       out:
9310         mutex_unlock(&priv->mutex);
9311         return err;
9312 }
9313
9314 static int ipw_wx_get_txpow(struct net_device *dev,
9315                             struct iw_request_info *info,
9316                             union iwreq_data *wrqu, char *extra)
9317 {
9318         struct ipw_priv *priv = libipw_priv(dev);
9319         mutex_lock(&priv->mutex);
9320         wrqu->power.value = priv->tx_power;
9321         wrqu->power.fixed = 1;
9322         wrqu->power.flags = IW_TXPOW_DBM;
9323         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9324         mutex_unlock(&priv->mutex);
9325
9326         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9327                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9328
9329         return 0;
9330 }
9331
9332 static int ipw_wx_set_frag(struct net_device *dev,
9333                            struct iw_request_info *info,
9334                            union iwreq_data *wrqu, char *extra)
9335 {
9336         struct ipw_priv *priv = libipw_priv(dev);
9337         mutex_lock(&priv->mutex);
9338         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9339                 priv->ieee->fts = DEFAULT_FTS;
9340         else {
9341                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9342                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9343                         mutex_unlock(&priv->mutex);
9344                         return -EINVAL;
9345                 }
9346
9347                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9348         }
9349
9350         ipw_send_frag_threshold(priv, wrqu->frag.value);
9351         mutex_unlock(&priv->mutex);
9352         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9353         return 0;
9354 }
9355
9356 static int ipw_wx_get_frag(struct net_device *dev,
9357                            struct iw_request_info *info,
9358                            union iwreq_data *wrqu, char *extra)
9359 {
9360         struct ipw_priv *priv = libipw_priv(dev);
9361         mutex_lock(&priv->mutex);
9362         wrqu->frag.value = priv->ieee->fts;
9363         wrqu->frag.fixed = 0;   /* no auto select */
9364         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9365         mutex_unlock(&priv->mutex);
9366         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9367
9368         return 0;
9369 }
9370
9371 static int ipw_wx_set_retry(struct net_device *dev,
9372                             struct iw_request_info *info,
9373                             union iwreq_data *wrqu, char *extra)
9374 {
9375         struct ipw_priv *priv = libipw_priv(dev);
9376
9377         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9378                 return -EINVAL;
9379
9380         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9381                 return 0;
9382
9383         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9384                 return -EINVAL;
9385
9386         mutex_lock(&priv->mutex);
9387         if (wrqu->retry.flags & IW_RETRY_SHORT)
9388                 priv->short_retry_limit = (u8) wrqu->retry.value;
9389         else if (wrqu->retry.flags & IW_RETRY_LONG)
9390                 priv->long_retry_limit = (u8) wrqu->retry.value;
9391         else {
9392                 priv->short_retry_limit = (u8) wrqu->retry.value;
9393                 priv->long_retry_limit = (u8) wrqu->retry.value;
9394         }
9395
9396         ipw_send_retry_limit(priv, priv->short_retry_limit,
9397                              priv->long_retry_limit);
9398         mutex_unlock(&priv->mutex);
9399         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9400                      priv->short_retry_limit, priv->long_retry_limit);
9401         return 0;
9402 }
9403
9404 static int ipw_wx_get_retry(struct net_device *dev,
9405                             struct iw_request_info *info,
9406                             union iwreq_data *wrqu, char *extra)
9407 {
9408         struct ipw_priv *priv = libipw_priv(dev);
9409
9410         mutex_lock(&priv->mutex);
9411         wrqu->retry.disabled = 0;
9412
9413         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9414                 mutex_unlock(&priv->mutex);
9415                 return -EINVAL;
9416         }
9417
9418         if (wrqu->retry.flags & IW_RETRY_LONG) {
9419                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9420                 wrqu->retry.value = priv->long_retry_limit;
9421         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9422                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9423                 wrqu->retry.value = priv->short_retry_limit;
9424         } else {
9425                 wrqu->retry.flags = IW_RETRY_LIMIT;
9426                 wrqu->retry.value = priv->short_retry_limit;
9427         }
9428         mutex_unlock(&priv->mutex);
9429
9430         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9431
9432         return 0;
9433 }
9434
9435 static int ipw_wx_set_scan(struct net_device *dev,
9436                            struct iw_request_info *info,
9437                            union iwreq_data *wrqu, char *extra)
9438 {
9439         struct ipw_priv *priv = libipw_priv(dev);
9440         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9441         struct delayed_work *work = NULL;
9442
9443         mutex_lock(&priv->mutex);
9444
9445         priv->user_requested_scan = 1;
9446
9447         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9448                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9449                         int len = min((int)req->essid_len,
9450                                       (int)sizeof(priv->direct_scan_ssid));
9451                         memcpy(priv->direct_scan_ssid, req->essid, len);
9452                         priv->direct_scan_ssid_len = len;
9453                         work = &priv->request_direct_scan;
9454                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9455                         work = &priv->request_passive_scan;
9456                 }
9457         } else {
9458                 /* Normal active broadcast scan */
9459                 work = &priv->request_scan;
9460         }
9461
9462         mutex_unlock(&priv->mutex);
9463
9464         IPW_DEBUG_WX("Start scan\n");
9465
9466         schedule_delayed_work(work, 0);
9467
9468         return 0;
9469 }
9470
9471 static int ipw_wx_get_scan(struct net_device *dev,
9472                            struct iw_request_info *info,
9473                            union iwreq_data *wrqu, char *extra)
9474 {
9475         struct ipw_priv *priv = libipw_priv(dev);
9476         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9477 }
9478
9479 static int ipw_wx_set_encode(struct net_device *dev,
9480                              struct iw_request_info *info,
9481                              union iwreq_data *wrqu, char *key)
9482 {
9483         struct ipw_priv *priv = libipw_priv(dev);
9484         int ret;
9485         u32 cap = priv->capability;
9486
9487         mutex_lock(&priv->mutex);
9488         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9489
9490         /* In IBSS mode, we need to notify the firmware to update
9491          * the beacon info after we changed the capability. */
9492         if (cap != priv->capability &&
9493             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9494             priv->status & STATUS_ASSOCIATED)
9495                 ipw_disassociate(priv);
9496
9497         mutex_unlock(&priv->mutex);
9498         return ret;
9499 }
9500
9501 static int ipw_wx_get_encode(struct net_device *dev,
9502                              struct iw_request_info *info,
9503                              union iwreq_data *wrqu, char *key)
9504 {
9505         struct ipw_priv *priv = libipw_priv(dev);
9506         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9507 }
9508
9509 static int ipw_wx_set_power(struct net_device *dev,
9510                             struct iw_request_info *info,
9511                             union iwreq_data *wrqu, char *extra)
9512 {
9513         struct ipw_priv *priv = libipw_priv(dev);
9514         int err;
9515         mutex_lock(&priv->mutex);
9516         if (wrqu->power.disabled) {
9517                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9518                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9519                 if (err) {
9520                         IPW_DEBUG_WX("failed setting power mode.\n");
9521                         mutex_unlock(&priv->mutex);
9522                         return err;
9523                 }
9524                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9525                 mutex_unlock(&priv->mutex);
9526                 return 0;
9527         }
9528
9529         switch (wrqu->power.flags & IW_POWER_MODE) {
9530         case IW_POWER_ON:       /* If not specified */
9531         case IW_POWER_MODE:     /* If set all mask */
9532         case IW_POWER_ALL_R:    /* If explicitly state all */
9533                 break;
9534         default:                /* Otherwise we don't support it */
9535                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9536                              wrqu->power.flags);
9537                 mutex_unlock(&priv->mutex);
9538                 return -EOPNOTSUPP;
9539         }
9540
9541         /* If the user hasn't specified a power management mode yet, default
9542          * to BATTERY */
9543         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9544                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9545         else
9546                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9547
9548         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9549         if (err) {
9550                 IPW_DEBUG_WX("failed setting power mode.\n");
9551                 mutex_unlock(&priv->mutex);
9552                 return err;
9553         }
9554
9555         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9556         mutex_unlock(&priv->mutex);
9557         return 0;
9558 }
9559
9560 static int ipw_wx_get_power(struct net_device *dev,
9561                             struct iw_request_info *info,
9562                             union iwreq_data *wrqu, char *extra)
9563 {
9564         struct ipw_priv *priv = libipw_priv(dev);
9565         mutex_lock(&priv->mutex);
9566         if (!(priv->power_mode & IPW_POWER_ENABLED))
9567                 wrqu->power.disabled = 1;
9568         else
9569                 wrqu->power.disabled = 0;
9570
9571         mutex_unlock(&priv->mutex);
9572         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9573
9574         return 0;
9575 }
9576
9577 static int ipw_wx_set_powermode(struct net_device *dev,
9578                                 struct iw_request_info *info,
9579                                 union iwreq_data *wrqu, char *extra)
9580 {
9581         struct ipw_priv *priv = libipw_priv(dev);
9582         int mode = *(int *)extra;
9583         int err;
9584
9585         mutex_lock(&priv->mutex);
9586         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9587                 mode = IPW_POWER_AC;
9588
9589         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9590                 err = ipw_send_power_mode(priv, mode);
9591                 if (err) {
9592                         IPW_DEBUG_WX("failed setting power mode.\n");
9593                         mutex_unlock(&priv->mutex);
9594                         return err;
9595                 }
9596                 priv->power_mode = IPW_POWER_ENABLED | mode;
9597         }
9598         mutex_unlock(&priv->mutex);
9599         return 0;
9600 }
9601
9602 #define MAX_WX_STRING 80
9603 static int ipw_wx_get_powermode(struct net_device *dev,
9604                                 struct iw_request_info *info,
9605                                 union iwreq_data *wrqu, char *extra)
9606 {
9607         struct ipw_priv *priv = libipw_priv(dev);
9608         int level = IPW_POWER_LEVEL(priv->power_mode);
9609         char *p = extra;
9610
9611         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9612
9613         switch (level) {
9614         case IPW_POWER_AC:
9615                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9616                 break;
9617         case IPW_POWER_BATTERY:
9618                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9619                 break;
9620         default:
9621                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9622                               "(Timeout %dms, Period %dms)",
9623                               timeout_duration[level - 1] / 1000,
9624                               period_duration[level - 1] / 1000);
9625         }
9626
9627         if (!(priv->power_mode & IPW_POWER_ENABLED))
9628                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9629
9630         wrqu->data.length = p - extra + 1;
9631
9632         return 0;
9633 }
9634
9635 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9636                                     struct iw_request_info *info,
9637                                     union iwreq_data *wrqu, char *extra)
9638 {
9639         struct ipw_priv *priv = libipw_priv(dev);
9640         int mode = *(int *)extra;
9641         u8 band = 0, modulation = 0;
9642
9643         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9644                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9645                 return -EINVAL;
9646         }
9647         mutex_lock(&priv->mutex);
9648         if (priv->adapter == IPW_2915ABG) {
9649                 priv->ieee->abg_true = 1;
9650                 if (mode & IEEE_A) {
9651                         band |= LIBIPW_52GHZ_BAND;
9652                         modulation |= LIBIPW_OFDM_MODULATION;
9653                 } else
9654                         priv->ieee->abg_true = 0;
9655         } else {
9656                 if (mode & IEEE_A) {
9657                         IPW_WARNING("Attempt to set 2200BG into "
9658                                     "802.11a mode\n");
9659                         mutex_unlock(&priv->mutex);
9660                         return -EINVAL;
9661                 }
9662
9663                 priv->ieee->abg_true = 0;
9664         }
9665
9666         if (mode & IEEE_B) {
9667                 band |= LIBIPW_24GHZ_BAND;
9668                 modulation |= LIBIPW_CCK_MODULATION;
9669         } else
9670                 priv->ieee->abg_true = 0;
9671
9672         if (mode & IEEE_G) {
9673                 band |= LIBIPW_24GHZ_BAND;
9674                 modulation |= LIBIPW_OFDM_MODULATION;
9675         } else
9676                 priv->ieee->abg_true = 0;
9677
9678         priv->ieee->mode = mode;
9679         priv->ieee->freq_band = band;
9680         priv->ieee->modulation = modulation;
9681         init_supported_rates(priv, &priv->rates);
9682
9683         /* Network configuration changed -- force [re]association */
9684         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9685         if (!ipw_disassociate(priv)) {
9686                 ipw_send_supported_rates(priv, &priv->rates);
9687                 ipw_associate(priv);
9688         }
9689
9690         /* Update the band LEDs */
9691         ipw_led_band_on(priv);
9692
9693         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9694                      mode & IEEE_A ? 'a' : '.',
9695                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9696         mutex_unlock(&priv->mutex);
9697         return 0;
9698 }
9699
9700 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9701                                     struct iw_request_info *info,
9702                                     union iwreq_data *wrqu, char *extra)
9703 {
9704         struct ipw_priv *priv = libipw_priv(dev);
9705         mutex_lock(&priv->mutex);
9706         switch (priv->ieee->mode) {
9707         case IEEE_A:
9708                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9709                 break;
9710         case IEEE_B:
9711                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9712                 break;
9713         case IEEE_A | IEEE_B:
9714                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9715                 break;
9716         case IEEE_G:
9717                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9718                 break;
9719         case IEEE_A | IEEE_G:
9720                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9721                 break;
9722         case IEEE_B | IEEE_G:
9723                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9724                 break;
9725         case IEEE_A | IEEE_B | IEEE_G:
9726                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9727                 break;
9728         default:
9729                 strncpy(extra, "unknown", MAX_WX_STRING);
9730                 break;
9731         }
9732         extra[MAX_WX_STRING - 1] = '\0';
9733
9734         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9735
9736         wrqu->data.length = strlen(extra) + 1;
9737         mutex_unlock(&priv->mutex);
9738
9739         return 0;
9740 }
9741
9742 static int ipw_wx_set_preamble(struct net_device *dev,
9743                                struct iw_request_info *info,
9744                                union iwreq_data *wrqu, char *extra)
9745 {
9746         struct ipw_priv *priv = libipw_priv(dev);
9747         int mode = *(int *)extra;
9748         mutex_lock(&priv->mutex);
9749         /* Switching from SHORT -> LONG requires a disassociation */
9750         if (mode == 1) {
9751                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9752                         priv->config |= CFG_PREAMBLE_LONG;
9753
9754                         /* Network configuration changed -- force [re]association */
9755                         IPW_DEBUG_ASSOC
9756                             ("[re]association triggered due to preamble change.\n");
9757                         if (!ipw_disassociate(priv))
9758                                 ipw_associate(priv);
9759                 }
9760                 goto done;
9761         }
9762
9763         if (mode == 0) {
9764                 priv->config &= ~CFG_PREAMBLE_LONG;
9765                 goto done;
9766         }
9767         mutex_unlock(&priv->mutex);
9768         return -EINVAL;
9769
9770       done:
9771         mutex_unlock(&priv->mutex);
9772         return 0;
9773 }
9774
9775 static int ipw_wx_get_preamble(struct net_device *dev,
9776                                struct iw_request_info *info,
9777                                union iwreq_data *wrqu, char *extra)
9778 {
9779         struct ipw_priv *priv = libipw_priv(dev);
9780         mutex_lock(&priv->mutex);
9781         if (priv->config & CFG_PREAMBLE_LONG)
9782                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9783         else
9784                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9785         mutex_unlock(&priv->mutex);
9786         return 0;
9787 }
9788
9789 #ifdef CONFIG_IPW2200_MONITOR
9790 static int ipw_wx_set_monitor(struct net_device *dev,
9791                               struct iw_request_info *info,
9792                               union iwreq_data *wrqu, char *extra)
9793 {
9794         struct ipw_priv *priv = libipw_priv(dev);
9795         int *parms = (int *)extra;
9796         int enable = (parms[0] > 0);
9797         mutex_lock(&priv->mutex);
9798         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9799         if (enable) {
9800                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9801 #ifdef CONFIG_IPW2200_RADIOTAP
9802                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9803 #else
9804                         priv->net_dev->type = ARPHRD_IEEE80211;
9805 #endif
9806                         schedule_work(&priv->adapter_restart);
9807                 }
9808
9809                 ipw_set_channel(priv, parms[1]);
9810         } else {
9811                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9812                         mutex_unlock(&priv->mutex);
9813                         return 0;
9814                 }
9815                 priv->net_dev->type = ARPHRD_ETHER;
9816                 schedule_work(&priv->adapter_restart);
9817         }
9818         mutex_unlock(&priv->mutex);
9819         return 0;
9820 }
9821
9822 #endif                          /* CONFIG_IPW2200_MONITOR */
9823
9824 static int ipw_wx_reset(struct net_device *dev,
9825                         struct iw_request_info *info,
9826                         union iwreq_data *wrqu, char *extra)
9827 {
9828         struct ipw_priv *priv = libipw_priv(dev);
9829         IPW_DEBUG_WX("RESET\n");
9830         schedule_work(&priv->adapter_restart);
9831         return 0;
9832 }
9833
9834 static int ipw_wx_sw_reset(struct net_device *dev,
9835                            struct iw_request_info *info,
9836                            union iwreq_data *wrqu, char *extra)
9837 {
9838         struct ipw_priv *priv = libipw_priv(dev);
9839         union iwreq_data wrqu_sec = {
9840                 .encoding = {
9841                              .flags = IW_ENCODE_DISABLED,
9842                              },
9843         };
9844         int ret;
9845
9846         IPW_DEBUG_WX("SW_RESET\n");
9847
9848         mutex_lock(&priv->mutex);
9849
9850         ret = ipw_sw_reset(priv, 2);
9851         if (!ret) {
9852                 free_firmware();
9853                 ipw_adapter_restart(priv);
9854         }
9855
9856         /* The SW reset bit might have been toggled on by the 'disable'
9857          * module parameter, so take appropriate action */
9858         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9859
9860         mutex_unlock(&priv->mutex);
9861         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9862         mutex_lock(&priv->mutex);
9863
9864         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9865                 /* Configuration likely changed -- force [re]association */
9866                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9867                                 "reset.\n");
9868                 if (!ipw_disassociate(priv))
9869                         ipw_associate(priv);
9870         }
9871
9872         mutex_unlock(&priv->mutex);
9873
9874         return 0;
9875 }
9876
9877 /* Rebase the WE IOCTLs to zero for the handler array */
9878 static iw_handler ipw_wx_handlers[] = {
9879         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9880         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9881         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9882         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9883         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9884         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9885         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9886         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9887         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9888         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9889         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9890         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9891         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9892         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9893         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9894         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9895         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9896         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9897         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9898         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9899         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9900         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9901         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9902         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9903         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9904         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9905         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9906         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9907         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9908         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9909         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9910         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9911         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9912         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9913         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9914         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9915         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9916         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9917         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9918         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9919         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9920 };
9921
9922 enum {
9923         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9924         IPW_PRIV_GET_POWER,
9925         IPW_PRIV_SET_MODE,
9926         IPW_PRIV_GET_MODE,
9927         IPW_PRIV_SET_PREAMBLE,
9928         IPW_PRIV_GET_PREAMBLE,
9929         IPW_PRIV_RESET,
9930         IPW_PRIV_SW_RESET,
9931 #ifdef CONFIG_IPW2200_MONITOR
9932         IPW_PRIV_SET_MONITOR,
9933 #endif
9934 };
9935
9936 static struct iw_priv_args ipw_priv_args[] = {
9937         {
9938          .cmd = IPW_PRIV_SET_POWER,
9939          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9940          .name = "set_power"},
9941         {
9942          .cmd = IPW_PRIV_GET_POWER,
9943          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9944          .name = "get_power"},
9945         {
9946          .cmd = IPW_PRIV_SET_MODE,
9947          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9948          .name = "set_mode"},
9949         {
9950          .cmd = IPW_PRIV_GET_MODE,
9951          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9952          .name = "get_mode"},
9953         {
9954          .cmd = IPW_PRIV_SET_PREAMBLE,
9955          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9956          .name = "set_preamble"},
9957         {
9958          .cmd = IPW_PRIV_GET_PREAMBLE,
9959          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9960          .name = "get_preamble"},
9961         {
9962          IPW_PRIV_RESET,
9963          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9964         {
9965          IPW_PRIV_SW_RESET,
9966          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9967 #ifdef CONFIG_IPW2200_MONITOR
9968         {
9969          IPW_PRIV_SET_MONITOR,
9970          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9971 #endif                          /* CONFIG_IPW2200_MONITOR */
9972 };
9973
9974 static iw_handler ipw_priv_handler[] = {
9975         ipw_wx_set_powermode,
9976         ipw_wx_get_powermode,
9977         ipw_wx_set_wireless_mode,
9978         ipw_wx_get_wireless_mode,
9979         ipw_wx_set_preamble,
9980         ipw_wx_get_preamble,
9981         ipw_wx_reset,
9982         ipw_wx_sw_reset,
9983 #ifdef CONFIG_IPW2200_MONITOR
9984         ipw_wx_set_monitor,
9985 #endif
9986 };
9987
9988 static const struct iw_handler_def ipw_wx_handler_def = {
9989         .standard = ipw_wx_handlers,
9990         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9991         .num_private = ARRAY_SIZE(ipw_priv_handler),
9992         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9993         .private = ipw_priv_handler,
9994         .private_args = ipw_priv_args,
9995         .get_wireless_stats = ipw_get_wireless_stats,
9996 };
9997
9998 /*
9999  * Get wireless statistics.
10000  * Called by /proc/net/wireless
10001  * Also called by SIOCGIWSTATS
10002  */
10003 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10004 {
10005         struct ipw_priv *priv = libipw_priv(dev);
10006         struct iw_statistics *wstats;
10007
10008         wstats = &priv->wstats;
10009
10010         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10011          * netdev->get_wireless_stats seems to be called before fw is
10012          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10013          * and associated; if not associcated, the values are all meaningless
10014          * anyway, so set them all to NULL and INVALID */
10015         if (!(priv->status & STATUS_ASSOCIATED)) {
10016                 wstats->miss.beacon = 0;
10017                 wstats->discard.retries = 0;
10018                 wstats->qual.qual = 0;
10019                 wstats->qual.level = 0;
10020                 wstats->qual.noise = 0;
10021                 wstats->qual.updated = 7;
10022                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10023                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10024                 return wstats;
10025         }
10026
10027         wstats->qual.qual = priv->quality;
10028         wstats->qual.level = priv->exp_avg_rssi;
10029         wstats->qual.noise = priv->exp_avg_noise;
10030         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10031             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10032
10033         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10034         wstats->discard.retries = priv->last_tx_failures;
10035         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10036
10037 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10038         goto fail_get_ordinal;
10039         wstats->discard.retries += tx_retry; */
10040
10041         return wstats;
10042 }
10043
10044 /* net device stuff */
10045
10046 static  void init_sys_config(struct ipw_sys_config *sys_config)
10047 {
10048         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10049         sys_config->bt_coexistence = 0;
10050         sys_config->answer_broadcast_ssid_probe = 0;
10051         sys_config->accept_all_data_frames = 0;
10052         sys_config->accept_non_directed_frames = 1;
10053         sys_config->exclude_unicast_unencrypted = 0;
10054         sys_config->disable_unicast_decryption = 1;
10055         sys_config->exclude_multicast_unencrypted = 0;
10056         sys_config->disable_multicast_decryption = 1;
10057         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10058                 antenna = CFG_SYS_ANTENNA_BOTH;
10059         sys_config->antenna_diversity = antenna;
10060         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10061         sys_config->dot11g_auto_detection = 0;
10062         sys_config->enable_cts_to_self = 0;
10063         sys_config->bt_coexist_collision_thr = 0;
10064         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10065         sys_config->silence_threshold = 0x1e;
10066 }
10067
10068 static int ipw_net_open(struct net_device *dev)
10069 {
10070         IPW_DEBUG_INFO("dev->open\n");
10071         netif_start_queue(dev);
10072         return 0;
10073 }
10074
10075 static int ipw_net_stop(struct net_device *dev)
10076 {
10077         IPW_DEBUG_INFO("dev->close\n");
10078         netif_stop_queue(dev);
10079         return 0;
10080 }
10081
10082 /*
10083 todo:
10084
10085 modify to send one tfd per fragment instead of using chunking.  otherwise
10086 we need to heavily modify the libipw_skb_to_txb.
10087 */
10088
10089 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10090                              int pri)
10091 {
10092         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10093             txb->fragments[0]->data;
10094         int i = 0;
10095         struct tfd_frame *tfd;
10096 #ifdef CONFIG_IPW2200_QOS
10097         int tx_id = ipw_get_tx_queue_number(priv, pri);
10098         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10099 #else
10100         struct clx2_tx_queue *txq = &priv->txq[0];
10101 #endif
10102         struct clx2_queue *q = &txq->q;
10103         u8 id, hdr_len, unicast;
10104         int fc;
10105
10106         if (!(priv->status & STATUS_ASSOCIATED))
10107                 goto drop;
10108
10109         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10110         switch (priv->ieee->iw_mode) {
10111         case IW_MODE_ADHOC:
10112                 unicast = !is_multicast_ether_addr(hdr->addr1);
10113                 id = ipw_find_station(priv, hdr->addr1);
10114                 if (id == IPW_INVALID_STATION) {
10115                         id = ipw_add_station(priv, hdr->addr1);
10116                         if (id == IPW_INVALID_STATION) {
10117                                 IPW_WARNING("Attempt to send data to "
10118                                             "invalid cell: %pM\n",
10119                                             hdr->addr1);
10120                                 goto drop;
10121                         }
10122                 }
10123                 break;
10124
10125         case IW_MODE_INFRA:
10126         default:
10127                 unicast = !is_multicast_ether_addr(hdr->addr3);
10128                 id = 0;
10129                 break;
10130         }
10131
10132         tfd = &txq->bd[q->first_empty];
10133         txq->txb[q->first_empty] = txb;
10134         memset(tfd, 0, sizeof(*tfd));
10135         tfd->u.data.station_number = id;
10136
10137         tfd->control_flags.message_type = TX_FRAME_TYPE;
10138         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10139
10140         tfd->u.data.cmd_id = DINO_CMD_TX;
10141         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10142
10143         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10144                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10145         else
10146                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10147
10148         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10149                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10150
10151         fc = le16_to_cpu(hdr->frame_ctl);
10152         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10153
10154         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10155
10156         if (likely(unicast))
10157                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10158
10159         if (txb->encrypted && !priv->ieee->host_encrypt) {
10160                 switch (priv->ieee->sec.level) {
10161                 case SEC_LEVEL_3:
10162                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10163                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10164                         /* XXX: ACK flag must be set for CCMP even if it
10165                          * is a multicast/broadcast packet, because CCMP
10166                          * group communication encrypted by GTK is
10167                          * actually done by the AP. */
10168                         if (!unicast)
10169                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10170
10171                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10172                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10173                         tfd->u.data.key_index = 0;
10174                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10175                         break;
10176                 case SEC_LEVEL_2:
10177                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10178                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10179                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10180                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10181                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10182                         break;
10183                 case SEC_LEVEL_1:
10184                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10185                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10186                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10187                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10188                             40)
10189                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10190                         else
10191                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10192                         break;
10193                 case SEC_LEVEL_0:
10194                         break;
10195                 default:
10196                         printk(KERN_ERR "Unknown security level %d\n",
10197                                priv->ieee->sec.level);
10198                         break;
10199                 }
10200         } else
10201                 /* No hardware encryption */
10202                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10203
10204 #ifdef CONFIG_IPW2200_QOS
10205         if (fc & IEEE80211_STYPE_QOS_DATA)
10206                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10207 #endif                          /* CONFIG_IPW2200_QOS */
10208
10209         /* payload */
10210         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10211                                                  txb->nr_frags));
10212         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10213                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10214         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10215                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10216                                i, le32_to_cpu(tfd->u.data.num_chunks),
10217                                txb->fragments[i]->len - hdr_len);
10218                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10219                              i, tfd->u.data.num_chunks,
10220                              txb->fragments[i]->len - hdr_len);
10221                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10222                            txb->fragments[i]->len - hdr_len);
10223
10224                 tfd->u.data.chunk_ptr[i] =
10225                     cpu_to_le32(pci_map_single
10226                                 (priv->pci_dev,
10227                                  txb->fragments[i]->data + hdr_len,
10228                                  txb->fragments[i]->len - hdr_len,
10229                                  PCI_DMA_TODEVICE));
10230                 tfd->u.data.chunk_len[i] =
10231                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10232         }
10233
10234         if (i != txb->nr_frags) {
10235                 struct sk_buff *skb;
10236                 u16 remaining_bytes = 0;
10237                 int j;
10238
10239                 for (j = i; j < txb->nr_frags; j++)
10240                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10241
10242                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10243                        remaining_bytes);
10244                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10245                 if (skb != NULL) {
10246                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10247                         for (j = i; j < txb->nr_frags; j++) {
10248                                 int size = txb->fragments[j]->len - hdr_len;
10249
10250                                 printk(KERN_INFO "Adding frag %d %d...\n",
10251                                        j, size);
10252                                 skb_put_data(skb,
10253                                              txb->fragments[j]->data + hdr_len,
10254                                              size);
10255                         }
10256                         dev_kfree_skb_any(txb->fragments[i]);
10257                         txb->fragments[i] = skb;
10258                         tfd->u.data.chunk_ptr[i] =
10259                             cpu_to_le32(pci_map_single
10260                                         (priv->pci_dev, skb->data,
10261                                          remaining_bytes,
10262                                          PCI_DMA_TODEVICE));
10263
10264                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10265                 }
10266         }
10267
10268         /* kick DMA */
10269         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10270         ipw_write32(priv, q->reg_w, q->first_empty);
10271
10272         if (ipw_tx_queue_space(q) < q->high_mark)
10273                 netif_stop_queue(priv->net_dev);
10274
10275         return NETDEV_TX_OK;
10276
10277       drop:
10278         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10279         libipw_txb_free(txb);
10280         return NETDEV_TX_OK;
10281 }
10282
10283 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10284 {
10285         struct ipw_priv *priv = libipw_priv(dev);
10286 #ifdef CONFIG_IPW2200_QOS
10287         int tx_id = ipw_get_tx_queue_number(priv, pri);
10288         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10289 #else
10290         struct clx2_tx_queue *txq = &priv->txq[0];
10291 #endif                          /* CONFIG_IPW2200_QOS */
10292
10293         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10294                 return 1;
10295
10296         return 0;
10297 }
10298
10299 #ifdef CONFIG_IPW2200_PROMISCUOUS
10300 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10301                                       struct libipw_txb *txb)
10302 {
10303         struct libipw_rx_stats dummystats;
10304         struct ieee80211_hdr *hdr;
10305         u8 n;
10306         u16 filter = priv->prom_priv->filter;
10307         int hdr_only = 0;
10308
10309         if (filter & IPW_PROM_NO_TX)
10310                 return;
10311
10312         memset(&dummystats, 0, sizeof(dummystats));
10313
10314         /* Filtering of fragment chains is done against the first fragment */
10315         hdr = (void *)txb->fragments[0]->data;
10316         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10317                 if (filter & IPW_PROM_NO_MGMT)
10318                         return;
10319                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10320                         hdr_only = 1;
10321         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10322                 if (filter & IPW_PROM_NO_CTL)
10323                         return;
10324                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10325                         hdr_only = 1;
10326         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10327                 if (filter & IPW_PROM_NO_DATA)
10328                         return;
10329                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10330                         hdr_only = 1;
10331         }
10332
10333         for(n=0; n<txb->nr_frags; ++n) {
10334                 struct sk_buff *src = txb->fragments[n];
10335                 struct sk_buff *dst;
10336                 struct ieee80211_radiotap_header *rt_hdr;
10337                 int len;
10338
10339                 if (hdr_only) {
10340                         hdr = (void *)src->data;
10341                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10342                 } else
10343                         len = src->len;
10344
10345                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10346                 if (!dst)
10347                         continue;
10348
10349                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10350
10351                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10352                 rt_hdr->it_pad = 0;
10353                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10354                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10355
10356                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10357                         ieee80211chan2mhz(priv->channel));
10358                 if (priv->channel > 14)         /* 802.11a */
10359                         *(__le16*)skb_put(dst, sizeof(u16)) =
10360                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10361                                              IEEE80211_CHAN_5GHZ);
10362                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10363                         *(__le16*)skb_put(dst, sizeof(u16)) =
10364                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10365                                              IEEE80211_CHAN_2GHZ);
10366                 else            /* 802.11g */
10367                         *(__le16*)skb_put(dst, sizeof(u16)) =
10368                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10369                                  IEEE80211_CHAN_2GHZ);
10370
10371                 rt_hdr->it_len = cpu_to_le16(dst->len);
10372
10373                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10374
10375                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10376                         dev_kfree_skb_any(dst);
10377         }
10378 }
10379 #endif
10380
10381 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10382                                            struct net_device *dev, int pri)
10383 {
10384         struct ipw_priv *priv = libipw_priv(dev);
10385         unsigned long flags;
10386         netdev_tx_t ret;
10387
10388         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10389         spin_lock_irqsave(&priv->lock, flags);
10390
10391 #ifdef CONFIG_IPW2200_PROMISCUOUS
10392         if (rtap_iface && netif_running(priv->prom_net_dev))
10393                 ipw_handle_promiscuous_tx(priv, txb);
10394 #endif
10395
10396         ret = ipw_tx_skb(priv, txb, pri);
10397         if (ret == NETDEV_TX_OK)
10398                 __ipw_led_activity_on(priv);
10399         spin_unlock_irqrestore(&priv->lock, flags);
10400
10401         return ret;
10402 }
10403
10404 static void ipw_net_set_multicast_list(struct net_device *dev)
10405 {
10406
10407 }
10408
10409 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10410 {
10411         struct ipw_priv *priv = libipw_priv(dev);
10412         struct sockaddr *addr = p;
10413
10414         if (!is_valid_ether_addr(addr->sa_data))
10415                 return -EADDRNOTAVAIL;
10416         mutex_lock(&priv->mutex);
10417         priv->config |= CFG_CUSTOM_MAC;
10418         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10419         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10420                priv->net_dev->name, priv->mac_addr);
10421         schedule_work(&priv->adapter_restart);
10422         mutex_unlock(&priv->mutex);
10423         return 0;
10424 }
10425
10426 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10427                                     struct ethtool_drvinfo *info)
10428 {
10429         struct ipw_priv *p = libipw_priv(dev);
10430         char vers[64];
10431         char date[32];
10432         u32 len;
10433
10434         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10435         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10436
10437         len = sizeof(vers);
10438         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10439         len = sizeof(date);
10440         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10441
10442         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10443                  vers, date);
10444         strlcpy(info->bus_info, pci_name(p->pci_dev),
10445                 sizeof(info->bus_info));
10446 }
10447
10448 static u32 ipw_ethtool_get_link(struct net_device *dev)
10449 {
10450         struct ipw_priv *priv = libipw_priv(dev);
10451         return (priv->status & STATUS_ASSOCIATED) != 0;
10452 }
10453
10454 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10455 {
10456         return IPW_EEPROM_IMAGE_SIZE;
10457 }
10458
10459 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10460                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10461 {
10462         struct ipw_priv *p = libipw_priv(dev);
10463
10464         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10465                 return -EINVAL;
10466         mutex_lock(&p->mutex);
10467         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10468         mutex_unlock(&p->mutex);
10469         return 0;
10470 }
10471
10472 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10473                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10474 {
10475         struct ipw_priv *p = libipw_priv(dev);
10476         int i;
10477
10478         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10479                 return -EINVAL;
10480         mutex_lock(&p->mutex);
10481         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10482         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10483                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10484         mutex_unlock(&p->mutex);
10485         return 0;
10486 }
10487
10488 static const struct ethtool_ops ipw_ethtool_ops = {
10489         .get_link = ipw_ethtool_get_link,
10490         .get_drvinfo = ipw_ethtool_get_drvinfo,
10491         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10492         .get_eeprom = ipw_ethtool_get_eeprom,
10493         .set_eeprom = ipw_ethtool_set_eeprom,
10494 };
10495
10496 static irqreturn_t ipw_isr(int irq, void *data)
10497 {
10498         struct ipw_priv *priv = data;
10499         u32 inta, inta_mask;
10500
10501         if (!priv)
10502                 return IRQ_NONE;
10503
10504         spin_lock(&priv->irq_lock);
10505
10506         if (!(priv->status & STATUS_INT_ENABLED)) {
10507                 /* IRQ is disabled */
10508                 goto none;
10509         }
10510
10511         inta = ipw_read32(priv, IPW_INTA_RW);
10512         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10513
10514         if (inta == 0xFFFFFFFF) {
10515                 /* Hardware disappeared */
10516                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10517                 goto none;
10518         }
10519
10520         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10521                 /* Shared interrupt */
10522                 goto none;
10523         }
10524
10525         /* tell the device to stop sending interrupts */
10526         __ipw_disable_interrupts(priv);
10527
10528         /* ack current interrupts */
10529         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10530         ipw_write32(priv, IPW_INTA_RW, inta);
10531
10532         /* Cache INTA value for our tasklet */
10533         priv->isr_inta = inta;
10534
10535         tasklet_schedule(&priv->irq_tasklet);
10536
10537         spin_unlock(&priv->irq_lock);
10538
10539         return IRQ_HANDLED;
10540       none:
10541         spin_unlock(&priv->irq_lock);
10542         return IRQ_NONE;
10543 }
10544
10545 static void ipw_rf_kill(void *adapter)
10546 {
10547         struct ipw_priv *priv = adapter;
10548         unsigned long flags;
10549
10550         spin_lock_irqsave(&priv->lock, flags);
10551
10552         if (rf_kill_active(priv)) {
10553                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10554                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10555                 goto exit_unlock;
10556         }
10557
10558         /* RF Kill is now disabled, so bring the device back up */
10559
10560         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10561                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10562                                   "device\n");
10563
10564                 /* we can not do an adapter restart while inside an irq lock */
10565                 schedule_work(&priv->adapter_restart);
10566         } else
10567                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10568                                   "enabled\n");
10569
10570       exit_unlock:
10571         spin_unlock_irqrestore(&priv->lock, flags);
10572 }
10573
10574 static void ipw_bg_rf_kill(struct work_struct *work)
10575 {
10576         struct ipw_priv *priv =
10577                 container_of(work, struct ipw_priv, rf_kill.work);
10578         mutex_lock(&priv->mutex);
10579         ipw_rf_kill(priv);
10580         mutex_unlock(&priv->mutex);
10581 }
10582
10583 static void ipw_link_up(struct ipw_priv *priv)
10584 {
10585         priv->last_seq_num = -1;
10586         priv->last_frag_num = -1;
10587         priv->last_packet_time = 0;
10588
10589         netif_carrier_on(priv->net_dev);
10590
10591         cancel_delayed_work(&priv->request_scan);
10592         cancel_delayed_work(&priv->request_direct_scan);
10593         cancel_delayed_work(&priv->request_passive_scan);
10594         cancel_delayed_work(&priv->scan_event);
10595         ipw_reset_stats(priv);
10596         /* Ensure the rate is updated immediately */
10597         priv->last_rate = ipw_get_current_rate(priv);
10598         ipw_gather_stats(priv);
10599         ipw_led_link_up(priv);
10600         notify_wx_assoc_event(priv);
10601
10602         if (priv->config & CFG_BACKGROUND_SCAN)
10603                 schedule_delayed_work(&priv->request_scan, HZ);
10604 }
10605
10606 static void ipw_bg_link_up(struct work_struct *work)
10607 {
10608         struct ipw_priv *priv =
10609                 container_of(work, struct ipw_priv, link_up);
10610         mutex_lock(&priv->mutex);
10611         ipw_link_up(priv);
10612         mutex_unlock(&priv->mutex);
10613 }
10614
10615 static void ipw_link_down(struct ipw_priv *priv)
10616 {
10617         ipw_led_link_down(priv);
10618         netif_carrier_off(priv->net_dev);
10619         notify_wx_assoc_event(priv);
10620
10621         /* Cancel any queued work ... */
10622         cancel_delayed_work(&priv->request_scan);
10623         cancel_delayed_work(&priv->request_direct_scan);
10624         cancel_delayed_work(&priv->request_passive_scan);
10625         cancel_delayed_work(&priv->adhoc_check);
10626         cancel_delayed_work(&priv->gather_stats);
10627
10628         ipw_reset_stats(priv);
10629
10630         if (!(priv->status & STATUS_EXIT_PENDING)) {
10631                 /* Queue up another scan... */
10632                 schedule_delayed_work(&priv->request_scan, 0);
10633         } else
10634                 cancel_delayed_work(&priv->scan_event);
10635 }
10636
10637 static void ipw_bg_link_down(struct work_struct *work)
10638 {
10639         struct ipw_priv *priv =
10640                 container_of(work, struct ipw_priv, link_down);
10641         mutex_lock(&priv->mutex);
10642         ipw_link_down(priv);
10643         mutex_unlock(&priv->mutex);
10644 }
10645
10646 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10647 {
10648         int ret = 0;
10649
10650         init_waitqueue_head(&priv->wait_command_queue);
10651         init_waitqueue_head(&priv->wait_state);
10652
10653         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10654         INIT_WORK(&priv->associate, ipw_bg_associate);
10655         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10656         INIT_WORK(&priv->system_config, ipw_system_config);
10657         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10658         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10659         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10660         INIT_WORK(&priv->up, ipw_bg_up);
10661         INIT_WORK(&priv->down, ipw_bg_down);
10662         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10663         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10664         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10665         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10666         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10667         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10668         INIT_WORK(&priv->roam, ipw_bg_roam);
10669         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10670         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10671         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10672         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10673         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10674         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10675         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10676
10677 #ifdef CONFIG_IPW2200_QOS
10678         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10679 #endif                          /* CONFIG_IPW2200_QOS */
10680
10681         tasklet_init(&priv->irq_tasklet,
10682                      ipw_irq_tasklet, (unsigned long)priv);
10683
10684         return ret;
10685 }
10686
10687 static void shim__set_security(struct net_device *dev,
10688                                struct libipw_security *sec)
10689 {
10690         struct ipw_priv *priv = libipw_priv(dev);
10691         int i;
10692         for (i = 0; i < 4; i++) {
10693                 if (sec->flags & (1 << i)) {
10694                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10695                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10696                         if (sec->key_sizes[i] == 0)
10697                                 priv->ieee->sec.flags &= ~(1 << i);
10698                         else {
10699                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10700                                        sec->key_sizes[i]);
10701                                 priv->ieee->sec.flags |= (1 << i);
10702                         }
10703                         priv->status |= STATUS_SECURITY_UPDATED;
10704                 } else if (sec->level != SEC_LEVEL_1)
10705                         priv->ieee->sec.flags &= ~(1 << i);
10706         }
10707
10708         if (sec->flags & SEC_ACTIVE_KEY) {
10709                 priv->ieee->sec.active_key = sec->active_key;
10710                 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10711                 priv->status |= STATUS_SECURITY_UPDATED;
10712         } else
10713                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10714
10715         if ((sec->flags & SEC_AUTH_MODE) &&
10716             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10717                 priv->ieee->sec.auth_mode = sec->auth_mode;
10718                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10719                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10720                         priv->capability |= CAP_SHARED_KEY;
10721                 else
10722                         priv->capability &= ~CAP_SHARED_KEY;
10723                 priv->status |= STATUS_SECURITY_UPDATED;
10724         }
10725
10726         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10727                 priv->ieee->sec.flags |= SEC_ENABLED;
10728                 priv->ieee->sec.enabled = sec->enabled;
10729                 priv->status |= STATUS_SECURITY_UPDATED;
10730                 if (sec->enabled)
10731                         priv->capability |= CAP_PRIVACY_ON;
10732                 else
10733                         priv->capability &= ~CAP_PRIVACY_ON;
10734         }
10735
10736         if (sec->flags & SEC_ENCRYPT)
10737                 priv->ieee->sec.encrypt = sec->encrypt;
10738
10739         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10740                 priv->ieee->sec.level = sec->level;
10741                 priv->ieee->sec.flags |= SEC_LEVEL;
10742                 priv->status |= STATUS_SECURITY_UPDATED;
10743         }
10744
10745         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10746                 ipw_set_hwcrypto_keys(priv);
10747
10748         /* To match current functionality of ipw2100 (which works well w/
10749          * various supplicants, we don't force a disassociate if the
10750          * privacy capability changes ... */
10751 #if 0
10752         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10753             (((priv->assoc_request.capability &
10754                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10755              (!(priv->assoc_request.capability &
10756                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10757                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10758                                 "change.\n");
10759                 ipw_disassociate(priv);
10760         }
10761 #endif
10762 }
10763
10764 static int init_supported_rates(struct ipw_priv *priv,
10765                                 struct ipw_supported_rates *rates)
10766 {
10767         /* TODO: Mask out rates based on priv->rates_mask */
10768
10769         memset(rates, 0, sizeof(*rates));
10770         /* configure supported rates */
10771         switch (priv->ieee->freq_band) {
10772         case LIBIPW_52GHZ_BAND:
10773                 rates->ieee_mode = IPW_A_MODE;
10774                 rates->purpose = IPW_RATE_CAPABILITIES;
10775                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10776                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10777                 break;
10778
10779         default:                /* Mixed or 2.4Ghz */
10780                 rates->ieee_mode = IPW_G_MODE;
10781                 rates->purpose = IPW_RATE_CAPABILITIES;
10782                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10783                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10784                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10785                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10786                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10787                 }
10788                 break;
10789         }
10790
10791         return 0;
10792 }
10793
10794 static int ipw_config(struct ipw_priv *priv)
10795 {
10796         /* This is only called from ipw_up, which resets/reloads the firmware
10797            so, we don't need to first disable the card before we configure
10798            it */
10799         if (ipw_set_tx_power(priv))
10800                 goto error;
10801
10802         /* initialize adapter address */
10803         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10804                 goto error;
10805
10806         /* set basic system config settings */
10807         init_sys_config(&priv->sys_config);
10808
10809         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10810          * Does not support BT priority yet (don't abort or defer our Tx) */
10811         if (bt_coexist) {
10812                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10813
10814                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10815                         priv->sys_config.bt_coexistence
10816                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10817                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10818                         priv->sys_config.bt_coexistence
10819                             |= CFG_BT_COEXISTENCE_OOB;
10820         }
10821
10822 #ifdef CONFIG_IPW2200_PROMISCUOUS
10823         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10824                 priv->sys_config.accept_all_data_frames = 1;
10825                 priv->sys_config.accept_non_directed_frames = 1;
10826                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10827                 priv->sys_config.accept_all_mgmt_frames = 1;
10828         }
10829 #endif
10830
10831         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10832                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10833         else
10834                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10835
10836         if (ipw_send_system_config(priv))
10837                 goto error;
10838
10839         init_supported_rates(priv, &priv->rates);
10840         if (ipw_send_supported_rates(priv, &priv->rates))
10841                 goto error;
10842
10843         /* Set request-to-send threshold */
10844         if (priv->rts_threshold) {
10845                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10846                         goto error;
10847         }
10848 #ifdef CONFIG_IPW2200_QOS
10849         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10850         ipw_qos_activate(priv, NULL);
10851 #endif                          /* CONFIG_IPW2200_QOS */
10852
10853         if (ipw_set_random_seed(priv))
10854                 goto error;
10855
10856         /* final state transition to the RUN state */
10857         if (ipw_send_host_complete(priv))
10858                 goto error;
10859
10860         priv->status |= STATUS_INIT;
10861
10862         ipw_led_init(priv);
10863         ipw_led_radio_on(priv);
10864         priv->notif_missed_beacons = 0;
10865
10866         /* Set hardware WEP key if it is configured. */
10867         if ((priv->capability & CAP_PRIVACY_ON) &&
10868             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10869             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10870                 ipw_set_hwcrypto_keys(priv);
10871
10872         return 0;
10873
10874       error:
10875         return -EIO;
10876 }
10877
10878 /*
10879  * NOTE:
10880  *
10881  * These tables have been tested in conjunction with the
10882  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10883  *
10884  * Altering this values, using it on other hardware, or in geographies
10885  * not intended for resale of the above mentioned Intel adapters has
10886  * not been tested.
10887  *
10888  * Remember to update the table in README.ipw2200 when changing this
10889  * table.
10890  *
10891  */
10892 static const struct libipw_geo ipw_geos[] = {
10893         {                       /* Restricted */
10894          "---",
10895          .bg_channels = 11,
10896          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897                 {2427, 4}, {2432, 5}, {2437, 6},
10898                 {2442, 7}, {2447, 8}, {2452, 9},
10899                 {2457, 10}, {2462, 11}},
10900          },
10901
10902         {                       /* Custom US/Canada */
10903          "ZZF",
10904          .bg_channels = 11,
10905          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10906                 {2427, 4}, {2432, 5}, {2437, 6},
10907                 {2442, 7}, {2447, 8}, {2452, 9},
10908                 {2457, 10}, {2462, 11}},
10909          .a_channels = 8,
10910          .a = {{5180, 36},
10911                {5200, 40},
10912                {5220, 44},
10913                {5240, 48},
10914                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10915                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10916                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10917                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10918          },
10919
10920         {                       /* Rest of World */
10921          "ZZD",
10922          .bg_channels = 13,
10923          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924                 {2427, 4}, {2432, 5}, {2437, 6},
10925                 {2442, 7}, {2447, 8}, {2452, 9},
10926                 {2457, 10}, {2462, 11}, {2467, 12},
10927                 {2472, 13}},
10928          },
10929
10930         {                       /* Custom USA & Europe & High */
10931          "ZZA",
10932          .bg_channels = 11,
10933          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934                 {2427, 4}, {2432, 5}, {2437, 6},
10935                 {2442, 7}, {2447, 8}, {2452, 9},
10936                 {2457, 10}, {2462, 11}},
10937          .a_channels = 13,
10938          .a = {{5180, 36},
10939                {5200, 40},
10940                {5220, 44},
10941                {5240, 48},
10942                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10943                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10944                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10945                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10946                {5745, 149},
10947                {5765, 153},
10948                {5785, 157},
10949                {5805, 161},
10950                {5825, 165}},
10951          },
10952
10953         {                       /* Custom NA & Europe */
10954          "ZZB",
10955          .bg_channels = 11,
10956          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10957                 {2427, 4}, {2432, 5}, {2437, 6},
10958                 {2442, 7}, {2447, 8}, {2452, 9},
10959                 {2457, 10}, {2462, 11}},
10960          .a_channels = 13,
10961          .a = {{5180, 36},
10962                {5200, 40},
10963                {5220, 44},
10964                {5240, 48},
10965                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10966                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10967                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10968                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10969                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10970                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10971                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10972                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10973                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10974          },
10975
10976         {                       /* Custom Japan */
10977          "ZZC",
10978          .bg_channels = 11,
10979          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980                 {2427, 4}, {2432, 5}, {2437, 6},
10981                 {2442, 7}, {2447, 8}, {2452, 9},
10982                 {2457, 10}, {2462, 11}},
10983          .a_channels = 4,
10984          .a = {{5170, 34}, {5190, 38},
10985                {5210, 42}, {5230, 46}},
10986          },
10987
10988         {                       /* Custom */
10989          "ZZM",
10990          .bg_channels = 11,
10991          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992                 {2427, 4}, {2432, 5}, {2437, 6},
10993                 {2442, 7}, {2447, 8}, {2452, 9},
10994                 {2457, 10}, {2462, 11}},
10995          },
10996
10997         {                       /* Europe */
10998          "ZZE",
10999          .bg_channels = 13,
11000          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001                 {2427, 4}, {2432, 5}, {2437, 6},
11002                 {2442, 7}, {2447, 8}, {2452, 9},
11003                 {2457, 10}, {2462, 11}, {2467, 12},
11004                 {2472, 13}},
11005          .a_channels = 19,
11006          .a = {{5180, 36},
11007                {5200, 40},
11008                {5220, 44},
11009                {5240, 48},
11010                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11011                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11012                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11013                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11014                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11015                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11016                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11017                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11018                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11019                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11020                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11021                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11022                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11023                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11024                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11025          },
11026
11027         {                       /* Custom Japan */
11028          "ZZJ",
11029          .bg_channels = 14,
11030          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031                 {2427, 4}, {2432, 5}, {2437, 6},
11032                 {2442, 7}, {2447, 8}, {2452, 9},
11033                 {2457, 10}, {2462, 11}, {2467, 12},
11034                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11035          .a_channels = 4,
11036          .a = {{5170, 34}, {5190, 38},
11037                {5210, 42}, {5230, 46}},
11038          },
11039
11040         {                       /* Rest of World */
11041          "ZZR",
11042          .bg_channels = 14,
11043          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044                 {2427, 4}, {2432, 5}, {2437, 6},
11045                 {2442, 7}, {2447, 8}, {2452, 9},
11046                 {2457, 10}, {2462, 11}, {2467, 12},
11047                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11048                              LIBIPW_CH_PASSIVE_ONLY}},
11049          },
11050
11051         {                       /* High Band */
11052          "ZZH",
11053          .bg_channels = 13,
11054          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11055                 {2427, 4}, {2432, 5}, {2437, 6},
11056                 {2442, 7}, {2447, 8}, {2452, 9},
11057                 {2457, 10}, {2462, 11},
11058                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11059                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11060          .a_channels = 4,
11061          .a = {{5745, 149}, {5765, 153},
11062                {5785, 157}, {5805, 161}},
11063          },
11064
11065         {                       /* Custom Europe */
11066          "ZZG",
11067          .bg_channels = 13,
11068          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069                 {2427, 4}, {2432, 5}, {2437, 6},
11070                 {2442, 7}, {2447, 8}, {2452, 9},
11071                 {2457, 10}, {2462, 11},
11072                 {2467, 12}, {2472, 13}},
11073          .a_channels = 4,
11074          .a = {{5180, 36}, {5200, 40},
11075                {5220, 44}, {5240, 48}},
11076          },
11077
11078         {                       /* Europe */
11079          "ZZK",
11080          .bg_channels = 13,
11081          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082                 {2427, 4}, {2432, 5}, {2437, 6},
11083                 {2442, 7}, {2447, 8}, {2452, 9},
11084                 {2457, 10}, {2462, 11},
11085                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11086                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11087          .a_channels = 24,
11088          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11089                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11090                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11091                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11092                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11093                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11094                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11095                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11096                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11097                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11098                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11099                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11100                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11101                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11102                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11103                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11104                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11105                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11106                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11107                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11108                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11109                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11110                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11111                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11112          },
11113
11114         {                       /* Europe */
11115          "ZZL",
11116          .bg_channels = 11,
11117          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11118                 {2427, 4}, {2432, 5}, {2437, 6},
11119                 {2442, 7}, {2447, 8}, {2452, 9},
11120                 {2457, 10}, {2462, 11}},
11121          .a_channels = 13,
11122          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11123                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11124                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11125                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11126                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11127                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11128                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11129                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11130                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11131                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11132                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11133                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11134                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11135          }
11136 };
11137
11138 static void ipw_set_geo(struct ipw_priv *priv)
11139 {
11140         int j;
11141
11142         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11143                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11144                             ipw_geos[j].name, 3))
11145                         break;
11146         }
11147
11148         if (j == ARRAY_SIZE(ipw_geos)) {
11149                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11150                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11151                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11152                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11153                 j = 0;
11154         }
11155
11156         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11157 }
11158
11159 #define MAX_HW_RESTARTS 5
11160 static int ipw_up(struct ipw_priv *priv)
11161 {
11162         int rc, i;
11163
11164         /* Age scan list entries found before suspend */
11165         if (priv->suspend_time) {
11166                 libipw_networks_age(priv->ieee, priv->suspend_time);
11167                 priv->suspend_time = 0;
11168         }
11169
11170         if (priv->status & STATUS_EXIT_PENDING)
11171                 return -EIO;
11172
11173         if (cmdlog && !priv->cmdlog) {
11174                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11175                                        GFP_KERNEL);
11176                 if (priv->cmdlog == NULL) {
11177                         IPW_ERROR("Error allocating %d command log entries.\n",
11178                                   cmdlog);
11179                         return -ENOMEM;
11180                 } else {
11181                         priv->cmdlog_len = cmdlog;
11182                 }
11183         }
11184
11185         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11186                 /* Load the microcode, firmware, and eeprom.
11187                  * Also start the clocks. */
11188                 rc = ipw_load(priv);
11189                 if (rc) {
11190                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11191                         return rc;
11192                 }
11193
11194                 ipw_init_ordinals(priv);
11195                 if (!(priv->config & CFG_CUSTOM_MAC))
11196                         eeprom_parse_mac(priv, priv->mac_addr);
11197                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11198
11199                 ipw_set_geo(priv);
11200
11201                 if (priv->status & STATUS_RF_KILL_SW) {
11202                         IPW_WARNING("Radio disabled by module parameter.\n");
11203                         return 0;
11204                 } else if (rf_kill_active(priv)) {
11205                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11206                                     "Kill switch must be turned off for "
11207                                     "wireless networking to work.\n");
11208                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11209                         return 0;
11210                 }
11211
11212                 rc = ipw_config(priv);
11213                 if (!rc) {
11214                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11215
11216                         /* If configure to try and auto-associate, kick
11217                          * off a scan. */
11218                         schedule_delayed_work(&priv->request_scan, 0);
11219
11220                         return 0;
11221                 }
11222
11223                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11224                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11225                                i, MAX_HW_RESTARTS);
11226
11227                 /* We had an error bringing up the hardware, so take it
11228                  * all the way back down so we can try again */
11229                 ipw_down(priv);
11230         }
11231
11232         /* tried to restart and config the device for as long as our
11233          * patience could withstand */
11234         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11235
11236         return -EIO;
11237 }
11238
11239 static void ipw_bg_up(struct work_struct *work)
11240 {
11241         struct ipw_priv *priv =
11242                 container_of(work, struct ipw_priv, up);
11243         mutex_lock(&priv->mutex);
11244         ipw_up(priv);
11245         mutex_unlock(&priv->mutex);
11246 }
11247
11248 static void ipw_deinit(struct ipw_priv *priv)
11249 {
11250         int i;
11251
11252         if (priv->status & STATUS_SCANNING) {
11253                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11254                 ipw_abort_scan(priv);
11255         }
11256
11257         if (priv->status & STATUS_ASSOCIATED) {
11258                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11259                 ipw_disassociate(priv);
11260         }
11261
11262         ipw_led_shutdown(priv);
11263
11264         /* Wait up to 1s for status to change to not scanning and not
11265          * associated (disassociation can take a while for a ful 802.11
11266          * exchange */
11267         for (i = 1000; i && (priv->status &
11268                              (STATUS_DISASSOCIATING |
11269                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11270                 udelay(10);
11271
11272         if (priv->status & (STATUS_DISASSOCIATING |
11273                             STATUS_ASSOCIATED | STATUS_SCANNING))
11274                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11275         else
11276                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11277
11278         /* Attempt to disable the card */
11279         ipw_send_card_disable(priv, 0);
11280
11281         priv->status &= ~STATUS_INIT;
11282 }
11283
11284 static void ipw_down(struct ipw_priv *priv)
11285 {
11286         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11287
11288         priv->status |= STATUS_EXIT_PENDING;
11289
11290         if (ipw_is_init(priv))
11291                 ipw_deinit(priv);
11292
11293         /* Wipe out the EXIT_PENDING status bit if we are not actually
11294          * exiting the module */
11295         if (!exit_pending)
11296                 priv->status &= ~STATUS_EXIT_PENDING;
11297
11298         /* tell the device to stop sending interrupts */
11299         ipw_disable_interrupts(priv);
11300
11301         /* Clear all bits but the RF Kill */
11302         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11303         netif_carrier_off(priv->net_dev);
11304
11305         ipw_stop_nic(priv);
11306
11307         ipw_led_radio_off(priv);
11308 }
11309
11310 static void ipw_bg_down(struct work_struct *work)
11311 {
11312         struct ipw_priv *priv =
11313                 container_of(work, struct ipw_priv, down);
11314         mutex_lock(&priv->mutex);
11315         ipw_down(priv);
11316         mutex_unlock(&priv->mutex);
11317 }
11318
11319 static int ipw_wdev_init(struct net_device *dev)
11320 {
11321         int i, rc = 0;
11322         struct ipw_priv *priv = libipw_priv(dev);
11323         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11324         struct wireless_dev *wdev = &priv->ieee->wdev;
11325
11326         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11327
11328         /* fill-out priv->ieee->bg_band */
11329         if (geo->bg_channels) {
11330                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11331
11332                 bg_band->band = NL80211_BAND_2GHZ;
11333                 bg_band->n_channels = geo->bg_channels;
11334                 bg_band->channels = kcalloc(geo->bg_channels,
11335                                             sizeof(struct ieee80211_channel),
11336                                             GFP_KERNEL);
11337                 if (!bg_band->channels) {
11338                         rc = -ENOMEM;
11339                         goto out;
11340                 }
11341                 /* translate geo->bg to bg_band.channels */
11342                 for (i = 0; i < geo->bg_channels; i++) {
11343                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11344                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11345                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11346                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11347                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11348                                 bg_band->channels[i].flags |=
11349                                         IEEE80211_CHAN_NO_IR;
11350                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11351                                 bg_band->channels[i].flags |=
11352                                         IEEE80211_CHAN_NO_IR;
11353                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11354                                 bg_band->channels[i].flags |=
11355                                         IEEE80211_CHAN_RADAR;
11356                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11357                            LIBIPW_CH_UNIFORM_SPREADING, or
11358                            LIBIPW_CH_B_ONLY... */
11359                 }
11360                 /* point at bitrate info */
11361                 bg_band->bitrates = ipw2200_bg_rates;
11362                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11363
11364                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11365         }
11366
11367         /* fill-out priv->ieee->a_band */
11368         if (geo->a_channels) {
11369                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11370
11371                 a_band->band = NL80211_BAND_5GHZ;
11372                 a_band->n_channels = geo->a_channels;
11373                 a_band->channels = kcalloc(geo->a_channels,
11374                                            sizeof(struct ieee80211_channel),
11375                                            GFP_KERNEL);
11376                 if (!a_band->channels) {
11377                         rc = -ENOMEM;
11378                         goto out;
11379                 }
11380                 /* translate geo->a to a_band.channels */
11381                 for (i = 0; i < geo->a_channels; i++) {
11382                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11383                         a_band->channels[i].center_freq = geo->a[i].freq;
11384                         a_band->channels[i].hw_value = geo->a[i].channel;
11385                         a_band->channels[i].max_power = geo->a[i].max_power;
11386                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11387                                 a_band->channels[i].flags |=
11388                                         IEEE80211_CHAN_NO_IR;
11389                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11390                                 a_band->channels[i].flags |=
11391                                         IEEE80211_CHAN_NO_IR;
11392                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11393                                 a_band->channels[i].flags |=
11394                                         IEEE80211_CHAN_RADAR;
11395                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11396                            LIBIPW_CH_UNIFORM_SPREADING, or
11397                            LIBIPW_CH_B_ONLY... */
11398                 }
11399                 /* point at bitrate info */
11400                 a_band->bitrates = ipw2200_a_rates;
11401                 a_band->n_bitrates = ipw2200_num_a_rates;
11402
11403                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11404         }
11405
11406         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11407         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11408
11409         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11410
11411         /* With that information in place, we can now register the wiphy... */
11412         if (wiphy_register(wdev->wiphy))
11413                 rc = -EIO;
11414 out:
11415         return rc;
11416 }
11417
11418 /* PCI driver stuff */
11419 static const struct pci_device_id card_ids[] = {
11420         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11421         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11422         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11423         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11437         {PCI_VDEVICE(INTEL, 0x104f), 0},
11438         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11439         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11440         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11441         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11442
11443         /* required last entry */
11444         {0,}
11445 };
11446
11447 MODULE_DEVICE_TABLE(pci, card_ids);
11448
11449 static struct attribute *ipw_sysfs_entries[] = {
11450         &dev_attr_rf_kill.attr,
11451         &dev_attr_direct_dword.attr,
11452         &dev_attr_indirect_byte.attr,
11453         &dev_attr_indirect_dword.attr,
11454         &dev_attr_mem_gpio_reg.attr,
11455         &dev_attr_command_event_reg.attr,
11456         &dev_attr_nic_type.attr,
11457         &dev_attr_status.attr,
11458         &dev_attr_cfg.attr,
11459         &dev_attr_error.attr,
11460         &dev_attr_event_log.attr,
11461         &dev_attr_cmd_log.attr,
11462         &dev_attr_eeprom_delay.attr,
11463         &dev_attr_ucode_version.attr,
11464         &dev_attr_rtc.attr,
11465         &dev_attr_scan_age.attr,
11466         &dev_attr_led.attr,
11467         &dev_attr_speed_scan.attr,
11468         &dev_attr_net_stats.attr,
11469         &dev_attr_channels.attr,
11470 #ifdef CONFIG_IPW2200_PROMISCUOUS
11471         &dev_attr_rtap_iface.attr,
11472         &dev_attr_rtap_filter.attr,
11473 #endif
11474         NULL
11475 };
11476
11477 static const struct attribute_group ipw_attribute_group = {
11478         .name = NULL,           /* put in device directory */
11479         .attrs = ipw_sysfs_entries,
11480 };
11481
11482 #ifdef CONFIG_IPW2200_PROMISCUOUS
11483 static int ipw_prom_open(struct net_device *dev)
11484 {
11485         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11486         struct ipw_priv *priv = prom_priv->priv;
11487
11488         IPW_DEBUG_INFO("prom dev->open\n");
11489         netif_carrier_off(dev);
11490
11491         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11492                 priv->sys_config.accept_all_data_frames = 1;
11493                 priv->sys_config.accept_non_directed_frames = 1;
11494                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11495                 priv->sys_config.accept_all_mgmt_frames = 1;
11496
11497                 ipw_send_system_config(priv);
11498         }
11499
11500         return 0;
11501 }
11502
11503 static int ipw_prom_stop(struct net_device *dev)
11504 {
11505         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506         struct ipw_priv *priv = prom_priv->priv;
11507
11508         IPW_DEBUG_INFO("prom dev->stop\n");
11509
11510         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11511                 priv->sys_config.accept_all_data_frames = 0;
11512                 priv->sys_config.accept_non_directed_frames = 0;
11513                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11514                 priv->sys_config.accept_all_mgmt_frames = 0;
11515
11516                 ipw_send_system_config(priv);
11517         }
11518
11519         return 0;
11520 }
11521
11522 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11523                                             struct net_device *dev)
11524 {
11525         IPW_DEBUG_INFO("prom dev->xmit\n");
11526         dev_kfree_skb(skb);
11527         return NETDEV_TX_OK;
11528 }
11529
11530 static const struct net_device_ops ipw_prom_netdev_ops = {
11531         .ndo_open               = ipw_prom_open,
11532         .ndo_stop               = ipw_prom_stop,
11533         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11534         .ndo_set_mac_address    = eth_mac_addr,
11535         .ndo_validate_addr      = eth_validate_addr,
11536 };
11537
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11539 {
11540         int rc = 0;
11541
11542         if (priv->prom_net_dev)
11543                 return -EPERM;
11544
11545         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11546         if (priv->prom_net_dev == NULL)
11547                 return -ENOMEM;
11548
11549         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11550         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551         priv->prom_priv->priv = priv;
11552
11553         strcpy(priv->prom_net_dev->name, "rtap%d");
11554         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11555
11556         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11558
11559         priv->prom_net_dev->min_mtu = 68;
11560         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11561
11562         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11564
11565         rc = register_netdev(priv->prom_net_dev);
11566         if (rc) {
11567                 free_libipw(priv->prom_net_dev, 1);
11568                 priv->prom_net_dev = NULL;
11569                 return rc;
11570         }
11571
11572         return 0;
11573 }
11574
11575 static void ipw_prom_free(struct ipw_priv *priv)
11576 {
11577         if (!priv->prom_net_dev)
11578                 return;
11579
11580         unregister_netdev(priv->prom_net_dev);
11581         free_libipw(priv->prom_net_dev, 1);
11582
11583         priv->prom_net_dev = NULL;
11584 }
11585
11586 #endif
11587
11588 static const struct net_device_ops ipw_netdev_ops = {
11589         .ndo_open               = ipw_net_open,
11590         .ndo_stop               = ipw_net_stop,
11591         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11592         .ndo_set_mac_address    = ipw_net_set_mac_address,
11593         .ndo_start_xmit         = libipw_xmit,
11594         .ndo_validate_addr      = eth_validate_addr,
11595 };
11596
11597 static int ipw_pci_probe(struct pci_dev *pdev,
11598                                    const struct pci_device_id *ent)
11599 {
11600         int err = 0;
11601         struct net_device *net_dev;
11602         void __iomem *base;
11603         u32 length, val;
11604         struct ipw_priv *priv;
11605         int i;
11606
11607         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11608         if (net_dev == NULL) {
11609                 err = -ENOMEM;
11610                 goto out;
11611         }
11612
11613         priv = libipw_priv(net_dev);
11614         priv->ieee = netdev_priv(net_dev);
11615
11616         priv->net_dev = net_dev;
11617         priv->pci_dev = pdev;
11618         ipw_debug_level = debug;
11619         spin_lock_init(&priv->irq_lock);
11620         spin_lock_init(&priv->lock);
11621         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11622                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11623
11624         mutex_init(&priv->mutex);
11625         if (pci_enable_device(pdev)) {
11626                 err = -ENODEV;
11627                 goto out_free_libipw;
11628         }
11629
11630         pci_set_master(pdev);
11631
11632         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11633         if (!err)
11634                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11635         if (err) {
11636                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11637                 goto out_pci_disable_device;
11638         }
11639
11640         pci_set_drvdata(pdev, priv);
11641
11642         err = pci_request_regions(pdev, DRV_NAME);
11643         if (err)
11644                 goto out_pci_disable_device;
11645
11646         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11647          * PCI Tx retries from interfering with C3 CPU state */
11648         pci_read_config_dword(pdev, 0x40, &val);
11649         if ((val & 0x0000ff00) != 0)
11650                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11651
11652         length = pci_resource_len(pdev, 0);
11653         priv->hw_len = length;
11654
11655         base = pci_ioremap_bar(pdev, 0);
11656         if (!base) {
11657                 err = -ENODEV;
11658                 goto out_pci_release_regions;
11659         }
11660
11661         priv->hw_base = base;
11662         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11663         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11664
11665         err = ipw_setup_deferred_work(priv);
11666         if (err) {
11667                 IPW_ERROR("Unable to setup deferred work\n");
11668                 goto out_iounmap;
11669         }
11670
11671         ipw_sw_reset(priv, 1);
11672
11673         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11674         if (err) {
11675                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11676                 goto out_iounmap;
11677         }
11678
11679         SET_NETDEV_DEV(net_dev, &pdev->dev);
11680
11681         mutex_lock(&priv->mutex);
11682
11683         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11684         priv->ieee->set_security = shim__set_security;
11685         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11686
11687 #ifdef CONFIG_IPW2200_QOS
11688         priv->ieee->is_qos_active = ipw_is_qos_active;
11689         priv->ieee->handle_probe_response = ipw_handle_beacon;
11690         priv->ieee->handle_beacon = ipw_handle_probe_response;
11691         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11692 #endif                          /* CONFIG_IPW2200_QOS */
11693
11694         priv->ieee->perfect_rssi = -20;
11695         priv->ieee->worst_rssi = -85;
11696
11697         net_dev->netdev_ops = &ipw_netdev_ops;
11698         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11699         net_dev->wireless_data = &priv->wireless_data;
11700         net_dev->wireless_handlers = &ipw_wx_handler_def;
11701         net_dev->ethtool_ops = &ipw_ethtool_ops;
11702
11703         net_dev->min_mtu = 68;
11704         net_dev->max_mtu = LIBIPW_DATA_LEN;
11705
11706         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11707         if (err) {
11708                 IPW_ERROR("failed to create sysfs device attributes\n");
11709                 mutex_unlock(&priv->mutex);
11710                 goto out_release_irq;
11711         }
11712
11713         if (ipw_up(priv)) {
11714                 mutex_unlock(&priv->mutex);
11715                 err = -EIO;
11716                 goto out_remove_sysfs;
11717         }
11718
11719         mutex_unlock(&priv->mutex);
11720
11721         err = ipw_wdev_init(net_dev);
11722         if (err) {
11723                 IPW_ERROR("failed to register wireless device\n");
11724                 goto out_remove_sysfs;
11725         }
11726
11727         err = register_netdev(net_dev);
11728         if (err) {
11729                 IPW_ERROR("failed to register network device\n");
11730                 goto out_unregister_wiphy;
11731         }
11732
11733 #ifdef CONFIG_IPW2200_PROMISCUOUS
11734         if (rtap_iface) {
11735                 err = ipw_prom_alloc(priv);
11736                 if (err) {
11737                         IPW_ERROR("Failed to register promiscuous network "
11738                                   "device (error %d).\n", err);
11739                         unregister_netdev(priv->net_dev);
11740                         goto out_unregister_wiphy;
11741                 }
11742         }
11743 #endif
11744
11745         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11746                "channels, %d 802.11a channels)\n",
11747                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11748                priv->ieee->geo.a_channels);
11749
11750         return 0;
11751
11752       out_unregister_wiphy:
11753         wiphy_unregister(priv->ieee->wdev.wiphy);
11754         kfree(priv->ieee->a_band.channels);
11755         kfree(priv->ieee->bg_band.channels);
11756       out_remove_sysfs:
11757         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11758       out_release_irq:
11759         free_irq(pdev->irq, priv);
11760       out_iounmap:
11761         iounmap(priv->hw_base);
11762       out_pci_release_regions:
11763         pci_release_regions(pdev);
11764       out_pci_disable_device:
11765         pci_disable_device(pdev);
11766       out_free_libipw:
11767         free_libipw(priv->net_dev, 0);
11768       out:
11769         return err;
11770 }
11771
11772 static void ipw_pci_remove(struct pci_dev *pdev)
11773 {
11774         struct ipw_priv *priv = pci_get_drvdata(pdev);
11775         struct list_head *p, *q;
11776         int i;
11777
11778         if (!priv)
11779                 return;
11780
11781         mutex_lock(&priv->mutex);
11782
11783         priv->status |= STATUS_EXIT_PENDING;
11784         ipw_down(priv);
11785         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11786
11787         mutex_unlock(&priv->mutex);
11788
11789         unregister_netdev(priv->net_dev);
11790
11791         if (priv->rxq) {
11792                 ipw_rx_queue_free(priv, priv->rxq);
11793                 priv->rxq = NULL;
11794         }
11795         ipw_tx_queue_free(priv);
11796
11797         if (priv->cmdlog) {
11798                 kfree(priv->cmdlog);
11799                 priv->cmdlog = NULL;
11800         }
11801
11802         /* make sure all works are inactive */
11803         cancel_delayed_work_sync(&priv->adhoc_check);
11804         cancel_work_sync(&priv->associate);
11805         cancel_work_sync(&priv->disassociate);
11806         cancel_work_sync(&priv->system_config);
11807         cancel_work_sync(&priv->rx_replenish);
11808         cancel_work_sync(&priv->adapter_restart);
11809         cancel_delayed_work_sync(&priv->rf_kill);
11810         cancel_work_sync(&priv->up);
11811         cancel_work_sync(&priv->down);
11812         cancel_delayed_work_sync(&priv->request_scan);
11813         cancel_delayed_work_sync(&priv->request_direct_scan);
11814         cancel_delayed_work_sync(&priv->request_passive_scan);
11815         cancel_delayed_work_sync(&priv->scan_event);
11816         cancel_delayed_work_sync(&priv->gather_stats);
11817         cancel_work_sync(&priv->abort_scan);
11818         cancel_work_sync(&priv->roam);
11819         cancel_delayed_work_sync(&priv->scan_check);
11820         cancel_work_sync(&priv->link_up);
11821         cancel_work_sync(&priv->link_down);
11822         cancel_delayed_work_sync(&priv->led_link_on);
11823         cancel_delayed_work_sync(&priv->led_link_off);
11824         cancel_delayed_work_sync(&priv->led_act_off);
11825         cancel_work_sync(&priv->merge_networks);
11826
11827         /* Free MAC hash list for ADHOC */
11828         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11829                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11830                         list_del(p);
11831                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11832                 }
11833         }
11834
11835         kfree(priv->error);
11836         priv->error = NULL;
11837
11838 #ifdef CONFIG_IPW2200_PROMISCUOUS
11839         ipw_prom_free(priv);
11840 #endif
11841
11842         free_irq(pdev->irq, priv);
11843         iounmap(priv->hw_base);
11844         pci_release_regions(pdev);
11845         pci_disable_device(pdev);
11846         /* wiphy_unregister needs to be here, before free_libipw */
11847         wiphy_unregister(priv->ieee->wdev.wiphy);
11848         kfree(priv->ieee->a_band.channels);
11849         kfree(priv->ieee->bg_band.channels);
11850         free_libipw(priv->net_dev, 0);
11851         free_firmware();
11852 }
11853
11854 #ifdef CONFIG_PM
11855 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11856 {
11857         struct ipw_priv *priv = pci_get_drvdata(pdev);
11858         struct net_device *dev = priv->net_dev;
11859
11860         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11861
11862         /* Take down the device; powers it off, etc. */
11863         ipw_down(priv);
11864
11865         /* Remove the PRESENT state of the device */
11866         netif_device_detach(dev);
11867
11868         pci_save_state(pdev);
11869         pci_disable_device(pdev);
11870         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11871
11872         priv->suspend_at = ktime_get_boottime_seconds();
11873
11874         return 0;
11875 }
11876
11877 static int ipw_pci_resume(struct pci_dev *pdev)
11878 {
11879         struct ipw_priv *priv = pci_get_drvdata(pdev);
11880         struct net_device *dev = priv->net_dev;
11881         int err;
11882         u32 val;
11883
11884         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11885
11886         pci_set_power_state(pdev, PCI_D0);
11887         err = pci_enable_device(pdev);
11888         if (err) {
11889                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11890                        dev->name);
11891                 return err;
11892         }
11893         pci_restore_state(pdev);
11894
11895         /*
11896          * Suspend/Resume resets the PCI configuration space, so we have to
11897          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11898          * from interfering with C3 CPU state. pci_restore_state won't help
11899          * here since it only restores the first 64 bytes pci config header.
11900          */
11901         pci_read_config_dword(pdev, 0x40, &val);
11902         if ((val & 0x0000ff00) != 0)
11903                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11904
11905         /* Set the device back into the PRESENT state; this will also wake
11906          * the queue of needed */
11907         netif_device_attach(dev);
11908
11909         priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11910
11911         /* Bring the device back up */
11912         schedule_work(&priv->up);
11913
11914         return 0;
11915 }
11916 #endif
11917
11918 static void ipw_pci_shutdown(struct pci_dev *pdev)
11919 {
11920         struct ipw_priv *priv = pci_get_drvdata(pdev);
11921
11922         /* Take down the device; powers it off, etc. */
11923         ipw_down(priv);
11924
11925         pci_disable_device(pdev);
11926 }
11927
11928 /* driver initialization stuff */
11929 static struct pci_driver ipw_driver = {
11930         .name = DRV_NAME,
11931         .id_table = card_ids,
11932         .probe = ipw_pci_probe,
11933         .remove = ipw_pci_remove,
11934 #ifdef CONFIG_PM
11935         .suspend = ipw_pci_suspend,
11936         .resume = ipw_pci_resume,
11937 #endif
11938         .shutdown = ipw_pci_shutdown,
11939 };
11940
11941 static int __init ipw_init(void)
11942 {
11943         int ret;
11944
11945         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11946         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11947
11948         ret = pci_register_driver(&ipw_driver);
11949         if (ret) {
11950                 IPW_ERROR("Unable to initialize PCI module\n");
11951                 return ret;
11952         }
11953
11954         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11955         if (ret) {
11956                 IPW_ERROR("Unable to create driver sysfs file\n");
11957                 pci_unregister_driver(&ipw_driver);
11958                 return ret;
11959         }
11960
11961         return ret;
11962 }
11963
11964 static void __exit ipw_exit(void)
11965 {
11966         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11967         pci_unregister_driver(&ipw_driver);
11968 }
11969
11970 module_param(disable, int, 0444);
11971 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11972
11973 module_param(associate, int, 0444);
11974 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11975
11976 module_param(auto_create, int, 0444);
11977 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11978
11979 module_param_named(led, led_support, int, 0444);
11980 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11981
11982 module_param(debug, int, 0444);
11983 MODULE_PARM_DESC(debug, "debug output mask");
11984
11985 module_param_named(channel, default_channel, int, 0444);
11986 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11987
11988 #ifdef CONFIG_IPW2200_PROMISCUOUS
11989 module_param(rtap_iface, int, 0444);
11990 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11991 #endif
11992
11993 #ifdef CONFIG_IPW2200_QOS
11994 module_param(qos_enable, int, 0444);
11995 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11996
11997 module_param(qos_burst_enable, int, 0444);
11998 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11999
12000 module_param(qos_no_ack_mask, int, 0444);
12001 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12002
12003 module_param(burst_duration_CCK, int, 0444);
12004 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12005
12006 module_param(burst_duration_OFDM, int, 0444);
12007 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12008 #endif                          /* CONFIG_IPW2200_QOS */
12009
12010 #ifdef CONFIG_IPW2200_MONITOR
12011 module_param_named(mode, network_mode, int, 0444);
12012 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12013 #else
12014 module_param_named(mode, network_mode, int, 0444);
12015 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12016 #endif
12017
12018 module_param(bt_coexist, int, 0444);
12019 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12020
12021 module_param(hwcrypto, int, 0444);
12022 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12023
12024 module_param(cmdlog, int, 0444);
12025 MODULE_PARM_DESC(cmdlog,
12026                  "allocate a ring buffer for logging firmware commands");
12027
12028 module_param(roaming, int, 0444);
12029 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12030
12031 module_param(antenna, int, 0444);
12032 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12033
12034 module_exit(ipw_exit);
12035 module_init(ipw_init);