OSDN Git Service

Merge tag 'wireless-drivers-2020-01-23' of git://git.kernel.org/pub/scm/linux/kernel...
[tomoyo/tomoyo-test1.git] / drivers / net / wireless / intel / iwlwifi / mvm / rxmq.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68
69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72         u8 *data = skb->data;
73
74         /* Alignment concerns */
75         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78         BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80         if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81                 data += sizeof(struct ieee80211_radiotap_he);
82         if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83                 data += sizeof(struct ieee80211_radiotap_he_mu);
84         if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85                 data += sizeof(struct ieee80211_radiotap_lsig);
86         if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87                 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89                 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90         }
91
92         return data;
93 }
94
95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96                                    int queue, struct ieee80211_sta *sta)
97 {
98         struct iwl_mvm_sta *mvmsta;
99         struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100         struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101         struct iwl_mvm_key_pn *ptk_pn;
102         int res;
103         u8 tid, keyidx;
104         u8 pn[IEEE80211_CCMP_PN_LEN];
105         u8 *extiv;
106
107         /* do PN checking */
108
109         /* multicast and non-data only arrives on default queue */
110         if (!ieee80211_is_data(hdr->frame_control) ||
111             is_multicast_ether_addr(hdr->addr1))
112                 return 0;
113
114         /* do not check PN for open AP */
115         if (!(stats->flag & RX_FLAG_DECRYPTED))
116                 return 0;
117
118         /*
119          * avoid checking for default queue - we don't want to replicate
120          * all the logic that's necessary for checking the PN on fragmented
121          * frames, leave that to mac80211
122          */
123         if (queue == 0)
124                 return 0;
125
126         /* if we are here - this for sure is either CCMP or GCMP */
127         if (IS_ERR_OR_NULL(sta)) {
128                 IWL_ERR(mvm,
129                         "expected hw-decrypted unicast frame for station\n");
130                 return -1;
131         }
132
133         mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135         extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136         keyidx = extiv[3] >> 6;
137
138         ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139         if (!ptk_pn)
140                 return -1;
141
142         if (ieee80211_is_data_qos(hdr->frame_control))
143                 tid = ieee80211_get_tid(hdr);
144         else
145                 tid = 0;
146
147         /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148         if (tid >= IWL_MAX_TID_COUNT)
149                 return -1;
150
151         /* load pn */
152         pn[0] = extiv[7];
153         pn[1] = extiv[6];
154         pn[2] = extiv[5];
155         pn[3] = extiv[4];
156         pn[4] = extiv[1];
157         pn[5] = extiv[0];
158
159         res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160         if (res < 0)
161                 return -1;
162         if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163                 return -1;
164
165         memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166         stats->flag |= RX_FLAG_PN_VALIDATED;
167
168         return 0;
169 }
170
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173                               struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174                               struct iwl_rx_cmd_buffer *rxb)
175 {
176         struct iwl_rx_packet *pkt = rxb_addr(rxb);
177         struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178         unsigned int headlen, fraglen, pad_len = 0;
179         unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180
181         if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182                 len -= 2;
183                 pad_len = 2;
184         }
185
186         /* If frame is small enough to fit in skb->head, pull it completely.
187          * If not, only pull ieee80211_hdr (including crypto if present, and
188          * an additional 8 bytes for SNAP/ethertype, see below) so that
189          * splice() or TCP coalesce are more efficient.
190          *
191          * Since, in addition, ieee80211_data_to_8023() always pull in at
192          * least 8 bytes (possibly more for mesh) we can do the same here
193          * to save the cost of doing it later. That still doesn't pull in
194          * the actual IP header since the typical case has a SNAP header.
195          * If the latter changes (there are efforts in the standards group
196          * to do so) we should revisit this and ieee80211_data_to_8023().
197          */
198         headlen = (len <= skb_tailroom(skb)) ? len :
199                                                hdrlen + crypt_len + 8;
200
201         /* The firmware may align the packet to DWORD.
202          * The padding is inserted after the IV.
203          * After copying the header + IV skip the padding if
204          * present before copying packet data.
205          */
206         hdrlen += crypt_len;
207
208         if (WARN_ONCE(headlen < hdrlen,
209                       "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210                       hdrlen, len, crypt_len)) {
211                 /*
212                  * We warn and trace because we want to be able to see
213                  * it in trace-cmd as well.
214                  */
215                 IWL_DEBUG_RX(mvm,
216                              "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217                              hdrlen, len, crypt_len);
218                 return -EINVAL;
219         }
220
221         skb_put_data(skb, hdr, hdrlen);
222         skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223
224         fraglen = len - headlen;
225
226         if (fraglen) {
227                 int offset = (void *)hdr + headlen + pad_len -
228                              rxb_addr(rxb) + rxb_offset(rxb);
229
230                 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231                                 fraglen, rxb->truesize);
232         }
233
234         return 0;
235 }
236
237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238                                             struct sk_buff *skb)
239 {
240         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241         struct ieee80211_vendor_radiotap *radiotap;
242         const int size = sizeof(*radiotap) + sizeof(__le16);
243
244         if (!mvm->cur_aid)
245                 return;
246
247         /* ensure alignment */
248         BUILD_BUG_ON((size + 2) % 4);
249
250         radiotap = skb_put(skb, size + 2);
251         radiotap->align = 1;
252         /* Intel OUI */
253         radiotap->oui[0] = 0xf6;
254         radiotap->oui[1] = 0x54;
255         radiotap->oui[2] = 0x25;
256         /* radiotap sniffer config sub-namespace */
257         radiotap->subns = 1;
258         radiotap->present = 0x1;
259         radiotap->len = size - sizeof(*radiotap);
260         radiotap->pad = 2;
261
262         /* fill the data now */
263         memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264         /* and clear the padding */
265         memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
266
267         rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
268 }
269
270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272                                             struct napi_struct *napi,
273                                             struct sk_buff *skb, int queue,
274                                             struct ieee80211_sta *sta,
275                                             bool csi)
276 {
277         if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278                 kfree_skb(skb);
279         else
280                 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
281 }
282
283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284                                         struct ieee80211_rx_status *rx_status,
285                                         u32 rate_n_flags, int energy_a,
286                                         int energy_b)
287 {
288         int max_energy;
289         u32 rate_flags = rate_n_flags;
290
291         energy_a = energy_a ? -energy_a : S8_MIN;
292         energy_b = energy_b ? -energy_b : S8_MIN;
293         max_energy = max(energy_a, energy_b);
294
295         IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296                         energy_a, energy_b, max_energy);
297
298         rx_status->signal = max_energy;
299         rx_status->chains =
300                 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301         rx_status->chain_signal[0] = energy_a;
302         rx_status->chain_signal[1] = energy_b;
303         rx_status->chain_signal[2] = S8_MIN;
304 }
305
306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307                              struct ieee80211_rx_status *stats, u16 phy_info,
308                              struct iwl_rx_mpdu_desc *desc,
309                              u32 pkt_flags, int queue, u8 *crypt_len)
310 {
311         u16 status = le16_to_cpu(desc->status);
312
313         /*
314          * Drop UNKNOWN frames in aggregation, unless in monitor mode
315          * (where we don't have the keys).
316          * We limit this to aggregation because in TKIP this is a valid
317          * scenario, since we may not have the (correct) TTAK (phase 1
318          * key) in the firmware.
319          */
320         if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321             (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322             IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323                 return -1;
324
325         if (!ieee80211_has_protected(hdr->frame_control) ||
326             (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327             IWL_RX_MPDU_STATUS_SEC_NONE)
328                 return 0;
329
330         /* TODO: handle packets encrypted with unknown alg */
331
332         switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333         case IWL_RX_MPDU_STATUS_SEC_CCM:
334         case IWL_RX_MPDU_STATUS_SEC_GCM:
335                 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336                 /* alg is CCM: check MIC only */
337                 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338                         return -1;
339
340                 stats->flag |= RX_FLAG_DECRYPTED;
341                 if (pkt_flags & FH_RSCSR_RADA_EN)
342                         stats->flag |= RX_FLAG_MIC_STRIPPED;
343                 *crypt_len = IEEE80211_CCMP_HDR_LEN;
344                 return 0;
345         case IWL_RX_MPDU_STATUS_SEC_TKIP:
346                 /* Don't drop the frame and decrypt it in SW */
347                 if (!fw_has_api(&mvm->fw->ucode_capa,
348                                 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349                     !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350                         return 0;
351
352                 if (mvm->trans->trans_cfg->gen2 &&
353                     !(status & RX_MPDU_RES_STATUS_MIC_OK))
354                         stats->flag |= RX_FLAG_MMIC_ERROR;
355
356                 *crypt_len = IEEE80211_TKIP_IV_LEN;
357                 /* fall through */
358         case IWL_RX_MPDU_STATUS_SEC_WEP:
359                 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360                         return -1;
361
362                 stats->flag |= RX_FLAG_DECRYPTED;
363                 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364                                 IWL_RX_MPDU_STATUS_SEC_WEP)
365                         *crypt_len = IEEE80211_WEP_IV_LEN;
366
367                 if (pkt_flags & FH_RSCSR_RADA_EN) {
368                         stats->flag |= RX_FLAG_ICV_STRIPPED;
369                         if (mvm->trans->trans_cfg->gen2)
370                                 stats->flag |= RX_FLAG_MMIC_STRIPPED;
371                 }
372
373                 return 0;
374         case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375                 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376                         return -1;
377                 stats->flag |= RX_FLAG_DECRYPTED;
378                 return 0;
379         default:
380                 /*
381                  * Sometimes we can get frames that were not decrypted
382                  * because the firmware didn't have the keys yet. This can
383                  * happen after connection where we can get multicast frames
384                  * before the GTK is installed.
385                  * Silently drop those frames.
386                  * Also drop un-decrypted frames in monitor mode.
387                  */
388                 if (!is_multicast_ether_addr(hdr->addr1) &&
389                     !mvm->monitor_on && net_ratelimit())
390                         IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
391         }
392
393         return 0;
394 }
395
396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
397                             struct sk_buff *skb,
398                             struct iwl_rx_mpdu_desc *desc)
399 {
400         struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
401         struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
402         u16 flags = le16_to_cpu(desc->l3l4_flags);
403         u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
404                           IWL_RX_L3_PROTO_POS);
405
406         if (mvmvif->features & NETIF_F_RXCSUM &&
407             flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
408             (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
409              l3_prot == IWL_RX_L3_TYPE_IPV6 ||
410              l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
411                 skb->ip_summed = CHECKSUM_UNNECESSARY;
412 }
413
414 /*
415  * returns true if a packet is a duplicate and should be dropped.
416  * Updates AMSDU PN tracking info
417  */
418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
419                            struct ieee80211_rx_status *rx_status,
420                            struct ieee80211_hdr *hdr,
421                            struct iwl_rx_mpdu_desc *desc)
422 {
423         struct iwl_mvm_sta *mvm_sta;
424         struct iwl_mvm_rxq_dup_data *dup_data;
425         u8 tid, sub_frame_idx;
426
427         if (WARN_ON(IS_ERR_OR_NULL(sta)))
428                 return false;
429
430         mvm_sta = iwl_mvm_sta_from_mac80211(sta);
431         dup_data = &mvm_sta->dup_data[queue];
432
433         /*
434          * Drop duplicate 802.11 retransmissions
435          * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
436          */
437         if (ieee80211_is_ctl(hdr->frame_control) ||
438             ieee80211_is_qos_nullfunc(hdr->frame_control) ||
439             is_multicast_ether_addr(hdr->addr1)) {
440                 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
441                 return false;
442         }
443
444         if (ieee80211_is_data_qos(hdr->frame_control))
445                 /* frame has qos control */
446                 tid = ieee80211_get_tid(hdr);
447         else
448                 tid = IWL_MAX_TID_COUNT;
449
450         /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
451         sub_frame_idx = desc->amsdu_info &
452                 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
453
454         if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
455                      dup_data->last_seq[tid] == hdr->seq_ctrl &&
456                      dup_data->last_sub_frame[tid] >= sub_frame_idx))
457                 return true;
458
459         /* Allow same PN as the first subframe for following sub frames */
460         if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
461             sub_frame_idx > dup_data->last_sub_frame[tid] &&
462             desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
463                 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
464
465         dup_data->last_seq[tid] = hdr->seq_ctrl;
466         dup_data->last_sub_frame[tid] = sub_frame_idx;
467
468         rx_status->flag |= RX_FLAG_DUP_VALIDATED;
469
470         return false;
471 }
472
473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
474                             const u8 *data, u32 count, bool async)
475 {
476         u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
477                sizeof(struct iwl_mvm_rss_sync_notif)];
478         struct iwl_rxq_sync_cmd *cmd = (void *)buf;
479         u32 data_size = sizeof(*cmd) + count;
480         int ret;
481
482         /*
483          * size must be a multiple of DWORD
484          * Ensure we don't overflow buf
485          */
486         if (WARN_ON(count & 3 ||
487                     count > sizeof(struct iwl_mvm_rss_sync_notif)))
488                 return -EINVAL;
489
490         cmd->rxq_mask = cpu_to_le32(rxq_mask);
491         cmd->count =  cpu_to_le32(count);
492         cmd->flags = 0;
493         memcpy(cmd->payload, data, count);
494
495         ret = iwl_mvm_send_cmd_pdu(mvm,
496                                    WIDE_ID(DATA_PATH_GROUP,
497                                            TRIGGER_RX_QUEUES_NOTIF_CMD),
498                                    async ? CMD_ASYNC : 0, data_size, cmd);
499
500         return ret;
501 }
502
503 /*
504  * Returns true if sn2 - buffer_size < sn1 < sn2.
505  * To be used only in order to compare reorder buffer head with NSSN.
506  * We fully trust NSSN unless it is behind us due to reorder timeout.
507  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
508  */
509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
510 {
511         return ieee80211_sn_less(sn1, sn2) &&
512                !ieee80211_sn_less(sn1, sn2 - buffer_size);
513 }
514
515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
516 {
517         if (IWL_MVM_USE_NSSN_SYNC) {
518                 struct iwl_mvm_rss_sync_notif notif = {
519                         .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
520                         .metadata.sync = 0,
521                         .nssn_sync.baid = baid,
522                         .nssn_sync.nssn = nssn,
523                 };
524
525                 iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
526                                                 sizeof(notif));
527         }
528 }
529
530 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
531
532 enum iwl_mvm_release_flags {
533         IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
534         IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
535 };
536
537 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
538                                    struct ieee80211_sta *sta,
539                                    struct napi_struct *napi,
540                                    struct iwl_mvm_baid_data *baid_data,
541                                    struct iwl_mvm_reorder_buffer *reorder_buf,
542                                    u16 nssn, u32 flags)
543 {
544         struct iwl_mvm_reorder_buf_entry *entries =
545                 &baid_data->entries[reorder_buf->queue *
546                                     baid_data->entries_per_queue];
547         u16 ssn = reorder_buf->head_sn;
548
549         lockdep_assert_held(&reorder_buf->lock);
550
551         /*
552          * We keep the NSSN not too far behind, if we are sync'ing it and it
553          * is more than 2048 ahead of us, it must be behind us. Discard it.
554          * This can happen if the queue that hit the 0 / 2048 seqno was lagging
555          * behind and this queue already processed packets. The next if
556          * would have caught cases where this queue would have processed less
557          * than 64 packets, but it may have processed more than 64 packets.
558          */
559         if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
560             ieee80211_sn_less(nssn, ssn))
561                 goto set_timer;
562
563         /* ignore nssn smaller than head sn - this can happen due to timeout */
564         if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
565                 goto set_timer;
566
567         while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
568                 int index = ssn % reorder_buf->buf_size;
569                 struct sk_buff_head *skb_list = &entries[index].e.frames;
570                 struct sk_buff *skb;
571
572                 ssn = ieee80211_sn_inc(ssn);
573                 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
574                     (ssn == 2048 || ssn == 0))
575                         iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
576
577                 /*
578                  * Empty the list. Will have more than one frame for A-MSDU.
579                  * Empty list is valid as well since nssn indicates frames were
580                  * received.
581                  */
582                 while ((skb = __skb_dequeue(skb_list))) {
583                         iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
584                                                         reorder_buf->queue,
585                                                         sta, false);
586                         reorder_buf->num_stored--;
587                 }
588         }
589         reorder_buf->head_sn = nssn;
590
591 set_timer:
592         if (reorder_buf->num_stored && !reorder_buf->removed) {
593                 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
594
595                 while (skb_queue_empty(&entries[index].e.frames))
596                         index = (index + 1) % reorder_buf->buf_size;
597                 /* modify timer to match next frame's expiration time */
598                 mod_timer(&reorder_buf->reorder_timer,
599                           entries[index].e.reorder_time + 1 +
600                           RX_REORDER_BUF_TIMEOUT_MQ);
601         } else {
602                 del_timer(&reorder_buf->reorder_timer);
603         }
604 }
605
606 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
607 {
608         struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
609         struct iwl_mvm_baid_data *baid_data =
610                 iwl_mvm_baid_data_from_reorder_buf(buf);
611         struct iwl_mvm_reorder_buf_entry *entries =
612                 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
613         int i;
614         u16 sn = 0, index = 0;
615         bool expired = false;
616         bool cont = false;
617
618         spin_lock(&buf->lock);
619
620         if (!buf->num_stored || buf->removed) {
621                 spin_unlock(&buf->lock);
622                 return;
623         }
624
625         for (i = 0; i < buf->buf_size ; i++) {
626                 index = (buf->head_sn + i) % buf->buf_size;
627
628                 if (skb_queue_empty(&entries[index].e.frames)) {
629                         /*
630                          * If there is a hole and the next frame didn't expire
631                          * we want to break and not advance SN
632                          */
633                         cont = false;
634                         continue;
635                 }
636                 if (!cont &&
637                     !time_after(jiffies, entries[index].e.reorder_time +
638                                          RX_REORDER_BUF_TIMEOUT_MQ))
639                         break;
640
641                 expired = true;
642                 /* continue until next hole after this expired frames */
643                 cont = true;
644                 sn = ieee80211_sn_add(buf->head_sn, i + 1);
645         }
646
647         if (expired) {
648                 struct ieee80211_sta *sta;
649                 struct iwl_mvm_sta *mvmsta;
650                 u8 sta_id = baid_data->sta_id;
651
652                 rcu_read_lock();
653                 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
654                 mvmsta = iwl_mvm_sta_from_mac80211(sta);
655
656                 /* SN is set to the last expired frame + 1 */
657                 IWL_DEBUG_HT(buf->mvm,
658                              "Releasing expired frames for sta %u, sn %d\n",
659                              sta_id, sn);
660                 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
661                                                      sta, baid_data->tid);
662                 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
663                                        buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
664                 rcu_read_unlock();
665         } else {
666                 /*
667                  * If no frame expired and there are stored frames, index is now
668                  * pointing to the first unexpired frame - modify timer
669                  * accordingly to this frame.
670                  */
671                 mod_timer(&buf->reorder_timer,
672                           entries[index].e.reorder_time +
673                           1 + RX_REORDER_BUF_TIMEOUT_MQ);
674         }
675         spin_unlock(&buf->lock);
676 }
677
678 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
679                            struct iwl_mvm_delba_data *data)
680 {
681         struct iwl_mvm_baid_data *ba_data;
682         struct ieee80211_sta *sta;
683         struct iwl_mvm_reorder_buffer *reorder_buf;
684         u8 baid = data->baid;
685
686         if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
687                 return;
688
689         rcu_read_lock();
690
691         ba_data = rcu_dereference(mvm->baid_map[baid]);
692         if (WARN_ON_ONCE(!ba_data))
693                 goto out;
694
695         sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
696         if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
697                 goto out;
698
699         reorder_buf = &ba_data->reorder_buf[queue];
700
701         /* release all frames that are in the reorder buffer to the stack */
702         spin_lock_bh(&reorder_buf->lock);
703         iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
704                                ieee80211_sn_add(reorder_buf->head_sn,
705                                                 reorder_buf->buf_size),
706                                0);
707         spin_unlock_bh(&reorder_buf->lock);
708         del_timer_sync(&reorder_buf->reorder_timer);
709
710 out:
711         rcu_read_unlock();
712 }
713
714 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
715                                               struct napi_struct *napi,
716                                               u8 baid, u16 nssn, int queue,
717                                               u32 flags)
718 {
719         struct ieee80211_sta *sta;
720         struct iwl_mvm_reorder_buffer *reorder_buf;
721         struct iwl_mvm_baid_data *ba_data;
722
723         IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
724                      baid, nssn);
725
726         if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
727                          baid >= ARRAY_SIZE(mvm->baid_map)))
728                 return;
729
730         rcu_read_lock();
731
732         ba_data = rcu_dereference(mvm->baid_map[baid]);
733         if (WARN_ON_ONCE(!ba_data))
734                 goto out;
735
736         sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
737         if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
738                 goto out;
739
740         reorder_buf = &ba_data->reorder_buf[queue];
741
742         spin_lock_bh(&reorder_buf->lock);
743         iwl_mvm_release_frames(mvm, sta, napi, ba_data,
744                                reorder_buf, nssn, flags);
745         spin_unlock_bh(&reorder_buf->lock);
746
747 out:
748         rcu_read_unlock();
749 }
750
751 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
752                               struct napi_struct *napi, int queue,
753                               const struct iwl_mvm_nssn_sync_data *data)
754 {
755         iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
756                                           data->nssn, queue,
757                                           IWL_MVM_RELEASE_FROM_RSS_SYNC);
758 }
759
760 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
761                             struct iwl_rx_cmd_buffer *rxb, int queue)
762 {
763         struct iwl_rx_packet *pkt = rxb_addr(rxb);
764         struct iwl_rxq_sync_notification *notif;
765         struct iwl_mvm_internal_rxq_notif *internal_notif;
766
767         notif = (void *)pkt->data;
768         internal_notif = (void *)notif->payload;
769
770         if (internal_notif->sync &&
771             mvm->queue_sync_cookie != internal_notif->cookie) {
772                 WARN_ONCE(1, "Received expired RX queue sync message\n");
773                 return;
774         }
775
776         switch (internal_notif->type) {
777         case IWL_MVM_RXQ_EMPTY:
778                 break;
779         case IWL_MVM_RXQ_NOTIF_DEL_BA:
780                 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
781                 break;
782         case IWL_MVM_RXQ_NSSN_SYNC:
783                 iwl_mvm_nssn_sync(mvm, napi, queue,
784                                   (void *)internal_notif->data);
785                 break;
786         default:
787                 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
788         }
789
790         if (internal_notif->sync &&
791             !atomic_dec_return(&mvm->queue_sync_counter))
792                 wake_up(&mvm->rx_sync_waitq);
793 }
794
795 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
796                                      struct ieee80211_sta *sta, int tid,
797                                      struct iwl_mvm_reorder_buffer *buffer,
798                                      u32 reorder, u32 gp2, int queue)
799 {
800         struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
801
802         if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
803                 /* we have a new (A-)MPDU ... */
804
805                 /*
806                  * reset counter to 0 if we didn't have any oldsn in
807                  * the last A-MPDU (as detected by GP2 being identical)
808                  */
809                 if (!buffer->consec_oldsn_prev_drop)
810                         buffer->consec_oldsn_drops = 0;
811
812                 /* either way, update our tracking state */
813                 buffer->consec_oldsn_ampdu_gp2 = gp2;
814         } else if (buffer->consec_oldsn_prev_drop) {
815                 /*
816                  * tracking state didn't change, and we had an old SN
817                  * indication before - do nothing in this case, we
818                  * already noted this one down and are waiting for the
819                  * next A-MPDU (by GP2)
820                  */
821                 return;
822         }
823
824         /* return unless this MPDU has old SN */
825         if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
826                 return;
827
828         /* update state */
829         buffer->consec_oldsn_prev_drop = 1;
830         buffer->consec_oldsn_drops++;
831
832         /* if limit is reached, send del BA and reset state */
833         if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
834                 IWL_WARN(mvm,
835                          "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
836                          IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
837                          sta->addr, queue, tid);
838                 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
839                 buffer->consec_oldsn_prev_drop = 0;
840                 buffer->consec_oldsn_drops = 0;
841         }
842 }
843
844 /*
845  * Returns true if the MPDU was buffered\dropped, false if it should be passed
846  * to upper layer.
847  */
848 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
849                             struct napi_struct *napi,
850                             int queue,
851                             struct ieee80211_sta *sta,
852                             struct sk_buff *skb,
853                             struct iwl_rx_mpdu_desc *desc)
854 {
855         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
856         struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
857         struct iwl_mvm_sta *mvm_sta;
858         struct iwl_mvm_baid_data *baid_data;
859         struct iwl_mvm_reorder_buffer *buffer;
860         struct sk_buff *tail;
861         u32 reorder = le32_to_cpu(desc->reorder_data);
862         bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
863         bool last_subframe =
864                 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
865         u8 tid = ieee80211_get_tid(hdr);
866         u8 sub_frame_idx = desc->amsdu_info &
867                            IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
868         struct iwl_mvm_reorder_buf_entry *entries;
869         int index;
870         u16 nssn, sn;
871         u8 baid;
872
873         baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
874                 IWL_RX_MPDU_REORDER_BAID_SHIFT;
875
876         /*
877          * This also covers the case of receiving a Block Ack Request
878          * outside a BA session; we'll pass it to mac80211 and that
879          * then sends a delBA action frame.
880          * This also covers pure monitor mode, in which case we won't
881          * have any BA sessions.
882          */
883         if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
884                 return false;
885
886         /* no sta yet */
887         if (WARN_ONCE(IS_ERR_OR_NULL(sta),
888                       "Got valid BAID without a valid station assigned\n"))
889                 return false;
890
891         mvm_sta = iwl_mvm_sta_from_mac80211(sta);
892
893         /* not a data packet or a bar */
894         if (!ieee80211_is_back_req(hdr->frame_control) &&
895             (!ieee80211_is_data_qos(hdr->frame_control) ||
896              is_multicast_ether_addr(hdr->addr1)))
897                 return false;
898
899         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
900                 return false;
901
902         baid_data = rcu_dereference(mvm->baid_map[baid]);
903         if (!baid_data) {
904                 IWL_DEBUG_RX(mvm,
905                              "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
906                               baid, reorder);
907                 return false;
908         }
909
910         if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
911                  "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
912                  baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
913                  tid))
914                 return false;
915
916         nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
917         sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
918                 IWL_RX_MPDU_REORDER_SN_SHIFT;
919
920         buffer = &baid_data->reorder_buf[queue];
921         entries = &baid_data->entries[queue * baid_data->entries_per_queue];
922
923         spin_lock_bh(&buffer->lock);
924
925         if (!buffer->valid) {
926                 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
927                         spin_unlock_bh(&buffer->lock);
928                         return false;
929                 }
930                 buffer->valid = true;
931         }
932
933         if (ieee80211_is_back_req(hdr->frame_control)) {
934                 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
935                                        buffer, nssn, 0);
936                 goto drop;
937         }
938
939         /*
940          * If there was a significant jump in the nssn - adjust.
941          * If the SN is smaller than the NSSN it might need to first go into
942          * the reorder buffer, in which case we just release up to it and the
943          * rest of the function will take care of storing it and releasing up to
944          * the nssn.
945          * This should not happen. This queue has been lagging and it should
946          * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
947          * and update the other queues.
948          */
949         if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
950                                 buffer->buf_size) ||
951             !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
952                 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
953
954                 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
955                                        min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
956         }
957
958         iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
959                                  rx_status->device_timestamp, queue);
960
961         /* drop any oudated packets */
962         if (ieee80211_sn_less(sn, buffer->head_sn))
963                 goto drop;
964
965         /* release immediately if allowed by nssn and no stored frames */
966         if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
967                 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
968                                        buffer->buf_size) &&
969                    (!amsdu || last_subframe)) {
970                         /*
971                          * If we crossed the 2048 or 0 SN, notify all the
972                          * queues. This is done in order to avoid having a
973                          * head_sn that lags behind for too long. When that
974                          * happens, we can get to a situation where the head_sn
975                          * is within the interval [nssn - buf_size : nssn]
976                          * which will make us think that the nssn is a packet
977                          * that we already freed because of the reordering
978                          * buffer and we will ignore it. So maintain the
979                          * head_sn somewhat updated across all the queues:
980                          * when it crosses 0 and 2048.
981                          */
982                         if (sn == 2048 || sn == 0)
983                                 iwl_mvm_sync_nssn(mvm, baid, sn);
984                         buffer->head_sn = nssn;
985                 }
986                 /* No need to update AMSDU last SN - we are moving the head */
987                 spin_unlock_bh(&buffer->lock);
988                 return false;
989         }
990
991         /*
992          * release immediately if there are no stored frames, and the sn is
993          * equal to the head.
994          * This can happen due to reorder timer, where NSSN is behind head_sn.
995          * When we released everything, and we got the next frame in the
996          * sequence, according to the NSSN we can't release immediately,
997          * while technically there is no hole and we can move forward.
998          */
999         if (!buffer->num_stored && sn == buffer->head_sn) {
1000                 if (!amsdu || last_subframe) {
1001                         if (sn == 2048 || sn == 0)
1002                                 iwl_mvm_sync_nssn(mvm, baid, sn);
1003                         buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1004                 }
1005                 /* No need to update AMSDU last SN - we are moving the head */
1006                 spin_unlock_bh(&buffer->lock);
1007                 return false;
1008         }
1009
1010         index = sn % buffer->buf_size;
1011
1012         /*
1013          * Check if we already stored this frame
1014          * As AMSDU is either received or not as whole, logic is simple:
1015          * If we have frames in that position in the buffer and the last frame
1016          * originated from AMSDU had a different SN then it is a retransmission.
1017          * If it is the same SN then if the subframe index is incrementing it
1018          * is the same AMSDU - otherwise it is a retransmission.
1019          */
1020         tail = skb_peek_tail(&entries[index].e.frames);
1021         if (tail && !amsdu)
1022                 goto drop;
1023         else if (tail && (sn != buffer->last_amsdu ||
1024                           buffer->last_sub_index >= sub_frame_idx))
1025                 goto drop;
1026
1027         /* put in reorder buffer */
1028         __skb_queue_tail(&entries[index].e.frames, skb);
1029         buffer->num_stored++;
1030         entries[index].e.reorder_time = jiffies;
1031
1032         if (amsdu) {
1033                 buffer->last_amsdu = sn;
1034                 buffer->last_sub_index = sub_frame_idx;
1035         }
1036
1037         /*
1038          * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039          * The reason is that NSSN advances on the first sub-frame, and may
1040          * cause the reorder buffer to advance before all the sub-frames arrive.
1041          * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042          * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043          * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044          * already ahead and it will be dropped.
1045          * If the last sub-frame is not on this queue - we will get frame
1046          * release notification with up to date NSSN.
1047          */
1048         if (!amsdu || last_subframe)
1049                 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050                                        buffer, nssn,
1051                                        IWL_MVM_RELEASE_SEND_RSS_SYNC);
1052
1053         spin_unlock_bh(&buffer->lock);
1054         return true;
1055
1056 drop:
1057         kfree_skb(skb);
1058         spin_unlock_bh(&buffer->lock);
1059         return true;
1060 }
1061
1062 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063                                     u32 reorder_data, u8 baid)
1064 {
1065         unsigned long now = jiffies;
1066         unsigned long timeout;
1067         struct iwl_mvm_baid_data *data;
1068
1069         rcu_read_lock();
1070
1071         data = rcu_dereference(mvm->baid_map[baid]);
1072         if (!data) {
1073                 IWL_DEBUG_RX(mvm,
1074                              "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075                               baid, reorder_data);
1076                 goto out;
1077         }
1078
1079         if (!data->timeout)
1080                 goto out;
1081
1082         timeout = data->timeout;
1083         /*
1084          * Do not update last rx all the time to avoid cache bouncing
1085          * between the rx queues.
1086          * Update it every timeout. Worst case is the session will
1087          * expire after ~ 2 * timeout, which doesn't matter that much.
1088          */
1089         if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090                 /* Update is atomic */
1091                 data->last_rx = now;
1092
1093 out:
1094         rcu_read_unlock();
1095 }
1096
1097 static void iwl_mvm_flip_address(u8 *addr)
1098 {
1099         int i;
1100         u8 mac_addr[ETH_ALEN];
1101
1102         for (i = 0; i < ETH_ALEN; i++)
1103                 mac_addr[i] = addr[ETH_ALEN - i - 1];
1104         ether_addr_copy(addr, mac_addr);
1105 }
1106
1107 struct iwl_mvm_rx_phy_data {
1108         enum iwl_rx_phy_info_type info_type;
1109         __le32 d0, d1, d2, d3;
1110         __le16 d4;
1111 };
1112
1113 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114                                      struct iwl_mvm_rx_phy_data *phy_data,
1115                                      u32 rate_n_flags,
1116                                      struct ieee80211_radiotap_he_mu *he_mu)
1117 {
1118         u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119         u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120         u16 phy_data4 = le16_to_cpu(phy_data->d4);
1121
1122         if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123                 he_mu->flags1 |=
1124                         cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125                                     IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1126
1127                 he_mu->flags1 |=
1128                         le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129                                                    phy_data4),
1130                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1131
1132                 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133                                              phy_data2);
1134                 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135                                              phy_data3);
1136                 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137                                              phy_data2);
1138                 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139                                              phy_data3);
1140         }
1141
1142         if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143             (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144                 he_mu->flags1 |=
1145                         cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146                                     IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1147
1148                 he_mu->flags2 |=
1149                         le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150                                                    phy_data4),
1151                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1152
1153                 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154                                              phy_data2);
1155                 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156                                              phy_data3);
1157                 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158                                              phy_data2);
1159                 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160                                              phy_data3);
1161         }
1162 }
1163
1164 static void
1165 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166                                u32 rate_n_flags,
1167                                struct ieee80211_radiotap_he *he,
1168                                struct ieee80211_radiotap_he_mu *he_mu,
1169                                struct ieee80211_rx_status *rx_status)
1170 {
1171         /*
1172          * Unfortunately, we have to leave the mac80211 data
1173          * incorrect for the case that we receive an HE-MU
1174          * transmission and *don't* have the HE phy data (due
1175          * to the bits being used for TSF). This shouldn't
1176          * happen though as management frames where we need
1177          * the TSF/timers are not be transmitted in HE-MU.
1178          */
1179         u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180         u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1181         u8 offs = 0;
1182
1183         rx_status->bw = RATE_INFO_BW_HE_RU;
1184
1185         he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1186
1187         switch (ru) {
1188         case 0 ... 36:
1189                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190                 offs = ru;
1191                 break;
1192         case 37 ... 52:
1193                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194                 offs = ru - 37;
1195                 break;
1196         case 53 ... 60:
1197                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198                 offs = ru - 53;
1199                 break;
1200         case 61 ... 64:
1201                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202                 offs = ru - 61;
1203                 break;
1204         case 65 ... 66:
1205                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206                 offs = ru - 65;
1207                 break;
1208         case 67:
1209                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210                 break;
1211         case 68:
1212                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213                 break;
1214         }
1215         he->data2 |= le16_encode_bits(offs,
1216                                       IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217         he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218                                  IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219         if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220                 he->data2 |=
1221                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1222
1223 #define CHECK_BW(bw) \
1224         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225                      RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227                      RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228         CHECK_BW(20);
1229         CHECK_BW(40);
1230         CHECK_BW(80);
1231         CHECK_BW(160);
1232
1233         if (he_mu)
1234                 he_mu->flags2 |=
1235                         le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236                                                    rate_n_flags),
1237                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238         else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239                 he->data6 |=
1240                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241                         le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242                                                    rate_n_flags),
1243                                          IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1244 }
1245
1246 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247                                        struct iwl_mvm_rx_phy_data *phy_data,
1248                                        struct ieee80211_radiotap_he *he,
1249                                        struct ieee80211_radiotap_he_mu *he_mu,
1250                                        struct ieee80211_rx_status *rx_status,
1251                                        u32 rate_n_flags, int queue)
1252 {
1253         switch (phy_data->info_type) {
1254         case IWL_RX_PHY_INFO_TYPE_NONE:
1255         case IWL_RX_PHY_INFO_TYPE_CCK:
1256         case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257         case IWL_RX_PHY_INFO_TYPE_HT:
1258         case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259         case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1260                 return;
1261         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278                 /* fall through */
1279         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283                 /* HE common */
1284                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285                                          IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286                                          IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287                 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288                                          IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289                                          IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290                                          IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292                                                             IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293                                               IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294                 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295                     phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296                         he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297                         he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298                                                             IWL_RX_PHY_DATA0_HE_UPLINK),
1299                                                       IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1300                 }
1301                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302                                                             IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303                                               IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305                                                             IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306                                               IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308                                                             IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309                                               IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311                                                             IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312                                               IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313                 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314                                                             IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315                                               IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316                 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317                                                             IWL_RX_PHY_DATA0_HE_DOPPLER),
1318                                               IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319                 break;
1320         }
1321
1322         switch (phy_data->info_type) {
1323         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328                                                             IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329                                               IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330                 break;
1331         default:
1332                 /* nothing here */
1333                 break;
1334         }
1335
1336         switch (phy_data->info_type) {
1337         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338                 he_mu->flags1 |=
1339                         le16_encode_bits(le16_get_bits(phy_data->d4,
1340                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342                 he_mu->flags1 |=
1343                         le16_encode_bits(le16_get_bits(phy_data->d4,
1344                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346                 he_mu->flags2 |=
1347                         le16_encode_bits(le16_get_bits(phy_data->d4,
1348                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350                 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351                 /* fall through */
1352         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353                 he_mu->flags2 |=
1354                         le16_encode_bits(le32_get_bits(phy_data->d1,
1355                                                        IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357                 he_mu->flags2 |=
1358                         le16_encode_bits(le32_get_bits(phy_data->d1,
1359                                                        IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361                 /* fall through */
1362         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364                 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365                                                he, he_mu, rx_status);
1366                 break;
1367         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370                                                             IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371                                               IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372                 break;
1373         default:
1374                 /* nothing */
1375                 break;
1376         }
1377 }
1378
1379 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380                           struct iwl_mvm_rx_phy_data *phy_data,
1381                           u32 rate_n_flags, u16 phy_info, int queue)
1382 {
1383         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384         struct ieee80211_radiotap_he *he = NULL;
1385         struct ieee80211_radiotap_he_mu *he_mu = NULL;
1386         u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387         u8 stbc, ltf;
1388         static const struct ieee80211_radiotap_he known = {
1389                 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390                                      IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391                                      IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392                                      IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393                 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394                                      IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1395         };
1396         static const struct ieee80211_radiotap_he_mu mu_known = {
1397                 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401                 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402                                       IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1403         };
1404
1405         he = skb_put_data(skb, &known, sizeof(known));
1406         rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1407
1408         if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409             phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410                 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411                 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1412         }
1413
1414         /* report the AMPDU-EOF bit on single frames */
1415         if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416                 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417                 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418                 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419                         rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1420         }
1421
1422         if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423                 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424                                            rate_n_flags, queue);
1425
1426         /* update aggregation data for monitor sake on default queue */
1427         if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428             (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429                 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1430
1431                 /* toggle is switched whenever new aggregation starts */
1432                 if (toggle_bit != mvm->ampdu_toggle) {
1433                         rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434                         if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435                                 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1436                 }
1437         }
1438
1439         if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440             rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441                 rx_status->bw = RATE_INFO_BW_HE_RU;
1442                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1443         }
1444
1445         /* actually data is filled in mac80211 */
1446         if (he_type == RATE_MCS_HE_TYPE_SU ||
1447             he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448                 he->data1 |=
1449                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1450
1451         stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452         rx_status->nss =
1453                 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454                                         RATE_VHT_MCS_NSS_POS) + 1;
1455         rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456         rx_status->encoding = RX_ENC_HE;
1457         rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458         if (rate_n_flags & RATE_MCS_BF_MSK)
1459                 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1460
1461         rx_status->he_dcm =
1462                 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1463
1464 #define CHECK_TYPE(F)                                                   \
1465         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=        \
1466                      (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1467
1468         CHECK_TYPE(SU);
1469         CHECK_TYPE(EXT_SU);
1470         CHECK_TYPE(MU);
1471         CHECK_TYPE(TRIG);
1472
1473         he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1474
1475         if (rate_n_flags & RATE_MCS_BF_MSK)
1476                 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1477
1478         switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479                 RATE_MCS_HE_GI_LTF_POS) {
1480         case 0:
1481                 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483                 else
1484                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485                 if (he_type == RATE_MCS_HE_TYPE_MU)
1486                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487                 else
1488                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489                 break;
1490         case 1:
1491                 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493                 else
1494                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495                 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496                 break;
1497         case 2:
1498                 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501                 } else {
1502                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1504                 }
1505                 break;
1506         case 3:
1507                 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508                      he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509                     rate_n_flags & RATE_MCS_SGI_MSK)
1510                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511                 else
1512                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513                 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514                 break;
1515         }
1516
1517         he->data5 |= le16_encode_bits(ltf,
1518                                       IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1519 }
1520
1521 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522                                 struct iwl_mvm_rx_phy_data *phy_data)
1523 {
1524         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525         struct ieee80211_radiotap_lsig *lsig;
1526
1527         switch (phy_data->info_type) {
1528         case IWL_RX_PHY_INFO_TYPE_HT:
1529         case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530         case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1536                 lsig = skb_put(skb, sizeof(*lsig));
1537                 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538                 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539                                                              IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540                                                IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541                 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542                 break;
1543         default:
1544                 break;
1545         }
1546 }
1547
1548 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1549 {
1550         switch (phy_band) {
1551         case PHY_BAND_24:
1552                 return NL80211_BAND_2GHZ;
1553         case PHY_BAND_5:
1554                 return NL80211_BAND_5GHZ;
1555         default:
1556                 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1557                 return NL80211_BAND_5GHZ;
1558         }
1559 }
1560
1561 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1562                         struct iwl_rx_cmd_buffer *rxb, int queue)
1563 {
1564         struct ieee80211_rx_status *rx_status;
1565         struct iwl_rx_packet *pkt = rxb_addr(rxb);
1566         struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1567         struct ieee80211_hdr *hdr;
1568         u32 len = le16_to_cpu(desc->mpdu_len);
1569         u32 rate_n_flags, gp2_on_air_rise;
1570         u16 phy_info = le16_to_cpu(desc->phy_info);
1571         struct ieee80211_sta *sta = NULL;
1572         struct sk_buff *skb;
1573         u8 crypt_len = 0, channel, energy_a, energy_b;
1574         size_t desc_size;
1575         struct iwl_mvm_rx_phy_data phy_data = {
1576                 .d4 = desc->phy_data4,
1577                 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1578         };
1579         bool csi = false;
1580
1581         if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1582                 return;
1583
1584         if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1585                 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1586                 channel = desc->v3.channel;
1587                 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1588                 energy_a = desc->v3.energy_a;
1589                 energy_b = desc->v3.energy_b;
1590                 desc_size = sizeof(*desc);
1591
1592                 phy_data.d0 = desc->v3.phy_data0;
1593                 phy_data.d1 = desc->v3.phy_data1;
1594                 phy_data.d2 = desc->v3.phy_data2;
1595                 phy_data.d3 = desc->v3.phy_data3;
1596         } else {
1597                 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1598                 channel = desc->v1.channel;
1599                 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1600                 energy_a = desc->v1.energy_a;
1601                 energy_b = desc->v1.energy_b;
1602                 desc_size = IWL_RX_DESC_SIZE_V1;
1603
1604                 phy_data.d0 = desc->v1.phy_data0;
1605                 phy_data.d1 = desc->v1.phy_data1;
1606                 phy_data.d2 = desc->v1.phy_data2;
1607                 phy_data.d3 = desc->v1.phy_data3;
1608         }
1609
1610         if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1611                 phy_data.info_type =
1612                         le32_get_bits(phy_data.d1,
1613                                       IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1614
1615         hdr = (void *)(pkt->data + desc_size);
1616         /* Dont use dev_alloc_skb(), we'll have enough headroom once
1617          * ieee80211_hdr pulled.
1618          */
1619         skb = alloc_skb(128, GFP_ATOMIC);
1620         if (!skb) {
1621                 IWL_ERR(mvm, "alloc_skb failed\n");
1622                 return;
1623         }
1624
1625         if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1626                 /*
1627                  * If the device inserted padding it means that (it thought)
1628                  * the 802.11 header wasn't a multiple of 4 bytes long. In
1629                  * this case, reserve two bytes at the start of the SKB to
1630                  * align the payload properly in case we end up copying it.
1631                  */
1632                 skb_reserve(skb, 2);
1633         }
1634
1635         rx_status = IEEE80211_SKB_RXCB(skb);
1636
1637         /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1638         switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1639         case RATE_MCS_CHAN_WIDTH_20:
1640                 break;
1641         case RATE_MCS_CHAN_WIDTH_40:
1642                 rx_status->bw = RATE_INFO_BW_40;
1643                 break;
1644         case RATE_MCS_CHAN_WIDTH_80:
1645                 rx_status->bw = RATE_INFO_BW_80;
1646                 break;
1647         case RATE_MCS_CHAN_WIDTH_160:
1648                 rx_status->bw = RATE_INFO_BW_160;
1649                 break;
1650         }
1651
1652         if (rate_n_flags & RATE_MCS_HE_MSK)
1653                 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1654                               phy_info, queue);
1655
1656         iwl_mvm_decode_lsig(skb, &phy_data);
1657
1658         rx_status = IEEE80211_SKB_RXCB(skb);
1659
1660         if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1661                               le32_to_cpu(pkt->len_n_flags), queue,
1662                               &crypt_len)) {
1663                 kfree_skb(skb);
1664                 return;
1665         }
1666
1667         /*
1668          * Keep packets with CRC errors (and with overrun) for monitor mode
1669          * (otherwise the firmware discards them) but mark them as bad.
1670          */
1671         if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1672             !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1673                 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1674                              le16_to_cpu(desc->status));
1675                 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1676         }
1677         /* set the preamble flag if appropriate */
1678         if (rate_n_flags & RATE_MCS_CCK_MSK &&
1679             phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1680                 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1681
1682         if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1683                 u64 tsf_on_air_rise;
1684
1685                 if (mvm->trans->trans_cfg->device_family >=
1686                     IWL_DEVICE_FAMILY_AX210)
1687                         tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1688                 else
1689                         tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1690
1691                 rx_status->mactime = tsf_on_air_rise;
1692                 /* TSF as indicated by the firmware is at INA time */
1693                 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1694         }
1695
1696         rx_status->device_timestamp = gp2_on_air_rise;
1697         if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1698                 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1699
1700                 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1701         } else {
1702                 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1703                         NL80211_BAND_2GHZ;
1704         }
1705         rx_status->freq = ieee80211_channel_to_frequency(channel,
1706                                                          rx_status->band);
1707         iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1708                                     energy_b);
1709
1710         /* update aggregation data for monitor sake on default queue */
1711         if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1712                 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1713
1714                 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1715                 /*
1716                  * Toggle is switched whenever new aggregation starts. Make
1717                  * sure ampdu_reference is never 0 so we can later use it to
1718                  * see if the frame was really part of an A-MPDU or not.
1719                  */
1720                 if (toggle_bit != mvm->ampdu_toggle) {
1721                         mvm->ampdu_ref++;
1722                         if (mvm->ampdu_ref == 0)
1723                                 mvm->ampdu_ref++;
1724                         mvm->ampdu_toggle = toggle_bit;
1725                 }
1726                 rx_status->ampdu_reference = mvm->ampdu_ref;
1727         }
1728
1729         if (unlikely(mvm->monitor_on))
1730                 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1731
1732         rcu_read_lock();
1733
1734         if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1735                 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1736
1737                 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1738                         sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1739                         if (IS_ERR(sta))
1740                                 sta = NULL;
1741                 }
1742         } else if (!is_multicast_ether_addr(hdr->addr2)) {
1743                 /*
1744                  * This is fine since we prevent two stations with the same
1745                  * address from being added.
1746                  */
1747                 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1748         }
1749
1750         if (sta) {
1751                 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1752                 struct ieee80211_vif *tx_blocked_vif =
1753                         rcu_dereference(mvm->csa_tx_blocked_vif);
1754                 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1755                                IWL_RX_MPDU_REORDER_BAID_MASK) >>
1756                                IWL_RX_MPDU_REORDER_BAID_SHIFT);
1757                 struct iwl_fw_dbg_trigger_tlv *trig;
1758                 struct ieee80211_vif *vif = mvmsta->vif;
1759
1760                 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1761                     !is_multicast_ether_addr(hdr->addr1) &&
1762                     ieee80211_is_data(hdr->frame_control) &&
1763                     time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1764                         schedule_delayed_work(&mvm->tcm.work, 0);
1765
1766                 /*
1767                  * We have tx blocked stations (with CS bit). If we heard
1768                  * frames from a blocked station on a new channel we can
1769                  * TX to it again.
1770                  */
1771                 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1772                         struct iwl_mvm_vif *mvmvif =
1773                                 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1774
1775                         if (mvmvif->csa_target_freq == rx_status->freq)
1776                                 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1777                                                                  false);
1778                 }
1779
1780                 rs_update_last_rssi(mvm, mvmsta, rx_status);
1781
1782                 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1783                                              ieee80211_vif_to_wdev(vif),
1784                                              FW_DBG_TRIGGER_RSSI);
1785
1786                 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1787                         struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1788                         s32 rssi;
1789
1790                         rssi_trig = (void *)trig->data;
1791                         rssi = le32_to_cpu(rssi_trig->rssi);
1792
1793                         if (rx_status->signal < rssi)
1794                                 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1795                                                         NULL);
1796                 }
1797
1798                 if (ieee80211_is_data(hdr->frame_control))
1799                         iwl_mvm_rx_csum(sta, skb, desc);
1800
1801                 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1802                         kfree_skb(skb);
1803                         goto out;
1804                 }
1805
1806                 /*
1807                  * Our hardware de-aggregates AMSDUs but copies the mac header
1808                  * as it to the de-aggregated MPDUs. We need to turn off the
1809                  * AMSDU bit in the QoS control ourselves.
1810                  * In addition, HW reverses addr3 and addr4 - reverse it back.
1811                  */
1812                 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1813                     !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1814                         u8 *qc = ieee80211_get_qos_ctl(hdr);
1815
1816                         *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1817
1818                         if (mvm->trans->trans_cfg->device_family ==
1819                             IWL_DEVICE_FAMILY_9000) {
1820                                 iwl_mvm_flip_address(hdr->addr3);
1821
1822                                 if (ieee80211_has_a4(hdr->frame_control))
1823                                         iwl_mvm_flip_address(hdr->addr4);
1824                         }
1825                 }
1826                 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1827                         u32 reorder_data = le32_to_cpu(desc->reorder_data);
1828
1829                         iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1830                 }
1831         }
1832
1833         if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1834             rate_n_flags & RATE_MCS_SGI_MSK)
1835                 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1836         if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1837                 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1838         if (rate_n_flags & RATE_MCS_LDPC_MSK)
1839                 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1840         if (rate_n_flags & RATE_MCS_HT_MSK) {
1841                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1842                                 RATE_MCS_STBC_POS;
1843                 rx_status->encoding = RX_ENC_HT;
1844                 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1845                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1846         } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1847                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1848                                 RATE_MCS_STBC_POS;
1849                 rx_status->nss =
1850                         ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1851                                                 RATE_VHT_MCS_NSS_POS) + 1;
1852                 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1853                 rx_status->encoding = RX_ENC_VHT;
1854                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1855                 if (rate_n_flags & RATE_MCS_BF_MSK)
1856                         rx_status->enc_flags |= RX_ENC_FLAG_BF;
1857         } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1858                 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1859                                                                rx_status->band);
1860
1861                 if (WARN(rate < 0 || rate > 0xFF,
1862                          "Invalid rate flags 0x%x, band %d,\n",
1863                          rate_n_flags, rx_status->band)) {
1864                         kfree_skb(skb);
1865                         goto out;
1866                 }
1867                 rx_status->rate_idx = rate;
1868         }
1869
1870         /* management stuff on default queue */
1871         if (!queue) {
1872                 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1873                               ieee80211_is_probe_resp(hdr->frame_control)) &&
1874                              mvm->sched_scan_pass_all ==
1875                              SCHED_SCAN_PASS_ALL_ENABLED))
1876                         mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1877
1878                 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1879                              ieee80211_is_probe_resp(hdr->frame_control)))
1880                         rx_status->boottime_ns = ktime_get_boottime_ns();
1881         }
1882
1883         if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1884                 kfree_skb(skb);
1885                 goto out;
1886         }
1887
1888         if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1889                 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1890                                                 sta, csi);
1891 out:
1892         rcu_read_unlock();
1893 }
1894
1895 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1896                                 struct iwl_rx_cmd_buffer *rxb, int queue)
1897 {
1898         struct ieee80211_rx_status *rx_status;
1899         struct iwl_rx_packet *pkt = rxb_addr(rxb);
1900         struct iwl_rx_no_data *desc = (void *)pkt->data;
1901         u32 rate_n_flags = le32_to_cpu(desc->rate);
1902         u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1903         u32 rssi = le32_to_cpu(desc->rssi);
1904         u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1905         u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1906         struct ieee80211_sta *sta = NULL;
1907         struct sk_buff *skb;
1908         u8 channel, energy_a, energy_b;
1909         struct iwl_mvm_rx_phy_data phy_data = {
1910                 .d0 = desc->phy_info[0],
1911                 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1912         };
1913
1914         if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1915                 return;
1916
1917         energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1918         energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1919         channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1920
1921         phy_data.info_type =
1922                 le32_get_bits(desc->phy_info[1],
1923                               IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1924
1925         /* Dont use dev_alloc_skb(), we'll have enough headroom once
1926          * ieee80211_hdr pulled.
1927          */
1928         skb = alloc_skb(128, GFP_ATOMIC);
1929         if (!skb) {
1930                 IWL_ERR(mvm, "alloc_skb failed\n");
1931                 return;
1932         }
1933
1934         rx_status = IEEE80211_SKB_RXCB(skb);
1935
1936         /* 0-length PSDU */
1937         rx_status->flag |= RX_FLAG_NO_PSDU;
1938
1939         switch (info_type) {
1940         case RX_NO_DATA_INFO_TYPE_NDP:
1941                 rx_status->zero_length_psdu_type =
1942                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1943                 break;
1944         case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1945         case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1946                 rx_status->zero_length_psdu_type =
1947                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1948                 break;
1949         default:
1950                 rx_status->zero_length_psdu_type =
1951                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1952                 break;
1953         }
1954
1955         /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1956         switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1957         case RATE_MCS_CHAN_WIDTH_20:
1958                 break;
1959         case RATE_MCS_CHAN_WIDTH_40:
1960                 rx_status->bw = RATE_INFO_BW_40;
1961                 break;
1962         case RATE_MCS_CHAN_WIDTH_80:
1963                 rx_status->bw = RATE_INFO_BW_80;
1964                 break;
1965         case RATE_MCS_CHAN_WIDTH_160:
1966                 rx_status->bw = RATE_INFO_BW_160;
1967                 break;
1968         }
1969
1970         if (rate_n_flags & RATE_MCS_HE_MSK)
1971                 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1972                               phy_info, queue);
1973
1974         iwl_mvm_decode_lsig(skb, &phy_data);
1975
1976         rx_status->device_timestamp = gp2_on_air_rise;
1977         rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1978                 NL80211_BAND_2GHZ;
1979         rx_status->freq = ieee80211_channel_to_frequency(channel,
1980                                                          rx_status->band);
1981         iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1982                                     energy_b);
1983
1984         rcu_read_lock();
1985
1986         if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1987             rate_n_flags & RATE_MCS_SGI_MSK)
1988                 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1989         if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1990                 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1991         if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992                 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993         if (rate_n_flags & RATE_MCS_HT_MSK) {
1994                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1995                                 RATE_MCS_STBC_POS;
1996                 rx_status->encoding = RX_ENC_HT;
1997                 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1998                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1999         } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2000                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2001                                 RATE_MCS_STBC_POS;
2002                 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2003                 rx_status->encoding = RX_ENC_VHT;
2004                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2005                 if (rate_n_flags & RATE_MCS_BF_MSK)
2006                         rx_status->enc_flags |= RX_ENC_FLAG_BF;
2007                 /*
2008                  * take the nss from the rx_vec since the rate_n_flags has
2009                  * only 2 bits for the nss which gives a max of 4 ss but
2010                  * there may be up to 8 spatial streams
2011                  */
2012                 rx_status->nss =
2013                         le32_get_bits(desc->rx_vec[0],
2014                                       RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2015         } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2016                 rx_status->nss =
2017                         le32_get_bits(desc->rx_vec[0],
2018                                       RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2019         } else {
2020                 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2021                                                                rx_status->band);
2022
2023                 if (WARN(rate < 0 || rate > 0xFF,
2024                          "Invalid rate flags 0x%x, band %d,\n",
2025                          rate_n_flags, rx_status->band)) {
2026                         kfree_skb(skb);
2027                         goto out;
2028                 }
2029                 rx_status->rate_idx = rate;
2030         }
2031
2032         ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2033 out:
2034         rcu_read_unlock();
2035 }
2036
2037 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2038                               struct iwl_rx_cmd_buffer *rxb, int queue)
2039 {
2040         struct iwl_rx_packet *pkt = rxb_addr(rxb);
2041         struct iwl_frame_release *release = (void *)pkt->data;
2042
2043         iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2044                                           le16_to_cpu(release->nssn),
2045                                           queue, 0);
2046 }
2047
2048 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2049                                   struct iwl_rx_cmd_buffer *rxb, int queue)
2050 {
2051         struct iwl_rx_packet *pkt = rxb_addr(rxb);
2052         struct iwl_bar_frame_release *release = (void *)pkt->data;
2053         unsigned int baid = le32_get_bits(release->ba_info,
2054                                           IWL_BAR_FRAME_RELEASE_BAID_MASK);
2055         unsigned int nssn = le32_get_bits(release->ba_info,
2056                                           IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2057         unsigned int sta_id = le32_get_bits(release->sta_tid,
2058                                             IWL_BAR_FRAME_RELEASE_STA_MASK);
2059         unsigned int tid = le32_get_bits(release->sta_tid,
2060                                          IWL_BAR_FRAME_RELEASE_TID_MASK);
2061         struct iwl_mvm_baid_data *baid_data;
2062
2063         if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2064                          baid >= ARRAY_SIZE(mvm->baid_map)))
2065                 return;
2066
2067         rcu_read_lock();
2068         baid_data = rcu_dereference(mvm->baid_map[baid]);
2069         if (!baid_data) {
2070                 IWL_DEBUG_RX(mvm,
2071                              "Got valid BAID %d but not allocated, invalid BAR release!\n",
2072                               baid);
2073                 goto out;
2074         }
2075
2076         if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2077                  "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2078                  baid, baid_data->sta_id, baid_data->tid, sta_id,
2079                  tid))
2080                 goto out;
2081
2082         iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2083 out:
2084         rcu_read_unlock();
2085 }