OSDN Git Service

0338c5f41ce6adf320d3362b7a0f59899609fc8f
[android-x86/kernel.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144         /* Make sure rx queue size is a power of 2 */
145         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147         /*
148          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149          * between empty and completely full queues.
150          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151          * defined for negative dividends.
152          */
153         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161         return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 /*
165  * iwl_pcie_rx_stop - stops the Rx DMA
166  */
167 int iwl_pcie_rx_stop(struct iwl_trans *trans)
168 {
169         if (trans->cfg->mq_rx_supported) {
170                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
171                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
172                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
173         } else {
174                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
175                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
176                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
177                                            1000);
178         }
179 }
180
181 /*
182  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183  */
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185                                     struct iwl_rxq *rxq)
186 {
187         u32 reg;
188
189         lockdep_assert_held(&rxq->lock);
190
191         /*
192          * explicitly wake up the NIC if:
193          * 1. shadow registers aren't enabled
194          * 2. there is a chance that the NIC is asleep
195          */
196         if (!trans->cfg->base_params->shadow_reg_enable &&
197             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202                                        reg);
203                         iwl_set_bit(trans, CSR_GP_CNTRL,
204                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205                         rxq->need_update = true;
206                         return;
207                 }
208         }
209
210         rxq->write_actual = round_down(rxq->write, 8);
211         if (trans->cfg->mq_rx_supported)
212                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213                             rxq->write_actual);
214         else
215                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 }
217
218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
219 {
220         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221         int i;
222
223         for (i = 0; i < trans->num_rx_queues; i++) {
224                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225
226                 if (!rxq->need_update)
227                         continue;
228                 spin_lock(&rxq->lock);
229                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230                 rxq->need_update = false;
231                 spin_unlock(&rxq->lock);
232         }
233 }
234
235 /*
236  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237  */
238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
239                                   struct iwl_rxq *rxq)
240 {
241         struct iwl_rx_mem_buffer *rxb;
242
243         /*
244          * If the device isn't enabled - no need to try to add buffers...
245          * This can happen when we stop the device and still have an interrupt
246          * pending. We stop the APM before we sync the interrupts because we
247          * have to (see comment there). On the other hand, since the APM is
248          * stopped, we cannot access the HW (in particular not prph).
249          * So don't try to restock if the APM has been already stopped.
250          */
251         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252                 return;
253
254         spin_lock(&rxq->lock);
255         while (rxq->free_count) {
256                 __le64 *bd = (__le64 *)rxq->bd;
257
258                 /* Get next free Rx buffer, remove from free list */
259                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260                                        list);
261                 list_del(&rxb->list);
262                 rxb->invalid = false;
263                 /* 12 first bits are expected to be empty */
264                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265                 /* Point to Rx buffer via next RBD in circular buffer */
266                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268                 rxq->free_count--;
269         }
270         spin_unlock(&rxq->lock);
271
272         /*
273          * If we've added more space for the firmware to place data, tell it.
274          * Increment device's write pointer in multiples of 8.
275          */
276         if (rxq->write_actual != (rxq->write & ~0x7)) {
277                 spin_lock(&rxq->lock);
278                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279                 spin_unlock(&rxq->lock);
280         }
281 }
282
283 /*
284  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285  */
286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
287                                   struct iwl_rxq *rxq)
288 {
289         struct iwl_rx_mem_buffer *rxb;
290
291         /*
292          * If the device isn't enabled - not need to try to add buffers...
293          * This can happen when we stop the device and still have an interrupt
294          * pending. We stop the APM before we sync the interrupts because we
295          * have to (see comment there). On the other hand, since the APM is
296          * stopped, we cannot access the HW (in particular not prph).
297          * So don't try to restock if the APM has been already stopped.
298          */
299         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300                 return;
301
302         spin_lock(&rxq->lock);
303         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304                 __le32 *bd = (__le32 *)rxq->bd;
305                 /* The overwritten rxb must be a used one */
306                 rxb = rxq->queue[rxq->write];
307                 BUG_ON(rxb && rxb->page);
308
309                 /* Get next free Rx buffer, remove from free list */
310                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311                                        list);
312                 list_del(&rxb->list);
313                 rxb->invalid = false;
314
315                 /* Point to Rx buffer via next RBD in circular buffer */
316                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317                 rxq->queue[rxq->write] = rxb;
318                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
319                 rxq->free_count--;
320         }
321         spin_unlock(&rxq->lock);
322
323         /* If we've added more space for the firmware to place data, tell it.
324          * Increment device's write pointer in multiples of 8. */
325         if (rxq->write_actual != (rxq->write & ~0x7)) {
326                 spin_lock(&rxq->lock);
327                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328                 spin_unlock(&rxq->lock);
329         }
330 }
331
332 /*
333  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
334  *
335  * If there are slots in the RX queue that need to be restocked,
336  * and we have free pre-allocated buffers, fill the ranks as much
337  * as we can, pulling from rx_free.
338  *
339  * This moves the 'write' index forward to catch up with 'processed', and
340  * also updates the memory address in the firmware to reference the new
341  * target buffer.
342  */
343 static
344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
345 {
346         if (trans->cfg->mq_rx_supported)
347                 iwl_pcie_rxmq_restock(trans, rxq);
348         else
349                 iwl_pcie_rxsq_restock(trans, rxq);
350 }
351
352 /*
353  * iwl_pcie_rx_alloc_page - allocates and returns a page.
354  *
355  */
356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
357                                            gfp_t priority)
358 {
359         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
360         struct page *page;
361         gfp_t gfp_mask = priority;
362
363         if (trans_pcie->rx_page_order > 0)
364                 gfp_mask |= __GFP_COMP;
365
366         /* Alloc a new receive buffer */
367         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
368         if (!page) {
369                 if (net_ratelimit())
370                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
371                                        trans_pcie->rx_page_order);
372                 /*
373                  * Issue an error if we don't have enough pre-allocated
374                   * buffers.
375 `                */
376                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377                         IWL_CRIT(trans,
378                                  "Failed to alloc_pages\n");
379                 return NULL;
380         }
381         return page;
382 }
383
384 /*
385  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386  *
387  * A used RBD is an Rx buffer that has been given to the stack. To use it again
388  * a page must be allocated and the RBD must point to the page. This function
389  * doesn't change the HW pointer but handles the list of pages that is used by
390  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391  * allocated buffers.
392  */
393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
394                                    struct iwl_rxq *rxq)
395 {
396         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397         struct iwl_rx_mem_buffer *rxb;
398         struct page *page;
399
400         while (1) {
401                 spin_lock(&rxq->lock);
402                 if (list_empty(&rxq->rx_used)) {
403                         spin_unlock(&rxq->lock);
404                         return;
405                 }
406                 spin_unlock(&rxq->lock);
407
408                 /* Alloc a new receive buffer */
409                 page = iwl_pcie_rx_alloc_page(trans, priority);
410                 if (!page)
411                         return;
412
413                 spin_lock(&rxq->lock);
414
415                 if (list_empty(&rxq->rx_used)) {
416                         spin_unlock(&rxq->lock);
417                         __free_pages(page, trans_pcie->rx_page_order);
418                         return;
419                 }
420                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
421                                        list);
422                 list_del(&rxb->list);
423                 spin_unlock(&rxq->lock);
424
425                 BUG_ON(rxb->page);
426                 rxb->page = page;
427                 /* Get physical address of the RB */
428                 rxb->page_dma =
429                         dma_map_page(trans->dev, page, 0,
430                                      PAGE_SIZE << trans_pcie->rx_page_order,
431                                      DMA_FROM_DEVICE);
432                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
433                         rxb->page = NULL;
434                         spin_lock(&rxq->lock);
435                         list_add(&rxb->list, &rxq->rx_used);
436                         spin_unlock(&rxq->lock);
437                         __free_pages(page, trans_pcie->rx_page_order);
438                         return;
439                 }
440
441                 spin_lock(&rxq->lock);
442
443                 list_add_tail(&rxb->list, &rxq->rx_free);
444                 rxq->free_count++;
445
446                 spin_unlock(&rxq->lock);
447         }
448 }
449
450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 {
452         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
453         int i;
454
455         for (i = 0; i < RX_POOL_SIZE; i++) {
456                 if (!trans_pcie->rx_pool[i].page)
457                         continue;
458                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459                                PAGE_SIZE << trans_pcie->rx_page_order,
460                                DMA_FROM_DEVICE);
461                 __free_pages(trans_pcie->rx_pool[i].page,
462                              trans_pcie->rx_page_order);
463                 trans_pcie->rx_pool[i].page = NULL;
464         }
465 }
466
467 /*
468  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
469  *
470  * Allocates for each received request 8 pages
471  * Called as a scheduled work item.
472  */
473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
474 {
475         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
476         struct iwl_rb_allocator *rba = &trans_pcie->rba;
477         struct list_head local_empty;
478         int pending = atomic_xchg(&rba->req_pending, 0);
479
480         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
481
482         /* If we were scheduled - there is at least one request */
483         spin_lock(&rba->lock);
484         /* swap out the rba->rbd_empty to a local list */
485         list_replace_init(&rba->rbd_empty, &local_empty);
486         spin_unlock(&rba->lock);
487
488         while (pending) {
489                 int i;
490                 LIST_HEAD(local_allocated);
491                 gfp_t gfp_mask = GFP_KERNEL;
492
493                 /* Do not post a warning if there are only a few requests */
494                 if (pending < RX_PENDING_WATERMARK)
495                         gfp_mask |= __GFP_NOWARN;
496
497                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
498                         struct iwl_rx_mem_buffer *rxb;
499                         struct page *page;
500
501                         /* List should never be empty - each reused RBD is
502                          * returned to the list, and initial pool covers any
503                          * possible gap between the time the page is allocated
504                          * to the time the RBD is added.
505                          */
506                         BUG_ON(list_empty(&local_empty));
507                         /* Get the first rxb from the rbd list */
508                         rxb = list_first_entry(&local_empty,
509                                                struct iwl_rx_mem_buffer, list);
510                         BUG_ON(rxb->page);
511
512                         /* Alloc a new receive buffer */
513                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514                         if (!page)
515                                 continue;
516                         rxb->page = page;
517
518                         /* Get physical address of the RB */
519                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
520                                         PAGE_SIZE << trans_pcie->rx_page_order,
521                                         DMA_FROM_DEVICE);
522                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
523                                 rxb->page = NULL;
524                                 __free_pages(page, trans_pcie->rx_page_order);
525                                 continue;
526                         }
527
528                         /* move the allocated entry to the out list */
529                         list_move(&rxb->list, &local_allocated);
530                         i++;
531                 }
532
533                 pending--;
534                 if (!pending) {
535                         pending = atomic_xchg(&rba->req_pending, 0);
536                         IWL_DEBUG_RX(trans,
537                                      "Pending allocation requests = %d\n",
538                                      pending);
539                 }
540
541                 spin_lock(&rba->lock);
542                 /* add the allocated rbds to the allocator allocated list */
543                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
544                 /* get more empty RBDs for current pending requests */
545                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
546                 spin_unlock(&rba->lock);
547
548                 atomic_inc(&rba->req_ready);
549         }
550
551         spin_lock(&rba->lock);
552         /* return unused rbds to the allocator empty list */
553         list_splice_tail(&local_empty, &rba->rbd_empty);
554         spin_unlock(&rba->lock);
555 }
556
557 /*
558  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 .*
560 .* Called by queue when the queue posted allocation request and
561  * has freed 8 RBDs in order to restock itself.
562  * This function directly moves the allocated RBs to the queue's ownership
563  * and updates the relevant counters.
564  */
565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
566                                       struct iwl_rxq *rxq)
567 {
568         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
569         struct iwl_rb_allocator *rba = &trans_pcie->rba;
570         int i;
571
572         lockdep_assert_held(&rxq->lock);
573
574         /*
575          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577          * function will return early, as there are no ready requests.
578          * atomic_dec_if_positive will perofrm the *actual* decrement only if
579          * req_ready > 0, i.e. - there are ready requests and the function
580          * hands one request to the caller.
581          */
582         if (atomic_dec_if_positive(&rba->req_ready) < 0)
583                 return;
584
585         spin_lock(&rba->lock);
586         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
587                 /* Get next free Rx buffer, remove it from free list */
588                 struct iwl_rx_mem_buffer *rxb =
589                         list_first_entry(&rba->rbd_allocated,
590                                          struct iwl_rx_mem_buffer, list);
591
592                 list_move(&rxb->list, &rxq->rx_free);
593         }
594         spin_unlock(&rba->lock);
595
596         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
597         rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 }
599
600 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601 {
602         struct iwl_rb_allocator *rba_p =
603                 container_of(data, struct iwl_rb_allocator, rx_alloc);
604         struct iwl_trans_pcie *trans_pcie =
605                 container_of(rba_p, struct iwl_trans_pcie, rba);
606
607         iwl_pcie_rx_allocator(trans_pcie->trans);
608 }
609
610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
611 {
612         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613         struct iwl_rb_allocator *rba = &trans_pcie->rba;
614         struct device *dev = trans->dev;
615         int i;
616         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
617                                                       sizeof(__le32);
618
619         if (WARN_ON(trans_pcie->rxq))
620                 return -EINVAL;
621
622         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
623                                   GFP_KERNEL);
624         if (!trans_pcie->rxq)
625                 return -EINVAL;
626
627         spin_lock_init(&rba->lock);
628
629         for (i = 0; i < trans->num_rx_queues; i++) {
630                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631
632                 spin_lock_init(&rxq->lock);
633                 if (trans->cfg->mq_rx_supported)
634                         rxq->queue_size = MQ_RX_TABLE_SIZE;
635                 else
636                         rxq->queue_size = RX_QUEUE_SIZE;
637
638                 /*
639                  * Allocate the circular buffer of Read Buffer Descriptors
640                  * (RBDs)
641                  */
642                 rxq->bd = dma_zalloc_coherent(dev,
643                                              free_size * rxq->queue_size,
644                                              &rxq->bd_dma, GFP_KERNEL);
645                 if (!rxq->bd)
646                         goto err;
647
648                 if (trans->cfg->mq_rx_supported) {
649                         rxq->used_bd = dma_zalloc_coherent(dev,
650                                                            sizeof(__le32) *
651                                                            rxq->queue_size,
652                                                            &rxq->used_bd_dma,
653                                                            GFP_KERNEL);
654                         if (!rxq->used_bd)
655                                 goto err;
656                 }
657
658                 /*Allocate the driver's pointer to receive buffer status */
659                 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
660                                                    &rxq->rb_stts_dma,
661                                                    GFP_KERNEL);
662                 if (!rxq->rb_stts)
663                         goto err;
664         }
665         return 0;
666
667 err:
668         for (i = 0; i < trans->num_rx_queues; i++) {
669                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
670
671                 if (rxq->bd)
672                         dma_free_coherent(dev, free_size * rxq->queue_size,
673                                           rxq->bd, rxq->bd_dma);
674                 rxq->bd_dma = 0;
675                 rxq->bd = NULL;
676
677                 if (rxq->rb_stts)
678                         dma_free_coherent(trans->dev,
679                                           sizeof(struct iwl_rb_status),
680                                           rxq->rb_stts, rxq->rb_stts_dma);
681
682                 if (rxq->used_bd)
683                         dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
684                                           rxq->used_bd, rxq->used_bd_dma);
685                 rxq->used_bd_dma = 0;
686                 rxq->used_bd = NULL;
687         }
688         kfree(trans_pcie->rxq);
689
690         return -ENOMEM;
691 }
692
693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
694 {
695         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696         u32 rb_size;
697         unsigned long flags;
698         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
699
700         switch (trans_pcie->rx_buf_size) {
701         case IWL_AMSDU_4K:
702                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
703                 break;
704         case IWL_AMSDU_8K:
705                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
706                 break;
707         case IWL_AMSDU_12K:
708                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
709                 break;
710         default:
711                 WARN_ON(1);
712                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
713         }
714
715         if (!iwl_trans_grab_nic_access(trans, &flags))
716                 return;
717
718         /* Stop Rx DMA */
719         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
720         /* reset and flush pointers */
721         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
722         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
723         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
724
725         /* Reset driver's Rx queue write index */
726         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
727
728         /* Tell device where to find RBD circular buffer in DRAM */
729         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
730                     (u32)(rxq->bd_dma >> 8));
731
732         /* Tell device where in DRAM to update its Rx status */
733         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
734                     rxq->rb_stts_dma >> 4);
735
736         /* Enable Rx DMA
737          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
738          *      the credit mechanism in 5000 HW RX FIFO
739          * Direct rx interrupts to hosts
740          * Rx buffer size 4 or 8k or 12k
741          * RB timeout 0x10
742          * 256 RBDs
743          */
744         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
745                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
746                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
747                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
748                     rb_size |
749                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
750                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
751
752         iwl_trans_release_nic_access(trans, &flags);
753
754         /* Set interrupt coalescing timer to default (2048 usecs) */
755         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
756
757         /* W/A for interrupt coalescing bug in 7260 and 3160 */
758         if (trans->cfg->host_interrupt_operation_mode)
759                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
760 }
761
762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
763 {
764         /*
765          * Turn on the chicken-bits that cause MAC wakeup for RX-related
766          * values.
767          * This costs some power, but needed for W/A 9000 integrated A-step
768          * bug where shadow registers are not in the retention list and their
769          * value is lost when NIC powers down
770          */
771         if (trans->cfg->integrated) {
772                 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
773                             CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
774                 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
775                             CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
776         }
777 }
778
779 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
780 {
781         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
782         u32 rb_size, enabled = 0;
783         unsigned long flags;
784         int i;
785
786         switch (trans_pcie->rx_buf_size) {
787         case IWL_AMSDU_4K:
788                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
789                 break;
790         case IWL_AMSDU_8K:
791                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
792                 break;
793         case IWL_AMSDU_12K:
794                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
795                 break;
796         default:
797                 WARN_ON(1);
798                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
799         }
800
801         if (!iwl_trans_grab_nic_access(trans, &flags))
802                 return;
803
804         /* Stop Rx DMA */
805         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
806         /* disable free amd used rx queue operation */
807         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
808
809         for (i = 0; i < trans->num_rx_queues; i++) {
810                 /* Tell device where to find RBD free table in DRAM */
811                 iwl_write_prph64_no_grab(trans,
812                                          RFH_Q_FRBDCB_BA_LSB(i),
813                                          trans_pcie->rxq[i].bd_dma);
814                 /* Tell device where to find RBD used table in DRAM */
815                 iwl_write_prph64_no_grab(trans,
816                                          RFH_Q_URBDCB_BA_LSB(i),
817                                          trans_pcie->rxq[i].used_bd_dma);
818                 /* Tell device where in DRAM to update its Rx status */
819                 iwl_write_prph64_no_grab(trans,
820                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
821                                          trans_pcie->rxq[i].rb_stts_dma);
822                 /* Reset device indice tables */
823                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
824                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
825                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
826
827                 enabled |= BIT(i) | BIT(i + 16);
828         }
829
830         /*
831          * Enable Rx DMA
832          * Rx buffer size 4 or 8k or 12k
833          * Min RB size 4 or 8
834          * Drop frames that exceed RB size
835          * 512 RBDs
836          */
837         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
838                                RFH_DMA_EN_ENABLE_VAL | rb_size |
839                                RFH_RXF_DMA_MIN_RB_4_8 |
840                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
841                                RFH_RXF_DMA_RBDCB_SIZE_512);
842
843         /*
844          * Activate DMA snooping.
845          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
846          * Default queue is 0
847          */
848         iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
849                                (DEFAULT_RXQ_NUM <<
850                                 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
851                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
852                                (trans->cfg->integrated ?
853                                 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
854                                 RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
855                                RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
856         /* Enable the relevant rx queues */
857         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
858
859         iwl_trans_release_nic_access(trans, &flags);
860
861         /* Set interrupt coalescing timer to default (2048 usecs) */
862         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
863
864         iwl_pcie_enable_rx_wake(trans, true);
865 }
866
867 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
868 {
869         lockdep_assert_held(&rxq->lock);
870
871         INIT_LIST_HEAD(&rxq->rx_free);
872         INIT_LIST_HEAD(&rxq->rx_used);
873         rxq->free_count = 0;
874         rxq->used_count = 0;
875 }
876
877 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
878 {
879         WARN_ON(1);
880         return 0;
881 }
882
883 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
884 {
885         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
886         struct iwl_rxq *def_rxq;
887         struct iwl_rb_allocator *rba = &trans_pcie->rba;
888         int i, err, queue_size, allocator_pool_size, num_alloc;
889
890         if (!trans_pcie->rxq) {
891                 err = iwl_pcie_rx_alloc(trans);
892                 if (err)
893                         return err;
894         }
895         def_rxq = trans_pcie->rxq;
896         if (!rba->alloc_wq)
897                 rba->alloc_wq = alloc_workqueue("rb_allocator",
898                                                 WQ_HIGHPRI | WQ_UNBOUND, 1);
899         INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
900
901         spin_lock(&rba->lock);
902         atomic_set(&rba->req_pending, 0);
903         atomic_set(&rba->req_ready, 0);
904         INIT_LIST_HEAD(&rba->rbd_allocated);
905         INIT_LIST_HEAD(&rba->rbd_empty);
906         spin_unlock(&rba->lock);
907
908         /* free all first - we might be reconfigured for a different size */
909         iwl_pcie_free_rbs_pool(trans);
910
911         for (i = 0; i < RX_QUEUE_SIZE; i++)
912                 def_rxq->queue[i] = NULL;
913
914         for (i = 0; i < trans->num_rx_queues; i++) {
915                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
916
917                 rxq->id = i;
918
919                 spin_lock(&rxq->lock);
920                 /*
921                  * Set read write pointer to reflect that we have processed
922                  * and used all buffers, but have not restocked the Rx queue
923                  * with fresh buffers
924                  */
925                 rxq->read = 0;
926                 rxq->write = 0;
927                 rxq->write_actual = 0;
928                 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
929
930                 iwl_pcie_rx_init_rxb_lists(rxq);
931
932                 if (!rxq->napi.poll)
933                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
934                                        iwl_pcie_dummy_napi_poll, 64);
935
936                 spin_unlock(&rxq->lock);
937         }
938
939         /* move the pool to the default queue and allocator ownerships */
940         queue_size = trans->cfg->mq_rx_supported ?
941                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
942         allocator_pool_size = trans->num_rx_queues *
943                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
944         num_alloc = queue_size + allocator_pool_size;
945         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
946                      ARRAY_SIZE(trans_pcie->rx_pool));
947         for (i = 0; i < num_alloc; i++) {
948                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
949
950                 if (i < allocator_pool_size)
951                         list_add(&rxb->list, &rba->rbd_empty);
952                 else
953                         list_add(&rxb->list, &def_rxq->rx_used);
954                 trans_pcie->global_table[i] = rxb;
955                 rxb->vid = (u16)(i + 1);
956                 rxb->invalid = true;
957         }
958
959         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
960
961         return 0;
962 }
963
964 int iwl_pcie_rx_init(struct iwl_trans *trans)
965 {
966         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
967         int ret = _iwl_pcie_rx_init(trans);
968
969         if (ret)
970                 return ret;
971
972         if (trans->cfg->mq_rx_supported)
973                 iwl_pcie_rx_mq_hw_init(trans);
974         else
975                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
976
977         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
978
979         spin_lock(&trans_pcie->rxq->lock);
980         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
981         spin_unlock(&trans_pcie->rxq->lock);
982
983         return 0;
984 }
985
986 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
987 {
988         /*
989          * We don't configure the RFH.
990          * Restock will be done at alive, after firmware configured the RFH.
991          */
992         return _iwl_pcie_rx_init(trans);
993 }
994
995 void iwl_pcie_rx_free(struct iwl_trans *trans)
996 {
997         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
998         struct iwl_rb_allocator *rba = &trans_pcie->rba;
999         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
1000                                               sizeof(__le32);
1001         int i;
1002
1003         /*
1004          * if rxq is NULL, it means that nothing has been allocated,
1005          * exit now
1006          */
1007         if (!trans_pcie->rxq) {
1008                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1009                 return;
1010         }
1011
1012         cancel_work_sync(&rba->rx_alloc);
1013         if (rba->alloc_wq) {
1014                 destroy_workqueue(rba->alloc_wq);
1015                 rba->alloc_wq = NULL;
1016         }
1017
1018         iwl_pcie_free_rbs_pool(trans);
1019
1020         for (i = 0; i < trans->num_rx_queues; i++) {
1021                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1022
1023                 if (rxq->bd)
1024                         dma_free_coherent(trans->dev,
1025                                           free_size * rxq->queue_size,
1026                                           rxq->bd, rxq->bd_dma);
1027                 rxq->bd_dma = 0;
1028                 rxq->bd = NULL;
1029
1030                 if (rxq->rb_stts)
1031                         dma_free_coherent(trans->dev,
1032                                           sizeof(struct iwl_rb_status),
1033                                           rxq->rb_stts, rxq->rb_stts_dma);
1034                 else
1035                         IWL_DEBUG_INFO(trans,
1036                                        "Free rxq->rb_stts which is NULL\n");
1037
1038                 if (rxq->used_bd)
1039                         dma_free_coherent(trans->dev,
1040                                           sizeof(__le32) * rxq->queue_size,
1041                                           rxq->used_bd, rxq->used_bd_dma);
1042                 rxq->used_bd_dma = 0;
1043                 rxq->used_bd = NULL;
1044
1045                 if (rxq->napi.poll)
1046                         netif_napi_del(&rxq->napi);
1047         }
1048         kfree(trans_pcie->rxq);
1049 }
1050
1051 /*
1052  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1053  *
1054  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1055  * When there are 2 empty RBDs - a request for allocation is posted
1056  */
1057 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1058                                   struct iwl_rx_mem_buffer *rxb,
1059                                   struct iwl_rxq *rxq, bool emergency)
1060 {
1061         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1062         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1063
1064         /* Move the RBD to the used list, will be moved to allocator in batches
1065          * before claiming or posting a request*/
1066         list_add_tail(&rxb->list, &rxq->rx_used);
1067
1068         if (unlikely(emergency))
1069                 return;
1070
1071         /* Count the allocator owned RBDs */
1072         rxq->used_count++;
1073
1074         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1075          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1076          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1077          * after but we still need to post another request.
1078          */
1079         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1080                 /* Move the 2 RBDs to the allocator ownership.
1081                  Allocator has another 6 from pool for the request completion*/
1082                 spin_lock(&rba->lock);
1083                 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1084                 spin_unlock(&rba->lock);
1085
1086                 atomic_inc(&rba->req_pending);
1087                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1088         }
1089 }
1090
1091 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1092                                 struct iwl_rxq *rxq,
1093                                 struct iwl_rx_mem_buffer *rxb,
1094                                 bool emergency)
1095 {
1096         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1097         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1098         bool page_stolen = false;
1099         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1100         u32 offset = 0;
1101
1102         if (WARN_ON(!rxb))
1103                 return;
1104
1105         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1106
1107         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1108                 struct iwl_rx_packet *pkt;
1109                 u16 sequence;
1110                 bool reclaim;
1111                 int index, cmd_index, len;
1112                 struct iwl_rx_cmd_buffer rxcb = {
1113                         ._offset = offset,
1114                         ._rx_page_order = trans_pcie->rx_page_order,
1115                         ._page = rxb->page,
1116                         ._page_stolen = false,
1117                         .truesize = max_len,
1118                 };
1119
1120                 pkt = rxb_addr(&rxcb);
1121
1122                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1123                         break;
1124
1125                 WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1126                         FH_RSCSR_RXQ_POS != rxq->id);
1127
1128                 IWL_DEBUG_RX(trans,
1129                              "cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1130                              rxcb._offset,
1131                              iwl_get_cmd_string(trans,
1132                                                 iwl_cmd_id(pkt->hdr.cmd,
1133                                                            pkt->hdr.group_id,
1134                                                            0)),
1135                              pkt->hdr.group_id, pkt->hdr.cmd,
1136                              le16_to_cpu(pkt->hdr.sequence));
1137
1138                 len = iwl_rx_packet_len(pkt);
1139                 len += sizeof(u32); /* account for status word */
1140                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1141                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1142
1143                 /* Reclaim a command buffer only if this packet is a response
1144                  *   to a (driver-originated) command.
1145                  * If the packet (e.g. Rx frame) originated from uCode,
1146                  *   there is no command buffer to reclaim.
1147                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1148                  *   but apparently a few don't get set; catch them here. */
1149                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1150                 if (reclaim) {
1151                         int i;
1152
1153                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1154                                 if (trans_pcie->no_reclaim_cmds[i] ==
1155                                                         pkt->hdr.cmd) {
1156                                         reclaim = false;
1157                                         break;
1158                                 }
1159                         }
1160                 }
1161
1162                 sequence = le16_to_cpu(pkt->hdr.sequence);
1163                 index = SEQ_TO_INDEX(sequence);
1164                 cmd_index = get_cmd_index(txq, index);
1165
1166                 if (rxq->id == 0)
1167                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1168                                        &rxcb);
1169                 else
1170                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1171                                            &rxcb, rxq->id);
1172
1173                 if (reclaim) {
1174                         kzfree(txq->entries[cmd_index].free_buf);
1175                         txq->entries[cmd_index].free_buf = NULL;
1176                 }
1177
1178                 /*
1179                  * After here, we should always check rxcb._page_stolen,
1180                  * if it is true then one of the handlers took the page.
1181                  */
1182
1183                 if (reclaim) {
1184                         /* Invoke any callbacks, transfer the buffer to caller,
1185                          * and fire off the (possibly) blocking
1186                          * iwl_trans_send_cmd()
1187                          * as we reclaim the driver command queue */
1188                         if (!rxcb._page_stolen)
1189                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1190                         else
1191                                 IWL_WARN(trans, "Claim null rxb?\n");
1192                 }
1193
1194                 page_stolen |= rxcb._page_stolen;
1195                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1196         }
1197
1198         /* page was stolen from us -- free our reference */
1199         if (page_stolen) {
1200                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1201                 rxb->page = NULL;
1202         }
1203
1204         /* Reuse the page if possible. For notification packets and
1205          * SKBs that fail to Rx correctly, add them back into the
1206          * rx_free list for reuse later. */
1207         if (rxb->page != NULL) {
1208                 rxb->page_dma =
1209                         dma_map_page(trans->dev, rxb->page, 0,
1210                                      PAGE_SIZE << trans_pcie->rx_page_order,
1211                                      DMA_FROM_DEVICE);
1212                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1213                         /*
1214                          * free the page(s) as well to not break
1215                          * the invariant that the items on the used
1216                          * list have no page(s)
1217                          */
1218                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1219                         rxb->page = NULL;
1220                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1221                 } else {
1222                         list_add_tail(&rxb->list, &rxq->rx_free);
1223                         rxq->free_count++;
1224                 }
1225         } else
1226                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1227 }
1228
1229 /*
1230  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1231  */
1232 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1233 {
1234         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1235         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1236         u32 r, i, count = 0;
1237         bool emergency = false;
1238
1239 restart:
1240         spin_lock(&rxq->lock);
1241         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1242          * buffer that the driver may process (last buffer filled by ucode). */
1243         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1244         i = rxq->read;
1245
1246         /* W/A 9000 device step A0 wrap-around bug */
1247         r &= (rxq->queue_size - 1);
1248
1249         /* Rx interrupt, but nothing sent from uCode */
1250         if (i == r)
1251                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1252
1253         while (i != r) {
1254                 struct iwl_rx_mem_buffer *rxb;
1255
1256                 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1257                         emergency = true;
1258
1259                 if (trans->cfg->mq_rx_supported) {
1260                         /*
1261                          * used_bd is a 32 bit but only 12 are used to retrieve
1262                          * the vid
1263                          */
1264                         u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1265
1266                         if (WARN(!vid ||
1267                                  vid > ARRAY_SIZE(trans_pcie->global_table),
1268                                  "Invalid rxb index from HW %u\n", (u32)vid)) {
1269                                 iwl_force_nmi(trans);
1270                                 goto out;
1271                         }
1272                         rxb = trans_pcie->global_table[vid - 1];
1273                         if (WARN(rxb->invalid,
1274                                  "Invalid rxb from HW %u\n", (u32)vid)) {
1275                                 iwl_force_nmi(trans);
1276                                 goto out;
1277                         }
1278                         rxb->invalid = true;
1279                 } else {
1280                         rxb = rxq->queue[i];
1281                         rxq->queue[i] = NULL;
1282                 }
1283
1284                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1285                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1286
1287                 i = (i + 1) & (rxq->queue_size - 1);
1288
1289                 /*
1290                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1291                  * try to claim the pre-allocated buffers from the allocator.
1292                  * If not ready - will try to reclaim next time.
1293                  * There is no need to reschedule work - allocator exits only
1294                  * on success
1295                  */
1296                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1297                         iwl_pcie_rx_allocator_get(trans, rxq);
1298
1299                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1300                         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1301
1302                         /* Add the remaining empty RBDs for allocator use */
1303                         spin_lock(&rba->lock);
1304                         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1305                         spin_unlock(&rba->lock);
1306                 } else if (emergency) {
1307                         count++;
1308                         if (count == 8) {
1309                                 count = 0;
1310                                 if (rxq->used_count < rxq->queue_size / 3)
1311                                         emergency = false;
1312
1313                                 rxq->read = i;
1314                                 spin_unlock(&rxq->lock);
1315                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1316                                 iwl_pcie_rxq_restock(trans, rxq);
1317                                 goto restart;
1318                         }
1319                 }
1320         }
1321 out:
1322         /* Backtrack one entry */
1323         rxq->read = i;
1324         spin_unlock(&rxq->lock);
1325
1326         /*
1327          * handle a case where in emergency there are some unallocated RBDs.
1328          * those RBDs are in the used list, but are not tracked by the queue's
1329          * used_count which counts allocator owned RBDs.
1330          * unallocated emergency RBDs must be allocated on exit, otherwise
1331          * when called again the function may not be in emergency mode and
1332          * they will be handed to the allocator with no tracking in the RBD
1333          * allocator counters, which will lead to them never being claimed back
1334          * by the queue.
1335          * by allocating them here, they are now in the queue free list, and
1336          * will be restocked by the next call of iwl_pcie_rxq_restock.
1337          */
1338         if (unlikely(emergency && count))
1339                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1340
1341         if (rxq->napi.poll)
1342                 napi_gro_flush(&rxq->napi, false);
1343
1344         iwl_pcie_rxq_restock(trans, rxq);
1345 }
1346
1347 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1348 {
1349         u8 queue = entry->entry;
1350         struct msix_entry *entries = entry - queue;
1351
1352         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1353 }
1354
1355 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1356                                       struct msix_entry *entry)
1357 {
1358         /*
1359          * Before sending the interrupt the HW disables it to prevent
1360          * a nested interrupt. This is done by writing 1 to the corresponding
1361          * bit in the mask register. After handling the interrupt, it should be
1362          * re-enabled by clearing this bit. This register is defined as
1363          * write 1 clear (W1C) register, meaning that it's being clear
1364          * by writing 1 to the bit.
1365          */
1366         iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1367 }
1368
1369 /*
1370  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1371  * This interrupt handler should be used with RSS queue only.
1372  */
1373 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1374 {
1375         struct msix_entry *entry = dev_id;
1376         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1377         struct iwl_trans *trans = trans_pcie->trans;
1378
1379         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1380                 return IRQ_NONE;
1381
1382         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1383
1384         local_bh_disable();
1385         iwl_pcie_rx_handle(trans, entry->entry);
1386         local_bh_enable();
1387
1388         iwl_pcie_clear_irq(trans, entry);
1389
1390         lock_map_release(&trans->sync_cmd_lockdep_map);
1391
1392         return IRQ_HANDLED;
1393 }
1394
1395 /*
1396  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1397  */
1398 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1399 {
1400         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1401         int i;
1402
1403         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1404         if (trans->cfg->internal_wimax_coex &&
1405             !trans->cfg->apmg_not_supported &&
1406             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1407                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1408              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1409                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1410                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1411                 iwl_op_mode_wimax_active(trans->op_mode);
1412                 wake_up(&trans_pcie->wait_command_queue);
1413                 return;
1414         }
1415
1416         local_bh_disable();
1417         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1418          * before we wake up the command caller, to ensure a proper cleanup. */
1419         iwl_trans_fw_error(trans);
1420         local_bh_enable();
1421
1422         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1423                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1424
1425         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1426         wake_up(&trans_pcie->wait_command_queue);
1427 }
1428
1429 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1430 {
1431         u32 inta;
1432
1433         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1434
1435         trace_iwlwifi_dev_irq(trans->dev);
1436
1437         /* Discover which interrupts are active/pending */
1438         inta = iwl_read32(trans, CSR_INT);
1439
1440         /* the thread will service interrupts and re-enable them */
1441         return inta;
1442 }
1443
1444 /* a device (PCI-E) page is 4096 bytes long */
1445 #define ICT_SHIFT       12
1446 #define ICT_SIZE        (1 << ICT_SHIFT)
1447 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1448
1449 /* interrupt handler using ict table, with this interrupt driver will
1450  * stop using INTA register to get device's interrupt, reading this register
1451  * is expensive, device will write interrupts in ICT dram table, increment
1452  * index then will fire interrupt to driver, driver will OR all ICT table
1453  * entries from current index up to table entry with 0 value. the result is
1454  * the interrupt we need to service, driver will set the entries back to 0 and
1455  * set index.
1456  */
1457 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1458 {
1459         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1460         u32 inta;
1461         u32 val = 0;
1462         u32 read;
1463
1464         trace_iwlwifi_dev_irq(trans->dev);
1465
1466         /* Ignore interrupt if there's nothing in NIC to service.
1467          * This may be due to IRQ shared with another device,
1468          * or due to sporadic interrupts thrown from our NIC. */
1469         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1470         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1471         if (!read)
1472                 return 0;
1473
1474         /*
1475          * Collect all entries up to the first 0, starting from ict_index;
1476          * note we already read at ict_index.
1477          */
1478         do {
1479                 val |= read;
1480                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1481                                 trans_pcie->ict_index, read);
1482                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1483                 trans_pcie->ict_index =
1484                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1485
1486                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1487                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1488                                            read);
1489         } while (read);
1490
1491         /* We should not get this value, just ignore it. */
1492         if (val == 0xffffffff)
1493                 val = 0;
1494
1495         /*
1496          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1497          * (bit 15 before shifting it to 31) to clear when using interrupt
1498          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1499          * so we use them to decide on the real state of the Rx bit.
1500          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1501          */
1502         if (val & 0xC0000)
1503                 val |= 0x8000;
1504
1505         inta = (0xff & val) | ((0xff00 & val) << 16);
1506         return inta;
1507 }
1508
1509 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1510 {
1511         struct iwl_trans *trans = dev_id;
1512         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1513         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1514         u32 inta = 0;
1515         u32 handled = 0;
1516
1517         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1518
1519         spin_lock(&trans_pcie->irq_lock);
1520
1521         /* dram interrupt table not set yet,
1522          * use legacy interrupt.
1523          */
1524         if (likely(trans_pcie->use_ict))
1525                 inta = iwl_pcie_int_cause_ict(trans);
1526         else
1527                 inta = iwl_pcie_int_cause_non_ict(trans);
1528
1529         if (iwl_have_debug_level(IWL_DL_ISR)) {
1530                 IWL_DEBUG_ISR(trans,
1531                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1532                               inta, trans_pcie->inta_mask,
1533                               iwl_read32(trans, CSR_INT_MASK),
1534                               iwl_read32(trans, CSR_FH_INT_STATUS));
1535                 if (inta & (~trans_pcie->inta_mask))
1536                         IWL_DEBUG_ISR(trans,
1537                                       "We got a masked interrupt (0x%08x)\n",
1538                                       inta & (~trans_pcie->inta_mask));
1539         }
1540
1541         inta &= trans_pcie->inta_mask;
1542
1543         /*
1544          * Ignore interrupt if there's nothing in NIC to service.
1545          * This may be due to IRQ shared with another device,
1546          * or due to sporadic interrupts thrown from our NIC.
1547          */
1548         if (unlikely(!inta)) {
1549                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1550                 /*
1551                  * Re-enable interrupts here since we don't
1552                  * have anything to service
1553                  */
1554                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1555                         _iwl_enable_interrupts(trans);
1556                 spin_unlock(&trans_pcie->irq_lock);
1557                 lock_map_release(&trans->sync_cmd_lockdep_map);
1558                 return IRQ_NONE;
1559         }
1560
1561         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1562                 /*
1563                  * Hardware disappeared. It might have
1564                  * already raised an interrupt.
1565                  */
1566                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1567                 spin_unlock(&trans_pcie->irq_lock);
1568                 goto out;
1569         }
1570
1571         /* Ack/clear/reset pending uCode interrupts.
1572          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1573          */
1574         /* There is a hardware bug in the interrupt mask function that some
1575          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1576          * they are disabled in the CSR_INT_MASK register. Furthermore the
1577          * ICT interrupt handling mechanism has another bug that might cause
1578          * these unmasked interrupts fail to be detected. We workaround the
1579          * hardware bugs here by ACKing all the possible interrupts so that
1580          * interrupt coalescing can still be achieved.
1581          */
1582         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1583
1584         if (iwl_have_debug_level(IWL_DL_ISR))
1585                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1586                               inta, iwl_read32(trans, CSR_INT_MASK));
1587
1588         spin_unlock(&trans_pcie->irq_lock);
1589
1590         /* Now service all interrupt bits discovered above. */
1591         if (inta & CSR_INT_BIT_HW_ERR) {
1592                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1593
1594                 /* Tell the device to stop sending interrupts */
1595                 iwl_disable_interrupts(trans);
1596
1597                 isr_stats->hw++;
1598                 iwl_pcie_irq_handle_error(trans);
1599
1600                 handled |= CSR_INT_BIT_HW_ERR;
1601
1602                 goto out;
1603         }
1604
1605         if (iwl_have_debug_level(IWL_DL_ISR)) {
1606                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1607                 if (inta & CSR_INT_BIT_SCD) {
1608                         IWL_DEBUG_ISR(trans,
1609                                       "Scheduler finished to transmit the frame/frames.\n");
1610                         isr_stats->sch++;
1611                 }
1612
1613                 /* Alive notification via Rx interrupt will do the real work */
1614                 if (inta & CSR_INT_BIT_ALIVE) {
1615                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1616                         isr_stats->alive++;
1617                         if (trans->cfg->gen2) {
1618                                 /*
1619                                  * We can restock, since firmware configured
1620                                  * the RFH
1621                                  */
1622                                 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1623                         }
1624                 }
1625         }
1626
1627         /* Safely ignore these bits for debug checks below */
1628         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1629
1630         /* HW RF KILL switch toggled */
1631         if (inta & CSR_INT_BIT_RF_KILL) {
1632                 bool hw_rfkill;
1633
1634                 mutex_lock(&trans_pcie->mutex);
1635                 hw_rfkill = iwl_is_rfkill_set(trans);
1636                 if (hw_rfkill)
1637                         set_bit(STATUS_RFKILL, &trans->status);
1638
1639                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1640                          hw_rfkill ? "disable radio" : "enable radio");
1641
1642                 isr_stats->rfkill++;
1643
1644                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1645                 mutex_unlock(&trans_pcie->mutex);
1646                 if (hw_rfkill) {
1647                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1648                                                &trans->status))
1649                                 IWL_DEBUG_RF_KILL(trans,
1650                                                   "Rfkill while SYNC HCMD in flight\n");
1651                         wake_up(&trans_pcie->wait_command_queue);
1652                 } else {
1653                         clear_bit(STATUS_RFKILL, &trans->status);
1654                 }
1655
1656                 handled |= CSR_INT_BIT_RF_KILL;
1657         }
1658
1659         /* Chip got too hot and stopped itself */
1660         if (inta & CSR_INT_BIT_CT_KILL) {
1661                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1662                 isr_stats->ctkill++;
1663                 handled |= CSR_INT_BIT_CT_KILL;
1664         }
1665
1666         /* Error detected by uCode */
1667         if (inta & CSR_INT_BIT_SW_ERR) {
1668                 IWL_ERR(trans, "Microcode SW error detected. "
1669                         " Restarting 0x%X.\n", inta);
1670                 isr_stats->sw++;
1671                 iwl_pcie_irq_handle_error(trans);
1672                 handled |= CSR_INT_BIT_SW_ERR;
1673         }
1674
1675         /* uCode wakes up after power-down sleep */
1676         if (inta & CSR_INT_BIT_WAKEUP) {
1677                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1678                 iwl_pcie_rxq_check_wrptr(trans);
1679                 iwl_pcie_txq_check_wrptrs(trans);
1680
1681                 isr_stats->wakeup++;
1682
1683                 handled |= CSR_INT_BIT_WAKEUP;
1684         }
1685
1686         /* All uCode command responses, including Tx command responses,
1687          * Rx "responses" (frame-received notification), and other
1688          * notifications from uCode come through here*/
1689         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1690                     CSR_INT_BIT_RX_PERIODIC)) {
1691                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1692                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1693                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1694                         iwl_write32(trans, CSR_FH_INT_STATUS,
1695                                         CSR_FH_INT_RX_MASK);
1696                 }
1697                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1698                         handled |= CSR_INT_BIT_RX_PERIODIC;
1699                         iwl_write32(trans,
1700                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1701                 }
1702                 /* Sending RX interrupt require many steps to be done in the
1703                  * the device:
1704                  * 1- write interrupt to current index in ICT table.
1705                  * 2- dma RX frame.
1706                  * 3- update RX shared data to indicate last write index.
1707                  * 4- send interrupt.
1708                  * This could lead to RX race, driver could receive RX interrupt
1709                  * but the shared data changes does not reflect this;
1710                  * periodic interrupt will detect any dangling Rx activity.
1711                  */
1712
1713                 /* Disable periodic interrupt; we use it as just a one-shot. */
1714                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1715                             CSR_INT_PERIODIC_DIS);
1716
1717                 /*
1718                  * Enable periodic interrupt in 8 msec only if we received
1719                  * real RX interrupt (instead of just periodic int), to catch
1720                  * any dangling Rx interrupt.  If it was just the periodic
1721                  * interrupt, there was no dangling Rx activity, and no need
1722                  * to extend the periodic interrupt; one-shot is enough.
1723                  */
1724                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1725                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1726                                    CSR_INT_PERIODIC_ENA);
1727
1728                 isr_stats->rx++;
1729
1730                 local_bh_disable();
1731                 iwl_pcie_rx_handle(trans, 0);
1732                 local_bh_enable();
1733         }
1734
1735         /* This "Tx" DMA channel is used only for loading uCode */
1736         if (inta & CSR_INT_BIT_FH_TX) {
1737                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1738                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1739                 isr_stats->tx++;
1740                 handled |= CSR_INT_BIT_FH_TX;
1741                 /* Wake up uCode load routine, now that load is complete */
1742                 trans_pcie->ucode_write_complete = true;
1743                 wake_up(&trans_pcie->ucode_write_waitq);
1744         }
1745
1746         if (inta & ~handled) {
1747                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1748                 isr_stats->unhandled++;
1749         }
1750
1751         if (inta & ~(trans_pcie->inta_mask)) {
1752                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1753                          inta & ~trans_pcie->inta_mask);
1754         }
1755
1756         spin_lock(&trans_pcie->irq_lock);
1757         /* only Re-enable all interrupt if disabled by irq */
1758         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1759                 _iwl_enable_interrupts(trans);
1760         /* we are loading the firmware, enable FH_TX interrupt only */
1761         else if (handled & CSR_INT_BIT_FH_TX)
1762                 iwl_enable_fw_load_int(trans);
1763         /* Re-enable RF_KILL if it occurred */
1764         else if (handled & CSR_INT_BIT_RF_KILL)
1765                 iwl_enable_rfkill_int(trans);
1766         spin_unlock(&trans_pcie->irq_lock);
1767
1768 out:
1769         lock_map_release(&trans->sync_cmd_lockdep_map);
1770         return IRQ_HANDLED;
1771 }
1772
1773 /******************************************************************************
1774  *
1775  * ICT functions
1776  *
1777  ******************************************************************************/
1778
1779 /* Free dram table */
1780 void iwl_pcie_free_ict(struct iwl_trans *trans)
1781 {
1782         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1783
1784         if (trans_pcie->ict_tbl) {
1785                 dma_free_coherent(trans->dev, ICT_SIZE,
1786                                   trans_pcie->ict_tbl,
1787                                   trans_pcie->ict_tbl_dma);
1788                 trans_pcie->ict_tbl = NULL;
1789                 trans_pcie->ict_tbl_dma = 0;
1790         }
1791 }
1792
1793 /*
1794  * allocate dram shared table, it is an aligned memory
1795  * block of ICT_SIZE.
1796  * also reset all data related to ICT table interrupt.
1797  */
1798 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1799 {
1800         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1801
1802         trans_pcie->ict_tbl =
1803                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1804                                    &trans_pcie->ict_tbl_dma,
1805                                    GFP_KERNEL);
1806         if (!trans_pcie->ict_tbl)
1807                 return -ENOMEM;
1808
1809         /* just an API sanity check ... it is guaranteed to be aligned */
1810         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1811                 iwl_pcie_free_ict(trans);
1812                 return -EINVAL;
1813         }
1814
1815         return 0;
1816 }
1817
1818 /* Device is going up inform it about using ICT interrupt table,
1819  * also we need to tell the driver to start using ICT interrupt.
1820  */
1821 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1822 {
1823         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1824         u32 val;
1825
1826         if (!trans_pcie->ict_tbl)
1827                 return;
1828
1829         spin_lock(&trans_pcie->irq_lock);
1830         _iwl_disable_interrupts(trans);
1831
1832         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1833
1834         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1835
1836         val |= CSR_DRAM_INT_TBL_ENABLE |
1837                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1838                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1839
1840         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1841
1842         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1843         trans_pcie->use_ict = true;
1844         trans_pcie->ict_index = 0;
1845         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1846         _iwl_enable_interrupts(trans);
1847         spin_unlock(&trans_pcie->irq_lock);
1848 }
1849
1850 /* Device is going down disable ict interrupt usage */
1851 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1852 {
1853         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1854
1855         spin_lock(&trans_pcie->irq_lock);
1856         trans_pcie->use_ict = false;
1857         spin_unlock(&trans_pcie->irq_lock);
1858 }
1859
1860 irqreturn_t iwl_pcie_isr(int irq, void *data)
1861 {
1862         struct iwl_trans *trans = data;
1863
1864         if (!trans)
1865                 return IRQ_NONE;
1866
1867         /* Disable (but don't clear!) interrupts here to avoid
1868          * back-to-back ISRs and sporadic interrupts from our NIC.
1869          * If we have something to service, the tasklet will re-enable ints.
1870          * If we *don't* have something, we'll re-enable before leaving here.
1871          */
1872         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1873
1874         return IRQ_WAKE_THREAD;
1875 }
1876
1877 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1878 {
1879         return IRQ_WAKE_THREAD;
1880 }
1881
1882 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1883 {
1884         struct msix_entry *entry = dev_id;
1885         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1886         struct iwl_trans *trans = trans_pcie->trans;
1887         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1888         u32 inta_fh, inta_hw;
1889
1890         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1891
1892         spin_lock(&trans_pcie->irq_lock);
1893         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1894         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1895         /*
1896          * Clear causes registers to avoid being handling the same cause.
1897          */
1898         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1899         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1900         spin_unlock(&trans_pcie->irq_lock);
1901
1902         if (unlikely(!(inta_fh | inta_hw))) {
1903                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1904                 lock_map_release(&trans->sync_cmd_lockdep_map);
1905                 return IRQ_NONE;
1906         }
1907
1908         if (iwl_have_debug_level(IWL_DL_ISR))
1909                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1910                               inta_fh,
1911                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1912
1913         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1914             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1915                 local_bh_disable();
1916                 iwl_pcie_rx_handle(trans, 0);
1917                 local_bh_enable();
1918         }
1919
1920         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1921             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1922                 local_bh_disable();
1923                 iwl_pcie_rx_handle(trans, 1);
1924                 local_bh_enable();
1925         }
1926
1927         /* This "Tx" DMA channel is used only for loading uCode */
1928         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1929                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1930                 isr_stats->tx++;
1931                 /*
1932                  * Wake up uCode load routine,
1933                  * now that load is complete
1934                  */
1935                 trans_pcie->ucode_write_complete = true;
1936                 wake_up(&trans_pcie->ucode_write_waitq);
1937         }
1938
1939         /* Error detected by uCode */
1940         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1941             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1942                 IWL_ERR(trans,
1943                         "Microcode SW error detected. Restarting 0x%X.\n",
1944                         inta_fh);
1945                 isr_stats->sw++;
1946                 iwl_pcie_irq_handle_error(trans);
1947         }
1948
1949         /* After checking FH register check HW register */
1950         if (iwl_have_debug_level(IWL_DL_ISR))
1951                 IWL_DEBUG_ISR(trans,
1952                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1953                               inta_hw,
1954                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1955
1956         /* Alive notification via Rx interrupt will do the real work */
1957         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1958                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1959                 isr_stats->alive++;
1960                 if (trans->cfg->gen2) {
1961                         /* We can restock, since firmware configured the RFH */
1962                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1963                 }
1964         }
1965
1966         /* uCode wakes up after power-down sleep */
1967         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1968                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1969                 iwl_pcie_rxq_check_wrptr(trans);
1970                 iwl_pcie_txq_check_wrptrs(trans);
1971
1972                 isr_stats->wakeup++;
1973         }
1974
1975         /* Chip got too hot and stopped itself */
1976         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1977                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1978                 isr_stats->ctkill++;
1979         }
1980
1981         /* HW RF KILL switch toggled */
1982         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1983                 bool hw_rfkill;
1984
1985                 mutex_lock(&trans_pcie->mutex);
1986                 hw_rfkill = iwl_is_rfkill_set(trans);
1987                 if (hw_rfkill)
1988                         set_bit(STATUS_RFKILL, &trans->status);
1989
1990                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1991                          hw_rfkill ? "disable radio" : "enable radio");
1992
1993                 isr_stats->rfkill++;
1994
1995                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1996                 mutex_unlock(&trans_pcie->mutex);
1997                 if (hw_rfkill) {
1998                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1999                                                &trans->status))
2000                                 IWL_DEBUG_RF_KILL(trans,
2001                                                   "Rfkill while SYNC HCMD in flight\n");
2002                         wake_up(&trans_pcie->wait_command_queue);
2003                 } else {
2004                         clear_bit(STATUS_RFKILL, &trans->status);
2005                 }
2006         }
2007
2008         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2009                 IWL_ERR(trans,
2010                         "Hardware error detected. Restarting.\n");
2011
2012                 isr_stats->hw++;
2013                 iwl_pcie_irq_handle_error(trans);
2014         }
2015
2016         iwl_pcie_clear_irq(trans, entry);
2017
2018         lock_map_release(&trans->sync_cmd_lockdep_map);
2019
2020         return IRQ_HANDLED;
2021 }