OSDN Git Service

Merge tag 'md/4.2-fixes' of git://neil.brown.name/md
[uclinux-h8/linux.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
5  *
6  * Portions of this file are derived from the ipw3945 project, as well
7  * as portions of the ieee80211 subsystem header files.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called LICENSE.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  *****************************************************************************/
30 #include <linux/sched.h>
31 #include <linux/wait.h>
32 #include <linux/gfp.h>
33
34 #include "iwl-prph.h"
35 #include "iwl-io.h"
36 #include "internal.h"
37 #include "iwl-op-mode.h"
38
39 /******************************************************************************
40  *
41  * RX path functions
42  *
43  ******************************************************************************/
44
45 /*
46  * Rx theory of operation
47  *
48  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
49  * each of which point to Receive Buffers to be filled by the NIC.  These get
50  * used not only for Rx frames, but for any command response or notification
51  * from the NIC.  The driver and NIC manage the Rx buffers by means
52  * of indexes into the circular buffer.
53  *
54  * Rx Queue Indexes
55  * The host/firmware share two index registers for managing the Rx buffers.
56  *
57  * The READ index maps to the first position that the firmware may be writing
58  * to -- the driver can read up to (but not including) this position and get
59  * good data.
60  * The READ index is managed by the firmware once the card is enabled.
61  *
62  * The WRITE index maps to the last position the driver has read from -- the
63  * position preceding WRITE is the last slot the firmware can place a packet.
64  *
65  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
66  * WRITE = READ.
67  *
68  * During initialization, the host sets up the READ queue position to the first
69  * INDEX position, and WRITE to the last (READ - 1 wrapped)
70  *
71  * When the firmware places a packet in a buffer, it will advance the READ index
72  * and fire the RX interrupt.  The driver can then query the READ index and
73  * process as many packets as possible, moving the WRITE index forward as it
74  * resets the Rx queue buffers with new memory.
75  *
76  * The management in the driver is as follows:
77  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
78  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
79  *   to replenish the iwl->rxq->rx_free.
80  * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
81  *   iwl->rxq is replenished and the READ INDEX is updated (updating the
82  *   'processed' and 'read' driver indexes as well)
83  * + A received packet is processed and handed to the kernel network stack,
84  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
85  * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
86  *   rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
87  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
88  *   If there were enough free buffers and RX_STALLED is set it is cleared.
89  *
90  *
91  * Driver sequence:
92  *
93  * iwl_rxq_alloc()            Allocates rx_free
94  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
95  *                            iwl_pcie_rxq_restock
96  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
97  *                            queue, updates firmware pointers, and updates
98  *                            the WRITE index.  If insufficient rx_free buffers
99  *                            are available, schedules iwl_pcie_rx_replenish
100  *
101  * -- enable interrupts --
102  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
103  *                            READ INDEX, detaching the SKB from the pool.
104  *                            Moves the packet buffer from queue to rx_used.
105  *                            Calls iwl_pcie_rxq_restock to refill any empty
106  *                            slots.
107  * ...
108  *
109  */
110
111 /*
112  * iwl_rxq_space - Return number of free slots available in queue.
113  */
114 static int iwl_rxq_space(const struct iwl_rxq *rxq)
115 {
116         /* Make sure RX_QUEUE_SIZE is a power of 2 */
117         BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
118
119         /*
120          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
121          * between empty and completely full queues.
122          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
123          * defined for negative dividends.
124          */
125         return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
126 }
127
128 /*
129  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
130  */
131 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
132 {
133         return cpu_to_le32((u32)(dma_addr >> 8));
134 }
135
136 /*
137  * iwl_pcie_rx_stop - stops the Rx DMA
138  */
139 int iwl_pcie_rx_stop(struct iwl_trans *trans)
140 {
141         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
142         return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
143                                    FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
144 }
145
146 /*
147  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
148  */
149 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans)
150 {
151         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
152         struct iwl_rxq *rxq = &trans_pcie->rxq;
153         u32 reg;
154
155         lockdep_assert_held(&rxq->lock);
156
157         /*
158          * explicitly wake up the NIC if:
159          * 1. shadow registers aren't enabled
160          * 2. there is a chance that the NIC is asleep
161          */
162         if (!trans->cfg->base_params->shadow_reg_enable &&
163             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
164                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
165
166                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
167                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
168                                        reg);
169                         iwl_set_bit(trans, CSR_GP_CNTRL,
170                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
171                         rxq->need_update = true;
172                         return;
173                 }
174         }
175
176         rxq->write_actual = round_down(rxq->write, 8);
177         iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
178 }
179
180 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
181 {
182         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
183         struct iwl_rxq *rxq = &trans_pcie->rxq;
184
185         spin_lock(&rxq->lock);
186
187         if (!rxq->need_update)
188                 goto exit_unlock;
189
190         iwl_pcie_rxq_inc_wr_ptr(trans);
191         rxq->need_update = false;
192
193  exit_unlock:
194         spin_unlock(&rxq->lock);
195 }
196
197 /*
198  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
199  *
200  * If there are slots in the RX queue that need to be restocked,
201  * and we have free pre-allocated buffers, fill the ranks as much
202  * as we can, pulling from rx_free.
203  *
204  * This moves the 'write' index forward to catch up with 'processed', and
205  * also updates the memory address in the firmware to reference the new
206  * target buffer.
207  */
208 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
209 {
210         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
211         struct iwl_rxq *rxq = &trans_pcie->rxq;
212         struct iwl_rx_mem_buffer *rxb;
213
214         /*
215          * If the device isn't enabled - not need to try to add buffers...
216          * This can happen when we stop the device and still have an interrupt
217          * pending. We stop the APM before we sync the interrupts because we
218          * have to (see comment there). On the other hand, since the APM is
219          * stopped, we cannot access the HW (in particular not prph).
220          * So don't try to restock if the APM has been already stopped.
221          */
222         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
223                 return;
224
225         spin_lock(&rxq->lock);
226         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
227                 /* The overwritten rxb must be a used one */
228                 rxb = rxq->queue[rxq->write];
229                 BUG_ON(rxb && rxb->page);
230
231                 /* Get next free Rx buffer, remove from free list */
232                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
233                                        list);
234                 list_del(&rxb->list);
235
236                 /* Point to Rx buffer via next RBD in circular buffer */
237                 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
238                 rxq->queue[rxq->write] = rxb;
239                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
240                 rxq->free_count--;
241         }
242         spin_unlock(&rxq->lock);
243         /* If the pre-allocated buffer pool is dropping low, schedule to
244          * refill it */
245         if (rxq->free_count <= RX_LOW_WATERMARK)
246                 schedule_work(&trans_pcie->rx_replenish);
247
248         /* If we've added more space for the firmware to place data, tell it.
249          * Increment device's write pointer in multiples of 8. */
250         if (rxq->write_actual != (rxq->write & ~0x7)) {
251                 spin_lock(&rxq->lock);
252                 iwl_pcie_rxq_inc_wr_ptr(trans);
253                 spin_unlock(&rxq->lock);
254         }
255 }
256
257 /*
258  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
259  *
260  * A used RBD is an Rx buffer that has been given to the stack. To use it again
261  * a page must be allocated and the RBD must point to the page. This function
262  * doesn't change the HW pointer but handles the list of pages that is used by
263  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
264  * allocated buffers.
265  */
266 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
267 {
268         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
269         struct iwl_rxq *rxq = &trans_pcie->rxq;
270         struct iwl_rx_mem_buffer *rxb;
271         struct page *page;
272         gfp_t gfp_mask = priority;
273
274         while (1) {
275                 spin_lock(&rxq->lock);
276                 if (list_empty(&rxq->rx_used)) {
277                         spin_unlock(&rxq->lock);
278                         return;
279                 }
280                 spin_unlock(&rxq->lock);
281
282                 if (rxq->free_count > RX_LOW_WATERMARK)
283                         gfp_mask |= __GFP_NOWARN;
284
285                 if (trans_pcie->rx_page_order > 0)
286                         gfp_mask |= __GFP_COMP;
287
288                 /* Alloc a new receive buffer */
289                 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
290                 if (!page) {
291                         if (net_ratelimit())
292                                 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
293                                            "order: %d\n",
294                                            trans_pcie->rx_page_order);
295
296                         if ((rxq->free_count <= RX_LOW_WATERMARK) &&
297                             net_ratelimit())
298                                 IWL_CRIT(trans, "Failed to alloc_pages with %s."
299                                          "Only %u free buffers remaining.\n",
300                                          priority == GFP_ATOMIC ?
301                                          "GFP_ATOMIC" : "GFP_KERNEL",
302                                          rxq->free_count);
303                         /* We don't reschedule replenish work here -- we will
304                          * call the restock method and if it still needs
305                          * more buffers it will schedule replenish */
306                         return;
307                 }
308
309                 spin_lock(&rxq->lock);
310
311                 if (list_empty(&rxq->rx_used)) {
312                         spin_unlock(&rxq->lock);
313                         __free_pages(page, trans_pcie->rx_page_order);
314                         return;
315                 }
316                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
317                                        list);
318                 list_del(&rxb->list);
319                 spin_unlock(&rxq->lock);
320
321                 BUG_ON(rxb->page);
322                 rxb->page = page;
323                 /* Get physical address of the RB */
324                 rxb->page_dma =
325                         dma_map_page(trans->dev, page, 0,
326                                      PAGE_SIZE << trans_pcie->rx_page_order,
327                                      DMA_FROM_DEVICE);
328                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
329                         rxb->page = NULL;
330                         spin_lock(&rxq->lock);
331                         list_add(&rxb->list, &rxq->rx_used);
332                         spin_unlock(&rxq->lock);
333                         __free_pages(page, trans_pcie->rx_page_order);
334                         return;
335                 }
336                 /* dma address must be no more than 36 bits */
337                 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
338                 /* and also 256 byte aligned! */
339                 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
340
341                 spin_lock(&rxq->lock);
342
343                 list_add_tail(&rxb->list, &rxq->rx_free);
344                 rxq->free_count++;
345
346                 spin_unlock(&rxq->lock);
347         }
348 }
349
350 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
351 {
352         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
353         struct iwl_rxq *rxq = &trans_pcie->rxq;
354         int i;
355
356         lockdep_assert_held(&rxq->lock);
357
358         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
359                 if (!rxq->pool[i].page)
360                         continue;
361                 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
362                                PAGE_SIZE << trans_pcie->rx_page_order,
363                                DMA_FROM_DEVICE);
364                 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
365                 rxq->pool[i].page = NULL;
366         }
367 }
368
369 /*
370  * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
371  *
372  * When moving to rx_free an page is allocated for the slot.
373  *
374  * Also restock the Rx queue via iwl_pcie_rxq_restock.
375  * This is called as a scheduled work item (except for during initialization)
376  */
377 static void iwl_pcie_rx_replenish(struct iwl_trans *trans, gfp_t gfp)
378 {
379         iwl_pcie_rxq_alloc_rbs(trans, gfp);
380
381         iwl_pcie_rxq_restock(trans);
382 }
383
384 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
385 {
386         struct iwl_trans_pcie *trans_pcie =
387             container_of(data, struct iwl_trans_pcie, rx_replenish);
388
389         iwl_pcie_rx_replenish(trans_pcie->trans, GFP_KERNEL);
390 }
391
392 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
393 {
394         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
395         struct iwl_rxq *rxq = &trans_pcie->rxq;
396         struct device *dev = trans->dev;
397
398         memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
399
400         spin_lock_init(&rxq->lock);
401
402         if (WARN_ON(rxq->bd || rxq->rb_stts))
403                 return -EINVAL;
404
405         /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
406         rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
407                                       &rxq->bd_dma, GFP_KERNEL);
408         if (!rxq->bd)
409                 goto err_bd;
410
411         /*Allocate the driver's pointer to receive buffer status */
412         rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
413                                            &rxq->rb_stts_dma, GFP_KERNEL);
414         if (!rxq->rb_stts)
415                 goto err_rb_stts;
416
417         return 0;
418
419 err_rb_stts:
420         dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
421                           rxq->bd, rxq->bd_dma);
422         rxq->bd_dma = 0;
423         rxq->bd = NULL;
424 err_bd:
425         return -ENOMEM;
426 }
427
428 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
429 {
430         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
431         u32 rb_size;
432         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
433
434         if (trans_pcie->rx_buf_size_8k)
435                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
436         else
437                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
438
439         /* Stop Rx DMA */
440         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
441         /* reset and flush pointers */
442         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
443         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
444         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
445
446         /* Reset driver's Rx queue write index */
447         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
448
449         /* Tell device where to find RBD circular buffer in DRAM */
450         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
451                            (u32)(rxq->bd_dma >> 8));
452
453         /* Tell device where in DRAM to update its Rx status */
454         iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
455                            rxq->rb_stts_dma >> 4);
456
457         /* Enable Rx DMA
458          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
459          *      the credit mechanism in 5000 HW RX FIFO
460          * Direct rx interrupts to hosts
461          * Rx buffer size 4 or 8k
462          * RB timeout 0x10
463          * 256 RBDs
464          */
465         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
466                            FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
467                            FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
468                            FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
469                            rb_size|
470                            (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
471                            (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
472
473         /* Set interrupt coalescing timer to default (2048 usecs) */
474         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
475
476         /* W/A for interrupt coalescing bug in 7260 and 3160 */
477         if (trans->cfg->host_interrupt_operation_mode)
478                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
479 }
480
481 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
482 {
483         int i;
484
485         lockdep_assert_held(&rxq->lock);
486
487         INIT_LIST_HEAD(&rxq->rx_free);
488         INIT_LIST_HEAD(&rxq->rx_used);
489         rxq->free_count = 0;
490
491         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
492                 list_add(&rxq->pool[i].list, &rxq->rx_used);
493 }
494
495 int iwl_pcie_rx_init(struct iwl_trans *trans)
496 {
497         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
498         struct iwl_rxq *rxq = &trans_pcie->rxq;
499         int i, err;
500
501         if (!rxq->bd) {
502                 err = iwl_pcie_rx_alloc(trans);
503                 if (err)
504                         return err;
505         }
506
507         spin_lock(&rxq->lock);
508
509         INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
510
511         /* free all first - we might be reconfigured for a different size */
512         iwl_pcie_rxq_free_rbs(trans);
513         iwl_pcie_rx_init_rxb_lists(rxq);
514
515         for (i = 0; i < RX_QUEUE_SIZE; i++)
516                 rxq->queue[i] = NULL;
517
518         /* Set us so that we have processed and used all buffers, but have
519          * not restocked the Rx queue with fresh buffers */
520         rxq->read = rxq->write = 0;
521         rxq->write_actual = 0;
522         memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
523         spin_unlock(&rxq->lock);
524
525         iwl_pcie_rx_replenish(trans, GFP_KERNEL);
526
527         iwl_pcie_rx_hw_init(trans, rxq);
528
529         spin_lock(&rxq->lock);
530         iwl_pcie_rxq_inc_wr_ptr(trans);
531         spin_unlock(&rxq->lock);
532
533         return 0;
534 }
535
536 void iwl_pcie_rx_free(struct iwl_trans *trans)
537 {
538         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
539         struct iwl_rxq *rxq = &trans_pcie->rxq;
540
541         /*if rxq->bd is NULL, it means that nothing has been allocated,
542          * exit now */
543         if (!rxq->bd) {
544                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
545                 return;
546         }
547
548         cancel_work_sync(&trans_pcie->rx_replenish);
549
550         spin_lock(&rxq->lock);
551         iwl_pcie_rxq_free_rbs(trans);
552         spin_unlock(&rxq->lock);
553
554         dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
555                           rxq->bd, rxq->bd_dma);
556         rxq->bd_dma = 0;
557         rxq->bd = NULL;
558
559         if (rxq->rb_stts)
560                 dma_free_coherent(trans->dev,
561                                   sizeof(struct iwl_rb_status),
562                                   rxq->rb_stts, rxq->rb_stts_dma);
563         else
564                 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
565         rxq->rb_stts_dma = 0;
566         rxq->rb_stts = NULL;
567 }
568
569 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
570                                 struct iwl_rx_mem_buffer *rxb)
571 {
572         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
573         struct iwl_rxq *rxq = &trans_pcie->rxq;
574         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
575         bool page_stolen = false;
576         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
577         u32 offset = 0;
578
579         if (WARN_ON(!rxb))
580                 return;
581
582         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
583
584         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
585                 struct iwl_rx_packet *pkt;
586                 struct iwl_device_cmd *cmd;
587                 u16 sequence;
588                 bool reclaim;
589                 int index, cmd_index, err, len;
590                 struct iwl_rx_cmd_buffer rxcb = {
591                         ._offset = offset,
592                         ._rx_page_order = trans_pcie->rx_page_order,
593                         ._page = rxb->page,
594                         ._page_stolen = false,
595                         .truesize = max_len,
596                 };
597
598                 pkt = rxb_addr(&rxcb);
599
600                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
601                         break;
602
603                 IWL_DEBUG_RX(trans,
604                              "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
605                              rxcb._offset,
606                              get_cmd_string(trans_pcie, pkt->hdr.cmd),
607                              pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
608
609                 len = iwl_rx_packet_len(pkt);
610                 len += sizeof(u32); /* account for status word */
611                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
612                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
613
614                 /* Reclaim a command buffer only if this packet is a response
615                  *   to a (driver-originated) command.
616                  * If the packet (e.g. Rx frame) originated from uCode,
617                  *   there is no command buffer to reclaim.
618                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
619                  *   but apparently a few don't get set; catch them here. */
620                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
621                 if (reclaim) {
622                         int i;
623
624                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
625                                 if (trans_pcie->no_reclaim_cmds[i] ==
626                                                         pkt->hdr.cmd) {
627                                         reclaim = false;
628                                         break;
629                                 }
630                         }
631                 }
632
633                 sequence = le16_to_cpu(pkt->hdr.sequence);
634                 index = SEQ_TO_INDEX(sequence);
635                 cmd_index = get_cmd_index(&txq->q, index);
636
637                 if (reclaim)
638                         cmd = txq->entries[cmd_index].cmd;
639                 else
640                         cmd = NULL;
641
642                 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
643
644                 if (reclaim) {
645                         kzfree(txq->entries[cmd_index].free_buf);
646                         txq->entries[cmd_index].free_buf = NULL;
647                 }
648
649                 /*
650                  * After here, we should always check rxcb._page_stolen,
651                  * if it is true then one of the handlers took the page.
652                  */
653
654                 if (reclaim) {
655                         /* Invoke any callbacks, transfer the buffer to caller,
656                          * and fire off the (possibly) blocking
657                          * iwl_trans_send_cmd()
658                          * as we reclaim the driver command queue */
659                         if (!rxcb._page_stolen)
660                                 iwl_pcie_hcmd_complete(trans, &rxcb, err);
661                         else
662                                 IWL_WARN(trans, "Claim null rxb?\n");
663                 }
664
665                 page_stolen |= rxcb._page_stolen;
666                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
667         }
668
669         /* page was stolen from us -- free our reference */
670         if (page_stolen) {
671                 __free_pages(rxb->page, trans_pcie->rx_page_order);
672                 rxb->page = NULL;
673         }
674
675         /* Reuse the page if possible. For notification packets and
676          * SKBs that fail to Rx correctly, add them back into the
677          * rx_free list for reuse later. */
678         if (rxb->page != NULL) {
679                 rxb->page_dma =
680                         dma_map_page(trans->dev, rxb->page, 0,
681                                      PAGE_SIZE << trans_pcie->rx_page_order,
682                                      DMA_FROM_DEVICE);
683                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
684                         /*
685                          * free the page(s) as well to not break
686                          * the invariant that the items on the used
687                          * list have no page(s)
688                          */
689                         __free_pages(rxb->page, trans_pcie->rx_page_order);
690                         rxb->page = NULL;
691                         list_add_tail(&rxb->list, &rxq->rx_used);
692                 } else {
693                         list_add_tail(&rxb->list, &rxq->rx_free);
694                         rxq->free_count++;
695                 }
696         } else
697                 list_add_tail(&rxb->list, &rxq->rx_used);
698 }
699
700 /*
701  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
702  */
703 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
704 {
705         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
706         struct iwl_rxq *rxq = &trans_pcie->rxq;
707         u32 r, i;
708         u8 fill_rx = 0;
709         u32 count = 8;
710         int total_empty;
711
712 restart:
713         spin_lock(&rxq->lock);
714         /* uCode's read index (stored in shared DRAM) indicates the last Rx
715          * buffer that the driver may process (last buffer filled by ucode). */
716         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
717         i = rxq->read;
718
719         /* Rx interrupt, but nothing sent from uCode */
720         if (i == r)
721                 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
722
723         /* calculate total frames need to be restock after handling RX */
724         total_empty = r - rxq->write_actual;
725         if (total_empty < 0)
726                 total_empty += RX_QUEUE_SIZE;
727
728         if (total_empty > (RX_QUEUE_SIZE / 2))
729                 fill_rx = 1;
730
731         while (i != r) {
732                 struct iwl_rx_mem_buffer *rxb;
733
734                 rxb = rxq->queue[i];
735                 rxq->queue[i] = NULL;
736
737                 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
738                              r, i, rxb);
739                 iwl_pcie_rx_handle_rb(trans, rxb);
740
741                 i = (i + 1) & RX_QUEUE_MASK;
742                 /* If there are a lot of unused frames,
743                  * restock the Rx queue so ucode wont assert. */
744                 if (fill_rx) {
745                         count++;
746                         if (count >= 8) {
747                                 rxq->read = i;
748                                 spin_unlock(&rxq->lock);
749                                 iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
750                                 count = 0;
751                                 goto restart;
752                         }
753                 }
754         }
755
756         /* Backtrack one entry */
757         rxq->read = i;
758         spin_unlock(&rxq->lock);
759
760         if (fill_rx)
761                 iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
762         else
763                 iwl_pcie_rxq_restock(trans);
764
765         if (trans_pcie->napi.poll)
766                 napi_gro_flush(&trans_pcie->napi, false);
767 }
768
769 /*
770  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
771  */
772 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
773 {
774         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
775
776         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
777         if (trans->cfg->internal_wimax_coex &&
778             !trans->cfg->apmg_not_supported &&
779             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
780                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
781              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
782                             APMG_PS_CTRL_VAL_RESET_REQ))) {
783                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
784                 iwl_op_mode_wimax_active(trans->op_mode);
785                 wake_up(&trans_pcie->wait_command_queue);
786                 return;
787         }
788
789         iwl_pcie_dump_csr(trans);
790         iwl_dump_fh(trans, NULL);
791
792         local_bh_disable();
793         /* The STATUS_FW_ERROR bit is set in this function. This must happen
794          * before we wake up the command caller, to ensure a proper cleanup. */
795         iwl_trans_fw_error(trans);
796         local_bh_enable();
797
798         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
799         wake_up(&trans_pcie->wait_command_queue);
800 }
801
802 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
803 {
804         u32 inta;
805
806         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
807
808         trace_iwlwifi_dev_irq(trans->dev);
809
810         /* Discover which interrupts are active/pending */
811         inta = iwl_read32(trans, CSR_INT);
812
813         /* the thread will service interrupts and re-enable them */
814         return inta;
815 }
816
817 /* a device (PCI-E) page is 4096 bytes long */
818 #define ICT_SHIFT       12
819 #define ICT_SIZE        (1 << ICT_SHIFT)
820 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
821
822 /* interrupt handler using ict table, with this interrupt driver will
823  * stop using INTA register to get device's interrupt, reading this register
824  * is expensive, device will write interrupts in ICT dram table, increment
825  * index then will fire interrupt to driver, driver will OR all ICT table
826  * entries from current index up to table entry with 0 value. the result is
827  * the interrupt we need to service, driver will set the entries back to 0 and
828  * set index.
829  */
830 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
831 {
832         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
833         u32 inta;
834         u32 val = 0;
835         u32 read;
836
837         trace_iwlwifi_dev_irq(trans->dev);
838
839         /* Ignore interrupt if there's nothing in NIC to service.
840          * This may be due to IRQ shared with another device,
841          * or due to sporadic interrupts thrown from our NIC. */
842         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
843         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
844         if (!read)
845                 return 0;
846
847         /*
848          * Collect all entries up to the first 0, starting from ict_index;
849          * note we already read at ict_index.
850          */
851         do {
852                 val |= read;
853                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
854                                 trans_pcie->ict_index, read);
855                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
856                 trans_pcie->ict_index =
857                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
858
859                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
860                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
861                                            read);
862         } while (read);
863
864         /* We should not get this value, just ignore it. */
865         if (val == 0xffffffff)
866                 val = 0;
867
868         /*
869          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
870          * (bit 15 before shifting it to 31) to clear when using interrupt
871          * coalescing. fortunately, bits 18 and 19 stay set when this happens
872          * so we use them to decide on the real state of the Rx bit.
873          * In order words, bit 15 is set if bit 18 or bit 19 are set.
874          */
875         if (val & 0xC0000)
876                 val |= 0x8000;
877
878         inta = (0xff & val) | ((0xff00 & val) << 16);
879         return inta;
880 }
881
882 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
883 {
884         struct iwl_trans *trans = dev_id;
885         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
886         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
887         u32 inta = 0;
888         u32 handled = 0;
889
890         lock_map_acquire(&trans->sync_cmd_lockdep_map);
891
892         spin_lock(&trans_pcie->irq_lock);
893
894         /* dram interrupt table not set yet,
895          * use legacy interrupt.
896          */
897         if (likely(trans_pcie->use_ict))
898                 inta = iwl_pcie_int_cause_ict(trans);
899         else
900                 inta = iwl_pcie_int_cause_non_ict(trans);
901
902         if (iwl_have_debug_level(IWL_DL_ISR)) {
903                 IWL_DEBUG_ISR(trans,
904                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
905                               inta, trans_pcie->inta_mask,
906                               iwl_read32(trans, CSR_INT_MASK),
907                               iwl_read32(trans, CSR_FH_INT_STATUS));
908                 if (inta & (~trans_pcie->inta_mask))
909                         IWL_DEBUG_ISR(trans,
910                                       "We got a masked interrupt (0x%08x)\n",
911                                       inta & (~trans_pcie->inta_mask));
912         }
913
914         inta &= trans_pcie->inta_mask;
915
916         /*
917          * Ignore interrupt if there's nothing in NIC to service.
918          * This may be due to IRQ shared with another device,
919          * or due to sporadic interrupts thrown from our NIC.
920          */
921         if (unlikely(!inta)) {
922                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
923                 /*
924                  * Re-enable interrupts here since we don't
925                  * have anything to service
926                  */
927                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
928                         iwl_enable_interrupts(trans);
929                 spin_unlock(&trans_pcie->irq_lock);
930                 lock_map_release(&trans->sync_cmd_lockdep_map);
931                 return IRQ_NONE;
932         }
933
934         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
935                 /*
936                  * Hardware disappeared. It might have
937                  * already raised an interrupt.
938                  */
939                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
940                 spin_unlock(&trans_pcie->irq_lock);
941                 goto out;
942         }
943
944         /* Ack/clear/reset pending uCode interrupts.
945          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
946          */
947         /* There is a hardware bug in the interrupt mask function that some
948          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
949          * they are disabled in the CSR_INT_MASK register. Furthermore the
950          * ICT interrupt handling mechanism has another bug that might cause
951          * these unmasked interrupts fail to be detected. We workaround the
952          * hardware bugs here by ACKing all the possible interrupts so that
953          * interrupt coalescing can still be achieved.
954          */
955         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
956
957         if (iwl_have_debug_level(IWL_DL_ISR))
958                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
959                               inta, iwl_read32(trans, CSR_INT_MASK));
960
961         spin_unlock(&trans_pcie->irq_lock);
962
963         /* Now service all interrupt bits discovered above. */
964         if (inta & CSR_INT_BIT_HW_ERR) {
965                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
966
967                 /* Tell the device to stop sending interrupts */
968                 iwl_disable_interrupts(trans);
969
970                 isr_stats->hw++;
971                 iwl_pcie_irq_handle_error(trans);
972
973                 handled |= CSR_INT_BIT_HW_ERR;
974
975                 goto out;
976         }
977
978         if (iwl_have_debug_level(IWL_DL_ISR)) {
979                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
980                 if (inta & CSR_INT_BIT_SCD) {
981                         IWL_DEBUG_ISR(trans,
982                                       "Scheduler finished to transmit the frame/frames.\n");
983                         isr_stats->sch++;
984                 }
985
986                 /* Alive notification via Rx interrupt will do the real work */
987                 if (inta & CSR_INT_BIT_ALIVE) {
988                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
989                         isr_stats->alive++;
990                 }
991         }
992
993         /* Safely ignore these bits for debug checks below */
994         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
995
996         /* HW RF KILL switch toggled */
997         if (inta & CSR_INT_BIT_RF_KILL) {
998                 bool hw_rfkill;
999
1000                 hw_rfkill = iwl_is_rfkill_set(trans);
1001                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1002                          hw_rfkill ? "disable radio" : "enable radio");
1003
1004                 isr_stats->rfkill++;
1005
1006                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1007                 if (hw_rfkill) {
1008                         set_bit(STATUS_RFKILL, &trans->status);
1009                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1010                                                &trans->status))
1011                                 IWL_DEBUG_RF_KILL(trans,
1012                                                   "Rfkill while SYNC HCMD in flight\n");
1013                         wake_up(&trans_pcie->wait_command_queue);
1014                 } else {
1015                         clear_bit(STATUS_RFKILL, &trans->status);
1016                 }
1017
1018                 handled |= CSR_INT_BIT_RF_KILL;
1019         }
1020
1021         /* Chip got too hot and stopped itself */
1022         if (inta & CSR_INT_BIT_CT_KILL) {
1023                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1024                 isr_stats->ctkill++;
1025                 handled |= CSR_INT_BIT_CT_KILL;
1026         }
1027
1028         /* Error detected by uCode */
1029         if (inta & CSR_INT_BIT_SW_ERR) {
1030                 IWL_ERR(trans, "Microcode SW error detected. "
1031                         " Restarting 0x%X.\n", inta);
1032                 isr_stats->sw++;
1033                 iwl_pcie_irq_handle_error(trans);
1034                 handled |= CSR_INT_BIT_SW_ERR;
1035         }
1036
1037         /* uCode wakes up after power-down sleep */
1038         if (inta & CSR_INT_BIT_WAKEUP) {
1039                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1040                 iwl_pcie_rxq_check_wrptr(trans);
1041                 iwl_pcie_txq_check_wrptrs(trans);
1042
1043                 isr_stats->wakeup++;
1044
1045                 handled |= CSR_INT_BIT_WAKEUP;
1046         }
1047
1048         /* All uCode command responses, including Tx command responses,
1049          * Rx "responses" (frame-received notification), and other
1050          * notifications from uCode come through here*/
1051         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1052                     CSR_INT_BIT_RX_PERIODIC)) {
1053                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1054                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1055                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1056                         iwl_write32(trans, CSR_FH_INT_STATUS,
1057                                         CSR_FH_INT_RX_MASK);
1058                 }
1059                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1060                         handled |= CSR_INT_BIT_RX_PERIODIC;
1061                         iwl_write32(trans,
1062                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1063                 }
1064                 /* Sending RX interrupt require many steps to be done in the
1065                  * the device:
1066                  * 1- write interrupt to current index in ICT table.
1067                  * 2- dma RX frame.
1068                  * 3- update RX shared data to indicate last write index.
1069                  * 4- send interrupt.
1070                  * This could lead to RX race, driver could receive RX interrupt
1071                  * but the shared data changes does not reflect this;
1072                  * periodic interrupt will detect any dangling Rx activity.
1073                  */
1074
1075                 /* Disable periodic interrupt; we use it as just a one-shot. */
1076                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1077                             CSR_INT_PERIODIC_DIS);
1078
1079                 /*
1080                  * Enable periodic interrupt in 8 msec only if we received
1081                  * real RX interrupt (instead of just periodic int), to catch
1082                  * any dangling Rx interrupt.  If it was just the periodic
1083                  * interrupt, there was no dangling Rx activity, and no need
1084                  * to extend the periodic interrupt; one-shot is enough.
1085                  */
1086                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1087                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1088                                    CSR_INT_PERIODIC_ENA);
1089
1090                 isr_stats->rx++;
1091
1092                 local_bh_disable();
1093                 iwl_pcie_rx_handle(trans);
1094                 local_bh_enable();
1095         }
1096
1097         /* This "Tx" DMA channel is used only for loading uCode */
1098         if (inta & CSR_INT_BIT_FH_TX) {
1099                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1100                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1101                 isr_stats->tx++;
1102                 handled |= CSR_INT_BIT_FH_TX;
1103                 /* Wake up uCode load routine, now that load is complete */
1104                 trans_pcie->ucode_write_complete = true;
1105                 wake_up(&trans_pcie->ucode_write_waitq);
1106         }
1107
1108         if (inta & ~handled) {
1109                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1110                 isr_stats->unhandled++;
1111         }
1112
1113         if (inta & ~(trans_pcie->inta_mask)) {
1114                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1115                          inta & ~trans_pcie->inta_mask);
1116         }
1117
1118         /* Re-enable all interrupts */
1119         /* only Re-enable if disabled by irq */
1120         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1121                 iwl_enable_interrupts(trans);
1122         /* Re-enable RF_KILL if it occurred */
1123         else if (handled & CSR_INT_BIT_RF_KILL)
1124                 iwl_enable_rfkill_int(trans);
1125
1126 out:
1127         lock_map_release(&trans->sync_cmd_lockdep_map);
1128         return IRQ_HANDLED;
1129 }
1130
1131 /******************************************************************************
1132  *
1133  * ICT functions
1134  *
1135  ******************************************************************************/
1136
1137 /* Free dram table */
1138 void iwl_pcie_free_ict(struct iwl_trans *trans)
1139 {
1140         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1141
1142         if (trans_pcie->ict_tbl) {
1143                 dma_free_coherent(trans->dev, ICT_SIZE,
1144                                   trans_pcie->ict_tbl,
1145                                   trans_pcie->ict_tbl_dma);
1146                 trans_pcie->ict_tbl = NULL;
1147                 trans_pcie->ict_tbl_dma = 0;
1148         }
1149 }
1150
1151 /*
1152  * allocate dram shared table, it is an aligned memory
1153  * block of ICT_SIZE.
1154  * also reset all data related to ICT table interrupt.
1155  */
1156 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1157 {
1158         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1159
1160         trans_pcie->ict_tbl =
1161                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1162                                    &trans_pcie->ict_tbl_dma,
1163                                    GFP_KERNEL);
1164         if (!trans_pcie->ict_tbl)
1165                 return -ENOMEM;
1166
1167         /* just an API sanity check ... it is guaranteed to be aligned */
1168         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1169                 iwl_pcie_free_ict(trans);
1170                 return -EINVAL;
1171         }
1172
1173         IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1174                       (unsigned long long)trans_pcie->ict_tbl_dma,
1175                       trans_pcie->ict_tbl);
1176
1177         return 0;
1178 }
1179
1180 /* Device is going up inform it about using ICT interrupt table,
1181  * also we need to tell the driver to start using ICT interrupt.
1182  */
1183 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1184 {
1185         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1186         u32 val;
1187
1188         if (!trans_pcie->ict_tbl)
1189                 return;
1190
1191         spin_lock(&trans_pcie->irq_lock);
1192         iwl_disable_interrupts(trans);
1193
1194         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1195
1196         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1197
1198         val |= CSR_DRAM_INT_TBL_ENABLE;
1199         val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1200
1201         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1202
1203         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1204         trans_pcie->use_ict = true;
1205         trans_pcie->ict_index = 0;
1206         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1207         iwl_enable_interrupts(trans);
1208         spin_unlock(&trans_pcie->irq_lock);
1209 }
1210
1211 /* Device is going down disable ict interrupt usage */
1212 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1213 {
1214         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1215
1216         spin_lock(&trans_pcie->irq_lock);
1217         trans_pcie->use_ict = false;
1218         spin_unlock(&trans_pcie->irq_lock);
1219 }
1220
1221 irqreturn_t iwl_pcie_isr(int irq, void *data)
1222 {
1223         struct iwl_trans *trans = data;
1224
1225         if (!trans)
1226                 return IRQ_NONE;
1227
1228         /* Disable (but don't clear!) interrupts here to avoid
1229          * back-to-back ISRs and sporadic interrupts from our NIC.
1230          * If we have something to service, the tasklet will re-enable ints.
1231          * If we *don't* have something, we'll re-enable before leaving here.
1232          */
1233         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1234
1235         return IRQ_WAKE_THREAD;
1236 }