OSDN Git Service

Merge tag 'kbuild-fixes-v5.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / drivers / net / wireless / mediatek / mt76 / dma.c
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9
10 static int
11 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
12                      int idx, int n_desc, int bufsize,
13                      u32 ring_base)
14 {
15         int size;
16         int i;
17
18         spin_lock_init(&q->lock);
19
20         q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
21         q->ndesc = n_desc;
22         q->buf_size = bufsize;
23         q->hw_idx = idx;
24
25         size = q->ndesc * sizeof(struct mt76_desc);
26         q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
27         if (!q->desc)
28                 return -ENOMEM;
29
30         size = q->ndesc * sizeof(*q->entry);
31         q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
32         if (!q->entry)
33                 return -ENOMEM;
34
35         /* clear descriptors */
36         for (i = 0; i < q->ndesc; i++)
37                 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
38
39         writel(q->desc_dma, &q->regs->desc_base);
40         writel(0, &q->regs->cpu_idx);
41         writel(0, &q->regs->dma_idx);
42         writel(q->ndesc, &q->regs->ring_size);
43
44         return 0;
45 }
46
47 static int
48 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
49                  struct mt76_queue_buf *buf, int nbufs, u32 info,
50                  struct sk_buff *skb, void *txwi)
51 {
52         struct mt76_desc *desc;
53         u32 ctrl;
54         int i, idx = -1;
55
56         if (txwi) {
57                 q->entry[q->head].txwi = DMA_DUMMY_DATA;
58                 q->entry[q->head].skip_buf0 = true;
59         }
60
61         for (i = 0; i < nbufs; i += 2, buf += 2) {
62                 u32 buf0 = buf[0].addr, buf1 = 0;
63
64                 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
65                 if (i < nbufs - 1) {
66                         buf1 = buf[1].addr;
67                         ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
68                 }
69
70                 if (i == nbufs - 1)
71                         ctrl |= MT_DMA_CTL_LAST_SEC0;
72                 else if (i == nbufs - 2)
73                         ctrl |= MT_DMA_CTL_LAST_SEC1;
74
75                 idx = q->head;
76                 q->head = (q->head + 1) % q->ndesc;
77
78                 desc = &q->desc[idx];
79
80                 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
81                 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
82                 WRITE_ONCE(desc->info, cpu_to_le32(info));
83                 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
84
85                 q->queued++;
86         }
87
88         q->entry[idx].txwi = txwi;
89         q->entry[idx].skb = skb;
90
91         return idx;
92 }
93
94 static void
95 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
96                         struct mt76_queue_entry *prev_e)
97 {
98         struct mt76_queue_entry *e = &q->entry[idx];
99         __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
100         u32 ctrl = le32_to_cpu(__ctrl);
101
102         if (!e->skip_buf0) {
103                 __le32 addr = READ_ONCE(q->desc[idx].buf0);
104                 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
105
106                 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
107                                  DMA_TO_DEVICE);
108         }
109
110         if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
111                 __le32 addr = READ_ONCE(q->desc[idx].buf1);
112                 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
113
114                 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
115                                  DMA_TO_DEVICE);
116         }
117
118         if (e->txwi == DMA_DUMMY_DATA)
119                 e->txwi = NULL;
120
121         if (e->skb == DMA_DUMMY_DATA)
122                 e->skb = NULL;
123
124         *prev_e = *e;
125         memset(e, 0, sizeof(*e));
126 }
127
128 static void
129 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
130 {
131         writel(q->desc_dma, &q->regs->desc_base);
132         writel(q->ndesc, &q->regs->ring_size);
133         q->head = readl(&q->regs->dma_idx);
134         q->tail = q->head;
135         writel(q->head, &q->regs->cpu_idx);
136 }
137
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140 {
141         struct mt76_sw_queue *sq = &dev->q_tx[qid];
142         struct mt76_queue *q = sq->q;
143         struct mt76_queue_entry entry;
144         unsigned int n_swq_queued[4] = {};
145         unsigned int n_queued = 0;
146         bool wake = false;
147         int i, last;
148
149         if (!q)
150                 return;
151
152         if (flush)
153                 last = -1;
154         else
155                 last = readl(&q->regs->dma_idx);
156
157         while ((q->queued > n_queued) && q->tail != last) {
158                 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
159                 if (entry.schedule)
160                         n_swq_queued[entry.qid]++;
161
162                 q->tail = (q->tail + 1) % q->ndesc;
163                 n_queued++;
164
165                 if (entry.skb)
166                         dev->drv->tx_complete_skb(dev, qid, &entry);
167
168                 if (entry.txwi) {
169                         if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
170                                 mt76_put_txwi(dev, entry.txwi);
171                         wake = !flush;
172                 }
173
174                 if (!flush && q->tail == last)
175                         last = readl(&q->regs->dma_idx);
176         }
177
178         spin_lock_bh(&q->lock);
179
180         q->queued -= n_queued;
181         for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
182                 if (!n_swq_queued[i])
183                         continue;
184
185                 dev->q_tx[i].swq_queued -= n_swq_queued[i];
186         }
187
188         if (flush)
189                 mt76_dma_sync_idx(dev, q);
190
191         wake = wake && q->stopped &&
192                qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
193         if (wake)
194                 q->stopped = false;
195
196         if (!q->queued)
197                 wake_up(&dev->tx_wait);
198
199         spin_unlock_bh(&q->lock);
200
201         if (wake)
202                 ieee80211_wake_queue(dev->hw, qid);
203 }
204
205 static void *
206 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
207                  int *len, u32 *info, bool *more)
208 {
209         struct mt76_queue_entry *e = &q->entry[idx];
210         struct mt76_desc *desc = &q->desc[idx];
211         dma_addr_t buf_addr;
212         void *buf = e->buf;
213         int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
214
215         buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
216         if (len) {
217                 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
218                 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
219                 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
220         }
221
222         if (info)
223                 *info = le32_to_cpu(desc->info);
224
225         dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
226         e->buf = NULL;
227
228         return buf;
229 }
230
231 static void *
232 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
233                  int *len, u32 *info, bool *more)
234 {
235         int idx = q->tail;
236
237         *more = false;
238         if (!q->queued)
239                 return NULL;
240
241         if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
242                 return NULL;
243
244         q->tail = (q->tail + 1) % q->ndesc;
245         q->queued--;
246
247         return mt76_dma_get_buf(dev, q, idx, len, info, more);
248 }
249
250 static void
251 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
252 {
253         writel(q->head, &q->regs->cpu_idx);
254 }
255
256 static int
257 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
258                           struct sk_buff *skb, u32 tx_info)
259 {
260         struct mt76_queue *q = dev->q_tx[qid].q;
261         struct mt76_queue_buf buf;
262         dma_addr_t addr;
263
264         addr = dma_map_single(dev->dev, skb->data, skb->len,
265                               DMA_TO_DEVICE);
266         if (unlikely(dma_mapping_error(dev->dev, addr)))
267                 return -ENOMEM;
268
269         buf.addr = addr;
270         buf.len = skb->len;
271
272         spin_lock_bh(&q->lock);
273         mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
274         mt76_dma_kick_queue(dev, q);
275         spin_unlock_bh(&q->lock);
276
277         return 0;
278 }
279
280 static int
281 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
282                       struct sk_buff *skb, struct mt76_wcid *wcid,
283                       struct ieee80211_sta *sta)
284 {
285         struct mt76_queue *q = dev->q_tx[qid].q;
286         struct mt76_tx_info tx_info = {
287                 .skb = skb,
288         };
289         int len, n = 0, ret = -ENOMEM;
290         struct mt76_queue_entry e;
291         struct mt76_txwi_cache *t;
292         struct sk_buff *iter;
293         dma_addr_t addr;
294         u8 *txwi;
295
296         t = mt76_get_txwi(dev);
297         if (!t) {
298                 ieee80211_free_txskb(dev->hw, skb);
299                 return -ENOMEM;
300         }
301         txwi = mt76_get_txwi_ptr(dev, t);
302
303         skb->prev = skb->next = NULL;
304         if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
305                 mt76_insert_hdr_pad(skb);
306
307         len = skb_headlen(skb);
308         addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
309         if (unlikely(dma_mapping_error(dev->dev, addr)))
310                 goto free;
311
312         tx_info.buf[n].addr = t->dma_addr;
313         tx_info.buf[n++].len = dev->drv->txwi_size;
314         tx_info.buf[n].addr = addr;
315         tx_info.buf[n++].len = len;
316
317         skb_walk_frags(skb, iter) {
318                 if (n == ARRAY_SIZE(tx_info.buf))
319                         goto unmap;
320
321                 addr = dma_map_single(dev->dev, iter->data, iter->len,
322                                       DMA_TO_DEVICE);
323                 if (unlikely(dma_mapping_error(dev->dev, addr)))
324                         goto unmap;
325
326                 tx_info.buf[n].addr = addr;
327                 tx_info.buf[n++].len = iter->len;
328         }
329         tx_info.nbuf = n;
330
331         dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
332                                 DMA_TO_DEVICE);
333         ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
334         dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
335                                    DMA_TO_DEVICE);
336         if (ret < 0)
337                 goto unmap;
338
339         if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
340                 ret = -ENOMEM;
341                 goto unmap;
342         }
343
344         return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
345                                 tx_info.info, tx_info.skb, t);
346
347 unmap:
348         for (n--; n > 0; n--)
349                 dma_unmap_single(dev->dev, tx_info.buf[n].addr,
350                                  tx_info.buf[n].len, DMA_TO_DEVICE);
351
352 free:
353         e.skb = tx_info.skb;
354         e.txwi = t;
355         dev->drv->tx_complete_skb(dev, qid, &e);
356         mt76_put_txwi(dev, t);
357         return ret;
358 }
359
360 static int
361 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
362 {
363         dma_addr_t addr;
364         void *buf;
365         int frames = 0;
366         int len = SKB_WITH_OVERHEAD(q->buf_size);
367         int offset = q->buf_offset;
368
369         spin_lock_bh(&q->lock);
370
371         while (q->queued < q->ndesc - 1) {
372                 struct mt76_queue_buf qbuf;
373
374                 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
375                 if (!buf)
376                         break;
377
378                 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
379                 if (unlikely(dma_mapping_error(dev->dev, addr))) {
380                         skb_free_frag(buf);
381                         break;
382                 }
383
384                 qbuf.addr = addr + offset;
385                 qbuf.len = len - offset;
386                 mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
387                 frames++;
388         }
389
390         if (frames)
391                 mt76_dma_kick_queue(dev, q);
392
393         spin_unlock_bh(&q->lock);
394
395         return frames;
396 }
397
398 static void
399 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
400 {
401         struct page *page;
402         void *buf;
403         bool more;
404
405         spin_lock_bh(&q->lock);
406         do {
407                 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
408                 if (!buf)
409                         break;
410
411                 skb_free_frag(buf);
412         } while (1);
413         spin_unlock_bh(&q->lock);
414
415         if (!q->rx_page.va)
416                 return;
417
418         page = virt_to_page(q->rx_page.va);
419         __page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
420         memset(&q->rx_page, 0, sizeof(q->rx_page));
421 }
422
423 static void
424 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
425 {
426         struct mt76_queue *q = &dev->q_rx[qid];
427         int i;
428
429         for (i = 0; i < q->ndesc; i++)
430                 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
431
432         mt76_dma_rx_cleanup(dev, q);
433         mt76_dma_sync_idx(dev, q);
434         mt76_dma_rx_fill(dev, q);
435
436         if (!q->rx_head)
437                 return;
438
439         dev_kfree_skb(q->rx_head);
440         q->rx_head = NULL;
441 }
442
443 static void
444 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
445                   int len, bool more)
446 {
447         struct page *page = virt_to_head_page(data);
448         int offset = data - page_address(page);
449         struct sk_buff *skb = q->rx_head;
450         struct skb_shared_info *shinfo = skb_shinfo(skb);
451
452         if (shinfo->nr_frags < ARRAY_SIZE(shinfo->frags)) {
453                 offset += q->buf_offset;
454                 skb_add_rx_frag(skb, shinfo->nr_frags, page, offset, len,
455                                 q->buf_size);
456         }
457
458         if (more)
459                 return;
460
461         q->rx_head = NULL;
462         dev->drv->rx_skb(dev, q - dev->q_rx, skb);
463 }
464
465 static int
466 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
467 {
468         int len, data_len, done = 0;
469         struct sk_buff *skb;
470         unsigned char *data;
471         bool more;
472
473         while (done < budget) {
474                 u32 info;
475
476                 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
477                 if (!data)
478                         break;
479
480                 if (q->rx_head)
481                         data_len = q->buf_size;
482                 else
483                         data_len = SKB_WITH_OVERHEAD(q->buf_size);
484
485                 if (data_len < len + q->buf_offset) {
486                         dev_kfree_skb(q->rx_head);
487                         q->rx_head = NULL;
488
489                         skb_free_frag(data);
490                         continue;
491                 }
492
493                 if (q->rx_head) {
494                         mt76_add_fragment(dev, q, data, len, more);
495                         continue;
496                 }
497
498                 skb = build_skb(data, q->buf_size);
499                 if (!skb) {
500                         skb_free_frag(data);
501                         continue;
502                 }
503                 skb_reserve(skb, q->buf_offset);
504
505                 if (q == &dev->q_rx[MT_RXQ_MCU]) {
506                         u32 *rxfce = (u32 *)skb->cb;
507                         *rxfce = info;
508                 }
509
510                 __skb_put(skb, len);
511                 done++;
512
513                 if (more) {
514                         q->rx_head = skb;
515                         continue;
516                 }
517
518                 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
519         }
520
521         mt76_dma_rx_fill(dev, q);
522         return done;
523 }
524
525 static int
526 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
527 {
528         struct mt76_dev *dev;
529         int qid, done = 0, cur;
530
531         dev = container_of(napi->dev, struct mt76_dev, napi_dev);
532         qid = napi - dev->napi;
533
534         rcu_read_lock();
535
536         do {
537                 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
538                 mt76_rx_poll_complete(dev, qid, napi);
539                 done += cur;
540         } while (cur && done < budget);
541
542         rcu_read_unlock();
543
544         if (done < budget && napi_complete(napi))
545                 dev->drv->rx_poll_complete(dev, qid);
546
547         return done;
548 }
549
550 static int
551 mt76_dma_init(struct mt76_dev *dev)
552 {
553         int i;
554
555         init_dummy_netdev(&dev->napi_dev);
556
557         for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
558                 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
559                                64);
560                 mt76_dma_rx_fill(dev, &dev->q_rx[i]);
561                 skb_queue_head_init(&dev->rx_skb[i]);
562                 napi_enable(&dev->napi[i]);
563         }
564
565         return 0;
566 }
567
568 static const struct mt76_queue_ops mt76_dma_ops = {
569         .init = mt76_dma_init,
570         .alloc = mt76_dma_alloc_queue,
571         .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
572         .tx_queue_skb = mt76_dma_tx_queue_skb,
573         .tx_cleanup = mt76_dma_tx_cleanup,
574         .rx_reset = mt76_dma_rx_reset,
575         .kick = mt76_dma_kick_queue,
576 };
577
578 void mt76_dma_attach(struct mt76_dev *dev)
579 {
580         dev->queue_ops = &mt76_dma_ops;
581 }
582 EXPORT_SYMBOL_GPL(mt76_dma_attach);
583
584 void mt76_dma_cleanup(struct mt76_dev *dev)
585 {
586         int i;
587
588         netif_napi_del(&dev->tx_napi);
589         for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
590                 mt76_dma_tx_cleanup(dev, i, true);
591
592         for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
593                 netif_napi_del(&dev->napi[i]);
594                 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
595         }
596 }
597 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);