OSDN Git Service

1eb882e15fb454c325a0b5772408456527dc9aba
[uclinux-h8/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2400pci_bbp_read,
188                 .write          = rt2400pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2400pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2400pci_brightness_set;
253         led->led_dev.blink_set = rt2400pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * since there is no filter for it at this time.
270          */
271         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273                            !(filter_flags & FIF_FCSFAIL));
274         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275                            !(filter_flags & FIF_PLCPFAIL));
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277                            !(filter_flags & FIF_CONTROL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279                            !(filter_flags & FIF_PROMISC_IN_BSS));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
282                            !rt2x00dev->intf_ap_count);
283         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288                                   struct rt2x00_intf *intf,
289                                   struct rt2x00intf_conf *conf,
290                                   const unsigned int flags)
291 {
292         unsigned int bcn_preload;
293         u32 reg;
294
295         if (flags & CONFIG_UPDATE_TYPE) {
296                 /*
297                  * Enable beacon config
298                  */
299                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304                 /*
305                  * Enable synchronisation.
306                  */
307                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312         }
313
314         if (flags & CONFIG_UPDATE_MAC)
315                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316                                               conf->mac, sizeof(conf->mac));
317
318         if (flags & CONFIG_UPDATE_BSSID)
319                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320                                               conf->bssid, sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324                                  struct rt2x00lib_erp *erp)
325 {
326         int preamble_mask;
327         u32 reg;
328
329         /*
330          * When short preamble is enabled, we should set bit 0x08
331          */
332         preamble_mask = erp->short_preamble << 3;
333
334         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340
341         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346
347         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352
353         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364
365         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366
367         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
368         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
369         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370
371         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
372         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
373         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
374         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375
376         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
377         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
378         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
379         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380
381         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
382         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
383         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
384         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385 }
386
387 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
388                                  struct antenna_setup *ant)
389 {
390         u8 r1;
391         u8 r4;
392
393         /*
394          * We should never come here because rt2x00lib is supposed
395          * to catch this and send us the correct antenna explicitely.
396          */
397         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
398                ant->tx == ANTENNA_SW_DIVERSITY);
399
400         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402
403         /*
404          * Configure the TX antenna.
405          */
406         switch (ant->tx) {
407         case ANTENNA_HW_DIVERSITY:
408                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409                 break;
410         case ANTENNA_A:
411                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412                 break;
413         case ANTENNA_B:
414         default:
415                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
416                 break;
417         }
418
419         /*
420          * Configure the RX antenna.
421          */
422         switch (ant->rx) {
423         case ANTENNA_HW_DIVERSITY:
424                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
425                 break;
426         case ANTENNA_A:
427                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
428                 break;
429         case ANTENNA_B:
430         default:
431                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
432                 break;
433         }
434
435         rt2400pci_bbp_write(rt2x00dev, 4, r4);
436         rt2400pci_bbp_write(rt2x00dev, 1, r1);
437 }
438
439 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440                                      struct rf_channel *rf)
441 {
442         /*
443          * Switch on tuning bits.
444          */
445         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
446         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447
448         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
449         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
450         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451
452         /*
453          * RF2420 chipset don't need any additional actions.
454          */
455         if (rt2x00_rf(rt2x00dev, RF2420))
456                 return;
457
458         /*
459          * For the RT2421 chipsets we need to write an invalid
460          * reference clock rate to activate auto_tune.
461          * After that we set the value back to the correct channel.
462          */
463         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466
467         msleep(1);
468
469         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
470         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
471         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472
473         msleep(1);
474
475         /*
476          * Switch off tuning bits.
477          */
478         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
479         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480
481         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483
484         /*
485          * Clear false CRC during channel switch.
486          */
487         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488 }
489
490 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491 {
492         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
493 }
494
495 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
496                                          struct rt2x00lib_conf *libconf)
497 {
498         u32 reg;
499
500         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
501         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
502                            libconf->conf->long_frame_max_tx_count);
503         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
504                            libconf->conf->short_frame_max_tx_count);
505         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506 }
507
508 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
509                                 struct rt2x00lib_conf *libconf)
510 {
511         enum dev_state state =
512             (libconf->conf->flags & IEEE80211_CONF_PS) ?
513                 STATE_SLEEP : STATE_AWAKE;
514         u32 reg;
515
516         if (state == STATE_SLEEP) {
517                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
518                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519                                    (rt2x00dev->beacon_int - 20) * 16);
520                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
521                                    libconf->conf->listen_interval - 1);
522
523                 /* We must first disable autowake before it can be enabled */
524                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
525                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526
527                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
528                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529         } else {
530                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
531                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
532                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
533         }
534
535         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
536 }
537
538 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539                              struct rt2x00lib_conf *libconf,
540                              const unsigned int flags)
541 {
542         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544         if (flags & IEEE80211_CONF_CHANGE_POWER)
545                 rt2400pci_config_txpower(rt2x00dev,
546                                          libconf->conf->power_level);
547         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
548                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
549         if (flags & IEEE80211_CONF_CHANGE_PS)
550                 rt2400pci_config_ps(rt2x00dev, libconf);
551 }
552
553 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554                                 const int cw_min, const int cw_max)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562 }
563
564 /*
565  * Link tuning
566  */
567 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568                                  struct link_qual *qual)
569 {
570         u32 reg;
571         u8 bbp;
572
573         /*
574          * Update FCS error count from register.
575          */
576         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579         /*
580          * Update False CCA count from register.
581          */
582         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583         qual->false_cca = bbp;
584 }
585
586 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
587                                      struct link_qual *qual, u8 vgc_level)
588 {
589         rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
590         qual->vgc_level = vgc_level;
591         qual->vgc_level_reg = vgc_level;
592 }
593
594 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
595                                   struct link_qual *qual)
596 {
597         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
598 }
599
600 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
601                                  struct link_qual *qual, const u32 count)
602 {
603         /*
604          * The link tuner should not run longer then 60 seconds,
605          * and should run once every 2 seconds.
606          */
607         if (count > 60 || !(count & 1))
608                 return;
609
610         /*
611          * Base r13 link tuning on the false cca count.
612          */
613         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
614                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
615         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
616                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
617 }
618
619 /*
620  * Initialization functions.
621  */
622 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
623 {
624         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
625         u32 word;
626
627         if (entry->queue->qid == QID_RX) {
628                 rt2x00_desc_read(entry_priv->desc, 0, &word);
629
630                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
631         } else {
632                 rt2x00_desc_read(entry_priv->desc, 0, &word);
633
634                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
635                         rt2x00_get_field32(word, TXD_W0_VALID));
636         }
637 }
638
639 static void rt2400pci_clear_entry(struct queue_entry *entry)
640 {
641         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
642         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
643         u32 word;
644
645         if (entry->queue->qid == QID_RX) {
646                 rt2x00_desc_read(entry_priv->desc, 2, &word);
647                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
648                 rt2x00_desc_write(entry_priv->desc, 2, word);
649
650                 rt2x00_desc_read(entry_priv->desc, 1, &word);
651                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
652                 rt2x00_desc_write(entry_priv->desc, 1, word);
653
654                 rt2x00_desc_read(entry_priv->desc, 0, &word);
655                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
656                 rt2x00_desc_write(entry_priv->desc, 0, word);
657         } else {
658                 rt2x00_desc_read(entry_priv->desc, 0, &word);
659                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
660                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
661                 rt2x00_desc_write(entry_priv->desc, 0, word);
662         }
663 }
664
665 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
666 {
667         struct queue_entry_priv_pci *entry_priv;
668         u32 reg;
669
670         /*
671          * Initialize registers.
672          */
673         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
674         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
675         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
676         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
677         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
678         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
679
680         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
681         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
682         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
683                            entry_priv->desc_dma);
684         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
685
686         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
687         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
688         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
689                            entry_priv->desc_dma);
690         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
691
692         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
693         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
694         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
695                            entry_priv->desc_dma);
696         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
697
698         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
699         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
700         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
701                            entry_priv->desc_dma);
702         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
703
704         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
705         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
706         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
707         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
708
709         entry_priv = rt2x00dev->rx->entries[0].priv_data;
710         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
711         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
712                            entry_priv->desc_dma);
713         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
714
715         return 0;
716 }
717
718 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
719 {
720         u32 reg;
721
722         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
723         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
724         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
725         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
726
727         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
728         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
729         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
730         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
731         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
732
733         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
734         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
735                            (rt2x00dev->rx->data_size / 128));
736         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
737
738         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
739         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
740         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
741         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
742         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
743         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
744         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
745         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
746         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
747         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
748
749         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
750
751         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
752         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
753         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
754         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
755         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
756         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
757
758         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
759         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
760         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
761         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
762         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
763         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
764         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
765         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
766
767         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
768
769         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
770                 return -EBUSY;
771
772         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
773         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
774
775         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
776         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
777         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
778
779         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
780         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
781         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
782         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
783         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
784         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
785
786         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
787         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
788         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
789         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
790         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791
792         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
793         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
794         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
795         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
796
797         /*
798          * We must clear the FCS and FIFO error count.
799          * These registers are cleared on read,
800          * so we may pass a useless variable to store the value.
801          */
802         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
803         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
804
805         return 0;
806 }
807
808 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
809 {
810         unsigned int i;
811         u8 value;
812
813         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
814                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
815                 if ((value != 0xff) && (value != 0x00))
816                         return 0;
817                 udelay(REGISTER_BUSY_DELAY);
818         }
819
820         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
821         return -EACCES;
822 }
823
824 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
825 {
826         unsigned int i;
827         u16 eeprom;
828         u8 reg_id;
829         u8 value;
830
831         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
832                 return -EACCES;
833
834         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
835         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
836         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
837         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
838         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
839         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
840         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
841         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
842         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
843         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
844         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
845         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
846         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
847         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
848
849         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
850                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
851
852                 if (eeprom != 0xffff && eeprom != 0x0000) {
853                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
854                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
855                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
856                 }
857         }
858
859         return 0;
860 }
861
862 /*
863  * Device state switch handlers.
864  */
865 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
866                                 enum dev_state state)
867 {
868         u32 reg;
869
870         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
871         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
872                            (state == STATE_RADIO_RX_OFF) ||
873                            (state == STATE_RADIO_RX_OFF_LINK));
874         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
875 }
876
877 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
878                                  enum dev_state state)
879 {
880         int mask = (state == STATE_RADIO_IRQ_OFF);
881         u32 reg;
882
883         /*
884          * When interrupts are being enabled, the interrupt registers
885          * should clear the register to assure a clean state.
886          */
887         if (state == STATE_RADIO_IRQ_ON) {
888                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
889                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
890         }
891
892         /*
893          * Only toggle the interrupts bits we are going to use.
894          * Non-checked interrupt bits are disabled by default.
895          */
896         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
897         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
898         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
899         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
900         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
901         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
902         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
903 }
904
905 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
906 {
907         /*
908          * Initialize all registers.
909          */
910         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
911                      rt2400pci_init_registers(rt2x00dev) ||
912                      rt2400pci_init_bbp(rt2x00dev)))
913                 return -EIO;
914
915         return 0;
916 }
917
918 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
919 {
920         /*
921          * Disable power
922          */
923         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
924 }
925
926 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
927                                enum dev_state state)
928 {
929         u32 reg, reg2;
930         unsigned int i;
931         char put_to_sleep;
932         char bbp_state;
933         char rf_state;
934
935         put_to_sleep = (state != STATE_AWAKE);
936
937         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
938         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
939         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
940         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
941         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
942         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
943
944         /*
945          * Device is not guaranteed to be in the requested state yet.
946          * We must wait until the register indicates that the
947          * device has entered the correct state.
948          */
949         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
950                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
951                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
952                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
953                 if (bbp_state == state && rf_state == state)
954                         return 0;
955                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
956                 msleep(10);
957         }
958
959         return -EBUSY;
960 }
961
962 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
963                                       enum dev_state state)
964 {
965         int retval = 0;
966
967         switch (state) {
968         case STATE_RADIO_ON:
969                 retval = rt2400pci_enable_radio(rt2x00dev);
970                 break;
971         case STATE_RADIO_OFF:
972                 rt2400pci_disable_radio(rt2x00dev);
973                 break;
974         case STATE_RADIO_RX_ON:
975         case STATE_RADIO_RX_ON_LINK:
976         case STATE_RADIO_RX_OFF:
977         case STATE_RADIO_RX_OFF_LINK:
978                 rt2400pci_toggle_rx(rt2x00dev, state);
979                 break;
980         case STATE_RADIO_IRQ_ON:
981         case STATE_RADIO_IRQ_OFF:
982                 rt2400pci_toggle_irq(rt2x00dev, state);
983                 break;
984         case STATE_DEEP_SLEEP:
985         case STATE_SLEEP:
986         case STATE_STANDBY:
987         case STATE_AWAKE:
988                 retval = rt2400pci_set_state(rt2x00dev, state);
989                 break;
990         default:
991                 retval = -ENOTSUPP;
992                 break;
993         }
994
995         if (unlikely(retval))
996                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
997                       state, retval);
998
999         return retval;
1000 }
1001
1002 /*
1003  * TX descriptor initialization
1004  */
1005 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1006                                     struct sk_buff *skb,
1007                                     struct txentry_desc *txdesc)
1008 {
1009         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1010         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1011         __le32 *txd = entry_priv->desc;
1012         u32 word;
1013
1014         /*
1015          * Start writing the descriptor words.
1016          */
1017         rt2x00_desc_read(txd, 1, &word);
1018         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1019         rt2x00_desc_write(txd, 1, word);
1020
1021         rt2x00_desc_read(txd, 2, &word);
1022         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1023         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1024         rt2x00_desc_write(txd, 2, word);
1025
1026         rt2x00_desc_read(txd, 3, &word);
1027         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1028         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1029         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1030         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1031         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1032         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1033         rt2x00_desc_write(txd, 3, word);
1034
1035         rt2x00_desc_read(txd, 4, &word);
1036         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1037         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1038         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1039         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1040         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1041         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1042         rt2x00_desc_write(txd, 4, word);
1043
1044         /*
1045          * Writing TXD word 0 must the last to prevent a race condition with
1046          * the device, whereby the device may take hold of the TXD before we
1047          * finished updating it.
1048          */
1049         rt2x00_desc_read(txd, 0, &word);
1050         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1051         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1052         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1053                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1054         rt2x00_set_field32(&word, TXD_W0_ACK,
1055                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1056         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1057                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1058         rt2x00_set_field32(&word, TXD_W0_RTS,
1059                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1060         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1061         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1062                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1063         rt2x00_desc_write(txd, 0, word);
1064
1065         /*
1066          * Register descriptor details in skb frame descriptor.
1067          */
1068         skbdesc->desc = txd;
1069         skbdesc->desc_len = TXD_DESC_SIZE;
1070 }
1071
1072 /*
1073  * TX data initialization
1074  */
1075 static void rt2400pci_write_beacon(struct queue_entry *entry,
1076                                    struct txentry_desc *txdesc)
1077 {
1078         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1079         u32 reg;
1080
1081         /*
1082          * Disable beaconing while we are reloading the beacon data,
1083          * otherwise we might be sending out invalid data.
1084          */
1085         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1086         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1087         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1088
1089         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1090
1091         /*
1092          * Write the TX descriptor for the beacon.
1093          */
1094         rt2400pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1095
1096         /*
1097          * Dump beacon to userspace through debugfs.
1098          */
1099         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1100
1101         /*
1102          * Enable beaconing again.
1103          */
1104         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1105         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1106         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1107         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108 }
1109
1110 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1111                                     const enum data_queue_qid queue)
1112 {
1113         u32 reg;
1114
1115         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1116         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1117         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1118         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1119         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1120 }
1121
1122 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1123                                     const enum data_queue_qid qid)
1124 {
1125         u32 reg;
1126
1127         if (qid == QID_BEACON) {
1128                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1129         } else {
1130                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1131                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1132                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1133         }
1134 }
1135
1136 /*
1137  * RX control handlers
1138  */
1139 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1140                                   struct rxdone_entry_desc *rxdesc)
1141 {
1142         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1143         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1144         u32 word0;
1145         u32 word2;
1146         u32 word3;
1147         u32 word4;
1148         u64 tsf;
1149         u32 rx_low;
1150         u32 rx_high;
1151
1152         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1153         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1154         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1155         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1156
1157         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1158                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1159         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1160                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1161
1162         /*
1163          * We only get the lower 32bits from the timestamp,
1164          * to get the full 64bits we must complement it with
1165          * the timestamp from get_tsf().
1166          * Note that when a wraparound of the lower 32bits
1167          * has occurred between the frame arrival and the get_tsf()
1168          * call, we must decrease the higher 32bits with 1 to get
1169          * to correct value.
1170          */
1171         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1172         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1173         rx_high = upper_32_bits(tsf);
1174
1175         if ((u32)tsf <= rx_low)
1176                 rx_high--;
1177
1178         /*
1179          * Obtain the status about this packet.
1180          * The signal is the PLCP value, and needs to be stripped
1181          * of the preamble bit (0x08).
1182          */
1183         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1184         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1185         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1186             entry->queue->rt2x00dev->rssi_offset;
1187         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1188
1189         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1190         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1191                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1192 }
1193
1194 /*
1195  * Interrupt functions.
1196  */
1197 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1198                              const enum data_queue_qid queue_idx)
1199 {
1200         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1201         struct queue_entry_priv_pci *entry_priv;
1202         struct queue_entry *entry;
1203         struct txdone_entry_desc txdesc;
1204         u32 word;
1205
1206         while (!rt2x00queue_empty(queue)) {
1207                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1208                 entry_priv = entry->priv_data;
1209                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1210
1211                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1212                     !rt2x00_get_field32(word, TXD_W0_VALID))
1213                         break;
1214
1215                 /*
1216                  * Obtain the status about this packet.
1217                  */
1218                 txdesc.flags = 0;
1219                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1220                 case 0: /* Success */
1221                 case 1: /* Success with retry */
1222                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1223                         break;
1224                 case 2: /* Failure, excessive retries */
1225                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1226                         /* Don't break, this is a failed frame! */
1227                 default: /* Failure */
1228                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1229                 }
1230                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1231
1232                 rt2x00pci_txdone(entry, &txdesc);
1233         }
1234 }
1235
1236 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1237 {
1238         struct rt2x00_dev *rt2x00dev = dev_instance;
1239         u32 reg;
1240
1241         /*
1242          * Get the interrupt sources & saved to local variable.
1243          * Write register value back to clear pending interrupts.
1244          */
1245         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1246         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1247
1248         if (!reg)
1249                 return IRQ_NONE;
1250
1251         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1252                 return IRQ_HANDLED;
1253
1254         /*
1255          * Handle interrupts, walk through all bits
1256          * and run the tasks, the bits are checked in order of
1257          * priority.
1258          */
1259
1260         /*
1261          * 1 - Beacon timer expired interrupt.
1262          */
1263         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1264                 rt2x00lib_beacondone(rt2x00dev);
1265
1266         /*
1267          * 2 - Rx ring done interrupt.
1268          */
1269         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1270                 rt2x00pci_rxdone(rt2x00dev);
1271
1272         /*
1273          * 3 - Atim ring transmit done interrupt.
1274          */
1275         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1276                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1277
1278         /*
1279          * 4 - Priority ring transmit done interrupt.
1280          */
1281         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1282                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1283
1284         /*
1285          * 5 - Tx ring transmit done interrupt.
1286          */
1287         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1288                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1289
1290         return IRQ_HANDLED;
1291 }
1292
1293 /*
1294  * Device probe functions.
1295  */
1296 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1297 {
1298         struct eeprom_93cx6 eeprom;
1299         u32 reg;
1300         u16 word;
1301         u8 *mac;
1302
1303         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1304
1305         eeprom.data = rt2x00dev;
1306         eeprom.register_read = rt2400pci_eepromregister_read;
1307         eeprom.register_write = rt2400pci_eepromregister_write;
1308         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1309             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1310         eeprom.reg_data_in = 0;
1311         eeprom.reg_data_out = 0;
1312         eeprom.reg_data_clock = 0;
1313         eeprom.reg_chip_select = 0;
1314
1315         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1316                                EEPROM_SIZE / sizeof(u16));
1317
1318         /*
1319          * Start validation of the data that has been read.
1320          */
1321         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1322         if (!is_valid_ether_addr(mac)) {
1323                 random_ether_addr(mac);
1324                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1325         }
1326
1327         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1328         if (word == 0xffff) {
1329                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1330                 return -EINVAL;
1331         }
1332
1333         return 0;
1334 }
1335
1336 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1337 {
1338         u32 reg;
1339         u16 value;
1340         u16 eeprom;
1341
1342         /*
1343          * Read EEPROM word for configuration.
1344          */
1345         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1346
1347         /*
1348          * Identify RF chipset.
1349          */
1350         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1351         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1352         rt2x00_set_chip(rt2x00dev, RT2460, value,
1353                         rt2x00_get_field32(reg, CSR0_REVISION));
1354
1355         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1356                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1357                 return -ENODEV;
1358         }
1359
1360         /*
1361          * Identify default antenna configuration.
1362          */
1363         rt2x00dev->default_ant.tx =
1364             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1365         rt2x00dev->default_ant.rx =
1366             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1367
1368         /*
1369          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1370          * I am not 100% sure about this, but the legacy drivers do not
1371          * indicate antenna swapping in software is required when
1372          * diversity is enabled.
1373          */
1374         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1375                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1376         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1377                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1378
1379         /*
1380          * Store led mode, for correct led behaviour.
1381          */
1382 #ifdef CONFIG_RT2X00_LIB_LEDS
1383         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1384
1385         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1386         if (value == LED_MODE_TXRX_ACTIVITY ||
1387             value == LED_MODE_DEFAULT ||
1388             value == LED_MODE_ASUS)
1389                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1390                                    LED_TYPE_ACTIVITY);
1391 #endif /* CONFIG_RT2X00_LIB_LEDS */
1392
1393         /*
1394          * Detect if this device has an hardware controlled radio.
1395          */
1396         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1397                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1398
1399         /*
1400          * Check if the BBP tuning should be enabled.
1401          */
1402         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1403                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1404
1405         return 0;
1406 }
1407
1408 /*
1409  * RF value list for RF2420 & RF2421
1410  * Supports: 2.4 GHz
1411  */
1412 static const struct rf_channel rf_vals_b[] = {
1413         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1414         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1415         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1416         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1417         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1418         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1419         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1420         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1421         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1422         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1423         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1424         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1425         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1426         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1427 };
1428
1429 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1430 {
1431         struct hw_mode_spec *spec = &rt2x00dev->spec;
1432         struct channel_info *info;
1433         char *tx_power;
1434         unsigned int i;
1435
1436         /*
1437          * Initialize all hw fields.
1438          */
1439         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1440                                IEEE80211_HW_SIGNAL_DBM |
1441                                IEEE80211_HW_SUPPORTS_PS |
1442                                IEEE80211_HW_PS_NULLFUNC_STACK;
1443
1444         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1445         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1446                                 rt2x00_eeprom_addr(rt2x00dev,
1447                                                    EEPROM_MAC_ADDR_0));
1448
1449         /*
1450          * Initialize hw_mode information.
1451          */
1452         spec->supported_bands = SUPPORT_BAND_2GHZ;
1453         spec->supported_rates = SUPPORT_RATE_CCK;
1454
1455         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1456         spec->channels = rf_vals_b;
1457
1458         /*
1459          * Create channel information array
1460          */
1461         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1462         if (!info)
1463                 return -ENOMEM;
1464
1465         spec->channels_info = info;
1466
1467         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1468         for (i = 0; i < 14; i++)
1469                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1470
1471         return 0;
1472 }
1473
1474 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1475 {
1476         int retval;
1477
1478         /*
1479          * Allocate eeprom data.
1480          */
1481         retval = rt2400pci_validate_eeprom(rt2x00dev);
1482         if (retval)
1483                 return retval;
1484
1485         retval = rt2400pci_init_eeprom(rt2x00dev);
1486         if (retval)
1487                 return retval;
1488
1489         /*
1490          * Initialize hw specifications.
1491          */
1492         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1493         if (retval)
1494                 return retval;
1495
1496         /*
1497          * This device requires the atim queue and DMA-mapped skbs.
1498          */
1499         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1500         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1501
1502         /*
1503          * Set the rssi offset.
1504          */
1505         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1506
1507         return 0;
1508 }
1509
1510 /*
1511  * IEEE80211 stack callback functions.
1512  */
1513 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1514                              const struct ieee80211_tx_queue_params *params)
1515 {
1516         struct rt2x00_dev *rt2x00dev = hw->priv;
1517
1518         /*
1519          * We don't support variating cw_min and cw_max variables
1520          * per queue. So by default we only configure the TX queue,
1521          * and ignore all other configurations.
1522          */
1523         if (queue != 0)
1524                 return -EINVAL;
1525
1526         if (rt2x00mac_conf_tx(hw, queue, params))
1527                 return -EINVAL;
1528
1529         /*
1530          * Write configuration to register.
1531          */
1532         rt2400pci_config_cw(rt2x00dev,
1533                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1534
1535         return 0;
1536 }
1537
1538 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1539 {
1540         struct rt2x00_dev *rt2x00dev = hw->priv;
1541         u64 tsf;
1542         u32 reg;
1543
1544         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1545         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1546         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1547         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1548
1549         return tsf;
1550 }
1551
1552 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1553 {
1554         struct rt2x00_dev *rt2x00dev = hw->priv;
1555         u32 reg;
1556
1557         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1558         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1559 }
1560
1561 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1562         .tx                     = rt2x00mac_tx,
1563         .start                  = rt2x00mac_start,
1564         .stop                   = rt2x00mac_stop,
1565         .add_interface          = rt2x00mac_add_interface,
1566         .remove_interface       = rt2x00mac_remove_interface,
1567         .config                 = rt2x00mac_config,
1568         .configure_filter       = rt2x00mac_configure_filter,
1569         .set_tim                = rt2x00mac_set_tim,
1570         .get_stats              = rt2x00mac_get_stats,
1571         .bss_info_changed       = rt2x00mac_bss_info_changed,
1572         .conf_tx                = rt2400pci_conf_tx,
1573         .get_tsf                = rt2400pci_get_tsf,
1574         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1575         .rfkill_poll            = rt2x00mac_rfkill_poll,
1576 };
1577
1578 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1579         .irq_handler            = rt2400pci_interrupt,
1580         .probe_hw               = rt2400pci_probe_hw,
1581         .initialize             = rt2x00pci_initialize,
1582         .uninitialize           = rt2x00pci_uninitialize,
1583         .get_entry_state        = rt2400pci_get_entry_state,
1584         .clear_entry            = rt2400pci_clear_entry,
1585         .set_device_state       = rt2400pci_set_device_state,
1586         .rfkill_poll            = rt2400pci_rfkill_poll,
1587         .link_stats             = rt2400pci_link_stats,
1588         .reset_tuner            = rt2400pci_reset_tuner,
1589         .link_tuner             = rt2400pci_link_tuner,
1590         .write_tx_desc          = rt2400pci_write_tx_desc,
1591         .write_tx_data          = rt2x00pci_write_tx_data,
1592         .write_beacon           = rt2400pci_write_beacon,
1593         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1594         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1595         .fill_rxdone            = rt2400pci_fill_rxdone,
1596         .config_filter          = rt2400pci_config_filter,
1597         .config_intf            = rt2400pci_config_intf,
1598         .config_erp             = rt2400pci_config_erp,
1599         .config_ant             = rt2400pci_config_ant,
1600         .config                 = rt2400pci_config,
1601 };
1602
1603 static const struct data_queue_desc rt2400pci_queue_rx = {
1604         .entry_num              = RX_ENTRIES,
1605         .data_size              = DATA_FRAME_SIZE,
1606         .desc_size              = RXD_DESC_SIZE,
1607         .priv_size              = sizeof(struct queue_entry_priv_pci),
1608 };
1609
1610 static const struct data_queue_desc rt2400pci_queue_tx = {
1611         .entry_num              = TX_ENTRIES,
1612         .data_size              = DATA_FRAME_SIZE,
1613         .desc_size              = TXD_DESC_SIZE,
1614         .priv_size              = sizeof(struct queue_entry_priv_pci),
1615 };
1616
1617 static const struct data_queue_desc rt2400pci_queue_bcn = {
1618         .entry_num              = BEACON_ENTRIES,
1619         .data_size              = MGMT_FRAME_SIZE,
1620         .desc_size              = TXD_DESC_SIZE,
1621         .priv_size              = sizeof(struct queue_entry_priv_pci),
1622 };
1623
1624 static const struct data_queue_desc rt2400pci_queue_atim = {
1625         .entry_num              = ATIM_ENTRIES,
1626         .data_size              = DATA_FRAME_SIZE,
1627         .desc_size              = TXD_DESC_SIZE,
1628         .priv_size              = sizeof(struct queue_entry_priv_pci),
1629 };
1630
1631 static const struct rt2x00_ops rt2400pci_ops = {
1632         .name                   = KBUILD_MODNAME,
1633         .max_sta_intf           = 1,
1634         .max_ap_intf            = 1,
1635         .eeprom_size            = EEPROM_SIZE,
1636         .rf_size                = RF_SIZE,
1637         .tx_queues              = NUM_TX_QUEUES,
1638         .extra_tx_headroom      = 0,
1639         .rx                     = &rt2400pci_queue_rx,
1640         .tx                     = &rt2400pci_queue_tx,
1641         .bcn                    = &rt2400pci_queue_bcn,
1642         .atim                   = &rt2400pci_queue_atim,
1643         .lib                    = &rt2400pci_rt2x00_ops,
1644         .hw                     = &rt2400pci_mac80211_ops,
1645 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1646         .debugfs                = &rt2400pci_rt2x00debug,
1647 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1648 };
1649
1650 /*
1651  * RT2400pci module information.
1652  */
1653 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1654         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1655         { 0, }
1656 };
1657
1658 MODULE_AUTHOR(DRV_PROJECT);
1659 MODULE_VERSION(DRV_VERSION);
1660 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1661 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1662 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1663 MODULE_LICENSE("GPL");
1664
1665 static struct pci_driver rt2400pci_driver = {
1666         .name           = KBUILD_MODNAME,
1667         .id_table       = rt2400pci_device_table,
1668         .probe          = rt2x00pci_probe,
1669         .remove         = __devexit_p(rt2x00pci_remove),
1670         .suspend        = rt2x00pci_suspend,
1671         .resume         = rt2x00pci_resume,
1672 };
1673
1674 static int __init rt2400pci_init(void)
1675 {
1676         return pci_register_driver(&rt2400pci_driver);
1677 }
1678
1679 static void __exit rt2400pci_exit(void)
1680 {
1681         pci_unregister_driver(&rt2400pci_driver);
1682 }
1683
1684 module_init(rt2400pci_init);
1685 module_exit(rt2400pci_exit);