OSDN Git Service

rt2x00: Split of TXWI writing to write_tx_data callback in rt2800usb.
[uclinux-h8/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/crc-ccitt.h>
35 #include <linux/delay.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/eeprom_93cx6.h>
43
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static int modparam_nohwcrypt = 0;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 {
60         unsigned int i;
61         u32 reg;
62
63         /*
64          * SOC devices don't support MCU requests.
65          */
66         if (rt2x00_is_soc(rt2x00dev))
67                 return;
68
69         for (i = 0; i < 200; i++) {
70                 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71
72                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
75                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
76                         break;
77
78                 udelay(REGISTER_BUSY_DELAY);
79         }
80
81         if (i == 200)
82                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83
84         rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
85         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 }
87
88 #ifdef CONFIG_RT2800PCI_SOC
89 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 {
91         u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
92
93         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 }
95 #else
96 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
97 {
98 }
99 #endif /* CONFIG_RT2800PCI_SOC */
100
101 #ifdef CONFIG_RT2800PCI_PCI
102 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
103 {
104         struct rt2x00_dev *rt2x00dev = eeprom->data;
105         u32 reg;
106
107         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108
109         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
110         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
111         eeprom->reg_data_clock =
112             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
113         eeprom->reg_chip_select =
114             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
115 }
116
117 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
118 {
119         struct rt2x00_dev *rt2x00dev = eeprom->data;
120         u32 reg = 0;
121
122         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
125                            !!eeprom->reg_data_clock);
126         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
127                            !!eeprom->reg_chip_select);
128
129         rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 }
131
132 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
133 {
134         struct eeprom_93cx6 eeprom;
135         u32 reg;
136
137         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138
139         eeprom.data = rt2x00dev;
140         eeprom.register_read = rt2800pci_eepromregister_read;
141         eeprom.register_write = rt2800pci_eepromregister_write;
142         eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
143             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
144         eeprom.reg_data_in = 0;
145         eeprom.reg_data_out = 0;
146         eeprom.reg_data_clock = 0;
147         eeprom.reg_chip_select = 0;
148
149         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
150                                EEPROM_SIZE / sizeof(u16));
151 }
152
153 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
154 {
155         return rt2800_efuse_detect(rt2x00dev);
156 }
157
158 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
159 {
160         rt2800_read_eeprom_efuse(rt2x00dev);
161 }
162 #else
163 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
164 {
165 }
166
167 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
168 {
169         return 0;
170 }
171
172 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
173 {
174 }
175 #endif /* CONFIG_RT2800PCI_PCI */
176
177 /*
178  * Firmware functions
179  */
180 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
181 {
182         return FIRMWARE_RT2860;
183 }
184
185 static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
186                                     const u8 *data, const size_t len)
187 {
188         u16 fw_crc;
189         u16 crc;
190
191         /*
192          * Only support 8kb firmware files.
193          */
194         if (len != 8192)
195                 return FW_BAD_LENGTH;
196
197         /*
198          * The last 2 bytes in the firmware array are the crc checksum itself,
199          * this means that we should never pass those 2 bytes to the crc
200          * algorithm.
201          */
202         fw_crc = (data[len - 2] << 8 | data[len - 1]);
203
204         /*
205          * Use the crc ccitt algorithm.
206          * This will return the same value as the legacy driver which
207          * used bit ordering reversion on the both the firmware bytes
208          * before input input as well as on the final output.
209          * Obviously using crc ccitt directly is much more efficient.
210          */
211         crc = crc_ccitt(~0, data, len - 2);
212
213         /*
214          * There is a small difference between the crc-itu-t + bitrev and
215          * the crc-ccitt crc calculation. In the latter method the 2 bytes
216          * will be swapped, use swab16 to convert the crc to the correct
217          * value.
218          */
219         crc = swab16(crc);
220
221         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
222 }
223
224 static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
225                                    const u8 *data, const size_t len)
226 {
227         unsigned int i;
228         u32 reg;
229
230         /*
231          * Wait for stable hardware.
232          */
233         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
234                 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
235                 if (reg && reg != ~0)
236                         break;
237                 msleep(1);
238         }
239
240         if (i == REGISTER_BUSY_COUNT) {
241                 ERROR(rt2x00dev, "Unstable hardware.\n");
242                 return -EBUSY;
243         }
244
245         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
246         rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
247
248         /*
249          * Disable DMA, will be reenabled later when enabling
250          * the radio.
251          */
252         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
253         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
254         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
255         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
256         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
257         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
258         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
259
260         /*
261          * enable Host program ram write selection
262          */
263         reg = 0;
264         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
265         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
266
267         /*
268          * Write firmware to device.
269          */
270         rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
271                                       data, len);
272
273         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
274         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
275
276         /*
277          * Wait for device to stabilize.
278          */
279         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
280                 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
281                 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
282                         break;
283                 msleep(1);
284         }
285
286         if (i == REGISTER_BUSY_COUNT) {
287                 ERROR(rt2x00dev, "PBF system register not ready.\n");
288                 return -EBUSY;
289         }
290
291         /*
292          * Disable interrupts
293          */
294         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
295
296         /*
297          * Initialize BBP R/W access agent
298          */
299         rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
300         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
301
302         return 0;
303 }
304
305 /*
306  * Initialization functions.
307  */
308 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
309 {
310         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
311         u32 word;
312
313         if (entry->queue->qid == QID_RX) {
314                 rt2x00_desc_read(entry_priv->desc, 1, &word);
315
316                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
317         } else {
318                 rt2x00_desc_read(entry_priv->desc, 1, &word);
319
320                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
321         }
322 }
323
324 static void rt2800pci_clear_entry(struct queue_entry *entry)
325 {
326         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
327         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328         u32 word;
329
330         if (entry->queue->qid == QID_RX) {
331                 rt2x00_desc_read(entry_priv->desc, 0, &word);
332                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
333                 rt2x00_desc_write(entry_priv->desc, 0, word);
334
335                 rt2x00_desc_read(entry_priv->desc, 1, &word);
336                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
337                 rt2x00_desc_write(entry_priv->desc, 1, word);
338         } else {
339                 rt2x00_desc_read(entry_priv->desc, 1, &word);
340                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
341                 rt2x00_desc_write(entry_priv->desc, 1, word);
342         }
343 }
344
345 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
346 {
347         struct queue_entry_priv_pci *entry_priv;
348         u32 reg;
349
350         /*
351          * Initialize registers.
352          */
353         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
354         rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
355         rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
356         rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
357         rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
358
359         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
360         rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
361         rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
362         rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
363         rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
364
365         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
366         rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
367         rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
368         rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
369         rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
370
371         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
372         rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
373         rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
374         rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
375         rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
376
377         entry_priv = rt2x00dev->rx->entries[0].priv_data;
378         rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
379         rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
380         rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
381         rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
382
383         /*
384          * Enable global DMA configuration
385          */
386         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
387         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
388         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
389         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
390         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
391
392         rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
393
394         return 0;
395 }
396
397 /*
398  * Device state switch handlers.
399  */
400 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
401                                 enum dev_state state)
402 {
403         u32 reg;
404
405         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
406         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
407                            (state == STATE_RADIO_RX_ON) ||
408                            (state == STATE_RADIO_RX_ON_LINK));
409         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
410 }
411
412 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
413                                  enum dev_state state)
414 {
415         int mask = (state == STATE_RADIO_IRQ_ON);
416         u32 reg;
417
418         /*
419          * When interrupts are being enabled, the interrupt registers
420          * should clear the register to assure a clean state.
421          */
422         if (state == STATE_RADIO_IRQ_ON) {
423                 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
424                 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
425         }
426
427         rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
428         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
429         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
430         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
431         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
432         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
433         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
434         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
435         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
436         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
437         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
438         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
439         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
440         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
441         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
442         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
443         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
444         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
445         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
446         rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
447 }
448
449 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
450 {
451         u32 reg;
452
453         /*
454          * Reset DMA indexes
455          */
456         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
457         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
458         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
459         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
460         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
461         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
462         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
463         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
464         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
465
466         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
467         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
468
469         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
470
471         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
472         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
473         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
474         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
475
476         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
477
478         return 0;
479 }
480
481 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
482 {
483         u32 reg;
484         u16 word;
485
486         /*
487          * Initialize all registers.
488          */
489         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
490                      rt2800pci_init_queues(rt2x00dev) ||
491                      rt2800_init_registers(rt2x00dev) ||
492                      rt2800_wait_wpdma_ready(rt2x00dev) ||
493                      rt2800_init_bbp(rt2x00dev) ||
494                      rt2800_init_rfcsr(rt2x00dev)))
495                 return -EIO;
496
497         /*
498          * Send signal to firmware during boot time.
499          */
500         rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
501
502         /*
503          * Enable RX.
504          */
505         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
506         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
507         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
508         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
509
510         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
511         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
512         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
513         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
514         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
515         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
516
517         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
518         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
519         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
520         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
521
522         /*
523          * Initialize LED control
524          */
525         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
526         rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
527                               word & 0xff, (word >> 8) & 0xff);
528
529         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
530         rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
531                               word & 0xff, (word >> 8) & 0xff);
532
533         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
534         rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
535                               word & 0xff, (word >> 8) & 0xff);
536
537         return 0;
538 }
539
540 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
541 {
542         u32 reg;
543
544         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
545         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
546         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
547         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
548         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
549         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
550         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
551
552         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
553         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
554         rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
555
556         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
557
558         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
559         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
560         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
561         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
562         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
563         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
564         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
565         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
566         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
567
568         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
569         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
570
571         /* Wait for DMA, ignore error */
572         rt2800_wait_wpdma_ready(rt2x00dev);
573 }
574
575 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
576                                enum dev_state state)
577 {
578         /*
579          * Always put the device to sleep (even when we intend to wakeup!)
580          * if the device is booting and wasn't asleep it will return
581          * failure when attempting to wakeup.
582          */
583         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
584
585         if (state == STATE_AWAKE) {
586                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
587                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
588         }
589
590         return 0;
591 }
592
593 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
594                                       enum dev_state state)
595 {
596         int retval = 0;
597
598         switch (state) {
599         case STATE_RADIO_ON:
600                 /*
601                  * Before the radio can be enabled, the device first has
602                  * to be woken up. After that it needs a bit of time
603                  * to be fully awake and then the radio can be enabled.
604                  */
605                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
606                 msleep(1);
607                 retval = rt2800pci_enable_radio(rt2x00dev);
608                 break;
609         case STATE_RADIO_OFF:
610                 /*
611                  * After the radio has been disabled, the device should
612                  * be put to sleep for powersaving.
613                  */
614                 rt2800pci_disable_radio(rt2x00dev);
615                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
616                 break;
617         case STATE_RADIO_RX_ON:
618         case STATE_RADIO_RX_ON_LINK:
619         case STATE_RADIO_RX_OFF:
620         case STATE_RADIO_RX_OFF_LINK:
621                 rt2800pci_toggle_rx(rt2x00dev, state);
622                 break;
623         case STATE_RADIO_IRQ_ON:
624         case STATE_RADIO_IRQ_OFF:
625                 rt2800pci_toggle_irq(rt2x00dev, state);
626                 break;
627         case STATE_DEEP_SLEEP:
628         case STATE_SLEEP:
629         case STATE_STANDBY:
630         case STATE_AWAKE:
631                 retval = rt2800pci_set_state(rt2x00dev, state);
632                 break;
633         default:
634                 retval = -ENOTSUPP;
635                 break;
636         }
637
638         if (unlikely(retval))
639                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
640                       state, retval);
641
642         return retval;
643 }
644
645 /*
646  * TX descriptor initialization
647  */
648 static void rt2800pci_write_tx_data(struct queue_entry* entry,
649                                     struct txentry_desc *txdesc)
650 {
651         __le32 *txwi = (__le32 *) entry->skb->data;
652
653         rt2800_write_txwi(txwi, txdesc);
654 }
655
656
657 static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
658                                     struct sk_buff *skb,
659                                     struct txentry_desc *txdesc)
660 {
661         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
662         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
663         __le32 *txd = entry_priv->desc;
664         u32 word;
665
666         /*
667          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
668          * must contains a TXWI structure + 802.11 header + padding + 802.11
669          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
670          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
671          * data. It means that LAST_SEC0 is always 0.
672          */
673
674         /*
675          * Initialize TX descriptor
676          */
677         rt2x00_desc_read(txd, 0, &word);
678         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
679         rt2x00_desc_write(txd, 0, word);
680
681         rt2x00_desc_read(txd, 1, &word);
682         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
683         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
684                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
685         rt2x00_set_field32(&word, TXD_W1_BURST,
686                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
687         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
688         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
689         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
690         rt2x00_desc_write(txd, 1, word);
691
692         rt2x00_desc_read(txd, 2, &word);
693         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
694                            skbdesc->skb_dma + TXWI_DESC_SIZE);
695         rt2x00_desc_write(txd, 2, word);
696
697         rt2x00_desc_read(txd, 3, &word);
698         rt2x00_set_field32(&word, TXD_W3_WIV,
699                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
700         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
701         rt2x00_desc_write(txd, 3, word);
702
703         /*
704          * Register descriptor details in skb frame descriptor.
705          */
706         skbdesc->desc = txd;
707         skbdesc->desc_len = TXD_DESC_SIZE;
708 }
709
710 /*
711  * TX data initialization
712  */
713 static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
714                                     const enum data_queue_qid queue_idx)
715 {
716         struct data_queue *queue;
717         unsigned int idx, qidx = 0;
718
719         if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
720                 return;
721
722         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
723         idx = queue->index[Q_INDEX];
724
725         if (queue_idx == QID_MGMT)
726                 qidx = 5;
727         else
728                 qidx = queue_idx;
729
730         rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
731 }
732
733 static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
734                                     const enum data_queue_qid qid)
735 {
736         u32 reg;
737
738         if (qid == QID_BEACON) {
739                 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
740                 return;
741         }
742
743         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
744         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
745         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
746         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
747         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
748         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
749 }
750
751 /*
752  * RX control handlers
753  */
754 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
755                                   struct rxdone_entry_desc *rxdesc)
756 {
757         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
758         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
759         __le32 *rxd = entry_priv->desc;
760         u32 word;
761
762         rt2x00_desc_read(rxd, 3, &word);
763
764         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
765                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
766
767         /*
768          * Unfortunately we don't know the cipher type used during
769          * decryption. This prevents us from correct providing
770          * correct statistics through debugfs.
771          */
772         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
773
774         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
775                 /*
776                  * Hardware has stripped IV/EIV data from 802.11 frame during
777                  * decryption. Unfortunately the descriptor doesn't contain
778                  * any fields with the EIV/IV data either, so they can't
779                  * be restored by rt2x00lib.
780                  */
781                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
782
783                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
784                         rxdesc->flags |= RX_FLAG_DECRYPTED;
785                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
786                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
787         }
788
789         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
790                 rxdesc->dev_flags |= RXDONE_MY_BSS;
791
792         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
793                 rxdesc->dev_flags |= RXDONE_L2PAD;
794
795         /*
796          * Process the RXWI structure that is at the start of the buffer.
797          */
798         rt2800_process_rxwi(entry->skb, rxdesc);
799
800         /*
801          * Set RX IDX in register to inform hardware that we have handled
802          * this entry and it is available for reuse again.
803          */
804         rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
805 }
806
807 /*
808  * Interrupt functions.
809  */
810 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
811 {
812         struct data_queue *queue;
813         struct queue_entry *entry;
814         __le32 *txwi;
815         struct txdone_entry_desc txdesc;
816         u32 word;
817         u32 reg;
818         int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
819         u16 mcs, real_mcs;
820         int i;
821
822         /*
823          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
824          * at most X times and also stop processing once the TX_STA_FIFO_VALID
825          * flag is not set anymore.
826          *
827          * The legacy drivers use X=TX_RING_SIZE but state in a comment
828          * that the TX_STA_FIFO stack has a size of 16. We stick to our
829          * tx ring size for now.
830          */
831         for (i = 0; i < TX_ENTRIES; i++) {
832                 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
833                 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
834                         break;
835
836                 wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
837                 ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
838                 pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
839
840                 /*
841                  * Skip this entry when it contains an invalid
842                  * queue identication number.
843                  */
844                 if (pid <= 0 || pid > QID_RX)
845                         continue;
846
847                 queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
848                 if (unlikely(!queue))
849                         continue;
850
851                 /*
852                  * Inside each queue, we process each entry in a chronological
853                  * order. We first check that the queue is not empty.
854                  */
855                 if (rt2x00queue_empty(queue))
856                         continue;
857                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
858
859                 /* Check if we got a match by looking at WCID/ACK/PID
860                  * fields */
861                 txwi = (__le32 *) entry->skb->data;
862
863                 rt2x00_desc_read(txwi, 1, &word);
864                 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
865                 tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
866                 tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
867
868                 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
869                         WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
870
871                 /*
872                  * Obtain the status about this packet.
873                  */
874                 txdesc.flags = 0;
875                 rt2x00_desc_read(txwi, 0, &word);
876                 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
877                 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
878
879                 /*
880                  * Ralink has a retry mechanism using a global fallback
881                  * table. We setup this fallback table to try the immediate
882                  * lower rate for all rates. In the TX_STA_FIFO, the MCS field
883                  * always contains the MCS used for the last transmission, be
884                  * it successful or not.
885                  */
886                 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
887                         /*
888                          * Transmission succeeded. The number of retries is
889                          * mcs - real_mcs
890                          */
891                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
892                         txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
893                 } else {
894                         /*
895                          * Transmission failed. The number of retries is
896                          * always 7 in this case (for a total number of 8
897                          * frames sent).
898                          */
899                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
900                         txdesc.retry = 7;
901                 }
902
903                 /*
904                  * the frame was retried at least once
905                  * -> hw used fallback rates
906                  */
907                 if (txdesc.retry)
908                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
909
910                 rt2x00lib_txdone(entry, &txdesc);
911         }
912 }
913
914 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
915 {
916         struct ieee80211_conf conf = { .flags = 0 };
917         struct rt2x00lib_conf libconf = { .conf = &conf };
918
919         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
920 }
921
922 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
923 {
924         struct rt2x00_dev *rt2x00dev = dev_instance;
925         u32 reg;
926
927         /* Read status and ACK all interrupts */
928         rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
929         rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
930
931         if (!reg)
932                 return IRQ_NONE;
933
934         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
935                 return IRQ_HANDLED;
936
937         /*
938          * 1 - Rx ring done interrupt.
939          */
940         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
941                 rt2x00pci_rxdone(rt2x00dev);
942
943         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
944                 rt2800pci_txdone(rt2x00dev);
945
946         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
947                 rt2800pci_wakeup(rt2x00dev);
948
949         return IRQ_HANDLED;
950 }
951
952 /*
953  * Device probe functions.
954  */
955 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
956 {
957         /*
958          * Read EEPROM into buffer
959          */
960         if (rt2x00_is_soc(rt2x00dev))
961                 rt2800pci_read_eeprom_soc(rt2x00dev);
962         else if (rt2800pci_efuse_detect(rt2x00dev))
963                 rt2800pci_read_eeprom_efuse(rt2x00dev);
964         else
965                 rt2800pci_read_eeprom_pci(rt2x00dev);
966
967         return rt2800_validate_eeprom(rt2x00dev);
968 }
969
970 static const struct rt2800_ops rt2800pci_rt2800_ops = {
971         .register_read          = rt2x00pci_register_read,
972         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
973         .register_write         = rt2x00pci_register_write,
974         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
975
976         .register_multiread     = rt2x00pci_register_multiread,
977         .register_multiwrite    = rt2x00pci_register_multiwrite,
978
979         .regbusy_read           = rt2x00pci_regbusy_read,
980
981         .drv_init_registers     = rt2800pci_init_registers,
982 };
983
984 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
985 {
986         int retval;
987
988         rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
989
990         /*
991          * Allocate eeprom data.
992          */
993         retval = rt2800pci_validate_eeprom(rt2x00dev);
994         if (retval)
995                 return retval;
996
997         retval = rt2800_init_eeprom(rt2x00dev);
998         if (retval)
999                 return retval;
1000
1001         /*
1002          * Initialize hw specifications.
1003          */
1004         retval = rt2800_probe_hw_mode(rt2x00dev);
1005         if (retval)
1006                 return retval;
1007
1008         /*
1009          * This device has multiple filters for control frames
1010          * and has a separate filter for PS Poll frames.
1011          */
1012         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
1013         __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
1014
1015         /*
1016          * This device requires firmware.
1017          */
1018         if (!rt2x00_is_soc(rt2x00dev))
1019                 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
1020         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1021         __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
1022         if (!modparam_nohwcrypt)
1023                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1024
1025         /*
1026          * Set the rssi offset.
1027          */
1028         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1029
1030         return 0;
1031 }
1032
1033 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1034         .irq_handler            = rt2800pci_interrupt,
1035         .probe_hw               = rt2800pci_probe_hw,
1036         .get_firmware_name      = rt2800pci_get_firmware_name,
1037         .check_firmware         = rt2800pci_check_firmware,
1038         .load_firmware          = rt2800pci_load_firmware,
1039         .initialize             = rt2x00pci_initialize,
1040         .uninitialize           = rt2x00pci_uninitialize,
1041         .get_entry_state        = rt2800pci_get_entry_state,
1042         .clear_entry            = rt2800pci_clear_entry,
1043         .set_device_state       = rt2800pci_set_device_state,
1044         .rfkill_poll            = rt2800_rfkill_poll,
1045         .link_stats             = rt2800_link_stats,
1046         .reset_tuner            = rt2800_reset_tuner,
1047         .link_tuner             = rt2800_link_tuner,
1048         .write_tx_desc          = rt2800pci_write_tx_desc,
1049         .write_tx_data          = rt2800pci_write_tx_data,
1050         .write_beacon           = rt2800_write_beacon,
1051         .kick_tx_queue          = rt2800pci_kick_tx_queue,
1052         .kill_tx_queue          = rt2800pci_kill_tx_queue,
1053         .fill_rxdone            = rt2800pci_fill_rxdone,
1054         .config_shared_key      = rt2800_config_shared_key,
1055         .config_pairwise_key    = rt2800_config_pairwise_key,
1056         .config_filter          = rt2800_config_filter,
1057         .config_intf            = rt2800_config_intf,
1058         .config_erp             = rt2800_config_erp,
1059         .config_ant             = rt2800_config_ant,
1060         .config                 = rt2800_config,
1061 };
1062
1063 static const struct data_queue_desc rt2800pci_queue_rx = {
1064         .entry_num              = RX_ENTRIES,
1065         .data_size              = AGGREGATION_SIZE,
1066         .desc_size              = RXD_DESC_SIZE,
1067         .priv_size              = sizeof(struct queue_entry_priv_pci),
1068 };
1069
1070 static const struct data_queue_desc rt2800pci_queue_tx = {
1071         .entry_num              = TX_ENTRIES,
1072         .data_size              = AGGREGATION_SIZE,
1073         .desc_size              = TXD_DESC_SIZE,
1074         .priv_size              = sizeof(struct queue_entry_priv_pci),
1075 };
1076
1077 static const struct data_queue_desc rt2800pci_queue_bcn = {
1078         .entry_num              = 8 * BEACON_ENTRIES,
1079         .data_size              = 0, /* No DMA required for beacons */
1080         .desc_size              = TXWI_DESC_SIZE,
1081         .priv_size              = sizeof(struct queue_entry_priv_pci),
1082 };
1083
1084 static const struct rt2x00_ops rt2800pci_ops = {
1085         .name                   = KBUILD_MODNAME,
1086         .max_sta_intf           = 1,
1087         .max_ap_intf            = 8,
1088         .eeprom_size            = EEPROM_SIZE,
1089         .rf_size                = RF_SIZE,
1090         .tx_queues              = NUM_TX_QUEUES,
1091         .extra_tx_headroom      = TXWI_DESC_SIZE,
1092         .rx                     = &rt2800pci_queue_rx,
1093         .tx                     = &rt2800pci_queue_tx,
1094         .bcn                    = &rt2800pci_queue_bcn,
1095         .lib                    = &rt2800pci_rt2x00_ops,
1096         .hw                     = &rt2800_mac80211_ops,
1097 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1098         .debugfs                = &rt2800_rt2x00debug,
1099 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1100 };
1101
1102 /*
1103  * RT2800pci module information.
1104  */
1105 #ifdef CONFIG_RT2800PCI_PCI
1106 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1107         { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1108         { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1109         { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1110         { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1111         { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1112         { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1113         { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1114         { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1115         { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1116         { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1117         { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1118         { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1119 #ifdef CONFIG_RT2800PCI_RT30XX
1120         { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1121         { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1122         { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1123         { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1124 #endif
1125 #ifdef CONFIG_RT2800PCI_RT35XX
1126         { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1127         { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1128         { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1129         { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1130         { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1131 #endif
1132         { 0, }
1133 };
1134 #endif /* CONFIG_RT2800PCI_PCI */
1135
1136 MODULE_AUTHOR(DRV_PROJECT);
1137 MODULE_VERSION(DRV_VERSION);
1138 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1139 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1140 #ifdef CONFIG_RT2800PCI_PCI
1141 MODULE_FIRMWARE(FIRMWARE_RT2860);
1142 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1143 #endif /* CONFIG_RT2800PCI_PCI */
1144 MODULE_LICENSE("GPL");
1145
1146 #ifdef CONFIG_RT2800PCI_SOC
1147 static int rt2800soc_probe(struct platform_device *pdev)
1148 {
1149         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1150 }
1151
1152 static struct platform_driver rt2800soc_driver = {
1153         .driver         = {
1154                 .name           = "rt2800_wmac",
1155                 .owner          = THIS_MODULE,
1156                 .mod_name       = KBUILD_MODNAME,
1157         },
1158         .probe          = rt2800soc_probe,
1159         .remove         = __devexit_p(rt2x00soc_remove),
1160         .suspend        = rt2x00soc_suspend,
1161         .resume         = rt2x00soc_resume,
1162 };
1163 #endif /* CONFIG_RT2800PCI_SOC */
1164
1165 #ifdef CONFIG_RT2800PCI_PCI
1166 static struct pci_driver rt2800pci_driver = {
1167         .name           = KBUILD_MODNAME,
1168         .id_table       = rt2800pci_device_table,
1169         .probe          = rt2x00pci_probe,
1170         .remove         = __devexit_p(rt2x00pci_remove),
1171         .suspend        = rt2x00pci_suspend,
1172         .resume         = rt2x00pci_resume,
1173 };
1174 #endif /* CONFIG_RT2800PCI_PCI */
1175
1176 static int __init rt2800pci_init(void)
1177 {
1178         int ret = 0;
1179
1180 #ifdef CONFIG_RT2800PCI_SOC
1181         ret = platform_driver_register(&rt2800soc_driver);
1182         if (ret)
1183                 return ret;
1184 #endif
1185 #ifdef CONFIG_RT2800PCI_PCI
1186         ret = pci_register_driver(&rt2800pci_driver);
1187         if (ret) {
1188 #ifdef CONFIG_RT2800PCI_SOC
1189                 platform_driver_unregister(&rt2800soc_driver);
1190 #endif
1191                 return ret;
1192         }
1193 #endif
1194
1195         return ret;
1196 }
1197
1198 static void __exit rt2800pci_exit(void)
1199 {
1200 #ifdef CONFIG_RT2800PCI_PCI
1201         pci_unregister_driver(&rt2800pci_driver);
1202 #endif
1203 #ifdef CONFIG_RT2800PCI_SOC
1204         platform_driver_unregister(&rt2800soc_driver);
1205 #endif
1206 }
1207
1208 module_init(rt2800pci_init);
1209 module_exit(rt2800pci_exit);