OSDN Git Service

Merge tag 'i3c/for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[uclinux-h8/linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63         "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68         "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73         "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78         "secondary APST latency tolerance in us");
79
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118                                            unsigned nsid);
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120                                    struct nvme_command *cmd);
121
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
123 {
124         /*
125          * Only new queue scan work when admin and IO queues are both alive
126          */
127         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128                 queue_work(nvme_wq, &ctrl->scan_work);
129 }
130
131 /*
132  * Use this function to proceed with scheduling reset_work for a controller
133  * that had previously been set to the resetting state. This is intended for
134  * code paths that can't be interrupted by other reset attempts. A hot removal
135  * may prevent this from succeeding.
136  */
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138 {
139         if (ctrl->state != NVME_CTRL_RESETTING)
140                 return -EBUSY;
141         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142                 return -EBUSY;
143         return 0;
144 }
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146
147 static void nvme_failfast_work(struct work_struct *work)
148 {
149         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150                         struct nvme_ctrl, failfast_work);
151
152         if (ctrl->state != NVME_CTRL_CONNECTING)
153                 return;
154
155         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156         dev_info(ctrl->device, "failfast expired\n");
157         nvme_kick_requeue_lists(ctrl);
158 }
159
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161 {
162         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163                 return;
164
165         schedule_delayed_work(&ctrl->failfast_work,
166                               ctrl->opts->fast_io_fail_tmo * HZ);
167 }
168
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170 {
171         if (!ctrl->opts)
172                 return;
173
174         cancel_delayed_work_sync(&ctrl->failfast_work);
175         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 }
177
178
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180 {
181         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182                 return -EBUSY;
183         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184                 return -EBUSY;
185         return 0;
186 }
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 {
191         int ret;
192
193         ret = nvme_reset_ctrl(ctrl);
194         if (!ret) {
195                 flush_work(&ctrl->reset_work);
196                 if (ctrl->state != NVME_CTRL_LIVE)
197                         ret = -ENETRESET;
198         }
199
200         return ret;
201 }
202
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204 {
205         dev_info(ctrl->device,
206                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207
208         flush_work(&ctrl->reset_work);
209         nvme_stop_ctrl(ctrl);
210         nvme_remove_namespaces(ctrl);
211         ctrl->ops->delete_ctrl(ctrl);
212         nvme_uninit_ctrl(ctrl);
213 }
214
215 static void nvme_delete_ctrl_work(struct work_struct *work)
216 {
217         struct nvme_ctrl *ctrl =
218                 container_of(work, struct nvme_ctrl, delete_work);
219
220         nvme_do_delete_ctrl(ctrl);
221 }
222
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224 {
225         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226                 return -EBUSY;
227         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228                 return -EBUSY;
229         return 0;
230 }
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234 {
235         /*
236          * Keep a reference until nvme_do_delete_ctrl() complete,
237          * since ->delete_ctrl can free the controller.
238          */
239         nvme_get_ctrl(ctrl);
240         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241                 nvme_do_delete_ctrl(ctrl);
242         nvme_put_ctrl(ctrl);
243 }
244
245 static blk_status_t nvme_error_status(u16 status)
246 {
247         switch (status & 0x7ff) {
248         case NVME_SC_SUCCESS:
249                 return BLK_STS_OK;
250         case NVME_SC_CAP_EXCEEDED:
251                 return BLK_STS_NOSPC;
252         case NVME_SC_LBA_RANGE:
253         case NVME_SC_CMD_INTERRUPTED:
254         case NVME_SC_NS_NOT_READY:
255                 return BLK_STS_TARGET;
256         case NVME_SC_BAD_ATTRIBUTES:
257         case NVME_SC_ONCS_NOT_SUPPORTED:
258         case NVME_SC_INVALID_OPCODE:
259         case NVME_SC_INVALID_FIELD:
260         case NVME_SC_INVALID_NS:
261                 return BLK_STS_NOTSUPP;
262         case NVME_SC_WRITE_FAULT:
263         case NVME_SC_READ_ERROR:
264         case NVME_SC_UNWRITTEN_BLOCK:
265         case NVME_SC_ACCESS_DENIED:
266         case NVME_SC_READ_ONLY:
267         case NVME_SC_COMPARE_FAILED:
268                 return BLK_STS_MEDIUM;
269         case NVME_SC_GUARD_CHECK:
270         case NVME_SC_APPTAG_CHECK:
271         case NVME_SC_REFTAG_CHECK:
272         case NVME_SC_INVALID_PI:
273                 return BLK_STS_PROTECTION;
274         case NVME_SC_RESERVATION_CONFLICT:
275                 return BLK_STS_NEXUS;
276         case NVME_SC_HOST_PATH_ERROR:
277                 return BLK_STS_TRANSPORT;
278         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
280         case NVME_SC_ZONE_TOO_MANY_OPEN:
281                 return BLK_STS_ZONE_OPEN_RESOURCE;
282         default:
283                 return BLK_STS_IOERR;
284         }
285 }
286
287 static void nvme_retry_req(struct request *req)
288 {
289         unsigned long delay = 0;
290         u16 crd;
291
292         /* The mask and shift result must be <= 3 */
293         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294         if (crd)
295                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296
297         nvme_req(req)->retries++;
298         blk_mq_requeue_request(req, false);
299         blk_mq_delay_kick_requeue_list(req->q, delay);
300 }
301
302 enum nvme_disposition {
303         COMPLETE,
304         RETRY,
305         FAILOVER,
306 };
307
308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
309 {
310         if (likely(nvme_req(req)->status == 0))
311                 return COMPLETE;
312
313         if (blk_noretry_request(req) ||
314             (nvme_req(req)->status & NVME_SC_DNR) ||
315             nvme_req(req)->retries >= nvme_max_retries)
316                 return COMPLETE;
317
318         if (req->cmd_flags & REQ_NVME_MPATH) {
319                 if (nvme_is_path_error(nvme_req(req)->status) ||
320                     blk_queue_dying(req->q))
321                         return FAILOVER;
322         } else {
323                 if (blk_queue_dying(req->q))
324                         return COMPLETE;
325         }
326
327         return RETRY;
328 }
329
330 static inline void nvme_end_req_zoned(struct request *req)
331 {
332         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333             req_op(req) == REQ_OP_ZONE_APPEND)
334                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
335                         le64_to_cpu(nvme_req(req)->result.u64));
336 }
337
338 static inline void nvme_end_req(struct request *req)
339 {
340         blk_status_t status = nvme_error_status(nvme_req(req)->status);
341
342         nvme_end_req_zoned(req);
343         nvme_trace_bio_complete(req);
344         blk_mq_end_request(req, status);
345 }
346
347 void nvme_complete_rq(struct request *req)
348 {
349         trace_nvme_complete_rq(req);
350         nvme_cleanup_cmd(req);
351
352         if (nvme_req(req)->ctrl->kas)
353                 nvme_req(req)->ctrl->comp_seen = true;
354
355         switch (nvme_decide_disposition(req)) {
356         case COMPLETE:
357                 nvme_end_req(req);
358                 return;
359         case RETRY:
360                 nvme_retry_req(req);
361                 return;
362         case FAILOVER:
363                 nvme_failover_req(req);
364                 return;
365         }
366 }
367 EXPORT_SYMBOL_GPL(nvme_complete_rq);
368
369 void nvme_complete_batch_req(struct request *req)
370 {
371         nvme_cleanup_cmd(req);
372         nvme_end_req_zoned(req);
373 }
374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
375
376 /*
377  * Called to unwind from ->queue_rq on a failed command submission so that the
378  * multipathing code gets called to potentially failover to another path.
379  * The caller needs to unwind all transport specific resource allocations and
380  * must return propagate the return value.
381  */
382 blk_status_t nvme_host_path_error(struct request *req)
383 {
384         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385         blk_mq_set_request_complete(req);
386         nvme_complete_rq(req);
387         return BLK_STS_OK;
388 }
389 EXPORT_SYMBOL_GPL(nvme_host_path_error);
390
391 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
392 {
393         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394                                 "Cancelling I/O %d", req->tag);
395
396         /* don't abort one completed request */
397         if (blk_mq_request_completed(req))
398                 return true;
399
400         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402         blk_mq_complete_request(req);
403         return true;
404 }
405 EXPORT_SYMBOL_GPL(nvme_cancel_request);
406
407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
408 {
409         if (ctrl->tagset) {
410                 blk_mq_tagset_busy_iter(ctrl->tagset,
411                                 nvme_cancel_request, ctrl);
412                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
413         }
414 }
415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
416
417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
418 {
419         if (ctrl->admin_tagset) {
420                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421                                 nvme_cancel_request, ctrl);
422                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
423         }
424 }
425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
426
427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428                 enum nvme_ctrl_state new_state)
429 {
430         enum nvme_ctrl_state old_state;
431         unsigned long flags;
432         bool changed = false;
433
434         spin_lock_irqsave(&ctrl->lock, flags);
435
436         old_state = ctrl->state;
437         switch (new_state) {
438         case NVME_CTRL_LIVE:
439                 switch (old_state) {
440                 case NVME_CTRL_NEW:
441                 case NVME_CTRL_RESETTING:
442                 case NVME_CTRL_CONNECTING:
443                         changed = true;
444                         fallthrough;
445                 default:
446                         break;
447                 }
448                 break;
449         case NVME_CTRL_RESETTING:
450                 switch (old_state) {
451                 case NVME_CTRL_NEW:
452                 case NVME_CTRL_LIVE:
453                         changed = true;
454                         fallthrough;
455                 default:
456                         break;
457                 }
458                 break;
459         case NVME_CTRL_CONNECTING:
460                 switch (old_state) {
461                 case NVME_CTRL_NEW:
462                 case NVME_CTRL_RESETTING:
463                         changed = true;
464                         fallthrough;
465                 default:
466                         break;
467                 }
468                 break;
469         case NVME_CTRL_DELETING:
470                 switch (old_state) {
471                 case NVME_CTRL_LIVE:
472                 case NVME_CTRL_RESETTING:
473                 case NVME_CTRL_CONNECTING:
474                         changed = true;
475                         fallthrough;
476                 default:
477                         break;
478                 }
479                 break;
480         case NVME_CTRL_DELETING_NOIO:
481                 switch (old_state) {
482                 case NVME_CTRL_DELETING:
483                 case NVME_CTRL_DEAD:
484                         changed = true;
485                         fallthrough;
486                 default:
487                         break;
488                 }
489                 break;
490         case NVME_CTRL_DEAD:
491                 switch (old_state) {
492                 case NVME_CTRL_DELETING:
493                         changed = true;
494                         fallthrough;
495                 default:
496                         break;
497                 }
498                 break;
499         default:
500                 break;
501         }
502
503         if (changed) {
504                 ctrl->state = new_state;
505                 wake_up_all(&ctrl->state_wq);
506         }
507
508         spin_unlock_irqrestore(&ctrl->lock, flags);
509         if (!changed)
510                 return false;
511
512         if (ctrl->state == NVME_CTRL_LIVE) {
513                 if (old_state == NVME_CTRL_CONNECTING)
514                         nvme_stop_failfast_work(ctrl);
515                 nvme_kick_requeue_lists(ctrl);
516         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
517                 old_state == NVME_CTRL_RESETTING) {
518                 nvme_start_failfast_work(ctrl);
519         }
520         return changed;
521 }
522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
523
524 /*
525  * Returns true for sink states that can't ever transition back to live.
526  */
527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
528 {
529         switch (ctrl->state) {
530         case NVME_CTRL_NEW:
531         case NVME_CTRL_LIVE:
532         case NVME_CTRL_RESETTING:
533         case NVME_CTRL_CONNECTING:
534                 return false;
535         case NVME_CTRL_DELETING:
536         case NVME_CTRL_DELETING_NOIO:
537         case NVME_CTRL_DEAD:
538                 return true;
539         default:
540                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
541                 return true;
542         }
543 }
544
545 /*
546  * Waits for the controller state to be resetting, or returns false if it is
547  * not possible to ever transition to that state.
548  */
549 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
550 {
551         wait_event(ctrl->state_wq,
552                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553                    nvme_state_terminal(ctrl));
554         return ctrl->state == NVME_CTRL_RESETTING;
555 }
556 EXPORT_SYMBOL_GPL(nvme_wait_reset);
557
558 static void nvme_free_ns_head(struct kref *ref)
559 {
560         struct nvme_ns_head *head =
561                 container_of(ref, struct nvme_ns_head, ref);
562
563         nvme_mpath_remove_disk(head);
564         ida_simple_remove(&head->subsys->ns_ida, head->instance);
565         cleanup_srcu_struct(&head->srcu);
566         nvme_put_subsystem(head->subsys);
567         kfree(head);
568 }
569
570 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
571 {
572         return kref_get_unless_zero(&head->ref);
573 }
574
575 void nvme_put_ns_head(struct nvme_ns_head *head)
576 {
577         kref_put(&head->ref, nvme_free_ns_head);
578 }
579
580 static void nvme_free_ns(struct kref *kref)
581 {
582         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
583
584         put_disk(ns->disk);
585         nvme_put_ns_head(ns->head);
586         nvme_put_ctrl(ns->ctrl);
587         kfree(ns);
588 }
589
590 static inline bool nvme_get_ns(struct nvme_ns *ns)
591 {
592         return kref_get_unless_zero(&ns->kref);
593 }
594
595 void nvme_put_ns(struct nvme_ns *ns)
596 {
597         kref_put(&ns->kref, nvme_free_ns);
598 }
599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
600
601 static inline void nvme_clear_nvme_request(struct request *req)
602 {
603         nvme_req(req)->status = 0;
604         nvme_req(req)->retries = 0;
605         nvme_req(req)->flags = 0;
606         req->rq_flags |= RQF_DONTPREP;
607 }
608
609 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
610 {
611         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
612 }
613
614 static inline void nvme_init_request(struct request *req,
615                 struct nvme_command *cmd)
616 {
617         if (req->q->queuedata)
618                 req->timeout = NVME_IO_TIMEOUT;
619         else /* no queuedata implies admin queue */
620                 req->timeout = NVME_ADMIN_TIMEOUT;
621
622         /* passthru commands should let the driver set the SGL flags */
623         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
624
625         req->cmd_flags |= REQ_FAILFAST_DRIVER;
626         if (req->mq_hctx->type == HCTX_TYPE_POLL)
627                 req->cmd_flags |= REQ_POLLED;
628         nvme_clear_nvme_request(req);
629         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
630 }
631
632 struct request *nvme_alloc_request(struct request_queue *q,
633                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
634 {
635         struct request *req;
636
637         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
638         if (!IS_ERR(req))
639                 nvme_init_request(req, cmd);
640         return req;
641 }
642 EXPORT_SYMBOL_GPL(nvme_alloc_request);
643
644 static struct request *nvme_alloc_request_qid(struct request_queue *q,
645                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
646 {
647         struct request *req;
648
649         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
650                         qid ? qid - 1 : 0);
651         if (!IS_ERR(req))
652                 nvme_init_request(req, cmd);
653         return req;
654 }
655
656 /*
657  * For something we're not in a state to send to the device the default action
658  * is to busy it and retry it after the controller state is recovered.  However,
659  * if the controller is deleting or if anything is marked for failfast or
660  * nvme multipath it is immediately failed.
661  *
662  * Note: commands used to initialize the controller will be marked for failfast.
663  * Note: nvme cli/ioctl commands are marked for failfast.
664  */
665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
666                 struct request *rq)
667 {
668         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669             ctrl->state != NVME_CTRL_DELETING &&
670             ctrl->state != NVME_CTRL_DEAD &&
671             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
672             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
673                 return BLK_STS_RESOURCE;
674         return nvme_host_path_error(rq);
675 }
676 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
677
678 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
679                 bool queue_live)
680 {
681         struct nvme_request *req = nvme_req(rq);
682
683         /*
684          * currently we have a problem sending passthru commands
685          * on the admin_q if the controller is not LIVE because we can't
686          * make sure that they are going out after the admin connect,
687          * controller enable and/or other commands in the initialization
688          * sequence. until the controller will be LIVE, fail with
689          * BLK_STS_RESOURCE so that they will be rescheduled.
690          */
691         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
692                 return false;
693
694         if (ctrl->ops->flags & NVME_F_FABRICS) {
695                 /*
696                  * Only allow commands on a live queue, except for the connect
697                  * command, which is require to set the queue live in the
698                  * appropinquate states.
699                  */
700                 switch (ctrl->state) {
701                 case NVME_CTRL_CONNECTING:
702                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
703                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
704                                 return true;
705                         break;
706                 default:
707                         break;
708                 case NVME_CTRL_DEAD:
709                         return false;
710                 }
711         }
712
713         return queue_live;
714 }
715 EXPORT_SYMBOL_GPL(__nvme_check_ready);
716
717 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
718 {
719         struct nvme_command c = { };
720
721         c.directive.opcode = nvme_admin_directive_send;
722         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
723         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
724         c.directive.dtype = NVME_DIR_IDENTIFY;
725         c.directive.tdtype = NVME_DIR_STREAMS;
726         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
727
728         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
729 }
730
731 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
732 {
733         return nvme_toggle_streams(ctrl, false);
734 }
735
736 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
737 {
738         return nvme_toggle_streams(ctrl, true);
739 }
740
741 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
742                                   struct streams_directive_params *s, u32 nsid)
743 {
744         struct nvme_command c = { };
745
746         memset(s, 0, sizeof(*s));
747
748         c.directive.opcode = nvme_admin_directive_recv;
749         c.directive.nsid = cpu_to_le32(nsid);
750         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
751         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
752         c.directive.dtype = NVME_DIR_STREAMS;
753
754         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
755 }
756
757 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
758 {
759         struct streams_directive_params s;
760         int ret;
761
762         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
763                 return 0;
764         if (!streams)
765                 return 0;
766
767         ret = nvme_enable_streams(ctrl);
768         if (ret)
769                 return ret;
770
771         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
772         if (ret)
773                 goto out_disable_stream;
774
775         ctrl->nssa = le16_to_cpu(s.nssa);
776         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
777                 dev_info(ctrl->device, "too few streams (%u) available\n",
778                                         ctrl->nssa);
779                 goto out_disable_stream;
780         }
781
782         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
783         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
784         return 0;
785
786 out_disable_stream:
787         nvme_disable_streams(ctrl);
788         return ret;
789 }
790
791 /*
792  * Check if 'req' has a write hint associated with it. If it does, assign
793  * a valid namespace stream to the write.
794  */
795 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
796                                      struct request *req, u16 *control,
797                                      u32 *dsmgmt)
798 {
799         enum rw_hint streamid = req->write_hint;
800
801         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
802                 streamid = 0;
803         else {
804                 streamid--;
805                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
806                         return;
807
808                 *control |= NVME_RW_DTYPE_STREAMS;
809                 *dsmgmt |= streamid << 16;
810         }
811
812         if (streamid < ARRAY_SIZE(req->q->write_hints))
813                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
814 }
815
816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817                 struct nvme_command *cmnd)
818 {
819         memset(cmnd, 0, sizeof(*cmnd));
820         cmnd->common.opcode = nvme_cmd_flush;
821         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823
824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825                 struct nvme_command *cmnd)
826 {
827         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828         struct nvme_dsm_range *range;
829         struct bio *bio;
830
831         /*
832          * Some devices do not consider the DSM 'Number of Ranges' field when
833          * determining how much data to DMA. Always allocate memory for maximum
834          * number of segments to prevent device reading beyond end of buffer.
835          */
836         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837
838         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839         if (!range) {
840                 /*
841                  * If we fail allocation our range, fallback to the controller
842                  * discard page. If that's also busy, it's safe to return
843                  * busy, as we know we can make progress once that's freed.
844                  */
845                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846                         return BLK_STS_RESOURCE;
847
848                 range = page_address(ns->ctrl->discard_page);
849         }
850
851         __rq_for_each_bio(bio, req) {
852                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
853                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
854
855                 if (n < segments) {
856                         range[n].cattr = cpu_to_le32(0);
857                         range[n].nlb = cpu_to_le32(nlb);
858                         range[n].slba = cpu_to_le64(slba);
859                 }
860                 n++;
861         }
862
863         if (WARN_ON_ONCE(n != segments)) {
864                 if (virt_to_page(range) == ns->ctrl->discard_page)
865                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
866                 else
867                         kfree(range);
868                 return BLK_STS_IOERR;
869         }
870
871         memset(cmnd, 0, sizeof(*cmnd));
872         cmnd->dsm.opcode = nvme_cmd_dsm;
873         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
874         cmnd->dsm.nr = cpu_to_le32(segments - 1);
875         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
876
877         req->special_vec.bv_page = virt_to_page(range);
878         req->special_vec.bv_offset = offset_in_page(range);
879         req->special_vec.bv_len = alloc_size;
880         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
881
882         return BLK_STS_OK;
883 }
884
885 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
886                 struct request *req, struct nvme_command *cmnd)
887 {
888         memset(cmnd, 0, sizeof(*cmnd));
889
890         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
891                 return nvme_setup_discard(ns, req, cmnd);
892
893         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
894         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
895         cmnd->write_zeroes.slba =
896                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
897         cmnd->write_zeroes.length =
898                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
899
900         if (nvme_ns_has_pi(ns)) {
901                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
902
903                 switch (ns->pi_type) {
904                 case NVME_NS_DPS_PI_TYPE1:
905                 case NVME_NS_DPS_PI_TYPE2:
906                         cmnd->write_zeroes.reftag =
907                                 cpu_to_le32(t10_pi_ref_tag(req));
908                         break;
909                 }
910         }
911
912         return BLK_STS_OK;
913 }
914
915 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
916                 struct request *req, struct nvme_command *cmnd,
917                 enum nvme_opcode op)
918 {
919         struct nvme_ctrl *ctrl = ns->ctrl;
920         u16 control = 0;
921         u32 dsmgmt = 0;
922
923         if (req->cmd_flags & REQ_FUA)
924                 control |= NVME_RW_FUA;
925         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
926                 control |= NVME_RW_LR;
927
928         if (req->cmd_flags & REQ_RAHEAD)
929                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
930
931         cmnd->rw.opcode = op;
932         cmnd->rw.flags = 0;
933         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
934         cmnd->rw.rsvd2 = 0;
935         cmnd->rw.metadata = 0;
936         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
937         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
938         cmnd->rw.reftag = 0;
939         cmnd->rw.apptag = 0;
940         cmnd->rw.appmask = 0;
941
942         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
943                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
944
945         if (ns->ms) {
946                 /*
947                  * If formated with metadata, the block layer always provides a
948                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
949                  * we enable the PRACT bit for protection information or set the
950                  * namespace capacity to zero to prevent any I/O.
951                  */
952                 if (!blk_integrity_rq(req)) {
953                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
954                                 return BLK_STS_NOTSUPP;
955                         control |= NVME_RW_PRINFO_PRACT;
956                 }
957
958                 switch (ns->pi_type) {
959                 case NVME_NS_DPS_PI_TYPE3:
960                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
961                         break;
962                 case NVME_NS_DPS_PI_TYPE1:
963                 case NVME_NS_DPS_PI_TYPE2:
964                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
965                                         NVME_RW_PRINFO_PRCHK_REF;
966                         if (op == nvme_cmd_zone_append)
967                                 control |= NVME_RW_APPEND_PIREMAP;
968                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
969                         break;
970                 }
971         }
972
973         cmnd->rw.control = cpu_to_le16(control);
974         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
975         return 0;
976 }
977
978 void nvme_cleanup_cmd(struct request *req)
979 {
980         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
981                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982
983                 if (req->special_vec.bv_page == ctrl->discard_page)
984                         clear_bit_unlock(0, &ctrl->discard_page_busy);
985                 else
986                         kfree(bvec_virt(&req->special_vec));
987         }
988 }
989 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
990
991 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
992 {
993         struct nvme_command *cmd = nvme_req(req)->cmd;
994         blk_status_t ret = BLK_STS_OK;
995
996         if (!(req->rq_flags & RQF_DONTPREP))
997                 nvme_clear_nvme_request(req);
998
999         switch (req_op(req)) {
1000         case REQ_OP_DRV_IN:
1001         case REQ_OP_DRV_OUT:
1002                 /* these are setup prior to execution in nvme_init_request() */
1003                 break;
1004         case REQ_OP_FLUSH:
1005                 nvme_setup_flush(ns, cmd);
1006                 break;
1007         case REQ_OP_ZONE_RESET_ALL:
1008         case REQ_OP_ZONE_RESET:
1009                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1010                 break;
1011         case REQ_OP_ZONE_OPEN:
1012                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1013                 break;
1014         case REQ_OP_ZONE_CLOSE:
1015                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1016                 break;
1017         case REQ_OP_ZONE_FINISH:
1018                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1019                 break;
1020         case REQ_OP_WRITE_ZEROES:
1021                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1022                 break;
1023         case REQ_OP_DISCARD:
1024                 ret = nvme_setup_discard(ns, req, cmd);
1025                 break;
1026         case REQ_OP_READ:
1027                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1028                 break;
1029         case REQ_OP_WRITE:
1030                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1031                 break;
1032         case REQ_OP_ZONE_APPEND:
1033                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1034                 break;
1035         default:
1036                 WARN_ON_ONCE(1);
1037                 return BLK_STS_IOERR;
1038         }
1039
1040         cmd->common.command_id = nvme_cid(req);
1041         trace_nvme_setup_cmd(req, cmd);
1042         return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1045
1046 /*
1047  * Return values:
1048  * 0:  success
1049  * >0: nvme controller's cqe status response
1050  * <0: kernel error in lieu of controller response
1051  */
1052 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1053                 bool at_head)
1054 {
1055         blk_status_t status;
1056
1057         status = blk_execute_rq(rq, at_head);
1058         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1059                 return -EINTR;
1060         if (nvme_req(rq)->status)
1061                 return nvme_req(rq)->status;
1062         return blk_status_to_errno(status);
1063 }
1064
1065 /*
1066  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1067  * if the result is positive, it's an NVM Express status code
1068  */
1069 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1070                 union nvme_result *result, void *buffer, unsigned bufflen,
1071                 unsigned timeout, int qid, int at_head,
1072                 blk_mq_req_flags_t flags)
1073 {
1074         struct request *req;
1075         int ret;
1076
1077         if (qid == NVME_QID_ANY)
1078                 req = nvme_alloc_request(q, cmd, flags);
1079         else
1080                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1081         if (IS_ERR(req))
1082                 return PTR_ERR(req);
1083
1084         if (timeout)
1085                 req->timeout = timeout;
1086
1087         if (buffer && bufflen) {
1088                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1089                 if (ret)
1090                         goto out;
1091         }
1092
1093         ret = nvme_execute_rq(NULL, req, at_head);
1094         if (result && ret >= 0)
1095                 *result = nvme_req(req)->result;
1096  out:
1097         blk_mq_free_request(req);
1098         return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1101
1102 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1103                 void *buffer, unsigned bufflen)
1104 {
1105         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1106                         NVME_QID_ANY, 0, 0);
1107 }
1108 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1109
1110 static u32 nvme_known_admin_effects(u8 opcode)
1111 {
1112         switch (opcode) {
1113         case nvme_admin_format_nvm:
1114                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1115                         NVME_CMD_EFFECTS_CSE_MASK;
1116         case nvme_admin_sanitize_nvm:
1117                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1118         default:
1119                 break;
1120         }
1121         return 0;
1122 }
1123
1124 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1125 {
1126         u32 effects = 0;
1127
1128         if (ns) {
1129                 if (ns->head->effects)
1130                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1131                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1132                         dev_warn_once(ctrl->device,
1133                                 "IO command:%02x has unhandled effects:%08x\n",
1134                                 opcode, effects);
1135                 return 0;
1136         }
1137
1138         if (ctrl->effects)
1139                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1140         effects |= nvme_known_admin_effects(opcode);
1141
1142         return effects;
1143 }
1144 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1145
1146 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1147                                u8 opcode)
1148 {
1149         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1150
1151         /*
1152          * For simplicity, IO to all namespaces is quiesced even if the command
1153          * effects say only one namespace is affected.
1154          */
1155         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1156                 mutex_lock(&ctrl->scan_lock);
1157                 mutex_lock(&ctrl->subsys->lock);
1158                 nvme_mpath_start_freeze(ctrl->subsys);
1159                 nvme_mpath_wait_freeze(ctrl->subsys);
1160                 nvme_start_freeze(ctrl);
1161                 nvme_wait_freeze(ctrl);
1162         }
1163         return effects;
1164 }
1165
1166 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1167                               struct nvme_command *cmd, int status)
1168 {
1169         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1170                 nvme_unfreeze(ctrl);
1171                 nvme_mpath_unfreeze(ctrl->subsys);
1172                 mutex_unlock(&ctrl->subsys->lock);
1173                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1174                 mutex_unlock(&ctrl->scan_lock);
1175         }
1176         if (effects & NVME_CMD_EFFECTS_CCC)
1177                 nvme_init_ctrl_finish(ctrl);
1178         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1179                 nvme_queue_scan(ctrl);
1180                 flush_work(&ctrl->scan_work);
1181         }
1182
1183         switch (cmd->common.opcode) {
1184         case nvme_admin_set_features:
1185                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1186                 case NVME_FEAT_KATO:
1187                         /*
1188                          * Keep alive commands interval on the host should be
1189                          * updated when KATO is modified by Set Features
1190                          * commands.
1191                          */
1192                         if (!status)
1193                                 nvme_update_keep_alive(ctrl, cmd);
1194                         break;
1195                 default:
1196                         break;
1197                 }
1198                 break;
1199         default:
1200                 break;
1201         }
1202 }
1203
1204 int nvme_execute_passthru_rq(struct request *rq)
1205 {
1206         struct nvme_command *cmd = nvme_req(rq)->cmd;
1207         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1208         struct nvme_ns *ns = rq->q->queuedata;
1209         struct gendisk *disk = ns ? ns->disk : NULL;
1210         u32 effects;
1211         int  ret;
1212
1213         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1214         ret = nvme_execute_rq(disk, rq, false);
1215         if (effects) /* nothing to be done for zero cmd effects */
1216                 nvme_passthru_end(ctrl, effects, cmd, ret);
1217
1218         return ret;
1219 }
1220 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1221
1222 /*
1223  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1224  * 
1225  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1226  *   accounting for transport roundtrip times [..].
1227  */
1228 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1229 {
1230         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1231 }
1232
1233 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1234 {
1235         struct nvme_ctrl *ctrl = rq->end_io_data;
1236         unsigned long flags;
1237         bool startka = false;
1238
1239         blk_mq_free_request(rq);
1240
1241         if (status) {
1242                 dev_err(ctrl->device,
1243                         "failed nvme_keep_alive_end_io error=%d\n",
1244                                 status);
1245                 return;
1246         }
1247
1248         ctrl->comp_seen = false;
1249         spin_lock_irqsave(&ctrl->lock, flags);
1250         if (ctrl->state == NVME_CTRL_LIVE ||
1251             ctrl->state == NVME_CTRL_CONNECTING)
1252                 startka = true;
1253         spin_unlock_irqrestore(&ctrl->lock, flags);
1254         if (startka)
1255                 nvme_queue_keep_alive_work(ctrl);
1256 }
1257
1258 static void nvme_keep_alive_work(struct work_struct *work)
1259 {
1260         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1261                         struct nvme_ctrl, ka_work);
1262         bool comp_seen = ctrl->comp_seen;
1263         struct request *rq;
1264
1265         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1266                 dev_dbg(ctrl->device,
1267                         "reschedule traffic based keep-alive timer\n");
1268                 ctrl->comp_seen = false;
1269                 nvme_queue_keep_alive_work(ctrl);
1270                 return;
1271         }
1272
1273         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1274                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1275         if (IS_ERR(rq)) {
1276                 /* allocation failure, reset the controller */
1277                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1278                 nvme_reset_ctrl(ctrl);
1279                 return;
1280         }
1281
1282         rq->timeout = ctrl->kato * HZ;
1283         rq->end_io_data = ctrl;
1284         blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io);
1285 }
1286
1287 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1288 {
1289         if (unlikely(ctrl->kato == 0))
1290                 return;
1291
1292         nvme_queue_keep_alive_work(ctrl);
1293 }
1294
1295 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1296 {
1297         if (unlikely(ctrl->kato == 0))
1298                 return;
1299
1300         cancel_delayed_work_sync(&ctrl->ka_work);
1301 }
1302 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1303
1304 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1305                                    struct nvme_command *cmd)
1306 {
1307         unsigned int new_kato =
1308                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1309
1310         dev_info(ctrl->device,
1311                  "keep alive interval updated from %u ms to %u ms\n",
1312                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1313
1314         nvme_stop_keep_alive(ctrl);
1315         ctrl->kato = new_kato;
1316         nvme_start_keep_alive(ctrl);
1317 }
1318
1319 /*
1320  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1321  * flag, thus sending any new CNS opcodes has a big chance of not working.
1322  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1323  * (but not for any later version).
1324  */
1325 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1326 {
1327         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1328                 return ctrl->vs < NVME_VS(1, 2, 0);
1329         return ctrl->vs < NVME_VS(1, 1, 0);
1330 }
1331
1332 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1333 {
1334         struct nvme_command c = { };
1335         int error;
1336
1337         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1338         c.identify.opcode = nvme_admin_identify;
1339         c.identify.cns = NVME_ID_CNS_CTRL;
1340
1341         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1342         if (!*id)
1343                 return -ENOMEM;
1344
1345         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1346                         sizeof(struct nvme_id_ctrl));
1347         if (error)
1348                 kfree(*id);
1349         return error;
1350 }
1351
1352 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1353                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1354 {
1355         const char *warn_str = "ctrl returned bogus length:";
1356         void *data = cur;
1357
1358         switch (cur->nidt) {
1359         case NVME_NIDT_EUI64:
1360                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1361                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1362                                  warn_str, cur->nidl);
1363                         return -1;
1364                 }
1365                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1366                 return NVME_NIDT_EUI64_LEN;
1367         case NVME_NIDT_NGUID:
1368                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1369                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1370                                  warn_str, cur->nidl);
1371                         return -1;
1372                 }
1373                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1374                 return NVME_NIDT_NGUID_LEN;
1375         case NVME_NIDT_UUID:
1376                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1377                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1378                                  warn_str, cur->nidl);
1379                         return -1;
1380                 }
1381                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1382                 return NVME_NIDT_UUID_LEN;
1383         case NVME_NIDT_CSI:
1384                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1385                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1386                                  warn_str, cur->nidl);
1387                         return -1;
1388                 }
1389                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1390                 *csi_seen = true;
1391                 return NVME_NIDT_CSI_LEN;
1392         default:
1393                 /* Skip unknown types */
1394                 return cur->nidl;
1395         }
1396 }
1397
1398 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1399                 struct nvme_ns_ids *ids)
1400 {
1401         struct nvme_command c = { };
1402         bool csi_seen = false;
1403         int status, pos, len;
1404         void *data;
1405
1406         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1407                 return 0;
1408         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1409                 return 0;
1410
1411         c.identify.opcode = nvme_admin_identify;
1412         c.identify.nsid = cpu_to_le32(nsid);
1413         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1414
1415         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1416         if (!data)
1417                 return -ENOMEM;
1418
1419         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1420                                       NVME_IDENTIFY_DATA_SIZE);
1421         if (status) {
1422                 dev_warn(ctrl->device,
1423                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1424                         nsid, status);
1425                 goto free_data;
1426         }
1427
1428         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1429                 struct nvme_ns_id_desc *cur = data + pos;
1430
1431                 if (cur->nidl == 0)
1432                         break;
1433
1434                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1435                 if (len < 0)
1436                         break;
1437
1438                 len += sizeof(*cur);
1439         }
1440
1441         if (nvme_multi_css(ctrl) && !csi_seen) {
1442                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1443                          nsid);
1444                 status = -EINVAL;
1445         }
1446
1447 free_data:
1448         kfree(data);
1449         return status;
1450 }
1451
1452 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1453                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1454 {
1455         struct nvme_command c = { };
1456         int error;
1457
1458         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1459         c.identify.opcode = nvme_admin_identify;
1460         c.identify.nsid = cpu_to_le32(nsid);
1461         c.identify.cns = NVME_ID_CNS_NS;
1462
1463         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1464         if (!*id)
1465                 return -ENOMEM;
1466
1467         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1468         if (error) {
1469                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1470                 goto out_free_id;
1471         }
1472
1473         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1474         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1475                 goto out_free_id;
1476
1477         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1478             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1479                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1480         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1481             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1482                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1483
1484         return 0;
1485
1486 out_free_id:
1487         kfree(*id);
1488         return error;
1489 }
1490
1491 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1492                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1493 {
1494         union nvme_result res = { 0 };
1495         struct nvme_command c = { };
1496         int ret;
1497
1498         c.features.opcode = op;
1499         c.features.fid = cpu_to_le32(fid);
1500         c.features.dword11 = cpu_to_le32(dword11);
1501
1502         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1503                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1504         if (ret >= 0 && result)
1505                 *result = le32_to_cpu(res.u32);
1506         return ret;
1507 }
1508
1509 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1510                       unsigned int dword11, void *buffer, size_t buflen,
1511                       u32 *result)
1512 {
1513         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1514                              buflen, result);
1515 }
1516 EXPORT_SYMBOL_GPL(nvme_set_features);
1517
1518 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1519                       unsigned int dword11, void *buffer, size_t buflen,
1520                       u32 *result)
1521 {
1522         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1523                              buflen, result);
1524 }
1525 EXPORT_SYMBOL_GPL(nvme_get_features);
1526
1527 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1528 {
1529         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1530         u32 result;
1531         int status, nr_io_queues;
1532
1533         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1534                         &result);
1535         if (status < 0)
1536                 return status;
1537
1538         /*
1539          * Degraded controllers might return an error when setting the queue
1540          * count.  We still want to be able to bring them online and offer
1541          * access to the admin queue, as that might be only way to fix them up.
1542          */
1543         if (status > 0) {
1544                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1545                 *count = 0;
1546         } else {
1547                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1548                 *count = min(*count, nr_io_queues);
1549         }
1550
1551         return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1554
1555 #define NVME_AEN_SUPPORTED \
1556         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1557          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1558
1559 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1560 {
1561         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1562         int status;
1563
1564         if (!supported_aens)
1565                 return;
1566
1567         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1568                         NULL, 0, &result);
1569         if (status)
1570                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1571                          supported_aens);
1572
1573         queue_work(nvme_wq, &ctrl->async_event_work);
1574 }
1575
1576 static int nvme_ns_open(struct nvme_ns *ns)
1577 {
1578
1579         /* should never be called due to GENHD_FL_HIDDEN */
1580         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1581                 goto fail;
1582         if (!nvme_get_ns(ns))
1583                 goto fail;
1584         if (!try_module_get(ns->ctrl->ops->module))
1585                 goto fail_put_ns;
1586
1587         return 0;
1588
1589 fail_put_ns:
1590         nvme_put_ns(ns);
1591 fail:
1592         return -ENXIO;
1593 }
1594
1595 static void nvme_ns_release(struct nvme_ns *ns)
1596 {
1597
1598         module_put(ns->ctrl->ops->module);
1599         nvme_put_ns(ns);
1600 }
1601
1602 static int nvme_open(struct block_device *bdev, fmode_t mode)
1603 {
1604         return nvme_ns_open(bdev->bd_disk->private_data);
1605 }
1606
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609         nvme_ns_release(disk->private_data);
1610 }
1611
1612 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1613 {
1614         /* some standard values */
1615         geo->heads = 1 << 6;
1616         geo->sectors = 1 << 5;
1617         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1618         return 0;
1619 }
1620
1621 #ifdef CONFIG_BLK_DEV_INTEGRITY
1622 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1623                                 u32 max_integrity_segments)
1624 {
1625         struct blk_integrity integrity = { };
1626
1627         switch (pi_type) {
1628         case NVME_NS_DPS_PI_TYPE3:
1629                 integrity.profile = &t10_pi_type3_crc;
1630                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1631                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1632                 break;
1633         case NVME_NS_DPS_PI_TYPE1:
1634         case NVME_NS_DPS_PI_TYPE2:
1635                 integrity.profile = &t10_pi_type1_crc;
1636                 integrity.tag_size = sizeof(u16);
1637                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1638                 break;
1639         default:
1640                 integrity.profile = NULL;
1641                 break;
1642         }
1643         integrity.tuple_size = ms;
1644         blk_integrity_register(disk, &integrity);
1645         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1646 }
1647 #else
1648 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1649                                 u32 max_integrity_segments)
1650 {
1651 }
1652 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1653
1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1655 {
1656         struct nvme_ctrl *ctrl = ns->ctrl;
1657         struct request_queue *queue = disk->queue;
1658         u32 size = queue_logical_block_size(queue);
1659
1660         if (ctrl->max_discard_sectors == 0) {
1661                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1662                 return;
1663         }
1664
1665         if (ctrl->nr_streams && ns->sws && ns->sgs)
1666                 size *= ns->sws * ns->sgs;
1667
1668         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1669                         NVME_DSM_MAX_RANGES);
1670
1671         queue->limits.discard_alignment = 0;
1672         queue->limits.discard_granularity = size;
1673
1674         /* If discard is already enabled, don't reset queue limits */
1675         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1676                 return;
1677
1678         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1679         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1680
1681         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1682                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1683 }
1684
1685 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1686 {
1687         return !uuid_is_null(&ids->uuid) ||
1688                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1689                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1690 }
1691
1692 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1693 {
1694         return uuid_equal(&a->uuid, &b->uuid) &&
1695                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1696                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1697                 a->csi == b->csi;
1698 }
1699
1700 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1701                                  u32 *phys_bs, u32 *io_opt)
1702 {
1703         struct streams_directive_params s;
1704         int ret;
1705
1706         if (!ctrl->nr_streams)
1707                 return 0;
1708
1709         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1710         if (ret)
1711                 return ret;
1712
1713         ns->sws = le32_to_cpu(s.sws);
1714         ns->sgs = le16_to_cpu(s.sgs);
1715
1716         if (ns->sws) {
1717                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1718                 if (ns->sgs)
1719                         *io_opt = *phys_bs * ns->sgs;
1720         }
1721
1722         return 0;
1723 }
1724
1725 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1726 {
1727         struct nvme_ctrl *ctrl = ns->ctrl;
1728
1729         /*
1730          * The PI implementation requires the metadata size to be equal to the
1731          * t10 pi tuple size.
1732          */
1733         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1734         if (ns->ms == sizeof(struct t10_pi_tuple))
1735                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1736         else
1737                 ns->pi_type = 0;
1738
1739         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1740         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1741                 return 0;
1742         if (ctrl->ops->flags & NVME_F_FABRICS) {
1743                 /*
1744                  * The NVMe over Fabrics specification only supports metadata as
1745                  * part of the extended data LBA.  We rely on HCA/HBA support to
1746                  * remap the separate metadata buffer from the block layer.
1747                  */
1748                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1749                         return -EINVAL;
1750
1751                 ns->features |= NVME_NS_EXT_LBAS;
1752
1753                 /*
1754                  * The current fabrics transport drivers support namespace
1755                  * metadata formats only if nvme_ns_has_pi() returns true.
1756                  * Suppress support for all other formats so the namespace will
1757                  * have a 0 capacity and not be usable through the block stack.
1758                  *
1759                  * Note, this check will need to be modified if any drivers
1760                  * gain the ability to use other metadata formats.
1761                  */
1762                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1763                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1764         } else {
1765                 /*
1766                  * For PCIe controllers, we can't easily remap the separate
1767                  * metadata buffer from the block layer and thus require a
1768                  * separate metadata buffer for block layer metadata/PI support.
1769                  * We allow extended LBAs for the passthrough interface, though.
1770                  */
1771                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1772                         ns->features |= NVME_NS_EXT_LBAS;
1773                 else
1774                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1775         }
1776
1777         return 0;
1778 }
1779
1780 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1781                 struct request_queue *q)
1782 {
1783         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1784
1785         if (ctrl->max_hw_sectors) {
1786                 u32 max_segments =
1787                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1788
1789                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1790                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1791                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1792         }
1793         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1794         blk_queue_dma_alignment(q, 7);
1795         blk_queue_write_cache(q, vwc, vwc);
1796 }
1797
1798 static void nvme_update_disk_info(struct gendisk *disk,
1799                 struct nvme_ns *ns, struct nvme_id_ns *id)
1800 {
1801         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1802         unsigned short bs = 1 << ns->lba_shift;
1803         u32 atomic_bs, phys_bs, io_opt = 0;
1804
1805         /*
1806          * The block layer can't support LBA sizes larger than the page size
1807          * yet, so catch this early and don't allow block I/O.
1808          */
1809         if (ns->lba_shift > PAGE_SHIFT) {
1810                 capacity = 0;
1811                 bs = (1 << 9);
1812         }
1813
1814         blk_integrity_unregister(disk);
1815
1816         atomic_bs = phys_bs = bs;
1817         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1818         if (id->nabo == 0) {
1819                 /*
1820                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1821                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1822                  * 0 then AWUPF must be used instead.
1823                  */
1824                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1825                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1826                 else
1827                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1828         }
1829
1830         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1831                 /* NPWG = Namespace Preferred Write Granularity */
1832                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1833                 /* NOWS = Namespace Optimal Write Size */
1834                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1835         }
1836
1837         blk_queue_logical_block_size(disk->queue, bs);
1838         /*
1839          * Linux filesystems assume writing a single physical block is
1840          * an atomic operation. Hence limit the physical block size to the
1841          * value of the Atomic Write Unit Power Fail parameter.
1842          */
1843         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1844         blk_queue_io_min(disk->queue, phys_bs);
1845         blk_queue_io_opt(disk->queue, io_opt);
1846
1847         /*
1848          * Register a metadata profile for PI, or the plain non-integrity NVMe
1849          * metadata masquerading as Type 0 if supported, otherwise reject block
1850          * I/O to namespaces with metadata except when the namespace supports
1851          * PI, as it can strip/insert in that case.
1852          */
1853         if (ns->ms) {
1854                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1855                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1856                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1857                                             ns->ctrl->max_integrity_segments);
1858                 else if (!nvme_ns_has_pi(ns))
1859                         capacity = 0;
1860         }
1861
1862         set_capacity_and_notify(disk, capacity);
1863
1864         nvme_config_discard(disk, ns);
1865         blk_queue_max_write_zeroes_sectors(disk->queue,
1866                                            ns->ctrl->max_zeroes_sectors);
1867
1868         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1869                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1870 }
1871
1872 static inline bool nvme_first_scan(struct gendisk *disk)
1873 {
1874         /* nvme_alloc_ns() scans the disk prior to adding it */
1875         return !disk_live(disk);
1876 }
1877
1878 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1879 {
1880         struct nvme_ctrl *ctrl = ns->ctrl;
1881         u32 iob;
1882
1883         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1884             is_power_of_2(ctrl->max_hw_sectors))
1885                 iob = ctrl->max_hw_sectors;
1886         else
1887                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1888
1889         if (!iob)
1890                 return;
1891
1892         if (!is_power_of_2(iob)) {
1893                 if (nvme_first_scan(ns->disk))
1894                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1895                                 ns->disk->disk_name, iob);
1896                 return;
1897         }
1898
1899         if (blk_queue_is_zoned(ns->disk->queue)) {
1900                 if (nvme_first_scan(ns->disk))
1901                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1902                                 ns->disk->disk_name);
1903                 return;
1904         }
1905
1906         blk_queue_chunk_sectors(ns->queue, iob);
1907 }
1908
1909 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1910 {
1911         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1912         int ret;
1913
1914         blk_mq_freeze_queue(ns->disk->queue);
1915         ns->lba_shift = id->lbaf[lbaf].ds;
1916         nvme_set_queue_limits(ns->ctrl, ns->queue);
1917
1918         ret = nvme_configure_metadata(ns, id);
1919         if (ret)
1920                 goto out_unfreeze;
1921         nvme_set_chunk_sectors(ns, id);
1922         nvme_update_disk_info(ns->disk, ns, id);
1923
1924         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1925                 ret = nvme_update_zone_info(ns, lbaf);
1926                 if (ret)
1927                         goto out_unfreeze;
1928         }
1929
1930         set_bit(NVME_NS_READY, &ns->flags);
1931         blk_mq_unfreeze_queue(ns->disk->queue);
1932
1933         if (blk_queue_is_zoned(ns->queue)) {
1934                 ret = nvme_revalidate_zones(ns);
1935                 if (ret && !nvme_first_scan(ns->disk))
1936                         goto out;
1937         }
1938
1939         if (nvme_ns_head_multipath(ns->head)) {
1940                 blk_mq_freeze_queue(ns->head->disk->queue);
1941                 nvme_update_disk_info(ns->head->disk, ns, id);
1942                 nvme_mpath_revalidate_paths(ns);
1943                 blk_stack_limits(&ns->head->disk->queue->limits,
1944                                  &ns->queue->limits, 0);
1945                 disk_update_readahead(ns->head->disk);
1946                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1947         }
1948         return 0;
1949
1950 out_unfreeze:
1951         blk_mq_unfreeze_queue(ns->disk->queue);
1952 out:
1953         /*
1954          * If probing fails due an unsupported feature, hide the block device,
1955          * but still allow other access.
1956          */
1957         if (ret == -ENODEV) {
1958                 ns->disk->flags |= GENHD_FL_HIDDEN;
1959                 ret = 0;
1960         }
1961         return ret;
1962 }
1963
1964 static char nvme_pr_type(enum pr_type type)
1965 {
1966         switch (type) {
1967         case PR_WRITE_EXCLUSIVE:
1968                 return 1;
1969         case PR_EXCLUSIVE_ACCESS:
1970                 return 2;
1971         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1972                 return 3;
1973         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1974                 return 4;
1975         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1976                 return 5;
1977         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1978                 return 6;
1979         default:
1980                 return 0;
1981         }
1982 };
1983
1984 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1985                 struct nvme_command *c, u8 data[16])
1986 {
1987         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1988         int srcu_idx = srcu_read_lock(&head->srcu);
1989         struct nvme_ns *ns = nvme_find_path(head);
1990         int ret = -EWOULDBLOCK;
1991
1992         if (ns) {
1993                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1994                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1995         }
1996         srcu_read_unlock(&head->srcu, srcu_idx);
1997         return ret;
1998 }
1999         
2000 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2001                 u8 data[16])
2002 {
2003         c->common.nsid = cpu_to_le32(ns->head->ns_id);
2004         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2005 }
2006
2007 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2008                                 u64 key, u64 sa_key, u8 op)
2009 {
2010         struct nvme_command c = { };
2011         u8 data[16] = { 0, };
2012
2013         put_unaligned_le64(key, &data[0]);
2014         put_unaligned_le64(sa_key, &data[8]);
2015
2016         c.common.opcode = op;
2017         c.common.cdw10 = cpu_to_le32(cdw10);
2018
2019         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2020             bdev->bd_disk->fops == &nvme_ns_head_ops)
2021                 return nvme_send_ns_head_pr_command(bdev, &c, data);
2022         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2023 }
2024
2025 static int nvme_pr_register(struct block_device *bdev, u64 old,
2026                 u64 new, unsigned flags)
2027 {
2028         u32 cdw10;
2029
2030         if (flags & ~PR_FL_IGNORE_KEY)
2031                 return -EOPNOTSUPP;
2032
2033         cdw10 = old ? 2 : 0;
2034         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2035         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2036         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2037 }
2038
2039 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2040                 enum pr_type type, unsigned flags)
2041 {
2042         u32 cdw10;
2043
2044         if (flags & ~PR_FL_IGNORE_KEY)
2045                 return -EOPNOTSUPP;
2046
2047         cdw10 = nvme_pr_type(type) << 8;
2048         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2049         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2050 }
2051
2052 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2053                 enum pr_type type, bool abort)
2054 {
2055         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2056
2057         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2058 }
2059
2060 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2061 {
2062         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2063
2064         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2065 }
2066
2067 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2068 {
2069         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2070
2071         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2072 }
2073
2074 const struct pr_ops nvme_pr_ops = {
2075         .pr_register    = nvme_pr_register,
2076         .pr_reserve     = nvme_pr_reserve,
2077         .pr_release     = nvme_pr_release,
2078         .pr_preempt     = nvme_pr_preempt,
2079         .pr_clear       = nvme_pr_clear,
2080 };
2081
2082 #ifdef CONFIG_BLK_SED_OPAL
2083 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2084                 bool send)
2085 {
2086         struct nvme_ctrl *ctrl = data;
2087         struct nvme_command cmd = { };
2088
2089         if (send)
2090                 cmd.common.opcode = nvme_admin_security_send;
2091         else
2092                 cmd.common.opcode = nvme_admin_security_recv;
2093         cmd.common.nsid = 0;
2094         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2095         cmd.common.cdw11 = cpu_to_le32(len);
2096
2097         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2098                         NVME_QID_ANY, 1, 0);
2099 }
2100 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2101 #endif /* CONFIG_BLK_SED_OPAL */
2102
2103 #ifdef CONFIG_BLK_DEV_ZONED
2104 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2105                 unsigned int nr_zones, report_zones_cb cb, void *data)
2106 {
2107         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2108                         data);
2109 }
2110 #else
2111 #define nvme_report_zones       NULL
2112 #endif /* CONFIG_BLK_DEV_ZONED */
2113
2114 static const struct block_device_operations nvme_bdev_ops = {
2115         .owner          = THIS_MODULE,
2116         .ioctl          = nvme_ioctl,
2117         .open           = nvme_open,
2118         .release        = nvme_release,
2119         .getgeo         = nvme_getgeo,
2120         .report_zones   = nvme_report_zones,
2121         .pr_ops         = &nvme_pr_ops,
2122 };
2123
2124 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2125 {
2126         unsigned long timeout =
2127                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2128         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2129         int ret;
2130
2131         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2132                 if (csts == ~0)
2133                         return -ENODEV;
2134                 if ((csts & NVME_CSTS_RDY) == bit)
2135                         break;
2136
2137                 usleep_range(1000, 2000);
2138                 if (fatal_signal_pending(current))
2139                         return -EINTR;
2140                 if (time_after(jiffies, timeout)) {
2141                         dev_err(ctrl->device,
2142                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2143                                 enabled ? "initialisation" : "reset", csts);
2144                         return -ENODEV;
2145                 }
2146         }
2147
2148         return ret;
2149 }
2150
2151 /*
2152  * If the device has been passed off to us in an enabled state, just clear
2153  * the enabled bit.  The spec says we should set the 'shutdown notification
2154  * bits', but doing so may cause the device to complete commands to the
2155  * admin queue ... and we don't know what memory that might be pointing at!
2156  */
2157 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2158 {
2159         int ret;
2160
2161         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2162         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2163
2164         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165         if (ret)
2166                 return ret;
2167
2168         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2169                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2170
2171         return nvme_wait_ready(ctrl, ctrl->cap, false);
2172 }
2173 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2174
2175 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2176 {
2177         unsigned dev_page_min;
2178         int ret;
2179
2180         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2181         if (ret) {
2182                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2183                 return ret;
2184         }
2185         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2186
2187         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2188                 dev_err(ctrl->device,
2189                         "Minimum device page size %u too large for host (%u)\n",
2190                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2191                 return -ENODEV;
2192         }
2193
2194         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2195                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2196         else
2197                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2198         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2199         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2200         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2201         ctrl->ctrl_config |= NVME_CC_ENABLE;
2202
2203         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2204         if (ret)
2205                 return ret;
2206         return nvme_wait_ready(ctrl, ctrl->cap, true);
2207 }
2208 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2209
2210 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2211 {
2212         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2213         u32 csts;
2214         int ret;
2215
2216         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2217         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2218
2219         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2220         if (ret)
2221                 return ret;
2222
2223         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2224                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2225                         break;
2226
2227                 msleep(100);
2228                 if (fatal_signal_pending(current))
2229                         return -EINTR;
2230                 if (time_after(jiffies, timeout)) {
2231                         dev_err(ctrl->device,
2232                                 "Device shutdown incomplete; abort shutdown\n");
2233                         return -ENODEV;
2234                 }
2235         }
2236
2237         return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2240
2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2242 {
2243         __le64 ts;
2244         int ret;
2245
2246         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2247                 return 0;
2248
2249         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2250         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2251                         NULL);
2252         if (ret)
2253                 dev_warn_once(ctrl->device,
2254                         "could not set timestamp (%d)\n", ret);
2255         return ret;
2256 }
2257
2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2259 {
2260         struct nvme_feat_host_behavior *host;
2261         int ret;
2262
2263         /* Don't bother enabling the feature if retry delay is not reported */
2264         if (!ctrl->crdt[0])
2265                 return 0;
2266
2267         host = kzalloc(sizeof(*host), GFP_KERNEL);
2268         if (!host)
2269                 return 0;
2270
2271         host->acre = NVME_ENABLE_ACRE;
2272         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2273                                 host, sizeof(*host), NULL);
2274         kfree(host);
2275         return ret;
2276 }
2277
2278 /*
2279  * The function checks whether the given total (exlat + enlat) latency of
2280  * a power state allows the latter to be used as an APST transition target.
2281  * It does so by comparing the latency to the primary and secondary latency
2282  * tolerances defined by module params. If there's a match, the corresponding
2283  * timeout value is returned and the matching tolerance index (1 or 2) is
2284  * reported.
2285  */
2286 static bool nvme_apst_get_transition_time(u64 total_latency,
2287                 u64 *transition_time, unsigned *last_index)
2288 {
2289         if (total_latency <= apst_primary_latency_tol_us) {
2290                 if (*last_index == 1)
2291                         return false;
2292                 *last_index = 1;
2293                 *transition_time = apst_primary_timeout_ms;
2294                 return true;
2295         }
2296         if (apst_secondary_timeout_ms &&
2297                 total_latency <= apst_secondary_latency_tol_us) {
2298                 if (*last_index <= 2)
2299                         return false;
2300                 *last_index = 2;
2301                 *transition_time = apst_secondary_timeout_ms;
2302                 return true;
2303         }
2304         return false;
2305 }
2306
2307 /*
2308  * APST (Autonomous Power State Transition) lets us program a table of power
2309  * state transitions that the controller will perform automatically.
2310  *
2311  * Depending on module params, one of the two supported techniques will be used:
2312  *
2313  * - If the parameters provide explicit timeouts and tolerances, they will be
2314  *   used to build a table with up to 2 non-operational states to transition to.
2315  *   The default parameter values were selected based on the values used by
2316  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2317  *   regeneration of the APST table in the event of switching between external
2318  *   and battery power, the timeouts and tolerances reflect a compromise
2319  *   between values used by Microsoft for AC and battery scenarios.
2320  * - If not, we'll configure the table with a simple heuristic: we are willing
2321  *   to spend at most 2% of the time transitioning between power states.
2322  *   Therefore, when running in any given state, we will enter the next
2323  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2324  *   microseconds, as long as that state's exit latency is under the requested
2325  *   maximum latency.
2326  *
2327  * We will not autonomously enter any non-operational state for which the total
2328  * latency exceeds ps_max_latency_us.
2329  *
2330  * Users can set ps_max_latency_us to zero to turn off APST.
2331  */
2332 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2333 {
2334         struct nvme_feat_auto_pst *table;
2335         unsigned apste = 0;
2336         u64 max_lat_us = 0;
2337         __le64 target = 0;
2338         int max_ps = -1;
2339         int state;
2340         int ret;
2341         unsigned last_lt_index = UINT_MAX;
2342
2343         /*
2344          * If APST isn't supported or if we haven't been initialized yet,
2345          * then don't do anything.
2346          */
2347         if (!ctrl->apsta)
2348                 return 0;
2349
2350         if (ctrl->npss > 31) {
2351                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2352                 return 0;
2353         }
2354
2355         table = kzalloc(sizeof(*table), GFP_KERNEL);
2356         if (!table)
2357                 return 0;
2358
2359         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2360                 /* Turn off APST. */
2361                 dev_dbg(ctrl->device, "APST disabled\n");
2362                 goto done;
2363         }
2364
2365         /*
2366          * Walk through all states from lowest- to highest-power.
2367          * According to the spec, lower-numbered states use more power.  NPSS,
2368          * despite the name, is the index of the lowest-power state, not the
2369          * number of states.
2370          */
2371         for (state = (int)ctrl->npss; state >= 0; state--) {
2372                 u64 total_latency_us, exit_latency_us, transition_ms;
2373
2374                 if (target)
2375                         table->entries[state] = target;
2376
2377                 /*
2378                  * Don't allow transitions to the deepest state if it's quirked
2379                  * off.
2380                  */
2381                 if (state == ctrl->npss &&
2382                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2383                         continue;
2384
2385                 /*
2386                  * Is this state a useful non-operational state for higher-power
2387                  * states to autonomously transition to?
2388                  */
2389                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2390                         continue;
2391
2392                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2393                 if (exit_latency_us > ctrl->ps_max_latency_us)
2394                         continue;
2395
2396                 total_latency_us = exit_latency_us +
2397                         le32_to_cpu(ctrl->psd[state].entry_lat);
2398
2399                 /*
2400                  * This state is good. It can be used as the APST idle target
2401                  * for higher power states.
2402                  */
2403                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2404                         if (!nvme_apst_get_transition_time(total_latency_us,
2405                                         &transition_ms, &last_lt_index))
2406                                 continue;
2407                 } else {
2408                         transition_ms = total_latency_us + 19;
2409                         do_div(transition_ms, 20);
2410                         if (transition_ms > (1 << 24) - 1)
2411                                 transition_ms = (1 << 24) - 1;
2412                 }
2413
2414                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2415                 if (max_ps == -1)
2416                         max_ps = state;
2417                 if (total_latency_us > max_lat_us)
2418                         max_lat_us = total_latency_us;
2419         }
2420
2421         if (max_ps == -1)
2422                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2423         else
2424                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2425                         max_ps, max_lat_us, (int)sizeof(*table), table);
2426         apste = 1;
2427
2428 done:
2429         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2430                                 table, sizeof(*table), NULL);
2431         if (ret)
2432                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2433         kfree(table);
2434         return ret;
2435 }
2436
2437 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2438 {
2439         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2440         u64 latency;
2441
2442         switch (val) {
2443         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2444         case PM_QOS_LATENCY_ANY:
2445                 latency = U64_MAX;
2446                 break;
2447
2448         default:
2449                 latency = val;
2450         }
2451
2452         if (ctrl->ps_max_latency_us != latency) {
2453                 ctrl->ps_max_latency_us = latency;
2454                 if (ctrl->state == NVME_CTRL_LIVE)
2455                         nvme_configure_apst(ctrl);
2456         }
2457 }
2458
2459 struct nvme_core_quirk_entry {
2460         /*
2461          * NVMe model and firmware strings are padded with spaces.  For
2462          * simplicity, strings in the quirk table are padded with NULLs
2463          * instead.
2464          */
2465         u16 vid;
2466         const char *mn;
2467         const char *fr;
2468         unsigned long quirks;
2469 };
2470
2471 static const struct nvme_core_quirk_entry core_quirks[] = {
2472         {
2473                 /*
2474                  * This Toshiba device seems to die using any APST states.  See:
2475                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2476                  */
2477                 .vid = 0x1179,
2478                 .mn = "THNSF5256GPUK TOSHIBA",
2479                 .quirks = NVME_QUIRK_NO_APST,
2480         },
2481         {
2482                 /*
2483                  * This LiteON CL1-3D*-Q11 firmware version has a race
2484                  * condition associated with actions related to suspend to idle
2485                  * LiteON has resolved the problem in future firmware
2486                  */
2487                 .vid = 0x14a4,
2488                 .fr = "22301111",
2489                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2490         },
2491         {
2492                 /*
2493                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2494                  * aborts I/O during any load, but more easily reproducible
2495                  * with discards (fstrim).
2496                  *
2497                  * The device is left in a state where it is also not possible
2498                  * to use "nvme set-feature" to disable APST, but booting with
2499                  * nvme_core.default_ps_max_latency=0 works.
2500                  */
2501                 .vid = 0x1e0f,
2502                 .mn = "KCD6XVUL6T40",
2503                 .quirks = NVME_QUIRK_NO_APST,
2504         }
2505 };
2506
2507 /* match is null-terminated but idstr is space-padded. */
2508 static bool string_matches(const char *idstr, const char *match, size_t len)
2509 {
2510         size_t matchlen;
2511
2512         if (!match)
2513                 return true;
2514
2515         matchlen = strlen(match);
2516         WARN_ON_ONCE(matchlen > len);
2517
2518         if (memcmp(idstr, match, matchlen))
2519                 return false;
2520
2521         for (; matchlen < len; matchlen++)
2522                 if (idstr[matchlen] != ' ')
2523                         return false;
2524
2525         return true;
2526 }
2527
2528 static bool quirk_matches(const struct nvme_id_ctrl *id,
2529                           const struct nvme_core_quirk_entry *q)
2530 {
2531         return q->vid == le16_to_cpu(id->vid) &&
2532                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2533                 string_matches(id->fr, q->fr, sizeof(id->fr));
2534 }
2535
2536 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2537                 struct nvme_id_ctrl *id)
2538 {
2539         size_t nqnlen;
2540         int off;
2541
2542         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2543                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2544                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2545                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2546                         return;
2547                 }
2548
2549                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2550                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2551         }
2552
2553         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2554         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2555                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2556                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2557         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2558         off += sizeof(id->sn);
2559         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2560         off += sizeof(id->mn);
2561         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2562 }
2563
2564 static void nvme_release_subsystem(struct device *dev)
2565 {
2566         struct nvme_subsystem *subsys =
2567                 container_of(dev, struct nvme_subsystem, dev);
2568
2569         if (subsys->instance >= 0)
2570                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2571         kfree(subsys);
2572 }
2573
2574 static void nvme_destroy_subsystem(struct kref *ref)
2575 {
2576         struct nvme_subsystem *subsys =
2577                         container_of(ref, struct nvme_subsystem, ref);
2578
2579         mutex_lock(&nvme_subsystems_lock);
2580         list_del(&subsys->entry);
2581         mutex_unlock(&nvme_subsystems_lock);
2582
2583         ida_destroy(&subsys->ns_ida);
2584         device_del(&subsys->dev);
2585         put_device(&subsys->dev);
2586 }
2587
2588 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2589 {
2590         kref_put(&subsys->ref, nvme_destroy_subsystem);
2591 }
2592
2593 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2594 {
2595         struct nvme_subsystem *subsys;
2596
2597         lockdep_assert_held(&nvme_subsystems_lock);
2598
2599         /*
2600          * Fail matches for discovery subsystems. This results
2601          * in each discovery controller bound to a unique subsystem.
2602          * This avoids issues with validating controller values
2603          * that can only be true when there is a single unique subsystem.
2604          * There may be multiple and completely independent entities
2605          * that provide discovery controllers.
2606          */
2607         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2608                 return NULL;
2609
2610         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2611                 if (strcmp(subsys->subnqn, subsysnqn))
2612                         continue;
2613                 if (!kref_get_unless_zero(&subsys->ref))
2614                         continue;
2615                 return subsys;
2616         }
2617
2618         return NULL;
2619 }
2620
2621 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2622         struct device_attribute subsys_attr_##_name = \
2623                 __ATTR(_name, _mode, _show, NULL)
2624
2625 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2626                                     struct device_attribute *attr,
2627                                     char *buf)
2628 {
2629         struct nvme_subsystem *subsys =
2630                 container_of(dev, struct nvme_subsystem, dev);
2631
2632         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2633 }
2634 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2635
2636 static ssize_t nvme_subsys_show_type(struct device *dev,
2637                                     struct device_attribute *attr,
2638                                     char *buf)
2639 {
2640         struct nvme_subsystem *subsys =
2641                 container_of(dev, struct nvme_subsystem, dev);
2642
2643         switch (subsys->subtype) {
2644         case NVME_NQN_DISC:
2645                 return sysfs_emit(buf, "discovery\n");
2646         case NVME_NQN_NVME:
2647                 return sysfs_emit(buf, "nvm\n");
2648         default:
2649                 return sysfs_emit(buf, "reserved\n");
2650         }
2651 }
2652 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2653
2654 #define nvme_subsys_show_str_function(field)                            \
2655 static ssize_t subsys_##field##_show(struct device *dev,                \
2656                             struct device_attribute *attr, char *buf)   \
2657 {                                                                       \
2658         struct nvme_subsystem *subsys =                                 \
2659                 container_of(dev, struct nvme_subsystem, dev);          \
2660         return sysfs_emit(buf, "%.*s\n",                                \
2661                            (int)sizeof(subsys->field), subsys->field);  \
2662 }                                                                       \
2663 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2664
2665 nvme_subsys_show_str_function(model);
2666 nvme_subsys_show_str_function(serial);
2667 nvme_subsys_show_str_function(firmware_rev);
2668
2669 static struct attribute *nvme_subsys_attrs[] = {
2670         &subsys_attr_model.attr,
2671         &subsys_attr_serial.attr,
2672         &subsys_attr_firmware_rev.attr,
2673         &subsys_attr_subsysnqn.attr,
2674         &subsys_attr_subsystype.attr,
2675 #ifdef CONFIG_NVME_MULTIPATH
2676         &subsys_attr_iopolicy.attr,
2677 #endif
2678         NULL,
2679 };
2680
2681 static const struct attribute_group nvme_subsys_attrs_group = {
2682         .attrs = nvme_subsys_attrs,
2683 };
2684
2685 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2686         &nvme_subsys_attrs_group,
2687         NULL,
2688 };
2689
2690 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2691 {
2692         return ctrl->opts && ctrl->opts->discovery_nqn;
2693 }
2694
2695 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2696                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2697 {
2698         struct nvme_ctrl *tmp;
2699
2700         lockdep_assert_held(&nvme_subsystems_lock);
2701
2702         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2703                 if (nvme_state_terminal(tmp))
2704                         continue;
2705
2706                 if (tmp->cntlid == ctrl->cntlid) {
2707                         dev_err(ctrl->device,
2708                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2709                                 ctrl->cntlid, dev_name(tmp->device),
2710                                 subsys->subnqn);
2711                         return false;
2712                 }
2713
2714                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2715                     nvme_discovery_ctrl(ctrl))
2716                         continue;
2717
2718                 dev_err(ctrl->device,
2719                         "Subsystem does not support multiple controllers\n");
2720                 return false;
2721         }
2722
2723         return true;
2724 }
2725
2726 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2727 {
2728         struct nvme_subsystem *subsys, *found;
2729         int ret;
2730
2731         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2732         if (!subsys)
2733                 return -ENOMEM;
2734
2735         subsys->instance = -1;
2736         mutex_init(&subsys->lock);
2737         kref_init(&subsys->ref);
2738         INIT_LIST_HEAD(&subsys->ctrls);
2739         INIT_LIST_HEAD(&subsys->nsheads);
2740         nvme_init_subnqn(subsys, ctrl, id);
2741         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2742         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2743         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2744         subsys->vendor_id = le16_to_cpu(id->vid);
2745         subsys->cmic = id->cmic;
2746
2747         /* Versions prior to 1.4 don't necessarily report a valid type */
2748         if (id->cntrltype == NVME_CTRL_DISC ||
2749             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2750                 subsys->subtype = NVME_NQN_DISC;
2751         else
2752                 subsys->subtype = NVME_NQN_NVME;
2753
2754         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2755                 dev_err(ctrl->device,
2756                         "Subsystem %s is not a discovery controller",
2757                         subsys->subnqn);
2758                 kfree(subsys);
2759                 return -EINVAL;
2760         }
2761         subsys->awupf = le16_to_cpu(id->awupf);
2762         nvme_mpath_default_iopolicy(subsys);
2763
2764         subsys->dev.class = nvme_subsys_class;
2765         subsys->dev.release = nvme_release_subsystem;
2766         subsys->dev.groups = nvme_subsys_attrs_groups;
2767         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2768         device_initialize(&subsys->dev);
2769
2770         mutex_lock(&nvme_subsystems_lock);
2771         found = __nvme_find_get_subsystem(subsys->subnqn);
2772         if (found) {
2773                 put_device(&subsys->dev);
2774                 subsys = found;
2775
2776                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2777                         ret = -EINVAL;
2778                         goto out_put_subsystem;
2779                 }
2780         } else {
2781                 ret = device_add(&subsys->dev);
2782                 if (ret) {
2783                         dev_err(ctrl->device,
2784                                 "failed to register subsystem device.\n");
2785                         put_device(&subsys->dev);
2786                         goto out_unlock;
2787                 }
2788                 ida_init(&subsys->ns_ida);
2789                 list_add_tail(&subsys->entry, &nvme_subsystems);
2790         }
2791
2792         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2793                                 dev_name(ctrl->device));
2794         if (ret) {
2795                 dev_err(ctrl->device,
2796                         "failed to create sysfs link from subsystem.\n");
2797                 goto out_put_subsystem;
2798         }
2799
2800         if (!found)
2801                 subsys->instance = ctrl->instance;
2802         ctrl->subsys = subsys;
2803         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2804         mutex_unlock(&nvme_subsystems_lock);
2805         return 0;
2806
2807 out_put_subsystem:
2808         nvme_put_subsystem(subsys);
2809 out_unlock:
2810         mutex_unlock(&nvme_subsystems_lock);
2811         return ret;
2812 }
2813
2814 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2815                 void *log, size_t size, u64 offset)
2816 {
2817         struct nvme_command c = { };
2818         u32 dwlen = nvme_bytes_to_numd(size);
2819
2820         c.get_log_page.opcode = nvme_admin_get_log_page;
2821         c.get_log_page.nsid = cpu_to_le32(nsid);
2822         c.get_log_page.lid = log_page;
2823         c.get_log_page.lsp = lsp;
2824         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2825         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2826         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2827         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2828         c.get_log_page.csi = csi;
2829
2830         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2831 }
2832
2833 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2834                                 struct nvme_effects_log **log)
2835 {
2836         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2837         int ret;
2838
2839         if (cel)
2840                 goto out;
2841
2842         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2843         if (!cel)
2844                 return -ENOMEM;
2845
2846         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2847                         cel, sizeof(*cel), 0);
2848         if (ret) {
2849                 kfree(cel);
2850                 return ret;
2851         }
2852
2853         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2854 out:
2855         *log = cel;
2856         return 0;
2857 }
2858
2859 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2860 {
2861         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2862
2863         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2864                 return UINT_MAX;
2865         return val;
2866 }
2867
2868 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2869 {
2870         struct nvme_command c = { };
2871         struct nvme_id_ctrl_nvm *id;
2872         int ret;
2873
2874         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2875                 ctrl->max_discard_sectors = UINT_MAX;
2876                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2877         } else {
2878                 ctrl->max_discard_sectors = 0;
2879                 ctrl->max_discard_segments = 0;
2880         }
2881
2882         /*
2883          * Even though NVMe spec explicitly states that MDTS is not applicable
2884          * to the write-zeroes, we are cautious and limit the size to the
2885          * controllers max_hw_sectors value, which is based on the MDTS field
2886          * and possibly other limiting factors.
2887          */
2888         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2889             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2890                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2891         else
2892                 ctrl->max_zeroes_sectors = 0;
2893
2894         if (nvme_ctrl_limited_cns(ctrl))
2895                 return 0;
2896
2897         id = kzalloc(sizeof(*id), GFP_KERNEL);
2898         if (!id)
2899                 return 0;
2900
2901         c.identify.opcode = nvme_admin_identify;
2902         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2903         c.identify.csi = NVME_CSI_NVM;
2904
2905         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2906         if (ret)
2907                 goto free_data;
2908
2909         if (id->dmrl)
2910                 ctrl->max_discard_segments = id->dmrl;
2911         if (id->dmrsl)
2912                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2913         if (id->wzsl)
2914                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2915
2916 free_data:
2917         kfree(id);
2918         return ret;
2919 }
2920
2921 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2922 {
2923         struct nvme_id_ctrl *id;
2924         u32 max_hw_sectors;
2925         bool prev_apst_enabled;
2926         int ret;
2927
2928         ret = nvme_identify_ctrl(ctrl, &id);
2929         if (ret) {
2930                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2931                 return -EIO;
2932         }
2933
2934         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2935                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2936                 if (ret < 0)
2937                         goto out_free;
2938         }
2939
2940         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2941                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2942
2943         if (!ctrl->identified) {
2944                 unsigned int i;
2945
2946                 ret = nvme_init_subsystem(ctrl, id);
2947                 if (ret)
2948                         goto out_free;
2949
2950                 /*
2951                  * Check for quirks.  Quirk can depend on firmware version,
2952                  * so, in principle, the set of quirks present can change
2953                  * across a reset.  As a possible future enhancement, we
2954                  * could re-scan for quirks every time we reinitialize
2955                  * the device, but we'd have to make sure that the driver
2956                  * behaves intelligently if the quirks change.
2957                  */
2958                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2959                         if (quirk_matches(id, &core_quirks[i]))
2960                                 ctrl->quirks |= core_quirks[i].quirks;
2961                 }
2962         }
2963
2964         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2965                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2966                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2967         }
2968
2969         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2970         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2971         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2972
2973         ctrl->oacs = le16_to_cpu(id->oacs);
2974         ctrl->oncs = le16_to_cpu(id->oncs);
2975         ctrl->mtfa = le16_to_cpu(id->mtfa);
2976         ctrl->oaes = le32_to_cpu(id->oaes);
2977         ctrl->wctemp = le16_to_cpu(id->wctemp);
2978         ctrl->cctemp = le16_to_cpu(id->cctemp);
2979
2980         atomic_set(&ctrl->abort_limit, id->acl + 1);
2981         ctrl->vwc = id->vwc;
2982         if (id->mdts)
2983                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2984         else
2985                 max_hw_sectors = UINT_MAX;
2986         ctrl->max_hw_sectors =
2987                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2988
2989         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2990         ctrl->sgls = le32_to_cpu(id->sgls);
2991         ctrl->kas = le16_to_cpu(id->kas);
2992         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2993         ctrl->ctratt = le32_to_cpu(id->ctratt);
2994
2995         if (id->rtd3e) {
2996                 /* us -> s */
2997                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2998
2999                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3000                                                  shutdown_timeout, 60);
3001
3002                 if (ctrl->shutdown_timeout != shutdown_timeout)
3003                         dev_info(ctrl->device,
3004                                  "Shutdown timeout set to %u seconds\n",
3005                                  ctrl->shutdown_timeout);
3006         } else
3007                 ctrl->shutdown_timeout = shutdown_timeout;
3008
3009         ctrl->npss = id->npss;
3010         ctrl->apsta = id->apsta;
3011         prev_apst_enabled = ctrl->apst_enabled;
3012         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3013                 if (force_apst && id->apsta) {
3014                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3015                         ctrl->apst_enabled = true;
3016                 } else {
3017                         ctrl->apst_enabled = false;
3018                 }
3019         } else {
3020                 ctrl->apst_enabled = id->apsta;
3021         }
3022         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3023
3024         if (ctrl->ops->flags & NVME_F_FABRICS) {
3025                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3026                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3027                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3028                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3029
3030                 /*
3031                  * In fabrics we need to verify the cntlid matches the
3032                  * admin connect
3033                  */
3034                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3035                         dev_err(ctrl->device,
3036                                 "Mismatching cntlid: Connect %u vs Identify "
3037                                 "%u, rejecting\n",
3038                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3039                         ret = -EINVAL;
3040                         goto out_free;
3041                 }
3042
3043                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3044                         dev_err(ctrl->device,
3045                                 "keep-alive support is mandatory for fabrics\n");
3046                         ret = -EINVAL;
3047                         goto out_free;
3048                 }
3049         } else {
3050                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3051                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3052                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3053                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3054         }
3055
3056         ret = nvme_mpath_init_identify(ctrl, id);
3057         if (ret < 0)
3058                 goto out_free;
3059
3060         if (ctrl->apst_enabled && !prev_apst_enabled)
3061                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3062         else if (!ctrl->apst_enabled && prev_apst_enabled)
3063                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3064
3065 out_free:
3066         kfree(id);
3067         return ret;
3068 }
3069
3070 /*
3071  * Initialize the cached copies of the Identify data and various controller
3072  * register in our nvme_ctrl structure.  This should be called as soon as
3073  * the admin queue is fully up and running.
3074  */
3075 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3076 {
3077         int ret;
3078
3079         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3080         if (ret) {
3081                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3082                 return ret;
3083         }
3084
3085         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3086
3087         if (ctrl->vs >= NVME_VS(1, 1, 0))
3088                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3089
3090         ret = nvme_init_identify(ctrl);
3091         if (ret)
3092                 return ret;
3093
3094         ret = nvme_init_non_mdts_limits(ctrl);
3095         if (ret < 0)
3096                 return ret;
3097
3098         ret = nvme_configure_apst(ctrl);
3099         if (ret < 0)
3100                 return ret;
3101
3102         ret = nvme_configure_timestamp(ctrl);
3103         if (ret < 0)
3104                 return ret;
3105
3106         ret = nvme_configure_directives(ctrl);
3107         if (ret < 0)
3108                 return ret;
3109
3110         ret = nvme_configure_acre(ctrl);
3111         if (ret < 0)
3112                 return ret;
3113
3114         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3115                 ret = nvme_hwmon_init(ctrl);
3116                 if (ret < 0)
3117                         return ret;
3118         }
3119
3120         ctrl->identified = true;
3121
3122         return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3125
3126 static int nvme_dev_open(struct inode *inode, struct file *file)
3127 {
3128         struct nvme_ctrl *ctrl =
3129                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3130
3131         switch (ctrl->state) {
3132         case NVME_CTRL_LIVE:
3133                 break;
3134         default:
3135                 return -EWOULDBLOCK;
3136         }
3137
3138         nvme_get_ctrl(ctrl);
3139         if (!try_module_get(ctrl->ops->module)) {
3140                 nvme_put_ctrl(ctrl);
3141                 return -EINVAL;
3142         }
3143
3144         file->private_data = ctrl;
3145         return 0;
3146 }
3147
3148 static int nvme_dev_release(struct inode *inode, struct file *file)
3149 {
3150         struct nvme_ctrl *ctrl =
3151                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3152
3153         module_put(ctrl->ops->module);
3154         nvme_put_ctrl(ctrl);
3155         return 0;
3156 }
3157
3158 static const struct file_operations nvme_dev_fops = {
3159         .owner          = THIS_MODULE,
3160         .open           = nvme_dev_open,
3161         .release        = nvme_dev_release,
3162         .unlocked_ioctl = nvme_dev_ioctl,
3163         .compat_ioctl   = compat_ptr_ioctl,
3164 };
3165
3166 static ssize_t nvme_sysfs_reset(struct device *dev,
3167                                 struct device_attribute *attr, const char *buf,
3168                                 size_t count)
3169 {
3170         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3171         int ret;
3172
3173         ret = nvme_reset_ctrl_sync(ctrl);
3174         if (ret < 0)
3175                 return ret;
3176         return count;
3177 }
3178 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3179
3180 static ssize_t nvme_sysfs_rescan(struct device *dev,
3181                                 struct device_attribute *attr, const char *buf,
3182                                 size_t count)
3183 {
3184         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3185
3186         nvme_queue_scan(ctrl);
3187         return count;
3188 }
3189 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3190
3191 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3192 {
3193         struct gendisk *disk = dev_to_disk(dev);
3194
3195         if (disk->fops == &nvme_bdev_ops)
3196                 return nvme_get_ns_from_dev(dev)->head;
3197         else
3198                 return disk->private_data;
3199 }
3200
3201 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3202                 char *buf)
3203 {
3204         struct nvme_ns_head *head = dev_to_ns_head(dev);
3205         struct nvme_ns_ids *ids = &head->ids;
3206         struct nvme_subsystem *subsys = head->subsys;
3207         int serial_len = sizeof(subsys->serial);
3208         int model_len = sizeof(subsys->model);
3209
3210         if (!uuid_is_null(&ids->uuid))
3211                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3212
3213         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3214                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3215
3216         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3217                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3218
3219         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3220                                   subsys->serial[serial_len - 1] == '\0'))
3221                 serial_len--;
3222         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3223                                  subsys->model[model_len - 1] == '\0'))
3224                 model_len--;
3225
3226         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3227                 serial_len, subsys->serial, model_len, subsys->model,
3228                 head->ns_id);
3229 }
3230 static DEVICE_ATTR_RO(wwid);
3231
3232 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3233                 char *buf)
3234 {
3235         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3236 }
3237 static DEVICE_ATTR_RO(nguid);
3238
3239 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3240                 char *buf)
3241 {
3242         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3243
3244         /* For backward compatibility expose the NGUID to userspace if
3245          * we have no UUID set
3246          */
3247         if (uuid_is_null(&ids->uuid)) {
3248                 printk_ratelimited(KERN_WARNING
3249                                    "No UUID available providing old NGUID\n");
3250                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3251         }
3252         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3253 }
3254 static DEVICE_ATTR_RO(uuid);
3255
3256 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3257                 char *buf)
3258 {
3259         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3260 }
3261 static DEVICE_ATTR_RO(eui);
3262
3263 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3264                 char *buf)
3265 {
3266         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3267 }
3268 static DEVICE_ATTR_RO(nsid);
3269
3270 static struct attribute *nvme_ns_id_attrs[] = {
3271         &dev_attr_wwid.attr,
3272         &dev_attr_uuid.attr,
3273         &dev_attr_nguid.attr,
3274         &dev_attr_eui.attr,
3275         &dev_attr_nsid.attr,
3276 #ifdef CONFIG_NVME_MULTIPATH
3277         &dev_attr_ana_grpid.attr,
3278         &dev_attr_ana_state.attr,
3279 #endif
3280         NULL,
3281 };
3282
3283 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3284                 struct attribute *a, int n)
3285 {
3286         struct device *dev = container_of(kobj, struct device, kobj);
3287         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3288
3289         if (a == &dev_attr_uuid.attr) {
3290                 if (uuid_is_null(&ids->uuid) &&
3291                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3292                         return 0;
3293         }
3294         if (a == &dev_attr_nguid.attr) {
3295                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296                         return 0;
3297         }
3298         if (a == &dev_attr_eui.attr) {
3299                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3300                         return 0;
3301         }
3302 #ifdef CONFIG_NVME_MULTIPATH
3303         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3304                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3305                         return 0;
3306                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3307                         return 0;
3308         }
3309 #endif
3310         return a->mode;
3311 }
3312
3313 static const struct attribute_group nvme_ns_id_attr_group = {
3314         .attrs          = nvme_ns_id_attrs,
3315         .is_visible     = nvme_ns_id_attrs_are_visible,
3316 };
3317
3318 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3319         &nvme_ns_id_attr_group,
3320         NULL,
3321 };
3322
3323 #define nvme_show_str_function(field)                                           \
3324 static ssize_t  field##_show(struct device *dev,                                \
3325                             struct device_attribute *attr, char *buf)           \
3326 {                                                                               \
3327         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3328         return sysfs_emit(buf, "%.*s\n",                                        \
3329                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3330 }                                                                               \
3331 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3332
3333 nvme_show_str_function(model);
3334 nvme_show_str_function(serial);
3335 nvme_show_str_function(firmware_rev);
3336
3337 #define nvme_show_int_function(field)                                           \
3338 static ssize_t  field##_show(struct device *dev,                                \
3339                             struct device_attribute *attr, char *buf)           \
3340 {                                                                               \
3341         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3342         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3343 }                                                                               \
3344 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3345
3346 nvme_show_int_function(cntlid);
3347 nvme_show_int_function(numa_node);
3348 nvme_show_int_function(queue_count);
3349 nvme_show_int_function(sqsize);
3350 nvme_show_int_function(kato);
3351
3352 static ssize_t nvme_sysfs_delete(struct device *dev,
3353                                 struct device_attribute *attr, const char *buf,
3354                                 size_t count)
3355 {
3356         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357
3358         if (device_remove_file_self(dev, attr))
3359                 nvme_delete_ctrl_sync(ctrl);
3360         return count;
3361 }
3362 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3363
3364 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3365                                          struct device_attribute *attr,
3366                                          char *buf)
3367 {
3368         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3369
3370         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3371 }
3372 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3373
3374 static ssize_t nvme_sysfs_show_state(struct device *dev,
3375                                      struct device_attribute *attr,
3376                                      char *buf)
3377 {
3378         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3379         static const char *const state_name[] = {
3380                 [NVME_CTRL_NEW]         = "new",
3381                 [NVME_CTRL_LIVE]        = "live",
3382                 [NVME_CTRL_RESETTING]   = "resetting",
3383                 [NVME_CTRL_CONNECTING]  = "connecting",
3384                 [NVME_CTRL_DELETING]    = "deleting",
3385                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3386                 [NVME_CTRL_DEAD]        = "dead",
3387         };
3388
3389         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3390             state_name[ctrl->state])
3391                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3392
3393         return sysfs_emit(buf, "unknown state\n");
3394 }
3395
3396 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3397
3398 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3399                                          struct device_attribute *attr,
3400                                          char *buf)
3401 {
3402         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3403
3404         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3405 }
3406 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3407
3408 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3409                                         struct device_attribute *attr,
3410                                         char *buf)
3411 {
3412         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3413
3414         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3415 }
3416 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3417
3418 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3419                                         struct device_attribute *attr,
3420                                         char *buf)
3421 {
3422         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3423
3424         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3425 }
3426 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3427
3428 static ssize_t nvme_sysfs_show_address(struct device *dev,
3429                                          struct device_attribute *attr,
3430                                          char *buf)
3431 {
3432         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3433
3434         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3435 }
3436 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3437
3438 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3439                 struct device_attribute *attr, char *buf)
3440 {
3441         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3442         struct nvmf_ctrl_options *opts = ctrl->opts;
3443
3444         if (ctrl->opts->max_reconnects == -1)
3445                 return sysfs_emit(buf, "off\n");
3446         return sysfs_emit(buf, "%d\n",
3447                           opts->max_reconnects * opts->reconnect_delay);
3448 }
3449
3450 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3451                 struct device_attribute *attr, const char *buf, size_t count)
3452 {
3453         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3454         struct nvmf_ctrl_options *opts = ctrl->opts;
3455         int ctrl_loss_tmo, err;
3456
3457         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3458         if (err)
3459                 return -EINVAL;
3460
3461         if (ctrl_loss_tmo < 0)
3462                 opts->max_reconnects = -1;
3463         else
3464                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3465                                                 opts->reconnect_delay);
3466         return count;
3467 }
3468 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3469         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3470
3471 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3472                 struct device_attribute *attr, char *buf)
3473 {
3474         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3475
3476         if (ctrl->opts->reconnect_delay == -1)
3477                 return sysfs_emit(buf, "off\n");
3478         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3479 }
3480
3481 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3482                 struct device_attribute *attr, const char *buf, size_t count)
3483 {
3484         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3485         unsigned int v;
3486         int err;
3487
3488         err = kstrtou32(buf, 10, &v);
3489         if (err)
3490                 return err;
3491
3492         ctrl->opts->reconnect_delay = v;
3493         return count;
3494 }
3495 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3496         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3497
3498 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3499                 struct device_attribute *attr, char *buf)
3500 {
3501         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3502
3503         if (ctrl->opts->fast_io_fail_tmo == -1)
3504                 return sysfs_emit(buf, "off\n");
3505         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3506 }
3507
3508 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3509                 struct device_attribute *attr, const char *buf, size_t count)
3510 {
3511         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3512         struct nvmf_ctrl_options *opts = ctrl->opts;
3513         int fast_io_fail_tmo, err;
3514
3515         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3516         if (err)
3517                 return -EINVAL;
3518
3519         if (fast_io_fail_tmo < 0)
3520                 opts->fast_io_fail_tmo = -1;
3521         else
3522                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3523         return count;
3524 }
3525 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3526         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3527
3528 static struct attribute *nvme_dev_attrs[] = {
3529         &dev_attr_reset_controller.attr,
3530         &dev_attr_rescan_controller.attr,
3531         &dev_attr_model.attr,
3532         &dev_attr_serial.attr,
3533         &dev_attr_firmware_rev.attr,
3534         &dev_attr_cntlid.attr,
3535         &dev_attr_delete_controller.attr,
3536         &dev_attr_transport.attr,
3537         &dev_attr_subsysnqn.attr,
3538         &dev_attr_address.attr,
3539         &dev_attr_state.attr,
3540         &dev_attr_numa_node.attr,
3541         &dev_attr_queue_count.attr,
3542         &dev_attr_sqsize.attr,
3543         &dev_attr_hostnqn.attr,
3544         &dev_attr_hostid.attr,
3545         &dev_attr_ctrl_loss_tmo.attr,
3546         &dev_attr_reconnect_delay.attr,
3547         &dev_attr_fast_io_fail_tmo.attr,
3548         &dev_attr_kato.attr,
3549         NULL
3550 };
3551
3552 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3553                 struct attribute *a, int n)
3554 {
3555         struct device *dev = container_of(kobj, struct device, kobj);
3556         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3557
3558         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3559                 return 0;
3560         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3561                 return 0;
3562         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3563                 return 0;
3564         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3565                 return 0;
3566         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3567                 return 0;
3568         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3569                 return 0;
3570         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3571                 return 0;
3572
3573         return a->mode;
3574 }
3575
3576 static const struct attribute_group nvme_dev_attrs_group = {
3577         .attrs          = nvme_dev_attrs,
3578         .is_visible     = nvme_dev_attrs_are_visible,
3579 };
3580
3581 static const struct attribute_group *nvme_dev_attr_groups[] = {
3582         &nvme_dev_attrs_group,
3583         NULL,
3584 };
3585
3586 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3587                 unsigned nsid)
3588 {
3589         struct nvme_ns_head *h;
3590
3591         lockdep_assert_held(&subsys->lock);
3592
3593         list_for_each_entry(h, &subsys->nsheads, entry) {
3594                 if (h->ns_id != nsid)
3595                         continue;
3596                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3597                         return h;
3598         }
3599
3600         return NULL;
3601 }
3602
3603 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3604                 struct nvme_ns_head *new)
3605 {
3606         struct nvme_ns_head *h;
3607
3608         lockdep_assert_held(&subsys->lock);
3609
3610         list_for_each_entry(h, &subsys->nsheads, entry) {
3611                 if (nvme_ns_ids_valid(&new->ids) &&
3612                     nvme_ns_ids_equal(&new->ids, &h->ids))
3613                         return -EINVAL;
3614         }
3615
3616         return 0;
3617 }
3618
3619 static void nvme_cdev_rel(struct device *dev)
3620 {
3621         ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3622 }
3623
3624 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3625 {
3626         cdev_device_del(cdev, cdev_device);
3627         put_device(cdev_device);
3628 }
3629
3630 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3631                 const struct file_operations *fops, struct module *owner)
3632 {
3633         int minor, ret;
3634
3635         minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3636         if (minor < 0)
3637                 return minor;
3638         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3639         cdev_device->class = nvme_ns_chr_class;
3640         cdev_device->release = nvme_cdev_rel;
3641         device_initialize(cdev_device);
3642         cdev_init(cdev, fops);
3643         cdev->owner = owner;
3644         ret = cdev_device_add(cdev, cdev_device);
3645         if (ret)
3646                 put_device(cdev_device);
3647
3648         return ret;
3649 }
3650
3651 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3652 {
3653         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3654 }
3655
3656 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3657 {
3658         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3659         return 0;
3660 }
3661
3662 static const struct file_operations nvme_ns_chr_fops = {
3663         .owner          = THIS_MODULE,
3664         .open           = nvme_ns_chr_open,
3665         .release        = nvme_ns_chr_release,
3666         .unlocked_ioctl = nvme_ns_chr_ioctl,
3667         .compat_ioctl   = compat_ptr_ioctl,
3668 };
3669
3670 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3671 {
3672         int ret;
3673
3674         ns->cdev_device.parent = ns->ctrl->device;
3675         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3676                            ns->ctrl->instance, ns->head->instance);
3677         if (ret)
3678                 return ret;
3679
3680         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3681                              ns->ctrl->ops->module);
3682 }
3683
3684 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3685                 unsigned nsid, struct nvme_ns_ids *ids)
3686 {
3687         struct nvme_ns_head *head;
3688         size_t size = sizeof(*head);
3689         int ret = -ENOMEM;
3690
3691 #ifdef CONFIG_NVME_MULTIPATH
3692         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3693 #endif
3694
3695         head = kzalloc(size, GFP_KERNEL);
3696         if (!head)
3697                 goto out;
3698         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3699         if (ret < 0)
3700                 goto out_free_head;
3701         head->instance = ret;
3702         INIT_LIST_HEAD(&head->list);
3703         ret = init_srcu_struct(&head->srcu);
3704         if (ret)
3705                 goto out_ida_remove;
3706         head->subsys = ctrl->subsys;
3707         head->ns_id = nsid;
3708         head->ids = *ids;
3709         kref_init(&head->ref);
3710
3711         ret = __nvme_check_ids(ctrl->subsys, head);
3712         if (ret) {
3713                 dev_err(ctrl->device,
3714                         "duplicate IDs for nsid %d\n", nsid);
3715                 goto out_cleanup_srcu;
3716         }
3717
3718         if (head->ids.csi) {
3719                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3720                 if (ret)
3721                         goto out_cleanup_srcu;
3722         } else
3723                 head->effects = ctrl->effects;
3724
3725         ret = nvme_mpath_alloc_disk(ctrl, head);
3726         if (ret)
3727                 goto out_cleanup_srcu;
3728
3729         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3730
3731         kref_get(&ctrl->subsys->ref);
3732
3733         return head;
3734 out_cleanup_srcu:
3735         cleanup_srcu_struct(&head->srcu);
3736 out_ida_remove:
3737         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3738 out_free_head:
3739         kfree(head);
3740 out:
3741         if (ret > 0)
3742                 ret = blk_status_to_errno(nvme_error_status(ret));
3743         return ERR_PTR(ret);
3744 }
3745
3746 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3747                 struct nvme_ns_ids *ids, bool is_shared)
3748 {
3749         struct nvme_ctrl *ctrl = ns->ctrl;
3750         struct nvme_ns_head *head = NULL;
3751         int ret = 0;
3752
3753         mutex_lock(&ctrl->subsys->lock);
3754         head = nvme_find_ns_head(ctrl->subsys, nsid);
3755         if (!head) {
3756                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3757                 if (IS_ERR(head)) {
3758                         ret = PTR_ERR(head);
3759                         goto out_unlock;
3760                 }
3761                 head->shared = is_shared;
3762         } else {
3763                 ret = -EINVAL;
3764                 if (!is_shared || !head->shared) {
3765                         dev_err(ctrl->device,
3766                                 "Duplicate unshared namespace %d\n", nsid);
3767                         goto out_put_ns_head;
3768                 }
3769                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3770                         dev_err(ctrl->device,
3771                                 "IDs don't match for shared namespace %d\n",
3772                                         nsid);
3773                         goto out_put_ns_head;
3774                 }
3775         }
3776
3777         list_add_tail_rcu(&ns->siblings, &head->list);
3778         ns->head = head;
3779         mutex_unlock(&ctrl->subsys->lock);
3780         return 0;
3781
3782 out_put_ns_head:
3783         nvme_put_ns_head(head);
3784 out_unlock:
3785         mutex_unlock(&ctrl->subsys->lock);
3786         return ret;
3787 }
3788
3789 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3790 {
3791         struct nvme_ns *ns, *ret = NULL;
3792
3793         down_read(&ctrl->namespaces_rwsem);
3794         list_for_each_entry(ns, &ctrl->namespaces, list) {
3795                 if (ns->head->ns_id == nsid) {
3796                         if (!nvme_get_ns(ns))
3797                                 continue;
3798                         ret = ns;
3799                         break;
3800                 }
3801                 if (ns->head->ns_id > nsid)
3802                         break;
3803         }
3804         up_read(&ctrl->namespaces_rwsem);
3805         return ret;
3806 }
3807 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3808
3809 /*
3810  * Add the namespace to the controller list while keeping the list ordered.
3811  */
3812 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3813 {
3814         struct nvme_ns *tmp;
3815
3816         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3817                 if (tmp->head->ns_id < ns->head->ns_id) {
3818                         list_add(&ns->list, &tmp->list);
3819                         return;
3820                 }
3821         }
3822         list_add(&ns->list, &ns->ctrl->namespaces);
3823 }
3824
3825 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3826                 struct nvme_ns_ids *ids)
3827 {
3828         struct nvme_ns *ns;
3829         struct gendisk *disk;
3830         struct nvme_id_ns *id;
3831         int node = ctrl->numa_node;
3832
3833         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3834                 return;
3835
3836         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3837         if (!ns)
3838                 goto out_free_id;
3839
3840         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3841         if (IS_ERR(disk))
3842                 goto out_free_ns;
3843         disk->fops = &nvme_bdev_ops;
3844         disk->private_data = ns;
3845
3846         ns->disk = disk;
3847         ns->queue = disk->queue;
3848
3849         if (ctrl->opts && ctrl->opts->data_digest)
3850                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3851
3852         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3853         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3854                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3855
3856         ns->ctrl = ctrl;
3857         kref_init(&ns->kref);
3858
3859         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3860                 goto out_cleanup_disk;
3861
3862         /*
3863          * Without the multipath code enabled, multiple controller per
3864          * subsystems are visible as devices and thus we cannot use the
3865          * subsystem instance.
3866          */
3867         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3868                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3869                         ns->head->instance);
3870
3871         if (nvme_update_ns_info(ns, id))
3872                 goto out_unlink_ns;
3873
3874         down_write(&ctrl->namespaces_rwsem);
3875         nvme_ns_add_to_ctrl_list(ns);
3876         up_write(&ctrl->namespaces_rwsem);
3877         nvme_get_ctrl(ctrl);
3878
3879         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3880                 goto out_cleanup_ns_from_list;
3881
3882         if (!nvme_ns_head_multipath(ns->head))
3883                 nvme_add_ns_cdev(ns);
3884
3885         nvme_mpath_add_disk(ns, id);
3886         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3887         kfree(id);
3888
3889         return;
3890
3891  out_cleanup_ns_from_list:
3892         nvme_put_ctrl(ctrl);
3893         down_write(&ctrl->namespaces_rwsem);
3894         list_del_init(&ns->list);
3895         up_write(&ctrl->namespaces_rwsem);
3896  out_unlink_ns:
3897         mutex_lock(&ctrl->subsys->lock);
3898         list_del_rcu(&ns->siblings);
3899         if (list_empty(&ns->head->list))
3900                 list_del_init(&ns->head->entry);
3901         mutex_unlock(&ctrl->subsys->lock);
3902         nvme_put_ns_head(ns->head);
3903  out_cleanup_disk:
3904         blk_cleanup_disk(disk);
3905  out_free_ns:
3906         kfree(ns);
3907  out_free_id:
3908         kfree(id);
3909 }
3910
3911 static void nvme_ns_remove(struct nvme_ns *ns)
3912 {
3913         bool last_path = false;
3914
3915         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3916                 return;
3917
3918         clear_bit(NVME_NS_READY, &ns->flags);
3919         set_capacity(ns->disk, 0);
3920         nvme_fault_inject_fini(&ns->fault_inject);
3921
3922         mutex_lock(&ns->ctrl->subsys->lock);
3923         list_del_rcu(&ns->siblings);
3924         if (list_empty(&ns->head->list)) {
3925                 list_del_init(&ns->head->entry);
3926                 last_path = true;
3927         }
3928         mutex_unlock(&ns->ctrl->subsys->lock);
3929
3930         /* guarantee not available in head->list */
3931         synchronize_rcu();
3932
3933         /* wait for concurrent submissions */
3934         if (nvme_mpath_clear_current_path(ns))
3935                 synchronize_srcu(&ns->head->srcu);
3936
3937         if (!nvme_ns_head_multipath(ns->head))
3938                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3939         del_gendisk(ns->disk);
3940         blk_cleanup_queue(ns->queue);
3941
3942         down_write(&ns->ctrl->namespaces_rwsem);
3943         list_del_init(&ns->list);
3944         up_write(&ns->ctrl->namespaces_rwsem);
3945
3946         if (last_path)
3947                 nvme_mpath_shutdown_disk(ns->head);
3948         nvme_put_ns(ns);
3949 }
3950
3951 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3952 {
3953         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3954
3955         if (ns) {
3956                 nvme_ns_remove(ns);
3957                 nvme_put_ns(ns);
3958         }
3959 }
3960
3961 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3962 {
3963         struct nvme_id_ns *id;
3964         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3965
3966         if (test_bit(NVME_NS_DEAD, &ns->flags))
3967                 goto out;
3968
3969         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3970         if (ret)
3971                 goto out;
3972
3973         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3974         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3975                 dev_err(ns->ctrl->device,
3976                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3977                 goto out_free_id;
3978         }
3979
3980         ret = nvme_update_ns_info(ns, id);
3981
3982 out_free_id:
3983         kfree(id);
3984 out:
3985         /*
3986          * Only remove the namespace if we got a fatal error back from the
3987          * device, otherwise ignore the error and just move on.
3988          *
3989          * TODO: we should probably schedule a delayed retry here.
3990          */
3991         if (ret > 0 && (ret & NVME_SC_DNR))
3992                 nvme_ns_remove(ns);
3993 }
3994
3995 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3996 {
3997         struct nvme_ns_ids ids = { };
3998         struct nvme_ns *ns;
3999
4000         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4001                 return;
4002
4003         ns = nvme_find_get_ns(ctrl, nsid);
4004         if (ns) {
4005                 nvme_validate_ns(ns, &ids);
4006                 nvme_put_ns(ns);
4007                 return;
4008         }
4009
4010         switch (ids.csi) {
4011         case NVME_CSI_NVM:
4012                 nvme_alloc_ns(ctrl, nsid, &ids);
4013                 break;
4014         case NVME_CSI_ZNS:
4015                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4016                         dev_warn(ctrl->device,
4017                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4018                                 nsid);
4019                         break;
4020                 }
4021                 if (!nvme_multi_css(ctrl)) {
4022                         dev_warn(ctrl->device,
4023                                 "command set not reported for nsid: %d\n",
4024                                 nsid);
4025                         break;
4026                 }
4027                 nvme_alloc_ns(ctrl, nsid, &ids);
4028                 break;
4029         default:
4030                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4031                         ids.csi, nsid);
4032                 break;
4033         }
4034 }
4035
4036 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4037                                         unsigned nsid)
4038 {
4039         struct nvme_ns *ns, *next;
4040         LIST_HEAD(rm_list);
4041
4042         down_write(&ctrl->namespaces_rwsem);
4043         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4044                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4045                         list_move_tail(&ns->list, &rm_list);
4046         }
4047         up_write(&ctrl->namespaces_rwsem);
4048
4049         list_for_each_entry_safe(ns, next, &rm_list, list)
4050                 nvme_ns_remove(ns);
4051
4052 }
4053
4054 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4055 {
4056         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4057         __le32 *ns_list;
4058         u32 prev = 0;
4059         int ret = 0, i;
4060
4061         if (nvme_ctrl_limited_cns(ctrl))
4062                 return -EOPNOTSUPP;
4063
4064         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4065         if (!ns_list)
4066                 return -ENOMEM;
4067
4068         for (;;) {
4069                 struct nvme_command cmd = {
4070                         .identify.opcode        = nvme_admin_identify,
4071                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4072                         .identify.nsid          = cpu_to_le32(prev),
4073                 };
4074
4075                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4076                                             NVME_IDENTIFY_DATA_SIZE);
4077                 if (ret) {
4078                         dev_warn(ctrl->device,
4079                                 "Identify NS List failed (status=0x%x)\n", ret);
4080                         goto free;
4081                 }
4082
4083                 for (i = 0; i < nr_entries; i++) {
4084                         u32 nsid = le32_to_cpu(ns_list[i]);
4085
4086                         if (!nsid)      /* end of the list? */
4087                                 goto out;
4088                         nvme_validate_or_alloc_ns(ctrl, nsid);
4089                         while (++prev < nsid)
4090                                 nvme_ns_remove_by_nsid(ctrl, prev);
4091                 }
4092         }
4093  out:
4094         nvme_remove_invalid_namespaces(ctrl, prev);
4095  free:
4096         kfree(ns_list);
4097         return ret;
4098 }
4099
4100 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4101 {
4102         struct nvme_id_ctrl *id;
4103         u32 nn, i;
4104
4105         if (nvme_identify_ctrl(ctrl, &id))
4106                 return;
4107         nn = le32_to_cpu(id->nn);
4108         kfree(id);
4109
4110         for (i = 1; i <= nn; i++)
4111                 nvme_validate_or_alloc_ns(ctrl, i);
4112
4113         nvme_remove_invalid_namespaces(ctrl, nn);
4114 }
4115
4116 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4117 {
4118         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4119         __le32 *log;
4120         int error;
4121
4122         log = kzalloc(log_size, GFP_KERNEL);
4123         if (!log)
4124                 return;
4125
4126         /*
4127          * We need to read the log to clear the AEN, but we don't want to rely
4128          * on it for the changed namespace information as userspace could have
4129          * raced with us in reading the log page, which could cause us to miss
4130          * updates.
4131          */
4132         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4133                         NVME_CSI_NVM, log, log_size, 0);
4134         if (error)
4135                 dev_warn(ctrl->device,
4136                         "reading changed ns log failed: %d\n", error);
4137
4138         kfree(log);
4139 }
4140
4141 static void nvme_scan_work(struct work_struct *work)
4142 {
4143         struct nvme_ctrl *ctrl =
4144                 container_of(work, struct nvme_ctrl, scan_work);
4145
4146         /* No tagset on a live ctrl means IO queues could not created */
4147         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4148                 return;
4149
4150         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4151                 dev_info(ctrl->device, "rescanning namespaces.\n");
4152                 nvme_clear_changed_ns_log(ctrl);
4153         }
4154
4155         mutex_lock(&ctrl->scan_lock);
4156         if (nvme_scan_ns_list(ctrl) != 0)
4157                 nvme_scan_ns_sequential(ctrl);
4158         mutex_unlock(&ctrl->scan_lock);
4159 }
4160
4161 /*
4162  * This function iterates the namespace list unlocked to allow recovery from
4163  * controller failure. It is up to the caller to ensure the namespace list is
4164  * not modified by scan work while this function is executing.
4165  */
4166 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4167 {
4168         struct nvme_ns *ns, *next;
4169         LIST_HEAD(ns_list);
4170
4171         /*
4172          * make sure to requeue I/O to all namespaces as these
4173          * might result from the scan itself and must complete
4174          * for the scan_work to make progress
4175          */
4176         nvme_mpath_clear_ctrl_paths(ctrl);
4177
4178         /* prevent racing with ns scanning */
4179         flush_work(&ctrl->scan_work);
4180
4181         /*
4182          * The dead states indicates the controller was not gracefully
4183          * disconnected. In that case, we won't be able to flush any data while
4184          * removing the namespaces' disks; fail all the queues now to avoid
4185          * potentially having to clean up the failed sync later.
4186          */
4187         if (ctrl->state == NVME_CTRL_DEAD)
4188                 nvme_kill_queues(ctrl);
4189
4190         /* this is a no-op when called from the controller reset handler */
4191         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4192
4193         down_write(&ctrl->namespaces_rwsem);
4194         list_splice_init(&ctrl->namespaces, &ns_list);
4195         up_write(&ctrl->namespaces_rwsem);
4196
4197         list_for_each_entry_safe(ns, next, &ns_list, list)
4198                 nvme_ns_remove(ns);
4199 }
4200 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4201
4202 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4203 {
4204         struct nvme_ctrl *ctrl =
4205                 container_of(dev, struct nvme_ctrl, ctrl_device);
4206         struct nvmf_ctrl_options *opts = ctrl->opts;
4207         int ret;
4208
4209         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4210         if (ret)
4211                 return ret;
4212
4213         if (opts) {
4214                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4215                 if (ret)
4216                         return ret;
4217
4218                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4219                                 opts->trsvcid ?: "none");
4220                 if (ret)
4221                         return ret;
4222
4223                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4224                                 opts->host_traddr ?: "none");
4225                 if (ret)
4226                         return ret;
4227
4228                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4229                                 opts->host_iface ?: "none");
4230         }
4231         return ret;
4232 }
4233
4234 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4235 {
4236         char *envp[2] = { NULL, NULL };
4237         u32 aen_result = ctrl->aen_result;
4238
4239         ctrl->aen_result = 0;
4240         if (!aen_result)
4241                 return;
4242
4243         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4244         if (!envp[0])
4245                 return;
4246         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4247         kfree(envp[0]);
4248 }
4249
4250 static void nvme_async_event_work(struct work_struct *work)
4251 {
4252         struct nvme_ctrl *ctrl =
4253                 container_of(work, struct nvme_ctrl, async_event_work);
4254
4255         nvme_aen_uevent(ctrl);
4256         ctrl->ops->submit_async_event(ctrl);
4257 }
4258
4259 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4260 {
4261
4262         u32 csts;
4263
4264         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4265                 return false;
4266
4267         if (csts == ~0)
4268                 return false;
4269
4270         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4271 }
4272
4273 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4274 {
4275         struct nvme_fw_slot_info_log *log;
4276
4277         log = kmalloc(sizeof(*log), GFP_KERNEL);
4278         if (!log)
4279                 return;
4280
4281         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4282                         log, sizeof(*log), 0))
4283                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4284         kfree(log);
4285 }
4286
4287 static void nvme_fw_act_work(struct work_struct *work)
4288 {
4289         struct nvme_ctrl *ctrl = container_of(work,
4290                                 struct nvme_ctrl, fw_act_work);
4291         unsigned long fw_act_timeout;
4292
4293         if (ctrl->mtfa)
4294                 fw_act_timeout = jiffies +
4295                                 msecs_to_jiffies(ctrl->mtfa * 100);
4296         else
4297                 fw_act_timeout = jiffies +
4298                                 msecs_to_jiffies(admin_timeout * 1000);
4299
4300         nvme_stop_queues(ctrl);
4301         while (nvme_ctrl_pp_status(ctrl)) {
4302                 if (time_after(jiffies, fw_act_timeout)) {
4303                         dev_warn(ctrl->device,
4304                                 "Fw activation timeout, reset controller\n");
4305                         nvme_try_sched_reset(ctrl);
4306                         return;
4307                 }
4308                 msleep(100);
4309         }
4310
4311         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4312                 return;
4313
4314         nvme_start_queues(ctrl);
4315         /* read FW slot information to clear the AER */
4316         nvme_get_fw_slot_info(ctrl);
4317 }
4318
4319 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4320 {
4321         u32 aer_notice_type = (result & 0xff00) >> 8;
4322
4323         trace_nvme_async_event(ctrl, aer_notice_type);
4324
4325         switch (aer_notice_type) {
4326         case NVME_AER_NOTICE_NS_CHANGED:
4327                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4328                 nvme_queue_scan(ctrl);
4329                 break;
4330         case NVME_AER_NOTICE_FW_ACT_STARTING:
4331                 /*
4332                  * We are (ab)using the RESETTING state to prevent subsequent
4333                  * recovery actions from interfering with the controller's
4334                  * firmware activation.
4335                  */
4336                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4337                         queue_work(nvme_wq, &ctrl->fw_act_work);
4338                 break;
4339 #ifdef CONFIG_NVME_MULTIPATH
4340         case NVME_AER_NOTICE_ANA:
4341                 if (!ctrl->ana_log_buf)
4342                         break;
4343                 queue_work(nvme_wq, &ctrl->ana_work);
4344                 break;
4345 #endif
4346         case NVME_AER_NOTICE_DISC_CHANGED:
4347                 ctrl->aen_result = result;
4348                 break;
4349         default:
4350                 dev_warn(ctrl->device, "async event result %08x\n", result);
4351         }
4352 }
4353
4354 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4355                 volatile union nvme_result *res)
4356 {
4357         u32 result = le32_to_cpu(res->u32);
4358         u32 aer_type = result & 0x07;
4359
4360         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4361                 return;
4362
4363         switch (aer_type) {
4364         case NVME_AER_NOTICE:
4365                 nvme_handle_aen_notice(ctrl, result);
4366                 break;
4367         case NVME_AER_ERROR:
4368         case NVME_AER_SMART:
4369         case NVME_AER_CSS:
4370         case NVME_AER_VS:
4371                 trace_nvme_async_event(ctrl, aer_type);
4372                 ctrl->aen_result = result;
4373                 break;
4374         default:
4375                 break;
4376         }
4377         queue_work(nvme_wq, &ctrl->async_event_work);
4378 }
4379 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4380
4381 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4382 {
4383         nvme_mpath_stop(ctrl);
4384         nvme_stop_keep_alive(ctrl);
4385         nvme_stop_failfast_work(ctrl);
4386         flush_work(&ctrl->async_event_work);
4387         cancel_work_sync(&ctrl->fw_act_work);
4388 }
4389 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4390
4391 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4392 {
4393         nvme_start_keep_alive(ctrl);
4394
4395         nvme_enable_aen(ctrl);
4396
4397         if (ctrl->queue_count > 1) {
4398                 nvme_queue_scan(ctrl);
4399                 nvme_start_queues(ctrl);
4400         }
4401 }
4402 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4403
4404 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4405 {
4406         nvme_hwmon_exit(ctrl);
4407         nvme_fault_inject_fini(&ctrl->fault_inject);
4408         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4409         cdev_device_del(&ctrl->cdev, ctrl->device);
4410         nvme_put_ctrl(ctrl);
4411 }
4412 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4413
4414 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4415 {
4416         struct nvme_effects_log *cel;
4417         unsigned long i;
4418
4419         xa_for_each(&ctrl->cels, i, cel) {
4420                 xa_erase(&ctrl->cels, i);
4421                 kfree(cel);
4422         }
4423
4424         xa_destroy(&ctrl->cels);
4425 }
4426
4427 static void nvme_free_ctrl(struct device *dev)
4428 {
4429         struct nvme_ctrl *ctrl =
4430                 container_of(dev, struct nvme_ctrl, ctrl_device);
4431         struct nvme_subsystem *subsys = ctrl->subsys;
4432
4433         if (!subsys || ctrl->instance != subsys->instance)
4434                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4435
4436         nvme_free_cels(ctrl);
4437         nvme_mpath_uninit(ctrl);
4438         __free_page(ctrl->discard_page);
4439
4440         if (subsys) {
4441                 mutex_lock(&nvme_subsystems_lock);
4442                 list_del(&ctrl->subsys_entry);
4443                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4444                 mutex_unlock(&nvme_subsystems_lock);
4445         }
4446
4447         ctrl->ops->free_ctrl(ctrl);
4448
4449         if (subsys)
4450                 nvme_put_subsystem(subsys);
4451 }
4452
4453 /*
4454  * Initialize a NVMe controller structures.  This needs to be called during
4455  * earliest initialization so that we have the initialized structured around
4456  * during probing.
4457  */
4458 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4459                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4460 {
4461         int ret;
4462
4463         ctrl->state = NVME_CTRL_NEW;
4464         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4465         spin_lock_init(&ctrl->lock);
4466         mutex_init(&ctrl->scan_lock);
4467         INIT_LIST_HEAD(&ctrl->namespaces);
4468         xa_init(&ctrl->cels);
4469         init_rwsem(&ctrl->namespaces_rwsem);
4470         ctrl->dev = dev;
4471         ctrl->ops = ops;
4472         ctrl->quirks = quirks;
4473         ctrl->numa_node = NUMA_NO_NODE;
4474         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4475         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4476         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4477         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4478         init_waitqueue_head(&ctrl->state_wq);
4479
4480         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4481         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4482         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4483         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4484
4485         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4486                         PAGE_SIZE);
4487         ctrl->discard_page = alloc_page(GFP_KERNEL);
4488         if (!ctrl->discard_page) {
4489                 ret = -ENOMEM;
4490                 goto out;
4491         }
4492
4493         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4494         if (ret < 0)
4495                 goto out;
4496         ctrl->instance = ret;
4497
4498         device_initialize(&ctrl->ctrl_device);
4499         ctrl->device = &ctrl->ctrl_device;
4500         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4501                         ctrl->instance);
4502         ctrl->device->class = nvme_class;
4503         ctrl->device->parent = ctrl->dev;
4504         ctrl->device->groups = nvme_dev_attr_groups;
4505         ctrl->device->release = nvme_free_ctrl;
4506         dev_set_drvdata(ctrl->device, ctrl);
4507         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4508         if (ret)
4509                 goto out_release_instance;
4510
4511         nvme_get_ctrl(ctrl);
4512         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4513         ctrl->cdev.owner = ops->module;
4514         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4515         if (ret)
4516                 goto out_free_name;
4517
4518         /*
4519          * Initialize latency tolerance controls.  The sysfs files won't
4520          * be visible to userspace unless the device actually supports APST.
4521          */
4522         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4523         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4524                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4525
4526         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4527         nvme_mpath_init_ctrl(ctrl);
4528
4529         return 0;
4530 out_free_name:
4531         nvme_put_ctrl(ctrl);
4532         kfree_const(ctrl->device->kobj.name);
4533 out_release_instance:
4534         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4535 out:
4536         if (ctrl->discard_page)
4537                 __free_page(ctrl->discard_page);
4538         return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4541
4542 static void nvme_start_ns_queue(struct nvme_ns *ns)
4543 {
4544         if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4545                 blk_mq_unquiesce_queue(ns->queue);
4546 }
4547
4548 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4549 {
4550         if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4551                 blk_mq_quiesce_queue(ns->queue);
4552         else
4553                 blk_mq_wait_quiesce_done(ns->queue);
4554 }
4555
4556 /*
4557  * Prepare a queue for teardown.
4558  *
4559  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4560  * the capacity to 0 after that to avoid blocking dispatchers that may be
4561  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4562  * be synced.
4563  */
4564 static void nvme_set_queue_dying(struct nvme_ns *ns)
4565 {
4566         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4567                 return;
4568
4569         blk_set_queue_dying(ns->queue);
4570         nvme_start_ns_queue(ns);
4571
4572         set_capacity_and_notify(ns->disk, 0);
4573 }
4574
4575 /**
4576  * nvme_kill_queues(): Ends all namespace queues
4577  * @ctrl: the dead controller that needs to end
4578  *
4579  * Call this function when the driver determines it is unable to get the
4580  * controller in a state capable of servicing IO.
4581  */
4582 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4583 {
4584         struct nvme_ns *ns;
4585
4586         down_read(&ctrl->namespaces_rwsem);
4587
4588         /* Forcibly unquiesce queues to avoid blocking dispatch */
4589         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4590                 nvme_start_admin_queue(ctrl);
4591
4592         list_for_each_entry(ns, &ctrl->namespaces, list)
4593                 nvme_set_queue_dying(ns);
4594
4595         up_read(&ctrl->namespaces_rwsem);
4596 }
4597 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4598
4599 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4600 {
4601         struct nvme_ns *ns;
4602
4603         down_read(&ctrl->namespaces_rwsem);
4604         list_for_each_entry(ns, &ctrl->namespaces, list)
4605                 blk_mq_unfreeze_queue(ns->queue);
4606         up_read(&ctrl->namespaces_rwsem);
4607 }
4608 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4609
4610 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4611 {
4612         struct nvme_ns *ns;
4613
4614         down_read(&ctrl->namespaces_rwsem);
4615         list_for_each_entry(ns, &ctrl->namespaces, list) {
4616                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4617                 if (timeout <= 0)
4618                         break;
4619         }
4620         up_read(&ctrl->namespaces_rwsem);
4621         return timeout;
4622 }
4623 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4624
4625 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4626 {
4627         struct nvme_ns *ns;
4628
4629         down_read(&ctrl->namespaces_rwsem);
4630         list_for_each_entry(ns, &ctrl->namespaces, list)
4631                 blk_mq_freeze_queue_wait(ns->queue);
4632         up_read(&ctrl->namespaces_rwsem);
4633 }
4634 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4635
4636 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4637 {
4638         struct nvme_ns *ns;
4639
4640         down_read(&ctrl->namespaces_rwsem);
4641         list_for_each_entry(ns, &ctrl->namespaces, list)
4642                 blk_freeze_queue_start(ns->queue);
4643         up_read(&ctrl->namespaces_rwsem);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4646
4647 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4648 {
4649         struct nvme_ns *ns;
4650
4651         down_read(&ctrl->namespaces_rwsem);
4652         list_for_each_entry(ns, &ctrl->namespaces, list)
4653                 nvme_stop_ns_queue(ns);
4654         up_read(&ctrl->namespaces_rwsem);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4657
4658 void nvme_start_queues(struct nvme_ctrl *ctrl)
4659 {
4660         struct nvme_ns *ns;
4661
4662         down_read(&ctrl->namespaces_rwsem);
4663         list_for_each_entry(ns, &ctrl->namespaces, list)
4664                 nvme_start_ns_queue(ns);
4665         up_read(&ctrl->namespaces_rwsem);
4666 }
4667 EXPORT_SYMBOL_GPL(nvme_start_queues);
4668
4669 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4670 {
4671         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4672                 blk_mq_quiesce_queue(ctrl->admin_q);
4673         else
4674                 blk_mq_wait_quiesce_done(ctrl->admin_q);
4675 }
4676 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4677
4678 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4679 {
4680         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4681                 blk_mq_unquiesce_queue(ctrl->admin_q);
4682 }
4683 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4684
4685 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4686 {
4687         struct nvme_ns *ns;
4688
4689         down_read(&ctrl->namespaces_rwsem);
4690         list_for_each_entry(ns, &ctrl->namespaces, list)
4691                 blk_sync_queue(ns->queue);
4692         up_read(&ctrl->namespaces_rwsem);
4693 }
4694 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4695
4696 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4697 {
4698         nvme_sync_io_queues(ctrl);
4699         if (ctrl->admin_q)
4700                 blk_sync_queue(ctrl->admin_q);
4701 }
4702 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4703
4704 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4705 {
4706         if (file->f_op != &nvme_dev_fops)
4707                 return NULL;
4708         return file->private_data;
4709 }
4710 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4711
4712 /*
4713  * Check we didn't inadvertently grow the command structure sizes:
4714  */
4715 static inline void _nvme_check_size(void)
4716 {
4717         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4718         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4719         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4720         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4721         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4722         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4723         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4724         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4725         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4726         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4727         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4728         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4729         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4730         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4731         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4732         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4733         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4734         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4735         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4736         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4737 }
4738
4739
4740 static int __init nvme_core_init(void)
4741 {
4742         int result = -ENOMEM;
4743
4744         _nvme_check_size();
4745
4746         nvme_wq = alloc_workqueue("nvme-wq",
4747                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4748         if (!nvme_wq)
4749                 goto out;
4750
4751         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4752                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4753         if (!nvme_reset_wq)
4754                 goto destroy_wq;
4755
4756         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4757                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4758         if (!nvme_delete_wq)
4759                 goto destroy_reset_wq;
4760
4761         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4762                         NVME_MINORS, "nvme");
4763         if (result < 0)
4764                 goto destroy_delete_wq;
4765
4766         nvme_class = class_create(THIS_MODULE, "nvme");
4767         if (IS_ERR(nvme_class)) {
4768                 result = PTR_ERR(nvme_class);
4769                 goto unregister_chrdev;
4770         }
4771         nvme_class->dev_uevent = nvme_class_uevent;
4772
4773         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4774         if (IS_ERR(nvme_subsys_class)) {
4775                 result = PTR_ERR(nvme_subsys_class);
4776                 goto destroy_class;
4777         }
4778
4779         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4780                                      "nvme-generic");
4781         if (result < 0)
4782                 goto destroy_subsys_class;
4783
4784         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4785         if (IS_ERR(nvme_ns_chr_class)) {
4786                 result = PTR_ERR(nvme_ns_chr_class);
4787                 goto unregister_generic_ns;
4788         }
4789
4790         return 0;
4791
4792 unregister_generic_ns:
4793         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4794 destroy_subsys_class:
4795         class_destroy(nvme_subsys_class);
4796 destroy_class:
4797         class_destroy(nvme_class);
4798 unregister_chrdev:
4799         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4800 destroy_delete_wq:
4801         destroy_workqueue(nvme_delete_wq);
4802 destroy_reset_wq:
4803         destroy_workqueue(nvme_reset_wq);
4804 destroy_wq:
4805         destroy_workqueue(nvme_wq);
4806 out:
4807         return result;
4808 }
4809
4810 static void __exit nvme_core_exit(void)
4811 {
4812         class_destroy(nvme_ns_chr_class);
4813         class_destroy(nvme_subsys_class);
4814         class_destroy(nvme_class);
4815         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4816         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4817         destroy_workqueue(nvme_delete_wq);
4818         destroy_workqueue(nvme_reset_wq);
4819         destroy_workqueue(nvme_wq);
4820         ida_destroy(&nvme_ns_chr_minor_ida);
4821         ida_destroy(&nvme_instance_ida);
4822 }
4823
4824 MODULE_LICENSE("GPL");
4825 MODULE_VERSION("1.0");
4826 module_init(nvme_core_init);
4827 module_exit(nvme_core_exit);