OSDN Git Service

Merge tag 'kvmarm-fixes-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13         "turn on native support for multiple controllers per subsystem");
14
15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
16 {
17         return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3));
18 }
19
20 /*
21  * If multipathing is enabled we need to always use the subsystem instance
22  * number for numbering our devices to avoid conflicts between subsystems that
23  * have multiple controllers and thus use the multipath-aware subsystem node
24  * and those that have a single controller and use the controller node
25  * directly.
26  */
27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
28                         struct nvme_ctrl *ctrl, int *flags)
29 {
30         if (!multipath) {
31                 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
32         } else if (ns->head->disk) {
33                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
34                                 ctrl->cntlid, ns->head->instance);
35                 *flags = GENHD_FL_HIDDEN;
36         } else {
37                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
38                                 ns->head->instance);
39         }
40 }
41
42 void nvme_failover_req(struct request *req)
43 {
44         struct nvme_ns *ns = req->q->queuedata;
45         u16 status = nvme_req(req)->status;
46         unsigned long flags;
47
48         spin_lock_irqsave(&ns->head->requeue_lock, flags);
49         blk_steal_bios(&ns->head->requeue_list, req);
50         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
51         blk_mq_end_request(req, 0);
52
53         switch (status & 0x7ff) {
54         case NVME_SC_ANA_TRANSITION:
55         case NVME_SC_ANA_INACCESSIBLE:
56         case NVME_SC_ANA_PERSISTENT_LOSS:
57                 /*
58                  * If we got back an ANA error we know the controller is alive,
59                  * but not ready to serve this namespaces.  The spec suggests
60                  * we should update our general state here, but due to the fact
61                  * that the admin and I/O queues are not serialized that is
62                  * fundamentally racy.  So instead just clear the current path,
63                  * mark the the path as pending and kick of a re-read of the ANA
64                  * log page ASAP.
65                  */
66                 nvme_mpath_clear_current_path(ns);
67                 if (ns->ctrl->ana_log_buf) {
68                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
69                         queue_work(nvme_wq, &ns->ctrl->ana_work);
70                 }
71                 break;
72         case NVME_SC_HOST_PATH_ERROR:
73                 /*
74                  * Temporary transport disruption in talking to the controller.
75                  * Try to send on a new path.
76                  */
77                 nvme_mpath_clear_current_path(ns);
78                 break;
79         default:
80                 /*
81                  * Reset the controller for any non-ANA error as we don't know
82                  * what caused the error.
83                  */
84                 nvme_reset_ctrl(ns->ctrl);
85                 break;
86         }
87
88         kblockd_schedule_work(&ns->head->requeue_work);
89 }
90
91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
92 {
93         struct nvme_ns *ns;
94
95         down_read(&ctrl->namespaces_rwsem);
96         list_for_each_entry(ns, &ctrl->namespaces, list) {
97                 if (ns->head->disk)
98                         kblockd_schedule_work(&ns->head->requeue_work);
99         }
100         up_read(&ctrl->namespaces_rwsem);
101 }
102
103 static const char *nvme_ana_state_names[] = {
104         [0]                             = "invalid state",
105         [NVME_ANA_OPTIMIZED]            = "optimized",
106         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
107         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
108         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
109         [NVME_ANA_CHANGE]               = "change",
110 };
111
112 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
113 {
114         struct nvme_ns_head *head = ns->head;
115         int node;
116
117         if (!head)
118                 return;
119
120         for_each_node(node) {
121                 if (ns == rcu_access_pointer(head->current_path[node]))
122                         rcu_assign_pointer(head->current_path[node], NULL);
123         }
124 }
125
126 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
127 {
128         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
129         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
130
131         list_for_each_entry_rcu(ns, &head->list, siblings) {
132                 if (ns->ctrl->state != NVME_CTRL_LIVE ||
133                     test_bit(NVME_NS_ANA_PENDING, &ns->flags))
134                         continue;
135
136                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
137                         distance = node_distance(node, ns->ctrl->numa_node);
138                 else
139                         distance = LOCAL_DISTANCE;
140
141                 switch (ns->ana_state) {
142                 case NVME_ANA_OPTIMIZED:
143                         if (distance < found_distance) {
144                                 found_distance = distance;
145                                 found = ns;
146                         }
147                         break;
148                 case NVME_ANA_NONOPTIMIZED:
149                         if (distance < fallback_distance) {
150                                 fallback_distance = distance;
151                                 fallback = ns;
152                         }
153                         break;
154                 default:
155                         break;
156                 }
157         }
158
159         if (!found)
160                 found = fallback;
161         if (found)
162                 rcu_assign_pointer(head->current_path[node], found);
163         return found;
164 }
165
166 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
167                 struct nvme_ns *ns)
168 {
169         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
170                         siblings);
171         if (ns)
172                 return ns;
173         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
174 }
175
176 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
177                 int node, struct nvme_ns *old)
178 {
179         struct nvme_ns *ns, *found, *fallback = NULL;
180
181         if (list_is_singular(&head->list))
182                 return old;
183
184         for (ns = nvme_next_ns(head, old);
185              ns != old;
186              ns = nvme_next_ns(head, ns)) {
187                 if (ns->ctrl->state != NVME_CTRL_LIVE ||
188                     test_bit(NVME_NS_ANA_PENDING, &ns->flags))
189                         continue;
190
191                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
192                         found = ns;
193                         goto out;
194                 }
195                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
196                         fallback = ns;
197         }
198
199         if (!fallback)
200                 return NULL;
201         found = fallback;
202 out:
203         rcu_assign_pointer(head->current_path[node], found);
204         return found;
205 }
206
207 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
208 {
209         return ns->ctrl->state == NVME_CTRL_LIVE &&
210                 ns->ana_state == NVME_ANA_OPTIMIZED;
211 }
212
213 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
214 {
215         int node = numa_node_id();
216         struct nvme_ns *ns;
217
218         ns = srcu_dereference(head->current_path[node], &head->srcu);
219         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
220                 ns = nvme_round_robin_path(head, node, ns);
221         if (unlikely(!ns || !nvme_path_is_optimized(ns)))
222                 ns = __nvme_find_path(head, node);
223         return ns;
224 }
225
226 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
227                 struct bio *bio)
228 {
229         struct nvme_ns_head *head = q->queuedata;
230         struct device *dev = disk_to_dev(head->disk);
231         struct nvme_ns *ns;
232         blk_qc_t ret = BLK_QC_T_NONE;
233         int srcu_idx;
234
235         srcu_idx = srcu_read_lock(&head->srcu);
236         ns = nvme_find_path(head);
237         if (likely(ns)) {
238                 bio->bi_disk = ns->disk;
239                 bio->bi_opf |= REQ_NVME_MPATH;
240                 trace_block_bio_remap(bio->bi_disk->queue, bio,
241                                       disk_devt(ns->head->disk),
242                                       bio->bi_iter.bi_sector);
243                 ret = direct_make_request(bio);
244         } else if (!list_empty_careful(&head->list)) {
245                 dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
246
247                 spin_lock_irq(&head->requeue_lock);
248                 bio_list_add(&head->requeue_list, bio);
249                 spin_unlock_irq(&head->requeue_lock);
250         } else {
251                 dev_warn_ratelimited(dev, "no path - failing I/O\n");
252
253                 bio->bi_status = BLK_STS_IOERR;
254                 bio_endio(bio);
255         }
256
257         srcu_read_unlock(&head->srcu, srcu_idx);
258         return ret;
259 }
260
261 static void nvme_requeue_work(struct work_struct *work)
262 {
263         struct nvme_ns_head *head =
264                 container_of(work, struct nvme_ns_head, requeue_work);
265         struct bio *bio, *next;
266
267         spin_lock_irq(&head->requeue_lock);
268         next = bio_list_get(&head->requeue_list);
269         spin_unlock_irq(&head->requeue_lock);
270
271         while ((bio = next) != NULL) {
272                 next = bio->bi_next;
273                 bio->bi_next = NULL;
274
275                 /*
276                  * Reset disk to the mpath node and resubmit to select a new
277                  * path.
278                  */
279                 bio->bi_disk = head->disk;
280                 generic_make_request(bio);
281         }
282 }
283
284 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
285 {
286         struct request_queue *q;
287         bool vwc = false;
288
289         mutex_init(&head->lock);
290         bio_list_init(&head->requeue_list);
291         spin_lock_init(&head->requeue_lock);
292         INIT_WORK(&head->requeue_work, nvme_requeue_work);
293
294         /*
295          * Add a multipath node if the subsystems supports multiple controllers.
296          * We also do this for private namespaces as the namespace sharing data could
297          * change after a rescan.
298          */
299         if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
300                 return 0;
301
302         q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
303         if (!q)
304                 goto out;
305         q->queuedata = head;
306         blk_queue_make_request(q, nvme_ns_head_make_request);
307         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
308         /* set to a default value for 512 until disk is validated */
309         blk_queue_logical_block_size(q, 512);
310         blk_set_stacking_limits(&q->limits);
311
312         /* we need to propagate up the VMC settings */
313         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
314                 vwc = true;
315         blk_queue_write_cache(q, vwc, vwc);
316
317         head->disk = alloc_disk(0);
318         if (!head->disk)
319                 goto out_cleanup_queue;
320         head->disk->fops = &nvme_ns_head_ops;
321         head->disk->private_data = head;
322         head->disk->queue = q;
323         head->disk->flags = GENHD_FL_EXT_DEVT;
324         sprintf(head->disk->disk_name, "nvme%dn%d",
325                         ctrl->subsys->instance, head->instance);
326         return 0;
327
328 out_cleanup_queue:
329         blk_cleanup_queue(q);
330 out:
331         return -ENOMEM;
332 }
333
334 static void nvme_mpath_set_live(struct nvme_ns *ns)
335 {
336         struct nvme_ns_head *head = ns->head;
337
338         lockdep_assert_held(&ns->head->lock);
339
340         if (!head->disk)
341                 return;
342
343         if (!(head->disk->flags & GENHD_FL_UP))
344                 device_add_disk(&head->subsys->dev, head->disk,
345                                 nvme_ns_id_attr_groups);
346
347         if (nvme_path_is_optimized(ns)) {
348                 int node, srcu_idx;
349
350                 srcu_idx = srcu_read_lock(&head->srcu);
351                 for_each_node(node)
352                         __nvme_find_path(head, node);
353                 srcu_read_unlock(&head->srcu, srcu_idx);
354         }
355
356         kblockd_schedule_work(&ns->head->requeue_work);
357 }
358
359 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
360                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
361                         void *))
362 {
363         void *base = ctrl->ana_log_buf;
364         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
365         int error, i;
366
367         lockdep_assert_held(&ctrl->ana_lock);
368
369         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
370                 struct nvme_ana_group_desc *desc = base + offset;
371                 u32 nr_nsids = le32_to_cpu(desc->nnsids);
372                 size_t nsid_buf_size = nr_nsids * sizeof(__le32);
373
374                 if (WARN_ON_ONCE(desc->grpid == 0))
375                         return -EINVAL;
376                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
377                         return -EINVAL;
378                 if (WARN_ON_ONCE(desc->state == 0))
379                         return -EINVAL;
380                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
381                         return -EINVAL;
382
383                 offset += sizeof(*desc);
384                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
385                         return -EINVAL;
386
387                 error = cb(ctrl, desc, data);
388                 if (error)
389                         return error;
390
391                 offset += nsid_buf_size;
392                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
393                         return -EINVAL;
394         }
395
396         return 0;
397 }
398
399 static inline bool nvme_state_is_live(enum nvme_ana_state state)
400 {
401         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
402 }
403
404 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
405                 struct nvme_ns *ns)
406 {
407         enum nvme_ana_state old;
408
409         mutex_lock(&ns->head->lock);
410         old = ns->ana_state;
411         ns->ana_grpid = le32_to_cpu(desc->grpid);
412         ns->ana_state = desc->state;
413         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
414
415         if (nvme_state_is_live(ns->ana_state) && !nvme_state_is_live(old))
416                 nvme_mpath_set_live(ns);
417         mutex_unlock(&ns->head->lock);
418 }
419
420 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
421                 struct nvme_ana_group_desc *desc, void *data)
422 {
423         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
424         unsigned *nr_change_groups = data;
425         struct nvme_ns *ns;
426
427         dev_info(ctrl->device, "ANA group %d: %s.\n",
428                         le32_to_cpu(desc->grpid),
429                         nvme_ana_state_names[desc->state]);
430
431         if (desc->state == NVME_ANA_CHANGE)
432                 (*nr_change_groups)++;
433
434         if (!nr_nsids)
435                 return 0;
436
437         down_write(&ctrl->namespaces_rwsem);
438         list_for_each_entry(ns, &ctrl->namespaces, list) {
439                 if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
440                         continue;
441                 nvme_update_ns_ana_state(desc, ns);
442                 if (++n == nr_nsids)
443                         break;
444         }
445         up_write(&ctrl->namespaces_rwsem);
446         WARN_ON_ONCE(n < nr_nsids);
447         return 0;
448 }
449
450 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
451 {
452         u32 nr_change_groups = 0;
453         int error;
454
455         mutex_lock(&ctrl->ana_lock);
456         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
457                         groups_only ? NVME_ANA_LOG_RGO : 0,
458                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
459         if (error) {
460                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
461                 goto out_unlock;
462         }
463
464         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
465                         nvme_update_ana_state);
466         if (error)
467                 goto out_unlock;
468
469         /*
470          * In theory we should have an ANATT timer per group as they might enter
471          * the change state at different times.  But that is a lot of overhead
472          * just to protect against a target that keeps entering new changes
473          * states while never finishing previous ones.  But we'll still
474          * eventually time out once all groups are in change state, so this
475          * isn't a big deal.
476          *
477          * We also double the ANATT value to provide some slack for transports
478          * or AEN processing overhead.
479          */
480         if (nr_change_groups)
481                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
482         else
483                 del_timer_sync(&ctrl->anatt_timer);
484 out_unlock:
485         mutex_unlock(&ctrl->ana_lock);
486         return error;
487 }
488
489 static void nvme_ana_work(struct work_struct *work)
490 {
491         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
492
493         nvme_read_ana_log(ctrl, false);
494 }
495
496 static void nvme_anatt_timeout(struct timer_list *t)
497 {
498         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
499
500         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
501         nvme_reset_ctrl(ctrl);
502 }
503
504 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
505 {
506         if (!nvme_ctrl_use_ana(ctrl))
507                 return;
508         del_timer_sync(&ctrl->anatt_timer);
509         cancel_work_sync(&ctrl->ana_work);
510 }
511
512 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
513         struct device_attribute subsys_attr_##_name =   \
514                 __ATTR(_name, _mode, _show, _store)
515
516 static const char *nvme_iopolicy_names[] = {
517         [NVME_IOPOLICY_NUMA]    = "numa",
518         [NVME_IOPOLICY_RR]      = "round-robin",
519 };
520
521 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
522                 struct device_attribute *attr, char *buf)
523 {
524         struct nvme_subsystem *subsys =
525                 container_of(dev, struct nvme_subsystem, dev);
526
527         return sprintf(buf, "%s\n",
528                         nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
529 }
530
531 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
532                 struct device_attribute *attr, const char *buf, size_t count)
533 {
534         struct nvme_subsystem *subsys =
535                 container_of(dev, struct nvme_subsystem, dev);
536         int i;
537
538         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
539                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
540                         WRITE_ONCE(subsys->iopolicy, i);
541                         return count;
542                 }
543         }
544
545         return -EINVAL;
546 }
547 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
548                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
549
550 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
551                 char *buf)
552 {
553         return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
554 }
555 DEVICE_ATTR_RO(ana_grpid);
556
557 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
558                 char *buf)
559 {
560         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
561
562         return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
563 }
564 DEVICE_ATTR_RO(ana_state);
565
566 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
567                 struct nvme_ana_group_desc *desc, void *data)
568 {
569         struct nvme_ns *ns = data;
570
571         if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
572                 nvme_update_ns_ana_state(desc, ns);
573                 return -ENXIO; /* just break out of the loop */
574         }
575
576         return 0;
577 }
578
579 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
580 {
581         if (nvme_ctrl_use_ana(ns->ctrl)) {
582                 mutex_lock(&ns->ctrl->ana_lock);
583                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
584                 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
585                 mutex_unlock(&ns->ctrl->ana_lock);
586         } else {
587                 mutex_lock(&ns->head->lock);
588                 ns->ana_state = NVME_ANA_OPTIMIZED; 
589                 nvme_mpath_set_live(ns);
590                 mutex_unlock(&ns->head->lock);
591         }
592 }
593
594 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
595 {
596         if (!head->disk)
597                 return;
598         if (head->disk->flags & GENHD_FL_UP)
599                 del_gendisk(head->disk);
600         blk_set_queue_dying(head->disk->queue);
601         /* make sure all pending bios are cleaned up */
602         kblockd_schedule_work(&head->requeue_work);
603         flush_work(&head->requeue_work);
604         blk_cleanup_queue(head->disk->queue);
605         put_disk(head->disk);
606 }
607
608 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
609 {
610         int error;
611
612         if (!nvme_ctrl_use_ana(ctrl))
613                 return 0;
614
615         ctrl->anacap = id->anacap;
616         ctrl->anatt = id->anatt;
617         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
618         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
619
620         mutex_init(&ctrl->ana_lock);
621         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
622         ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
623                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
624         ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
625
626         if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
627                 dev_err(ctrl->device,
628                         "ANA log page size (%zd) larger than MDTS (%d).\n",
629                         ctrl->ana_log_size,
630                         ctrl->max_hw_sectors << SECTOR_SHIFT);
631                 dev_err(ctrl->device, "disabling ANA support.\n");
632                 return 0;
633         }
634
635         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
636         ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
637         if (!ctrl->ana_log_buf) {
638                 error = -ENOMEM;
639                 goto out;
640         }
641
642         error = nvme_read_ana_log(ctrl, true);
643         if (error)
644                 goto out_free_ana_log_buf;
645         return 0;
646 out_free_ana_log_buf:
647         kfree(ctrl->ana_log_buf);
648         ctrl->ana_log_buf = NULL;
649 out:
650         return error;
651 }
652
653 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
654 {
655         kfree(ctrl->ana_log_buf);
656         ctrl->ana_log_buf = NULL;
657 }
658