OSDN Git Service

365a2ddbeaa762f84a51106163cc915e2c2919ef
[tomoyo/tomoyo-test1.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ  4096
41 #define NVME_MAX_SEGS   127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58                 "Use SGLs when average request segment size is larger or equal to "
59                 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63         .set = io_queue_depth_set,
64         .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74         "Number of queues to use for writes. If not set, reads and writes "
75         "will share a queue set.");
76
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
89  */
90 struct nvme_dev {
91         struct nvme_queue *queues;
92         struct blk_mq_tag_set tagset;
93         struct blk_mq_tag_set admin_tagset;
94         u32 __iomem *dbs;
95         struct device *dev;
96         struct dma_pool *prp_page_pool;
97         struct dma_pool *prp_small_pool;
98         unsigned online_queues;
99         unsigned max_qid;
100         unsigned io_queues[HCTX_MAX_TYPES];
101         unsigned int num_vecs;
102         int q_depth;
103         int io_sqes;
104         u32 db_stride;
105         void __iomem *bar;
106         unsigned long bar_mapped_size;
107         struct work_struct remove_work;
108         struct mutex shutdown_lock;
109         bool subsystem;
110         u64 cmb_size;
111         bool cmb_use_sqes;
112         u32 cmbsz;
113         u32 cmbloc;
114         struct nvme_ctrl ctrl;
115         u32 last_ps;
116
117         mempool_t *iod_mempool;
118
119         /* shadow doorbell buffer support: */
120         u32 *dbbuf_dbs;
121         dma_addr_t dbbuf_dbs_dma_addr;
122         u32 *dbbuf_eis;
123         dma_addr_t dbbuf_eis_dma_addr;
124
125         /* host memory buffer support: */
126         u64 host_mem_size;
127         u32 nr_host_mem_descs;
128         dma_addr_t host_mem_descs_dma;
129         struct nvme_host_mem_buf_desc *host_mem_descs;
130         void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135         int n = 0, ret;
136
137         ret = kstrtoint(val, 10, &n);
138         if (ret != 0 || n < 2)
139                 return -EINVAL;
140
141         return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146         return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151         return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156         return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160  * An NVM Express queue.  Each device has at least two (one for admin
161  * commands and one for I/O commands).
162  */
163 struct nvme_queue {
164         struct nvme_dev *dev;
165         spinlock_t sq_lock;
166         void *sq_cmds;
167          /* only used for poll queues: */
168         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169         volatile struct nvme_completion *cqes;
170         struct blk_mq_tags **tags;
171         dma_addr_t sq_dma_addr;
172         dma_addr_t cq_dma_addr;
173         u32 __iomem *q_db;
174         u16 q_depth;
175         u16 cq_vector;
176         u16 sq_tail;
177         u16 last_sq_tail;
178         u16 cq_head;
179         u16 qid;
180         u8 cq_phase;
181         u8 sqes;
182         unsigned long flags;
183 #define NVMEQ_ENABLED           0
184 #define NVMEQ_SQ_CMB            1
185 #define NVMEQ_DELETE_ERROR      2
186 #define NVMEQ_POLLED            3
187         u32 *dbbuf_sq_db;
188         u32 *dbbuf_cq_db;
189         u32 *dbbuf_sq_ei;
190         u32 *dbbuf_cq_ei;
191         struct completion delete_done;
192 };
193
194 /*
195  * The nvme_iod describes the data in an I/O.
196  *
197  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
198  * to the actual struct scatterlist.
199  */
200 struct nvme_iod {
201         struct nvme_request req;
202         struct nvme_queue *nvmeq;
203         bool use_sgl;
204         int aborted;
205         int npages;             /* In the PRP list. 0 means small pool in use */
206         int nents;              /* Used in scatterlist */
207         dma_addr_t first_dma;
208         unsigned int dma_len;   /* length of single DMA segment mapping */
209         dma_addr_t meta_dma;
210         struct scatterlist *sg;
211 };
212
213 static unsigned int max_io_queues(void)
214 {
215         return num_possible_cpus() + write_queues + poll_queues;
216 }
217
218 static unsigned int max_queue_count(void)
219 {
220         /* IO queues + admin queue */
221         return 1 + max_io_queues();
222 }
223
224 static inline unsigned int nvme_dbbuf_size(u32 stride)
225 {
226         return (max_queue_count() * 8 * stride);
227 }
228
229 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
230 {
231         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
232
233         if (dev->dbbuf_dbs)
234                 return 0;
235
236         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
237                                             &dev->dbbuf_dbs_dma_addr,
238                                             GFP_KERNEL);
239         if (!dev->dbbuf_dbs)
240                 return -ENOMEM;
241         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
242                                             &dev->dbbuf_eis_dma_addr,
243                                             GFP_KERNEL);
244         if (!dev->dbbuf_eis) {
245                 dma_free_coherent(dev->dev, mem_size,
246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247                 dev->dbbuf_dbs = NULL;
248                 return -ENOMEM;
249         }
250
251         return 0;
252 }
253
254 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
255 {
256         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
257
258         if (dev->dbbuf_dbs) {
259                 dma_free_coherent(dev->dev, mem_size,
260                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
261                 dev->dbbuf_dbs = NULL;
262         }
263         if (dev->dbbuf_eis) {
264                 dma_free_coherent(dev->dev, mem_size,
265                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
266                 dev->dbbuf_eis = NULL;
267         }
268 }
269
270 static void nvme_dbbuf_init(struct nvme_dev *dev,
271                             struct nvme_queue *nvmeq, int qid)
272 {
273         if (!dev->dbbuf_dbs || !qid)
274                 return;
275
276         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
277         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
278         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
279         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
280 }
281
282 static void nvme_dbbuf_set(struct nvme_dev *dev)
283 {
284         struct nvme_command c;
285
286         if (!dev->dbbuf_dbs)
287                 return;
288
289         memset(&c, 0, sizeof(c));
290         c.dbbuf.opcode = nvme_admin_dbbuf;
291         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
292         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
293
294         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
295                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
296                 /* Free memory and continue on */
297                 nvme_dbbuf_dma_free(dev);
298         }
299 }
300
301 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
302 {
303         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
304 }
305
306 /* Update dbbuf and return true if an MMIO is required */
307 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
308                                               volatile u32 *dbbuf_ei)
309 {
310         if (dbbuf_db) {
311                 u16 old_value;
312
313                 /*
314                  * Ensure that the queue is written before updating
315                  * the doorbell in memory
316                  */
317                 wmb();
318
319                 old_value = *dbbuf_db;
320                 *dbbuf_db = value;
321
322                 /*
323                  * Ensure that the doorbell is updated before reading the event
324                  * index from memory.  The controller needs to provide similar
325                  * ordering to ensure the envent index is updated before reading
326                  * the doorbell.
327                  */
328                 mb();
329
330                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
331                         return false;
332         }
333
334         return true;
335 }
336
337 /*
338  * Will slightly overestimate the number of pages needed.  This is OK
339  * as it only leads to a small amount of wasted memory for the lifetime of
340  * the I/O.
341  */
342 static int nvme_npages(unsigned size, struct nvme_dev *dev)
343 {
344         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
345                                       dev->ctrl.page_size);
346         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
347 }
348
349 /*
350  * Calculates the number of pages needed for the SGL segments. For example a 4k
351  * page can accommodate 256 SGL descriptors.
352  */
353 static int nvme_pci_npages_sgl(unsigned int num_seg)
354 {
355         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
356 }
357
358 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
359                 unsigned int size, unsigned int nseg, bool use_sgl)
360 {
361         size_t alloc_size;
362
363         if (use_sgl)
364                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
365         else
366                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
367
368         return alloc_size + sizeof(struct scatterlist) * nseg;
369 }
370
371 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
372                                 unsigned int hctx_idx)
373 {
374         struct nvme_dev *dev = data;
375         struct nvme_queue *nvmeq = &dev->queues[0];
376
377         WARN_ON(hctx_idx != 0);
378         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
379         WARN_ON(nvmeq->tags);
380
381         hctx->driver_data = nvmeq;
382         nvmeq->tags = &dev->admin_tagset.tags[0];
383         return 0;
384 }
385
386 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
387 {
388         struct nvme_queue *nvmeq = hctx->driver_data;
389
390         nvmeq->tags = NULL;
391 }
392
393 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394                           unsigned int hctx_idx)
395 {
396         struct nvme_dev *dev = data;
397         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
398
399         if (!nvmeq->tags)
400                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
401
402         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
403         hctx->driver_data = nvmeq;
404         return 0;
405 }
406
407 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
408                 unsigned int hctx_idx, unsigned int numa_node)
409 {
410         struct nvme_dev *dev = set->driver_data;
411         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
412         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
413         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
414
415         BUG_ON(!nvmeq);
416         iod->nvmeq = nvmeq;
417
418         nvme_req(req)->ctrl = &dev->ctrl;
419         return 0;
420 }
421
422 static int queue_irq_offset(struct nvme_dev *dev)
423 {
424         /* if we have more than 1 vec, admin queue offsets us by 1 */
425         if (dev->num_vecs > 1)
426                 return 1;
427
428         return 0;
429 }
430
431 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
432 {
433         struct nvme_dev *dev = set->driver_data;
434         int i, qoff, offset;
435
436         offset = queue_irq_offset(dev);
437         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
438                 struct blk_mq_queue_map *map = &set->map[i];
439
440                 map->nr_queues = dev->io_queues[i];
441                 if (!map->nr_queues) {
442                         BUG_ON(i == HCTX_TYPE_DEFAULT);
443                         continue;
444                 }
445
446                 /*
447                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
448                  * affinity), so use the regular blk-mq cpu mapping
449                  */
450                 map->queue_offset = qoff;
451                 if (i != HCTX_TYPE_POLL && offset)
452                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
453                 else
454                         blk_mq_map_queues(map);
455                 qoff += map->nr_queues;
456                 offset += map->nr_queues;
457         }
458
459         return 0;
460 }
461
462 /*
463  * Write sq tail if we are asked to, or if the next command would wrap.
464  */
465 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
466 {
467         if (!write_sq) {
468                 u16 next_tail = nvmeq->sq_tail + 1;
469
470                 if (next_tail == nvmeq->q_depth)
471                         next_tail = 0;
472                 if (next_tail != nvmeq->last_sq_tail)
473                         return;
474         }
475
476         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
477                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
478                 writel(nvmeq->sq_tail, nvmeq->q_db);
479         nvmeq->last_sq_tail = nvmeq->sq_tail;
480 }
481
482 /**
483  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
484  * @nvmeq: The queue to use
485  * @cmd: The command to send
486  * @write_sq: whether to write to the SQ doorbell
487  */
488 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
489                             bool write_sq)
490 {
491         spin_lock(&nvmeq->sq_lock);
492         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493                cmd, sizeof(*cmd));
494         if (++nvmeq->sq_tail == nvmeq->q_depth)
495                 nvmeq->sq_tail = 0;
496         nvme_write_sq_db(nvmeq, write_sq);
497         spin_unlock(&nvmeq->sq_lock);
498 }
499
500 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
501 {
502         struct nvme_queue *nvmeq = hctx->driver_data;
503
504         spin_lock(&nvmeq->sq_lock);
505         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
506                 nvme_write_sq_db(nvmeq, true);
507         spin_unlock(&nvmeq->sq_lock);
508 }
509
510 static void **nvme_pci_iod_list(struct request *req)
511 {
512         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
513         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
514 }
515
516 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
517 {
518         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519         int nseg = blk_rq_nr_phys_segments(req);
520         unsigned int avg_seg_size;
521
522         if (nseg == 0)
523                 return false;
524
525         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
526
527         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
528                 return false;
529         if (!iod->nvmeq->qid)
530                 return false;
531         if (!sgl_threshold || avg_seg_size < sgl_threshold)
532                 return false;
533         return true;
534 }
535
536 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
537 {
538         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
539         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
540         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
541         int i;
542
543         if (iod->dma_len) {
544                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
545                                rq_dma_dir(req));
546                 return;
547         }
548
549         WARN_ON_ONCE(!iod->nents);
550
551         if (is_pci_p2pdma_page(sg_page(iod->sg)))
552                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
553                                     rq_dma_dir(req));
554         else
555                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
556
557
558         if (iod->npages == 0)
559                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
560                         dma_addr);
561
562         for (i = 0; i < iod->npages; i++) {
563                 void *addr = nvme_pci_iod_list(req)[i];
564
565                 if (iod->use_sgl) {
566                         struct nvme_sgl_desc *sg_list = addr;
567
568                         next_dma_addr =
569                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
570                 } else {
571                         __le64 *prp_list = addr;
572
573                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
574                 }
575
576                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
577                 dma_addr = next_dma_addr;
578         }
579
580         mempool_free(iod->sg, dev->iod_mempool);
581 }
582
583 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
584 {
585         int i;
586         struct scatterlist *sg;
587
588         for_each_sg(sgl, sg, nents, i) {
589                 dma_addr_t phys = sg_phys(sg);
590                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
591                         "dma_address:%pad dma_length:%d\n",
592                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
593                         sg_dma_len(sg));
594         }
595 }
596
597 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
598                 struct request *req, struct nvme_rw_command *cmnd)
599 {
600         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
601         struct dma_pool *pool;
602         int length = blk_rq_payload_bytes(req);
603         struct scatterlist *sg = iod->sg;
604         int dma_len = sg_dma_len(sg);
605         u64 dma_addr = sg_dma_address(sg);
606         u32 page_size = dev->ctrl.page_size;
607         int offset = dma_addr & (page_size - 1);
608         __le64 *prp_list;
609         void **list = nvme_pci_iod_list(req);
610         dma_addr_t prp_dma;
611         int nprps, i;
612
613         length -= (page_size - offset);
614         if (length <= 0) {
615                 iod->first_dma = 0;
616                 goto done;
617         }
618
619         dma_len -= (page_size - offset);
620         if (dma_len) {
621                 dma_addr += (page_size - offset);
622         } else {
623                 sg = sg_next(sg);
624                 dma_addr = sg_dma_address(sg);
625                 dma_len = sg_dma_len(sg);
626         }
627
628         if (length <= page_size) {
629                 iod->first_dma = dma_addr;
630                 goto done;
631         }
632
633         nprps = DIV_ROUND_UP(length, page_size);
634         if (nprps <= (256 / 8)) {
635                 pool = dev->prp_small_pool;
636                 iod->npages = 0;
637         } else {
638                 pool = dev->prp_page_pool;
639                 iod->npages = 1;
640         }
641
642         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
643         if (!prp_list) {
644                 iod->first_dma = dma_addr;
645                 iod->npages = -1;
646                 return BLK_STS_RESOURCE;
647         }
648         list[0] = prp_list;
649         iod->first_dma = prp_dma;
650         i = 0;
651         for (;;) {
652                 if (i == page_size >> 3) {
653                         __le64 *old_prp_list = prp_list;
654                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
655                         if (!prp_list)
656                                 return BLK_STS_RESOURCE;
657                         list[iod->npages++] = prp_list;
658                         prp_list[0] = old_prp_list[i - 1];
659                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
660                         i = 1;
661                 }
662                 prp_list[i++] = cpu_to_le64(dma_addr);
663                 dma_len -= page_size;
664                 dma_addr += page_size;
665                 length -= page_size;
666                 if (length <= 0)
667                         break;
668                 if (dma_len > 0)
669                         continue;
670                 if (unlikely(dma_len < 0))
671                         goto bad_sgl;
672                 sg = sg_next(sg);
673                 dma_addr = sg_dma_address(sg);
674                 dma_len = sg_dma_len(sg);
675         }
676
677 done:
678         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
679         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
680
681         return BLK_STS_OK;
682
683  bad_sgl:
684         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
685                         "Invalid SGL for payload:%d nents:%d\n",
686                         blk_rq_payload_bytes(req), iod->nents);
687         return BLK_STS_IOERR;
688 }
689
690 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
691                 struct scatterlist *sg)
692 {
693         sge->addr = cpu_to_le64(sg_dma_address(sg));
694         sge->length = cpu_to_le32(sg_dma_len(sg));
695         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
696 }
697
698 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
699                 dma_addr_t dma_addr, int entries)
700 {
701         sge->addr = cpu_to_le64(dma_addr);
702         if (entries < SGES_PER_PAGE) {
703                 sge->length = cpu_to_le32(entries * sizeof(*sge));
704                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
705         } else {
706                 sge->length = cpu_to_le32(PAGE_SIZE);
707                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
708         }
709 }
710
711 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
712                 struct request *req, struct nvme_rw_command *cmd, int entries)
713 {
714         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
715         struct dma_pool *pool;
716         struct nvme_sgl_desc *sg_list;
717         struct scatterlist *sg = iod->sg;
718         dma_addr_t sgl_dma;
719         int i = 0;
720
721         /* setting the transfer type as SGL */
722         cmd->flags = NVME_CMD_SGL_METABUF;
723
724         if (entries == 1) {
725                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
726                 return BLK_STS_OK;
727         }
728
729         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
730                 pool = dev->prp_small_pool;
731                 iod->npages = 0;
732         } else {
733                 pool = dev->prp_page_pool;
734                 iod->npages = 1;
735         }
736
737         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
738         if (!sg_list) {
739                 iod->npages = -1;
740                 return BLK_STS_RESOURCE;
741         }
742
743         nvme_pci_iod_list(req)[0] = sg_list;
744         iod->first_dma = sgl_dma;
745
746         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
747
748         do {
749                 if (i == SGES_PER_PAGE) {
750                         struct nvme_sgl_desc *old_sg_desc = sg_list;
751                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
752
753                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754                         if (!sg_list)
755                                 return BLK_STS_RESOURCE;
756
757                         i = 0;
758                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
759                         sg_list[i++] = *link;
760                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
761                 }
762
763                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
764                 sg = sg_next(sg);
765         } while (--entries > 0);
766
767         return BLK_STS_OK;
768 }
769
770 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
771                 struct request *req, struct nvme_rw_command *cmnd,
772                 struct bio_vec *bv)
773 {
774         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
775         unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
776         unsigned int first_prp_len = dev->ctrl.page_size - offset;
777
778         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
779         if (dma_mapping_error(dev->dev, iod->first_dma))
780                 return BLK_STS_RESOURCE;
781         iod->dma_len = bv->bv_len;
782
783         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
784         if (bv->bv_len > first_prp_len)
785                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
786         return 0;
787 }
788
789 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
790                 struct request *req, struct nvme_rw_command *cmnd,
791                 struct bio_vec *bv)
792 {
793         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794
795         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
796         if (dma_mapping_error(dev->dev, iod->first_dma))
797                 return BLK_STS_RESOURCE;
798         iod->dma_len = bv->bv_len;
799
800         cmnd->flags = NVME_CMD_SGL_METABUF;
801         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
802         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
803         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
804         return 0;
805 }
806
807 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
808                 struct nvme_command *cmnd)
809 {
810         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
811         blk_status_t ret = BLK_STS_RESOURCE;
812         int nr_mapped;
813
814         if (blk_rq_nr_phys_segments(req) == 1) {
815                 struct bio_vec bv = req_bvec(req);
816
817                 if (!is_pci_p2pdma_page(bv.bv_page)) {
818                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
819                                 return nvme_setup_prp_simple(dev, req,
820                                                              &cmnd->rw, &bv);
821
822                         if (iod->nvmeq->qid &&
823                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
824                                 return nvme_setup_sgl_simple(dev, req,
825                                                              &cmnd->rw, &bv);
826                 }
827         }
828
829         iod->dma_len = 0;
830         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
831         if (!iod->sg)
832                 return BLK_STS_RESOURCE;
833         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
834         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
835         if (!iod->nents)
836                 goto out;
837
838         if (is_pci_p2pdma_page(sg_page(iod->sg)))
839                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
840                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
841         else
842                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
843                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
844         if (!nr_mapped)
845                 goto out;
846
847         iod->use_sgl = nvme_pci_use_sgls(dev, req);
848         if (iod->use_sgl)
849                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
850         else
851                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
852 out:
853         if (ret != BLK_STS_OK)
854                 nvme_unmap_data(dev, req);
855         return ret;
856 }
857
858 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
859                 struct nvme_command *cmnd)
860 {
861         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
862
863         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
864                         rq_dma_dir(req), 0);
865         if (dma_mapping_error(dev->dev, iod->meta_dma))
866                 return BLK_STS_IOERR;
867         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
868         return 0;
869 }
870
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875                          const struct blk_mq_queue_data *bd)
876 {
877         struct nvme_ns *ns = hctx->queue->queuedata;
878         struct nvme_queue *nvmeq = hctx->driver_data;
879         struct nvme_dev *dev = nvmeq->dev;
880         struct request *req = bd->rq;
881         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882         struct nvme_command cmnd;
883         blk_status_t ret;
884
885         iod->aborted = 0;
886         iod->npages = -1;
887         iod->nents = 0;
888
889         /*
890          * We should not need to do this, but we're still using this to
891          * ensure we can drain requests on a dying queue.
892          */
893         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
894                 return BLK_STS_IOERR;
895
896         ret = nvme_setup_cmd(ns, req, &cmnd);
897         if (ret)
898                 return ret;
899
900         if (blk_rq_nr_phys_segments(req)) {
901                 ret = nvme_map_data(dev, req, &cmnd);
902                 if (ret)
903                         goto out_free_cmd;
904         }
905
906         if (blk_integrity_rq(req)) {
907                 ret = nvme_map_metadata(dev, req, &cmnd);
908                 if (ret)
909                         goto out_unmap_data;
910         }
911
912         blk_mq_start_request(req);
913         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
914         return BLK_STS_OK;
915 out_unmap_data:
916         nvme_unmap_data(dev, req);
917 out_free_cmd:
918         nvme_cleanup_cmd(req);
919         return ret;
920 }
921
922 static void nvme_pci_complete_rq(struct request *req)
923 {
924         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925         struct nvme_dev *dev = iod->nvmeq->dev;
926
927         if (blk_integrity_rq(req))
928                 dma_unmap_page(dev->dev, iod->meta_dma,
929                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
930         if (blk_rq_nr_phys_segments(req))
931                 nvme_unmap_data(dev, req);
932         nvme_complete_rq(req);
933 }
934
935 /* We read the CQE phase first to check if the rest of the entry is valid */
936 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
937 {
938         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
939                         nvmeq->cq_phase;
940 }
941
942 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
943 {
944         u16 head = nvmeq->cq_head;
945
946         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
947                                               nvmeq->dbbuf_cq_ei))
948                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
949 }
950
951 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
952 {
953         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
954         struct request *req;
955
956         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
957                 dev_warn(nvmeq->dev->ctrl.device,
958                         "invalid id %d completed on queue %d\n",
959                         cqe->command_id, le16_to_cpu(cqe->sq_id));
960                 return;
961         }
962
963         /*
964          * AEN requests are special as they don't time out and can
965          * survive any kind of queue freeze and often don't respond to
966          * aborts.  We don't even bother to allocate a struct request
967          * for them but rather special case them here.
968          */
969         if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
970                 nvme_complete_async_event(&nvmeq->dev->ctrl,
971                                 cqe->status, &cqe->result);
972                 return;
973         }
974
975         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
976         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
977         nvme_end_request(req, cqe->status, cqe->result);
978 }
979
980 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
981 {
982         while (start != end) {
983                 nvme_handle_cqe(nvmeq, start);
984                 if (++start == nvmeq->q_depth)
985                         start = 0;
986         }
987 }
988
989 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
990 {
991         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
992                 nvmeq->cq_head = 0;
993                 nvmeq->cq_phase = !nvmeq->cq_phase;
994         } else {
995                 nvmeq->cq_head++;
996         }
997 }
998
999 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1000                                   u16 *end, unsigned int tag)
1001 {
1002         int found = 0;
1003
1004         *start = nvmeq->cq_head;
1005         while (nvme_cqe_pending(nvmeq)) {
1006                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1007                         found++;
1008                 nvme_update_cq_head(nvmeq);
1009         }
1010         *end = nvmeq->cq_head;
1011
1012         if (*start != *end)
1013                 nvme_ring_cq_doorbell(nvmeq);
1014         return found;
1015 }
1016
1017 static irqreturn_t nvme_irq(int irq, void *data)
1018 {
1019         struct nvme_queue *nvmeq = data;
1020         irqreturn_t ret = IRQ_NONE;
1021         u16 start, end;
1022
1023         /*
1024          * The rmb/wmb pair ensures we see all updates from a previous run of
1025          * the irq handler, even if that was on another CPU.
1026          */
1027         rmb();
1028         nvme_process_cq(nvmeq, &start, &end, -1);
1029         wmb();
1030
1031         if (start != end) {
1032                 nvme_complete_cqes(nvmeq, start, end);
1033                 return IRQ_HANDLED;
1034         }
1035
1036         return ret;
1037 }
1038
1039 static irqreturn_t nvme_irq_check(int irq, void *data)
1040 {
1041         struct nvme_queue *nvmeq = data;
1042         if (nvme_cqe_pending(nvmeq))
1043                 return IRQ_WAKE_THREAD;
1044         return IRQ_NONE;
1045 }
1046
1047 /*
1048  * Poll for completions any queue, including those not dedicated to polling.
1049  * Can be called from any context.
1050  */
1051 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1052 {
1053         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1054         u16 start, end;
1055         int found;
1056
1057         /*
1058          * For a poll queue we need to protect against the polling thread
1059          * using the CQ lock.  For normal interrupt driven threads we have
1060          * to disable the interrupt to avoid racing with it.
1061          */
1062         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1063                 spin_lock(&nvmeq->cq_poll_lock);
1064                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1065                 spin_unlock(&nvmeq->cq_poll_lock);
1066         } else {
1067                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1068                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1069                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1070         }
1071
1072         nvme_complete_cqes(nvmeq, start, end);
1073         return found;
1074 }
1075
1076 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1077 {
1078         struct nvme_queue *nvmeq = hctx->driver_data;
1079         u16 start, end;
1080         bool found;
1081
1082         if (!nvme_cqe_pending(nvmeq))
1083                 return 0;
1084
1085         spin_lock(&nvmeq->cq_poll_lock);
1086         found = nvme_process_cq(nvmeq, &start, &end, -1);
1087         spin_unlock(&nvmeq->cq_poll_lock);
1088
1089         nvme_complete_cqes(nvmeq, start, end);
1090         return found;
1091 }
1092
1093 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1094 {
1095         struct nvme_dev *dev = to_nvme_dev(ctrl);
1096         struct nvme_queue *nvmeq = &dev->queues[0];
1097         struct nvme_command c;
1098
1099         memset(&c, 0, sizeof(c));
1100         c.common.opcode = nvme_admin_async_event;
1101         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1102         nvme_submit_cmd(nvmeq, &c, true);
1103 }
1104
1105 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1106 {
1107         struct nvme_command c;
1108
1109         memset(&c, 0, sizeof(c));
1110         c.delete_queue.opcode = opcode;
1111         c.delete_queue.qid = cpu_to_le16(id);
1112
1113         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1114 }
1115
1116 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1117                 struct nvme_queue *nvmeq, s16 vector)
1118 {
1119         struct nvme_command c;
1120         int flags = NVME_QUEUE_PHYS_CONTIG;
1121
1122         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1123                 flags |= NVME_CQ_IRQ_ENABLED;
1124
1125         /*
1126          * Note: we (ab)use the fact that the prp fields survive if no data
1127          * is attached to the request.
1128          */
1129         memset(&c, 0, sizeof(c));
1130         c.create_cq.opcode = nvme_admin_create_cq;
1131         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132         c.create_cq.cqid = cpu_to_le16(qid);
1133         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134         c.create_cq.cq_flags = cpu_to_le16(flags);
1135         c.create_cq.irq_vector = cpu_to_le16(vector);
1136
1137         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1138 }
1139
1140 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141                                                 struct nvme_queue *nvmeq)
1142 {
1143         struct nvme_ctrl *ctrl = &dev->ctrl;
1144         struct nvme_command c;
1145         int flags = NVME_QUEUE_PHYS_CONTIG;
1146
1147         /*
1148          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1149          * set. Since URGENT priority is zeroes, it makes all queues
1150          * URGENT.
1151          */
1152         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1153                 flags |= NVME_SQ_PRIO_MEDIUM;
1154
1155         /*
1156          * Note: we (ab)use the fact that the prp fields survive if no data
1157          * is attached to the request.
1158          */
1159         memset(&c, 0, sizeof(c));
1160         c.create_sq.opcode = nvme_admin_create_sq;
1161         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1162         c.create_sq.sqid = cpu_to_le16(qid);
1163         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164         c.create_sq.sq_flags = cpu_to_le16(flags);
1165         c.create_sq.cqid = cpu_to_le16(qid);
1166
1167         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1168 }
1169
1170 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1171 {
1172         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1173 }
1174
1175 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1176 {
1177         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1178 }
1179
1180 static void abort_endio(struct request *req, blk_status_t error)
1181 {
1182         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183         struct nvme_queue *nvmeq = iod->nvmeq;
1184
1185         dev_warn(nvmeq->dev->ctrl.device,
1186                  "Abort status: 0x%x", nvme_req(req)->status);
1187         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1188         blk_mq_free_request(req);
1189 }
1190
1191 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1192 {
1193
1194         /* If true, indicates loss of adapter communication, possibly by a
1195          * NVMe Subsystem reset.
1196          */
1197         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1198
1199         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1200         switch (dev->ctrl.state) {
1201         case NVME_CTRL_RESETTING:
1202         case NVME_CTRL_CONNECTING:
1203                 return false;
1204         default:
1205                 break;
1206         }
1207
1208         /* We shouldn't reset unless the controller is on fatal error state
1209          * _or_ if we lost the communication with it.
1210          */
1211         if (!(csts & NVME_CSTS_CFS) && !nssro)
1212                 return false;
1213
1214         return true;
1215 }
1216
1217 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1218 {
1219         /* Read a config register to help see what died. */
1220         u16 pci_status;
1221         int result;
1222
1223         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1224                                       &pci_status);
1225         if (result == PCIBIOS_SUCCESSFUL)
1226                 dev_warn(dev->ctrl.device,
1227                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1228                          csts, pci_status);
1229         else
1230                 dev_warn(dev->ctrl.device,
1231                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1232                          csts, result);
1233 }
1234
1235 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1236 {
1237         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1238         struct nvme_queue *nvmeq = iod->nvmeq;
1239         struct nvme_dev *dev = nvmeq->dev;
1240         struct request *abort_req;
1241         struct nvme_command cmd;
1242         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1243
1244         /* If PCI error recovery process is happening, we cannot reset or
1245          * the recovery mechanism will surely fail.
1246          */
1247         mb();
1248         if (pci_channel_offline(to_pci_dev(dev->dev)))
1249                 return BLK_EH_RESET_TIMER;
1250
1251         /*
1252          * Reset immediately if the controller is failed
1253          */
1254         if (nvme_should_reset(dev, csts)) {
1255                 nvme_warn_reset(dev, csts);
1256                 nvme_dev_disable(dev, false);
1257                 nvme_reset_ctrl(&dev->ctrl);
1258                 return BLK_EH_DONE;
1259         }
1260
1261         /*
1262          * Did we miss an interrupt?
1263          */
1264         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1265                 dev_warn(dev->ctrl.device,
1266                          "I/O %d QID %d timeout, completion polled\n",
1267                          req->tag, nvmeq->qid);
1268                 return BLK_EH_DONE;
1269         }
1270
1271         /*
1272          * Shutdown immediately if controller times out while starting. The
1273          * reset work will see the pci device disabled when it gets the forced
1274          * cancellation error. All outstanding requests are completed on
1275          * shutdown, so we return BLK_EH_DONE.
1276          */
1277         switch (dev->ctrl.state) {
1278         case NVME_CTRL_CONNECTING:
1279                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1280                 /* fall through */
1281         case NVME_CTRL_DELETING:
1282                 dev_warn_ratelimited(dev->ctrl.device,
1283                          "I/O %d QID %d timeout, disable controller\n",
1284                          req->tag, nvmeq->qid);
1285                 nvme_dev_disable(dev, true);
1286                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1287                 return BLK_EH_DONE;
1288         case NVME_CTRL_RESETTING:
1289                 return BLK_EH_RESET_TIMER;
1290         default:
1291                 break;
1292         }
1293
1294         /*
1295          * Shutdown the controller immediately and schedule a reset if the
1296          * command was already aborted once before and still hasn't been
1297          * returned to the driver, or if this is the admin queue.
1298          */
1299         if (!nvmeq->qid || iod->aborted) {
1300                 dev_warn(dev->ctrl.device,
1301                          "I/O %d QID %d timeout, reset controller\n",
1302                          req->tag, nvmeq->qid);
1303                 nvme_dev_disable(dev, false);
1304                 nvme_reset_ctrl(&dev->ctrl);
1305
1306                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1307                 return BLK_EH_DONE;
1308         }
1309
1310         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1311                 atomic_inc(&dev->ctrl.abort_limit);
1312                 return BLK_EH_RESET_TIMER;
1313         }
1314         iod->aborted = 1;
1315
1316         memset(&cmd, 0, sizeof(cmd));
1317         cmd.abort.opcode = nvme_admin_abort_cmd;
1318         cmd.abort.cid = req->tag;
1319         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1320
1321         dev_warn(nvmeq->dev->ctrl.device,
1322                 "I/O %d QID %d timeout, aborting\n",
1323                  req->tag, nvmeq->qid);
1324
1325         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1326                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1327         if (IS_ERR(abort_req)) {
1328                 atomic_inc(&dev->ctrl.abort_limit);
1329                 return BLK_EH_RESET_TIMER;
1330         }
1331
1332         abort_req->timeout = ADMIN_TIMEOUT;
1333         abort_req->end_io_data = NULL;
1334         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1335
1336         /*
1337          * The aborted req will be completed on receiving the abort req.
1338          * We enable the timer again. If hit twice, it'll cause a device reset,
1339          * as the device then is in a faulty state.
1340          */
1341         return BLK_EH_RESET_TIMER;
1342 }
1343
1344 static void nvme_free_queue(struct nvme_queue *nvmeq)
1345 {
1346         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1347                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1348         if (!nvmeq->sq_cmds)
1349                 return;
1350
1351         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1352                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1353                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1354         } else {
1355                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1356                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1357         }
1358 }
1359
1360 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1361 {
1362         int i;
1363
1364         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1365                 dev->ctrl.queue_count--;
1366                 nvme_free_queue(&dev->queues[i]);
1367         }
1368 }
1369
1370 /**
1371  * nvme_suspend_queue - put queue into suspended state
1372  * @nvmeq: queue to suspend
1373  */
1374 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1375 {
1376         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1377                 return 1;
1378
1379         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1380         mb();
1381
1382         nvmeq->dev->online_queues--;
1383         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1384                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1385         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1386                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1387         return 0;
1388 }
1389
1390 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1391 {
1392         int i;
1393
1394         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1395                 nvme_suspend_queue(&dev->queues[i]);
1396 }
1397
1398 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1399 {
1400         struct nvme_queue *nvmeq = &dev->queues[0];
1401
1402         if (shutdown)
1403                 nvme_shutdown_ctrl(&dev->ctrl);
1404         else
1405                 nvme_disable_ctrl(&dev->ctrl);
1406
1407         nvme_poll_irqdisable(nvmeq, -1);
1408 }
1409
1410 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1411                                 int entry_size)
1412 {
1413         int q_depth = dev->q_depth;
1414         unsigned q_size_aligned = roundup(q_depth * entry_size,
1415                                           dev->ctrl.page_size);
1416
1417         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1418                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1419                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1420                 q_depth = div_u64(mem_per_q, entry_size);
1421
1422                 /*
1423                  * Ensure the reduced q_depth is above some threshold where it
1424                  * would be better to map queues in system memory with the
1425                  * original depth
1426                  */
1427                 if (q_depth < 64)
1428                         return -ENOMEM;
1429         }
1430
1431         return q_depth;
1432 }
1433
1434 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1435                                 int qid)
1436 {
1437         struct pci_dev *pdev = to_pci_dev(dev->dev);
1438
1439         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1440                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1441                 if (nvmeq->sq_cmds) {
1442                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1443                                                         nvmeq->sq_cmds);
1444                         if (nvmeq->sq_dma_addr) {
1445                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1446                                 return 0;
1447                         }
1448
1449                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1450                 }
1451         }
1452
1453         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1454                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1455         if (!nvmeq->sq_cmds)
1456                 return -ENOMEM;
1457         return 0;
1458 }
1459
1460 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1461 {
1462         struct nvme_queue *nvmeq = &dev->queues[qid];
1463
1464         if (dev->ctrl.queue_count > qid)
1465                 return 0;
1466
1467         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1468         nvmeq->q_depth = depth;
1469         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1470                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1471         if (!nvmeq->cqes)
1472                 goto free_nvmeq;
1473
1474         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1475                 goto free_cqdma;
1476
1477         nvmeq->dev = dev;
1478         spin_lock_init(&nvmeq->sq_lock);
1479         spin_lock_init(&nvmeq->cq_poll_lock);
1480         nvmeq->cq_head = 0;
1481         nvmeq->cq_phase = 1;
1482         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1483         nvmeq->qid = qid;
1484         dev->ctrl.queue_count++;
1485
1486         return 0;
1487
1488  free_cqdma:
1489         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1490                           nvmeq->cq_dma_addr);
1491  free_nvmeq:
1492         return -ENOMEM;
1493 }
1494
1495 static int queue_request_irq(struct nvme_queue *nvmeq)
1496 {
1497         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1498         int nr = nvmeq->dev->ctrl.instance;
1499
1500         if (use_threaded_interrupts) {
1501                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1502                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503         } else {
1504                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1505                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1506         }
1507 }
1508
1509 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1510 {
1511         struct nvme_dev *dev = nvmeq->dev;
1512
1513         nvmeq->sq_tail = 0;
1514         nvmeq->last_sq_tail = 0;
1515         nvmeq->cq_head = 0;
1516         nvmeq->cq_phase = 1;
1517         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1518         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1519         nvme_dbbuf_init(dev, nvmeq, qid);
1520         dev->online_queues++;
1521         wmb(); /* ensure the first interrupt sees the initialization */
1522 }
1523
1524 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1525 {
1526         struct nvme_dev *dev = nvmeq->dev;
1527         int result;
1528         u16 vector = 0;
1529
1530         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1531
1532         /*
1533          * A queue's vector matches the queue identifier unless the controller
1534          * has only one vector available.
1535          */
1536         if (!polled)
1537                 vector = dev->num_vecs == 1 ? 0 : qid;
1538         else
1539                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1540
1541         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1542         if (result)
1543                 return result;
1544
1545         result = adapter_alloc_sq(dev, qid, nvmeq);
1546         if (result < 0)
1547                 return result;
1548         if (result)
1549                 goto release_cq;
1550
1551         nvmeq->cq_vector = vector;
1552         nvme_init_queue(nvmeq, qid);
1553
1554         if (!polled) {
1555                 result = queue_request_irq(nvmeq);
1556                 if (result < 0)
1557                         goto release_sq;
1558         }
1559
1560         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1561         return result;
1562
1563 release_sq:
1564         dev->online_queues--;
1565         adapter_delete_sq(dev, qid);
1566 release_cq:
1567         adapter_delete_cq(dev, qid);
1568         return result;
1569 }
1570
1571 static const struct blk_mq_ops nvme_mq_admin_ops = {
1572         .queue_rq       = nvme_queue_rq,
1573         .complete       = nvme_pci_complete_rq,
1574         .init_hctx      = nvme_admin_init_hctx,
1575         .exit_hctx      = nvme_admin_exit_hctx,
1576         .init_request   = nvme_init_request,
1577         .timeout        = nvme_timeout,
1578 };
1579
1580 static const struct blk_mq_ops nvme_mq_ops = {
1581         .queue_rq       = nvme_queue_rq,
1582         .complete       = nvme_pci_complete_rq,
1583         .commit_rqs     = nvme_commit_rqs,
1584         .init_hctx      = nvme_init_hctx,
1585         .init_request   = nvme_init_request,
1586         .map_queues     = nvme_pci_map_queues,
1587         .timeout        = nvme_timeout,
1588         .poll           = nvme_poll,
1589 };
1590
1591 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1592 {
1593         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1594                 /*
1595                  * If the controller was reset during removal, it's possible
1596                  * user requests may be waiting on a stopped queue. Start the
1597                  * queue to flush these to completion.
1598                  */
1599                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1600                 blk_cleanup_queue(dev->ctrl.admin_q);
1601                 blk_mq_free_tag_set(&dev->admin_tagset);
1602         }
1603 }
1604
1605 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1606 {
1607         if (!dev->ctrl.admin_q) {
1608                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1609                 dev->admin_tagset.nr_hw_queues = 1;
1610
1611                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1612                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1613                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1614                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1615                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1616                 dev->admin_tagset.driver_data = dev;
1617
1618                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1619                         return -ENOMEM;
1620                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1621
1622                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1623                 if (IS_ERR(dev->ctrl.admin_q)) {
1624                         blk_mq_free_tag_set(&dev->admin_tagset);
1625                         return -ENOMEM;
1626                 }
1627                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1628                         nvme_dev_remove_admin(dev);
1629                         dev->ctrl.admin_q = NULL;
1630                         return -ENODEV;
1631                 }
1632         } else
1633                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1634
1635         return 0;
1636 }
1637
1638 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1639 {
1640         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1641 }
1642
1643 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1644 {
1645         struct pci_dev *pdev = to_pci_dev(dev->dev);
1646
1647         if (size <= dev->bar_mapped_size)
1648                 return 0;
1649         if (size > pci_resource_len(pdev, 0))
1650                 return -ENOMEM;
1651         if (dev->bar)
1652                 iounmap(dev->bar);
1653         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1654         if (!dev->bar) {
1655                 dev->bar_mapped_size = 0;
1656                 return -ENOMEM;
1657         }
1658         dev->bar_mapped_size = size;
1659         dev->dbs = dev->bar + NVME_REG_DBS;
1660
1661         return 0;
1662 }
1663
1664 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1665 {
1666         int result;
1667         u32 aqa;
1668         struct nvme_queue *nvmeq;
1669
1670         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1671         if (result < 0)
1672                 return result;
1673
1674         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1675                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1676
1677         if (dev->subsystem &&
1678             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1679                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1680
1681         result = nvme_disable_ctrl(&dev->ctrl);
1682         if (result < 0)
1683                 return result;
1684
1685         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1686         if (result)
1687                 return result;
1688
1689         nvmeq = &dev->queues[0];
1690         aqa = nvmeq->q_depth - 1;
1691         aqa |= aqa << 16;
1692
1693         writel(aqa, dev->bar + NVME_REG_AQA);
1694         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1695         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1696
1697         result = nvme_enable_ctrl(&dev->ctrl);
1698         if (result)
1699                 return result;
1700
1701         nvmeq->cq_vector = 0;
1702         nvme_init_queue(nvmeq, 0);
1703         result = queue_request_irq(nvmeq);
1704         if (result) {
1705                 dev->online_queues--;
1706                 return result;
1707         }
1708
1709         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710         return result;
1711 }
1712
1713 static int nvme_create_io_queues(struct nvme_dev *dev)
1714 {
1715         unsigned i, max, rw_queues;
1716         int ret = 0;
1717
1718         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1719                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1720                         ret = -ENOMEM;
1721                         break;
1722                 }
1723         }
1724
1725         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1726         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1727                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1728                                 dev->io_queues[HCTX_TYPE_READ];
1729         } else {
1730                 rw_queues = max;
1731         }
1732
1733         for (i = dev->online_queues; i <= max; i++) {
1734                 bool polled = i > rw_queues;
1735
1736                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1737                 if (ret)
1738                         break;
1739         }
1740
1741         /*
1742          * Ignore failing Create SQ/CQ commands, we can continue with less
1743          * than the desired amount of queues, and even a controller without
1744          * I/O queues can still be used to issue admin commands.  This might
1745          * be useful to upgrade a buggy firmware for example.
1746          */
1747         return ret >= 0 ? 0 : ret;
1748 }
1749
1750 static ssize_t nvme_cmb_show(struct device *dev,
1751                              struct device_attribute *attr,
1752                              char *buf)
1753 {
1754         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1755
1756         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1757                        ndev->cmbloc, ndev->cmbsz);
1758 }
1759 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1760
1761 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1762 {
1763         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1764
1765         return 1ULL << (12 + 4 * szu);
1766 }
1767
1768 static u32 nvme_cmb_size(struct nvme_dev *dev)
1769 {
1770         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1771 }
1772
1773 static void nvme_map_cmb(struct nvme_dev *dev)
1774 {
1775         u64 size, offset;
1776         resource_size_t bar_size;
1777         struct pci_dev *pdev = to_pci_dev(dev->dev);
1778         int bar;
1779
1780         if (dev->cmb_size)
1781                 return;
1782
1783         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1784         if (!dev->cmbsz)
1785                 return;
1786         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1787
1788         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1789         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1790         bar = NVME_CMB_BIR(dev->cmbloc);
1791         bar_size = pci_resource_len(pdev, bar);
1792
1793         if (offset > bar_size)
1794                 return;
1795
1796         /*
1797          * Controllers may support a CMB size larger than their BAR,
1798          * for example, due to being behind a bridge. Reduce the CMB to
1799          * the reported size of the BAR
1800          */
1801         if (size > bar_size - offset)
1802                 size = bar_size - offset;
1803
1804         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1805                 dev_warn(dev->ctrl.device,
1806                          "failed to register the CMB\n");
1807                 return;
1808         }
1809
1810         dev->cmb_size = size;
1811         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1812
1813         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1814                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1815                 pci_p2pmem_publish(pdev, true);
1816
1817         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1818                                     &dev_attr_cmb.attr, NULL))
1819                 dev_warn(dev->ctrl.device,
1820                          "failed to add sysfs attribute for CMB\n");
1821 }
1822
1823 static inline void nvme_release_cmb(struct nvme_dev *dev)
1824 {
1825         if (dev->cmb_size) {
1826                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1827                                              &dev_attr_cmb.attr, NULL);
1828                 dev->cmb_size = 0;
1829         }
1830 }
1831
1832 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1833 {
1834         u64 dma_addr = dev->host_mem_descs_dma;
1835         struct nvme_command c;
1836         int ret;
1837
1838         memset(&c, 0, sizeof(c));
1839         c.features.opcode       = nvme_admin_set_features;
1840         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1841         c.features.dword11      = cpu_to_le32(bits);
1842         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1843                                               ilog2(dev->ctrl.page_size));
1844         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1845         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1846         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1847
1848         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1849         if (ret) {
1850                 dev_warn(dev->ctrl.device,
1851                          "failed to set host mem (err %d, flags %#x).\n",
1852                          ret, bits);
1853         }
1854         return ret;
1855 }
1856
1857 static void nvme_free_host_mem(struct nvme_dev *dev)
1858 {
1859         int i;
1860
1861         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1862                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1863                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1864
1865                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1866                                le64_to_cpu(desc->addr),
1867                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1868         }
1869
1870         kfree(dev->host_mem_desc_bufs);
1871         dev->host_mem_desc_bufs = NULL;
1872         dma_free_coherent(dev->dev,
1873                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1874                         dev->host_mem_descs, dev->host_mem_descs_dma);
1875         dev->host_mem_descs = NULL;
1876         dev->nr_host_mem_descs = 0;
1877 }
1878
1879 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1880                 u32 chunk_size)
1881 {
1882         struct nvme_host_mem_buf_desc *descs;
1883         u32 max_entries, len;
1884         dma_addr_t descs_dma;
1885         int i = 0;
1886         void **bufs;
1887         u64 size, tmp;
1888
1889         tmp = (preferred + chunk_size - 1);
1890         do_div(tmp, chunk_size);
1891         max_entries = tmp;
1892
1893         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1894                 max_entries = dev->ctrl.hmmaxd;
1895
1896         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1897                                    &descs_dma, GFP_KERNEL);
1898         if (!descs)
1899                 goto out;
1900
1901         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1902         if (!bufs)
1903                 goto out_free_descs;
1904
1905         for (size = 0; size < preferred && i < max_entries; size += len) {
1906                 dma_addr_t dma_addr;
1907
1908                 len = min_t(u64, chunk_size, preferred - size);
1909                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1910                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1911                 if (!bufs[i])
1912                         break;
1913
1914                 descs[i].addr = cpu_to_le64(dma_addr);
1915                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1916                 i++;
1917         }
1918
1919         if (!size)
1920                 goto out_free_bufs;
1921
1922         dev->nr_host_mem_descs = i;
1923         dev->host_mem_size = size;
1924         dev->host_mem_descs = descs;
1925         dev->host_mem_descs_dma = descs_dma;
1926         dev->host_mem_desc_bufs = bufs;
1927         return 0;
1928
1929 out_free_bufs:
1930         while (--i >= 0) {
1931                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1932
1933                 dma_free_attrs(dev->dev, size, bufs[i],
1934                                le64_to_cpu(descs[i].addr),
1935                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1936         }
1937
1938         kfree(bufs);
1939 out_free_descs:
1940         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1941                         descs_dma);
1942 out:
1943         dev->host_mem_descs = NULL;
1944         return -ENOMEM;
1945 }
1946
1947 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1948 {
1949         u32 chunk_size;
1950
1951         /* start big and work our way down */
1952         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1953              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1954              chunk_size /= 2) {
1955                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1956                         if (!min || dev->host_mem_size >= min)
1957                                 return 0;
1958                         nvme_free_host_mem(dev);
1959                 }
1960         }
1961
1962         return -ENOMEM;
1963 }
1964
1965 static int nvme_setup_host_mem(struct nvme_dev *dev)
1966 {
1967         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1968         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1969         u64 min = (u64)dev->ctrl.hmmin * 4096;
1970         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1971         int ret;
1972
1973         preferred = min(preferred, max);
1974         if (min > max) {
1975                 dev_warn(dev->ctrl.device,
1976                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1977                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1978                 nvme_free_host_mem(dev);
1979                 return 0;
1980         }
1981
1982         /*
1983          * If we already have a buffer allocated check if we can reuse it.
1984          */
1985         if (dev->host_mem_descs) {
1986                 if (dev->host_mem_size >= min)
1987                         enable_bits |= NVME_HOST_MEM_RETURN;
1988                 else
1989                         nvme_free_host_mem(dev);
1990         }
1991
1992         if (!dev->host_mem_descs) {
1993                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1994                         dev_warn(dev->ctrl.device,
1995                                 "failed to allocate host memory buffer.\n");
1996                         return 0; /* controller must work without HMB */
1997                 }
1998
1999                 dev_info(dev->ctrl.device,
2000                         "allocated %lld MiB host memory buffer.\n",
2001                         dev->host_mem_size >> ilog2(SZ_1M));
2002         }
2003
2004         ret = nvme_set_host_mem(dev, enable_bits);
2005         if (ret)
2006                 nvme_free_host_mem(dev);
2007         return ret;
2008 }
2009
2010 /*
2011  * nirqs is the number of interrupts available for write and read
2012  * queues. The core already reserved an interrupt for the admin queue.
2013  */
2014 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2015 {
2016         struct nvme_dev *dev = affd->priv;
2017         unsigned int nr_read_queues;
2018
2019         /*
2020          * If there is no interupt available for queues, ensure that
2021          * the default queue is set to 1. The affinity set size is
2022          * also set to one, but the irq core ignores it for this case.
2023          *
2024          * If only one interrupt is available or 'write_queue' == 0, combine
2025          * write and read queues.
2026          *
2027          * If 'write_queues' > 0, ensure it leaves room for at least one read
2028          * queue.
2029          */
2030         if (!nrirqs) {
2031                 nrirqs = 1;
2032                 nr_read_queues = 0;
2033         } else if (nrirqs == 1 || !write_queues) {
2034                 nr_read_queues = 0;
2035         } else if (write_queues >= nrirqs) {
2036                 nr_read_queues = 1;
2037         } else {
2038                 nr_read_queues = nrirqs - write_queues;
2039         }
2040
2041         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2042         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2043         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2044         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2045         affd->nr_sets = nr_read_queues ? 2 : 1;
2046 }
2047
2048 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2049 {
2050         struct pci_dev *pdev = to_pci_dev(dev->dev);
2051         struct irq_affinity affd = {
2052                 .pre_vectors    = 1,
2053                 .calc_sets      = nvme_calc_irq_sets,
2054                 .priv           = dev,
2055         };
2056         unsigned int irq_queues, this_p_queues;
2057
2058         /*
2059          * Poll queues don't need interrupts, but we need at least one IO
2060          * queue left over for non-polled IO.
2061          */
2062         this_p_queues = poll_queues;
2063         if (this_p_queues >= nr_io_queues) {
2064                 this_p_queues = nr_io_queues - 1;
2065                 irq_queues = 1;
2066         } else {
2067                 irq_queues = nr_io_queues - this_p_queues + 1;
2068         }
2069         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2070
2071         /* Initialize for the single interrupt case */
2072         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2073         dev->io_queues[HCTX_TYPE_READ] = 0;
2074
2075         /*
2076          * Some Apple controllers require all queues to use the
2077          * first vector.
2078          */
2079         if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2080                 irq_queues = 1;
2081
2082         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2083                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2084 }
2085
2086 static void nvme_disable_io_queues(struct nvme_dev *dev)
2087 {
2088         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2089                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2090 }
2091
2092 static int nvme_setup_io_queues(struct nvme_dev *dev)
2093 {
2094         struct nvme_queue *adminq = &dev->queues[0];
2095         struct pci_dev *pdev = to_pci_dev(dev->dev);
2096         int result, nr_io_queues;
2097         unsigned long size;
2098
2099         nr_io_queues = max_io_queues();
2100
2101         /*
2102          * If tags are shared with admin queue (Apple bug), then
2103          * make sure we only use one IO queue.
2104          */
2105         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2106                 nr_io_queues = 1;
2107
2108         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2109         if (result < 0)
2110                 return result;
2111
2112         if (nr_io_queues == 0)
2113                 return 0;
2114         
2115         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2116
2117         if (dev->cmb_use_sqes) {
2118                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2119                                 sizeof(struct nvme_command));
2120                 if (result > 0)
2121                         dev->q_depth = result;
2122                 else
2123                         dev->cmb_use_sqes = false;
2124         }
2125
2126         do {
2127                 size = db_bar_size(dev, nr_io_queues);
2128                 result = nvme_remap_bar(dev, size);
2129                 if (!result)
2130                         break;
2131                 if (!--nr_io_queues)
2132                         return -ENOMEM;
2133         } while (1);
2134         adminq->q_db = dev->dbs;
2135
2136  retry:
2137         /* Deregister the admin queue's interrupt */
2138         pci_free_irq(pdev, 0, adminq);
2139
2140         /*
2141          * If we enable msix early due to not intx, disable it again before
2142          * setting up the full range we need.
2143          */
2144         pci_free_irq_vectors(pdev);
2145
2146         result = nvme_setup_irqs(dev, nr_io_queues);
2147         if (result <= 0)
2148                 return -EIO;
2149
2150         dev->num_vecs = result;
2151         result = max(result - 1, 1);
2152         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2153
2154         /*
2155          * Should investigate if there's a performance win from allocating
2156          * more queues than interrupt vectors; it might allow the submission
2157          * path to scale better, even if the receive path is limited by the
2158          * number of interrupts.
2159          */
2160         result = queue_request_irq(adminq);
2161         if (result)
2162                 return result;
2163         set_bit(NVMEQ_ENABLED, &adminq->flags);
2164
2165         result = nvme_create_io_queues(dev);
2166         if (result || dev->online_queues < 2)
2167                 return result;
2168
2169         if (dev->online_queues - 1 < dev->max_qid) {
2170                 nr_io_queues = dev->online_queues - 1;
2171                 nvme_disable_io_queues(dev);
2172                 nvme_suspend_io_queues(dev);
2173                 goto retry;
2174         }
2175         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2176                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2177                                         dev->io_queues[HCTX_TYPE_READ],
2178                                         dev->io_queues[HCTX_TYPE_POLL]);
2179         return 0;
2180 }
2181
2182 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2183 {
2184         struct nvme_queue *nvmeq = req->end_io_data;
2185
2186         blk_mq_free_request(req);
2187         complete(&nvmeq->delete_done);
2188 }
2189
2190 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2191 {
2192         struct nvme_queue *nvmeq = req->end_io_data;
2193
2194         if (error)
2195                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2196
2197         nvme_del_queue_end(req, error);
2198 }
2199
2200 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2201 {
2202         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2203         struct request *req;
2204         struct nvme_command cmd;
2205
2206         memset(&cmd, 0, sizeof(cmd));
2207         cmd.delete_queue.opcode = opcode;
2208         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2209
2210         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2211         if (IS_ERR(req))
2212                 return PTR_ERR(req);
2213
2214         req->timeout = ADMIN_TIMEOUT;
2215         req->end_io_data = nvmeq;
2216
2217         init_completion(&nvmeq->delete_done);
2218         blk_execute_rq_nowait(q, NULL, req, false,
2219                         opcode == nvme_admin_delete_cq ?
2220                                 nvme_del_cq_end : nvme_del_queue_end);
2221         return 0;
2222 }
2223
2224 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2225 {
2226         int nr_queues = dev->online_queues - 1, sent = 0;
2227         unsigned long timeout;
2228
2229  retry:
2230         timeout = ADMIN_TIMEOUT;
2231         while (nr_queues > 0) {
2232                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2233                         break;
2234                 nr_queues--;
2235                 sent++;
2236         }
2237         while (sent) {
2238                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2239
2240                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2241                                 timeout);
2242                 if (timeout == 0)
2243                         return false;
2244
2245                 /* handle any remaining CQEs */
2246                 if (opcode == nvme_admin_delete_cq &&
2247                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2248                         nvme_poll_irqdisable(nvmeq, -1);
2249
2250                 sent--;
2251                 if (nr_queues)
2252                         goto retry;
2253         }
2254         return true;
2255 }
2256
2257 static void nvme_dev_add(struct nvme_dev *dev)
2258 {
2259         int ret;
2260
2261         if (!dev->ctrl.tagset) {
2262                 dev->tagset.ops = &nvme_mq_ops;
2263                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2264                 dev->tagset.nr_maps = 2; /* default + read */
2265                 if (dev->io_queues[HCTX_TYPE_POLL])
2266                         dev->tagset.nr_maps++;
2267                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2268                 dev->tagset.numa_node = dev_to_node(dev->dev);
2269                 dev->tagset.queue_depth =
2270                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2271                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2272                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2273                 dev->tagset.driver_data = dev;
2274
2275                 /*
2276                  * Some Apple controllers requires tags to be unique
2277                  * across admin and IO queue, so reserve the first 32
2278                  * tags of the IO queue.
2279                  */
2280                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2281                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2282
2283                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2284                 if (ret) {
2285                         dev_warn(dev->ctrl.device,
2286                                 "IO queues tagset allocation failed %d\n", ret);
2287                         return;
2288                 }
2289                 dev->ctrl.tagset = &dev->tagset;
2290         } else {
2291                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2292
2293                 /* Free previously allocated queues that are no longer usable */
2294                 nvme_free_queues(dev, dev->online_queues);
2295         }
2296
2297         nvme_dbbuf_set(dev);
2298 }
2299
2300 static int nvme_pci_enable(struct nvme_dev *dev)
2301 {
2302         int result = -ENOMEM;
2303         struct pci_dev *pdev = to_pci_dev(dev->dev);
2304
2305         if (pci_enable_device_mem(pdev))
2306                 return result;
2307
2308         pci_set_master(pdev);
2309
2310         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2311                 goto disable;
2312
2313         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2314                 result = -ENODEV;
2315                 goto disable;
2316         }
2317
2318         /*
2319          * Some devices and/or platforms don't advertise or work with INTx
2320          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2321          * adjust this later.
2322          */
2323         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2324         if (result < 0)
2325                 return result;
2326
2327         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2328
2329         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2330                                 io_queue_depth);
2331         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2332         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2333         dev->dbs = dev->bar + 4096;
2334
2335         /*
2336          * Some Apple controllers require a non-standard SQE size.
2337          * Interestingly they also seem to ignore the CC:IOSQES register
2338          * so we don't bother updating it here.
2339          */
2340         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2341                 dev->io_sqes = 7;
2342         else
2343                 dev->io_sqes = NVME_NVM_IOSQES;
2344
2345         /*
2346          * Temporary fix for the Apple controller found in the MacBook8,1 and
2347          * some MacBook7,1 to avoid controller resets and data loss.
2348          */
2349         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2350                 dev->q_depth = 2;
2351                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2352                         "set queue depth=%u to work around controller resets\n",
2353                         dev->q_depth);
2354         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2355                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2356                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2357                 dev->q_depth = 64;
2358                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2359                         "set queue depth=%u\n", dev->q_depth);
2360         }
2361
2362         /*
2363          * Controllers with the shared tags quirk need the IO queue to be
2364          * big enough so that we get 32 tags for the admin queue
2365          */
2366         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2367             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2368                 dev->q_depth = NVME_AQ_DEPTH + 2;
2369                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2370                          dev->q_depth);
2371         }
2372
2373
2374         nvme_map_cmb(dev);
2375
2376         pci_enable_pcie_error_reporting(pdev);
2377         pci_save_state(pdev);
2378         return 0;
2379
2380  disable:
2381         pci_disable_device(pdev);
2382         return result;
2383 }
2384
2385 static void nvme_dev_unmap(struct nvme_dev *dev)
2386 {
2387         if (dev->bar)
2388                 iounmap(dev->bar);
2389         pci_release_mem_regions(to_pci_dev(dev->dev));
2390 }
2391
2392 static void nvme_pci_disable(struct nvme_dev *dev)
2393 {
2394         struct pci_dev *pdev = to_pci_dev(dev->dev);
2395
2396         pci_free_irq_vectors(pdev);
2397
2398         if (pci_is_enabled(pdev)) {
2399                 pci_disable_pcie_error_reporting(pdev);
2400                 pci_disable_device(pdev);
2401         }
2402 }
2403
2404 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2405 {
2406         bool dead = true, freeze = false;
2407         struct pci_dev *pdev = to_pci_dev(dev->dev);
2408
2409         mutex_lock(&dev->shutdown_lock);
2410         if (pci_is_enabled(pdev)) {
2411                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2412
2413                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2414                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2415                         freeze = true;
2416                         nvme_start_freeze(&dev->ctrl);
2417                 }
2418                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2419                         pdev->error_state  != pci_channel_io_normal);
2420         }
2421
2422         /*
2423          * Give the controller a chance to complete all entered requests if
2424          * doing a safe shutdown.
2425          */
2426         if (!dead && shutdown && freeze)
2427                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2428
2429         nvme_stop_queues(&dev->ctrl);
2430
2431         if (!dead && dev->ctrl.queue_count > 0) {
2432                 nvme_disable_io_queues(dev);
2433                 nvme_disable_admin_queue(dev, shutdown);
2434         }
2435         nvme_suspend_io_queues(dev);
2436         nvme_suspend_queue(&dev->queues[0]);
2437         nvme_pci_disable(dev);
2438
2439         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2440         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2441         blk_mq_tagset_wait_completed_request(&dev->tagset);
2442         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2443
2444         /*
2445          * The driver will not be starting up queues again if shutting down so
2446          * must flush all entered requests to their failed completion to avoid
2447          * deadlocking blk-mq hot-cpu notifier.
2448          */
2449         if (shutdown) {
2450                 nvme_start_queues(&dev->ctrl);
2451                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2452                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2453         }
2454         mutex_unlock(&dev->shutdown_lock);
2455 }
2456
2457 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2458 {
2459         if (!nvme_wait_reset(&dev->ctrl))
2460                 return -EBUSY;
2461         nvme_dev_disable(dev, shutdown);
2462         return 0;
2463 }
2464
2465 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2466 {
2467         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2468                                                 PAGE_SIZE, PAGE_SIZE, 0);
2469         if (!dev->prp_page_pool)
2470                 return -ENOMEM;
2471
2472         /* Optimisation for I/Os between 4k and 128k */
2473         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2474                                                 256, 256, 0);
2475         if (!dev->prp_small_pool) {
2476                 dma_pool_destroy(dev->prp_page_pool);
2477                 return -ENOMEM;
2478         }
2479         return 0;
2480 }
2481
2482 static void nvme_release_prp_pools(struct nvme_dev *dev)
2483 {
2484         dma_pool_destroy(dev->prp_page_pool);
2485         dma_pool_destroy(dev->prp_small_pool);
2486 }
2487
2488 static void nvme_free_tagset(struct nvme_dev *dev)
2489 {
2490         if (dev->tagset.tags)
2491                 blk_mq_free_tag_set(&dev->tagset);
2492         dev->ctrl.tagset = NULL;
2493 }
2494
2495 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2496 {
2497         struct nvme_dev *dev = to_nvme_dev(ctrl);
2498
2499         nvme_dbbuf_dma_free(dev);
2500         put_device(dev->dev);
2501         nvme_free_tagset(dev);
2502         if (dev->ctrl.admin_q)
2503                 blk_put_queue(dev->ctrl.admin_q);
2504         kfree(dev->queues);
2505         free_opal_dev(dev->ctrl.opal_dev);
2506         mempool_destroy(dev->iod_mempool);
2507         kfree(dev);
2508 }
2509
2510 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2511 {
2512         /*
2513          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2514          * may be holding this pci_dev's device lock.
2515          */
2516         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2517         nvme_get_ctrl(&dev->ctrl);
2518         nvme_dev_disable(dev, false);
2519         nvme_kill_queues(&dev->ctrl);
2520         if (!queue_work(nvme_wq, &dev->remove_work))
2521                 nvme_put_ctrl(&dev->ctrl);
2522 }
2523
2524 static void nvme_reset_work(struct work_struct *work)
2525 {
2526         struct nvme_dev *dev =
2527                 container_of(work, struct nvme_dev, ctrl.reset_work);
2528         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2529         int result;
2530
2531         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2532                 result = -ENODEV;
2533                 goto out;
2534         }
2535
2536         /*
2537          * If we're called to reset a live controller first shut it down before
2538          * moving on.
2539          */
2540         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2541                 nvme_dev_disable(dev, false);
2542         nvme_sync_queues(&dev->ctrl);
2543
2544         mutex_lock(&dev->shutdown_lock);
2545         result = nvme_pci_enable(dev);
2546         if (result)
2547                 goto out_unlock;
2548
2549         result = nvme_pci_configure_admin_queue(dev);
2550         if (result)
2551                 goto out_unlock;
2552
2553         result = nvme_alloc_admin_tags(dev);
2554         if (result)
2555                 goto out_unlock;
2556
2557         /*
2558          * Limit the max command size to prevent iod->sg allocations going
2559          * over a single page.
2560          */
2561         dev->ctrl.max_hw_sectors = min_t(u32,
2562                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2563         dev->ctrl.max_segments = NVME_MAX_SEGS;
2564
2565         /*
2566          * Don't limit the IOMMU merged segment size.
2567          */
2568         dma_set_max_seg_size(dev->dev, 0xffffffff);
2569
2570         mutex_unlock(&dev->shutdown_lock);
2571
2572         /*
2573          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2574          * initializing procedure here.
2575          */
2576         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2577                 dev_warn(dev->ctrl.device,
2578                         "failed to mark controller CONNECTING\n");
2579                 result = -EBUSY;
2580                 goto out;
2581         }
2582
2583         result = nvme_init_identify(&dev->ctrl);
2584         if (result)
2585                 goto out;
2586
2587         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2588                 if (!dev->ctrl.opal_dev)
2589                         dev->ctrl.opal_dev =
2590                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2591                 else if (was_suspend)
2592                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2593         } else {
2594                 free_opal_dev(dev->ctrl.opal_dev);
2595                 dev->ctrl.opal_dev = NULL;
2596         }
2597
2598         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2599                 result = nvme_dbbuf_dma_alloc(dev);
2600                 if (result)
2601                         dev_warn(dev->dev,
2602                                  "unable to allocate dma for dbbuf\n");
2603         }
2604
2605         if (dev->ctrl.hmpre) {
2606                 result = nvme_setup_host_mem(dev);
2607                 if (result < 0)
2608                         goto out;
2609         }
2610
2611         result = nvme_setup_io_queues(dev);
2612         if (result)
2613                 goto out;
2614
2615         /*
2616          * Keep the controller around but remove all namespaces if we don't have
2617          * any working I/O queue.
2618          */
2619         if (dev->online_queues < 2) {
2620                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2621                 nvme_kill_queues(&dev->ctrl);
2622                 nvme_remove_namespaces(&dev->ctrl);
2623                 nvme_free_tagset(dev);
2624         } else {
2625                 nvme_start_queues(&dev->ctrl);
2626                 nvme_wait_freeze(&dev->ctrl);
2627                 nvme_dev_add(dev);
2628                 nvme_unfreeze(&dev->ctrl);
2629         }
2630
2631         /*
2632          * If only admin queue live, keep it to do further investigation or
2633          * recovery.
2634          */
2635         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2636                 dev_warn(dev->ctrl.device,
2637                         "failed to mark controller live state\n");
2638                 result = -ENODEV;
2639                 goto out;
2640         }
2641
2642         nvme_start_ctrl(&dev->ctrl);
2643         return;
2644
2645  out_unlock:
2646         mutex_unlock(&dev->shutdown_lock);
2647  out:
2648         if (result)
2649                 dev_warn(dev->ctrl.device,
2650                          "Removing after probe failure status: %d\n", result);
2651         nvme_remove_dead_ctrl(dev);
2652 }
2653
2654 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2655 {
2656         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2657         struct pci_dev *pdev = to_pci_dev(dev->dev);
2658
2659         if (pci_get_drvdata(pdev))
2660                 device_release_driver(&pdev->dev);
2661         nvme_put_ctrl(&dev->ctrl);
2662 }
2663
2664 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2665 {
2666         *val = readl(to_nvme_dev(ctrl)->bar + off);
2667         return 0;
2668 }
2669
2670 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2671 {
2672         writel(val, to_nvme_dev(ctrl)->bar + off);
2673         return 0;
2674 }
2675
2676 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2677 {
2678         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2679         return 0;
2680 }
2681
2682 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2683 {
2684         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2685
2686         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2687 }
2688
2689 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2690         .name                   = "pcie",
2691         .module                 = THIS_MODULE,
2692         .flags                  = NVME_F_METADATA_SUPPORTED |
2693                                   NVME_F_PCI_P2PDMA,
2694         .reg_read32             = nvme_pci_reg_read32,
2695         .reg_write32            = nvme_pci_reg_write32,
2696         .reg_read64             = nvme_pci_reg_read64,
2697         .free_ctrl              = nvme_pci_free_ctrl,
2698         .submit_async_event     = nvme_pci_submit_async_event,
2699         .get_address            = nvme_pci_get_address,
2700 };
2701
2702 static int nvme_dev_map(struct nvme_dev *dev)
2703 {
2704         struct pci_dev *pdev = to_pci_dev(dev->dev);
2705
2706         if (pci_request_mem_regions(pdev, "nvme"))
2707                 return -ENODEV;
2708
2709         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2710                 goto release;
2711
2712         return 0;
2713   release:
2714         pci_release_mem_regions(pdev);
2715         return -ENODEV;
2716 }
2717
2718 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2719 {
2720         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2721                 /*
2722                  * Several Samsung devices seem to drop off the PCIe bus
2723                  * randomly when APST is on and uses the deepest sleep state.
2724                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2725                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2726                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2727                  * laptops.
2728                  */
2729                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2730                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2731                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2732                         return NVME_QUIRK_NO_DEEPEST_PS;
2733         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2734                 /*
2735                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2736                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2737                  * within few minutes after bootup on a Coffee Lake board -
2738                  * ASUS PRIME Z370-A
2739                  */
2740                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2741                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2742                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2743                         return NVME_QUIRK_NO_APST;
2744         }
2745
2746         return 0;
2747 }
2748
2749 static void nvme_async_probe(void *data, async_cookie_t cookie)
2750 {
2751         struct nvme_dev *dev = data;
2752
2753         flush_work(&dev->ctrl.reset_work);
2754         flush_work(&dev->ctrl.scan_work);
2755         nvme_put_ctrl(&dev->ctrl);
2756 }
2757
2758 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2759 {
2760         int node, result = -ENOMEM;
2761         struct nvme_dev *dev;
2762         unsigned long quirks = id->driver_data;
2763         size_t alloc_size;
2764
2765         node = dev_to_node(&pdev->dev);
2766         if (node == NUMA_NO_NODE)
2767                 set_dev_node(&pdev->dev, first_memory_node);
2768
2769         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2770         if (!dev)
2771                 return -ENOMEM;
2772
2773         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2774                                         GFP_KERNEL, node);
2775         if (!dev->queues)
2776                 goto free;
2777
2778         dev->dev = get_device(&pdev->dev);
2779         pci_set_drvdata(pdev, dev);
2780
2781         result = nvme_dev_map(dev);
2782         if (result)
2783                 goto put_pci;
2784
2785         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2786         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2787         mutex_init(&dev->shutdown_lock);
2788
2789         result = nvme_setup_prp_pools(dev);
2790         if (result)
2791                 goto unmap;
2792
2793         quirks |= check_vendor_combination_bug(pdev);
2794
2795         /*
2796          * Double check that our mempool alloc size will cover the biggest
2797          * command we support.
2798          */
2799         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2800                                                 NVME_MAX_SEGS, true);
2801         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2802
2803         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2804                                                 mempool_kfree,
2805                                                 (void *) alloc_size,
2806                                                 GFP_KERNEL, node);
2807         if (!dev->iod_mempool) {
2808                 result = -ENOMEM;
2809                 goto release_pools;
2810         }
2811
2812         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2813                         quirks);
2814         if (result)
2815                 goto release_mempool;
2816
2817         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2818
2819         nvme_reset_ctrl(&dev->ctrl);
2820         nvme_get_ctrl(&dev->ctrl);
2821         async_schedule(nvme_async_probe, dev);
2822
2823         return 0;
2824
2825  release_mempool:
2826         mempool_destroy(dev->iod_mempool);
2827  release_pools:
2828         nvme_release_prp_pools(dev);
2829  unmap:
2830         nvme_dev_unmap(dev);
2831  put_pci:
2832         put_device(dev->dev);
2833  free:
2834         kfree(dev->queues);
2835         kfree(dev);
2836         return result;
2837 }
2838
2839 static void nvme_reset_prepare(struct pci_dev *pdev)
2840 {
2841         struct nvme_dev *dev = pci_get_drvdata(pdev);
2842
2843         /*
2844          * We don't need to check the return value from waiting for the reset
2845          * state as pci_dev device lock is held, making it impossible to race
2846          * with ->remove().
2847          */
2848         nvme_disable_prepare_reset(dev, false);
2849         nvme_sync_queues(&dev->ctrl);
2850 }
2851
2852 static void nvme_reset_done(struct pci_dev *pdev)
2853 {
2854         struct nvme_dev *dev = pci_get_drvdata(pdev);
2855
2856         if (!nvme_try_sched_reset(&dev->ctrl))
2857                 flush_work(&dev->ctrl.reset_work);
2858 }
2859
2860 static void nvme_shutdown(struct pci_dev *pdev)
2861 {
2862         struct nvme_dev *dev = pci_get_drvdata(pdev);
2863         nvme_disable_prepare_reset(dev, true);
2864 }
2865
2866 /*
2867  * The driver's remove may be called on a device in a partially initialized
2868  * state. This function must not have any dependencies on the device state in
2869  * order to proceed.
2870  */
2871 static void nvme_remove(struct pci_dev *pdev)
2872 {
2873         struct nvme_dev *dev = pci_get_drvdata(pdev);
2874
2875         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2876         pci_set_drvdata(pdev, NULL);
2877
2878         if (!pci_device_is_present(pdev)) {
2879                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2880                 nvme_dev_disable(dev, true);
2881                 nvme_dev_remove_admin(dev);
2882         }
2883
2884         flush_work(&dev->ctrl.reset_work);
2885         nvme_stop_ctrl(&dev->ctrl);
2886         nvme_remove_namespaces(&dev->ctrl);
2887         nvme_dev_disable(dev, true);
2888         nvme_release_cmb(dev);
2889         nvme_free_host_mem(dev);
2890         nvme_dev_remove_admin(dev);
2891         nvme_free_queues(dev, 0);
2892         nvme_uninit_ctrl(&dev->ctrl);
2893         nvme_release_prp_pools(dev);
2894         nvme_dev_unmap(dev);
2895         nvme_put_ctrl(&dev->ctrl);
2896 }
2897
2898 #ifdef CONFIG_PM_SLEEP
2899 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2900 {
2901         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2902 }
2903
2904 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2905 {
2906         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2907 }
2908
2909 static int nvme_resume(struct device *dev)
2910 {
2911         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2912         struct nvme_ctrl *ctrl = &ndev->ctrl;
2913
2914         if (ndev->last_ps == U32_MAX ||
2915             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2916                 return nvme_try_sched_reset(&ndev->ctrl);
2917         return 0;
2918 }
2919
2920 static int nvme_suspend(struct device *dev)
2921 {
2922         struct pci_dev *pdev = to_pci_dev(dev);
2923         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2924         struct nvme_ctrl *ctrl = &ndev->ctrl;
2925         int ret = -EBUSY;
2926
2927         ndev->last_ps = U32_MAX;
2928
2929         /*
2930          * The platform does not remove power for a kernel managed suspend so
2931          * use host managed nvme power settings for lowest idle power if
2932          * possible. This should have quicker resume latency than a full device
2933          * shutdown.  But if the firmware is involved after the suspend or the
2934          * device does not support any non-default power states, shut down the
2935          * device fully.
2936          *
2937          * If ASPM is not enabled for the device, shut down the device and allow
2938          * the PCI bus layer to put it into D3 in order to take the PCIe link
2939          * down, so as to allow the platform to achieve its minimum low-power
2940          * state (which may not be possible if the link is up).
2941          */
2942         if (pm_suspend_via_firmware() || !ctrl->npss ||
2943             !pcie_aspm_enabled(pdev) ||
2944             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2945                 return nvme_disable_prepare_reset(ndev, true);
2946
2947         nvme_start_freeze(ctrl);
2948         nvme_wait_freeze(ctrl);
2949         nvme_sync_queues(ctrl);
2950
2951         if (ctrl->state != NVME_CTRL_LIVE)
2952                 goto unfreeze;
2953
2954         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2955         if (ret < 0)
2956                 goto unfreeze;
2957
2958         /*
2959          * A saved state prevents pci pm from generically controlling the
2960          * device's power. If we're using protocol specific settings, we don't
2961          * want pci interfering.
2962          */
2963         pci_save_state(pdev);
2964
2965         ret = nvme_set_power_state(ctrl, ctrl->npss);
2966         if (ret < 0)
2967                 goto unfreeze;
2968
2969         if (ret) {
2970                 /* discard the saved state */
2971                 pci_load_saved_state(pdev, NULL);
2972
2973                 /*
2974                  * Clearing npss forces a controller reset on resume. The
2975                  * correct value will be rediscovered then.
2976                  */
2977                 ret = nvme_disable_prepare_reset(ndev, true);
2978                 ctrl->npss = 0;
2979         }
2980 unfreeze:
2981         nvme_unfreeze(ctrl);
2982         return ret;
2983 }
2984
2985 static int nvme_simple_suspend(struct device *dev)
2986 {
2987         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2988         return nvme_disable_prepare_reset(ndev, true);
2989 }
2990
2991 static int nvme_simple_resume(struct device *dev)
2992 {
2993         struct pci_dev *pdev = to_pci_dev(dev);
2994         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2995
2996         return nvme_try_sched_reset(&ndev->ctrl);
2997 }
2998
2999 static const struct dev_pm_ops nvme_dev_pm_ops = {
3000         .suspend        = nvme_suspend,
3001         .resume         = nvme_resume,
3002         .freeze         = nvme_simple_suspend,
3003         .thaw           = nvme_simple_resume,
3004         .poweroff       = nvme_simple_suspend,
3005         .restore        = nvme_simple_resume,
3006 };
3007 #endif /* CONFIG_PM_SLEEP */
3008
3009 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3010                                                 pci_channel_state_t state)
3011 {
3012         struct nvme_dev *dev = pci_get_drvdata(pdev);
3013
3014         /*
3015          * A frozen channel requires a reset. When detected, this method will
3016          * shutdown the controller to quiesce. The controller will be restarted
3017          * after the slot reset through driver's slot_reset callback.
3018          */
3019         switch (state) {
3020         case pci_channel_io_normal:
3021                 return PCI_ERS_RESULT_CAN_RECOVER;
3022         case pci_channel_io_frozen:
3023                 dev_warn(dev->ctrl.device,
3024                         "frozen state error detected, reset controller\n");
3025                 nvme_dev_disable(dev, false);
3026                 return PCI_ERS_RESULT_NEED_RESET;
3027         case pci_channel_io_perm_failure:
3028                 dev_warn(dev->ctrl.device,
3029                         "failure state error detected, request disconnect\n");
3030                 return PCI_ERS_RESULT_DISCONNECT;
3031         }
3032         return PCI_ERS_RESULT_NEED_RESET;
3033 }
3034
3035 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3036 {
3037         struct nvme_dev *dev = pci_get_drvdata(pdev);
3038
3039         dev_info(dev->ctrl.device, "restart after slot reset\n");
3040         pci_restore_state(pdev);
3041         nvme_reset_ctrl(&dev->ctrl);
3042         return PCI_ERS_RESULT_RECOVERED;
3043 }
3044
3045 static void nvme_error_resume(struct pci_dev *pdev)
3046 {
3047         struct nvme_dev *dev = pci_get_drvdata(pdev);
3048
3049         flush_work(&dev->ctrl.reset_work);
3050 }
3051
3052 static const struct pci_error_handlers nvme_err_handler = {
3053         .error_detected = nvme_error_detected,
3054         .slot_reset     = nvme_slot_reset,
3055         .resume         = nvme_error_resume,
3056         .reset_prepare  = nvme_reset_prepare,
3057         .reset_done     = nvme_reset_done,
3058 };
3059
3060 static const struct pci_device_id nvme_id_table[] = {
3061         { PCI_VDEVICE(INTEL, 0x0953),
3062                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3063                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3064         { PCI_VDEVICE(INTEL, 0x0a53),
3065                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3066                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3067         { PCI_VDEVICE(INTEL, 0x0a54),
3068                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3069                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3070         { PCI_VDEVICE(INTEL, 0x0a55),
3071                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3072                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3073         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3074                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3075                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3076                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3077         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3078                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3079         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3080                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3081                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3082         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3083                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3084         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3085                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3086         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3087                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3088         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3089                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3090         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3091                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3092         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3093                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3094         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3095                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3096         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3097                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3098         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3099                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3100         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3101                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3102         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3103                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3104                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3105         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3106         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3107         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3108         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3109                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3110                                 NVME_QUIRK_128_BYTES_SQES |
3111                                 NVME_QUIRK_SHARED_TAGS },
3112         { 0, }
3113 };
3114 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3115
3116 static struct pci_driver nvme_driver = {
3117         .name           = "nvme",
3118         .id_table       = nvme_id_table,
3119         .probe          = nvme_probe,
3120         .remove         = nvme_remove,
3121         .shutdown       = nvme_shutdown,
3122 #ifdef CONFIG_PM_SLEEP
3123         .driver         = {
3124                 .pm     = &nvme_dev_pm_ops,
3125         },
3126 #endif
3127         .sriov_configure = pci_sriov_configure_simple,
3128         .err_handler    = &nvme_err_handler,
3129 };
3130
3131 static int __init nvme_init(void)
3132 {
3133         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3134         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3135         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3136         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3137
3138         write_queues = min(write_queues, num_possible_cpus());
3139         poll_queues = min(poll_queues, num_possible_cpus());
3140         return pci_register_driver(&nvme_driver);
3141 }
3142
3143 static void __exit nvme_exit(void)
3144 {
3145         pci_unregister_driver(&nvme_driver);
3146         flush_workqueue(nvme_wq);
3147 }
3148
3149 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3150 MODULE_LICENSE("GPL");
3151 MODULE_VERSION("1.0");
3152 module_init(nvme_init);
3153 module_exit(nvme_exit);