OSDN Git Service

clk: at91: fix masterck name
[uclinux-h8/linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34
35 #include "trace.h"
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42
43 /*
44  * These can be higher, but we need to ensure that any command doesn't
45  * require an sg allocation that needs more than a page of data.
46  */
47 #define NVME_MAX_KB_SZ  4096
48 #define NVME_MAX_SEGS   127
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 static bool use_cmb_sqes = true;
54 module_param(use_cmb_sqes, bool, 0444);
55 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
56
57 static unsigned int max_host_mem_size_mb = 128;
58 module_param(max_host_mem_size_mb, uint, 0444);
59 MODULE_PARM_DESC(max_host_mem_size_mb,
60         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
61
62 static unsigned int sgl_threshold = SZ_32K;
63 module_param(sgl_threshold, uint, 0644);
64 MODULE_PARM_DESC(sgl_threshold,
65                 "Use SGLs when average request segment size is larger or equal to "
66                 "this size. Use 0 to disable SGLs.");
67
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70         .set = io_queue_depth_set,
71         .get = param_get_int,
72 };
73
74 static int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
77
78 static int queue_count_set(const char *val, const struct kernel_param *kp);
79 static const struct kernel_param_ops queue_count_ops = {
80         .set = queue_count_set,
81         .get = param_get_int,
82 };
83
84 static int write_queues;
85 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
86 MODULE_PARM_DESC(write_queues,
87         "Number of queues to use for writes. If not set, reads and writes "
88         "will share a queue set.");
89
90 static int poll_queues = 0;
91 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
92 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
93
94 struct nvme_dev;
95 struct nvme_queue;
96
97 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
98
99 /*
100  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
101  */
102 struct nvme_dev {
103         struct nvme_queue *queues;
104         struct blk_mq_tag_set tagset;
105         struct blk_mq_tag_set admin_tagset;
106         u32 __iomem *dbs;
107         struct device *dev;
108         struct dma_pool *prp_page_pool;
109         struct dma_pool *prp_small_pool;
110         unsigned online_queues;
111         unsigned max_qid;
112         unsigned io_queues[HCTX_MAX_TYPES];
113         unsigned int num_vecs;
114         int q_depth;
115         u32 db_stride;
116         void __iomem *bar;
117         unsigned long bar_mapped_size;
118         struct work_struct remove_work;
119         struct mutex shutdown_lock;
120         bool subsystem;
121         u64 cmb_size;
122         bool cmb_use_sqes;
123         u32 cmbsz;
124         u32 cmbloc;
125         struct nvme_ctrl ctrl;
126
127         mempool_t *iod_mempool;
128
129         /* shadow doorbell buffer support: */
130         u32 *dbbuf_dbs;
131         dma_addr_t dbbuf_dbs_dma_addr;
132         u32 *dbbuf_eis;
133         dma_addr_t dbbuf_eis_dma_addr;
134
135         /* host memory buffer support: */
136         u64 host_mem_size;
137         u32 nr_host_mem_descs;
138         dma_addr_t host_mem_descs_dma;
139         struct nvme_host_mem_buf_desc *host_mem_descs;
140         void **host_mem_desc_bufs;
141 };
142
143 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
144 {
145         int n = 0, ret;
146
147         ret = kstrtoint(val, 10, &n);
148         if (ret != 0 || n < 2)
149                 return -EINVAL;
150
151         return param_set_int(val, kp);
152 }
153
154 static int queue_count_set(const char *val, const struct kernel_param *kp)
155 {
156         int n = 0, ret;
157
158         ret = kstrtoint(val, 10, &n);
159         if (n > num_possible_cpus())
160                 n = num_possible_cpus();
161
162         return param_set_int(val, kp);
163 }
164
165 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
166 {
167         return qid * 2 * stride;
168 }
169
170 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
171 {
172         return (qid * 2 + 1) * stride;
173 }
174
175 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
176 {
177         return container_of(ctrl, struct nvme_dev, ctrl);
178 }
179
180 /*
181  * An NVM Express queue.  Each device has at least two (one for admin
182  * commands and one for I/O commands).
183  */
184 struct nvme_queue {
185         struct device *q_dmadev;
186         struct nvme_dev *dev;
187         spinlock_t sq_lock;
188         struct nvme_command *sq_cmds;
189          /* only used for poll queues: */
190         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
191         volatile struct nvme_completion *cqes;
192         struct blk_mq_tags **tags;
193         dma_addr_t sq_dma_addr;
194         dma_addr_t cq_dma_addr;
195         u32 __iomem *q_db;
196         u16 q_depth;
197         s16 cq_vector;
198         u16 sq_tail;
199         u16 last_sq_tail;
200         u16 cq_head;
201         u16 last_cq_head;
202         u16 qid;
203         u8 cq_phase;
204         unsigned long flags;
205 #define NVMEQ_ENABLED           0
206 #define NVMEQ_SQ_CMB            1
207 #define NVMEQ_DELETE_ERROR      2
208         u32 *dbbuf_sq_db;
209         u32 *dbbuf_cq_db;
210         u32 *dbbuf_sq_ei;
211         u32 *dbbuf_cq_ei;
212         struct completion delete_done;
213 };
214
215 /*
216  * The nvme_iod describes the data in an I/O, including the list of PRP
217  * entries.  You can't see it in this data structure because C doesn't let
218  * me express that.  Use nvme_init_iod to ensure there's enough space
219  * allocated to store the PRP list.
220  */
221 struct nvme_iod {
222         struct nvme_request req;
223         struct nvme_queue *nvmeq;
224         bool use_sgl;
225         int aborted;
226         int npages;             /* In the PRP list. 0 means small pool in use */
227         int nents;              /* Used in scatterlist */
228         int length;             /* Of data, in bytes */
229         dma_addr_t first_dma;
230         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
231         struct scatterlist *sg;
232         struct scatterlist inline_sg[0];
233 };
234
235 /*
236  * Check we didin't inadvertently grow the command struct
237  */
238 static inline void _nvme_check_size(void)
239 {
240         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
241         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
242         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
243         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
244         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
245         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
246         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
247         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
248         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
249         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
250         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
251         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
252         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
253 }
254
255 static unsigned int max_io_queues(void)
256 {
257         return num_possible_cpus() + write_queues + poll_queues;
258 }
259
260 static unsigned int max_queue_count(void)
261 {
262         /* IO queues + admin queue */
263         return 1 + max_io_queues();
264 }
265
266 static inline unsigned int nvme_dbbuf_size(u32 stride)
267 {
268         return (max_queue_count() * 8 * stride);
269 }
270
271 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
272 {
273         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
274
275         if (dev->dbbuf_dbs)
276                 return 0;
277
278         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
279                                             &dev->dbbuf_dbs_dma_addr,
280                                             GFP_KERNEL);
281         if (!dev->dbbuf_dbs)
282                 return -ENOMEM;
283         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
284                                             &dev->dbbuf_eis_dma_addr,
285                                             GFP_KERNEL);
286         if (!dev->dbbuf_eis) {
287                 dma_free_coherent(dev->dev, mem_size,
288                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
289                 dev->dbbuf_dbs = NULL;
290                 return -ENOMEM;
291         }
292
293         return 0;
294 }
295
296 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
297 {
298         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
299
300         if (dev->dbbuf_dbs) {
301                 dma_free_coherent(dev->dev, mem_size,
302                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
303                 dev->dbbuf_dbs = NULL;
304         }
305         if (dev->dbbuf_eis) {
306                 dma_free_coherent(dev->dev, mem_size,
307                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
308                 dev->dbbuf_eis = NULL;
309         }
310 }
311
312 static void nvme_dbbuf_init(struct nvme_dev *dev,
313                             struct nvme_queue *nvmeq, int qid)
314 {
315         if (!dev->dbbuf_dbs || !qid)
316                 return;
317
318         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
319         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
320         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
321         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
322 }
323
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326         struct nvme_command c;
327
328         if (!dev->dbbuf_dbs)
329                 return;
330
331         memset(&c, 0, sizeof(c));
332         c.dbbuf.opcode = nvme_admin_dbbuf;
333         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338                 /* Free memory and continue on */
339                 nvme_dbbuf_dma_free(dev);
340         }
341 }
342
343 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
344 {
345         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
346 }
347
348 /* Update dbbuf and return true if an MMIO is required */
349 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
350                                               volatile u32 *dbbuf_ei)
351 {
352         if (dbbuf_db) {
353                 u16 old_value;
354
355                 /*
356                  * Ensure that the queue is written before updating
357                  * the doorbell in memory
358                  */
359                 wmb();
360
361                 old_value = *dbbuf_db;
362                 *dbbuf_db = value;
363
364                 /*
365                  * Ensure that the doorbell is updated before reading the event
366                  * index from memory.  The controller needs to provide similar
367                  * ordering to ensure the envent index is updated before reading
368                  * the doorbell.
369                  */
370                 mb();
371
372                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
373                         return false;
374         }
375
376         return true;
377 }
378
379 /*
380  * Max size of iod being embedded in the request payload
381  */
382 #define NVME_INT_PAGES          2
383 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
384
385 /*
386  * Will slightly overestimate the number of pages needed.  This is OK
387  * as it only leads to a small amount of wasted memory for the lifetime of
388  * the I/O.
389  */
390 static int nvme_npages(unsigned size, struct nvme_dev *dev)
391 {
392         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
393                                       dev->ctrl.page_size);
394         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
395 }
396
397 /*
398  * Calculates the number of pages needed for the SGL segments. For example a 4k
399  * page can accommodate 256 SGL descriptors.
400  */
401 static int nvme_pci_npages_sgl(unsigned int num_seg)
402 {
403         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
404 }
405
406 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
407                 unsigned int size, unsigned int nseg, bool use_sgl)
408 {
409         size_t alloc_size;
410
411         if (use_sgl)
412                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
413         else
414                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
415
416         return alloc_size + sizeof(struct scatterlist) * nseg;
417 }
418
419 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
420 {
421         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
422                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
423                                     use_sgl);
424
425         return sizeof(struct nvme_iod) + alloc_size;
426 }
427
428 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
429                                 unsigned int hctx_idx)
430 {
431         struct nvme_dev *dev = data;
432         struct nvme_queue *nvmeq = &dev->queues[0];
433
434         WARN_ON(hctx_idx != 0);
435         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
436         WARN_ON(nvmeq->tags);
437
438         hctx->driver_data = nvmeq;
439         nvmeq->tags = &dev->admin_tagset.tags[0];
440         return 0;
441 }
442
443 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
444 {
445         struct nvme_queue *nvmeq = hctx->driver_data;
446
447         nvmeq->tags = NULL;
448 }
449
450 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
451                           unsigned int hctx_idx)
452 {
453         struct nvme_dev *dev = data;
454         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
455
456         if (!nvmeq->tags)
457                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
458
459         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
460         hctx->driver_data = nvmeq;
461         return 0;
462 }
463
464 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
465                 unsigned int hctx_idx, unsigned int numa_node)
466 {
467         struct nvme_dev *dev = set->driver_data;
468         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
469         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
470         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
471
472         BUG_ON(!nvmeq);
473         iod->nvmeq = nvmeq;
474
475         nvme_req(req)->ctrl = &dev->ctrl;
476         return 0;
477 }
478
479 static int queue_irq_offset(struct nvme_dev *dev)
480 {
481         /* if we have more than 1 vec, admin queue offsets us by 1 */
482         if (dev->num_vecs > 1)
483                 return 1;
484
485         return 0;
486 }
487
488 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
489 {
490         struct nvme_dev *dev = set->driver_data;
491         int i, qoff, offset;
492
493         offset = queue_irq_offset(dev);
494         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
495                 struct blk_mq_queue_map *map = &set->map[i];
496
497                 map->nr_queues = dev->io_queues[i];
498                 if (!map->nr_queues) {
499                         BUG_ON(i == HCTX_TYPE_DEFAULT);
500                         continue;
501                 }
502
503                 /*
504                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
505                  * affinity), so use the regular blk-mq cpu mapping
506                  */
507                 map->queue_offset = qoff;
508                 if (i != HCTX_TYPE_POLL)
509                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
510                 else
511                         blk_mq_map_queues(map);
512                 qoff += map->nr_queues;
513                 offset += map->nr_queues;
514         }
515
516         return 0;
517 }
518
519 /*
520  * Write sq tail if we are asked to, or if the next command would wrap.
521  */
522 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
523 {
524         if (!write_sq) {
525                 u16 next_tail = nvmeq->sq_tail + 1;
526
527                 if (next_tail == nvmeq->q_depth)
528                         next_tail = 0;
529                 if (next_tail != nvmeq->last_sq_tail)
530                         return;
531         }
532
533         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
534                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
535                 writel(nvmeq->sq_tail, nvmeq->q_db);
536         nvmeq->last_sq_tail = nvmeq->sq_tail;
537 }
538
539 /**
540  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
541  * @nvmeq: The queue to use
542  * @cmd: The command to send
543  * @write_sq: whether to write to the SQ doorbell
544  */
545 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
546                             bool write_sq)
547 {
548         spin_lock(&nvmeq->sq_lock);
549         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
550         if (++nvmeq->sq_tail == nvmeq->q_depth)
551                 nvmeq->sq_tail = 0;
552         nvme_write_sq_db(nvmeq, write_sq);
553         spin_unlock(&nvmeq->sq_lock);
554 }
555
556 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
557 {
558         struct nvme_queue *nvmeq = hctx->driver_data;
559
560         spin_lock(&nvmeq->sq_lock);
561         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
562                 nvme_write_sq_db(nvmeq, true);
563         spin_unlock(&nvmeq->sq_lock);
564 }
565
566 static void **nvme_pci_iod_list(struct request *req)
567 {
568         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
570 }
571
572 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
573 {
574         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
575         int nseg = blk_rq_nr_phys_segments(req);
576         unsigned int avg_seg_size;
577
578         if (nseg == 0)
579                 return false;
580
581         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
582
583         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
584                 return false;
585         if (!iod->nvmeq->qid)
586                 return false;
587         if (!sgl_threshold || avg_seg_size < sgl_threshold)
588                 return false;
589         return true;
590 }
591
592 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
593 {
594         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
595         int nseg = blk_rq_nr_phys_segments(rq);
596         unsigned int size = blk_rq_payload_bytes(rq);
597
598         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
599
600         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
601                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
602                 if (!iod->sg)
603                         return BLK_STS_RESOURCE;
604         } else {
605                 iod->sg = iod->inline_sg;
606         }
607
608         iod->aborted = 0;
609         iod->npages = -1;
610         iod->nents = 0;
611         iod->length = size;
612
613         return BLK_STS_OK;
614 }
615
616 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
617 {
618         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
620         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
621
622         int i;
623
624         if (iod->npages == 0)
625                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
626                         dma_addr);
627
628         for (i = 0; i < iod->npages; i++) {
629                 void *addr = nvme_pci_iod_list(req)[i];
630
631                 if (iod->use_sgl) {
632                         struct nvme_sgl_desc *sg_list = addr;
633
634                         next_dma_addr =
635                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
636                 } else {
637                         __le64 *prp_list = addr;
638
639                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
640                 }
641
642                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
643                 dma_addr = next_dma_addr;
644         }
645
646         if (iod->sg != iod->inline_sg)
647                 mempool_free(iod->sg, dev->iod_mempool);
648 }
649
650 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
651 {
652         int i;
653         struct scatterlist *sg;
654
655         for_each_sg(sgl, sg, nents, i) {
656                 dma_addr_t phys = sg_phys(sg);
657                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
658                         "dma_address:%pad dma_length:%d\n",
659                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
660                         sg_dma_len(sg));
661         }
662 }
663
664 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
665                 struct request *req, struct nvme_rw_command *cmnd)
666 {
667         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
668         struct dma_pool *pool;
669         int length = blk_rq_payload_bytes(req);
670         struct scatterlist *sg = iod->sg;
671         int dma_len = sg_dma_len(sg);
672         u64 dma_addr = sg_dma_address(sg);
673         u32 page_size = dev->ctrl.page_size;
674         int offset = dma_addr & (page_size - 1);
675         __le64 *prp_list;
676         void **list = nvme_pci_iod_list(req);
677         dma_addr_t prp_dma;
678         int nprps, i;
679
680         length -= (page_size - offset);
681         if (length <= 0) {
682                 iod->first_dma = 0;
683                 goto done;
684         }
685
686         dma_len -= (page_size - offset);
687         if (dma_len) {
688                 dma_addr += (page_size - offset);
689         } else {
690                 sg = sg_next(sg);
691                 dma_addr = sg_dma_address(sg);
692                 dma_len = sg_dma_len(sg);
693         }
694
695         if (length <= page_size) {
696                 iod->first_dma = dma_addr;
697                 goto done;
698         }
699
700         nprps = DIV_ROUND_UP(length, page_size);
701         if (nprps <= (256 / 8)) {
702                 pool = dev->prp_small_pool;
703                 iod->npages = 0;
704         } else {
705                 pool = dev->prp_page_pool;
706                 iod->npages = 1;
707         }
708
709         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
710         if (!prp_list) {
711                 iod->first_dma = dma_addr;
712                 iod->npages = -1;
713                 return BLK_STS_RESOURCE;
714         }
715         list[0] = prp_list;
716         iod->first_dma = prp_dma;
717         i = 0;
718         for (;;) {
719                 if (i == page_size >> 3) {
720                         __le64 *old_prp_list = prp_list;
721                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
722                         if (!prp_list)
723                                 return BLK_STS_RESOURCE;
724                         list[iod->npages++] = prp_list;
725                         prp_list[0] = old_prp_list[i - 1];
726                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
727                         i = 1;
728                 }
729                 prp_list[i++] = cpu_to_le64(dma_addr);
730                 dma_len -= page_size;
731                 dma_addr += page_size;
732                 length -= page_size;
733                 if (length <= 0)
734                         break;
735                 if (dma_len > 0)
736                         continue;
737                 if (unlikely(dma_len < 0))
738                         goto bad_sgl;
739                 sg = sg_next(sg);
740                 dma_addr = sg_dma_address(sg);
741                 dma_len = sg_dma_len(sg);
742         }
743
744 done:
745         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
746         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
747
748         return BLK_STS_OK;
749
750  bad_sgl:
751         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
752                         "Invalid SGL for payload:%d nents:%d\n",
753                         blk_rq_payload_bytes(req), iod->nents);
754         return BLK_STS_IOERR;
755 }
756
757 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
758                 struct scatterlist *sg)
759 {
760         sge->addr = cpu_to_le64(sg_dma_address(sg));
761         sge->length = cpu_to_le32(sg_dma_len(sg));
762         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
763 }
764
765 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
766                 dma_addr_t dma_addr, int entries)
767 {
768         sge->addr = cpu_to_le64(dma_addr);
769         if (entries < SGES_PER_PAGE) {
770                 sge->length = cpu_to_le32(entries * sizeof(*sge));
771                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
772         } else {
773                 sge->length = cpu_to_le32(PAGE_SIZE);
774                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
775         }
776 }
777
778 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
779                 struct request *req, struct nvme_rw_command *cmd, int entries)
780 {
781         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
782         struct dma_pool *pool;
783         struct nvme_sgl_desc *sg_list;
784         struct scatterlist *sg = iod->sg;
785         dma_addr_t sgl_dma;
786         int i = 0;
787
788         /* setting the transfer type as SGL */
789         cmd->flags = NVME_CMD_SGL_METABUF;
790
791         if (entries == 1) {
792                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
793                 return BLK_STS_OK;
794         }
795
796         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
797                 pool = dev->prp_small_pool;
798                 iod->npages = 0;
799         } else {
800                 pool = dev->prp_page_pool;
801                 iod->npages = 1;
802         }
803
804         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
805         if (!sg_list) {
806                 iod->npages = -1;
807                 return BLK_STS_RESOURCE;
808         }
809
810         nvme_pci_iod_list(req)[0] = sg_list;
811         iod->first_dma = sgl_dma;
812
813         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
814
815         do {
816                 if (i == SGES_PER_PAGE) {
817                         struct nvme_sgl_desc *old_sg_desc = sg_list;
818                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
819
820                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
821                         if (!sg_list)
822                                 return BLK_STS_RESOURCE;
823
824                         i = 0;
825                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
826                         sg_list[i++] = *link;
827                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
828                 }
829
830                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
831                 sg = sg_next(sg);
832         } while (--entries > 0);
833
834         return BLK_STS_OK;
835 }
836
837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838                 struct nvme_command *cmnd)
839 {
840         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841         struct request_queue *q = req->q;
842         enum dma_data_direction dma_dir = rq_data_dir(req) ?
843                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
844         blk_status_t ret = BLK_STS_IOERR;
845         int nr_mapped;
846
847         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
848         iod->nents = blk_rq_map_sg(q, req, iod->sg);
849         if (!iod->nents)
850                 goto out;
851
852         ret = BLK_STS_RESOURCE;
853
854         if (is_pci_p2pdma_page(sg_page(iod->sg)))
855                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
856                                           dma_dir);
857         else
858                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
859                                              dma_dir,  DMA_ATTR_NO_WARN);
860         if (!nr_mapped)
861                 goto out;
862
863         if (iod->use_sgl)
864                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
865         else
866                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
867
868         if (ret != BLK_STS_OK)
869                 goto out_unmap;
870
871         ret = BLK_STS_IOERR;
872         if (blk_integrity_rq(req)) {
873                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
874                         goto out_unmap;
875
876                 sg_init_table(&iod->meta_sg, 1);
877                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
878                         goto out_unmap;
879
880                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
881                         goto out_unmap;
882
883                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
884         }
885
886         return BLK_STS_OK;
887
888 out_unmap:
889         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
890 out:
891         return ret;
892 }
893
894 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
895 {
896         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897         enum dma_data_direction dma_dir = rq_data_dir(req) ?
898                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
899
900         if (iod->nents) {
901                 /* P2PDMA requests do not need to be unmapped */
902                 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
903                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
904
905                 if (blk_integrity_rq(req))
906                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
907         }
908
909         nvme_cleanup_cmd(req);
910         nvme_free_iod(dev, req);
911 }
912
913 /*
914  * NOTE: ns is NULL when called on the admin queue.
915  */
916 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
917                          const struct blk_mq_queue_data *bd)
918 {
919         struct nvme_ns *ns = hctx->queue->queuedata;
920         struct nvme_queue *nvmeq = hctx->driver_data;
921         struct nvme_dev *dev = nvmeq->dev;
922         struct request *req = bd->rq;
923         struct nvme_command cmnd;
924         blk_status_t ret;
925
926         /*
927          * We should not need to do this, but we're still using this to
928          * ensure we can drain requests on a dying queue.
929          */
930         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
931                 return BLK_STS_IOERR;
932
933         ret = nvme_setup_cmd(ns, req, &cmnd);
934         if (ret)
935                 return ret;
936
937         ret = nvme_init_iod(req, dev);
938         if (ret)
939                 goto out_free_cmd;
940
941         if (blk_rq_nr_phys_segments(req)) {
942                 ret = nvme_map_data(dev, req, &cmnd);
943                 if (ret)
944                         goto out_cleanup_iod;
945         }
946
947         blk_mq_start_request(req);
948         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
949         return BLK_STS_OK;
950 out_cleanup_iod:
951         nvme_free_iod(dev, req);
952 out_free_cmd:
953         nvme_cleanup_cmd(req);
954         return ret;
955 }
956
957 static void nvme_pci_complete_rq(struct request *req)
958 {
959         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960
961         nvme_unmap_data(iod->nvmeq->dev, req);
962         nvme_complete_rq(req);
963 }
964
965 /* We read the CQE phase first to check if the rest of the entry is valid */
966 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
967 {
968         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
969                         nvmeq->cq_phase;
970 }
971
972 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
973 {
974         u16 head = nvmeq->cq_head;
975
976         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
977                                               nvmeq->dbbuf_cq_ei))
978                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
979 }
980
981 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
982 {
983         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
984         struct request *req;
985
986         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
987                 dev_warn(nvmeq->dev->ctrl.device,
988                         "invalid id %d completed on queue %d\n",
989                         cqe->command_id, le16_to_cpu(cqe->sq_id));
990                 return;
991         }
992
993         /*
994          * AEN requests are special as they don't time out and can
995          * survive any kind of queue freeze and often don't respond to
996          * aborts.  We don't even bother to allocate a struct request
997          * for them but rather special case them here.
998          */
999         if (unlikely(nvmeq->qid == 0 &&
1000                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1001                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1002                                 cqe->status, &cqe->result);
1003                 return;
1004         }
1005
1006         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1007         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1008         nvme_end_request(req, cqe->status, cqe->result);
1009 }
1010
1011 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1012 {
1013         while (start != end) {
1014                 nvme_handle_cqe(nvmeq, start);
1015                 if (++start == nvmeq->q_depth)
1016                         start = 0;
1017         }
1018 }
1019
1020 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1021 {
1022         if (++nvmeq->cq_head == nvmeq->q_depth) {
1023                 nvmeq->cq_head = 0;
1024                 nvmeq->cq_phase = !nvmeq->cq_phase;
1025         }
1026 }
1027
1028 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1029                                   u16 *end, unsigned int tag)
1030 {
1031         int found = 0;
1032
1033         *start = nvmeq->cq_head;
1034         while (nvme_cqe_pending(nvmeq)) {
1035                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1036                         found++;
1037                 nvme_update_cq_head(nvmeq);
1038         }
1039         *end = nvmeq->cq_head;
1040
1041         if (*start != *end)
1042                 nvme_ring_cq_doorbell(nvmeq);
1043         return found;
1044 }
1045
1046 static irqreturn_t nvme_irq(int irq, void *data)
1047 {
1048         struct nvme_queue *nvmeq = data;
1049         irqreturn_t ret = IRQ_NONE;
1050         u16 start, end;
1051
1052         /*
1053          * The rmb/wmb pair ensures we see all updates from a previous run of
1054          * the irq handler, even if that was on another CPU.
1055          */
1056         rmb();
1057         if (nvmeq->cq_head != nvmeq->last_cq_head)
1058                 ret = IRQ_HANDLED;
1059         nvme_process_cq(nvmeq, &start, &end, -1);
1060         nvmeq->last_cq_head = nvmeq->cq_head;
1061         wmb();
1062
1063         if (start != end) {
1064                 nvme_complete_cqes(nvmeq, start, end);
1065                 return IRQ_HANDLED;
1066         }
1067
1068         return ret;
1069 }
1070
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1072 {
1073         struct nvme_queue *nvmeq = data;
1074         if (nvme_cqe_pending(nvmeq))
1075                 return IRQ_WAKE_THREAD;
1076         return IRQ_NONE;
1077 }
1078
1079 /*
1080  * Poll for completions any queue, including those not dedicated to polling.
1081  * Can be called from any context.
1082  */
1083 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1084 {
1085         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1086         u16 start, end;
1087         int found;
1088
1089         /*
1090          * For a poll queue we need to protect against the polling thread
1091          * using the CQ lock.  For normal interrupt driven threads we have
1092          * to disable the interrupt to avoid racing with it.
1093          */
1094         if (nvmeq->cq_vector == -1) {
1095                 spin_lock(&nvmeq->cq_poll_lock);
1096                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1097                 spin_unlock(&nvmeq->cq_poll_lock);
1098         } else {
1099                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1100                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1101                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1102         }
1103
1104         nvme_complete_cqes(nvmeq, start, end);
1105         return found;
1106 }
1107
1108 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1109 {
1110         struct nvme_queue *nvmeq = hctx->driver_data;
1111         u16 start, end;
1112         bool found;
1113
1114         if (!nvme_cqe_pending(nvmeq))
1115                 return 0;
1116
1117         spin_lock(&nvmeq->cq_poll_lock);
1118         found = nvme_process_cq(nvmeq, &start, &end, -1);
1119         spin_unlock(&nvmeq->cq_poll_lock);
1120
1121         nvme_complete_cqes(nvmeq, start, end);
1122         return found;
1123 }
1124
1125 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1126 {
1127         struct nvme_dev *dev = to_nvme_dev(ctrl);
1128         struct nvme_queue *nvmeq = &dev->queues[0];
1129         struct nvme_command c;
1130
1131         memset(&c, 0, sizeof(c));
1132         c.common.opcode = nvme_admin_async_event;
1133         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1134         nvme_submit_cmd(nvmeq, &c, true);
1135 }
1136
1137 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1138 {
1139         struct nvme_command c;
1140
1141         memset(&c, 0, sizeof(c));
1142         c.delete_queue.opcode = opcode;
1143         c.delete_queue.qid = cpu_to_le16(id);
1144
1145         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1146 }
1147
1148 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1149                 struct nvme_queue *nvmeq, s16 vector)
1150 {
1151         struct nvme_command c;
1152         int flags = NVME_QUEUE_PHYS_CONTIG;
1153
1154         if (vector != -1)
1155                 flags |= NVME_CQ_IRQ_ENABLED;
1156
1157         /*
1158          * Note: we (ab)use the fact that the prp fields survive if no data
1159          * is attached to the request.
1160          */
1161         memset(&c, 0, sizeof(c));
1162         c.create_cq.opcode = nvme_admin_create_cq;
1163         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1164         c.create_cq.cqid = cpu_to_le16(qid);
1165         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1166         c.create_cq.cq_flags = cpu_to_le16(flags);
1167         if (vector != -1)
1168                 c.create_cq.irq_vector = cpu_to_le16(vector);
1169         else
1170                 c.create_cq.irq_vector = 0;
1171
1172         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1173 }
1174
1175 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1176                                                 struct nvme_queue *nvmeq)
1177 {
1178         struct nvme_ctrl *ctrl = &dev->ctrl;
1179         struct nvme_command c;
1180         int flags = NVME_QUEUE_PHYS_CONTIG;
1181
1182         /*
1183          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1184          * set. Since URGENT priority is zeroes, it makes all queues
1185          * URGENT.
1186          */
1187         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1188                 flags |= NVME_SQ_PRIO_MEDIUM;
1189
1190         /*
1191          * Note: we (ab)use the fact that the prp fields survive if no data
1192          * is attached to the request.
1193          */
1194         memset(&c, 0, sizeof(c));
1195         c.create_sq.opcode = nvme_admin_create_sq;
1196         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1197         c.create_sq.sqid = cpu_to_le16(qid);
1198         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1199         c.create_sq.sq_flags = cpu_to_le16(flags);
1200         c.create_sq.cqid = cpu_to_le16(qid);
1201
1202         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1203 }
1204
1205 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1206 {
1207         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1208 }
1209
1210 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1211 {
1212         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1213 }
1214
1215 static void abort_endio(struct request *req, blk_status_t error)
1216 {
1217         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1218         struct nvme_queue *nvmeq = iod->nvmeq;
1219
1220         dev_warn(nvmeq->dev->ctrl.device,
1221                  "Abort status: 0x%x", nvme_req(req)->status);
1222         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223         blk_mq_free_request(req);
1224 }
1225
1226 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1227 {
1228
1229         /* If true, indicates loss of adapter communication, possibly by a
1230          * NVMe Subsystem reset.
1231          */
1232         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233
1234         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235         switch (dev->ctrl.state) {
1236         case NVME_CTRL_RESETTING:
1237         case NVME_CTRL_CONNECTING:
1238                 return false;
1239         default:
1240                 break;
1241         }
1242
1243         /* We shouldn't reset unless the controller is on fatal error state
1244          * _or_ if we lost the communication with it.
1245          */
1246         if (!(csts & NVME_CSTS_CFS) && !nssro)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254         /* Read a config register to help see what died. */
1255         u16 pci_status;
1256         int result;
1257
1258         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259                                       &pci_status);
1260         if (result == PCIBIOS_SUCCESSFUL)
1261                 dev_warn(dev->ctrl.device,
1262                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263                          csts, pci_status);
1264         else
1265                 dev_warn(dev->ctrl.device,
1266                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267                          csts, result);
1268 }
1269
1270 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1271 {
1272         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1273         struct nvme_queue *nvmeq = iod->nvmeq;
1274         struct nvme_dev *dev = nvmeq->dev;
1275         struct request *abort_req;
1276         struct nvme_command cmd;
1277         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1278
1279         /* If PCI error recovery process is happening, we cannot reset or
1280          * the recovery mechanism will surely fail.
1281          */
1282         mb();
1283         if (pci_channel_offline(to_pci_dev(dev->dev)))
1284                 return BLK_EH_RESET_TIMER;
1285
1286         /*
1287          * Reset immediately if the controller is failed
1288          */
1289         if (nvme_should_reset(dev, csts)) {
1290                 nvme_warn_reset(dev, csts);
1291                 nvme_dev_disable(dev, false);
1292                 nvme_reset_ctrl(&dev->ctrl);
1293                 return BLK_EH_DONE;
1294         }
1295
1296         /*
1297          * Did we miss an interrupt?
1298          */
1299         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1300                 dev_warn(dev->ctrl.device,
1301                          "I/O %d QID %d timeout, completion polled\n",
1302                          req->tag, nvmeq->qid);
1303                 return BLK_EH_DONE;
1304         }
1305
1306         /*
1307          * Shutdown immediately if controller times out while starting. The
1308          * reset work will see the pci device disabled when it gets the forced
1309          * cancellation error. All outstanding requests are completed on
1310          * shutdown, so we return BLK_EH_DONE.
1311          */
1312         switch (dev->ctrl.state) {
1313         case NVME_CTRL_CONNECTING:
1314         case NVME_CTRL_RESETTING:
1315                 dev_warn_ratelimited(dev->ctrl.device,
1316                          "I/O %d QID %d timeout, disable controller\n",
1317                          req->tag, nvmeq->qid);
1318                 nvme_dev_disable(dev, false);
1319                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1320                 return BLK_EH_DONE;
1321         default:
1322                 break;
1323         }
1324
1325         /*
1326          * Shutdown the controller immediately and schedule a reset if the
1327          * command was already aborted once before and still hasn't been
1328          * returned to the driver, or if this is the admin queue.
1329          */
1330         if (!nvmeq->qid || iod->aborted) {
1331                 dev_warn(dev->ctrl.device,
1332                          "I/O %d QID %d timeout, reset controller\n",
1333                          req->tag, nvmeq->qid);
1334                 nvme_dev_disable(dev, false);
1335                 nvme_reset_ctrl(&dev->ctrl);
1336
1337                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1338                 return BLK_EH_DONE;
1339         }
1340
1341         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1342                 atomic_inc(&dev->ctrl.abort_limit);
1343                 return BLK_EH_RESET_TIMER;
1344         }
1345         iod->aborted = 1;
1346
1347         memset(&cmd, 0, sizeof(cmd));
1348         cmd.abort.opcode = nvme_admin_abort_cmd;
1349         cmd.abort.cid = req->tag;
1350         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1351
1352         dev_warn(nvmeq->dev->ctrl.device,
1353                 "I/O %d QID %d timeout, aborting\n",
1354                  req->tag, nvmeq->qid);
1355
1356         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1357                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1358         if (IS_ERR(abort_req)) {
1359                 atomic_inc(&dev->ctrl.abort_limit);
1360                 return BLK_EH_RESET_TIMER;
1361         }
1362
1363         abort_req->timeout = ADMIN_TIMEOUT;
1364         abort_req->end_io_data = NULL;
1365         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1366
1367         /*
1368          * The aborted req will be completed on receiving the abort req.
1369          * We enable the timer again. If hit twice, it'll cause a device reset,
1370          * as the device then is in a faulty state.
1371          */
1372         return BLK_EH_RESET_TIMER;
1373 }
1374
1375 static void nvme_free_queue(struct nvme_queue *nvmeq)
1376 {
1377         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1378                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1379         if (!nvmeq->sq_cmds)
1380                 return;
1381
1382         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1383                 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1384                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1385         } else {
1386                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1387                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1388         }
1389 }
1390
1391 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1392 {
1393         int i;
1394
1395         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1396                 dev->ctrl.queue_count--;
1397                 nvme_free_queue(&dev->queues[i]);
1398         }
1399 }
1400
1401 /**
1402  * nvme_suspend_queue - put queue into suspended state
1403  * @nvmeq: queue to suspend
1404  */
1405 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1406 {
1407         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1408                 return 1;
1409
1410         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1411         mb();
1412
1413         nvmeq->dev->online_queues--;
1414         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1415                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1416         if (nvmeq->cq_vector == -1)
1417                 return 0;
1418         pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1419         nvmeq->cq_vector = -1;
1420         return 0;
1421 }
1422
1423 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1424 {
1425         struct nvme_queue *nvmeq = &dev->queues[0];
1426
1427         if (shutdown)
1428                 nvme_shutdown_ctrl(&dev->ctrl);
1429         else
1430                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1431
1432         nvme_poll_irqdisable(nvmeq, -1);
1433 }
1434
1435 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1436                                 int entry_size)
1437 {
1438         int q_depth = dev->q_depth;
1439         unsigned q_size_aligned = roundup(q_depth * entry_size,
1440                                           dev->ctrl.page_size);
1441
1442         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1443                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1444                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1445                 q_depth = div_u64(mem_per_q, entry_size);
1446
1447                 /*
1448                  * Ensure the reduced q_depth is above some threshold where it
1449                  * would be better to map queues in system memory with the
1450                  * original depth
1451                  */
1452                 if (q_depth < 64)
1453                         return -ENOMEM;
1454         }
1455
1456         return q_depth;
1457 }
1458
1459 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1460                                 int qid, int depth)
1461 {
1462         struct pci_dev *pdev = to_pci_dev(dev->dev);
1463
1464         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1465                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1466                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1467                                                 nvmeq->sq_cmds);
1468                 if (nvmeq->sq_dma_addr) {
1469                         set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1470                         return 0; 
1471                 }
1472         }
1473
1474         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1475                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1476         if (!nvmeq->sq_cmds)
1477                 return -ENOMEM;
1478         return 0;
1479 }
1480
1481 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1482 {
1483         struct nvme_queue *nvmeq = &dev->queues[qid];
1484
1485         if (dev->ctrl.queue_count > qid)
1486                 return 0;
1487
1488         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1489                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1490         if (!nvmeq->cqes)
1491                 goto free_nvmeq;
1492
1493         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1494                 goto free_cqdma;
1495
1496         nvmeq->q_dmadev = dev->dev;
1497         nvmeq->dev = dev;
1498         spin_lock_init(&nvmeq->sq_lock);
1499         spin_lock_init(&nvmeq->cq_poll_lock);
1500         nvmeq->cq_head = 0;
1501         nvmeq->cq_phase = 1;
1502         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1503         nvmeq->q_depth = depth;
1504         nvmeq->qid = qid;
1505         nvmeq->cq_vector = -1;
1506         dev->ctrl.queue_count++;
1507
1508         return 0;
1509
1510  free_cqdma:
1511         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1512                                                         nvmeq->cq_dma_addr);
1513  free_nvmeq:
1514         return -ENOMEM;
1515 }
1516
1517 static int queue_request_irq(struct nvme_queue *nvmeq)
1518 {
1519         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1520         int nr = nvmeq->dev->ctrl.instance;
1521
1522         if (use_threaded_interrupts) {
1523                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1524                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1525         } else {
1526                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1527                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1528         }
1529 }
1530
1531 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1532 {
1533         struct nvme_dev *dev = nvmeq->dev;
1534
1535         nvmeq->sq_tail = 0;
1536         nvmeq->last_sq_tail = 0;
1537         nvmeq->cq_head = 0;
1538         nvmeq->cq_phase = 1;
1539         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1540         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1541         nvme_dbbuf_init(dev, nvmeq, qid);
1542         dev->online_queues++;
1543         wmb(); /* ensure the first interrupt sees the initialization */
1544 }
1545
1546 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1547 {
1548         struct nvme_dev *dev = nvmeq->dev;
1549         int result;
1550         s16 vector;
1551
1552         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1553
1554         /*
1555          * A queue's vector matches the queue identifier unless the controller
1556          * has only one vector available.
1557          */
1558         if (!polled)
1559                 vector = dev->num_vecs == 1 ? 0 : qid;
1560         else
1561                 vector = -1;
1562
1563         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1564         if (result)
1565                 return result;
1566
1567         result = adapter_alloc_sq(dev, qid, nvmeq);
1568         if (result < 0)
1569                 return result;
1570         else if (result)
1571                 goto release_cq;
1572
1573         nvmeq->cq_vector = vector;
1574         nvme_init_queue(nvmeq, qid);
1575
1576         if (vector != -1) {
1577                 result = queue_request_irq(nvmeq);
1578                 if (result < 0)
1579                         goto release_sq;
1580         }
1581
1582         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1583         return result;
1584
1585 release_sq:
1586         nvmeq->cq_vector = -1;
1587         dev->online_queues--;
1588         adapter_delete_sq(dev, qid);
1589 release_cq:
1590         adapter_delete_cq(dev, qid);
1591         return result;
1592 }
1593
1594 static const struct blk_mq_ops nvme_mq_admin_ops = {
1595         .queue_rq       = nvme_queue_rq,
1596         .complete       = nvme_pci_complete_rq,
1597         .init_hctx      = nvme_admin_init_hctx,
1598         .exit_hctx      = nvme_admin_exit_hctx,
1599         .init_request   = nvme_init_request,
1600         .timeout        = nvme_timeout,
1601 };
1602
1603 static const struct blk_mq_ops nvme_mq_ops = {
1604         .queue_rq       = nvme_queue_rq,
1605         .complete       = nvme_pci_complete_rq,
1606         .commit_rqs     = nvme_commit_rqs,
1607         .init_hctx      = nvme_init_hctx,
1608         .init_request   = nvme_init_request,
1609         .map_queues     = nvme_pci_map_queues,
1610         .timeout        = nvme_timeout,
1611         .poll           = nvme_poll,
1612 };
1613
1614 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1615 {
1616         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1617                 /*
1618                  * If the controller was reset during removal, it's possible
1619                  * user requests may be waiting on a stopped queue. Start the
1620                  * queue to flush these to completion.
1621                  */
1622                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1623                 blk_cleanup_queue(dev->ctrl.admin_q);
1624                 blk_mq_free_tag_set(&dev->admin_tagset);
1625         }
1626 }
1627
1628 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1629 {
1630         if (!dev->ctrl.admin_q) {
1631                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1632                 dev->admin_tagset.nr_hw_queues = 1;
1633
1634                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1635                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1636                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1637                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1638                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1639                 dev->admin_tagset.driver_data = dev;
1640
1641                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1642                         return -ENOMEM;
1643                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1644
1645                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1646                 if (IS_ERR(dev->ctrl.admin_q)) {
1647                         blk_mq_free_tag_set(&dev->admin_tagset);
1648                         return -ENOMEM;
1649                 }
1650                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1651                         nvme_dev_remove_admin(dev);
1652                         dev->ctrl.admin_q = NULL;
1653                         return -ENODEV;
1654                 }
1655         } else
1656                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1657
1658         return 0;
1659 }
1660
1661 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1662 {
1663         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1664 }
1665
1666 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1667 {
1668         struct pci_dev *pdev = to_pci_dev(dev->dev);
1669
1670         if (size <= dev->bar_mapped_size)
1671                 return 0;
1672         if (size > pci_resource_len(pdev, 0))
1673                 return -ENOMEM;
1674         if (dev->bar)
1675                 iounmap(dev->bar);
1676         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1677         if (!dev->bar) {
1678                 dev->bar_mapped_size = 0;
1679                 return -ENOMEM;
1680         }
1681         dev->bar_mapped_size = size;
1682         dev->dbs = dev->bar + NVME_REG_DBS;
1683
1684         return 0;
1685 }
1686
1687 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1688 {
1689         int result;
1690         u32 aqa;
1691         struct nvme_queue *nvmeq;
1692
1693         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1694         if (result < 0)
1695                 return result;
1696
1697         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1698                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1699
1700         if (dev->subsystem &&
1701             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1702                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1703
1704         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1705         if (result < 0)
1706                 return result;
1707
1708         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1709         if (result)
1710                 return result;
1711
1712         nvmeq = &dev->queues[0];
1713         aqa = nvmeq->q_depth - 1;
1714         aqa |= aqa << 16;
1715
1716         writel(aqa, dev->bar + NVME_REG_AQA);
1717         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1718         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1719
1720         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1721         if (result)
1722                 return result;
1723
1724         nvmeq->cq_vector = 0;
1725         nvme_init_queue(nvmeq, 0);
1726         result = queue_request_irq(nvmeq);
1727         if (result) {
1728                 nvmeq->cq_vector = -1;
1729                 return result;
1730         }
1731
1732         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1733         return result;
1734 }
1735
1736 static int nvme_create_io_queues(struct nvme_dev *dev)
1737 {
1738         unsigned i, max, rw_queues;
1739         int ret = 0;
1740
1741         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1742                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1743                         ret = -ENOMEM;
1744                         break;
1745                 }
1746         }
1747
1748         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1749         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1750                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1751                                 dev->io_queues[HCTX_TYPE_READ];
1752         } else {
1753                 rw_queues = max;
1754         }
1755
1756         for (i = dev->online_queues; i <= max; i++) {
1757                 bool polled = i > rw_queues;
1758
1759                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1760                 if (ret)
1761                         break;
1762         }
1763
1764         /*
1765          * Ignore failing Create SQ/CQ commands, we can continue with less
1766          * than the desired amount of queues, and even a controller without
1767          * I/O queues can still be used to issue admin commands.  This might
1768          * be useful to upgrade a buggy firmware for example.
1769          */
1770         return ret >= 0 ? 0 : ret;
1771 }
1772
1773 static ssize_t nvme_cmb_show(struct device *dev,
1774                              struct device_attribute *attr,
1775                              char *buf)
1776 {
1777         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1778
1779         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1780                        ndev->cmbloc, ndev->cmbsz);
1781 }
1782 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1783
1784 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1785 {
1786         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1787
1788         return 1ULL << (12 + 4 * szu);
1789 }
1790
1791 static u32 nvme_cmb_size(struct nvme_dev *dev)
1792 {
1793         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1794 }
1795
1796 static void nvme_map_cmb(struct nvme_dev *dev)
1797 {
1798         u64 size, offset;
1799         resource_size_t bar_size;
1800         struct pci_dev *pdev = to_pci_dev(dev->dev);
1801         int bar;
1802
1803         if (dev->cmb_size)
1804                 return;
1805
1806         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1807         if (!dev->cmbsz)
1808                 return;
1809         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1810
1811         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1812         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1813         bar = NVME_CMB_BIR(dev->cmbloc);
1814         bar_size = pci_resource_len(pdev, bar);
1815
1816         if (offset > bar_size)
1817                 return;
1818
1819         /*
1820          * Controllers may support a CMB size larger than their BAR,
1821          * for example, due to being behind a bridge. Reduce the CMB to
1822          * the reported size of the BAR
1823          */
1824         if (size > bar_size - offset)
1825                 size = bar_size - offset;
1826
1827         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1828                 dev_warn(dev->ctrl.device,
1829                          "failed to register the CMB\n");
1830                 return;
1831         }
1832
1833         dev->cmb_size = size;
1834         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1835
1836         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1837                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1838                 pci_p2pmem_publish(pdev, true);
1839
1840         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1841                                     &dev_attr_cmb.attr, NULL))
1842                 dev_warn(dev->ctrl.device,
1843                          "failed to add sysfs attribute for CMB\n");
1844 }
1845
1846 static inline void nvme_release_cmb(struct nvme_dev *dev)
1847 {
1848         if (dev->cmb_size) {
1849                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1850                                              &dev_attr_cmb.attr, NULL);
1851                 dev->cmb_size = 0;
1852         }
1853 }
1854
1855 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1856 {
1857         u64 dma_addr = dev->host_mem_descs_dma;
1858         struct nvme_command c;
1859         int ret;
1860
1861         memset(&c, 0, sizeof(c));
1862         c.features.opcode       = nvme_admin_set_features;
1863         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1864         c.features.dword11      = cpu_to_le32(bits);
1865         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1866                                               ilog2(dev->ctrl.page_size));
1867         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1868         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1869         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1870
1871         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1872         if (ret) {
1873                 dev_warn(dev->ctrl.device,
1874                          "failed to set host mem (err %d, flags %#x).\n",
1875                          ret, bits);
1876         }
1877         return ret;
1878 }
1879
1880 static void nvme_free_host_mem(struct nvme_dev *dev)
1881 {
1882         int i;
1883
1884         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1885                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1886                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1887
1888                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1889                                 le64_to_cpu(desc->addr));
1890         }
1891
1892         kfree(dev->host_mem_desc_bufs);
1893         dev->host_mem_desc_bufs = NULL;
1894         dma_free_coherent(dev->dev,
1895                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1896                         dev->host_mem_descs, dev->host_mem_descs_dma);
1897         dev->host_mem_descs = NULL;
1898         dev->nr_host_mem_descs = 0;
1899 }
1900
1901 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1902                 u32 chunk_size)
1903 {
1904         struct nvme_host_mem_buf_desc *descs;
1905         u32 max_entries, len;
1906         dma_addr_t descs_dma;
1907         int i = 0;
1908         void **bufs;
1909         u64 size, tmp;
1910
1911         tmp = (preferred + chunk_size - 1);
1912         do_div(tmp, chunk_size);
1913         max_entries = tmp;
1914
1915         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1916                 max_entries = dev->ctrl.hmmaxd;
1917
1918         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1919                         &descs_dma, GFP_KERNEL);
1920         if (!descs)
1921                 goto out;
1922
1923         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1924         if (!bufs)
1925                 goto out_free_descs;
1926
1927         for (size = 0; size < preferred && i < max_entries; size += len) {
1928                 dma_addr_t dma_addr;
1929
1930                 len = min_t(u64, chunk_size, preferred - size);
1931                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1932                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1933                 if (!bufs[i])
1934                         break;
1935
1936                 descs[i].addr = cpu_to_le64(dma_addr);
1937                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1938                 i++;
1939         }
1940
1941         if (!size)
1942                 goto out_free_bufs;
1943
1944         dev->nr_host_mem_descs = i;
1945         dev->host_mem_size = size;
1946         dev->host_mem_descs = descs;
1947         dev->host_mem_descs_dma = descs_dma;
1948         dev->host_mem_desc_bufs = bufs;
1949         return 0;
1950
1951 out_free_bufs:
1952         while (--i >= 0) {
1953                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1954
1955                 dma_free_coherent(dev->dev, size, bufs[i],
1956                                 le64_to_cpu(descs[i].addr));
1957         }
1958
1959         kfree(bufs);
1960 out_free_descs:
1961         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1962                         descs_dma);
1963 out:
1964         dev->host_mem_descs = NULL;
1965         return -ENOMEM;
1966 }
1967
1968 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1969 {
1970         u32 chunk_size;
1971
1972         /* start big and work our way down */
1973         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1974              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1975              chunk_size /= 2) {
1976                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1977                         if (!min || dev->host_mem_size >= min)
1978                                 return 0;
1979                         nvme_free_host_mem(dev);
1980                 }
1981         }
1982
1983         return -ENOMEM;
1984 }
1985
1986 static int nvme_setup_host_mem(struct nvme_dev *dev)
1987 {
1988         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1989         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1990         u64 min = (u64)dev->ctrl.hmmin * 4096;
1991         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1992         int ret;
1993
1994         preferred = min(preferred, max);
1995         if (min > max) {
1996                 dev_warn(dev->ctrl.device,
1997                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1998                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1999                 nvme_free_host_mem(dev);
2000                 return 0;
2001         }
2002
2003         /*
2004          * If we already have a buffer allocated check if we can reuse it.
2005          */
2006         if (dev->host_mem_descs) {
2007                 if (dev->host_mem_size >= min)
2008                         enable_bits |= NVME_HOST_MEM_RETURN;
2009                 else
2010                         nvme_free_host_mem(dev);
2011         }
2012
2013         if (!dev->host_mem_descs) {
2014                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2015                         dev_warn(dev->ctrl.device,
2016                                 "failed to allocate host memory buffer.\n");
2017                         return 0; /* controller must work without HMB */
2018                 }
2019
2020                 dev_info(dev->ctrl.device,
2021                         "allocated %lld MiB host memory buffer.\n",
2022                         dev->host_mem_size >> ilog2(SZ_1M));
2023         }
2024
2025         ret = nvme_set_host_mem(dev, enable_bits);
2026         if (ret)
2027                 nvme_free_host_mem(dev);
2028         return ret;
2029 }
2030
2031 static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues)
2032 {
2033         unsigned int this_w_queues = write_queues;
2034
2035         /*
2036          * Setup read/write queue split
2037          */
2038         if (irq_queues == 1) {
2039                 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2040                 dev->io_queues[HCTX_TYPE_READ] = 0;
2041                 return;
2042         }
2043
2044         /*
2045          * If 'write_queues' is set, ensure it leaves room for at least
2046          * one read queue
2047          */
2048         if (this_w_queues >= irq_queues)
2049                 this_w_queues = irq_queues - 1;
2050
2051         /*
2052          * If 'write_queues' is set to zero, reads and writes will share
2053          * a queue set.
2054          */
2055         if (!this_w_queues) {
2056                 dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues;
2057                 dev->io_queues[HCTX_TYPE_READ] = 0;
2058         } else {
2059                 dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2060                 dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues;
2061         }
2062 }
2063
2064 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2065 {
2066         struct pci_dev *pdev = to_pci_dev(dev->dev);
2067         int irq_sets[2];
2068         struct irq_affinity affd = {
2069                 .pre_vectors = 1,
2070                 .nr_sets = ARRAY_SIZE(irq_sets),
2071                 .sets = irq_sets,
2072         };
2073         int result = 0;
2074         unsigned int irq_queues, this_p_queues;
2075
2076         /*
2077          * Poll queues don't need interrupts, but we need at least one IO
2078          * queue left over for non-polled IO.
2079          */
2080         this_p_queues = poll_queues;
2081         if (this_p_queues >= nr_io_queues) {
2082                 this_p_queues = nr_io_queues - 1;
2083                 irq_queues = 1;
2084         } else {
2085                 irq_queues = nr_io_queues - this_p_queues;
2086         }
2087         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2088
2089         /*
2090          * For irq sets, we have to ask for minvec == maxvec. This passes
2091          * any reduction back to us, so we can adjust our queue counts and
2092          * IRQ vector needs.
2093          */
2094         do {
2095                 nvme_calc_io_queues(dev, irq_queues);
2096                 irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2097                 irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
2098                 if (!irq_sets[1])
2099                         affd.nr_sets = 1;
2100
2101                 /*
2102                  * If we got a failure and we're down to asking for just
2103                  * 1 + 1 queues, just ask for a single vector. We'll share
2104                  * that between the single IO queue and the admin queue.
2105                  */
2106                 if (result >= 0 && irq_queues > 1)
2107                         irq_queues = irq_sets[0] + irq_sets[1] + 1;
2108
2109                 result = pci_alloc_irq_vectors_affinity(pdev, irq_queues,
2110                                 irq_queues,
2111                                 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2112
2113                 /*
2114                  * Need to reduce our vec counts. If we get ENOSPC, the
2115                  * platform should support mulitple vecs, we just need
2116                  * to decrease our ask. If we get EINVAL, the platform
2117                  * likely does not. Back down to ask for just one vector.
2118                  */
2119                 if (result == -ENOSPC) {
2120                         irq_queues--;
2121                         if (!irq_queues)
2122                                 return result;
2123                         continue;
2124                 } else if (result == -EINVAL) {
2125                         irq_queues = 1;
2126                         continue;
2127                 } else if (result <= 0)
2128                         return -EIO;
2129                 break;
2130         } while (1);
2131
2132         return result;
2133 }
2134
2135 static int nvme_setup_io_queues(struct nvme_dev *dev)
2136 {
2137         struct nvme_queue *adminq = &dev->queues[0];
2138         struct pci_dev *pdev = to_pci_dev(dev->dev);
2139         int result, nr_io_queues;
2140         unsigned long size;
2141
2142         nr_io_queues = max_io_queues();
2143         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2144         if (result < 0)
2145                 return result;
2146
2147         if (nr_io_queues == 0)
2148                 return 0;
2149         
2150         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2151
2152         if (dev->cmb_use_sqes) {
2153                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2154                                 sizeof(struct nvme_command));
2155                 if (result > 0)
2156                         dev->q_depth = result;
2157                 else
2158                         dev->cmb_use_sqes = false;
2159         }
2160
2161         do {
2162                 size = db_bar_size(dev, nr_io_queues);
2163                 result = nvme_remap_bar(dev, size);
2164                 if (!result)
2165                         break;
2166                 if (!--nr_io_queues)
2167                         return -ENOMEM;
2168         } while (1);
2169         adminq->q_db = dev->dbs;
2170
2171         /* Deregister the admin queue's interrupt */
2172         pci_free_irq(pdev, 0, adminq);
2173
2174         /*
2175          * If we enable msix early due to not intx, disable it again before
2176          * setting up the full range we need.
2177          */
2178         pci_free_irq_vectors(pdev);
2179
2180         result = nvme_setup_irqs(dev, nr_io_queues);
2181         if (result <= 0)
2182                 return -EIO;
2183
2184         dev->num_vecs = result;
2185         result = max(result - 1, 1);
2186         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2187
2188         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2189                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2190                                         dev->io_queues[HCTX_TYPE_READ],
2191                                         dev->io_queues[HCTX_TYPE_POLL]);
2192
2193         /*
2194          * Should investigate if there's a performance win from allocating
2195          * more queues than interrupt vectors; it might allow the submission
2196          * path to scale better, even if the receive path is limited by the
2197          * number of interrupts.
2198          */
2199
2200         result = queue_request_irq(adminq);
2201         if (result) {
2202                 adminq->cq_vector = -1;
2203                 return result;
2204         }
2205         set_bit(NVMEQ_ENABLED, &adminq->flags);
2206         return nvme_create_io_queues(dev);
2207 }
2208
2209 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2210 {
2211         struct nvme_queue *nvmeq = req->end_io_data;
2212
2213         blk_mq_free_request(req);
2214         complete(&nvmeq->delete_done);
2215 }
2216
2217 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2218 {
2219         struct nvme_queue *nvmeq = req->end_io_data;
2220
2221         if (error)
2222                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2223
2224         nvme_del_queue_end(req, error);
2225 }
2226
2227 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2228 {
2229         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2230         struct request *req;
2231         struct nvme_command cmd;
2232
2233         memset(&cmd, 0, sizeof(cmd));
2234         cmd.delete_queue.opcode = opcode;
2235         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2236
2237         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2238         if (IS_ERR(req))
2239                 return PTR_ERR(req);
2240
2241         req->timeout = ADMIN_TIMEOUT;
2242         req->end_io_data = nvmeq;
2243
2244         init_completion(&nvmeq->delete_done);
2245         blk_execute_rq_nowait(q, NULL, req, false,
2246                         opcode == nvme_admin_delete_cq ?
2247                                 nvme_del_cq_end : nvme_del_queue_end);
2248         return 0;
2249 }
2250
2251 static bool nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2252 {
2253         int nr_queues = dev->online_queues - 1, sent = 0;
2254         unsigned long timeout;
2255
2256  retry:
2257         timeout = ADMIN_TIMEOUT;
2258         while (nr_queues > 0) {
2259                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2260                         break;
2261                 nr_queues--;
2262                 sent++;
2263         }
2264         while (sent) {
2265                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2266
2267                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2268                                 timeout);
2269                 if (timeout == 0)
2270                         return false;
2271
2272                 /* handle any remaining CQEs */
2273                 if (opcode == nvme_admin_delete_cq &&
2274                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2275                         nvme_poll_irqdisable(nvmeq, -1);
2276
2277                 sent--;
2278                 if (nr_queues)
2279                         goto retry;
2280         }
2281         return true;
2282 }
2283
2284 /*
2285  * return error value only when tagset allocation failed
2286  */
2287 static int nvme_dev_add(struct nvme_dev *dev)
2288 {
2289         int ret;
2290
2291         if (!dev->ctrl.tagset) {
2292                 dev->tagset.ops = &nvme_mq_ops;
2293                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2294                 dev->tagset.nr_maps = 2; /* default + read */
2295                 if (dev->io_queues[HCTX_TYPE_POLL])
2296                         dev->tagset.nr_maps++;
2297                 dev->tagset.nr_maps = HCTX_MAX_TYPES;
2298                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2299                 dev->tagset.numa_node = dev_to_node(dev->dev);
2300                 dev->tagset.queue_depth =
2301                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2302                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2303                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2304                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2305                                         nvme_pci_cmd_size(dev, true));
2306                 }
2307                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2308                 dev->tagset.driver_data = dev;
2309
2310                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2311                 if (ret) {
2312                         dev_warn(dev->ctrl.device,
2313                                 "IO queues tagset allocation failed %d\n", ret);
2314                         return ret;
2315                 }
2316                 dev->ctrl.tagset = &dev->tagset;
2317
2318                 nvme_dbbuf_set(dev);
2319         } else {
2320                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2321
2322                 /* Free previously allocated queues that are no longer usable */
2323                 nvme_free_queues(dev, dev->online_queues);
2324         }
2325
2326         return 0;
2327 }
2328
2329 static int nvme_pci_enable(struct nvme_dev *dev)
2330 {
2331         int result = -ENOMEM;
2332         struct pci_dev *pdev = to_pci_dev(dev->dev);
2333
2334         if (pci_enable_device_mem(pdev))
2335                 return result;
2336
2337         pci_set_master(pdev);
2338
2339         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2340             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2341                 goto disable;
2342
2343         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2344                 result = -ENODEV;
2345                 goto disable;
2346         }
2347
2348         /*
2349          * Some devices and/or platforms don't advertise or work with INTx
2350          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2351          * adjust this later.
2352          */
2353         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2354         if (result < 0)
2355                 return result;
2356
2357         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2358
2359         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2360                                 io_queue_depth);
2361         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2362         dev->dbs = dev->bar + 4096;
2363
2364         /*
2365          * Temporary fix for the Apple controller found in the MacBook8,1 and
2366          * some MacBook7,1 to avoid controller resets and data loss.
2367          */
2368         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2369                 dev->q_depth = 2;
2370                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2371                         "set queue depth=%u to work around controller resets\n",
2372                         dev->q_depth);
2373         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2374                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2375                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2376                 dev->q_depth = 64;
2377                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2378                         "set queue depth=%u\n", dev->q_depth);
2379         }
2380
2381         nvme_map_cmb(dev);
2382
2383         pci_enable_pcie_error_reporting(pdev);
2384         pci_save_state(pdev);
2385         return 0;
2386
2387  disable:
2388         pci_disable_device(pdev);
2389         return result;
2390 }
2391
2392 static void nvme_dev_unmap(struct nvme_dev *dev)
2393 {
2394         if (dev->bar)
2395                 iounmap(dev->bar);
2396         pci_release_mem_regions(to_pci_dev(dev->dev));
2397 }
2398
2399 static void nvme_pci_disable(struct nvme_dev *dev)
2400 {
2401         struct pci_dev *pdev = to_pci_dev(dev->dev);
2402
2403         pci_free_irq_vectors(pdev);
2404
2405         if (pci_is_enabled(pdev)) {
2406                 pci_disable_pcie_error_reporting(pdev);
2407                 pci_disable_device(pdev);
2408         }
2409 }
2410
2411 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2412 {
2413         int i;
2414         bool dead = true;
2415         struct pci_dev *pdev = to_pci_dev(dev->dev);
2416
2417         mutex_lock(&dev->shutdown_lock);
2418         if (pci_is_enabled(pdev)) {
2419                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2420
2421                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2422                     dev->ctrl.state == NVME_CTRL_RESETTING)
2423                         nvme_start_freeze(&dev->ctrl);
2424                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2425                         pdev->error_state  != pci_channel_io_normal);
2426         }
2427
2428         /*
2429          * Give the controller a chance to complete all entered requests if
2430          * doing a safe shutdown.
2431          */
2432         if (!dead) {
2433                 if (shutdown)
2434                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2435         }
2436
2437         nvme_stop_queues(&dev->ctrl);
2438
2439         if (!dead && dev->ctrl.queue_count > 0) {
2440                 if (nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2441                         nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2442                 nvme_disable_admin_queue(dev, shutdown);
2443         }
2444         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2445                 nvme_suspend_queue(&dev->queues[i]);
2446
2447         nvme_pci_disable(dev);
2448
2449         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2450         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2451
2452         /*
2453          * The driver will not be starting up queues again if shutting down so
2454          * must flush all entered requests to their failed completion to avoid
2455          * deadlocking blk-mq hot-cpu notifier.
2456          */
2457         if (shutdown)
2458                 nvme_start_queues(&dev->ctrl);
2459         mutex_unlock(&dev->shutdown_lock);
2460 }
2461
2462 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2463 {
2464         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2465                                                 PAGE_SIZE, PAGE_SIZE, 0);
2466         if (!dev->prp_page_pool)
2467                 return -ENOMEM;
2468
2469         /* Optimisation for I/Os between 4k and 128k */
2470         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2471                                                 256, 256, 0);
2472         if (!dev->prp_small_pool) {
2473                 dma_pool_destroy(dev->prp_page_pool);
2474                 return -ENOMEM;
2475         }
2476         return 0;
2477 }
2478
2479 static void nvme_release_prp_pools(struct nvme_dev *dev)
2480 {
2481         dma_pool_destroy(dev->prp_page_pool);
2482         dma_pool_destroy(dev->prp_small_pool);
2483 }
2484
2485 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2486 {
2487         struct nvme_dev *dev = to_nvme_dev(ctrl);
2488
2489         nvme_dbbuf_dma_free(dev);
2490         put_device(dev->dev);
2491         if (dev->tagset.tags)
2492                 blk_mq_free_tag_set(&dev->tagset);
2493         if (dev->ctrl.admin_q)
2494                 blk_put_queue(dev->ctrl.admin_q);
2495         kfree(dev->queues);
2496         free_opal_dev(dev->ctrl.opal_dev);
2497         mempool_destroy(dev->iod_mempool);
2498         kfree(dev);
2499 }
2500
2501 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2502 {
2503         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2504
2505         nvme_get_ctrl(&dev->ctrl);
2506         nvme_dev_disable(dev, false);
2507         nvme_kill_queues(&dev->ctrl);
2508         if (!queue_work(nvme_wq, &dev->remove_work))
2509                 nvme_put_ctrl(&dev->ctrl);
2510 }
2511
2512 static void nvme_reset_work(struct work_struct *work)
2513 {
2514         struct nvme_dev *dev =
2515                 container_of(work, struct nvme_dev, ctrl.reset_work);
2516         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2517         int result = -ENODEV;
2518         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2519
2520         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2521                 goto out;
2522
2523         /*
2524          * If we're called to reset a live controller first shut it down before
2525          * moving on.
2526          */
2527         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2528                 nvme_dev_disable(dev, false);
2529
2530         /*
2531          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2532          * initializing procedure here.
2533          */
2534         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2535                 dev_warn(dev->ctrl.device,
2536                         "failed to mark controller CONNECTING\n");
2537                 goto out;
2538         }
2539
2540         result = nvme_pci_enable(dev);
2541         if (result)
2542                 goto out;
2543
2544         result = nvme_pci_configure_admin_queue(dev);
2545         if (result)
2546                 goto out;
2547
2548         result = nvme_alloc_admin_tags(dev);
2549         if (result)
2550                 goto out;
2551
2552         /*
2553          * Limit the max command size to prevent iod->sg allocations going
2554          * over a single page.
2555          */
2556         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2557         dev->ctrl.max_segments = NVME_MAX_SEGS;
2558
2559         result = nvme_init_identify(&dev->ctrl);
2560         if (result)
2561                 goto out;
2562
2563         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2564                 if (!dev->ctrl.opal_dev)
2565                         dev->ctrl.opal_dev =
2566                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2567                 else if (was_suspend)
2568                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2569         } else {
2570                 free_opal_dev(dev->ctrl.opal_dev);
2571                 dev->ctrl.opal_dev = NULL;
2572         }
2573
2574         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2575                 result = nvme_dbbuf_dma_alloc(dev);
2576                 if (result)
2577                         dev_warn(dev->dev,
2578                                  "unable to allocate dma for dbbuf\n");
2579         }
2580
2581         if (dev->ctrl.hmpre) {
2582                 result = nvme_setup_host_mem(dev);
2583                 if (result < 0)
2584                         goto out;
2585         }
2586
2587         result = nvme_setup_io_queues(dev);
2588         if (result)
2589                 goto out;
2590
2591         /*
2592          * Keep the controller around but remove all namespaces if we don't have
2593          * any working I/O queue.
2594          */
2595         if (dev->online_queues < 2) {
2596                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2597                 nvme_kill_queues(&dev->ctrl);
2598                 nvme_remove_namespaces(&dev->ctrl);
2599                 new_state = NVME_CTRL_ADMIN_ONLY;
2600         } else {
2601                 nvme_start_queues(&dev->ctrl);
2602                 nvme_wait_freeze(&dev->ctrl);
2603                 /* hit this only when allocate tagset fails */
2604                 if (nvme_dev_add(dev))
2605                         new_state = NVME_CTRL_ADMIN_ONLY;
2606                 nvme_unfreeze(&dev->ctrl);
2607         }
2608
2609         /*
2610          * If only admin queue live, keep it to do further investigation or
2611          * recovery.
2612          */
2613         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2614                 dev_warn(dev->ctrl.device,
2615                         "failed to mark controller state %d\n", new_state);
2616                 goto out;
2617         }
2618
2619         nvme_start_ctrl(&dev->ctrl);
2620         return;
2621
2622  out:
2623         nvme_remove_dead_ctrl(dev, result);
2624 }
2625
2626 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2627 {
2628         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2629         struct pci_dev *pdev = to_pci_dev(dev->dev);
2630
2631         if (pci_get_drvdata(pdev))
2632                 device_release_driver(&pdev->dev);
2633         nvme_put_ctrl(&dev->ctrl);
2634 }
2635
2636 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2637 {
2638         *val = readl(to_nvme_dev(ctrl)->bar + off);
2639         return 0;
2640 }
2641
2642 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2643 {
2644         writel(val, to_nvme_dev(ctrl)->bar + off);
2645         return 0;
2646 }
2647
2648 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2649 {
2650         *val = readq(to_nvme_dev(ctrl)->bar + off);
2651         return 0;
2652 }
2653
2654 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2655 {
2656         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2657
2658         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2659 }
2660
2661 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2662         .name                   = "pcie",
2663         .module                 = THIS_MODULE,
2664         .flags                  = NVME_F_METADATA_SUPPORTED |
2665                                   NVME_F_PCI_P2PDMA,
2666         .reg_read32             = nvme_pci_reg_read32,
2667         .reg_write32            = nvme_pci_reg_write32,
2668         .reg_read64             = nvme_pci_reg_read64,
2669         .free_ctrl              = nvme_pci_free_ctrl,
2670         .submit_async_event     = nvme_pci_submit_async_event,
2671         .get_address            = nvme_pci_get_address,
2672 };
2673
2674 static int nvme_dev_map(struct nvme_dev *dev)
2675 {
2676         struct pci_dev *pdev = to_pci_dev(dev->dev);
2677
2678         if (pci_request_mem_regions(pdev, "nvme"))
2679                 return -ENODEV;
2680
2681         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2682                 goto release;
2683
2684         return 0;
2685   release:
2686         pci_release_mem_regions(pdev);
2687         return -ENODEV;
2688 }
2689
2690 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2691 {
2692         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2693                 /*
2694                  * Several Samsung devices seem to drop off the PCIe bus
2695                  * randomly when APST is on and uses the deepest sleep state.
2696                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2697                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2698                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2699                  * laptops.
2700                  */
2701                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2702                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2703                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2704                         return NVME_QUIRK_NO_DEEPEST_PS;
2705         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2706                 /*
2707                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2708                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2709                  * within few minutes after bootup on a Coffee Lake board -
2710                  * ASUS PRIME Z370-A
2711                  */
2712                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2713                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2714                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2715                         return NVME_QUIRK_NO_APST;
2716         }
2717
2718         return 0;
2719 }
2720
2721 static void nvme_async_probe(void *data, async_cookie_t cookie)
2722 {
2723         struct nvme_dev *dev = data;
2724
2725         nvme_reset_ctrl_sync(&dev->ctrl);
2726         flush_work(&dev->ctrl.scan_work);
2727         nvme_put_ctrl(&dev->ctrl);
2728 }
2729
2730 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2731 {
2732         int node, result = -ENOMEM;
2733         struct nvme_dev *dev;
2734         unsigned long quirks = id->driver_data;
2735         size_t alloc_size;
2736
2737         node = dev_to_node(&pdev->dev);
2738         if (node == NUMA_NO_NODE)
2739                 set_dev_node(&pdev->dev, first_memory_node);
2740
2741         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2742         if (!dev)
2743                 return -ENOMEM;
2744
2745         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2746                                         GFP_KERNEL, node);
2747         if (!dev->queues)
2748                 goto free;
2749
2750         dev->dev = get_device(&pdev->dev);
2751         pci_set_drvdata(pdev, dev);
2752
2753         result = nvme_dev_map(dev);
2754         if (result)
2755                 goto put_pci;
2756
2757         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2758         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2759         mutex_init(&dev->shutdown_lock);
2760
2761         result = nvme_setup_prp_pools(dev);
2762         if (result)
2763                 goto unmap;
2764
2765         quirks |= check_vendor_combination_bug(pdev);
2766
2767         /*
2768          * Double check that our mempool alloc size will cover the biggest
2769          * command we support.
2770          */
2771         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2772                                                 NVME_MAX_SEGS, true);
2773         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2774
2775         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2776                                                 mempool_kfree,
2777                                                 (void *) alloc_size,
2778                                                 GFP_KERNEL, node);
2779         if (!dev->iod_mempool) {
2780                 result = -ENOMEM;
2781                 goto release_pools;
2782         }
2783
2784         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2785                         quirks);
2786         if (result)
2787                 goto release_mempool;
2788
2789         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2790
2791         nvme_get_ctrl(&dev->ctrl);
2792         async_schedule(nvme_async_probe, dev);
2793
2794         return 0;
2795
2796  release_mempool:
2797         mempool_destroy(dev->iod_mempool);
2798  release_pools:
2799         nvme_release_prp_pools(dev);
2800  unmap:
2801         nvme_dev_unmap(dev);
2802  put_pci:
2803         put_device(dev->dev);
2804  free:
2805         kfree(dev->queues);
2806         kfree(dev);
2807         return result;
2808 }
2809
2810 static void nvme_reset_prepare(struct pci_dev *pdev)
2811 {
2812         struct nvme_dev *dev = pci_get_drvdata(pdev);
2813         nvme_dev_disable(dev, false);
2814 }
2815
2816 static void nvme_reset_done(struct pci_dev *pdev)
2817 {
2818         struct nvme_dev *dev = pci_get_drvdata(pdev);
2819         nvme_reset_ctrl_sync(&dev->ctrl);
2820 }
2821
2822 static void nvme_shutdown(struct pci_dev *pdev)
2823 {
2824         struct nvme_dev *dev = pci_get_drvdata(pdev);
2825         nvme_dev_disable(dev, true);
2826 }
2827
2828 /*
2829  * The driver's remove may be called on a device in a partially initialized
2830  * state. This function must not have any dependencies on the device state in
2831  * order to proceed.
2832  */
2833 static void nvme_remove(struct pci_dev *pdev)
2834 {
2835         struct nvme_dev *dev = pci_get_drvdata(pdev);
2836
2837         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2838         pci_set_drvdata(pdev, NULL);
2839
2840         if (!pci_device_is_present(pdev)) {
2841                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2842                 nvme_dev_disable(dev, true);
2843                 nvme_dev_remove_admin(dev);
2844         }
2845
2846         flush_work(&dev->ctrl.reset_work);
2847         nvme_stop_ctrl(&dev->ctrl);
2848         nvme_remove_namespaces(&dev->ctrl);
2849         nvme_dev_disable(dev, true);
2850         nvme_release_cmb(dev);
2851         nvme_free_host_mem(dev);
2852         nvme_dev_remove_admin(dev);
2853         nvme_free_queues(dev, 0);
2854         nvme_uninit_ctrl(&dev->ctrl);
2855         nvme_release_prp_pools(dev);
2856         nvme_dev_unmap(dev);
2857         nvme_put_ctrl(&dev->ctrl);
2858 }
2859
2860 #ifdef CONFIG_PM_SLEEP
2861 static int nvme_suspend(struct device *dev)
2862 {
2863         struct pci_dev *pdev = to_pci_dev(dev);
2864         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2865
2866         nvme_dev_disable(ndev, true);
2867         return 0;
2868 }
2869
2870 static int nvme_resume(struct device *dev)
2871 {
2872         struct pci_dev *pdev = to_pci_dev(dev);
2873         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2874
2875         nvme_reset_ctrl(&ndev->ctrl);
2876         return 0;
2877 }
2878 #endif
2879
2880 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2881
2882 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2883                                                 pci_channel_state_t state)
2884 {
2885         struct nvme_dev *dev = pci_get_drvdata(pdev);
2886
2887         /*
2888          * A frozen channel requires a reset. When detected, this method will
2889          * shutdown the controller to quiesce. The controller will be restarted
2890          * after the slot reset through driver's slot_reset callback.
2891          */
2892         switch (state) {
2893         case pci_channel_io_normal:
2894                 return PCI_ERS_RESULT_CAN_RECOVER;
2895         case pci_channel_io_frozen:
2896                 dev_warn(dev->ctrl.device,
2897                         "frozen state error detected, reset controller\n");
2898                 nvme_dev_disable(dev, false);
2899                 return PCI_ERS_RESULT_NEED_RESET;
2900         case pci_channel_io_perm_failure:
2901                 dev_warn(dev->ctrl.device,
2902                         "failure state error detected, request disconnect\n");
2903                 return PCI_ERS_RESULT_DISCONNECT;
2904         }
2905         return PCI_ERS_RESULT_NEED_RESET;
2906 }
2907
2908 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2909 {
2910         struct nvme_dev *dev = pci_get_drvdata(pdev);
2911
2912         dev_info(dev->ctrl.device, "restart after slot reset\n");
2913         pci_restore_state(pdev);
2914         nvme_reset_ctrl(&dev->ctrl);
2915         return PCI_ERS_RESULT_RECOVERED;
2916 }
2917
2918 static void nvme_error_resume(struct pci_dev *pdev)
2919 {
2920         struct nvme_dev *dev = pci_get_drvdata(pdev);
2921
2922         flush_work(&dev->ctrl.reset_work);
2923 }
2924
2925 static const struct pci_error_handlers nvme_err_handler = {
2926         .error_detected = nvme_error_detected,
2927         .slot_reset     = nvme_slot_reset,
2928         .resume         = nvme_error_resume,
2929         .reset_prepare  = nvme_reset_prepare,
2930         .reset_done     = nvme_reset_done,
2931 };
2932
2933 static const struct pci_device_id nvme_id_table[] = {
2934         { PCI_VDEVICE(INTEL, 0x0953),
2935                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2936                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2937         { PCI_VDEVICE(INTEL, 0x0a53),
2938                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2939                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2940         { PCI_VDEVICE(INTEL, 0x0a54),
2941                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2942                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2943         { PCI_VDEVICE(INTEL, 0x0a55),
2944                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2945                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2946         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2947                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2948                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2949         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2950                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2951         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2952                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2953         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2954                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2955         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2956                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2957         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2958                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2959         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2960                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2961         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2962                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2963         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2964                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2965         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2966                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2967         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2968                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2969         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2970         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2971         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2972         { 0, }
2973 };
2974 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2975
2976 static struct pci_driver nvme_driver = {
2977         .name           = "nvme",
2978         .id_table       = nvme_id_table,
2979         .probe          = nvme_probe,
2980         .remove         = nvme_remove,
2981         .shutdown       = nvme_shutdown,
2982         .driver         = {
2983                 .pm     = &nvme_dev_pm_ops,
2984         },
2985         .sriov_configure = pci_sriov_configure_simple,
2986         .err_handler    = &nvme_err_handler,
2987 };
2988
2989 static int __init nvme_init(void)
2990 {
2991         return pci_register_driver(&nvme_driver);
2992 }
2993
2994 static void __exit nvme_exit(void)
2995 {
2996         pci_unregister_driver(&nvme_driver);
2997         flush_workqueue(nvme_wq);
2998         _nvme_check_size();
2999 }
3000
3001 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3002 MODULE_LICENSE("GPL");
3003 MODULE_VERSION("1.0");
3004 module_init(nvme_init);
3005 module_exit(nvme_exit);