OSDN Git Service

Merge tag 'for-5.8/drivers-2020-06-01' of git://git.kernel.dk/linux-block
[tomoyo/tomoyo-test1.git] / drivers / nvme / target / io-cmd-bdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13         const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14         /* Number of logical blocks per physical block. */
15         const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16         /* Logical blocks per physical block, 0's based. */
17         const __le16 lpp0b = to0based(lpp);
18
19         /*
20          * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21          * NAWUPF, and NACWU are defined for this namespace and should be
22          * used by the host for this namespace instead of the AWUN, AWUPF,
23          * and ACWU fields in the Identify Controller data structure. If
24          * any of these fields are zero that means that the corresponding
25          * field from the identify controller data structure should be used.
26          */
27         id->nsfeat |= 1 << 1;
28         id->nawun = lpp0b;
29         id->nawupf = lpp0b;
30         id->nacwu = lpp0b;
31
32         /*
33          * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34          * NOWS are defined for this namespace and should be used by
35          * the host for I/O optimization.
36          */
37         id->nsfeat |= 1 << 4;
38         /* NPWG = Namespace Preferred Write Granularity. 0's based */
39         id->npwg = lpp0b;
40         /* NPWA = Namespace Preferred Write Alignment. 0's based */
41         id->npwa = id->npwg;
42         /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43         id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44         /* NPDG = Namespace Preferred Deallocate Alignment */
45         id->npda = id->npdg;
46         /* NOWS = Namespace Optimal Write Size */
47         id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49
50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
51 {
52         struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
53
54         if (bi) {
55                 ns->metadata_size = bi->tuple_size;
56                 if (bi->profile == &t10_pi_type1_crc)
57                         ns->pi_type = NVME_NS_DPS_PI_TYPE1;
58                 else if (bi->profile == &t10_pi_type3_crc)
59                         ns->pi_type = NVME_NS_DPS_PI_TYPE3;
60                 else
61                         /* Unsupported metadata type */
62                         ns->metadata_size = 0;
63         }
64 }
65
66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
67 {
68         int ret;
69
70         ns->bdev = blkdev_get_by_path(ns->device_path,
71                         FMODE_READ | FMODE_WRITE, NULL);
72         if (IS_ERR(ns->bdev)) {
73                 ret = PTR_ERR(ns->bdev);
74                 if (ret != -ENOTBLK) {
75                         pr_err("failed to open block device %s: (%ld)\n",
76                                         ns->device_path, PTR_ERR(ns->bdev));
77                 }
78                 ns->bdev = NULL;
79                 return ret;
80         }
81         ns->size = i_size_read(ns->bdev->bd_inode);
82         ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
83
84         ns->pi_type = 0;
85         ns->metadata_size = 0;
86         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
87                 nvmet_bdev_ns_enable_integrity(ns);
88
89         return 0;
90 }
91
92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
93 {
94         if (ns->bdev) {
95                 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
96                 ns->bdev = NULL;
97         }
98 }
99
100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
101 {
102         ns->size = i_size_read(ns->bdev->bd_inode);
103 }
104
105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
106 {
107         u16 status = NVME_SC_SUCCESS;
108
109         if (likely(blk_sts == BLK_STS_OK))
110                 return status;
111         /*
112          * Right now there exists M : 1 mapping between block layer error
113          * to the NVMe status code (see nvme_error_status()). For consistency,
114          * when we reverse map we use most appropriate NVMe Status code from
115          * the group of the NVMe staus codes used in the nvme_error_status().
116          */
117         switch (blk_sts) {
118         case BLK_STS_NOSPC:
119                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
120                 req->error_loc = offsetof(struct nvme_rw_command, length);
121                 break;
122         case BLK_STS_TARGET:
123                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
124                 req->error_loc = offsetof(struct nvme_rw_command, slba);
125                 break;
126         case BLK_STS_NOTSUPP:
127                 req->error_loc = offsetof(struct nvme_common_command, opcode);
128                 switch (req->cmd->common.opcode) {
129                 case nvme_cmd_dsm:
130                 case nvme_cmd_write_zeroes:
131                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
132                         break;
133                 default:
134                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
135                 }
136                 break;
137         case BLK_STS_MEDIUM:
138                 status = NVME_SC_ACCESS_DENIED;
139                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
140                 break;
141         case BLK_STS_IOERR:
142                 /* fallthru */
143         default:
144                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
145                 req->error_loc = offsetof(struct nvme_common_command, opcode);
146         }
147
148         switch (req->cmd->common.opcode) {
149         case nvme_cmd_read:
150         case nvme_cmd_write:
151                 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
152                 break;
153         case nvme_cmd_write_zeroes:
154                 req->error_slba =
155                         le64_to_cpu(req->cmd->write_zeroes.slba);
156                 break;
157         default:
158                 req->error_slba = 0;
159         }
160         return status;
161 }
162
163 static void nvmet_bio_done(struct bio *bio)
164 {
165         struct nvmet_req *req = bio->bi_private;
166
167         nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
168         if (bio != &req->b.inline_bio)
169                 bio_put(bio);
170 }
171
172 #ifdef CONFIG_BLK_DEV_INTEGRITY
173 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
174                                 struct sg_mapping_iter *miter)
175 {
176         struct blk_integrity *bi;
177         struct bio_integrity_payload *bip;
178         struct block_device *bdev = req->ns->bdev;
179         int rc;
180         size_t resid, len;
181
182         bi = bdev_get_integrity(bdev);
183         if (unlikely(!bi)) {
184                 pr_err("Unable to locate bio_integrity\n");
185                 return -ENODEV;
186         }
187
188         bip = bio_integrity_alloc(bio, GFP_NOIO,
189                 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES));
190         if (IS_ERR(bip)) {
191                 pr_err("Unable to allocate bio_integrity_payload\n");
192                 return PTR_ERR(bip);
193         }
194
195         bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
196         /* virtual start sector must be in integrity interval units */
197         bip_set_seed(bip, bio->bi_iter.bi_sector >>
198                      (bi->interval_exp - SECTOR_SHIFT));
199
200         resid = bip->bip_iter.bi_size;
201         while (resid > 0 && sg_miter_next(miter)) {
202                 len = min_t(size_t, miter->length, resid);
203                 rc = bio_integrity_add_page(bio, miter->page, len,
204                                             offset_in_page(miter->addr));
205                 if (unlikely(rc != len)) {
206                         pr_err("bio_integrity_add_page() failed; %d\n", rc);
207                         sg_miter_stop(miter);
208                         return -ENOMEM;
209                 }
210
211                 resid -= len;
212                 if (len < miter->length)
213                         miter->consumed -= miter->length - len;
214         }
215         sg_miter_stop(miter);
216
217         return 0;
218 }
219 #else
220 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
221                                 struct sg_mapping_iter *miter)
222 {
223         return -EINVAL;
224 }
225 #endif /* CONFIG_BLK_DEV_INTEGRITY */
226
227 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
228 {
229         int sg_cnt = req->sg_cnt;
230         struct bio *bio;
231         struct scatterlist *sg;
232         struct blk_plug plug;
233         sector_t sector;
234         int op, i, rc;
235         struct sg_mapping_iter prot_miter;
236         unsigned int iter_flags;
237         unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
238
239         if (!nvmet_check_transfer_len(req, total_len))
240                 return;
241
242         if (!req->sg_cnt) {
243                 nvmet_req_complete(req, 0);
244                 return;
245         }
246
247         if (req->cmd->rw.opcode == nvme_cmd_write) {
248                 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
249                 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
250                         op |= REQ_FUA;
251                 iter_flags = SG_MITER_TO_SG;
252         } else {
253                 op = REQ_OP_READ;
254                 iter_flags = SG_MITER_FROM_SG;
255         }
256
257         if (is_pci_p2pdma_page(sg_page(req->sg)))
258                 op |= REQ_NOMERGE;
259
260         sector = le64_to_cpu(req->cmd->rw.slba);
261         sector <<= (req->ns->blksize_shift - 9);
262
263         if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
264                 bio = &req->b.inline_bio;
265                 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
266         } else {
267                 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
268         }
269         bio_set_dev(bio, req->ns->bdev);
270         bio->bi_iter.bi_sector = sector;
271         bio->bi_private = req;
272         bio->bi_end_io = nvmet_bio_done;
273         bio->bi_opf = op;
274
275         blk_start_plug(&plug);
276         if (req->metadata_len)
277                 sg_miter_start(&prot_miter, req->metadata_sg,
278                                req->metadata_sg_cnt, iter_flags);
279
280         for_each_sg(req->sg, sg, req->sg_cnt, i) {
281                 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
282                                 != sg->length) {
283                         struct bio *prev = bio;
284
285                         if (req->metadata_len) {
286                                 rc = nvmet_bdev_alloc_bip(req, bio,
287                                                           &prot_miter);
288                                 if (unlikely(rc)) {
289                                         bio_io_error(bio);
290                                         return;
291                                 }
292                         }
293
294                         bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
295                         bio_set_dev(bio, req->ns->bdev);
296                         bio->bi_iter.bi_sector = sector;
297                         bio->bi_opf = op;
298
299                         bio_chain(bio, prev);
300                         submit_bio(prev);
301                 }
302
303                 sector += sg->length >> 9;
304                 sg_cnt--;
305         }
306
307         if (req->metadata_len) {
308                 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
309                 if (unlikely(rc)) {
310                         bio_io_error(bio);
311                         return;
312                 }
313         }
314
315         submit_bio(bio);
316         blk_finish_plug(&plug);
317 }
318
319 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
320 {
321         struct bio *bio = &req->b.inline_bio;
322
323         if (!nvmet_check_transfer_len(req, 0))
324                 return;
325
326         bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
327         bio_set_dev(bio, req->ns->bdev);
328         bio->bi_private = req;
329         bio->bi_end_io = nvmet_bio_done;
330         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
331
332         submit_bio(bio);
333 }
334
335 u16 nvmet_bdev_flush(struct nvmet_req *req)
336 {
337         if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL))
338                 return NVME_SC_INTERNAL | NVME_SC_DNR;
339         return 0;
340 }
341
342 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
343                 struct nvme_dsm_range *range, struct bio **bio)
344 {
345         struct nvmet_ns *ns = req->ns;
346         int ret;
347
348         ret = __blkdev_issue_discard(ns->bdev,
349                         le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
350                         le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
351                         GFP_KERNEL, 0, bio);
352         if (ret && ret != -EOPNOTSUPP) {
353                 req->error_slba = le64_to_cpu(range->slba);
354                 return errno_to_nvme_status(req, ret);
355         }
356         return NVME_SC_SUCCESS;
357 }
358
359 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
360 {
361         struct nvme_dsm_range range;
362         struct bio *bio = NULL;
363         int i;
364         u16 status;
365
366         for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
367                 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
368                                 sizeof(range));
369                 if (status)
370                         break;
371
372                 status = nvmet_bdev_discard_range(req, &range, &bio);
373                 if (status)
374                         break;
375         }
376
377         if (bio) {
378                 bio->bi_private = req;
379                 bio->bi_end_io = nvmet_bio_done;
380                 if (status)
381                         bio_io_error(bio);
382                 else
383                         submit_bio(bio);
384         } else {
385                 nvmet_req_complete(req, status);
386         }
387 }
388
389 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
390 {
391         if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
392                 return;
393
394         switch (le32_to_cpu(req->cmd->dsm.attributes)) {
395         case NVME_DSMGMT_AD:
396                 nvmet_bdev_execute_discard(req);
397                 return;
398         case NVME_DSMGMT_IDR:
399         case NVME_DSMGMT_IDW:
400         default:
401                 /* Not supported yet */
402                 nvmet_req_complete(req, 0);
403                 return;
404         }
405 }
406
407 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
408 {
409         struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
410         struct bio *bio = NULL;
411         sector_t sector;
412         sector_t nr_sector;
413         int ret;
414
415         if (!nvmet_check_transfer_len(req, 0))
416                 return;
417
418         sector = le64_to_cpu(write_zeroes->slba) <<
419                 (req->ns->blksize_shift - 9);
420         nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
421                 (req->ns->blksize_shift - 9));
422
423         ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
424                         GFP_KERNEL, &bio, 0);
425         if (bio) {
426                 bio->bi_private = req;
427                 bio->bi_end_io = nvmet_bio_done;
428                 submit_bio(bio);
429         } else {
430                 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
431         }
432 }
433
434 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
435 {
436         struct nvme_command *cmd = req->cmd;
437
438         switch (cmd->common.opcode) {
439         case nvme_cmd_read:
440         case nvme_cmd_write:
441                 req->execute = nvmet_bdev_execute_rw;
442                 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
443                         req->metadata_len = nvmet_rw_metadata_len(req);
444                 return 0;
445         case nvme_cmd_flush:
446                 req->execute = nvmet_bdev_execute_flush;
447                 return 0;
448         case nvme_cmd_dsm:
449                 req->execute = nvmet_bdev_execute_dsm;
450                 return 0;
451         case nvme_cmd_write_zeroes:
452                 req->execute = nvmet_bdev_execute_write_zeroes;
453                 return 0;
454         default:
455                 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
456                        req->sq->qid);
457                 req->error_loc = offsetof(struct nvme_common_command, opcode);
458                 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
459         }
460 }