OSDN Git Service

clk: at91: fix masterck name
[uclinux-h8/linux.git] / drivers / nvme / target / rdma.c
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
37  */
38 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
39 #define NVMET_RDMA_MAX_INLINE_SGE               4
40 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
41
42 struct nvmet_rdma_cmd {
43         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44         struct ib_cqe           cqe;
45         struct ib_recv_wr       wr;
46         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47         struct nvme_command     *nvme_cmd;
48         struct nvmet_rdma_queue *queue;
49 };
50
51 enum {
52         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
53         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
54 };
55
56 struct nvmet_rdma_rsp {
57         struct ib_sge           send_sge;
58         struct ib_cqe           send_cqe;
59         struct ib_send_wr       send_wr;
60
61         struct nvmet_rdma_cmd   *cmd;
62         struct nvmet_rdma_queue *queue;
63
64         struct ib_cqe           read_cqe;
65         struct rdma_rw_ctx      rw;
66
67         struct nvmet_req        req;
68
69         bool                    allocated;
70         u8                      n_rdma;
71         u32                     flags;
72         u32                     invalidate_rkey;
73
74         struct list_head        wait_list;
75         struct list_head        free_list;
76 };
77
78 enum nvmet_rdma_queue_state {
79         NVMET_RDMA_Q_CONNECTING,
80         NVMET_RDMA_Q_LIVE,
81         NVMET_RDMA_Q_DISCONNECTING,
82 };
83
84 struct nvmet_rdma_queue {
85         struct rdma_cm_id       *cm_id;
86         struct nvmet_port       *port;
87         struct ib_cq            *cq;
88         atomic_t                sq_wr_avail;
89         struct nvmet_rdma_device *dev;
90         spinlock_t              state_lock;
91         enum nvmet_rdma_queue_state state;
92         struct nvmet_cq         nvme_cq;
93         struct nvmet_sq         nvme_sq;
94
95         struct nvmet_rdma_rsp   *rsps;
96         struct list_head        free_rsps;
97         spinlock_t              rsps_lock;
98         struct nvmet_rdma_cmd   *cmds;
99
100         struct work_struct      release_work;
101         struct list_head        rsp_wait_list;
102         struct list_head        rsp_wr_wait_list;
103         spinlock_t              rsp_wr_wait_lock;
104
105         int                     idx;
106         int                     host_qid;
107         int                     recv_queue_size;
108         int                     send_queue_size;
109
110         struct list_head        queue_list;
111 };
112
113 struct nvmet_rdma_device {
114         struct ib_device        *device;
115         struct ib_pd            *pd;
116         struct ib_srq           *srq;
117         struct nvmet_rdma_cmd   *srq_cmds;
118         size_t                  srq_size;
119         struct kref             ref;
120         struct list_head        entry;
121         int                     inline_data_size;
122         int                     inline_page_count;
123 };
124
125 static bool nvmet_rdma_use_srq;
126 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
127 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
128
129 static DEFINE_IDA(nvmet_rdma_queue_ida);
130 static LIST_HEAD(nvmet_rdma_queue_list);
131 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
132
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135
136 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
137 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
138 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
139 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
140 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
141 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
142
143 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
144
145 static int num_pages(int len)
146 {
147         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
148 }
149
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline u32 get_unaligned_le24(const u8 *p)
152 {
153         return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
154 }
155
156 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
157 {
158         return nvme_is_write(rsp->req.cmd) &&
159                 rsp->req.transfer_len &&
160                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
164 {
165         return !nvme_is_write(rsp->req.cmd) &&
166                 rsp->req.transfer_len &&
167                 !rsp->req.rsp->status &&
168                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
169 }
170
171 static inline struct nvmet_rdma_rsp *
172 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
173 {
174         struct nvmet_rdma_rsp *rsp;
175         unsigned long flags;
176
177         spin_lock_irqsave(&queue->rsps_lock, flags);
178         rsp = list_first_entry_or_null(&queue->free_rsps,
179                                 struct nvmet_rdma_rsp, free_list);
180         if (likely(rsp))
181                 list_del(&rsp->free_list);
182         spin_unlock_irqrestore(&queue->rsps_lock, flags);
183
184         if (unlikely(!rsp)) {
185                 rsp = kmalloc(sizeof(*rsp), GFP_KERNEL);
186                 if (unlikely(!rsp))
187                         return NULL;
188                 rsp->allocated = true;
189         }
190
191         return rsp;
192 }
193
194 static inline void
195 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
196 {
197         unsigned long flags;
198
199         if (unlikely(rsp->allocated)) {
200                 kfree(rsp);
201                 return;
202         }
203
204         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
205         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
206         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
207 }
208
209 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
210                                 struct nvmet_rdma_cmd *c)
211 {
212         struct scatterlist *sg;
213         struct ib_sge *sge;
214         int i;
215
216         if (!ndev->inline_data_size)
217                 return;
218
219         sg = c->inline_sg;
220         sge = &c->sge[1];
221
222         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
223                 if (sge->length)
224                         ib_dma_unmap_page(ndev->device, sge->addr,
225                                         sge->length, DMA_FROM_DEVICE);
226                 if (sg_page(sg))
227                         __free_page(sg_page(sg));
228         }
229 }
230
231 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
232                                 struct nvmet_rdma_cmd *c)
233 {
234         struct scatterlist *sg;
235         struct ib_sge *sge;
236         struct page *pg;
237         int len;
238         int i;
239
240         if (!ndev->inline_data_size)
241                 return 0;
242
243         sg = c->inline_sg;
244         sg_init_table(sg, ndev->inline_page_count);
245         sge = &c->sge[1];
246         len = ndev->inline_data_size;
247
248         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
249                 pg = alloc_page(GFP_KERNEL);
250                 if (!pg)
251                         goto out_err;
252                 sg_assign_page(sg, pg);
253                 sge->addr = ib_dma_map_page(ndev->device,
254                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
255                 if (ib_dma_mapping_error(ndev->device, sge->addr))
256                         goto out_err;
257                 sge->length = min_t(int, len, PAGE_SIZE);
258                 sge->lkey = ndev->pd->local_dma_lkey;
259                 len -= sge->length;
260         }
261
262         return 0;
263 out_err:
264         for (; i >= 0; i--, sg--, sge--) {
265                 if (sge->length)
266                         ib_dma_unmap_page(ndev->device, sge->addr,
267                                         sge->length, DMA_FROM_DEVICE);
268                 if (sg_page(sg))
269                         __free_page(sg_page(sg));
270         }
271         return -ENOMEM;
272 }
273
274 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
275                         struct nvmet_rdma_cmd *c, bool admin)
276 {
277         /* NVMe command / RDMA RECV */
278         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
279         if (!c->nvme_cmd)
280                 goto out;
281
282         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
283                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
284         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
285                 goto out_free_cmd;
286
287         c->sge[0].length = sizeof(*c->nvme_cmd);
288         c->sge[0].lkey = ndev->pd->local_dma_lkey;
289
290         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
291                 goto out_unmap_cmd;
292
293         c->cqe.done = nvmet_rdma_recv_done;
294
295         c->wr.wr_cqe = &c->cqe;
296         c->wr.sg_list = c->sge;
297         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
298
299         return 0;
300
301 out_unmap_cmd:
302         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
303                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
304 out_free_cmd:
305         kfree(c->nvme_cmd);
306
307 out:
308         return -ENOMEM;
309 }
310
311 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
312                 struct nvmet_rdma_cmd *c, bool admin)
313 {
314         if (!admin)
315                 nvmet_rdma_free_inline_pages(ndev, c);
316         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
317                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
318         kfree(c->nvme_cmd);
319 }
320
321 static struct nvmet_rdma_cmd *
322 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
323                 int nr_cmds, bool admin)
324 {
325         struct nvmet_rdma_cmd *cmds;
326         int ret = -EINVAL, i;
327
328         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
329         if (!cmds)
330                 goto out;
331
332         for (i = 0; i < nr_cmds; i++) {
333                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
334                 if (ret)
335                         goto out_free;
336         }
337
338         return cmds;
339
340 out_free:
341         while (--i >= 0)
342                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
343         kfree(cmds);
344 out:
345         return ERR_PTR(ret);
346 }
347
348 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
349                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
350 {
351         int i;
352
353         for (i = 0; i < nr_cmds; i++)
354                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
355         kfree(cmds);
356 }
357
358 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
359                 struct nvmet_rdma_rsp *r)
360 {
361         /* NVMe CQE / RDMA SEND */
362         r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
363         if (!r->req.rsp)
364                 goto out;
365
366         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
367                         sizeof(*r->req.rsp), DMA_TO_DEVICE);
368         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
369                 goto out_free_rsp;
370
371         r->send_sge.length = sizeof(*r->req.rsp);
372         r->send_sge.lkey = ndev->pd->local_dma_lkey;
373
374         r->send_cqe.done = nvmet_rdma_send_done;
375
376         r->send_wr.wr_cqe = &r->send_cqe;
377         r->send_wr.sg_list = &r->send_sge;
378         r->send_wr.num_sge = 1;
379         r->send_wr.send_flags = IB_SEND_SIGNALED;
380
381         /* Data In / RDMA READ */
382         r->read_cqe.done = nvmet_rdma_read_data_done;
383         return 0;
384
385 out_free_rsp:
386         kfree(r->req.rsp);
387 out:
388         return -ENOMEM;
389 }
390
391 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
392                 struct nvmet_rdma_rsp *r)
393 {
394         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
395                                 sizeof(*r->req.rsp), DMA_TO_DEVICE);
396         kfree(r->req.rsp);
397 }
398
399 static int
400 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
401 {
402         struct nvmet_rdma_device *ndev = queue->dev;
403         int nr_rsps = queue->recv_queue_size * 2;
404         int ret = -EINVAL, i;
405
406         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
407                         GFP_KERNEL);
408         if (!queue->rsps)
409                 goto out;
410
411         for (i = 0; i < nr_rsps; i++) {
412                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
415                 if (ret)
416                         goto out_free;
417
418                 list_add_tail(&rsp->free_list, &queue->free_rsps);
419         }
420
421         return 0;
422
423 out_free:
424         while (--i >= 0) {
425                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
426
427                 list_del(&rsp->free_list);
428                 nvmet_rdma_free_rsp(ndev, rsp);
429         }
430         kfree(queue->rsps);
431 out:
432         return ret;
433 }
434
435 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
436 {
437         struct nvmet_rdma_device *ndev = queue->dev;
438         int i, nr_rsps = queue->recv_queue_size * 2;
439
440         for (i = 0; i < nr_rsps; i++) {
441                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
442
443                 list_del(&rsp->free_list);
444                 nvmet_rdma_free_rsp(ndev, rsp);
445         }
446         kfree(queue->rsps);
447 }
448
449 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
450                 struct nvmet_rdma_cmd *cmd)
451 {
452         int ret;
453
454         ib_dma_sync_single_for_device(ndev->device,
455                 cmd->sge[0].addr, cmd->sge[0].length,
456                 DMA_FROM_DEVICE);
457
458         if (ndev->srq)
459                 ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
460         else
461                 ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
462
463         if (unlikely(ret))
464                 pr_err("post_recv cmd failed\n");
465
466         return ret;
467 }
468
469 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
470 {
471         spin_lock(&queue->rsp_wr_wait_lock);
472         while (!list_empty(&queue->rsp_wr_wait_list)) {
473                 struct nvmet_rdma_rsp *rsp;
474                 bool ret;
475
476                 rsp = list_entry(queue->rsp_wr_wait_list.next,
477                                 struct nvmet_rdma_rsp, wait_list);
478                 list_del(&rsp->wait_list);
479
480                 spin_unlock(&queue->rsp_wr_wait_lock);
481                 ret = nvmet_rdma_execute_command(rsp);
482                 spin_lock(&queue->rsp_wr_wait_lock);
483
484                 if (!ret) {
485                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
486                         break;
487                 }
488         }
489         spin_unlock(&queue->rsp_wr_wait_lock);
490 }
491
492
493 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
494 {
495         struct nvmet_rdma_queue *queue = rsp->queue;
496
497         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
498
499         if (rsp->n_rdma) {
500                 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
501                                 queue->cm_id->port_num, rsp->req.sg,
502                                 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
503         }
504
505         if (rsp->req.sg != rsp->cmd->inline_sg)
506                 nvmet_req_free_sgl(&rsp->req);
507
508         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
509                 nvmet_rdma_process_wr_wait_list(queue);
510
511         nvmet_rdma_put_rsp(rsp);
512 }
513
514 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
515 {
516         if (queue->nvme_sq.ctrl) {
517                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
518         } else {
519                 /*
520                  * we didn't setup the controller yet in case
521                  * of admin connect error, just disconnect and
522                  * cleanup the queue
523                  */
524                 nvmet_rdma_queue_disconnect(queue);
525         }
526 }
527
528 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
529 {
530         struct nvmet_rdma_rsp *rsp =
531                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
532         struct nvmet_rdma_queue *queue = cq->cq_context;
533
534         nvmet_rdma_release_rsp(rsp);
535
536         if (unlikely(wc->status != IB_WC_SUCCESS &&
537                      wc->status != IB_WC_WR_FLUSH_ERR)) {
538                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
539                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
540                 nvmet_rdma_error_comp(queue);
541         }
542 }
543
544 static void nvmet_rdma_queue_response(struct nvmet_req *req)
545 {
546         struct nvmet_rdma_rsp *rsp =
547                 container_of(req, struct nvmet_rdma_rsp, req);
548         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
549         struct ib_send_wr *first_wr;
550
551         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
552                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
553                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
554         } else {
555                 rsp->send_wr.opcode = IB_WR_SEND;
556         }
557
558         if (nvmet_rdma_need_data_out(rsp))
559                 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
560                                 cm_id->port_num, NULL, &rsp->send_wr);
561         else
562                 first_wr = &rsp->send_wr;
563
564         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
565
566         ib_dma_sync_single_for_device(rsp->queue->dev->device,
567                 rsp->send_sge.addr, rsp->send_sge.length,
568                 DMA_TO_DEVICE);
569
570         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
571                 pr_err("sending cmd response failed\n");
572                 nvmet_rdma_release_rsp(rsp);
573         }
574 }
575
576 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
577 {
578         struct nvmet_rdma_rsp *rsp =
579                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
580         struct nvmet_rdma_queue *queue = cq->cq_context;
581
582         WARN_ON(rsp->n_rdma <= 0);
583         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
584         rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
585                         queue->cm_id->port_num, rsp->req.sg,
586                         rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
587         rsp->n_rdma = 0;
588
589         if (unlikely(wc->status != IB_WC_SUCCESS)) {
590                 nvmet_req_uninit(&rsp->req);
591                 nvmet_rdma_release_rsp(rsp);
592                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
593                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
594                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
595                         nvmet_rdma_error_comp(queue);
596                 }
597                 return;
598         }
599
600         nvmet_req_execute(&rsp->req);
601 }
602
603 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
604                 u64 off)
605 {
606         int sg_count = num_pages(len);
607         struct scatterlist *sg;
608         int i;
609
610         sg = rsp->cmd->inline_sg;
611         for (i = 0; i < sg_count; i++, sg++) {
612                 if (i < sg_count - 1)
613                         sg_unmark_end(sg);
614                 else
615                         sg_mark_end(sg);
616                 sg->offset = off;
617                 sg->length = min_t(int, len, PAGE_SIZE - off);
618                 len -= sg->length;
619                 if (!i)
620                         off = 0;
621         }
622
623         rsp->req.sg = rsp->cmd->inline_sg;
624         rsp->req.sg_cnt = sg_count;
625 }
626
627 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
628 {
629         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
630         u64 off = le64_to_cpu(sgl->addr);
631         u32 len = le32_to_cpu(sgl->length);
632
633         if (!nvme_is_write(rsp->req.cmd)) {
634                 rsp->req.error_loc =
635                         offsetof(struct nvme_common_command, opcode);
636                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
637         }
638
639         if (off + len > rsp->queue->dev->inline_data_size) {
640                 pr_err("invalid inline data offset!\n");
641                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
642         }
643
644         /* no data command? */
645         if (!len)
646                 return 0;
647
648         nvmet_rdma_use_inline_sg(rsp, len, off);
649         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
650         rsp->req.transfer_len += len;
651         return 0;
652 }
653
654 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
655                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
656 {
657         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
658         u64 addr = le64_to_cpu(sgl->addr);
659         u32 key = get_unaligned_le32(sgl->key);
660         int ret;
661
662         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
663
664         /* no data command? */
665         if (!rsp->req.transfer_len)
666                 return 0;
667
668         ret = nvmet_req_alloc_sgl(&rsp->req);
669         if (ret < 0)
670                 goto error_out;
671
672         ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
673                         rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
674                         nvmet_data_dir(&rsp->req));
675         if (ret < 0)
676                 goto error_out;
677         rsp->n_rdma += ret;
678
679         if (invalidate) {
680                 rsp->invalidate_rkey = key;
681                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
682         }
683
684         return 0;
685
686 error_out:
687         rsp->req.transfer_len = 0;
688         return NVME_SC_INTERNAL;
689 }
690
691 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
692 {
693         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
694
695         switch (sgl->type >> 4) {
696         case NVME_SGL_FMT_DATA_DESC:
697                 switch (sgl->type & 0xf) {
698                 case NVME_SGL_FMT_OFFSET:
699                         return nvmet_rdma_map_sgl_inline(rsp);
700                 default:
701                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
702                         rsp->req.error_loc =
703                                 offsetof(struct nvme_common_command, dptr);
704                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
705                 }
706         case NVME_KEY_SGL_FMT_DATA_DESC:
707                 switch (sgl->type & 0xf) {
708                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
709                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
710                 case NVME_SGL_FMT_ADDRESS:
711                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
712                 default:
713                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
714                         rsp->req.error_loc =
715                                 offsetof(struct nvme_common_command, dptr);
716                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
717                 }
718         default:
719                 pr_err("invalid SGL type: %#x\n", sgl->type);
720                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
721                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
722         }
723 }
724
725 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
726 {
727         struct nvmet_rdma_queue *queue = rsp->queue;
728
729         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
730                         &queue->sq_wr_avail) < 0)) {
731                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
732                                 1 + rsp->n_rdma, queue->idx,
733                                 queue->nvme_sq.ctrl->cntlid);
734                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
735                 return false;
736         }
737
738         if (nvmet_rdma_need_data_in(rsp)) {
739                 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
740                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
741                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
742         } else {
743                 nvmet_req_execute(&rsp->req);
744         }
745
746         return true;
747 }
748
749 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
750                 struct nvmet_rdma_rsp *cmd)
751 {
752         u16 status;
753
754         ib_dma_sync_single_for_cpu(queue->dev->device,
755                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
756                 DMA_FROM_DEVICE);
757         ib_dma_sync_single_for_cpu(queue->dev->device,
758                 cmd->send_sge.addr, cmd->send_sge.length,
759                 DMA_TO_DEVICE);
760
761         cmd->req.p2p_client = &queue->dev->device->dev;
762
763         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
764                         &queue->nvme_sq, &nvmet_rdma_ops))
765                 return;
766
767         status = nvmet_rdma_map_sgl(cmd);
768         if (status)
769                 goto out_err;
770
771         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
772                 spin_lock(&queue->rsp_wr_wait_lock);
773                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
774                 spin_unlock(&queue->rsp_wr_wait_lock);
775         }
776
777         return;
778
779 out_err:
780         nvmet_req_complete(&cmd->req, status);
781 }
782
783 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
784 {
785         struct nvmet_rdma_cmd *cmd =
786                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
787         struct nvmet_rdma_queue *queue = cq->cq_context;
788         struct nvmet_rdma_rsp *rsp;
789
790         if (unlikely(wc->status != IB_WC_SUCCESS)) {
791                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
792                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
793                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
794                                 wc->status);
795                         nvmet_rdma_error_comp(queue);
796                 }
797                 return;
798         }
799
800         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
801                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
802                 nvmet_rdma_error_comp(queue);
803                 return;
804         }
805
806         cmd->queue = queue;
807         rsp = nvmet_rdma_get_rsp(queue);
808         if (unlikely(!rsp)) {
809                 /*
810                  * we get here only under memory pressure,
811                  * silently drop and have the host retry
812                  * as we can't even fail it.
813                  */
814                 nvmet_rdma_post_recv(queue->dev, cmd);
815                 return;
816         }
817         rsp->queue = queue;
818         rsp->cmd = cmd;
819         rsp->flags = 0;
820         rsp->req.cmd = cmd->nvme_cmd;
821         rsp->req.port = queue->port;
822         rsp->n_rdma = 0;
823
824         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
825                 unsigned long flags;
826
827                 spin_lock_irqsave(&queue->state_lock, flags);
828                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
829                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
830                 else
831                         nvmet_rdma_put_rsp(rsp);
832                 spin_unlock_irqrestore(&queue->state_lock, flags);
833                 return;
834         }
835
836         nvmet_rdma_handle_command(queue, rsp);
837 }
838
839 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
840 {
841         if (!ndev->srq)
842                 return;
843
844         nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
845         ib_destroy_srq(ndev->srq);
846 }
847
848 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
849 {
850         struct ib_srq_init_attr srq_attr = { NULL, };
851         struct ib_srq *srq;
852         size_t srq_size;
853         int ret, i;
854
855         srq_size = 4095;        /* XXX: tune */
856
857         srq_attr.attr.max_wr = srq_size;
858         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
859         srq_attr.attr.srq_limit = 0;
860         srq_attr.srq_type = IB_SRQT_BASIC;
861         srq = ib_create_srq(ndev->pd, &srq_attr);
862         if (IS_ERR(srq)) {
863                 /*
864                  * If SRQs aren't supported we just go ahead and use normal
865                  * non-shared receive queues.
866                  */
867                 pr_info("SRQ requested but not supported.\n");
868                 return 0;
869         }
870
871         ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
872         if (IS_ERR(ndev->srq_cmds)) {
873                 ret = PTR_ERR(ndev->srq_cmds);
874                 goto out_destroy_srq;
875         }
876
877         ndev->srq = srq;
878         ndev->srq_size = srq_size;
879
880         for (i = 0; i < srq_size; i++) {
881                 ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
882                 if (ret)
883                         goto out_free_cmds;
884         }
885
886         return 0;
887
888 out_free_cmds:
889         nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
890 out_destroy_srq:
891         ib_destroy_srq(srq);
892         return ret;
893 }
894
895 static void nvmet_rdma_free_dev(struct kref *ref)
896 {
897         struct nvmet_rdma_device *ndev =
898                 container_of(ref, struct nvmet_rdma_device, ref);
899
900         mutex_lock(&device_list_mutex);
901         list_del(&ndev->entry);
902         mutex_unlock(&device_list_mutex);
903
904         nvmet_rdma_destroy_srq(ndev);
905         ib_dealloc_pd(ndev->pd);
906
907         kfree(ndev);
908 }
909
910 static struct nvmet_rdma_device *
911 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
912 {
913         struct nvmet_port *port = cm_id->context;
914         struct nvmet_rdma_device *ndev;
915         int inline_page_count;
916         int inline_sge_count;
917         int ret;
918
919         mutex_lock(&device_list_mutex);
920         list_for_each_entry(ndev, &device_list, entry) {
921                 if (ndev->device->node_guid == cm_id->device->node_guid &&
922                     kref_get_unless_zero(&ndev->ref))
923                         goto out_unlock;
924         }
925
926         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
927         if (!ndev)
928                 goto out_err;
929
930         inline_page_count = num_pages(port->inline_data_size);
931         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
932                                 cm_id->device->attrs.max_recv_sge) - 1;
933         if (inline_page_count > inline_sge_count) {
934                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
935                         port->inline_data_size, cm_id->device->name,
936                         inline_sge_count * PAGE_SIZE);
937                 port->inline_data_size = inline_sge_count * PAGE_SIZE;
938                 inline_page_count = inline_sge_count;
939         }
940         ndev->inline_data_size = port->inline_data_size;
941         ndev->inline_page_count = inline_page_count;
942         ndev->device = cm_id->device;
943         kref_init(&ndev->ref);
944
945         ndev->pd = ib_alloc_pd(ndev->device, 0);
946         if (IS_ERR(ndev->pd))
947                 goto out_free_dev;
948
949         if (nvmet_rdma_use_srq) {
950                 ret = nvmet_rdma_init_srq(ndev);
951                 if (ret)
952                         goto out_free_pd;
953         }
954
955         list_add(&ndev->entry, &device_list);
956 out_unlock:
957         mutex_unlock(&device_list_mutex);
958         pr_debug("added %s.\n", ndev->device->name);
959         return ndev;
960
961 out_free_pd:
962         ib_dealloc_pd(ndev->pd);
963 out_free_dev:
964         kfree(ndev);
965 out_err:
966         mutex_unlock(&device_list_mutex);
967         return NULL;
968 }
969
970 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
971 {
972         struct ib_qp_init_attr qp_attr;
973         struct nvmet_rdma_device *ndev = queue->dev;
974         int comp_vector, nr_cqe, ret, i;
975
976         /*
977          * Spread the io queues across completion vectors,
978          * but still keep all admin queues on vector 0.
979          */
980         comp_vector = !queue->host_qid ? 0 :
981                 queue->idx % ndev->device->num_comp_vectors;
982
983         /*
984          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
985          */
986         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
987
988         queue->cq = ib_alloc_cq(ndev->device, queue,
989                         nr_cqe + 1, comp_vector,
990                         IB_POLL_WORKQUEUE);
991         if (IS_ERR(queue->cq)) {
992                 ret = PTR_ERR(queue->cq);
993                 pr_err("failed to create CQ cqe= %d ret= %d\n",
994                        nr_cqe + 1, ret);
995                 goto out;
996         }
997
998         memset(&qp_attr, 0, sizeof(qp_attr));
999         qp_attr.qp_context = queue;
1000         qp_attr.event_handler = nvmet_rdma_qp_event;
1001         qp_attr.send_cq = queue->cq;
1002         qp_attr.recv_cq = queue->cq;
1003         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1004         qp_attr.qp_type = IB_QPT_RC;
1005         /* +1 for drain */
1006         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1007         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
1008         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1009                                         ndev->device->attrs.max_send_sge);
1010
1011         if (ndev->srq) {
1012                 qp_attr.srq = ndev->srq;
1013         } else {
1014                 /* +1 for drain */
1015                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1016                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1017         }
1018
1019         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1020         if (ret) {
1021                 pr_err("failed to create_qp ret= %d\n", ret);
1022                 goto err_destroy_cq;
1023         }
1024
1025         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1026
1027         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1028                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1029                  qp_attr.cap.max_send_wr, queue->cm_id);
1030
1031         if (!ndev->srq) {
1032                 for (i = 0; i < queue->recv_queue_size; i++) {
1033                         queue->cmds[i].queue = queue;
1034                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1035                         if (ret)
1036                                 goto err_destroy_qp;
1037                 }
1038         }
1039
1040 out:
1041         return ret;
1042
1043 err_destroy_qp:
1044         rdma_destroy_qp(queue->cm_id);
1045 err_destroy_cq:
1046         ib_free_cq(queue->cq);
1047         goto out;
1048 }
1049
1050 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1051 {
1052         struct ib_qp *qp = queue->cm_id->qp;
1053
1054         ib_drain_qp(qp);
1055         rdma_destroy_id(queue->cm_id);
1056         ib_destroy_qp(qp);
1057         ib_free_cq(queue->cq);
1058 }
1059
1060 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1061 {
1062         pr_debug("freeing queue %d\n", queue->idx);
1063
1064         nvmet_sq_destroy(&queue->nvme_sq);
1065
1066         nvmet_rdma_destroy_queue_ib(queue);
1067         if (!queue->dev->srq) {
1068                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1069                                 queue->recv_queue_size,
1070                                 !queue->host_qid);
1071         }
1072         nvmet_rdma_free_rsps(queue);
1073         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1074         kfree(queue);
1075 }
1076
1077 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1078 {
1079         struct nvmet_rdma_queue *queue =
1080                 container_of(w, struct nvmet_rdma_queue, release_work);
1081         struct nvmet_rdma_device *dev = queue->dev;
1082
1083         nvmet_rdma_free_queue(queue);
1084
1085         kref_put(&dev->ref, nvmet_rdma_free_dev);
1086 }
1087
1088 static int
1089 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1090                                 struct nvmet_rdma_queue *queue)
1091 {
1092         struct nvme_rdma_cm_req *req;
1093
1094         req = (struct nvme_rdma_cm_req *)conn->private_data;
1095         if (!req || conn->private_data_len == 0)
1096                 return NVME_RDMA_CM_INVALID_LEN;
1097
1098         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1099                 return NVME_RDMA_CM_INVALID_RECFMT;
1100
1101         queue->host_qid = le16_to_cpu(req->qid);
1102
1103         /*
1104          * req->hsqsize corresponds to our recv queue size plus 1
1105          * req->hrqsize corresponds to our send queue size
1106          */
1107         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1108         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1109
1110         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1111                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1112
1113         /* XXX: Should we enforce some kind of max for IO queues? */
1114
1115         return 0;
1116 }
1117
1118 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1119                                 enum nvme_rdma_cm_status status)
1120 {
1121         struct nvme_rdma_cm_rej rej;
1122
1123         pr_debug("rejecting connect request: status %d (%s)\n",
1124                  status, nvme_rdma_cm_msg(status));
1125
1126         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1127         rej.sts = cpu_to_le16(status);
1128
1129         return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1130 }
1131
1132 static struct nvmet_rdma_queue *
1133 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1134                 struct rdma_cm_id *cm_id,
1135                 struct rdma_cm_event *event)
1136 {
1137         struct nvmet_rdma_queue *queue;
1138         int ret;
1139
1140         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1141         if (!queue) {
1142                 ret = NVME_RDMA_CM_NO_RSC;
1143                 goto out_reject;
1144         }
1145
1146         ret = nvmet_sq_init(&queue->nvme_sq);
1147         if (ret) {
1148                 ret = NVME_RDMA_CM_NO_RSC;
1149                 goto out_free_queue;
1150         }
1151
1152         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1153         if (ret)
1154                 goto out_destroy_sq;
1155
1156         /*
1157          * Schedules the actual release because calling rdma_destroy_id from
1158          * inside a CM callback would trigger a deadlock. (great API design..)
1159          */
1160         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1161         queue->dev = ndev;
1162         queue->cm_id = cm_id;
1163
1164         spin_lock_init(&queue->state_lock);
1165         queue->state = NVMET_RDMA_Q_CONNECTING;
1166         INIT_LIST_HEAD(&queue->rsp_wait_list);
1167         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1168         spin_lock_init(&queue->rsp_wr_wait_lock);
1169         INIT_LIST_HEAD(&queue->free_rsps);
1170         spin_lock_init(&queue->rsps_lock);
1171         INIT_LIST_HEAD(&queue->queue_list);
1172
1173         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1174         if (queue->idx < 0) {
1175                 ret = NVME_RDMA_CM_NO_RSC;
1176                 goto out_destroy_sq;
1177         }
1178
1179         ret = nvmet_rdma_alloc_rsps(queue);
1180         if (ret) {
1181                 ret = NVME_RDMA_CM_NO_RSC;
1182                 goto out_ida_remove;
1183         }
1184
1185         if (!ndev->srq) {
1186                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1187                                 queue->recv_queue_size,
1188                                 !queue->host_qid);
1189                 if (IS_ERR(queue->cmds)) {
1190                         ret = NVME_RDMA_CM_NO_RSC;
1191                         goto out_free_responses;
1192                 }
1193         }
1194
1195         ret = nvmet_rdma_create_queue_ib(queue);
1196         if (ret) {
1197                 pr_err("%s: creating RDMA queue failed (%d).\n",
1198                         __func__, ret);
1199                 ret = NVME_RDMA_CM_NO_RSC;
1200                 goto out_free_cmds;
1201         }
1202
1203         return queue;
1204
1205 out_free_cmds:
1206         if (!ndev->srq) {
1207                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1208                                 queue->recv_queue_size,
1209                                 !queue->host_qid);
1210         }
1211 out_free_responses:
1212         nvmet_rdma_free_rsps(queue);
1213 out_ida_remove:
1214         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1215 out_destroy_sq:
1216         nvmet_sq_destroy(&queue->nvme_sq);
1217 out_free_queue:
1218         kfree(queue);
1219 out_reject:
1220         nvmet_rdma_cm_reject(cm_id, ret);
1221         return NULL;
1222 }
1223
1224 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1225 {
1226         struct nvmet_rdma_queue *queue = priv;
1227
1228         switch (event->event) {
1229         case IB_EVENT_COMM_EST:
1230                 rdma_notify(queue->cm_id, event->event);
1231                 break;
1232         default:
1233                 pr_err("received IB QP event: %s (%d)\n",
1234                        ib_event_msg(event->event), event->event);
1235                 break;
1236         }
1237 }
1238
1239 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1240                 struct nvmet_rdma_queue *queue,
1241                 struct rdma_conn_param *p)
1242 {
1243         struct rdma_conn_param  param = { };
1244         struct nvme_rdma_cm_rep priv = { };
1245         int ret = -ENOMEM;
1246
1247         param.rnr_retry_count = 7;
1248         param.flow_control = 1;
1249         param.initiator_depth = min_t(u8, p->initiator_depth,
1250                 queue->dev->device->attrs.max_qp_init_rd_atom);
1251         param.private_data = &priv;
1252         param.private_data_len = sizeof(priv);
1253         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1254         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1255
1256         ret = rdma_accept(cm_id, &param);
1257         if (ret)
1258                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1259
1260         return ret;
1261 }
1262
1263 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1264                 struct rdma_cm_event *event)
1265 {
1266         struct nvmet_rdma_device *ndev;
1267         struct nvmet_rdma_queue *queue;
1268         int ret = -EINVAL;
1269
1270         ndev = nvmet_rdma_find_get_device(cm_id);
1271         if (!ndev) {
1272                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1273                 return -ECONNREFUSED;
1274         }
1275
1276         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1277         if (!queue) {
1278                 ret = -ENOMEM;
1279                 goto put_device;
1280         }
1281         queue->port = cm_id->context;
1282
1283         if (queue->host_qid == 0) {
1284                 /* Let inflight controller teardown complete */
1285                 flush_scheduled_work();
1286         }
1287
1288         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1289         if (ret) {
1290                 schedule_work(&queue->release_work);
1291                 /* Destroying rdma_cm id is not needed here */
1292                 return 0;
1293         }
1294
1295         mutex_lock(&nvmet_rdma_queue_mutex);
1296         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1297         mutex_unlock(&nvmet_rdma_queue_mutex);
1298
1299         return 0;
1300
1301 put_device:
1302         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1303
1304         return ret;
1305 }
1306
1307 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1308 {
1309         unsigned long flags;
1310
1311         spin_lock_irqsave(&queue->state_lock, flags);
1312         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1313                 pr_warn("trying to establish a connected queue\n");
1314                 goto out_unlock;
1315         }
1316         queue->state = NVMET_RDMA_Q_LIVE;
1317
1318         while (!list_empty(&queue->rsp_wait_list)) {
1319                 struct nvmet_rdma_rsp *cmd;
1320
1321                 cmd = list_first_entry(&queue->rsp_wait_list,
1322                                         struct nvmet_rdma_rsp, wait_list);
1323                 list_del(&cmd->wait_list);
1324
1325                 spin_unlock_irqrestore(&queue->state_lock, flags);
1326                 nvmet_rdma_handle_command(queue, cmd);
1327                 spin_lock_irqsave(&queue->state_lock, flags);
1328         }
1329
1330 out_unlock:
1331         spin_unlock_irqrestore(&queue->state_lock, flags);
1332 }
1333
1334 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1335 {
1336         bool disconnect = false;
1337         unsigned long flags;
1338
1339         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1340
1341         spin_lock_irqsave(&queue->state_lock, flags);
1342         switch (queue->state) {
1343         case NVMET_RDMA_Q_CONNECTING:
1344         case NVMET_RDMA_Q_LIVE:
1345                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1346                 disconnect = true;
1347                 break;
1348         case NVMET_RDMA_Q_DISCONNECTING:
1349                 break;
1350         }
1351         spin_unlock_irqrestore(&queue->state_lock, flags);
1352
1353         if (disconnect) {
1354                 rdma_disconnect(queue->cm_id);
1355                 schedule_work(&queue->release_work);
1356         }
1357 }
1358
1359 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1360 {
1361         bool disconnect = false;
1362
1363         mutex_lock(&nvmet_rdma_queue_mutex);
1364         if (!list_empty(&queue->queue_list)) {
1365                 list_del_init(&queue->queue_list);
1366                 disconnect = true;
1367         }
1368         mutex_unlock(&nvmet_rdma_queue_mutex);
1369
1370         if (disconnect)
1371                 __nvmet_rdma_queue_disconnect(queue);
1372 }
1373
1374 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1375                 struct nvmet_rdma_queue *queue)
1376 {
1377         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1378
1379         mutex_lock(&nvmet_rdma_queue_mutex);
1380         if (!list_empty(&queue->queue_list))
1381                 list_del_init(&queue->queue_list);
1382         mutex_unlock(&nvmet_rdma_queue_mutex);
1383
1384         pr_err("failed to connect queue %d\n", queue->idx);
1385         schedule_work(&queue->release_work);
1386 }
1387
1388 /**
1389  * nvme_rdma_device_removal() - Handle RDMA device removal
1390  * @cm_id:      rdma_cm id, used for nvmet port
1391  * @queue:      nvmet rdma queue (cm id qp_context)
1392  *
1393  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1394  * to unplug. Note that this event can be generated on a normal
1395  * queue cm_id and/or a device bound listener cm_id (where in this
1396  * case queue will be null).
1397  *
1398  * We registered an ib_client to handle device removal for queues,
1399  * so we only need to handle the listening port cm_ids. In this case
1400  * we nullify the priv to prevent double cm_id destruction and destroying
1401  * the cm_id implicitely by returning a non-zero rc to the callout.
1402  */
1403 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1404                 struct nvmet_rdma_queue *queue)
1405 {
1406         struct nvmet_port *port;
1407
1408         if (queue) {
1409                 /*
1410                  * This is a queue cm_id. we have registered
1411                  * an ib_client to handle queues removal
1412                  * so don't interfear and just return.
1413                  */
1414                 return 0;
1415         }
1416
1417         port = cm_id->context;
1418
1419         /*
1420          * This is a listener cm_id. Make sure that
1421          * future remove_port won't invoke a double
1422          * cm_id destroy. use atomic xchg to make sure
1423          * we don't compete with remove_port.
1424          */
1425         if (xchg(&port->priv, NULL) != cm_id)
1426                 return 0;
1427
1428         /*
1429          * We need to return 1 so that the core will destroy
1430          * it's own ID.  What a great API design..
1431          */
1432         return 1;
1433 }
1434
1435 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1436                 struct rdma_cm_event *event)
1437 {
1438         struct nvmet_rdma_queue *queue = NULL;
1439         int ret = 0;
1440
1441         if (cm_id->qp)
1442                 queue = cm_id->qp->qp_context;
1443
1444         pr_debug("%s (%d): status %d id %p\n",
1445                 rdma_event_msg(event->event), event->event,
1446                 event->status, cm_id);
1447
1448         switch (event->event) {
1449         case RDMA_CM_EVENT_CONNECT_REQUEST:
1450                 ret = nvmet_rdma_queue_connect(cm_id, event);
1451                 break;
1452         case RDMA_CM_EVENT_ESTABLISHED:
1453                 nvmet_rdma_queue_established(queue);
1454                 break;
1455         case RDMA_CM_EVENT_ADDR_CHANGE:
1456         case RDMA_CM_EVENT_DISCONNECTED:
1457         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1458                 nvmet_rdma_queue_disconnect(queue);
1459                 break;
1460         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1461                 ret = nvmet_rdma_device_removal(cm_id, queue);
1462                 break;
1463         case RDMA_CM_EVENT_REJECTED:
1464                 pr_debug("Connection rejected: %s\n",
1465                          rdma_reject_msg(cm_id, event->status));
1466                 /* FALLTHROUGH */
1467         case RDMA_CM_EVENT_UNREACHABLE:
1468         case RDMA_CM_EVENT_CONNECT_ERROR:
1469                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1470                 break;
1471         default:
1472                 pr_err("received unrecognized RDMA CM event %d\n",
1473                         event->event);
1474                 break;
1475         }
1476
1477         return ret;
1478 }
1479
1480 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1481 {
1482         struct nvmet_rdma_queue *queue;
1483
1484 restart:
1485         mutex_lock(&nvmet_rdma_queue_mutex);
1486         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1487                 if (queue->nvme_sq.ctrl == ctrl) {
1488                         list_del_init(&queue->queue_list);
1489                         mutex_unlock(&nvmet_rdma_queue_mutex);
1490
1491                         __nvmet_rdma_queue_disconnect(queue);
1492                         goto restart;
1493                 }
1494         }
1495         mutex_unlock(&nvmet_rdma_queue_mutex);
1496 }
1497
1498 static int nvmet_rdma_add_port(struct nvmet_port *port)
1499 {
1500         struct rdma_cm_id *cm_id;
1501         struct sockaddr_storage addr = { };
1502         __kernel_sa_family_t af;
1503         int ret;
1504
1505         switch (port->disc_addr.adrfam) {
1506         case NVMF_ADDR_FAMILY_IP4:
1507                 af = AF_INET;
1508                 break;
1509         case NVMF_ADDR_FAMILY_IP6:
1510                 af = AF_INET6;
1511                 break;
1512         default:
1513                 pr_err("address family %d not supported\n",
1514                                 port->disc_addr.adrfam);
1515                 return -EINVAL;
1516         }
1517
1518         if (port->inline_data_size < 0) {
1519                 port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1520         } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1521                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1522                         port->inline_data_size,
1523                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1524                 port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1525         }
1526
1527         ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1528                         port->disc_addr.trsvcid, &addr);
1529         if (ret) {
1530                 pr_err("malformed ip/port passed: %s:%s\n",
1531                         port->disc_addr.traddr, port->disc_addr.trsvcid);
1532                 return ret;
1533         }
1534
1535         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1536                         RDMA_PS_TCP, IB_QPT_RC);
1537         if (IS_ERR(cm_id)) {
1538                 pr_err("CM ID creation failed\n");
1539                 return PTR_ERR(cm_id);
1540         }
1541
1542         /*
1543          * Allow both IPv4 and IPv6 sockets to bind a single port
1544          * at the same time.
1545          */
1546         ret = rdma_set_afonly(cm_id, 1);
1547         if (ret) {
1548                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1549                 goto out_destroy_id;
1550         }
1551
1552         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1553         if (ret) {
1554                 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1555                         (struct sockaddr *)&addr, ret);
1556                 goto out_destroy_id;
1557         }
1558
1559         ret = rdma_listen(cm_id, 128);
1560         if (ret) {
1561                 pr_err("listening to %pISpcs failed (%d)\n",
1562                         (struct sockaddr *)&addr, ret);
1563                 goto out_destroy_id;
1564         }
1565
1566         pr_info("enabling port %d (%pISpcs)\n",
1567                 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1568         port->priv = cm_id;
1569         return 0;
1570
1571 out_destroy_id:
1572         rdma_destroy_id(cm_id);
1573         return ret;
1574 }
1575
1576 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1577 {
1578         struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1579
1580         if (cm_id)
1581                 rdma_destroy_id(cm_id);
1582 }
1583
1584 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1585                 struct nvmet_port *port, char *traddr)
1586 {
1587         struct rdma_cm_id *cm_id = port->priv;
1588
1589         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1590                 struct nvmet_rdma_rsp *rsp =
1591                         container_of(req, struct nvmet_rdma_rsp, req);
1592                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1593                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1594
1595                 sprintf(traddr, "%pISc", addr);
1596         } else {
1597                 memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1598         }
1599 }
1600
1601 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1602         .owner                  = THIS_MODULE,
1603         .type                   = NVMF_TRTYPE_RDMA,
1604         .msdbd                  = 1,
1605         .has_keyed_sgls         = 1,
1606         .add_port               = nvmet_rdma_add_port,
1607         .remove_port            = nvmet_rdma_remove_port,
1608         .queue_response         = nvmet_rdma_queue_response,
1609         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1610         .disc_traddr            = nvmet_rdma_disc_port_addr,
1611 };
1612
1613 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1614 {
1615         struct nvmet_rdma_queue *queue, *tmp;
1616         struct nvmet_rdma_device *ndev;
1617         bool found = false;
1618
1619         mutex_lock(&device_list_mutex);
1620         list_for_each_entry(ndev, &device_list, entry) {
1621                 if (ndev->device == ib_device) {
1622                         found = true;
1623                         break;
1624                 }
1625         }
1626         mutex_unlock(&device_list_mutex);
1627
1628         if (!found)
1629                 return;
1630
1631         /*
1632          * IB Device that is used by nvmet controllers is being removed,
1633          * delete all queues using this device.
1634          */
1635         mutex_lock(&nvmet_rdma_queue_mutex);
1636         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1637                                  queue_list) {
1638                 if (queue->dev->device != ib_device)
1639                         continue;
1640
1641                 pr_info("Removing queue %d\n", queue->idx);
1642                 list_del_init(&queue->queue_list);
1643                 __nvmet_rdma_queue_disconnect(queue);
1644         }
1645         mutex_unlock(&nvmet_rdma_queue_mutex);
1646
1647         flush_scheduled_work();
1648 }
1649
1650 static struct ib_client nvmet_rdma_ib_client = {
1651         .name   = "nvmet_rdma",
1652         .remove = nvmet_rdma_remove_one
1653 };
1654
1655 static int __init nvmet_rdma_init(void)
1656 {
1657         int ret;
1658
1659         ret = ib_register_client(&nvmet_rdma_ib_client);
1660         if (ret)
1661                 return ret;
1662
1663         ret = nvmet_register_transport(&nvmet_rdma_ops);
1664         if (ret)
1665                 goto err_ib_client;
1666
1667         return 0;
1668
1669 err_ib_client:
1670         ib_unregister_client(&nvmet_rdma_ib_client);
1671         return ret;
1672 }
1673
1674 static void __exit nvmet_rdma_exit(void)
1675 {
1676         nvmet_unregister_transport(&nvmet_rdma_ops);
1677         ib_unregister_client(&nvmet_rdma_ib_client);
1678         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1679         ida_destroy(&nvmet_rdma_queue_ida);
1680 }
1681
1682 module_init(nvmet_rdma_init);
1683 module_exit(nvmet_rdma_exit);
1684
1685 MODULE_LICENSE("GPL v2");
1686 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */