OSDN Git Service

Merge tag 'perf-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / drivers / pwm / pwm-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2013 Atmel Corporation
6  *               Bo Shen <voice.shen@atmel.com>
7  *
8  * Links to reference manuals for the supported PWM chips can be found in
9  * Documentation/arch/arm/microchip.rst.
10  *
11  * Limitations:
12  * - Periods start with the inactive level.
13  * - Hardware has to be stopped in general to update settings.
14  *
15  * Software bugs/possible improvements:
16  * - When atmel_pwm_apply() is called with state->enabled=false a change in
17  *   state->polarity isn't honored.
18  * - Instead of sleeping to wait for a completed period, the interrupt
19  *   functionality could be used.
20  */
21
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pwm.h>
30 #include <linux/slab.h>
31
32 /* The following is global registers for PWM controller */
33 #define PWM_ENA                 0x04
34 #define PWM_DIS                 0x08
35 #define PWM_SR                  0x0C
36 #define PWM_ISR                 0x1C
37 /* Bit field in SR */
38 #define PWM_SR_ALL_CH_MASK      0x0F
39
40 /* The following register is PWM channel related registers */
41 #define PWM_CH_REG_OFFSET       0x200
42 #define PWM_CH_REG_SIZE         0x20
43
44 #define PWM_CMR                 0x0
45 /* Bit field in CMR */
46 #define PWM_CMR_CPOL            (1 << 9)
47 #define PWM_CMR_UPD_CDTY        (1 << 10)
48 #define PWM_CMR_CPRE_MSK        0xF
49
50 /* The following registers for PWM v1 */
51 #define PWMV1_CDTY              0x04
52 #define PWMV1_CPRD              0x08
53 #define PWMV1_CUPD              0x10
54
55 /* The following registers for PWM v2 */
56 #define PWMV2_CDTY              0x04
57 #define PWMV2_CDTYUPD           0x08
58 #define PWMV2_CPRD              0x0C
59 #define PWMV2_CPRDUPD           0x10
60
61 #define PWM_MAX_PRES            10
62
63 struct atmel_pwm_registers {
64         u8 period;
65         u8 period_upd;
66         u8 duty;
67         u8 duty_upd;
68 };
69
70 struct atmel_pwm_config {
71         u32 period_bits;
72 };
73
74 struct atmel_pwm_data {
75         struct atmel_pwm_registers regs;
76         struct atmel_pwm_config cfg;
77 };
78
79 struct atmel_pwm_chip {
80         struct pwm_chip chip;
81         struct clk *clk;
82         void __iomem *base;
83         const struct atmel_pwm_data *data;
84
85         /*
86          * The hardware supports a mechanism to update a channel's duty cycle at
87          * the end of the currently running period. When such an update is
88          * pending we delay disabling the PWM until the new configuration is
89          * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
90          * might not result in an inactive output.
91          * This bitmask tracks for which channels an update is pending in
92          * hardware.
93          */
94         u32 update_pending;
95
96         /* Protects .update_pending */
97         spinlock_t lock;
98 };
99
100 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
101 {
102         return container_of(chip, struct atmel_pwm_chip, chip);
103 }
104
105 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
106                                   unsigned long offset)
107 {
108         return readl_relaxed(chip->base + offset);
109 }
110
111 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
112                                     unsigned long offset, unsigned long val)
113 {
114         writel_relaxed(val, chip->base + offset);
115 }
116
117 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
118                                      unsigned int ch, unsigned long offset)
119 {
120         unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
121
122         return atmel_pwm_readl(chip, base + offset);
123 }
124
125 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
126                                        unsigned int ch, unsigned long offset,
127                                        unsigned long val)
128 {
129         unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
130
131         atmel_pwm_writel(chip, base + offset, val);
132 }
133
134 static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
135 {
136         /*
137          * Each channel that has its bit in ISR set started a new period since
138          * ISR was cleared and so there is no more update pending.  Note that
139          * reading ISR clears it, so this needs to handle all channels to not
140          * loose information.
141          */
142         u32 isr = atmel_pwm_readl(chip, PWM_ISR);
143
144         chip->update_pending &= ~isr;
145 }
146
147 static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
148 {
149         spin_lock(&chip->lock);
150
151         /*
152          * Clear pending flags in hardware because otherwise there might still
153          * be a stale flag in ISR.
154          */
155         atmel_pwm_update_pending(chip);
156
157         chip->update_pending |= (1 << ch);
158
159         spin_unlock(&chip->lock);
160 }
161
162 static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
163 {
164         int ret = 0;
165
166         spin_lock(&chip->lock);
167
168         if (chip->update_pending & (1 << ch)) {
169                 atmel_pwm_update_pending(chip);
170
171                 if (chip->update_pending & (1 << ch))
172                         ret = 1;
173         }
174
175         spin_unlock(&chip->lock);
176
177         return ret;
178 }
179
180 static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
181 {
182         unsigned long timeout = jiffies + 2 * HZ;
183         int ret;
184
185         while ((ret = atmel_pwm_test_pending(chip, ch)) &&
186                time_before(jiffies, timeout))
187                 usleep_range(10, 100);
188
189         return ret ? -ETIMEDOUT : 0;
190 }
191
192 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
193                                              unsigned long clkrate,
194                                              const struct pwm_state *state,
195                                              unsigned long *cprd, u32 *pres)
196 {
197         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
198         unsigned long long cycles = state->period;
199         int shift;
200
201         /* Calculate the period cycles and prescale value */
202         cycles *= clkrate;
203         do_div(cycles, NSEC_PER_SEC);
204
205         /*
206          * The register for the period length is cfg.period_bits bits wide.
207          * So for each bit the number of clock cycles is wider divide the input
208          * clock frequency by two using pres and shift cprd accordingly.
209          */
210         shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
211
212         if (shift > PWM_MAX_PRES) {
213                 dev_err(chip->dev, "pres exceeds the maximum value\n");
214                 return -EINVAL;
215         } else if (shift > 0) {
216                 *pres = shift;
217                 cycles >>= *pres;
218         } else {
219                 *pres = 0;
220         }
221
222         *cprd = cycles;
223
224         return 0;
225 }
226
227 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
228                                      unsigned long clkrate, unsigned long cprd,
229                                      u32 pres, unsigned long *cdty)
230 {
231         unsigned long long cycles = state->duty_cycle;
232
233         cycles *= clkrate;
234         do_div(cycles, NSEC_PER_SEC);
235         cycles >>= pres;
236         *cdty = cprd - cycles;
237 }
238
239 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
240                                   unsigned long cdty)
241 {
242         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
243         u32 val;
244
245         if (atmel_pwm->data->regs.duty_upd ==
246             atmel_pwm->data->regs.period_upd) {
247                 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
248                 val &= ~PWM_CMR_UPD_CDTY;
249                 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
250         }
251
252         atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
253                             atmel_pwm->data->regs.duty_upd, cdty);
254         atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
255 }
256
257 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
258                                     struct pwm_device *pwm,
259                                     unsigned long cprd, unsigned long cdty)
260 {
261         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
262
263         atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
264                             atmel_pwm->data->regs.duty, cdty);
265         atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
266                             atmel_pwm->data->regs.period, cprd);
267 }
268
269 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
270                               bool disable_clk)
271 {
272         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
273         unsigned long timeout;
274
275         atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
276
277         atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
278
279         /*
280          * Wait for the PWM channel disable operation to be effective before
281          * stopping the clock.
282          */
283         timeout = jiffies + 2 * HZ;
284
285         while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
286                time_before(jiffies, timeout))
287                 usleep_range(10, 100);
288
289         if (disable_clk)
290                 clk_disable(atmel_pwm->clk);
291 }
292
293 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
294                            const struct pwm_state *state)
295 {
296         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
297         struct pwm_state cstate;
298         unsigned long cprd, cdty;
299         u32 pres, val;
300         int ret;
301
302         pwm_get_state(pwm, &cstate);
303
304         if (state->enabled) {
305                 unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
306
307                 if (cstate.enabled &&
308                     cstate.polarity == state->polarity &&
309                     cstate.period == state->period) {
310                         u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
311
312                         cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
313                                                   atmel_pwm->data->regs.period);
314                         pres = cmr & PWM_CMR_CPRE_MSK;
315
316                         atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
317                         atmel_pwm_update_cdty(chip, pwm, cdty);
318                         return 0;
319                 }
320
321                 ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
322                                                         &pres);
323                 if (ret) {
324                         dev_err(chip->dev,
325                                 "failed to calculate cprd and prescaler\n");
326                         return ret;
327                 }
328
329                 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
330
331                 if (cstate.enabled) {
332                         atmel_pwm_disable(chip, pwm, false);
333                 } else {
334                         ret = clk_enable(atmel_pwm->clk);
335                         if (ret) {
336                                 dev_err(chip->dev, "failed to enable clock\n");
337                                 return ret;
338                         }
339                 }
340
341                 /* It is necessary to preserve CPOL, inside CMR */
342                 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
343                 val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
344                 if (state->polarity == PWM_POLARITY_NORMAL)
345                         val &= ~PWM_CMR_CPOL;
346                 else
347                         val |= PWM_CMR_CPOL;
348                 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
349                 atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
350                 atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
351         } else if (cstate.enabled) {
352                 atmel_pwm_disable(chip, pwm, true);
353         }
354
355         return 0;
356 }
357
358 static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
359                                struct pwm_state *state)
360 {
361         struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
362         u32 sr, cmr;
363
364         sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
365         cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
366
367         if (sr & (1 << pwm->hwpwm)) {
368                 unsigned long rate = clk_get_rate(atmel_pwm->clk);
369                 u32 cdty, cprd, pres;
370                 u64 tmp;
371
372                 pres = cmr & PWM_CMR_CPRE_MSK;
373
374                 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
375                                           atmel_pwm->data->regs.period);
376                 tmp = (u64)cprd * NSEC_PER_SEC;
377                 tmp <<= pres;
378                 state->period = DIV64_U64_ROUND_UP(tmp, rate);
379
380                 /* Wait for an updated duty_cycle queued in hardware */
381                 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
382
383                 cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
384                                           atmel_pwm->data->regs.duty);
385                 tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
386                 tmp <<= pres;
387                 state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
388
389                 state->enabled = true;
390         } else {
391                 state->enabled = false;
392         }
393
394         if (cmr & PWM_CMR_CPOL)
395                 state->polarity = PWM_POLARITY_INVERSED;
396         else
397                 state->polarity = PWM_POLARITY_NORMAL;
398
399         return 0;
400 }
401
402 static const struct pwm_ops atmel_pwm_ops = {
403         .apply = atmel_pwm_apply,
404         .get_state = atmel_pwm_get_state,
405         .owner = THIS_MODULE,
406 };
407
408 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
409         .regs = {
410                 .period         = PWMV1_CPRD,
411                 .period_upd     = PWMV1_CUPD,
412                 .duty           = PWMV1_CDTY,
413                 .duty_upd       = PWMV1_CUPD,
414         },
415         .cfg = {
416                 /* 16 bits to keep period and duty. */
417                 .period_bits    = 16,
418         },
419 };
420
421 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
422         .regs = {
423                 .period         = PWMV2_CPRD,
424                 .period_upd     = PWMV2_CPRDUPD,
425                 .duty           = PWMV2_CDTY,
426                 .duty_upd       = PWMV2_CDTYUPD,
427         },
428         .cfg = {
429                 /* 16 bits to keep period and duty. */
430                 .period_bits    = 16,
431         },
432 };
433
434 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
435         .regs = {
436                 .period         = PWMV1_CPRD,
437                 .period_upd     = PWMV1_CUPD,
438                 .duty           = PWMV1_CDTY,
439                 .duty_upd       = PWMV1_CUPD,
440         },
441         .cfg = {
442                 /* 32 bits to keep period and duty. */
443                 .period_bits    = 32,
444         },
445 };
446
447 static const struct of_device_id atmel_pwm_dt_ids[] = {
448         {
449                 .compatible = "atmel,at91sam9rl-pwm",
450                 .data = &atmel_sam9rl_pwm_data,
451         }, {
452                 .compatible = "atmel,sama5d3-pwm",
453                 .data = &atmel_sama5_pwm_data,
454         }, {
455                 .compatible = "atmel,sama5d2-pwm",
456                 .data = &atmel_sama5_pwm_data,
457         }, {
458                 .compatible = "microchip,sam9x60-pwm",
459                 .data = &mchp_sam9x60_pwm_data,
460         }, {
461                 /* sentinel */
462         },
463 };
464 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
465
466 static int atmel_pwm_enable_clk_if_on(struct atmel_pwm_chip *atmel_pwm, bool on)
467 {
468         unsigned int i, cnt = 0;
469         unsigned long sr;
470         int ret = 0;
471
472         sr = atmel_pwm_readl(atmel_pwm, PWM_SR) & PWM_SR_ALL_CH_MASK;
473         if (!sr)
474                 return 0;
475
476         cnt = bitmap_weight(&sr, atmel_pwm->chip.npwm);
477
478         if (!on)
479                 goto disable_clk;
480
481         for (i = 0; i < cnt; i++) {
482                 ret = clk_enable(atmel_pwm->clk);
483                 if (ret) {
484                         dev_err(atmel_pwm->chip.dev,
485                                 "failed to enable clock for pwm %pe\n",
486                                 ERR_PTR(ret));
487
488                         cnt = i;
489                         goto disable_clk;
490                 }
491         }
492
493         return 0;
494
495 disable_clk:
496         while (cnt--)
497                 clk_disable(atmel_pwm->clk);
498
499         return ret;
500 }
501
502 static int atmel_pwm_probe(struct platform_device *pdev)
503 {
504         struct atmel_pwm_chip *atmel_pwm;
505         int ret;
506
507         atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
508         if (!atmel_pwm)
509                 return -ENOMEM;
510
511         atmel_pwm->data = of_device_get_match_data(&pdev->dev);
512
513         atmel_pwm->update_pending = 0;
514         spin_lock_init(&atmel_pwm->lock);
515
516         atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
517         if (IS_ERR(atmel_pwm->base))
518                 return PTR_ERR(atmel_pwm->base);
519
520         atmel_pwm->clk = devm_clk_get_prepared(&pdev->dev, NULL);
521         if (IS_ERR(atmel_pwm->clk))
522                 return dev_err_probe(&pdev->dev, PTR_ERR(atmel_pwm->clk),
523                                      "failed to get prepared PWM clock\n");
524
525         atmel_pwm->chip.dev = &pdev->dev;
526         atmel_pwm->chip.ops = &atmel_pwm_ops;
527         atmel_pwm->chip.npwm = 4;
528
529         ret = atmel_pwm_enable_clk_if_on(atmel_pwm, true);
530         if (ret < 0)
531                 return ret;
532
533         ret = devm_pwmchip_add(&pdev->dev, &atmel_pwm->chip);
534         if (ret < 0) {
535                 dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
536                 goto disable_clk;
537         }
538
539         return 0;
540
541 disable_clk:
542         atmel_pwm_enable_clk_if_on(atmel_pwm, false);
543
544         return ret;
545 }
546
547 static struct platform_driver atmel_pwm_driver = {
548         .driver = {
549                 .name = "atmel-pwm",
550                 .of_match_table = of_match_ptr(atmel_pwm_dt_ids),
551         },
552         .probe = atmel_pwm_probe,
553 };
554 module_platform_driver(atmel_pwm_driver);
555
556 MODULE_ALIAS("platform:atmel-pwm");
557 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
558 MODULE_DESCRIPTION("Atmel PWM driver");
559 MODULE_LICENSE("GPL v2");