OSDN Git Service

Merge branch 'acpica' into acpi
[uclinux-h8/linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99         " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105  * mpt3sas_base_check_cmd_timeout - Function
106  *              to check timeout and command termination due
107  *              to Host reset.
108  *
109  * @ioc:        per adapter object.
110  * @status:     Status of issued command.
111  * @mpi_request:mf request pointer.
112  * @sz:         size of buffer.
113  *
114  * @Returns - 1/0 Reset to be done or Not
115  */
116 u8
117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
118                 u8 status, void *mpi_request, int sz)
119 {
120         u8 issue_reset = 0;
121
122         if (!(status & MPT3_CMD_RESET))
123                 issue_reset = 1;
124
125         ioc_err(ioc, "Command %s\n",
126                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
127         _debug_dump_mf(mpi_request, sz);
128
129         return issue_reset;
130 }
131
132 /**
133  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
134  * @val: ?
135  * @kp: ?
136  *
137  * Return: ?
138  */
139 static int
140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
141 {
142         int ret = param_set_int(val, kp);
143         struct MPT3SAS_ADAPTER *ioc;
144
145         if (ret)
146                 return ret;
147
148         /* global ioc spinlock to protect controller list on list operations */
149         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
150         spin_lock(&gioc_lock);
151         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
152                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
153         spin_unlock(&gioc_lock);
154         return 0;
155 }
156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
157         param_get_int, &mpt3sas_fwfault_debug, 0644);
158
159 /**
160  * _base_readl_aero - retry readl for max three times.
161  * @addr - MPT Fusion system interface register address
162  *
163  * Retry the readl() for max three times if it gets zero value
164  * while reading the system interface register.
165  */
166 static inline u32
167 _base_readl_aero(const volatile void __iomem *addr)
168 {
169         u32 i = 0, ret_val;
170
171         do {
172                 ret_val = readl(addr);
173                 i++;
174         } while (ret_val == 0 && i < 3);
175
176         return ret_val;
177 }
178
179 static inline u32
180 _base_readl(const volatile void __iomem *addr)
181 {
182         return readl(addr);
183 }
184
185 /**
186  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
187  *                                in BAR0 space.
188  *
189  * @ioc: per adapter object
190  * @reply: reply message frame(lower 32bit addr)
191  * @index: System request message index.
192  */
193 static void
194 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
195                 u32 index)
196 {
197         /*
198          * 256 is offset within sys register.
199          * 256 offset MPI frame starts. Max MPI frame supported is 32.
200          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
201          */
202         u16 cmd_credit = ioc->facts.RequestCredit + 1;
203         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
204                         MPI_FRAME_START_OFFSET +
205                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
206
207         writel(reply, reply_free_iomem);
208 }
209
210 /**
211  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
212  *                              to system/BAR0 region.
213  *
214  * @dst_iomem: Pointer to the destination location in BAR0 space.
215  * @src: Pointer to the Source data.
216  * @size: Size of data to be copied.
217  */
218 static void
219 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
220 {
221         int i;
222         u32 *src_virt_mem = (u32 *)src;
223
224         for (i = 0; i < size/4; i++)
225                 writel((u32)src_virt_mem[i],
226                                 (void __iomem *)dst_iomem + (i * 4));
227 }
228
229 /**
230  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
231  *
232  * @dst_iomem: Pointer to the destination location in BAR0 space.
233  * @src: Pointer to the Source data.
234  * @size: Size of data to be copied.
235  */
236 static void
237 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
238 {
239         int i;
240         u32 *src_virt_mem = (u32 *)(src);
241
242         for (i = 0; i < size/4; i++)
243                 writel((u32)src_virt_mem[i],
244                         (void __iomem *)dst_iomem + (i * 4));
245 }
246
247 /**
248  * _base_get_chain - Calculates and Returns virtual chain address
249  *                       for the provided smid in BAR0 space.
250  *
251  * @ioc: per adapter object
252  * @smid: system request message index
253  * @sge_chain_count: Scatter gather chain count.
254  *
255  * Return: the chain address.
256  */
257 static inline void __iomem*
258 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
259                 u8 sge_chain_count)
260 {
261         void __iomem *base_chain, *chain_virt;
262         u16 cmd_credit = ioc->facts.RequestCredit + 1;
263
264         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
265                 (cmd_credit * ioc->request_sz) +
266                 REPLY_FREE_POOL_SIZE;
267         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
268                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
269         return chain_virt;
270 }
271
272 /**
273  * _base_get_chain_phys - Calculates and Returns physical address
274  *                      in BAR0 for scatter gather chains, for
275  *                      the provided smid.
276  *
277  * @ioc: per adapter object
278  * @smid: system request message index
279  * @sge_chain_count: Scatter gather chain count.
280  *
281  * Return: Physical chain address.
282  */
283 static inline phys_addr_t
284 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
285                 u8 sge_chain_count)
286 {
287         phys_addr_t base_chain_phys, chain_phys;
288         u16 cmd_credit = ioc->facts.RequestCredit + 1;
289
290         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
291                 (cmd_credit * ioc->request_sz) +
292                 REPLY_FREE_POOL_SIZE;
293         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
294                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
295         return chain_phys;
296 }
297
298 /**
299  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
300  *                      buffer address for the provided smid.
301  *                      (Each smid can have 64K starts from 17024)
302  *
303  * @ioc: per adapter object
304  * @smid: system request message index
305  *
306  * Return: Pointer to buffer location in BAR0.
307  */
308
309 static void __iomem *
310 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
311 {
312         u16 cmd_credit = ioc->facts.RequestCredit + 1;
313         // Added extra 1 to reach end of chain.
314         void __iomem *chain_end = _base_get_chain(ioc,
315                         cmd_credit + 1,
316                         ioc->facts.MaxChainDepth);
317         return chain_end + (smid * 64 * 1024);
318 }
319
320 /**
321  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
322  *              Host buffer Physical address for the provided smid.
323  *              (Each smid can have 64K starts from 17024)
324  *
325  * @ioc: per adapter object
326  * @smid: system request message index
327  *
328  * Return: Pointer to buffer location in BAR0.
329  */
330 static phys_addr_t
331 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
332 {
333         u16 cmd_credit = ioc->facts.RequestCredit + 1;
334         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
335                         cmd_credit + 1,
336                         ioc->facts.MaxChainDepth);
337         return chain_end_phys + (smid * 64 * 1024);
338 }
339
340 /**
341  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
342  *                      lookup list and Provides chain_buffer
343  *                      address for the matching dma address.
344  *                      (Each smid can have 64K starts from 17024)
345  *
346  * @ioc: per adapter object
347  * @chain_buffer_dma: Chain buffer dma address.
348  *
349  * Return: Pointer to chain buffer. Or Null on Failure.
350  */
351 static void *
352 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
353                 dma_addr_t chain_buffer_dma)
354 {
355         u16 index, j;
356         struct chain_tracker *ct;
357
358         for (index = 0; index < ioc->scsiio_depth; index++) {
359                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
360                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
361                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
362                                 return ct->chain_buffer;
363                 }
364         }
365         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
366         return NULL;
367 }
368
369 /**
370  * _clone_sg_entries -  MPI EP's scsiio and config requests
371  *                      are handled here. Base function for
372  *                      double buffering, before submitting
373  *                      the requests.
374  *
375  * @ioc: per adapter object.
376  * @mpi_request: mf request pointer.
377  * @smid: system request message index.
378  */
379 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
380                 void *mpi_request, u16 smid)
381 {
382         Mpi2SGESimple32_t *sgel, *sgel_next;
383         u32  sgl_flags, sge_chain_count = 0;
384         bool is_write = 0;
385         u16 i = 0;
386         void __iomem *buffer_iomem;
387         phys_addr_t buffer_iomem_phys;
388         void __iomem *buff_ptr;
389         phys_addr_t buff_ptr_phys;
390         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
391         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
392         phys_addr_t dst_addr_phys;
393         MPI2RequestHeader_t *request_hdr;
394         struct scsi_cmnd *scmd;
395         struct scatterlist *sg_scmd = NULL;
396         int is_scsiio_req = 0;
397
398         request_hdr = (MPI2RequestHeader_t *) mpi_request;
399
400         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
401                 Mpi25SCSIIORequest_t *scsiio_request =
402                         (Mpi25SCSIIORequest_t *)mpi_request;
403                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
404                 is_scsiio_req = 1;
405         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
406                 Mpi2ConfigRequest_t  *config_req =
407                         (Mpi2ConfigRequest_t *)mpi_request;
408                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
409         } else
410                 return;
411
412         /* From smid we can get scsi_cmd, once we have sg_scmd,
413          * we just need to get sg_virt and sg_next to get virual
414          * address associated with sgel->Address.
415          */
416
417         if (is_scsiio_req) {
418                 /* Get scsi_cmd using smid */
419                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
420                 if (scmd == NULL) {
421                         ioc_err(ioc, "scmd is NULL\n");
422                         return;
423                 }
424
425                 /* Get sg_scmd from scmd provided */
426                 sg_scmd = scsi_sglist(scmd);
427         }
428
429         /*
430          * 0 - 255      System register
431          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
432          * 4352 - 4864  Reply_free pool (512 byte is reserved
433          *              considering maxCredit 32. Reply need extra
434          *              room, for mCPU case kept four times of
435          *              maxCredit).
436          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
437          *              128 byte size = 12288)
438          * 17152 - x    Host buffer mapped with smid.
439          *              (Each smid can have 64K Max IO.)
440          * BAR0+Last 1K MSIX Addr and Data
441          * Total size in use 2113664 bytes of 4MB BAR0
442          */
443
444         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
445         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
446
447         buff_ptr = buffer_iomem;
448         buff_ptr_phys = buffer_iomem_phys;
449         WARN_ON(buff_ptr_phys > U32_MAX);
450
451         if (le32_to_cpu(sgel->FlagsLength) &
452                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
453                 is_write = 1;
454
455         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
456
457                 sgl_flags =
458                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
459
460                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
461                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
462                         /*
463                          * Helper function which on passing
464                          * chain_buffer_dma returns chain_buffer. Get
465                          * the virtual address for sgel->Address
466                          */
467                         sgel_next =
468                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
469                                                 le32_to_cpu(sgel->Address));
470                         if (sgel_next == NULL)
471                                 return;
472                         /*
473                          * This is coping 128 byte chain
474                          * frame (not a host buffer)
475                          */
476                         dst_chain_addr[sge_chain_count] =
477                                 _base_get_chain(ioc,
478                                         smid, sge_chain_count);
479                         src_chain_addr[sge_chain_count] =
480                                                 (void *) sgel_next;
481                         dst_addr_phys = _base_get_chain_phys(ioc,
482                                                 smid, sge_chain_count);
483                         WARN_ON(dst_addr_phys > U32_MAX);
484                         sgel->Address =
485                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
486                         sgel = sgel_next;
487                         sge_chain_count++;
488                         break;
489                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
490                         if (is_write) {
491                                 if (is_scsiio_req) {
492                                         _base_clone_to_sys_mem(buff_ptr,
493                                             sg_virt(sg_scmd),
494                                             (le32_to_cpu(sgel->FlagsLength) &
495                                             0x00ffffff));
496                                         /*
497                                          * FIXME: this relies on a a zero
498                                          * PCI mem_offset.
499                                          */
500                                         sgel->Address =
501                                             cpu_to_le32((u32)buff_ptr_phys);
502                                 } else {
503                                         _base_clone_to_sys_mem(buff_ptr,
504                                             ioc->config_vaddr,
505                                             (le32_to_cpu(sgel->FlagsLength) &
506                                             0x00ffffff));
507                                         sgel->Address =
508                                             cpu_to_le32((u32)buff_ptr_phys);
509                                 }
510                         }
511                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
512                             0x00ffffff);
513                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
514                             0x00ffffff);
515                         if ((le32_to_cpu(sgel->FlagsLength) &
516                             (MPI2_SGE_FLAGS_END_OF_BUFFER
517                                         << MPI2_SGE_FLAGS_SHIFT)))
518                                 goto eob_clone_chain;
519                         else {
520                                 /*
521                                  * Every single element in MPT will have
522                                  * associated sg_next. Better to sanity that
523                                  * sg_next is not NULL, but it will be a bug
524                                  * if it is null.
525                                  */
526                                 if (is_scsiio_req) {
527                                         sg_scmd = sg_next(sg_scmd);
528                                         if (sg_scmd)
529                                                 sgel++;
530                                         else
531                                                 goto eob_clone_chain;
532                                 }
533                         }
534                         break;
535                 }
536         }
537
538 eob_clone_chain:
539         for (i = 0; i < sge_chain_count; i++) {
540                 if (is_scsiio_req)
541                         _base_clone_to_sys_mem(dst_chain_addr[i],
542                                 src_chain_addr[i], ioc->request_sz);
543         }
544 }
545
546 /**
547  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
548  * @arg: input argument, used to derive ioc
549  *
550  * Return:
551  * 0 if controller is removed from pci subsystem.
552  * -1 for other case.
553  */
554 static int mpt3sas_remove_dead_ioc_func(void *arg)
555 {
556         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
557         struct pci_dev *pdev;
558
559         if (!ioc)
560                 return -1;
561
562         pdev = ioc->pdev;
563         if (!pdev)
564                 return -1;
565         pci_stop_and_remove_bus_device_locked(pdev);
566         return 0;
567 }
568
569 /**
570  * _base_fault_reset_work - workq handling ioc fault conditions
571  * @work: input argument, used to derive ioc
572  *
573  * Context: sleep.
574  */
575 static void
576 _base_fault_reset_work(struct work_struct *work)
577 {
578         struct MPT3SAS_ADAPTER *ioc =
579             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
580         unsigned long    flags;
581         u32 doorbell;
582         int rc;
583         struct task_struct *p;
584
585
586         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
587         if (ioc->shost_recovery || ioc->pci_error_recovery)
588                 goto rearm_timer;
589         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
590
591         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
592         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
593                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
594
595                 /* It may be possible that EEH recovery can resolve some of
596                  * pci bus failure issues rather removing the dead ioc function
597                  * by considering controller is in a non-operational state. So
598                  * here priority is given to the EEH recovery. If it doesn't
599                  * not resolve this issue, mpt3sas driver will consider this
600                  * controller to non-operational state and remove the dead ioc
601                  * function.
602                  */
603                 if (ioc->non_operational_loop++ < 5) {
604                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
605                                                          flags);
606                         goto rearm_timer;
607                 }
608
609                 /*
610                  * Call _scsih_flush_pending_cmds callback so that we flush all
611                  * pending commands back to OS. This call is required to aovid
612                  * deadlock at block layer. Dead IOC will fail to do diag reset,
613                  * and this call is safe since dead ioc will never return any
614                  * command back from HW.
615                  */
616                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
617                 /*
618                  * Set remove_host flag early since kernel thread will
619                  * take some time to execute.
620                  */
621                 ioc->remove_host = 1;
622                 /*Remove the Dead Host */
623                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
624                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
625                 if (IS_ERR(p))
626                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
627                                 __func__);
628                 else
629                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
630                                 __func__);
631                 return; /* don't rearm timer */
632         }
633
634         ioc->non_operational_loop = 0;
635
636         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
637                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
638                 ioc_warn(ioc, "%s: hard reset: %s\n",
639                          __func__, rc == 0 ? "success" : "failed");
640                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
641                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
642                         mpt3sas_base_fault_info(ioc, doorbell &
643                             MPI2_DOORBELL_DATA_MASK);
644                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
645                     MPI2_IOC_STATE_OPERATIONAL)
646                         return; /* don't rearm timer */
647         }
648
649         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
650  rearm_timer:
651         if (ioc->fault_reset_work_q)
652                 queue_delayed_work(ioc->fault_reset_work_q,
653                     &ioc->fault_reset_work,
654                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
655         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
656 }
657
658 /**
659  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
660  * @ioc: per adapter object
661  *
662  * Context: sleep.
663  */
664 void
665 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
666 {
667         unsigned long    flags;
668
669         if (ioc->fault_reset_work_q)
670                 return;
671
672         /* initialize fault polling */
673
674         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
675         snprintf(ioc->fault_reset_work_q_name,
676             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
677             ioc->driver_name, ioc->id);
678         ioc->fault_reset_work_q =
679                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
680         if (!ioc->fault_reset_work_q) {
681                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
682                 return;
683         }
684         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
685         if (ioc->fault_reset_work_q)
686                 queue_delayed_work(ioc->fault_reset_work_q,
687                     &ioc->fault_reset_work,
688                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
689         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
690 }
691
692 /**
693  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
694  * @ioc: per adapter object
695  *
696  * Context: sleep.
697  */
698 void
699 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
700 {
701         unsigned long flags;
702         struct workqueue_struct *wq;
703
704         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
705         wq = ioc->fault_reset_work_q;
706         ioc->fault_reset_work_q = NULL;
707         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
708         if (wq) {
709                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
710                         flush_workqueue(wq);
711                 destroy_workqueue(wq);
712         }
713 }
714
715 /**
716  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
717  * @ioc: per adapter object
718  * @fault_code: fault code
719  */
720 void
721 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
722 {
723         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
724 }
725
726 /**
727  * mpt3sas_halt_firmware - halt's mpt controller firmware
728  * @ioc: per adapter object
729  *
730  * For debugging timeout related issues.  Writing 0xCOFFEE00
731  * to the doorbell register will halt controller firmware. With
732  * the purpose to stop both driver and firmware, the enduser can
733  * obtain a ring buffer from controller UART.
734  */
735 void
736 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
737 {
738         u32 doorbell;
739
740         if (!ioc->fwfault_debug)
741                 return;
742
743         dump_stack();
744
745         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
746         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
747                 mpt3sas_base_fault_info(ioc , doorbell);
748         else {
749                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
750                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
751         }
752
753         if (ioc->fwfault_debug == 2)
754                 for (;;)
755                         ;
756         else
757                 panic("panic in %s\n", __func__);
758 }
759
760 /**
761  * _base_sas_ioc_info - verbose translation of the ioc status
762  * @ioc: per adapter object
763  * @mpi_reply: reply mf payload returned from firmware
764  * @request_hdr: request mf
765  */
766 static void
767 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
768         MPI2RequestHeader_t *request_hdr)
769 {
770         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
771             MPI2_IOCSTATUS_MASK;
772         char *desc = NULL;
773         u16 frame_sz;
774         char *func_str = NULL;
775
776         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
777         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
778             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
779             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
780                 return;
781
782         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
783                 return;
784
785         switch (ioc_status) {
786
787 /****************************************************************************
788 *  Common IOCStatus values for all replies
789 ****************************************************************************/
790
791         case MPI2_IOCSTATUS_INVALID_FUNCTION:
792                 desc = "invalid function";
793                 break;
794         case MPI2_IOCSTATUS_BUSY:
795                 desc = "busy";
796                 break;
797         case MPI2_IOCSTATUS_INVALID_SGL:
798                 desc = "invalid sgl";
799                 break;
800         case MPI2_IOCSTATUS_INTERNAL_ERROR:
801                 desc = "internal error";
802                 break;
803         case MPI2_IOCSTATUS_INVALID_VPID:
804                 desc = "invalid vpid";
805                 break;
806         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
807                 desc = "insufficient resources";
808                 break;
809         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
810                 desc = "insufficient power";
811                 break;
812         case MPI2_IOCSTATUS_INVALID_FIELD:
813                 desc = "invalid field";
814                 break;
815         case MPI2_IOCSTATUS_INVALID_STATE:
816                 desc = "invalid state";
817                 break;
818         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
819                 desc = "op state not supported";
820                 break;
821
822 /****************************************************************************
823 *  Config IOCStatus values
824 ****************************************************************************/
825
826         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
827                 desc = "config invalid action";
828                 break;
829         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
830                 desc = "config invalid type";
831                 break;
832         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
833                 desc = "config invalid page";
834                 break;
835         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
836                 desc = "config invalid data";
837                 break;
838         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
839                 desc = "config no defaults";
840                 break;
841         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
842                 desc = "config cant commit";
843                 break;
844
845 /****************************************************************************
846 *  SCSI IO Reply
847 ****************************************************************************/
848
849         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
850         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
851         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
852         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
853         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
854         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
855         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
856         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
857         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
858         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
859         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
860         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
861                 break;
862
863 /****************************************************************************
864 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
865 ****************************************************************************/
866
867         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
868                 desc = "eedp guard error";
869                 break;
870         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
871                 desc = "eedp ref tag error";
872                 break;
873         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
874                 desc = "eedp app tag error";
875                 break;
876
877 /****************************************************************************
878 *  SCSI Target values
879 ****************************************************************************/
880
881         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
882                 desc = "target invalid io index";
883                 break;
884         case MPI2_IOCSTATUS_TARGET_ABORTED:
885                 desc = "target aborted";
886                 break;
887         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
888                 desc = "target no conn retryable";
889                 break;
890         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
891                 desc = "target no connection";
892                 break;
893         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
894                 desc = "target xfer count mismatch";
895                 break;
896         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
897                 desc = "target data offset error";
898                 break;
899         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
900                 desc = "target too much write data";
901                 break;
902         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
903                 desc = "target iu too short";
904                 break;
905         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
906                 desc = "target ack nak timeout";
907                 break;
908         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
909                 desc = "target nak received";
910                 break;
911
912 /****************************************************************************
913 *  Serial Attached SCSI values
914 ****************************************************************************/
915
916         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
917                 desc = "smp request failed";
918                 break;
919         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
920                 desc = "smp data overrun";
921                 break;
922
923 /****************************************************************************
924 *  Diagnostic Buffer Post / Diagnostic Release values
925 ****************************************************************************/
926
927         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
928                 desc = "diagnostic released";
929                 break;
930         default:
931                 break;
932         }
933
934         if (!desc)
935                 return;
936
937         switch (request_hdr->Function) {
938         case MPI2_FUNCTION_CONFIG:
939                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
940                 func_str = "config_page";
941                 break;
942         case MPI2_FUNCTION_SCSI_TASK_MGMT:
943                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
944                 func_str = "task_mgmt";
945                 break;
946         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
947                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
948                 func_str = "sas_iounit_ctl";
949                 break;
950         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
951                 frame_sz = sizeof(Mpi2SepRequest_t);
952                 func_str = "enclosure";
953                 break;
954         case MPI2_FUNCTION_IOC_INIT:
955                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
956                 func_str = "ioc_init";
957                 break;
958         case MPI2_FUNCTION_PORT_ENABLE:
959                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
960                 func_str = "port_enable";
961                 break;
962         case MPI2_FUNCTION_SMP_PASSTHROUGH:
963                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
964                 func_str = "smp_passthru";
965                 break;
966         case MPI2_FUNCTION_NVME_ENCAPSULATED:
967                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
968                     ioc->sge_size;
969                 func_str = "nvme_encapsulated";
970                 break;
971         default:
972                 frame_sz = 32;
973                 func_str = "unknown";
974                 break;
975         }
976
977         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
978                  desc, ioc_status, request_hdr, func_str);
979
980         _debug_dump_mf(request_hdr, frame_sz/4);
981 }
982
983 /**
984  * _base_display_event_data - verbose translation of firmware asyn events
985  * @ioc: per adapter object
986  * @mpi_reply: reply mf payload returned from firmware
987  */
988 static void
989 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
990         Mpi2EventNotificationReply_t *mpi_reply)
991 {
992         char *desc = NULL;
993         u16 event;
994
995         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
996                 return;
997
998         event = le16_to_cpu(mpi_reply->Event);
999
1000         switch (event) {
1001         case MPI2_EVENT_LOG_DATA:
1002                 desc = "Log Data";
1003                 break;
1004         case MPI2_EVENT_STATE_CHANGE:
1005                 desc = "Status Change";
1006                 break;
1007         case MPI2_EVENT_HARD_RESET_RECEIVED:
1008                 desc = "Hard Reset Received";
1009                 break;
1010         case MPI2_EVENT_EVENT_CHANGE:
1011                 desc = "Event Change";
1012                 break;
1013         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1014                 desc = "Device Status Change";
1015                 break;
1016         case MPI2_EVENT_IR_OPERATION_STATUS:
1017                 if (!ioc->hide_ir_msg)
1018                         desc = "IR Operation Status";
1019                 break;
1020         case MPI2_EVENT_SAS_DISCOVERY:
1021         {
1022                 Mpi2EventDataSasDiscovery_t *event_data =
1023                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1024                 ioc_info(ioc, "Discovery: (%s)",
1025                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1026                          "start" : "stop");
1027                 if (event_data->DiscoveryStatus)
1028                         pr_cont(" discovery_status(0x%08x)",
1029                             le32_to_cpu(event_data->DiscoveryStatus));
1030                 pr_cont("\n");
1031                 return;
1032         }
1033         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1034                 desc = "SAS Broadcast Primitive";
1035                 break;
1036         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1037                 desc = "SAS Init Device Status Change";
1038                 break;
1039         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1040                 desc = "SAS Init Table Overflow";
1041                 break;
1042         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1043                 desc = "SAS Topology Change List";
1044                 break;
1045         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1046                 desc = "SAS Enclosure Device Status Change";
1047                 break;
1048         case MPI2_EVENT_IR_VOLUME:
1049                 if (!ioc->hide_ir_msg)
1050                         desc = "IR Volume";
1051                 break;
1052         case MPI2_EVENT_IR_PHYSICAL_DISK:
1053                 if (!ioc->hide_ir_msg)
1054                         desc = "IR Physical Disk";
1055                 break;
1056         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1057                 if (!ioc->hide_ir_msg)
1058                         desc = "IR Configuration Change List";
1059                 break;
1060         case MPI2_EVENT_LOG_ENTRY_ADDED:
1061                 if (!ioc->hide_ir_msg)
1062                         desc = "Log Entry Added";
1063                 break;
1064         case MPI2_EVENT_TEMP_THRESHOLD:
1065                 desc = "Temperature Threshold";
1066                 break;
1067         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1068                 desc = "Cable Event";
1069                 break;
1070         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1071                 desc = "SAS Device Discovery Error";
1072                 break;
1073         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1074                 desc = "PCIE Device Status Change";
1075                 break;
1076         case MPI2_EVENT_PCIE_ENUMERATION:
1077         {
1078                 Mpi26EventDataPCIeEnumeration_t *event_data =
1079                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1080                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1081                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1082                          "start" : "stop");
1083                 if (event_data->EnumerationStatus)
1084                         pr_cont("enumeration_status(0x%08x)",
1085                                 le32_to_cpu(event_data->EnumerationStatus));
1086                 pr_cont("\n");
1087                 return;
1088         }
1089         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1090                 desc = "PCIE Topology Change List";
1091                 break;
1092         }
1093
1094         if (!desc)
1095                 return;
1096
1097         ioc_info(ioc, "%s\n", desc);
1098 }
1099
1100 /**
1101  * _base_sas_log_info - verbose translation of firmware log info
1102  * @ioc: per adapter object
1103  * @log_info: log info
1104  */
1105 static void
1106 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1107 {
1108         union loginfo_type {
1109                 u32     loginfo;
1110                 struct {
1111                         u32     subcode:16;
1112                         u32     code:8;
1113                         u32     originator:4;
1114                         u32     bus_type:4;
1115                 } dw;
1116         };
1117         union loginfo_type sas_loginfo;
1118         char *originator_str = NULL;
1119
1120         sas_loginfo.loginfo = log_info;
1121         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1122                 return;
1123
1124         /* each nexus loss loginfo */
1125         if (log_info == 0x31170000)
1126                 return;
1127
1128         /* eat the loginfos associated with task aborts */
1129         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1130             0x31140000 || log_info == 0x31130000))
1131                 return;
1132
1133         switch (sas_loginfo.dw.originator) {
1134         case 0:
1135                 originator_str = "IOP";
1136                 break;
1137         case 1:
1138                 originator_str = "PL";
1139                 break;
1140         case 2:
1141                 if (!ioc->hide_ir_msg)
1142                         originator_str = "IR";
1143                 else
1144                         originator_str = "WarpDrive";
1145                 break;
1146         }
1147
1148         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1149                  log_info,
1150                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1151 }
1152
1153 /**
1154  * _base_display_reply_info -
1155  * @ioc: per adapter object
1156  * @smid: system request message index
1157  * @msix_index: MSIX table index supplied by the OS
1158  * @reply: reply message frame(lower 32bit addr)
1159  */
1160 static void
1161 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1162         u32 reply)
1163 {
1164         MPI2DefaultReply_t *mpi_reply;
1165         u16 ioc_status;
1166         u32 loginfo = 0;
1167
1168         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1169         if (unlikely(!mpi_reply)) {
1170                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1171                         __FILE__, __LINE__, __func__);
1172                 return;
1173         }
1174         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1175
1176         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1177             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1178                 _base_sas_ioc_info(ioc , mpi_reply,
1179                    mpt3sas_base_get_msg_frame(ioc, smid));
1180         }
1181
1182         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1183                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1184                 _base_sas_log_info(ioc, loginfo);
1185         }
1186
1187         if (ioc_status || loginfo) {
1188                 ioc_status &= MPI2_IOCSTATUS_MASK;
1189                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1190         }
1191 }
1192
1193 /**
1194  * mpt3sas_base_done - base internal command completion routine
1195  * @ioc: per adapter object
1196  * @smid: system request message index
1197  * @msix_index: MSIX table index supplied by the OS
1198  * @reply: reply message frame(lower 32bit addr)
1199  *
1200  * Return:
1201  * 1 meaning mf should be freed from _base_interrupt
1202  * 0 means the mf is freed from this function.
1203  */
1204 u8
1205 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1206         u32 reply)
1207 {
1208         MPI2DefaultReply_t *mpi_reply;
1209
1210         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1211         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1212                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1213
1214         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1215                 return 1;
1216
1217         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1218         if (mpi_reply) {
1219                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1220                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1221         }
1222         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1223
1224         complete(&ioc->base_cmds.done);
1225         return 1;
1226 }
1227
1228 /**
1229  * _base_async_event - main callback handler for firmware asyn events
1230  * @ioc: per adapter object
1231  * @msix_index: MSIX table index supplied by the OS
1232  * @reply: reply message frame(lower 32bit addr)
1233  *
1234  * Return:
1235  * 1 meaning mf should be freed from _base_interrupt
1236  * 0 means the mf is freed from this function.
1237  */
1238 static u8
1239 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1240 {
1241         Mpi2EventNotificationReply_t *mpi_reply;
1242         Mpi2EventAckRequest_t *ack_request;
1243         u16 smid;
1244         struct _event_ack_list *delayed_event_ack;
1245
1246         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1247         if (!mpi_reply)
1248                 return 1;
1249         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1250                 return 1;
1251
1252         _base_display_event_data(ioc, mpi_reply);
1253
1254         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1255                 goto out;
1256         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1257         if (!smid) {
1258                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1259                                         GFP_ATOMIC);
1260                 if (!delayed_event_ack)
1261                         goto out;
1262                 INIT_LIST_HEAD(&delayed_event_ack->list);
1263                 delayed_event_ack->Event = mpi_reply->Event;
1264                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1265                 list_add_tail(&delayed_event_ack->list,
1266                                 &ioc->delayed_event_ack_list);
1267                 dewtprintk(ioc,
1268                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1269                                     le16_to_cpu(mpi_reply->Event)));
1270                 goto out;
1271         }
1272
1273         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1274         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1275         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1276         ack_request->Event = mpi_reply->Event;
1277         ack_request->EventContext = mpi_reply->EventContext;
1278         ack_request->VF_ID = 0;  /* TODO */
1279         ack_request->VP_ID = 0;
1280         mpt3sas_base_put_smid_default(ioc, smid);
1281
1282  out:
1283
1284         /* scsih callback handler */
1285         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1286
1287         /* ctl callback handler */
1288         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1289
1290         return 1;
1291 }
1292
1293 static struct scsiio_tracker *
1294 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1295 {
1296         struct scsi_cmnd *cmd;
1297
1298         if (WARN_ON(!smid) ||
1299             WARN_ON(smid >= ioc->hi_priority_smid))
1300                 return NULL;
1301
1302         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1303         if (cmd)
1304                 return scsi_cmd_priv(cmd);
1305
1306         return NULL;
1307 }
1308
1309 /**
1310  * _base_get_cb_idx - obtain the callback index
1311  * @ioc: per adapter object
1312  * @smid: system request message index
1313  *
1314  * Return: callback index.
1315  */
1316 static u8
1317 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1318 {
1319         int i;
1320         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1321         u8 cb_idx = 0xFF;
1322
1323         if (smid < ioc->hi_priority_smid) {
1324                 struct scsiio_tracker *st;
1325
1326                 if (smid < ctl_smid) {
1327                         st = _get_st_from_smid(ioc, smid);
1328                         if (st)
1329                                 cb_idx = st->cb_idx;
1330                 } else if (smid == ctl_smid)
1331                         cb_idx = ioc->ctl_cb_idx;
1332         } else if (smid < ioc->internal_smid) {
1333                 i = smid - ioc->hi_priority_smid;
1334                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1335         } else if (smid <= ioc->hba_queue_depth) {
1336                 i = smid - ioc->internal_smid;
1337                 cb_idx = ioc->internal_lookup[i].cb_idx;
1338         }
1339         return cb_idx;
1340 }
1341
1342 /**
1343  * _base_mask_interrupts - disable interrupts
1344  * @ioc: per adapter object
1345  *
1346  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1347  */
1348 static void
1349 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1350 {
1351         u32 him_register;
1352
1353         ioc->mask_interrupts = 1;
1354         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1355         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1356         writel(him_register, &ioc->chip->HostInterruptMask);
1357         ioc->base_readl(&ioc->chip->HostInterruptMask);
1358 }
1359
1360 /**
1361  * _base_unmask_interrupts - enable interrupts
1362  * @ioc: per adapter object
1363  *
1364  * Enabling only Reply Interrupts
1365  */
1366 static void
1367 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1368 {
1369         u32 him_register;
1370
1371         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1372         him_register &= ~MPI2_HIM_RIM;
1373         writel(him_register, &ioc->chip->HostInterruptMask);
1374         ioc->mask_interrupts = 0;
1375 }
1376
1377 union reply_descriptor {
1378         u64 word;
1379         struct {
1380                 u32 low;
1381                 u32 high;
1382         } u;
1383 };
1384
1385 /**
1386  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1387  * @irq: irq number (not used)
1388  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1389  *
1390  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1391  */
1392 static irqreturn_t
1393 _base_interrupt(int irq, void *bus_id)
1394 {
1395         struct adapter_reply_queue *reply_q = bus_id;
1396         union reply_descriptor rd;
1397         u32 completed_cmds;
1398         u8 request_desript_type;
1399         u16 smid;
1400         u8 cb_idx;
1401         u32 reply;
1402         u8 msix_index = reply_q->msix_index;
1403         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1404         Mpi2ReplyDescriptorsUnion_t *rpf;
1405         u8 rc;
1406
1407         if (ioc->mask_interrupts)
1408                 return IRQ_NONE;
1409
1410         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1411                 return IRQ_NONE;
1412
1413         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1414         request_desript_type = rpf->Default.ReplyFlags
1415              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1416         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1417                 atomic_dec(&reply_q->busy);
1418                 return IRQ_NONE;
1419         }
1420
1421         completed_cmds = 0;
1422         cb_idx = 0xFF;
1423         do {
1424                 rd.word = le64_to_cpu(rpf->Words);
1425                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1426                         goto out;
1427                 reply = 0;
1428                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1429                 if (request_desript_type ==
1430                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1431                     request_desript_type ==
1432                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1433                     request_desript_type ==
1434                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1435                         cb_idx = _base_get_cb_idx(ioc, smid);
1436                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1437                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1438                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1439                                     msix_index, 0);
1440                                 if (rc)
1441                                         mpt3sas_base_free_smid(ioc, smid);
1442                         }
1443                 } else if (request_desript_type ==
1444                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1445                         reply = le32_to_cpu(
1446                             rpf->AddressReply.ReplyFrameAddress);
1447                         if (reply > ioc->reply_dma_max_address ||
1448                             reply < ioc->reply_dma_min_address)
1449                                 reply = 0;
1450                         if (smid) {
1451                                 cb_idx = _base_get_cb_idx(ioc, smid);
1452                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1453                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1454                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1455                                             msix_index, reply);
1456                                         if (reply)
1457                                                 _base_display_reply_info(ioc,
1458                                                     smid, msix_index, reply);
1459                                         if (rc)
1460                                                 mpt3sas_base_free_smid(ioc,
1461                                                     smid);
1462                                 }
1463                         } else {
1464                                 _base_async_event(ioc, msix_index, reply);
1465                         }
1466
1467                         /* reply free queue handling */
1468                         if (reply) {
1469                                 ioc->reply_free_host_index =
1470                                     (ioc->reply_free_host_index ==
1471                                     (ioc->reply_free_queue_depth - 1)) ?
1472                                     0 : ioc->reply_free_host_index + 1;
1473                                 ioc->reply_free[ioc->reply_free_host_index] =
1474                                     cpu_to_le32(reply);
1475                                 if (ioc->is_mcpu_endpoint)
1476                                         _base_clone_reply_to_sys_mem(ioc,
1477                                                 reply,
1478                                                 ioc->reply_free_host_index);
1479                                 writel(ioc->reply_free_host_index,
1480                                     &ioc->chip->ReplyFreeHostIndex);
1481                         }
1482                 }
1483
1484                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1485                 reply_q->reply_post_host_index =
1486                     (reply_q->reply_post_host_index ==
1487                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1488                     reply_q->reply_post_host_index + 1;
1489                 request_desript_type =
1490                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1491                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1492                 completed_cmds++;
1493                 /* Update the reply post host index after continuously
1494                  * processing the threshold number of Reply Descriptors.
1495                  * So that FW can find enough entries to post the Reply
1496                  * Descriptors in the reply descriptor post queue.
1497                  */
1498                 if (completed_cmds > ioc->hba_queue_depth/3) {
1499                         if (ioc->combined_reply_queue) {
1500                                 writel(reply_q->reply_post_host_index |
1501                                                 ((msix_index  & 7) <<
1502                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1503                                     ioc->replyPostRegisterIndex[msix_index/8]);
1504                         } else {
1505                                 writel(reply_q->reply_post_host_index |
1506                                                 (msix_index <<
1507                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1508                                                 &ioc->chip->ReplyPostHostIndex);
1509                         }
1510                         completed_cmds = 1;
1511                 }
1512                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1513                         goto out;
1514                 if (!reply_q->reply_post_host_index)
1515                         rpf = reply_q->reply_post_free;
1516                 else
1517                         rpf++;
1518         } while (1);
1519
1520  out:
1521
1522         if (!completed_cmds) {
1523                 atomic_dec(&reply_q->busy);
1524                 return IRQ_NONE;
1525         }
1526
1527         if (ioc->is_warpdrive) {
1528                 writel(reply_q->reply_post_host_index,
1529                 ioc->reply_post_host_index[msix_index]);
1530                 atomic_dec(&reply_q->busy);
1531                 return IRQ_HANDLED;
1532         }
1533
1534         /* Update Reply Post Host Index.
1535          * For those HBA's which support combined reply queue feature
1536          * 1. Get the correct Supplemental Reply Post Host Index Register.
1537          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1538          *    Index Register address bank i.e replyPostRegisterIndex[],
1539          * 2. Then update this register with new reply host index value
1540          *    in ReplyPostIndex field and the MSIxIndex field with
1541          *    msix_index value reduced to a value between 0 and 7,
1542          *    using a modulo 8 operation. Since each Supplemental Reply Post
1543          *    Host Index Register supports 8 MSI-X vectors.
1544          *
1545          * For other HBA's just update the Reply Post Host Index register with
1546          * new reply host index value in ReplyPostIndex Field and msix_index
1547          * value in MSIxIndex field.
1548          */
1549         if (ioc->combined_reply_queue)
1550                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1551                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1552                         ioc->replyPostRegisterIndex[msix_index/8]);
1553         else
1554                 writel(reply_q->reply_post_host_index | (msix_index <<
1555                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1556                         &ioc->chip->ReplyPostHostIndex);
1557         atomic_dec(&reply_q->busy);
1558         return IRQ_HANDLED;
1559 }
1560
1561 /**
1562  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1563  * @ioc: per adapter object
1564  *
1565  * Return: Whether or not MSI/X is enabled.
1566  */
1567 static inline int
1568 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1569 {
1570         return (ioc->facts.IOCCapabilities &
1571             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1572 }
1573
1574 /**
1575  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1576  * @ioc: per adapter object
1577  * Context: non ISR conext
1578  *
1579  * Called when a Task Management request has completed.
1580  */
1581 void
1582 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1583 {
1584         struct adapter_reply_queue *reply_q;
1585
1586         /* If MSIX capability is turned off
1587          * then multi-queues are not enabled
1588          */
1589         if (!_base_is_controller_msix_enabled(ioc))
1590                 return;
1591
1592         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1593                 if (ioc->shost_recovery || ioc->remove_host ||
1594                                 ioc->pci_error_recovery)
1595                         return;
1596                 /* TMs are on msix_index == 0 */
1597                 if (reply_q->msix_index == 0)
1598                         continue;
1599                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1600         }
1601 }
1602
1603 /**
1604  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1605  * @cb_idx: callback index
1606  */
1607 void
1608 mpt3sas_base_release_callback_handler(u8 cb_idx)
1609 {
1610         mpt_callbacks[cb_idx] = NULL;
1611 }
1612
1613 /**
1614  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1615  * @cb_func: callback function
1616  *
1617  * Return: Index of @cb_func.
1618  */
1619 u8
1620 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1621 {
1622         u8 cb_idx;
1623
1624         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1625                 if (mpt_callbacks[cb_idx] == NULL)
1626                         break;
1627
1628         mpt_callbacks[cb_idx] = cb_func;
1629         return cb_idx;
1630 }
1631
1632 /**
1633  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1634  */
1635 void
1636 mpt3sas_base_initialize_callback_handler(void)
1637 {
1638         u8 cb_idx;
1639
1640         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1641                 mpt3sas_base_release_callback_handler(cb_idx);
1642 }
1643
1644
1645 /**
1646  * _base_build_zero_len_sge - build zero length sg entry
1647  * @ioc: per adapter object
1648  * @paddr: virtual address for SGE
1649  *
1650  * Create a zero length scatter gather entry to insure the IOCs hardware has
1651  * something to use if the target device goes brain dead and tries
1652  * to send data even when none is asked for.
1653  */
1654 static void
1655 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1656 {
1657         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1658             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1659             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1660             MPI2_SGE_FLAGS_SHIFT);
1661         ioc->base_add_sg_single(paddr, flags_length, -1);
1662 }
1663
1664 /**
1665  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1666  * @paddr: virtual address for SGE
1667  * @flags_length: SGE flags and data transfer length
1668  * @dma_addr: Physical address
1669  */
1670 static void
1671 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1672 {
1673         Mpi2SGESimple32_t *sgel = paddr;
1674
1675         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1676             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1677         sgel->FlagsLength = cpu_to_le32(flags_length);
1678         sgel->Address = cpu_to_le32(dma_addr);
1679 }
1680
1681
1682 /**
1683  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1684  * @paddr: virtual address for SGE
1685  * @flags_length: SGE flags and data transfer length
1686  * @dma_addr: Physical address
1687  */
1688 static void
1689 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1690 {
1691         Mpi2SGESimple64_t *sgel = paddr;
1692
1693         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1694             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1695         sgel->FlagsLength = cpu_to_le32(flags_length);
1696         sgel->Address = cpu_to_le64(dma_addr);
1697 }
1698
1699 /**
1700  * _base_get_chain_buffer_tracker - obtain chain tracker
1701  * @ioc: per adapter object
1702  * @scmd: SCSI commands of the IO request
1703  *
1704  * Return: chain tracker from chain_lookup table using key as
1705  * smid and smid's chain_offset.
1706  */
1707 static struct chain_tracker *
1708 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1709                                struct scsi_cmnd *scmd)
1710 {
1711         struct chain_tracker *chain_req;
1712         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1713         u16 smid = st->smid;
1714         u8 chain_offset =
1715            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1716
1717         if (chain_offset == ioc->chains_needed_per_io)
1718                 return NULL;
1719
1720         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1721         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1722         return chain_req;
1723 }
1724
1725
1726 /**
1727  * _base_build_sg - build generic sg
1728  * @ioc: per adapter object
1729  * @psge: virtual address for SGE
1730  * @data_out_dma: physical address for WRITES
1731  * @data_out_sz: data xfer size for WRITES
1732  * @data_in_dma: physical address for READS
1733  * @data_in_sz: data xfer size for READS
1734  */
1735 static void
1736 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1737         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1738         size_t data_in_sz)
1739 {
1740         u32 sgl_flags;
1741
1742         if (!data_out_sz && !data_in_sz) {
1743                 _base_build_zero_len_sge(ioc, psge);
1744                 return;
1745         }
1746
1747         if (data_out_sz && data_in_sz) {
1748                 /* WRITE sgel first */
1749                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1750                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1751                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1752                 ioc->base_add_sg_single(psge, sgl_flags |
1753                     data_out_sz, data_out_dma);
1754
1755                 /* incr sgel */
1756                 psge += ioc->sge_size;
1757
1758                 /* READ sgel last */
1759                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1760                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1761                     MPI2_SGE_FLAGS_END_OF_LIST);
1762                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1763                 ioc->base_add_sg_single(psge, sgl_flags |
1764                     data_in_sz, data_in_dma);
1765         } else if (data_out_sz) /* WRITE */ {
1766                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1767                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1768                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1769                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1770                 ioc->base_add_sg_single(psge, sgl_flags |
1771                     data_out_sz, data_out_dma);
1772         } else if (data_in_sz) /* READ */ {
1773                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1774                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1775                     MPI2_SGE_FLAGS_END_OF_LIST);
1776                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1777                 ioc->base_add_sg_single(psge, sgl_flags |
1778                     data_in_sz, data_in_dma);
1779         }
1780 }
1781
1782 /* IEEE format sgls */
1783
1784 /**
1785  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1786  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1787  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1788  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1789  * used to describe a larger data buffer.  If the data buffer is too large to
1790  * describe using the two PRP entriess inside the NVMe message, then PRP1
1791  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1792  * list located elsewhere in memory to describe the remaining data memory
1793  * segments.  The PRP list will be contiguous.
1794  *
1795  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1796  * consists of a list of PRP entries to describe a number of noncontigous
1797  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1798  * however, that this function is only used by the IOCTL call, so the memory
1799  * given will be guaranteed to be contiguous.  There is no need to translate
1800  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1801  * contiguous space that is one page size each.
1802  *
1803  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1804  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1805  * contains the second PRP element if the memory being described fits within 2
1806  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1807  *
1808  * A PRP list pointer contains the address of a PRP list, structured as a linear
1809  * array of PRP entries.  Each PRP entry in this list describes a segment of
1810  * physical memory.
1811  *
1812  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1813  * always points at the beginning of a 4KB physical memory page, and the offset
1814  * describes where within that 4KB page the memory segment begins.  Only the
1815  * first element in a PRP list may contain a non-zero offest, implying that all
1816  * memory segments following the first begin at the start of a 4KB page.
1817  *
1818  * Each PRP element normally describes 4KB of physical memory, with exceptions
1819  * for the first and last elements in the list.  If the memory being described
1820  * by the list begins at a non-zero offset within the first 4KB page, then the
1821  * first PRP element will contain a non-zero offset indicating where the region
1822  * begins within the 4KB page.  The last memory segment may end before the end
1823  * of the 4KB segment, depending upon the overall size of the memory being
1824  * described by the PRP list.
1825  *
1826  * Since PRP entries lack any indication of size, the overall data buffer length
1827  * is used to determine where the end of the data memory buffer is located, and
1828  * how many PRP entries are required to describe it.
1829  *
1830  * @ioc: per adapter object
1831  * @smid: system request message index for getting asscociated SGL
1832  * @nvme_encap_request: the NVMe request msg frame pointer
1833  * @data_out_dma: physical address for WRITES
1834  * @data_out_sz: data xfer size for WRITES
1835  * @data_in_dma: physical address for READS
1836  * @data_in_sz: data xfer size for READS
1837  */
1838 static void
1839 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1840         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1841         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1842         size_t data_in_sz)
1843 {
1844         int             prp_size = NVME_PRP_SIZE;
1845         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1846         __le64          *prp_page;
1847         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1848         u32             offset, entry_len;
1849         u32             page_mask_result, page_mask;
1850         size_t          length;
1851         struct mpt3sas_nvme_cmd *nvme_cmd =
1852                 (void *)nvme_encap_request->NVMe_Command;
1853
1854         /*
1855          * Not all commands require a data transfer. If no data, just return
1856          * without constructing any PRP.
1857          */
1858         if (!data_in_sz && !data_out_sz)
1859                 return;
1860         prp1_entry = &nvme_cmd->prp1;
1861         prp2_entry = &nvme_cmd->prp2;
1862         prp_entry = prp1_entry;
1863         /*
1864          * For the PRP entries, use the specially allocated buffer of
1865          * contiguous memory.
1866          */
1867         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1868         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1869
1870         /*
1871          * Check if we are within 1 entry of a page boundary we don't
1872          * want our first entry to be a PRP List entry.
1873          */
1874         page_mask = ioc->page_size - 1;
1875         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1876         if (!page_mask_result) {
1877                 /* Bump up to next page boundary. */
1878                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1879                 prp_page_dma = prp_page_dma + prp_size;
1880         }
1881
1882         /*
1883          * Set PRP physical pointer, which initially points to the current PRP
1884          * DMA memory page.
1885          */
1886         prp_entry_dma = prp_page_dma;
1887
1888         /* Get physical address and length of the data buffer. */
1889         if (data_in_sz) {
1890                 dma_addr = data_in_dma;
1891                 length = data_in_sz;
1892         } else {
1893                 dma_addr = data_out_dma;
1894                 length = data_out_sz;
1895         }
1896
1897         /* Loop while the length is not zero. */
1898         while (length) {
1899                 /*
1900                  * Check if we need to put a list pointer here if we are at
1901                  * page boundary - prp_size (8 bytes).
1902                  */
1903                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1904                 if (!page_mask_result) {
1905                         /*
1906                          * This is the last entry in a PRP List, so we need to
1907                          * put a PRP list pointer here.  What this does is:
1908                          *   - bump the current memory pointer to the next
1909                          *     address, which will be the next full page.
1910                          *   - set the PRP Entry to point to that page.  This
1911                          *     is now the PRP List pointer.
1912                          *   - bump the PRP Entry pointer the start of the
1913                          *     next page.  Since all of this PRP memory is
1914                          *     contiguous, no need to get a new page - it's
1915                          *     just the next address.
1916                          */
1917                         prp_entry_dma++;
1918                         *prp_entry = cpu_to_le64(prp_entry_dma);
1919                         prp_entry++;
1920                 }
1921
1922                 /* Need to handle if entry will be part of a page. */
1923                 offset = dma_addr & page_mask;
1924                 entry_len = ioc->page_size - offset;
1925
1926                 if (prp_entry == prp1_entry) {
1927                         /*
1928                          * Must fill in the first PRP pointer (PRP1) before
1929                          * moving on.
1930                          */
1931                         *prp1_entry = cpu_to_le64(dma_addr);
1932
1933                         /*
1934                          * Now point to the second PRP entry within the
1935                          * command (PRP2).
1936                          */
1937                         prp_entry = prp2_entry;
1938                 } else if (prp_entry == prp2_entry) {
1939                         /*
1940                          * Should the PRP2 entry be a PRP List pointer or just
1941                          * a regular PRP pointer?  If there is more than one
1942                          * more page of data, must use a PRP List pointer.
1943                          */
1944                         if (length > ioc->page_size) {
1945                                 /*
1946                                  * PRP2 will contain a PRP List pointer because
1947                                  * more PRP's are needed with this command. The
1948                                  * list will start at the beginning of the
1949                                  * contiguous buffer.
1950                                  */
1951                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1952
1953                                 /*
1954                                  * The next PRP Entry will be the start of the
1955                                  * first PRP List.
1956                                  */
1957                                 prp_entry = prp_page;
1958                         } else {
1959                                 /*
1960                                  * After this, the PRP Entries are complete.
1961                                  * This command uses 2 PRP's and no PRP list.
1962                                  */
1963                                 *prp2_entry = cpu_to_le64(dma_addr);
1964                         }
1965                 } else {
1966                         /*
1967                          * Put entry in list and bump the addresses.
1968                          *
1969                          * After PRP1 and PRP2 are filled in, this will fill in
1970                          * all remaining PRP entries in a PRP List, one per
1971                          * each time through the loop.
1972                          */
1973                         *prp_entry = cpu_to_le64(dma_addr);
1974                         prp_entry++;
1975                         prp_entry_dma++;
1976                 }
1977
1978                 /*
1979                  * Bump the phys address of the command's data buffer by the
1980                  * entry_len.
1981                  */
1982                 dma_addr += entry_len;
1983
1984                 /* Decrement length accounting for last partial page. */
1985                 if (entry_len > length)
1986                         length = 0;
1987                 else
1988                         length -= entry_len;
1989         }
1990 }
1991
1992 /**
1993  * base_make_prp_nvme -
1994  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1995  *
1996  * @ioc:                per adapter object
1997  * @scmd:               SCSI command from the mid-layer
1998  * @mpi_request:        mpi request
1999  * @smid:               msg Index
2000  * @sge_count:          scatter gather element count.
2001  *
2002  * Return:              true: PRPs are built
2003  *                      false: IEEE SGLs needs to be built
2004  */
2005 static void
2006 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2007                 struct scsi_cmnd *scmd,
2008                 Mpi25SCSIIORequest_t *mpi_request,
2009                 u16 smid, int sge_count)
2010 {
2011         int sge_len, num_prp_in_chain = 0;
2012         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2013         __le64 *curr_buff;
2014         dma_addr_t msg_dma, sge_addr, offset;
2015         u32 page_mask, page_mask_result;
2016         struct scatterlist *sg_scmd;
2017         u32 first_prp_len;
2018         int data_len = scsi_bufflen(scmd);
2019         u32 nvme_pg_size;
2020
2021         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2022         /*
2023          * Nvme has a very convoluted prp format.  One prp is required
2024          * for each page or partial page. Driver need to split up OS sg_list
2025          * entries if it is longer than one page or cross a page
2026          * boundary.  Driver also have to insert a PRP list pointer entry as
2027          * the last entry in each physical page of the PRP list.
2028          *
2029          * NOTE: The first PRP "entry" is actually placed in the first
2030          * SGL entry in the main message as IEEE 64 format.  The 2nd
2031          * entry in the main message is the chain element, and the rest
2032          * of the PRP entries are built in the contiguous pcie buffer.
2033          */
2034         page_mask = nvme_pg_size - 1;
2035
2036         /*
2037          * Native SGL is needed.
2038          * Put a chain element in main message frame that points to the first
2039          * chain buffer.
2040          *
2041          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2042          *        a native SGL.
2043          */
2044
2045         /* Set main message chain element pointer */
2046         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2047         /*
2048          * For NVMe the chain element needs to be the 2nd SG entry in the main
2049          * message.
2050          */
2051         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2052                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2053
2054         /*
2055          * For the PRP entries, use the specially allocated buffer of
2056          * contiguous memory.  Normal chain buffers can't be used
2057          * because each chain buffer would need to be the size of an OS
2058          * page (4k).
2059          */
2060         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2061         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2062
2063         main_chain_element->Address = cpu_to_le64(msg_dma);
2064         main_chain_element->NextChainOffset = 0;
2065         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2066                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2067                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2068
2069         /* Build first prp, sge need not to be page aligned*/
2070         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2071         sg_scmd = scsi_sglist(scmd);
2072         sge_addr = sg_dma_address(sg_scmd);
2073         sge_len = sg_dma_len(sg_scmd);
2074
2075         offset = sge_addr & page_mask;
2076         first_prp_len = nvme_pg_size - offset;
2077
2078         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2079         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2080
2081         data_len -= first_prp_len;
2082
2083         if (sge_len > first_prp_len) {
2084                 sge_addr += first_prp_len;
2085                 sge_len -= first_prp_len;
2086         } else if (data_len && (sge_len == first_prp_len)) {
2087                 sg_scmd = sg_next(sg_scmd);
2088                 sge_addr = sg_dma_address(sg_scmd);
2089                 sge_len = sg_dma_len(sg_scmd);
2090         }
2091
2092         for (;;) {
2093                 offset = sge_addr & page_mask;
2094
2095                 /* Put PRP pointer due to page boundary*/
2096                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2097                 if (unlikely(!page_mask_result)) {
2098                         scmd_printk(KERN_NOTICE,
2099                                 scmd, "page boundary curr_buff: 0x%p\n",
2100                                 curr_buff);
2101                         msg_dma += 8;
2102                         *curr_buff = cpu_to_le64(msg_dma);
2103                         curr_buff++;
2104                         num_prp_in_chain++;
2105                 }
2106
2107                 *curr_buff = cpu_to_le64(sge_addr);
2108                 curr_buff++;
2109                 msg_dma += 8;
2110                 num_prp_in_chain++;
2111
2112                 sge_addr += nvme_pg_size;
2113                 sge_len -= nvme_pg_size;
2114                 data_len -= nvme_pg_size;
2115
2116                 if (data_len <= 0)
2117                         break;
2118
2119                 if (sge_len > 0)
2120                         continue;
2121
2122                 sg_scmd = sg_next(sg_scmd);
2123                 sge_addr = sg_dma_address(sg_scmd);
2124                 sge_len = sg_dma_len(sg_scmd);
2125         }
2126
2127         main_chain_element->Length =
2128                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2129         return;
2130 }
2131
2132 static bool
2133 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2134         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2135 {
2136         u32 data_length = 0;
2137         bool build_prp = true;
2138
2139         data_length = scsi_bufflen(scmd);
2140
2141         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2142          * we built IEEE SGL
2143          */
2144         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2145                 build_prp = false;
2146
2147         return build_prp;
2148 }
2149
2150 /**
2151  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2152  * determine if the driver needs to build a native SGL.  If so, that native
2153  * SGL is built in the special contiguous buffers allocated especially for
2154  * PCIe SGL creation.  If the driver will not build a native SGL, return
2155  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2156  * supports NVMe.
2157  * @ioc: per adapter object
2158  * @mpi_request: mf request pointer
2159  * @smid: system request message index
2160  * @scmd: scsi command
2161  * @pcie_device: points to the PCIe device's info
2162  *
2163  * Return: 0 if native SGL was built, 1 if no SGL was built
2164  */
2165 static int
2166 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2167         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2168         struct _pcie_device *pcie_device)
2169 {
2170         int sges_left;
2171
2172         /* Get the SG list pointer and info. */
2173         sges_left = scsi_dma_map(scmd);
2174         if (sges_left < 0) {
2175                 sdev_printk(KERN_ERR, scmd->device,
2176                         "scsi_dma_map failed: request for %d bytes!\n",
2177                         scsi_bufflen(scmd));
2178                 return 1;
2179         }
2180
2181         /* Check if we need to build a native SG list. */
2182         if (base_is_prp_possible(ioc, pcie_device,
2183                                 scmd, sges_left) == 0) {
2184                 /* We built a native SG list, just return. */
2185                 goto out;
2186         }
2187
2188         /*
2189          * Build native NVMe PRP.
2190          */
2191         base_make_prp_nvme(ioc, scmd, mpi_request,
2192                         smid, sges_left);
2193
2194         return 0;
2195 out:
2196         scsi_dma_unmap(scmd);
2197         return 1;
2198 }
2199
2200 /**
2201  * _base_add_sg_single_ieee - add sg element for IEEE format
2202  * @paddr: virtual address for SGE
2203  * @flags: SGE flags
2204  * @chain_offset: number of 128 byte elements from start of segment
2205  * @length: data transfer length
2206  * @dma_addr: Physical address
2207  */
2208 static void
2209 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2210         dma_addr_t dma_addr)
2211 {
2212         Mpi25IeeeSgeChain64_t *sgel = paddr;
2213
2214         sgel->Flags = flags;
2215         sgel->NextChainOffset = chain_offset;
2216         sgel->Length = cpu_to_le32(length);
2217         sgel->Address = cpu_to_le64(dma_addr);
2218 }
2219
2220 /**
2221  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2222  * @ioc: per adapter object
2223  * @paddr: virtual address for SGE
2224  *
2225  * Create a zero length scatter gather entry to insure the IOCs hardware has
2226  * something to use if the target device goes brain dead and tries
2227  * to send data even when none is asked for.
2228  */
2229 static void
2230 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2231 {
2232         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2233                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2234                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2235
2236         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2237 }
2238
2239 /**
2240  * _base_build_sg_scmd - main sg creation routine
2241  *              pcie_device is unused here!
2242  * @ioc: per adapter object
2243  * @scmd: scsi command
2244  * @smid: system request message index
2245  * @unused: unused pcie_device pointer
2246  * Context: none.
2247  *
2248  * The main routine that builds scatter gather table from a given
2249  * scsi request sent via the .queuecommand main handler.
2250  *
2251  * Return: 0 success, anything else error
2252  */
2253 static int
2254 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2255         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2256 {
2257         Mpi2SCSIIORequest_t *mpi_request;
2258         dma_addr_t chain_dma;
2259         struct scatterlist *sg_scmd;
2260         void *sg_local, *chain;
2261         u32 chain_offset;
2262         u32 chain_length;
2263         u32 chain_flags;
2264         int sges_left;
2265         u32 sges_in_segment;
2266         u32 sgl_flags;
2267         u32 sgl_flags_last_element;
2268         u32 sgl_flags_end_buffer;
2269         struct chain_tracker *chain_req;
2270
2271         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2272
2273         /* init scatter gather flags */
2274         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2275         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2276                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2277         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2278             << MPI2_SGE_FLAGS_SHIFT;
2279         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2280             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2281             << MPI2_SGE_FLAGS_SHIFT;
2282         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2283
2284         sg_scmd = scsi_sglist(scmd);
2285         sges_left = scsi_dma_map(scmd);
2286         if (sges_left < 0) {
2287                 sdev_printk(KERN_ERR, scmd->device,
2288                  "scsi_dma_map failed: request for %d bytes!\n",
2289                  scsi_bufflen(scmd));
2290                 return -ENOMEM;
2291         }
2292
2293         sg_local = &mpi_request->SGL;
2294         sges_in_segment = ioc->max_sges_in_main_message;
2295         if (sges_left <= sges_in_segment)
2296                 goto fill_in_last_segment;
2297
2298         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2299             (sges_in_segment * ioc->sge_size))/4;
2300
2301         /* fill in main message segment when there is a chain following */
2302         while (sges_in_segment) {
2303                 if (sges_in_segment == 1)
2304                         ioc->base_add_sg_single(sg_local,
2305                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2306                             sg_dma_address(sg_scmd));
2307                 else
2308                         ioc->base_add_sg_single(sg_local, sgl_flags |
2309                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2310                 sg_scmd = sg_next(sg_scmd);
2311                 sg_local += ioc->sge_size;
2312                 sges_left--;
2313                 sges_in_segment--;
2314         }
2315
2316         /* initializing the chain flags and pointers */
2317         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2318         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2319         if (!chain_req)
2320                 return -1;
2321         chain = chain_req->chain_buffer;
2322         chain_dma = chain_req->chain_buffer_dma;
2323         do {
2324                 sges_in_segment = (sges_left <=
2325                     ioc->max_sges_in_chain_message) ? sges_left :
2326                     ioc->max_sges_in_chain_message;
2327                 chain_offset = (sges_left == sges_in_segment) ?
2328                     0 : (sges_in_segment * ioc->sge_size)/4;
2329                 chain_length = sges_in_segment * ioc->sge_size;
2330                 if (chain_offset) {
2331                         chain_offset = chain_offset <<
2332                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2333                         chain_length += ioc->sge_size;
2334                 }
2335                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2336                     chain_length, chain_dma);
2337                 sg_local = chain;
2338                 if (!chain_offset)
2339                         goto fill_in_last_segment;
2340
2341                 /* fill in chain segments */
2342                 while (sges_in_segment) {
2343                         if (sges_in_segment == 1)
2344                                 ioc->base_add_sg_single(sg_local,
2345                                     sgl_flags_last_element |
2346                                     sg_dma_len(sg_scmd),
2347                                     sg_dma_address(sg_scmd));
2348                         else
2349                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2350                                     sg_dma_len(sg_scmd),
2351                                     sg_dma_address(sg_scmd));
2352                         sg_scmd = sg_next(sg_scmd);
2353                         sg_local += ioc->sge_size;
2354                         sges_left--;
2355                         sges_in_segment--;
2356                 }
2357
2358                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2359                 if (!chain_req)
2360                         return -1;
2361                 chain = chain_req->chain_buffer;
2362                 chain_dma = chain_req->chain_buffer_dma;
2363         } while (1);
2364
2365
2366  fill_in_last_segment:
2367
2368         /* fill the last segment */
2369         while (sges_left) {
2370                 if (sges_left == 1)
2371                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2372                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2373                 else
2374                         ioc->base_add_sg_single(sg_local, sgl_flags |
2375                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2376                 sg_scmd = sg_next(sg_scmd);
2377                 sg_local += ioc->sge_size;
2378                 sges_left--;
2379         }
2380
2381         return 0;
2382 }
2383
2384 /**
2385  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2386  * @ioc: per adapter object
2387  * @scmd: scsi command
2388  * @smid: system request message index
2389  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2390  * constructed on need.
2391  * Context: none.
2392  *
2393  * The main routine that builds scatter gather table from a given
2394  * scsi request sent via the .queuecommand main handler.
2395  *
2396  * Return: 0 success, anything else error
2397  */
2398 static int
2399 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2400         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2401 {
2402         Mpi25SCSIIORequest_t *mpi_request;
2403         dma_addr_t chain_dma;
2404         struct scatterlist *sg_scmd;
2405         void *sg_local, *chain;
2406         u32 chain_offset;
2407         u32 chain_length;
2408         int sges_left;
2409         u32 sges_in_segment;
2410         u8 simple_sgl_flags;
2411         u8 simple_sgl_flags_last;
2412         u8 chain_sgl_flags;
2413         struct chain_tracker *chain_req;
2414
2415         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2416
2417         /* init scatter gather flags */
2418         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2419             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2420         simple_sgl_flags_last = simple_sgl_flags |
2421             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2422         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2423             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2424
2425         /* Check if we need to build a native SG list. */
2426         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2427                         smid, scmd, pcie_device) == 0)) {
2428                 /* We built a native SG list, just return. */
2429                 return 0;
2430         }
2431
2432         sg_scmd = scsi_sglist(scmd);
2433         sges_left = scsi_dma_map(scmd);
2434         if (sges_left < 0) {
2435                 sdev_printk(KERN_ERR, scmd->device,
2436                         "scsi_dma_map failed: request for %d bytes!\n",
2437                         scsi_bufflen(scmd));
2438                 return -ENOMEM;
2439         }
2440
2441         sg_local = &mpi_request->SGL;
2442         sges_in_segment = (ioc->request_sz -
2443                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2444         if (sges_left <= sges_in_segment)
2445                 goto fill_in_last_segment;
2446
2447         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2448             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2449
2450         /* fill in main message segment when there is a chain following */
2451         while (sges_in_segment > 1) {
2452                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2453                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2454                 sg_scmd = sg_next(sg_scmd);
2455                 sg_local += ioc->sge_size_ieee;
2456                 sges_left--;
2457                 sges_in_segment--;
2458         }
2459
2460         /* initializing the pointers */
2461         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2462         if (!chain_req)
2463                 return -1;
2464         chain = chain_req->chain_buffer;
2465         chain_dma = chain_req->chain_buffer_dma;
2466         do {
2467                 sges_in_segment = (sges_left <=
2468                     ioc->max_sges_in_chain_message) ? sges_left :
2469                     ioc->max_sges_in_chain_message;
2470                 chain_offset = (sges_left == sges_in_segment) ?
2471                     0 : sges_in_segment;
2472                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2473                 if (chain_offset)
2474                         chain_length += ioc->sge_size_ieee;
2475                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2476                     chain_offset, chain_length, chain_dma);
2477
2478                 sg_local = chain;
2479                 if (!chain_offset)
2480                         goto fill_in_last_segment;
2481
2482                 /* fill in chain segments */
2483                 while (sges_in_segment) {
2484                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2485                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2486                         sg_scmd = sg_next(sg_scmd);
2487                         sg_local += ioc->sge_size_ieee;
2488                         sges_left--;
2489                         sges_in_segment--;
2490                 }
2491
2492                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2493                 if (!chain_req)
2494                         return -1;
2495                 chain = chain_req->chain_buffer;
2496                 chain_dma = chain_req->chain_buffer_dma;
2497         } while (1);
2498
2499
2500  fill_in_last_segment:
2501
2502         /* fill the last segment */
2503         while (sges_left > 0) {
2504                 if (sges_left == 1)
2505                         _base_add_sg_single_ieee(sg_local,
2506                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2507                             sg_dma_address(sg_scmd));
2508                 else
2509                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2510                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2511                 sg_scmd = sg_next(sg_scmd);
2512                 sg_local += ioc->sge_size_ieee;
2513                 sges_left--;
2514         }
2515
2516         return 0;
2517 }
2518
2519 /**
2520  * _base_build_sg_ieee - build generic sg for IEEE format
2521  * @ioc: per adapter object
2522  * @psge: virtual address for SGE
2523  * @data_out_dma: physical address for WRITES
2524  * @data_out_sz: data xfer size for WRITES
2525  * @data_in_dma: physical address for READS
2526  * @data_in_sz: data xfer size for READS
2527  */
2528 static void
2529 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2530         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2531         size_t data_in_sz)
2532 {
2533         u8 sgl_flags;
2534
2535         if (!data_out_sz && !data_in_sz) {
2536                 _base_build_zero_len_sge_ieee(ioc, psge);
2537                 return;
2538         }
2539
2540         if (data_out_sz && data_in_sz) {
2541                 /* WRITE sgel first */
2542                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2543                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2544                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2545                     data_out_dma);
2546
2547                 /* incr sgel */
2548                 psge += ioc->sge_size_ieee;
2549
2550                 /* READ sgel last */
2551                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2552                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2553                     data_in_dma);
2554         } else if (data_out_sz) /* WRITE */ {
2555                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2556                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2557                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2558                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2559                     data_out_dma);
2560         } else if (data_in_sz) /* READ */ {
2561                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2562                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2563                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2564                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2565                     data_in_dma);
2566         }
2567 }
2568
2569 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2570
2571 /**
2572  * _base_config_dma_addressing - set dma addressing
2573  * @ioc: per adapter object
2574  * @pdev: PCI device struct
2575  *
2576  * Return: 0 for success, non-zero for failure.
2577  */
2578 static int
2579 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2580 {
2581         u64 required_mask, coherent_mask;
2582         struct sysinfo s;
2583
2584         if (ioc->is_mcpu_endpoint)
2585                 goto try_32bit;
2586
2587         required_mask = dma_get_required_mask(&pdev->dev);
2588         if (sizeof(dma_addr_t) == 4 || required_mask == 32)
2589                 goto try_32bit;
2590
2591         if (ioc->dma_mask)
2592                 coherent_mask = DMA_BIT_MASK(64);
2593         else
2594                 coherent_mask = DMA_BIT_MASK(32);
2595
2596         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) ||
2597             dma_set_coherent_mask(&pdev->dev, coherent_mask))
2598                 goto try_32bit;
2599
2600         ioc->base_add_sg_single = &_base_add_sg_single_64;
2601         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2602         ioc->dma_mask = 64;
2603         goto out;
2604
2605  try_32bit:
2606         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2607                 return -ENODEV;
2608
2609         ioc->base_add_sg_single = &_base_add_sg_single_32;
2610         ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2611         ioc->dma_mask = 32;
2612  out:
2613         si_meminfo(&s);
2614         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2615                  ioc->dma_mask, convert_to_kb(s.totalram));
2616
2617         return 0;
2618 }
2619
2620 static int
2621 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2622                                       struct pci_dev *pdev)
2623 {
2624         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2625                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2626                         return -ENODEV;
2627         }
2628         return 0;
2629 }
2630
2631 /**
2632  * _base_check_enable_msix - checks MSIX capabable.
2633  * @ioc: per adapter object
2634  *
2635  * Check to see if card is capable of MSIX, and set number
2636  * of available msix vectors
2637  */
2638 static int
2639 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2640 {
2641         int base;
2642         u16 message_control;
2643
2644         /* Check whether controller SAS2008 B0 controller,
2645          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2646          */
2647         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2648             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2649                 return -EINVAL;
2650         }
2651
2652         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2653         if (!base) {
2654                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2655                 return -EINVAL;
2656         }
2657
2658         /* get msix vector count */
2659         /* NUMA_IO not supported for older controllers */
2660         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2661             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2662             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2663             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2664             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2665             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2666             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2667                 ioc->msix_vector_count = 1;
2668         else {
2669                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2670                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2671         }
2672         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2673                                   ioc->msix_vector_count));
2674         return 0;
2675 }
2676
2677 /**
2678  * _base_free_irq - free irq
2679  * @ioc: per adapter object
2680  *
2681  * Freeing respective reply_queue from the list.
2682  */
2683 static void
2684 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2685 {
2686         struct adapter_reply_queue *reply_q, *next;
2687
2688         if (list_empty(&ioc->reply_queue_list))
2689                 return;
2690
2691         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2692                 list_del(&reply_q->list);
2693                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2694                          reply_q);
2695                 kfree(reply_q);
2696         }
2697 }
2698
2699 /**
2700  * _base_request_irq - request irq
2701  * @ioc: per adapter object
2702  * @index: msix index into vector table
2703  *
2704  * Inserting respective reply_queue into the list.
2705  */
2706 static int
2707 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2708 {
2709         struct pci_dev *pdev = ioc->pdev;
2710         struct adapter_reply_queue *reply_q;
2711         int r;
2712
2713         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2714         if (!reply_q) {
2715                 ioc_err(ioc, "unable to allocate memory %zu!\n",
2716                         sizeof(struct adapter_reply_queue));
2717                 return -ENOMEM;
2718         }
2719         reply_q->ioc = ioc;
2720         reply_q->msix_index = index;
2721
2722         atomic_set(&reply_q->busy, 0);
2723         if (ioc->msix_enable)
2724                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2725                     ioc->driver_name, ioc->id, index);
2726         else
2727                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2728                     ioc->driver_name, ioc->id);
2729         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2730                         IRQF_SHARED, reply_q->name, reply_q);
2731         if (r) {
2732                 pr_err("%s: unable to allocate interrupt %d!\n",
2733                        reply_q->name, pci_irq_vector(pdev, index));
2734                 kfree(reply_q);
2735                 return -EBUSY;
2736         }
2737
2738         INIT_LIST_HEAD(&reply_q->list);
2739         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2740         return 0;
2741 }
2742
2743 /**
2744  * _base_assign_reply_queues - assigning msix index for each cpu
2745  * @ioc: per adapter object
2746  *
2747  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2748  *
2749  * It would nice if we could call irq_set_affinity, however it is not
2750  * an exported symbol
2751  */
2752 static void
2753 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2754 {
2755         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2756         struct adapter_reply_queue *reply_q;
2757
2758         if (!_base_is_controller_msix_enabled(ioc))
2759                 return;
2760
2761         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2762
2763         nr_cpus = num_online_cpus();
2764         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2765                                                ioc->facts.MaxMSIxVectors);
2766         if (!nr_msix)
2767                 return;
2768
2769         if (smp_affinity_enable) {
2770                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2771                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2772                                                         reply_q->msix_index);
2773                         if (!mask) {
2774                                 ioc_warn(ioc, "no affinity for msi %x\n",
2775                                          reply_q->msix_index);
2776                                 continue;
2777                         }
2778
2779                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2780                                 if (cpu >= ioc->cpu_msix_table_sz)
2781                                         break;
2782                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2783                         }
2784                 }
2785                 return;
2786         }
2787         cpu = cpumask_first(cpu_online_mask);
2788
2789         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2790
2791                 unsigned int i, group = nr_cpus / nr_msix;
2792
2793                 if (cpu >= nr_cpus)
2794                         break;
2795
2796                 if (index < nr_cpus % nr_msix)
2797                         group++;
2798
2799                 for (i = 0 ; i < group ; i++) {
2800                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2801                         cpu = cpumask_next(cpu, cpu_online_mask);
2802                 }
2803                 index++;
2804         }
2805 }
2806
2807 /**
2808  * _base_disable_msix - disables msix
2809  * @ioc: per adapter object
2810  *
2811  */
2812 static void
2813 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2814 {
2815         if (!ioc->msix_enable)
2816                 return;
2817         pci_disable_msix(ioc->pdev);
2818         ioc->msix_enable = 0;
2819 }
2820
2821 /**
2822  * _base_enable_msix - enables msix, failback to io_apic
2823  * @ioc: per adapter object
2824  *
2825  */
2826 static int
2827 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2828 {
2829         int r;
2830         int i, local_max_msix_vectors;
2831         u8 try_msix = 0;
2832         unsigned int irq_flags = PCI_IRQ_MSIX;
2833
2834         if (msix_disable == -1 || msix_disable == 0)
2835                 try_msix = 1;
2836
2837         if (!try_msix)
2838                 goto try_ioapic;
2839
2840         if (_base_check_enable_msix(ioc) != 0)
2841                 goto try_ioapic;
2842
2843         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2844                 ioc->msix_vector_count);
2845
2846         ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n",
2847                  ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors);
2848
2849         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2850                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2851         else
2852                 local_max_msix_vectors = max_msix_vectors;
2853
2854         if (local_max_msix_vectors > 0)
2855                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2856                         ioc->reply_queue_count);
2857         else if (local_max_msix_vectors == 0)
2858                 goto try_ioapic;
2859
2860         if (ioc->msix_vector_count < ioc->cpu_count)
2861                 smp_affinity_enable = 0;
2862
2863         if (smp_affinity_enable)
2864                 irq_flags |= PCI_IRQ_AFFINITY;
2865
2866         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2867                                   irq_flags);
2868         if (r < 0) {
2869                 dfailprintk(ioc,
2870                             ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2871                                      r));
2872                 goto try_ioapic;
2873         }
2874
2875         ioc->msix_enable = 1;
2876         ioc->reply_queue_count = r;
2877         for (i = 0; i < ioc->reply_queue_count; i++) {
2878                 r = _base_request_irq(ioc, i);
2879                 if (r) {
2880                         _base_free_irq(ioc);
2881                         _base_disable_msix(ioc);
2882                         goto try_ioapic;
2883                 }
2884         }
2885
2886         return 0;
2887
2888 /* failback to io_apic interrupt routing */
2889  try_ioapic:
2890
2891         ioc->reply_queue_count = 1;
2892         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2893         if (r < 0) {
2894                 dfailprintk(ioc,
2895                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2896                                      r));
2897         } else
2898                 r = _base_request_irq(ioc, 0);
2899
2900         return r;
2901 }
2902
2903 /**
2904  * mpt3sas_base_unmap_resources - free controller resources
2905  * @ioc: per adapter object
2906  */
2907 static void
2908 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2909 {
2910         struct pci_dev *pdev = ioc->pdev;
2911
2912         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
2913
2914         _base_free_irq(ioc);
2915         _base_disable_msix(ioc);
2916
2917         kfree(ioc->replyPostRegisterIndex);
2918         ioc->replyPostRegisterIndex = NULL;
2919
2920
2921         if (ioc->chip_phys) {
2922                 iounmap(ioc->chip);
2923                 ioc->chip_phys = 0;
2924         }
2925
2926         if (pci_is_enabled(pdev)) {
2927                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2928                 pci_disable_pcie_error_reporting(pdev);
2929                 pci_disable_device(pdev);
2930         }
2931 }
2932
2933 /**
2934  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2935  * @ioc: per adapter object
2936  *
2937  * Return: 0 for success, non-zero for failure.
2938  */
2939 int
2940 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2941 {
2942         struct pci_dev *pdev = ioc->pdev;
2943         u32 memap_sz;
2944         u32 pio_sz;
2945         int i, r = 0;
2946         u64 pio_chip = 0;
2947         phys_addr_t chip_phys = 0;
2948         struct adapter_reply_queue *reply_q;
2949
2950         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
2951
2952         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2953         if (pci_enable_device_mem(pdev)) {
2954                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
2955                 ioc->bars = 0;
2956                 return -ENODEV;
2957         }
2958
2959
2960         if (pci_request_selected_regions(pdev, ioc->bars,
2961             ioc->driver_name)) {
2962                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
2963                 ioc->bars = 0;
2964                 r = -ENODEV;
2965                 goto out_fail;
2966         }
2967
2968 /* AER (Advanced Error Reporting) hooks */
2969         pci_enable_pcie_error_reporting(pdev);
2970
2971         pci_set_master(pdev);
2972
2973
2974         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2975                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
2976                 r = -ENODEV;
2977                 goto out_fail;
2978         }
2979
2980         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2981              (!memap_sz || !pio_sz); i++) {
2982                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2983                         if (pio_sz)
2984                                 continue;
2985                         pio_chip = (u64)pci_resource_start(pdev, i);
2986                         pio_sz = pci_resource_len(pdev, i);
2987                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2988                         if (memap_sz)
2989                                 continue;
2990                         ioc->chip_phys = pci_resource_start(pdev, i);
2991                         chip_phys = ioc->chip_phys;
2992                         memap_sz = pci_resource_len(pdev, i);
2993                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2994                 }
2995         }
2996
2997         if (ioc->chip == NULL) {
2998                 ioc_err(ioc, "unable to map adapter memory! or resource not found\n");
2999                 r = -EINVAL;
3000                 goto out_fail;
3001         }
3002
3003         _base_mask_interrupts(ioc);
3004
3005         r = _base_get_ioc_facts(ioc);
3006         if (r)
3007                 goto out_fail;
3008
3009         if (!ioc->rdpq_array_enable_assigned) {
3010                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3011                 ioc->rdpq_array_enable_assigned = 1;
3012         }
3013
3014         r = _base_enable_msix(ioc);
3015         if (r)
3016                 goto out_fail;
3017
3018         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3019          * revision HBAs and also only when reply queue count is greater than 8
3020          */
3021         if (ioc->combined_reply_queue) {
3022                 /* Determine the Supplemental Reply Post Host Index Registers
3023                  * Addresse. Supplemental Reply Post Host Index Registers
3024                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3025                  * each register is at offset bytes of
3026                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3027                  */
3028                 ioc->replyPostRegisterIndex = kcalloc(
3029                      ioc->combined_reply_index_count,
3030                      sizeof(resource_size_t *), GFP_KERNEL);
3031                 if (!ioc->replyPostRegisterIndex) {
3032                         dfailprintk(ioc,
3033                                     ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n"));
3034                         r = -ENOMEM;
3035                         goto out_fail;
3036                 }
3037
3038                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3039                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3040                              ((u8 __force *)&ioc->chip->Doorbell +
3041                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3042                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3043                 }
3044         }
3045
3046         if (ioc->is_warpdrive) {
3047                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3048                     &ioc->chip->ReplyPostHostIndex;
3049
3050                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3051                         ioc->reply_post_host_index[i] =
3052                         (resource_size_t __iomem *)
3053                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3054                         * 4)));
3055         }
3056
3057         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3058                 pr_info("%s: %s enabled: IRQ %d\n",
3059                         reply_q->name,
3060                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3061                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3062
3063         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3064                  &chip_phys, ioc->chip, memap_sz);
3065         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3066                  (unsigned long long)pio_chip, pio_sz);
3067
3068         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3069         pci_save_state(pdev);
3070         return 0;
3071
3072  out_fail:
3073         mpt3sas_base_unmap_resources(ioc);
3074         return r;
3075 }
3076
3077 /**
3078  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3079  * @ioc: per adapter object
3080  * @smid: system request message index(smid zero is invalid)
3081  *
3082  * Return: virt pointer to message frame.
3083  */
3084 void *
3085 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3086 {
3087         return (void *)(ioc->request + (smid * ioc->request_sz));
3088 }
3089
3090 /**
3091  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3092  * @ioc: per adapter object
3093  * @smid: system request message index
3094  *
3095  * Return: virt pointer to sense buffer.
3096  */
3097 void *
3098 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3099 {
3100         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3101 }
3102
3103 /**
3104  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3105  * @ioc: per adapter object
3106  * @smid: system request message index
3107  *
3108  * Return: phys pointer to the low 32bit address of the sense buffer.
3109  */
3110 __le32
3111 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3112 {
3113         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3114             SCSI_SENSE_BUFFERSIZE));
3115 }
3116
3117 /**
3118  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3119  * @ioc: per adapter object
3120  * @smid: system request message index
3121  *
3122  * Return: virt pointer to a PCIe SGL.
3123  */
3124 void *
3125 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3126 {
3127         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3128 }
3129
3130 /**
3131  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3132  * @ioc: per adapter object
3133  * @smid: system request message index
3134  *
3135  * Return: phys pointer to the address of the PCIe buffer.
3136  */
3137 dma_addr_t
3138 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3139 {
3140         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3141 }
3142
3143 /**
3144  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3145  * @ioc: per adapter object
3146  * @phys_addr: lower 32 physical addr of the reply
3147  *
3148  * Converts 32bit lower physical addr into a virt address.
3149  */
3150 void *
3151 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3152 {
3153         if (!phys_addr)
3154                 return NULL;
3155         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3156 }
3157
3158 static inline u8
3159 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3160 {
3161         return ioc->cpu_msix_table[raw_smp_processor_id()];
3162 }
3163
3164 /**
3165  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3166  * @ioc: per adapter object
3167  * @cb_idx: callback index
3168  *
3169  * Return: smid (zero is invalid)
3170  */
3171 u16
3172 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3173 {
3174         unsigned long flags;
3175         struct request_tracker *request;
3176         u16 smid;
3177
3178         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3179         if (list_empty(&ioc->internal_free_list)) {
3180                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3181                 ioc_err(ioc, "%s: smid not available\n", __func__);
3182                 return 0;
3183         }
3184
3185         request = list_entry(ioc->internal_free_list.next,
3186             struct request_tracker, tracker_list);
3187         request->cb_idx = cb_idx;
3188         smid = request->smid;
3189         list_del(&request->tracker_list);
3190         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3191         return smid;
3192 }
3193
3194 /**
3195  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3196  * @ioc: per adapter object
3197  * @cb_idx: callback index
3198  * @scmd: pointer to scsi command object
3199  *
3200  * Return: smid (zero is invalid)
3201  */
3202 u16
3203 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3204         struct scsi_cmnd *scmd)
3205 {
3206         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3207         unsigned int tag = scmd->request->tag;
3208         u16 smid;
3209
3210         smid = tag + 1;
3211         request->cb_idx = cb_idx;
3212         request->msix_io = _base_get_msix_index(ioc);
3213         request->smid = smid;
3214         INIT_LIST_HEAD(&request->chain_list);
3215         return smid;
3216 }
3217
3218 /**
3219  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3220  * @ioc: per adapter object
3221  * @cb_idx: callback index
3222  *
3223  * Return: smid (zero is invalid)
3224  */
3225 u16
3226 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3227 {
3228         unsigned long flags;
3229         struct request_tracker *request;
3230         u16 smid;
3231
3232         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3233         if (list_empty(&ioc->hpr_free_list)) {
3234                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3235                 return 0;
3236         }
3237
3238         request = list_entry(ioc->hpr_free_list.next,
3239             struct request_tracker, tracker_list);
3240         request->cb_idx = cb_idx;
3241         smid = request->smid;
3242         list_del(&request->tracker_list);
3243         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3244         return smid;
3245 }
3246
3247 static void
3248 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3249 {
3250         /*
3251          * See _wait_for_commands_to_complete() call with regards to this code.
3252          */
3253         if (ioc->shost_recovery && ioc->pending_io_count) {
3254                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3255                 if (ioc->pending_io_count == 0)
3256                         wake_up(&ioc->reset_wq);
3257         }
3258 }
3259
3260 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3261                            struct scsiio_tracker *st)
3262 {
3263         if (WARN_ON(st->smid == 0))
3264                 return;
3265         st->cb_idx = 0xFF;
3266         st->direct_io = 0;
3267         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3268         st->smid = 0;
3269 }
3270
3271 /**
3272  * mpt3sas_base_free_smid - put smid back on free_list
3273  * @ioc: per adapter object
3274  * @smid: system request message index
3275  */
3276 void
3277 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3278 {
3279         unsigned long flags;
3280         int i;
3281
3282         if (smid < ioc->hi_priority_smid) {
3283                 struct scsiio_tracker *st;
3284
3285                 st = _get_st_from_smid(ioc, smid);
3286                 if (!st) {
3287                         _base_recovery_check(ioc);
3288                         return;
3289                 }
3290                 mpt3sas_base_clear_st(ioc, st);
3291                 _base_recovery_check(ioc);
3292                 return;
3293         }
3294
3295         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3296         if (smid < ioc->internal_smid) {
3297                 /* hi-priority */
3298                 i = smid - ioc->hi_priority_smid;
3299                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3300                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3301         } else if (smid <= ioc->hba_queue_depth) {
3302                 /* internal queue */
3303                 i = smid - ioc->internal_smid;
3304                 ioc->internal_lookup[i].cb_idx = 0xFF;
3305                 list_add(&ioc->internal_lookup[i].tracker_list,
3306                     &ioc->internal_free_list);
3307         }
3308         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3309 }
3310
3311 /**
3312  * _base_mpi_ep_writeq - 32 bit write to MMIO
3313  * @b: data payload
3314  * @addr: address in MMIO space
3315  * @writeq_lock: spin lock
3316  *
3317  * This special handling for MPI EP to take care of 32 bit
3318  * environment where its not quarenteed to send the entire word
3319  * in one transfer.
3320  */
3321 static inline void
3322 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3323                                         spinlock_t *writeq_lock)
3324 {
3325         unsigned long flags;
3326
3327         spin_lock_irqsave(writeq_lock, flags);
3328         __raw_writel((u32)(b), addr);
3329         __raw_writel((u32)(b >> 32), (addr + 4));
3330         mmiowb();
3331         spin_unlock_irqrestore(writeq_lock, flags);
3332 }
3333
3334 /**
3335  * _base_writeq - 64 bit write to MMIO
3336  * @b: data payload
3337  * @addr: address in MMIO space
3338  * @writeq_lock: spin lock
3339  *
3340  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3341  * care of 32 bit environment where its not quarenteed to send the entire word
3342  * in one transfer.
3343  */
3344 #if defined(writeq) && defined(CONFIG_64BIT)
3345 static inline void
3346 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3347 {
3348         wmb();
3349         __raw_writeq(b, addr);
3350         barrier();
3351 }
3352 #else
3353 static inline void
3354 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3355 {
3356         _base_mpi_ep_writeq(b, addr, writeq_lock);
3357 }
3358 #endif
3359
3360 /**
3361  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3362  * @ioc: per adapter object
3363  * @smid: system request message index
3364  * @handle: device handle
3365  */
3366 static void
3367 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3368 {
3369         Mpi2RequestDescriptorUnion_t descriptor;
3370         u64 *request = (u64 *)&descriptor;
3371         void *mpi_req_iomem;
3372         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3373
3374         _clone_sg_entries(ioc, (void *) mfp, smid);
3375         mpi_req_iomem = (void __force *)ioc->chip +
3376                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3377         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3378                                         ioc->request_sz);
3379         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3380         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3381         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3382         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3383         descriptor.SCSIIO.LMID = 0;
3384         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3385             &ioc->scsi_lookup_lock);
3386 }
3387
3388 /**
3389  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3390  * @ioc: per adapter object
3391  * @smid: system request message index
3392  * @handle: device handle
3393  */
3394 static void
3395 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3396 {
3397         Mpi2RequestDescriptorUnion_t descriptor;
3398         u64 *request = (u64 *)&descriptor;
3399
3400
3401         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3402         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3403         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3404         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3405         descriptor.SCSIIO.LMID = 0;
3406         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3407             &ioc->scsi_lookup_lock);
3408 }
3409
3410 /**
3411  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3412  * @ioc: per adapter object
3413  * @smid: system request message index
3414  * @handle: device handle
3415  */
3416 void
3417 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3418         u16 handle)
3419 {
3420         Mpi2RequestDescriptorUnion_t descriptor;
3421         u64 *request = (u64 *)&descriptor;
3422
3423         descriptor.SCSIIO.RequestFlags =
3424             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3425         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3426         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3427         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3428         descriptor.SCSIIO.LMID = 0;
3429         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3430             &ioc->scsi_lookup_lock);
3431 }
3432
3433 /**
3434  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3435  * @ioc: per adapter object
3436  * @smid: system request message index
3437  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3438  */
3439 void
3440 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3441         u16 msix_task)
3442 {
3443         Mpi2RequestDescriptorUnion_t descriptor;
3444         void *mpi_req_iomem;
3445         u64 *request;
3446
3447         if (ioc->is_mcpu_endpoint) {
3448                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3449
3450                 /* TBD 256 is offset within sys register. */
3451                 mpi_req_iomem = (void __force *)ioc->chip
3452                                         + MPI_FRAME_START_OFFSET
3453                                         + (smid * ioc->request_sz);
3454                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3455                                                         ioc->request_sz);
3456         }
3457
3458         request = (u64 *)&descriptor;
3459
3460         descriptor.HighPriority.RequestFlags =
3461             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3462         descriptor.HighPriority.MSIxIndex =  msix_task;
3463         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3464         descriptor.HighPriority.LMID = 0;
3465         descriptor.HighPriority.Reserved1 = 0;
3466         if (ioc->is_mcpu_endpoint)
3467                 _base_mpi_ep_writeq(*request,
3468                                 &ioc->chip->RequestDescriptorPostLow,
3469                                 &ioc->scsi_lookup_lock);
3470         else
3471                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3472                     &ioc->scsi_lookup_lock);
3473 }
3474
3475 /**
3476  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3477  *  firmware
3478  * @ioc: per adapter object
3479  * @smid: system request message index
3480  */
3481 void
3482 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3483 {
3484         Mpi2RequestDescriptorUnion_t descriptor;
3485         u64 *request = (u64 *)&descriptor;
3486
3487         descriptor.Default.RequestFlags =
3488                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3489         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3490         descriptor.Default.SMID = cpu_to_le16(smid);
3491         descriptor.Default.LMID = 0;
3492         descriptor.Default.DescriptorTypeDependent = 0;
3493         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3494             &ioc->scsi_lookup_lock);
3495 }
3496
3497 /**
3498  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3499  * @ioc: per adapter object
3500  * @smid: system request message index
3501  */
3502 void
3503 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3504 {
3505         Mpi2RequestDescriptorUnion_t descriptor;
3506         void *mpi_req_iomem;
3507         u64 *request;
3508
3509         if (ioc->is_mcpu_endpoint) {
3510                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3511
3512                 _clone_sg_entries(ioc, (void *) mfp, smid);
3513                 /* TBD 256 is offset within sys register */
3514                 mpi_req_iomem = (void __force *)ioc->chip +
3515                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3516                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3517                                                         ioc->request_sz);
3518         }
3519         request = (u64 *)&descriptor;
3520         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3521         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3522         descriptor.Default.SMID = cpu_to_le16(smid);
3523         descriptor.Default.LMID = 0;
3524         descriptor.Default.DescriptorTypeDependent = 0;
3525         if (ioc->is_mcpu_endpoint)
3526                 _base_mpi_ep_writeq(*request,
3527                                 &ioc->chip->RequestDescriptorPostLow,
3528                                 &ioc->scsi_lookup_lock);
3529         else
3530                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3531                                 &ioc->scsi_lookup_lock);
3532 }
3533
3534 /**
3535  * _base_display_OEMs_branding - Display branding string
3536  * @ioc: per adapter object
3537  */
3538 static void
3539 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3540 {
3541         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3542                 return;
3543
3544         switch (ioc->pdev->subsystem_vendor) {
3545         case PCI_VENDOR_ID_INTEL:
3546                 switch (ioc->pdev->device) {
3547                 case MPI2_MFGPAGE_DEVID_SAS2008:
3548                         switch (ioc->pdev->subsystem_device) {
3549                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
3550                                 ioc_info(ioc, "%s\n",
3551                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
3552                                 break;
3553                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
3554                                 ioc_info(ioc, "%s\n",
3555                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
3556                                 break;
3557                         case MPT2SAS_INTEL_SSD910_SSDID:
3558                                 ioc_info(ioc, "%s\n",
3559                                          MPT2SAS_INTEL_SSD910_BRANDING);
3560                                 break;
3561                         default:
3562                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3563                                          ioc->pdev->subsystem_device);
3564                                 break;
3565                         }
3566                         break;
3567                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3568                         switch (ioc->pdev->subsystem_device) {
3569                         case MPT2SAS_INTEL_RS25GB008_SSDID:
3570                                 ioc_info(ioc, "%s\n",
3571                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
3572                                 break;
3573                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
3574                                 ioc_info(ioc, "%s\n",
3575                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
3576                                 break;
3577                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
3578                                 ioc_info(ioc, "%s\n",
3579                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
3580                                 break;
3581                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
3582                                 ioc_info(ioc, "%s\n",
3583                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
3584                                 break;
3585                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
3586                                 ioc_info(ioc, "%s\n",
3587                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
3588                                 break;
3589                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
3590                                 ioc_info(ioc, "%s\n",
3591                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
3592                                 break;
3593                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
3594                                 ioc_info(ioc, "%s\n",
3595                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
3596                                 break;
3597                         default:
3598                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3599                                          ioc->pdev->subsystem_device);
3600                                 break;
3601                         }
3602                         break;
3603                 case MPI25_MFGPAGE_DEVID_SAS3008:
3604                         switch (ioc->pdev->subsystem_device) {
3605                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
3606                                 ioc_info(ioc, "%s\n",
3607                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
3608                                 break;
3609
3610                         case MPT3SAS_INTEL_RS3GC008_SSDID:
3611                                 ioc_info(ioc, "%s\n",
3612                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
3613                                 break;
3614                         case MPT3SAS_INTEL_RS3FC044_SSDID:
3615                                 ioc_info(ioc, "%s\n",
3616                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
3617                                 break;
3618                         case MPT3SAS_INTEL_RS3UC080_SSDID:
3619                                 ioc_info(ioc, "%s\n",
3620                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
3621                                 break;
3622                         default:
3623                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3624                                          ioc->pdev->subsystem_device);
3625                                 break;
3626                         }
3627                         break;
3628                 default:
3629                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3630                                  ioc->pdev->subsystem_device);
3631                         break;
3632                 }
3633                 break;
3634         case PCI_VENDOR_ID_DELL:
3635                 switch (ioc->pdev->device) {
3636                 case MPI2_MFGPAGE_DEVID_SAS2008:
3637                         switch (ioc->pdev->subsystem_device) {
3638                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3639                                 ioc_info(ioc, "%s\n",
3640                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3641                                 break;
3642                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3643                                 ioc_info(ioc, "%s\n",
3644                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3645                                 break;
3646                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3647                                 ioc_info(ioc, "%s\n",
3648                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3649                                 break;
3650                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3651                                 ioc_info(ioc, "%s\n",
3652                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3653                                 break;
3654                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3655                                 ioc_info(ioc, "%s\n",
3656                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3657                                 break;
3658                         case MPT2SAS_DELL_PERC_H200_SSDID:
3659                                 ioc_info(ioc, "%s\n",
3660                                          MPT2SAS_DELL_PERC_H200_BRANDING);
3661                                 break;
3662                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3663                                 ioc_info(ioc, "%s\n",
3664                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3665                                 break;
3666                         default:
3667                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3668                                          ioc->pdev->subsystem_device);
3669                                 break;
3670                         }
3671                         break;
3672                 case MPI25_MFGPAGE_DEVID_SAS3008:
3673                         switch (ioc->pdev->subsystem_device) {
3674                         case MPT3SAS_DELL_12G_HBA_SSDID:
3675                                 ioc_info(ioc, "%s\n",
3676                                          MPT3SAS_DELL_12G_HBA_BRANDING);
3677                                 break;
3678                         default:
3679                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3680                                          ioc->pdev->subsystem_device);
3681                                 break;
3682                         }
3683                         break;
3684                 default:
3685                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
3686                                  ioc->pdev->subsystem_device);
3687                         break;
3688                 }
3689                 break;
3690         case PCI_VENDOR_ID_CISCO:
3691                 switch (ioc->pdev->device) {
3692                 case MPI25_MFGPAGE_DEVID_SAS3008:
3693                         switch (ioc->pdev->subsystem_device) {
3694                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3695                                 ioc_info(ioc, "%s\n",
3696                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3697                                 break;
3698                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3699                                 ioc_info(ioc, "%s\n",
3700                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3701                                 break;
3702                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3703                                 ioc_info(ioc, "%s\n",
3704                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3705                                 break;
3706                         default:
3707                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3708                                          ioc->pdev->subsystem_device);
3709                                 break;
3710                         }
3711                         break;
3712                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3713                         switch (ioc->pdev->subsystem_device) {
3714                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3715                                 ioc_info(ioc, "%s\n",
3716                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3717                                 break;
3718                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3719                                 ioc_info(ioc, "%s\n",
3720                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
3721                                 break;
3722                         default:
3723                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3724                                          ioc->pdev->subsystem_device);
3725                                 break;
3726                         }
3727                         break;
3728                 default:
3729                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3730                                  ioc->pdev->subsystem_device);
3731                         break;
3732                 }
3733                 break;
3734         case MPT2SAS_HP_3PAR_SSVID:
3735                 switch (ioc->pdev->device) {
3736                 case MPI2_MFGPAGE_DEVID_SAS2004:
3737                         switch (ioc->pdev->subsystem_device) {
3738                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3739                                 ioc_info(ioc, "%s\n",
3740                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3741                                 break;
3742                         default:
3743                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3744                                          ioc->pdev->subsystem_device);
3745                                 break;
3746                         }
3747                         break;
3748                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3749                         switch (ioc->pdev->subsystem_device) {
3750                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3751                                 ioc_info(ioc, "%s\n",
3752                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3753                                 break;
3754                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3755                                 ioc_info(ioc, "%s\n",
3756                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3757                                 break;
3758                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3759                                 ioc_info(ioc, "%s\n",
3760                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3761                                 break;
3762                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3763                                 ioc_info(ioc, "%s\n",
3764                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3765                                 break;
3766                         default:
3767                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3768                                          ioc->pdev->subsystem_device);
3769                                 break;
3770                         }
3771                         break;
3772                 default:
3773                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
3774                                  ioc->pdev->subsystem_device);
3775                         break;
3776                 }
3777         default:
3778                 break;
3779         }
3780 }
3781
3782 /**
3783  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3784  *                              version from FW Image Header.
3785  * @ioc: per adapter object
3786  *
3787  * Return: 0 for success, non-zero for failure.
3788  */
3789         static int
3790 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3791 {
3792         Mpi2FWImageHeader_t *FWImgHdr;
3793         Mpi25FWUploadRequest_t *mpi_request;
3794         Mpi2FWUploadReply_t mpi_reply;
3795         int r = 0;
3796         void *fwpkg_data = NULL;
3797         dma_addr_t fwpkg_data_dma;
3798         u16 smid, ioc_status;
3799         size_t data_length;
3800
3801         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3802
3803         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3804                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
3805                 return -EAGAIN;
3806         }
3807
3808         data_length = sizeof(Mpi2FWImageHeader_t);
3809         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
3810                         &fwpkg_data_dma, GFP_KERNEL);
3811         if (!fwpkg_data) {
3812                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
3813                         __FILE__, __LINE__, __func__);
3814                 return -ENOMEM;
3815         }
3816
3817         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3818         if (!smid) {
3819                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
3820                 r = -EAGAIN;
3821                 goto out;
3822         }
3823
3824         ioc->base_cmds.status = MPT3_CMD_PENDING;
3825         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3826         ioc->base_cmds.smid = smid;
3827         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3828         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3829         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3830         mpi_request->ImageSize = cpu_to_le32(data_length);
3831         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3832                         data_length);
3833         init_completion(&ioc->base_cmds.done);
3834         mpt3sas_base_put_smid_default(ioc, smid);
3835         /* Wait for 15 seconds */
3836         wait_for_completion_timeout(&ioc->base_cmds.done,
3837                         FW_IMG_HDR_READ_TIMEOUT*HZ);
3838         ioc_info(ioc, "%s: complete\n", __func__);
3839         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3840                 ioc_err(ioc, "%s: timeout\n", __func__);
3841                 _debug_dump_mf(mpi_request,
3842                                 sizeof(Mpi25FWUploadRequest_t)/4);
3843                 r = -ETIME;
3844         } else {
3845                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3846                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3847                         memcpy(&mpi_reply, ioc->base_cmds.reply,
3848                                         sizeof(Mpi2FWUploadReply_t));
3849                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3850                                                 MPI2_IOCSTATUS_MASK;
3851                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3852                                 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3853                                 if (FWImgHdr->PackageVersion.Word) {
3854                                         ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n",
3855                                                  FWImgHdr->PackageVersion.Struct.Major,
3856                                                  FWImgHdr->PackageVersion.Struct.Minor,
3857                                                  FWImgHdr->PackageVersion.Struct.Unit,
3858                                                  FWImgHdr->PackageVersion.Struct.Dev);
3859                                 }
3860                         } else {
3861                                 _debug_dump_mf(&mpi_reply,
3862                                                 sizeof(Mpi2FWUploadReply_t)/4);
3863                         }
3864                 }
3865         }
3866         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3867 out:
3868         if (fwpkg_data)
3869                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
3870                                 fwpkg_data_dma);
3871         return r;
3872 }
3873
3874 /**
3875  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3876  * @ioc: per adapter object
3877  */
3878 static void
3879 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3880 {
3881         int i = 0;
3882         char desc[16];
3883         u32 iounit_pg1_flags;
3884         u32 bios_version;
3885
3886         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3887         strncpy(desc, ioc->manu_pg0.ChipName, 16);
3888         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3889                  desc,
3890                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3891                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3892                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3893                  ioc->facts.FWVersion.Word & 0x000000FF,
3894                  ioc->pdev->revision,
3895                  (bios_version & 0xFF000000) >> 24,
3896                  (bios_version & 0x00FF0000) >> 16,
3897                  (bios_version & 0x0000FF00) >> 8,
3898                  bios_version & 0x000000FF);
3899
3900         _base_display_OEMs_branding(ioc);
3901
3902         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3903                 pr_info("%sNVMe", i ? "," : "");
3904                 i++;
3905         }
3906
3907         ioc_info(ioc, "Protocol=(");
3908
3909         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3910                 pr_cont("Initiator");
3911                 i++;
3912         }
3913
3914         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3915                 pr_cont("%sTarget", i ? "," : "");
3916                 i++;
3917         }
3918
3919         i = 0;
3920         pr_cont("), Capabilities=(");
3921
3922         if (!ioc->hide_ir_msg) {
3923                 if (ioc->facts.IOCCapabilities &
3924                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3925                         pr_cont("Raid");
3926                         i++;
3927                 }
3928         }
3929
3930         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3931                 pr_cont("%sTLR", i ? "," : "");
3932                 i++;
3933         }
3934
3935         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3936                 pr_cont("%sMulticast", i ? "," : "");
3937                 i++;
3938         }
3939
3940         if (ioc->facts.IOCCapabilities &
3941             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3942                 pr_cont("%sBIDI Target", i ? "," : "");
3943                 i++;
3944         }
3945
3946         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3947                 pr_cont("%sEEDP", i ? "," : "");
3948                 i++;
3949         }
3950
3951         if (ioc->facts.IOCCapabilities &
3952             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3953                 pr_cont("%sSnapshot Buffer", i ? "," : "");
3954                 i++;
3955         }
3956
3957         if (ioc->facts.IOCCapabilities &
3958             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3959                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
3960                 i++;
3961         }
3962
3963         if (ioc->facts.IOCCapabilities &
3964             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3965                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
3966                 i++;
3967         }
3968
3969         if (ioc->facts.IOCCapabilities &
3970             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3971                 pr_cont("%sTask Set Full", i ? "," : "");
3972                 i++;
3973         }
3974
3975         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3976         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3977                 pr_cont("%sNCQ", i ? "," : "");
3978                 i++;
3979         }
3980
3981         pr_cont(")\n");
3982 }
3983
3984 /**
3985  * mpt3sas_base_update_missing_delay - change the missing delay timers
3986  * @ioc: per adapter object
3987  * @device_missing_delay: amount of time till device is reported missing
3988  * @io_missing_delay: interval IO is returned when there is a missing device
3989  *
3990  * Passed on the command line, this function will modify the device missing
3991  * delay, as well as the io missing delay. This should be called at driver
3992  * load time.
3993  */
3994 void
3995 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3996         u16 device_missing_delay, u8 io_missing_delay)
3997 {
3998         u16 dmd, dmd_new, dmd_orignal;
3999         u8 io_missing_delay_original;
4000         u16 sz;
4001         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4002         Mpi2ConfigReply_t mpi_reply;
4003         u8 num_phys = 0;
4004         u16 ioc_status;
4005
4006         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4007         if (!num_phys)
4008                 return;
4009
4010         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4011             sizeof(Mpi2SasIOUnit1PhyData_t));
4012         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4013         if (!sas_iounit_pg1) {
4014                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4015                         __FILE__, __LINE__, __func__);
4016                 goto out;
4017         }
4018         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4019             sas_iounit_pg1, sz))) {
4020                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4021                         __FILE__, __LINE__, __func__);
4022                 goto out;
4023         }
4024         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4025             MPI2_IOCSTATUS_MASK;
4026         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4027                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4028                         __FILE__, __LINE__, __func__);
4029                 goto out;
4030         }
4031
4032         /* device missing delay */
4033         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4034         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4035                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4036         else
4037                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4038         dmd_orignal = dmd;
4039         if (device_missing_delay > 0x7F) {
4040                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4041                     device_missing_delay;
4042                 dmd = dmd / 16;
4043                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4044         } else
4045                 dmd = device_missing_delay;
4046         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4047
4048         /* io missing delay */
4049         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4050         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4051
4052         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4053             sz)) {
4054                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4055                         dmd_new = (dmd &
4056                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4057                 else
4058                         dmd_new =
4059                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4060                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4061                          dmd_orignal, dmd_new);
4062                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4063                          io_missing_delay_original,
4064                          io_missing_delay);
4065                 ioc->device_missing_delay = dmd_new;
4066                 ioc->io_missing_delay = io_missing_delay;
4067         }
4068
4069 out:
4070         kfree(sas_iounit_pg1);
4071 }
4072
4073 /**
4074  * _base_static_config_pages - static start of day config pages
4075  * @ioc: per adapter object
4076  */
4077 static void
4078 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4079 {
4080         Mpi2ConfigReply_t mpi_reply;
4081         u32 iounit_pg1_flags;
4082
4083         ioc->nvme_abort_timeout = 30;
4084         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4085         if (ioc->ir_firmware)
4086                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4087                     &ioc->manu_pg10);
4088
4089         /*
4090          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4091          * flag unset in NVDATA.
4092          */
4093         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4094         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4095                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4096                     ioc->name);
4097                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4098                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4099                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4100                     &ioc->manu_pg11);
4101         }
4102         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4103                 ioc->tm_custom_handling = 1;
4104         else {
4105                 ioc->tm_custom_handling = 0;
4106                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4107                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4108                 else if (ioc->manu_pg11.NVMeAbortTO >
4109                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4110                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4111                 else
4112                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4113         }
4114
4115         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4116         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4117         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4118         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4119         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4120         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4121         _base_display_ioc_capabilities(ioc);
4122
4123         /*
4124          * Enable task_set_full handling in iounit_pg1 when the
4125          * facts capabilities indicate that its supported.
4126          */
4127         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4128         if ((ioc->facts.IOCCapabilities &
4129             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4130                 iounit_pg1_flags &=
4131                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4132         else
4133                 iounit_pg1_flags |=
4134                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4135         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4136         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4137
4138         if (ioc->iounit_pg8.NumSensors)
4139                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4140 }
4141
4142 /**
4143  * mpt3sas_free_enclosure_list - release memory
4144  * @ioc: per adapter object
4145  *
4146  * Free memory allocated during encloure add.
4147  */
4148 void
4149 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4150 {
4151         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4152
4153         /* Free enclosure list */
4154         list_for_each_entry_safe(enclosure_dev,
4155                         enclosure_dev_next, &ioc->enclosure_list, list) {
4156                 list_del(&enclosure_dev->list);
4157                 kfree(enclosure_dev);
4158         }
4159 }
4160
4161 /**
4162  * _base_release_memory_pools - release memory
4163  * @ioc: per adapter object
4164  *
4165  * Free memory allocated from _base_allocate_memory_pools.
4166  */
4167 static void
4168 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4169 {
4170         int i = 0;
4171         int j = 0;
4172         struct chain_tracker *ct;
4173         struct reply_post_struct *rps;
4174
4175         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4176
4177         if (ioc->request) {
4178                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4179                     ioc->request,  ioc->request_dma);
4180                 dexitprintk(ioc,
4181                             ioc_info(ioc, "request_pool(0x%p): free\n",
4182                                      ioc->request));
4183                 ioc->request = NULL;
4184         }
4185
4186         if (ioc->sense) {
4187                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4188                 dma_pool_destroy(ioc->sense_dma_pool);
4189                 dexitprintk(ioc,
4190                             ioc_info(ioc, "sense_pool(0x%p): free\n",
4191                                      ioc->sense));
4192                 ioc->sense = NULL;
4193         }
4194
4195         if (ioc->reply) {
4196                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4197                 dma_pool_destroy(ioc->reply_dma_pool);
4198                 dexitprintk(ioc,
4199                             ioc_info(ioc, "reply_pool(0x%p): free\n",
4200                                      ioc->reply));
4201                 ioc->reply = NULL;
4202         }
4203
4204         if (ioc->reply_free) {
4205                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4206                     ioc->reply_free_dma);
4207                 dma_pool_destroy(ioc->reply_free_dma_pool);
4208                 dexitprintk(ioc,
4209                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4210                                      ioc->reply_free));
4211                 ioc->reply_free = NULL;
4212         }
4213
4214         if (ioc->reply_post) {
4215                 do {
4216                         rps = &ioc->reply_post[i];
4217                         if (rps->reply_post_free) {
4218                                 dma_pool_free(
4219                                     ioc->reply_post_free_dma_pool,
4220                                     rps->reply_post_free,
4221                                     rps->reply_post_free_dma);
4222                                 dexitprintk(ioc,
4223                                             ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4224                                                      rps->reply_post_free));
4225                                 rps->reply_post_free = NULL;
4226                         }
4227                 } while (ioc->rdpq_array_enable &&
4228                            (++i < ioc->reply_queue_count));
4229                 if (ioc->reply_post_free_array &&
4230                         ioc->rdpq_array_enable) {
4231                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4232                                 ioc->reply_post_free_array,
4233                                 ioc->reply_post_free_array_dma);
4234                         ioc->reply_post_free_array = NULL;
4235                 }
4236                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4237                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4238                 kfree(ioc->reply_post);
4239         }
4240
4241         if (ioc->pcie_sgl_dma_pool) {
4242                 for (i = 0; i < ioc->scsiio_depth; i++) {
4243                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4244                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4245                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4246                 }
4247                 if (ioc->pcie_sgl_dma_pool)
4248                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4249         }
4250
4251         if (ioc->config_page) {
4252                 dexitprintk(ioc,
4253                             ioc_info(ioc, "config_page(0x%p): free\n",
4254                                      ioc->config_page));
4255                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4256                     ioc->config_page, ioc->config_page_dma);
4257         }
4258
4259         kfree(ioc->hpr_lookup);
4260         kfree(ioc->internal_lookup);
4261         if (ioc->chain_lookup) {
4262                 for (i = 0; i < ioc->scsiio_depth; i++) {
4263                         for (j = ioc->chains_per_prp_buffer;
4264                             j < ioc->chains_needed_per_io; j++) {
4265                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4266                                 if (ct && ct->chain_buffer)
4267                                         dma_pool_free(ioc->chain_dma_pool,
4268                                                 ct->chain_buffer,
4269                                                 ct->chain_buffer_dma);
4270                         }
4271                         kfree(ioc->chain_lookup[i].chains_per_smid);
4272                 }
4273                 dma_pool_destroy(ioc->chain_dma_pool);
4274                 kfree(ioc->chain_lookup);
4275                 ioc->chain_lookup = NULL;
4276         }
4277 }
4278
4279 /**
4280  * is_MSB_are_same - checks whether all reply queues in a set are
4281  *      having same upper 32bits in their base memory address.
4282  * @reply_pool_start_address: Base address of a reply queue set
4283  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4284  *
4285  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4286  * memory address, else 0.
4287  */
4288
4289 static int
4290 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4291 {
4292         long reply_pool_end_address;
4293
4294         reply_pool_end_address = reply_pool_start_address + pool_sz;
4295
4296         if (upper_32_bits(reply_pool_start_address) ==
4297                 upper_32_bits(reply_pool_end_address))
4298                 return 1;
4299         else
4300                 return 0;
4301 }
4302
4303 /**
4304  * _base_allocate_memory_pools - allocate start of day memory pools
4305  * @ioc: per adapter object
4306  *
4307  * Return: 0 success, anything else error.
4308  */
4309 static int
4310 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4311 {
4312         struct mpt3sas_facts *facts;
4313         u16 max_sge_elements;
4314         u16 chains_needed_per_io;
4315         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4316         u32 retry_sz;
4317         u16 max_request_credit, nvme_blocks_needed;
4318         unsigned short sg_tablesize;
4319         u16 sge_size;
4320         int i, j;
4321         struct chain_tracker *ct;
4322
4323         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4324
4325
4326         retry_sz = 0;
4327         facts = &ioc->facts;
4328
4329         /* command line tunables for max sgl entries */
4330         if (max_sgl_entries != -1)
4331                 sg_tablesize = max_sgl_entries;
4332         else {
4333                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4334                         sg_tablesize = MPT2SAS_SG_DEPTH;
4335                 else
4336                         sg_tablesize = MPT3SAS_SG_DEPTH;
4337         }
4338
4339         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4340         if (reset_devices)
4341                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4342                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4343
4344         if (ioc->is_mcpu_endpoint)
4345                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4346         else {
4347                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4348                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4349                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4350                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4351                                         SG_MAX_SEGMENTS);
4352                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4353                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4354                 }
4355                 ioc->shost->sg_tablesize = sg_tablesize;
4356         }
4357
4358         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4359                 (facts->RequestCredit / 4));
4360         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4361                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4362                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4363                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4364                                 facts->RequestCredit);
4365                         return -ENOMEM;
4366                 }
4367                 ioc->internal_depth = 10;
4368         }
4369
4370         ioc->hi_priority_depth = ioc->internal_depth - (5);
4371         /* command line tunables  for max controller queue depth */
4372         if (max_queue_depth != -1 && max_queue_depth != 0) {
4373                 max_request_credit = min_t(u16, max_queue_depth +
4374                         ioc->internal_depth, facts->RequestCredit);
4375                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4376                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4377         } else if (reset_devices)
4378                 max_request_credit = min_t(u16, facts->RequestCredit,
4379                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4380         else
4381                 max_request_credit = min_t(u16, facts->RequestCredit,
4382                     MAX_HBA_QUEUE_DEPTH);
4383
4384         /* Firmware maintains additional facts->HighPriorityCredit number of
4385          * credits for HiPriprity Request messages, so hba queue depth will be
4386          * sum of max_request_credit and high priority queue depth.
4387          */
4388         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4389
4390         /* request frame size */
4391         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4392
4393         /* reply frame size */
4394         ioc->reply_sz = facts->ReplyFrameSize * 4;
4395
4396         /* chain segment size */
4397         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4398                 if (facts->IOCMaxChainSegmentSize)
4399                         ioc->chain_segment_sz =
4400                                         facts->IOCMaxChainSegmentSize *
4401                                         MAX_CHAIN_ELEMT_SZ;
4402                 else
4403                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4404                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4405                                                     MAX_CHAIN_ELEMT_SZ;
4406         } else
4407                 ioc->chain_segment_sz = ioc->request_sz;
4408
4409         /* calculate the max scatter element size */
4410         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4411
4412  retry_allocation:
4413         total_sz = 0;
4414         /* calculate number of sg elements left over in the 1st frame */
4415         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4416             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4417         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4418
4419         /* now do the same for a chain buffer */
4420         max_sge_elements = ioc->chain_segment_sz - sge_size;
4421         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4422
4423         /*
4424          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4425          */
4426         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4427            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4428             + 1;
4429         if (chains_needed_per_io > facts->MaxChainDepth) {
4430                 chains_needed_per_io = facts->MaxChainDepth;
4431                 ioc->shost->sg_tablesize = min_t(u16,
4432                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4433                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4434         }
4435         ioc->chains_needed_per_io = chains_needed_per_io;
4436
4437         /* reply free queue sizing - taking into account for 64 FW events */
4438         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4439
4440         /* mCPU manage single counters for simplicity */
4441         if (ioc->is_mcpu_endpoint)
4442                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4443         else {
4444                 /* calculate reply descriptor post queue depth */
4445                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4446                         ioc->reply_free_queue_depth +  1;
4447                 /* align the reply post queue on the next 16 count boundary */
4448                 if (ioc->reply_post_queue_depth % 16)
4449                         ioc->reply_post_queue_depth += 16 -
4450                                 (ioc->reply_post_queue_depth % 16);
4451         }
4452
4453         if (ioc->reply_post_queue_depth >
4454             facts->MaxReplyDescriptorPostQueueDepth) {
4455                 ioc->reply_post_queue_depth =
4456                                 facts->MaxReplyDescriptorPostQueueDepth -
4457                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4458                 ioc->hba_queue_depth =
4459                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4460                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4461         }
4462
4463         dinitprintk(ioc,
4464                     ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4465                              ioc->max_sges_in_main_message,
4466                              ioc->max_sges_in_chain_message,
4467                              ioc->shost->sg_tablesize,
4468                              ioc->chains_needed_per_io));
4469
4470         /* reply post queue, 16 byte align */
4471         reply_post_free_sz = ioc->reply_post_queue_depth *
4472             sizeof(Mpi2DefaultReplyDescriptor_t);
4473
4474         sz = reply_post_free_sz;
4475         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4476                 sz *= ioc->reply_queue_count;
4477
4478         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4479             (ioc->reply_queue_count):1,
4480             sizeof(struct reply_post_struct), GFP_KERNEL);
4481
4482         if (!ioc->reply_post) {
4483                 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
4484                 goto out;
4485         }
4486         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4487             &ioc->pdev->dev, sz, 16, 0);
4488         if (!ioc->reply_post_free_dma_pool) {
4489                 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
4490                 goto out;
4491         }
4492         i = 0;
4493         do {
4494                 ioc->reply_post[i].reply_post_free =
4495                     dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4496                     GFP_KERNEL,
4497                     &ioc->reply_post[i].reply_post_free_dma);
4498                 if (!ioc->reply_post[i].reply_post_free) {
4499                         ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
4500                         goto out;
4501                 }
4502                 dinitprintk(ioc,
4503                             ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4504                                      ioc->reply_post[i].reply_post_free,
4505                                      ioc->reply_post_queue_depth,
4506                                      8, sz / 1024));
4507                 dinitprintk(ioc,
4508                             ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
4509                                      (u64)ioc->reply_post[i].reply_post_free_dma));
4510                 total_sz += sz;
4511         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4512
4513         if (ioc->dma_mask == 64) {
4514                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4515                         ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
4516                                  pci_name(ioc->pdev));
4517                         goto out;
4518                 }
4519         }
4520
4521         ioc->scsiio_depth = ioc->hba_queue_depth -
4522             ioc->hi_priority_depth - ioc->internal_depth;
4523
4524         /* set the scsi host can_queue depth
4525          * with some internal commands that could be outstanding
4526          */
4527         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4528         dinitprintk(ioc,
4529                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
4530                              ioc->shost->can_queue));
4531
4532
4533         /* contiguous pool for request and chains, 16 byte align, one extra "
4534          * "frame for smid=0
4535          */
4536         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4537         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4538
4539         /* hi-priority queue */
4540         sz += (ioc->hi_priority_depth * ioc->request_sz);
4541
4542         /* internal queue */
4543         sz += (ioc->internal_depth * ioc->request_sz);
4544
4545         ioc->request_dma_sz = sz;
4546         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
4547                         &ioc->request_dma, GFP_KERNEL);
4548         if (!ioc->request) {
4549                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
4550                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
4551                         ioc->request_sz, sz / 1024);
4552                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4553                         goto out;
4554                 retry_sz = 64;
4555                 ioc->hba_queue_depth -= retry_sz;
4556                 _base_release_memory_pools(ioc);
4557                 goto retry_allocation;
4558         }
4559
4560         if (retry_sz)
4561                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
4562                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
4563                         ioc->request_sz, sz / 1024);
4564
4565         /* hi-priority queue */
4566         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4567             ioc->request_sz);
4568         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4569             ioc->request_sz);
4570
4571         /* internal queue */
4572         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4573             ioc->request_sz);
4574         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4575             ioc->request_sz);
4576
4577         dinitprintk(ioc,
4578                     ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4579                              ioc->request, ioc->hba_queue_depth,
4580                              ioc->request_sz,
4581                              (ioc->hba_queue_depth * ioc->request_sz) / 1024));
4582
4583         dinitprintk(ioc,
4584                     ioc_info(ioc, "request pool: dma(0x%llx)\n",
4585                              (unsigned long long)ioc->request_dma));
4586         total_sz += sz;
4587
4588         dinitprintk(ioc,
4589                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
4590                              ioc->request, ioc->scsiio_depth));
4591
4592         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4593         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4594         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4595         if (!ioc->chain_lookup) {
4596                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
4597                 goto out;
4598         }
4599
4600         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4601         for (i = 0; i < ioc->scsiio_depth; i++) {
4602                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4603                 if (!ioc->chain_lookup[i].chains_per_smid) {
4604                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
4605                         goto out;
4606                 }
4607         }
4608
4609         /* initialize hi-priority queue smid's */
4610         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4611             sizeof(struct request_tracker), GFP_KERNEL);
4612         if (!ioc->hpr_lookup) {
4613                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
4614                 goto out;
4615         }
4616         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4617         dinitprintk(ioc,
4618                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4619                              ioc->hi_priority,
4620                              ioc->hi_priority_depth, ioc->hi_priority_smid));
4621
4622         /* initialize internal queue smid's */
4623         ioc->internal_lookup = kcalloc(ioc->internal_depth,
4624             sizeof(struct request_tracker), GFP_KERNEL);
4625         if (!ioc->internal_lookup) {
4626                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
4627                 goto out;
4628         }
4629         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4630         dinitprintk(ioc,
4631                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
4632                              ioc->internal,
4633                              ioc->internal_depth, ioc->internal_smid));
4634         /*
4635          * The number of NVMe page sized blocks needed is:
4636          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4637          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4638          * that is placed in the main message frame.  8 is the size of each PRP
4639          * entry or PRP list pointer entry.  8 is subtracted from page_size
4640          * because of the PRP list pointer entry at the end of a page, so this
4641          * is not counted as a PRP entry.  The 1 added page is a round up.
4642          *
4643          * To avoid allocation failures due to the amount of memory that could
4644          * be required for NVMe PRP's, only each set of NVMe blocks will be
4645          * contiguous, so a new set is allocated for each possible I/O.
4646          */
4647         ioc->chains_per_prp_buffer = 0;
4648         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4649                 nvme_blocks_needed =
4650                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4651                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4652                 nvme_blocks_needed++;
4653
4654                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4655                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4656                 if (!ioc->pcie_sg_lookup) {
4657                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
4658                         goto out;
4659                 }
4660                 sz = nvme_blocks_needed * ioc->page_size;
4661                 ioc->pcie_sgl_dma_pool =
4662                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4663                 if (!ioc->pcie_sgl_dma_pool) {
4664                         ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
4665                         goto out;
4666                 }
4667
4668                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4669                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4670                                                 ioc->chains_needed_per_io);
4671
4672                 for (i = 0; i < ioc->scsiio_depth; i++) {
4673                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4674                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4675                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4676                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4677                                 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
4678                                 goto out;
4679                         }
4680                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4681                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4682                                 ct->chain_buffer =
4683                                     ioc->pcie_sg_lookup[i].pcie_sgl +
4684                                     (j * ioc->chain_segment_sz);
4685                                 ct->chain_buffer_dma =
4686                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4687                                     (j * ioc->chain_segment_sz);
4688                         }
4689                 }
4690
4691                 dinitprintk(ioc,
4692                             ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
4693                                      ioc->scsiio_depth, sz,
4694                                      (sz * ioc->scsiio_depth) / 1024));
4695                 dinitprintk(ioc,
4696                             ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
4697                                      ioc->chains_per_prp_buffer));
4698                 total_sz += sz * ioc->scsiio_depth;
4699         }
4700
4701         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4702             ioc->chain_segment_sz, 16, 0);
4703         if (!ioc->chain_dma_pool) {
4704                 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
4705                 goto out;
4706         }
4707         for (i = 0; i < ioc->scsiio_depth; i++) {
4708                 for (j = ioc->chains_per_prp_buffer;
4709                                 j < ioc->chains_needed_per_io; j++) {
4710                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
4711                         ct->chain_buffer = dma_pool_alloc(
4712                                         ioc->chain_dma_pool, GFP_KERNEL,
4713                                         &ct->chain_buffer_dma);
4714                         if (!ct->chain_buffer) {
4715                                 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
4716                                 _base_release_memory_pools(ioc);
4717                                 goto out;
4718                         }
4719                 }
4720                 total_sz += ioc->chain_segment_sz;
4721         }
4722
4723         dinitprintk(ioc,
4724                     ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4725                              ioc->chain_depth, ioc->chain_segment_sz,
4726                              (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
4727
4728         /* sense buffers, 4 byte align */
4729         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4730         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4731                                               4, 0);
4732         if (!ioc->sense_dma_pool) {
4733                 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
4734                 goto out;
4735         }
4736         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4737             &ioc->sense_dma);
4738         if (!ioc->sense) {
4739                 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
4740                 goto out;
4741         }
4742         /* sense buffer requires to be in same 4 gb region.
4743          * Below function will check the same.
4744          * In case of failure, new pci pool will be created with updated
4745          * alignment. Older allocation and pool will be destroyed.
4746          * Alignment will be used such a way that next allocation if
4747          * success, will always meet same 4gb region requirement.
4748          * Actual requirement is not alignment, but we need start and end of
4749          * DMA address must have same upper 32 bit address.
4750          */
4751         if (!is_MSB_are_same((long)ioc->sense, sz)) {
4752                 //Release Sense pool & Reallocate
4753                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4754                 dma_pool_destroy(ioc->sense_dma_pool);
4755                 ioc->sense = NULL;
4756
4757                 ioc->sense_dma_pool =
4758                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4759                                                 roundup_pow_of_two(sz), 0);
4760                 if (!ioc->sense_dma_pool) {
4761                         ioc_err(ioc, "sense pool: pci_pool_create failed\n");
4762                         goto out;
4763                 }
4764                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4765                                 &ioc->sense_dma);
4766                 if (!ioc->sense) {
4767                         ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
4768                         goto out;
4769                 }
4770         }
4771         dinitprintk(ioc,
4772                     ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4773                              ioc->sense, ioc->scsiio_depth,
4774                              SCSI_SENSE_BUFFERSIZE, sz / 1024));
4775         dinitprintk(ioc,
4776                     ioc_info(ioc, "sense_dma(0x%llx)\n",
4777                              (unsigned long long)ioc->sense_dma));
4778         total_sz += sz;
4779
4780         /* reply pool, 4 byte align */
4781         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4782         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4783                                               4, 0);
4784         if (!ioc->reply_dma_pool) {
4785                 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
4786                 goto out;
4787         }
4788         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4789             &ioc->reply_dma);
4790         if (!ioc->reply) {
4791                 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
4792                 goto out;
4793         }
4794         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4795         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4796         dinitprintk(ioc,
4797                     ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4798                              ioc->reply, ioc->reply_free_queue_depth,
4799                              ioc->reply_sz, sz / 1024));
4800         dinitprintk(ioc,
4801                     ioc_info(ioc, "reply_dma(0x%llx)\n",
4802                              (unsigned long long)ioc->reply_dma));
4803         total_sz += sz;
4804
4805         /* reply free queue, 16 byte align */
4806         sz = ioc->reply_free_queue_depth * 4;
4807         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4808             &ioc->pdev->dev, sz, 16, 0);
4809         if (!ioc->reply_free_dma_pool) {
4810                 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
4811                 goto out;
4812         }
4813         ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4814             &ioc->reply_free_dma);
4815         if (!ioc->reply_free) {
4816                 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
4817                 goto out;
4818         }
4819         dinitprintk(ioc,
4820                     ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4821                              ioc->reply_free, ioc->reply_free_queue_depth,
4822                              4, sz / 1024));
4823         dinitprintk(ioc,
4824                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
4825                              (unsigned long long)ioc->reply_free_dma));
4826         total_sz += sz;
4827
4828         if (ioc->rdpq_array_enable) {
4829                 reply_post_free_array_sz = ioc->reply_queue_count *
4830                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4831                 ioc->reply_post_free_array_dma_pool =
4832                     dma_pool_create("reply_post_free_array pool",
4833                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4834                 if (!ioc->reply_post_free_array_dma_pool) {
4835                         dinitprintk(ioc,
4836                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
4837                         goto out;
4838                 }
4839                 ioc->reply_post_free_array =
4840                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4841                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
4842                 if (!ioc->reply_post_free_array) {
4843                         dinitprintk(ioc,
4844                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
4845                         goto out;
4846                 }
4847         }
4848         ioc->config_page_sz = 512;
4849         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
4850                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
4851         if (!ioc->config_page) {
4852                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
4853                 goto out;
4854         }
4855         dinitprintk(ioc,
4856                     ioc_info(ioc, "config page(0x%p): size(%d)\n",
4857                              ioc->config_page, ioc->config_page_sz));
4858         dinitprintk(ioc,
4859                     ioc_info(ioc, "config_page_dma(0x%llx)\n",
4860                              (unsigned long long)ioc->config_page_dma));
4861         total_sz += ioc->config_page_sz;
4862
4863         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
4864                  total_sz / 1024);
4865         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4866                  ioc->shost->can_queue, facts->RequestCredit);
4867         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
4868                  ioc->shost->sg_tablesize);
4869         return 0;
4870
4871  out:
4872         return -ENOMEM;
4873 }
4874
4875 /**
4876  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4877  * @ioc: Pointer to MPT_ADAPTER structure
4878  * @cooked: Request raw or cooked IOC state
4879  *
4880  * Return: all IOC Doorbell register bits if cooked==0, else just the
4881  * Doorbell bits in MPI_IOC_STATE_MASK.
4882  */
4883 u32
4884 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4885 {
4886         u32 s, sc;
4887
4888         s = ioc->base_readl(&ioc->chip->Doorbell);
4889         sc = s & MPI2_IOC_STATE_MASK;
4890         return cooked ? sc : s;
4891 }
4892
4893 /**
4894  * _base_wait_on_iocstate - waiting on a particular ioc state
4895  * @ioc: ?
4896  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4897  * @timeout: timeout in second
4898  *
4899  * Return: 0 for success, non-zero for failure.
4900  */
4901 static int
4902 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4903 {
4904         u32 count, cntdn;
4905         u32 current_state;
4906
4907         count = 0;
4908         cntdn = 1000 * timeout;
4909         do {
4910                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
4911                 if (current_state == ioc_state)
4912                         return 0;
4913                 if (count && current_state == MPI2_IOC_STATE_FAULT)
4914                         break;
4915
4916                 usleep_range(1000, 1500);
4917                 count++;
4918         } while (--cntdn);
4919
4920         return current_state;
4921 }
4922
4923 /**
4924  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4925  * a write to the doorbell)
4926  * @ioc: per adapter object
4927  *
4928  * Return: 0 for success, non-zero for failure.
4929  *
4930  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4931  */
4932 static int
4933 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4934
4935 static int
4936 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4937 {
4938         u32 cntdn, count;
4939         u32 int_status;
4940
4941         count = 0;
4942         cntdn = 1000 * timeout;
4943         do {
4944                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
4945                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4946                         dhsprintk(ioc,
4947                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
4948                                            __func__, count, timeout));
4949                         return 0;
4950                 }
4951
4952                 usleep_range(1000, 1500);
4953                 count++;
4954         } while (--cntdn);
4955
4956         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4957                 __func__, count, int_status);
4958         return -EFAULT;
4959 }
4960
4961 static int
4962 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4963 {
4964         u32 cntdn, count;
4965         u32 int_status;
4966
4967         count = 0;
4968         cntdn = 2000 * timeout;
4969         do {
4970                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
4971                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4972                         dhsprintk(ioc,
4973                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
4974                                            __func__, count, timeout));
4975                         return 0;
4976                 }
4977
4978                 udelay(500);
4979                 count++;
4980         } while (--cntdn);
4981
4982         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4983                 __func__, count, int_status);
4984         return -EFAULT;
4985
4986 }
4987
4988 /**
4989  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4990  * @ioc: per adapter object
4991  * @timeout: timeout in second
4992  *
4993  * Return: 0 for success, non-zero for failure.
4994  *
4995  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
4996  * doorbell.
4997  */
4998 static int
4999 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5000 {
5001         u32 cntdn, count;
5002         u32 int_status;
5003         u32 doorbell;
5004
5005         count = 0;
5006         cntdn = 1000 * timeout;
5007         do {
5008                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5009                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5010                         dhsprintk(ioc,
5011                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5012                                            __func__, count, timeout));
5013                         return 0;
5014                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5015                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5016                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5017                             MPI2_IOC_STATE_FAULT) {
5018                                 mpt3sas_base_fault_info(ioc , doorbell);
5019                                 return -EFAULT;
5020                         }
5021                 } else if (int_status == 0xFFFFFFFF)
5022                         goto out;
5023
5024                 usleep_range(1000, 1500);
5025                 count++;
5026         } while (--cntdn);
5027
5028  out:
5029         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5030                 __func__, count, int_status);
5031         return -EFAULT;
5032 }
5033
5034 /**
5035  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5036  * @ioc: per adapter object
5037  * @timeout: timeout in second
5038  *
5039  * Return: 0 for success, non-zero for failure.
5040  */
5041 static int
5042 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5043 {
5044         u32 cntdn, count;
5045         u32 doorbell_reg;
5046
5047         count = 0;
5048         cntdn = 1000 * timeout;
5049         do {
5050                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5051                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5052                         dhsprintk(ioc,
5053                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5054                                            __func__, count, timeout));
5055                         return 0;
5056                 }
5057
5058                 usleep_range(1000, 1500);
5059                 count++;
5060         } while (--cntdn);
5061
5062         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5063                 __func__, count, doorbell_reg);
5064         return -EFAULT;
5065 }
5066
5067 /**
5068  * _base_send_ioc_reset - send doorbell reset
5069  * @ioc: per adapter object
5070  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5071  * @timeout: timeout in second
5072  *
5073  * Return: 0 for success, non-zero for failure.
5074  */
5075 static int
5076 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5077 {
5078         u32 ioc_state;
5079         int r = 0;
5080
5081         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5082                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5083                 return -EFAULT;
5084         }
5085
5086         if (!(ioc->facts.IOCCapabilities &
5087            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5088                 return -EFAULT;
5089
5090         ioc_info(ioc, "sending message unit reset !!\n");
5091
5092         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5093             &ioc->chip->Doorbell);
5094         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5095                 r = -EFAULT;
5096                 goto out;
5097         }
5098         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5099         if (ioc_state) {
5100                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5101                         __func__, ioc_state);
5102                 r = -EFAULT;
5103                 goto out;
5104         }
5105  out:
5106         ioc_info(ioc, "message unit reset: %s\n",
5107                  r == 0 ? "SUCCESS" : "FAILED");
5108         return r;
5109 }
5110
5111 /**
5112  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5113  * @ioc: per adapter object
5114  * @wait_count: timeout in seconds
5115  *
5116  * Return: Waits up to timeout seconds for the IOC to
5117  * become operational. Returns 0 if IOC is present
5118  * and operational; otherwise returns -EFAULT.
5119  */
5120
5121 int
5122 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5123 {
5124         int wait_state_count = 0;
5125         u32 ioc_state;
5126
5127         do {
5128                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5129                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5130                         break;
5131                 ssleep(1);
5132                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5133                                 __func__, ++wait_state_count);
5134         } while (--timeout);
5135         if (!timeout) {
5136                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5137                 return -EFAULT;
5138         }
5139         if (wait_state_count)
5140                 ioc_info(ioc, "ioc is operational\n");
5141         return 0;
5142 }
5143
5144 /**
5145  * _base_handshake_req_reply_wait - send request thru doorbell interface
5146  * @ioc: per adapter object
5147  * @request_bytes: request length
5148  * @request: pointer having request payload
5149  * @reply_bytes: reply length
5150  * @reply: pointer to reply payload
5151  * @timeout: timeout in second
5152  *
5153  * Return: 0 for success, non-zero for failure.
5154  */
5155 static int
5156 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5157         u32 *request, int reply_bytes, u16 *reply, int timeout)
5158 {
5159         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5160         int i;
5161         u8 failed;
5162         __le32 *mfp;
5163
5164         /* make sure doorbell is not in use */
5165         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5166                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5167                 return -EFAULT;
5168         }
5169
5170         /* clear pending doorbell interrupts from previous state changes */
5171         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5172             MPI2_HIS_IOC2SYS_DB_STATUS)
5173                 writel(0, &ioc->chip->HostInterruptStatus);
5174
5175         /* send message to ioc */
5176         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5177             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5178             &ioc->chip->Doorbell);
5179
5180         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5181                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5182                         __LINE__);
5183                 return -EFAULT;
5184         }
5185         writel(0, &ioc->chip->HostInterruptStatus);
5186
5187         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5188                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5189                         __LINE__);
5190                 return -EFAULT;
5191         }
5192
5193         /* send message 32-bits at a time */
5194         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5195                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5196                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5197                         failed = 1;
5198         }
5199
5200         if (failed) {
5201                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5202                         __LINE__);
5203                 return -EFAULT;
5204         }
5205
5206         /* now wait for the reply */
5207         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5208                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5209                         __LINE__);
5210                 return -EFAULT;
5211         }
5212
5213         /* read the first two 16-bits, it gives the total length of the reply */
5214         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5215             & MPI2_DOORBELL_DATA_MASK);
5216         writel(0, &ioc->chip->HostInterruptStatus);
5217         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5218                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5219                         __LINE__);
5220                 return -EFAULT;
5221         }
5222         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5223             & MPI2_DOORBELL_DATA_MASK);
5224         writel(0, &ioc->chip->HostInterruptStatus);
5225
5226         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5227                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5228                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5229                                 __LINE__);
5230                         return -EFAULT;
5231                 }
5232                 if (i >=  reply_bytes/2) /* overflow case */
5233                         ioc->base_readl(&ioc->chip->Doorbell);
5234                 else
5235                         reply[i] = le16_to_cpu(
5236                             ioc->base_readl(&ioc->chip->Doorbell)
5237                             & MPI2_DOORBELL_DATA_MASK);
5238                 writel(0, &ioc->chip->HostInterruptStatus);
5239         }
5240
5241         _base_wait_for_doorbell_int(ioc, 5);
5242         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5243                 dhsprintk(ioc,
5244                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
5245                                    __LINE__));
5246         }
5247         writel(0, &ioc->chip->HostInterruptStatus);
5248
5249         if (ioc->logging_level & MPT_DEBUG_INIT) {
5250                 mfp = (__le32 *)reply;
5251                 pr_info("\toffset:data\n");
5252                 for (i = 0; i < reply_bytes/4; i++)
5253                         pr_info("\t[0x%02x]:%08x\n", i*4,
5254                             le32_to_cpu(mfp[i]));
5255         }
5256         return 0;
5257 }
5258
5259 /**
5260  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5261  * @ioc: per adapter object
5262  * @mpi_reply: the reply payload from FW
5263  * @mpi_request: the request payload sent to FW
5264  *
5265  * The SAS IO Unit Control Request message allows the host to perform low-level
5266  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5267  * to obtain the IOC assigned device handles for a device if it has other
5268  * identifying information about the device, in addition allows the host to
5269  * remove IOC resources associated with the device.
5270  *
5271  * Return: 0 for success, non-zero for failure.
5272  */
5273 int
5274 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5275         Mpi2SasIoUnitControlReply_t *mpi_reply,
5276         Mpi2SasIoUnitControlRequest_t *mpi_request)
5277 {
5278         u16 smid;
5279         u8 issue_reset = 0;
5280         int rc;
5281         void *request;
5282
5283         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5284
5285         mutex_lock(&ioc->base_cmds.mutex);
5286
5287         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5288                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5289                 rc = -EAGAIN;
5290                 goto out;
5291         }
5292
5293         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5294         if (rc)
5295                 goto out;
5296
5297         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5298         if (!smid) {
5299                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5300                 rc = -EAGAIN;
5301                 goto out;
5302         }
5303
5304         rc = 0;
5305         ioc->base_cmds.status = MPT3_CMD_PENDING;
5306         request = mpt3sas_base_get_msg_frame(ioc, smid);
5307         ioc->base_cmds.smid = smid;
5308         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5309         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5310             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5311                 ioc->ioc_link_reset_in_progress = 1;
5312         init_completion(&ioc->base_cmds.done);
5313         mpt3sas_base_put_smid_default(ioc, smid);
5314         wait_for_completion_timeout(&ioc->base_cmds.done,
5315             msecs_to_jiffies(10000));
5316         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5317             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5318             ioc->ioc_link_reset_in_progress)
5319                 ioc->ioc_link_reset_in_progress = 0;
5320         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5321                 issue_reset =
5322                         mpt3sas_base_check_cmd_timeout(ioc,
5323                                 ioc->base_cmds.status, mpi_request,
5324                                 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5325                 goto issue_host_reset;
5326         }
5327         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5328                 memcpy(mpi_reply, ioc->base_cmds.reply,
5329                     sizeof(Mpi2SasIoUnitControlReply_t));
5330         else
5331                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5332         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5333         goto out;
5334
5335  issue_host_reset:
5336         if (issue_reset)
5337                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5338         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5339         rc = -EFAULT;
5340  out:
5341         mutex_unlock(&ioc->base_cmds.mutex);
5342         return rc;
5343 }
5344
5345 /**
5346  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5347  * @ioc: per adapter object
5348  * @mpi_reply: the reply payload from FW
5349  * @mpi_request: the request payload sent to FW
5350  *
5351  * The SCSI Enclosure Processor request message causes the IOC to
5352  * communicate with SES devices to control LED status signals.
5353  *
5354  * Return: 0 for success, non-zero for failure.
5355  */
5356 int
5357 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5358         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5359 {
5360         u16 smid;
5361         u8 issue_reset = 0;
5362         int rc;
5363         void *request;
5364
5365         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5366
5367         mutex_lock(&ioc->base_cmds.mutex);
5368
5369         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5370                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5371                 rc = -EAGAIN;
5372                 goto out;
5373         }
5374
5375         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5376         if (rc)
5377                 goto out;
5378
5379         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5380         if (!smid) {
5381                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5382                 rc = -EAGAIN;
5383                 goto out;
5384         }
5385
5386         rc = 0;
5387         ioc->base_cmds.status = MPT3_CMD_PENDING;
5388         request = mpt3sas_base_get_msg_frame(ioc, smid);
5389         ioc->base_cmds.smid = smid;
5390         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5391         init_completion(&ioc->base_cmds.done);
5392         mpt3sas_base_put_smid_default(ioc, smid);
5393         wait_for_completion_timeout(&ioc->base_cmds.done,
5394             msecs_to_jiffies(10000));
5395         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5396                 issue_reset =
5397                         mpt3sas_base_check_cmd_timeout(ioc,
5398                                 ioc->base_cmds.status, mpi_request,
5399                                 sizeof(Mpi2SepRequest_t)/4);
5400                 goto issue_host_reset;
5401         }
5402         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5403                 memcpy(mpi_reply, ioc->base_cmds.reply,
5404                     sizeof(Mpi2SepReply_t));
5405         else
5406                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5407         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5408         goto out;
5409
5410  issue_host_reset:
5411         if (issue_reset)
5412                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5413         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5414         rc = -EFAULT;
5415  out:
5416         mutex_unlock(&ioc->base_cmds.mutex);
5417         return rc;
5418 }
5419
5420 /**
5421  * _base_get_port_facts - obtain port facts reply and save in ioc
5422  * @ioc: per adapter object
5423  * @port: ?
5424  *
5425  * Return: 0 for success, non-zero for failure.
5426  */
5427 static int
5428 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5429 {
5430         Mpi2PortFactsRequest_t mpi_request;
5431         Mpi2PortFactsReply_t mpi_reply;
5432         struct mpt3sas_port_facts *pfacts;
5433         int mpi_reply_sz, mpi_request_sz, r;
5434
5435         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5436
5437         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5438         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5439         memset(&mpi_request, 0, mpi_request_sz);
5440         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5441         mpi_request.PortNumber = port;
5442         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5443             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5444
5445         if (r != 0) {
5446                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5447                 return r;
5448         }
5449
5450         pfacts = &ioc->pfacts[port];
5451         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5452         pfacts->PortNumber = mpi_reply.PortNumber;
5453         pfacts->VP_ID = mpi_reply.VP_ID;
5454         pfacts->VF_ID = mpi_reply.VF_ID;
5455         pfacts->MaxPostedCmdBuffers =
5456             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5457
5458         return 0;
5459 }
5460
5461 /**
5462  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5463  * @ioc: per adapter object
5464  * @timeout:
5465  *
5466  * Return: 0 for success, non-zero for failure.
5467  */
5468 static int
5469 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5470 {
5471         u32 ioc_state;
5472         int rc;
5473
5474         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5475
5476         if (ioc->pci_error_recovery) {
5477                 dfailprintk(ioc,
5478                             ioc_info(ioc, "%s: host in pci error recovery\n",
5479                                      __func__));
5480                 return -EFAULT;
5481         }
5482
5483         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5484         dhsprintk(ioc,
5485                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
5486                            __func__, ioc_state));
5487
5488         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5489             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5490                 return 0;
5491
5492         if (ioc_state & MPI2_DOORBELL_USED) {
5493                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
5494                 goto issue_diag_reset;
5495         }
5496
5497         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5498                 mpt3sas_base_fault_info(ioc, ioc_state &
5499                     MPI2_DOORBELL_DATA_MASK);
5500                 goto issue_diag_reset;
5501         }
5502
5503         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5504         if (ioc_state) {
5505                 dfailprintk(ioc,
5506                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5507                                      __func__, ioc_state));
5508                 return -EFAULT;
5509         }
5510
5511  issue_diag_reset:
5512         rc = _base_diag_reset(ioc);
5513         return rc;
5514 }
5515
5516 /**
5517  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5518  * @ioc: per adapter object
5519  *
5520  * Return: 0 for success, non-zero for failure.
5521  */
5522 static int
5523 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5524 {
5525         Mpi2IOCFactsRequest_t mpi_request;
5526         Mpi2IOCFactsReply_t mpi_reply;
5527         struct mpt3sas_facts *facts;
5528         int mpi_reply_sz, mpi_request_sz, r;
5529
5530         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5531
5532         r = _base_wait_for_iocstate(ioc, 10);
5533         if (r) {
5534                 dfailprintk(ioc,
5535                             ioc_info(ioc, "%s: failed getting to correct state\n",
5536                                      __func__));
5537                 return r;
5538         }
5539         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5540         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5541         memset(&mpi_request, 0, mpi_request_sz);
5542         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5543         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5544             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5545
5546         if (r != 0) {
5547                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5548                 return r;
5549         }
5550
5551         facts = &ioc->facts;
5552         memset(facts, 0, sizeof(struct mpt3sas_facts));
5553         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5554         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5555         facts->VP_ID = mpi_reply.VP_ID;
5556         facts->VF_ID = mpi_reply.VF_ID;
5557         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5558         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5559         facts->WhoInit = mpi_reply.WhoInit;
5560         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5561         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5562         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
5563             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
5564                 ioc->combined_reply_queue = 0;
5565         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5566         facts->MaxReplyDescriptorPostQueueDepth =
5567             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5568         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5569         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5570         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5571                 ioc->ir_firmware = 1;
5572         if ((facts->IOCCapabilities &
5573               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5574                 ioc->rdpq_array_capable = 1;
5575         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5576         facts->IOCRequestFrameSize =
5577             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5578         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5579                 facts->IOCMaxChainSegmentSize =
5580                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5581         }
5582         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5583         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5584         ioc->shost->max_id = -1;
5585         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5586         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5587         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5588         facts->HighPriorityCredit =
5589             le16_to_cpu(mpi_reply.HighPriorityCredit);
5590         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5591         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5592         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5593
5594         /*
5595          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5596          */
5597         ioc->page_size = 1 << facts->CurrentHostPageSize;
5598         if (ioc->page_size == 1) {
5599                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
5600                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5601         }
5602         dinitprintk(ioc,
5603                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
5604                              facts->CurrentHostPageSize));
5605
5606         dinitprintk(ioc,
5607                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
5608                              facts->RequestCredit, facts->MaxChainDepth));
5609         dinitprintk(ioc,
5610                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
5611                              facts->IOCRequestFrameSize * 4,
5612                              facts->ReplyFrameSize * 4));
5613         return 0;
5614 }
5615
5616 /**
5617  * _base_send_ioc_init - send ioc_init to firmware
5618  * @ioc: per adapter object
5619  *
5620  * Return: 0 for success, non-zero for failure.
5621  */
5622 static int
5623 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5624 {
5625         Mpi2IOCInitRequest_t mpi_request;
5626         Mpi2IOCInitReply_t mpi_reply;
5627         int i, r = 0;
5628         ktime_t current_time;
5629         u16 ioc_status;
5630         u32 reply_post_free_array_sz = 0;
5631
5632         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5633
5634         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5635         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5636         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5637         mpi_request.VF_ID = 0; /* TODO */
5638         mpi_request.VP_ID = 0;
5639         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5640         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5641         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5642
5643         if (_base_is_controller_msix_enabled(ioc))
5644                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5645         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5646         mpi_request.ReplyDescriptorPostQueueDepth =
5647             cpu_to_le16(ioc->reply_post_queue_depth);
5648         mpi_request.ReplyFreeQueueDepth =
5649             cpu_to_le16(ioc->reply_free_queue_depth);
5650
5651         mpi_request.SenseBufferAddressHigh =
5652             cpu_to_le32((u64)ioc->sense_dma >> 32);
5653         mpi_request.SystemReplyAddressHigh =
5654             cpu_to_le32((u64)ioc->reply_dma >> 32);
5655         mpi_request.SystemRequestFrameBaseAddress =
5656             cpu_to_le64((u64)ioc->request_dma);
5657         mpi_request.ReplyFreeQueueAddress =
5658             cpu_to_le64((u64)ioc->reply_free_dma);
5659
5660         if (ioc->rdpq_array_enable) {
5661                 reply_post_free_array_sz = ioc->reply_queue_count *
5662                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5663                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5664                 for (i = 0; i < ioc->reply_queue_count; i++)
5665                         ioc->reply_post_free_array[i].RDPQBaseAddress =
5666                             cpu_to_le64(
5667                                 (u64)ioc->reply_post[i].reply_post_free_dma);
5668                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5669                 mpi_request.ReplyDescriptorPostQueueAddress =
5670                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5671         } else {
5672                 mpi_request.ReplyDescriptorPostQueueAddress =
5673                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5674         }
5675
5676         /* This time stamp specifies number of milliseconds
5677          * since epoch ~ midnight January 1, 1970.
5678          */
5679         current_time = ktime_get_real();
5680         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5681
5682         if (ioc->logging_level & MPT_DEBUG_INIT) {
5683                 __le32 *mfp;
5684                 int i;
5685
5686                 mfp = (__le32 *)&mpi_request;
5687                 pr_info("\toffset:data\n");
5688                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5689                         pr_info("\t[0x%02x]:%08x\n", i*4,
5690                             le32_to_cpu(mfp[i]));
5691         }
5692
5693         r = _base_handshake_req_reply_wait(ioc,
5694             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5695             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5696
5697         if (r != 0) {
5698                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5699                 return r;
5700         }
5701
5702         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5703         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5704             mpi_reply.IOCLogInfo) {
5705                 ioc_err(ioc, "%s: failed\n", __func__);
5706                 r = -EIO;
5707         }
5708
5709         return r;
5710 }
5711
5712 /**
5713  * mpt3sas_port_enable_done - command completion routine for port enable
5714  * @ioc: per adapter object
5715  * @smid: system request message index
5716  * @msix_index: MSIX table index supplied by the OS
5717  * @reply: reply message frame(lower 32bit addr)
5718  *
5719  * Return: 1 meaning mf should be freed from _base_interrupt
5720  *          0 means the mf is freed from this function.
5721  */
5722 u8
5723 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5724         u32 reply)
5725 {
5726         MPI2DefaultReply_t *mpi_reply;
5727         u16 ioc_status;
5728
5729         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5730                 return 1;
5731
5732         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5733         if (!mpi_reply)
5734                 return 1;
5735
5736         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5737                 return 1;
5738
5739         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5740         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5741         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5742         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5743         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5744         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5745                 ioc->port_enable_failed = 1;
5746
5747         if (ioc->is_driver_loading) {
5748                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5749                         mpt3sas_port_enable_complete(ioc);
5750                         return 1;
5751                 } else {
5752                         ioc->start_scan_failed = ioc_status;
5753                         ioc->start_scan = 0;
5754                         return 1;
5755                 }
5756         }
5757         complete(&ioc->port_enable_cmds.done);
5758         return 1;
5759 }
5760
5761 /**
5762  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5763  * @ioc: per adapter object
5764  *
5765  * Return: 0 for success, non-zero for failure.
5766  */
5767 static int
5768 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5769 {
5770         Mpi2PortEnableRequest_t *mpi_request;
5771         Mpi2PortEnableReply_t *mpi_reply;
5772         int r = 0;
5773         u16 smid;
5774         u16 ioc_status;
5775
5776         ioc_info(ioc, "sending port enable !!\n");
5777
5778         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5779                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
5780                 return -EAGAIN;
5781         }
5782
5783         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5784         if (!smid) {
5785                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5786                 return -EAGAIN;
5787         }
5788
5789         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5790         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5791         ioc->port_enable_cmds.smid = smid;
5792         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5793         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5794
5795         init_completion(&ioc->port_enable_cmds.done);
5796         mpt3sas_base_put_smid_default(ioc, smid);
5797         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5798         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5799                 ioc_err(ioc, "%s: timeout\n", __func__);
5800                 _debug_dump_mf(mpi_request,
5801                     sizeof(Mpi2PortEnableRequest_t)/4);
5802                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5803                         r = -EFAULT;
5804                 else
5805                         r = -ETIME;
5806                 goto out;
5807         }
5808
5809         mpi_reply = ioc->port_enable_cmds.reply;
5810         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5811         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5812                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
5813                         __func__, ioc_status);
5814                 r = -EFAULT;
5815                 goto out;
5816         }
5817
5818  out:
5819         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5820         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
5821         return r;
5822 }
5823
5824 /**
5825  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5826  * @ioc: per adapter object
5827  *
5828  * Return: 0 for success, non-zero for failure.
5829  */
5830 int
5831 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5832 {
5833         Mpi2PortEnableRequest_t *mpi_request;
5834         u16 smid;
5835
5836         ioc_info(ioc, "sending port enable !!\n");
5837
5838         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5839                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
5840                 return -EAGAIN;
5841         }
5842
5843         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5844         if (!smid) {
5845                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5846                 return -EAGAIN;
5847         }
5848
5849         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5850         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5851         ioc->port_enable_cmds.smid = smid;
5852         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5853         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5854
5855         mpt3sas_base_put_smid_default(ioc, smid);
5856         return 0;
5857 }
5858
5859 /**
5860  * _base_determine_wait_on_discovery - desposition
5861  * @ioc: per adapter object
5862  *
5863  * Decide whether to wait on discovery to complete. Used to either
5864  * locate boot device, or report volumes ahead of physical devices.
5865  *
5866  * Return: 1 for wait, 0 for don't wait.
5867  */
5868 static int
5869 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5870 {
5871         /* We wait for discovery to complete if IR firmware is loaded.
5872          * The sas topology events arrive before PD events, so we need time to
5873          * turn on the bit in ioc->pd_handles to indicate PD
5874          * Also, it maybe required to report Volumes ahead of physical
5875          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5876          */
5877         if (ioc->ir_firmware)
5878                 return 1;
5879
5880         /* if no Bios, then we don't need to wait */
5881         if (!ioc->bios_pg3.BiosVersion)
5882                 return 0;
5883
5884         /* Bios is present, then we drop down here.
5885          *
5886          * If there any entries in the Bios Page 2, then we wait
5887          * for discovery to complete.
5888          */
5889
5890         /* Current Boot Device */
5891         if ((ioc->bios_pg2.CurrentBootDeviceForm &
5892             MPI2_BIOSPAGE2_FORM_MASK) ==
5893             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5894         /* Request Boot Device */
5895            (ioc->bios_pg2.ReqBootDeviceForm &
5896             MPI2_BIOSPAGE2_FORM_MASK) ==
5897             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5898         /* Alternate Request Boot Device */
5899            (ioc->bios_pg2.ReqAltBootDeviceForm &
5900             MPI2_BIOSPAGE2_FORM_MASK) ==
5901             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5902                 return 0;
5903
5904         return 1;
5905 }
5906
5907 /**
5908  * _base_unmask_events - turn on notification for this event
5909  * @ioc: per adapter object
5910  * @event: firmware event
5911  *
5912  * The mask is stored in ioc->event_masks.
5913  */
5914 static void
5915 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5916 {
5917         u32 desired_event;
5918
5919         if (event >= 128)
5920                 return;
5921
5922         desired_event = (1 << (event % 32));
5923
5924         if (event < 32)
5925                 ioc->event_masks[0] &= ~desired_event;
5926         else if (event < 64)
5927                 ioc->event_masks[1] &= ~desired_event;
5928         else if (event < 96)
5929                 ioc->event_masks[2] &= ~desired_event;
5930         else if (event < 128)
5931                 ioc->event_masks[3] &= ~desired_event;
5932 }
5933
5934 /**
5935  * _base_event_notification - send event notification
5936  * @ioc: per adapter object
5937  *
5938  * Return: 0 for success, non-zero for failure.
5939  */
5940 static int
5941 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
5942 {
5943         Mpi2EventNotificationRequest_t *mpi_request;
5944         u16 smid;
5945         int r = 0;
5946         int i;
5947
5948         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5949
5950         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5951                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
5952                 return -EAGAIN;
5953         }
5954
5955         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5956         if (!smid) {
5957                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5958                 return -EAGAIN;
5959         }
5960         ioc->base_cmds.status = MPT3_CMD_PENDING;
5961         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5962         ioc->base_cmds.smid = smid;
5963         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
5964         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
5965         mpi_request->VF_ID = 0; /* TODO */
5966         mpi_request->VP_ID = 0;
5967         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5968                 mpi_request->EventMasks[i] =
5969                     cpu_to_le32(ioc->event_masks[i]);
5970         init_completion(&ioc->base_cmds.done);
5971         mpt3sas_base_put_smid_default(ioc, smid);
5972         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
5973         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5974                 ioc_err(ioc, "%s: timeout\n", __func__);
5975                 _debug_dump_mf(mpi_request,
5976                     sizeof(Mpi2EventNotificationRequest_t)/4);
5977                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
5978                         r = -EFAULT;
5979                 else
5980                         r = -ETIME;
5981         } else
5982                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
5983         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5984         return r;
5985 }
5986
5987 /**
5988  * mpt3sas_base_validate_event_type - validating event types
5989  * @ioc: per adapter object
5990  * @event_type: firmware event
5991  *
5992  * This will turn on firmware event notification when application
5993  * ask for that event. We don't mask events that are already enabled.
5994  */
5995 void
5996 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
5997 {
5998         int i, j;
5999         u32 event_mask, desired_event;
6000         u8 send_update_to_fw;
6001
6002         for (i = 0, send_update_to_fw = 0; i <
6003             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6004                 event_mask = ~event_type[i];
6005                 desired_event = 1;
6006                 for (j = 0; j < 32; j++) {
6007                         if (!(event_mask & desired_event) &&
6008                             (ioc->event_masks[i] & desired_event)) {
6009                                 ioc->event_masks[i] &= ~desired_event;
6010                                 send_update_to_fw = 1;
6011                         }
6012                         desired_event = (desired_event << 1);
6013                 }
6014         }
6015
6016         if (!send_update_to_fw)
6017                 return;
6018
6019         mutex_lock(&ioc->base_cmds.mutex);
6020         _base_event_notification(ioc);
6021         mutex_unlock(&ioc->base_cmds.mutex);
6022 }
6023
6024 /**
6025  * _base_diag_reset - the "big hammer" start of day reset
6026  * @ioc: per adapter object
6027  *
6028  * Return: 0 for success, non-zero for failure.
6029  */
6030 static int
6031 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6032 {
6033         u32 host_diagnostic;
6034         u32 ioc_state;
6035         u32 count;
6036         u32 hcb_size;
6037
6038         ioc_info(ioc, "sending diag reset !!\n");
6039
6040         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6041
6042         count = 0;
6043         do {
6044                 /* Write magic sequence to WriteSequence register
6045                  * Loop until in diagnostic mode
6046                  */
6047                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6048                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6049                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6050                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6051                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6052                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6053                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6054                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6055
6056                 /* wait 100 msec */
6057                 msleep(100);
6058
6059                 if (count++ > 20)
6060                         goto out;
6061
6062                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6063                 drsprintk(ioc,
6064                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6065                                    count, host_diagnostic));
6066
6067         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6068
6069         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6070
6071         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6072         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6073              &ioc->chip->HostDiagnostic);
6074
6075         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6076         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6077
6078         /* Approximately 300 second max wait */
6079         for (count = 0; count < (300000000 /
6080                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6081
6082                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6083
6084                 if (host_diagnostic == 0xFFFFFFFF)
6085                         goto out;
6086                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6087                         break;
6088
6089                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6090         }
6091
6092         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6093
6094                 drsprintk(ioc,
6095                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6096                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6097                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6098                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6099
6100                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6101                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6102                     &ioc->chip->HCBSize);
6103         }
6104
6105         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6106         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6107             &ioc->chip->HostDiagnostic);
6108
6109         drsprintk(ioc,
6110                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
6111         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6112
6113         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6114         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6115         if (ioc_state) {
6116                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6117                         __func__, ioc_state);
6118                 goto out;
6119         }
6120
6121         ioc_info(ioc, "diag reset: SUCCESS\n");
6122         return 0;
6123
6124  out:
6125         ioc_err(ioc, "diag reset: FAILED\n");
6126         return -EFAULT;
6127 }
6128
6129 /**
6130  * _base_make_ioc_ready - put controller in READY state
6131  * @ioc: per adapter object
6132  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6133  *
6134  * Return: 0 for success, non-zero for failure.
6135  */
6136 static int
6137 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6138 {
6139         u32 ioc_state;
6140         int rc;
6141         int count;
6142
6143         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6144
6145         if (ioc->pci_error_recovery)
6146                 return 0;
6147
6148         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6149         dhsprintk(ioc,
6150                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6151                            __func__, ioc_state));
6152
6153         /* if in RESET state, it should move to READY state shortly */
6154         count = 0;
6155         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6156                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6157                     MPI2_IOC_STATE_READY) {
6158                         if (count++ == 10) {
6159                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6160                                         __func__, ioc_state);
6161                                 return -EFAULT;
6162                         }
6163                         ssleep(1);
6164                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6165                 }
6166         }
6167
6168         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6169                 return 0;
6170
6171         if (ioc_state & MPI2_DOORBELL_USED) {
6172                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6173                 goto issue_diag_reset;
6174         }
6175
6176         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6177                 mpt3sas_base_fault_info(ioc, ioc_state &
6178                     MPI2_DOORBELL_DATA_MASK);
6179                 goto issue_diag_reset;
6180         }
6181
6182         if (type == FORCE_BIG_HAMMER)
6183                 goto issue_diag_reset;
6184
6185         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6186                 if (!(_base_send_ioc_reset(ioc,
6187                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6188                         return 0;
6189         }
6190
6191  issue_diag_reset:
6192         rc = _base_diag_reset(ioc);
6193         return rc;
6194 }
6195
6196 /**
6197  * _base_make_ioc_operational - put controller in OPERATIONAL state
6198  * @ioc: per adapter object
6199  *
6200  * Return: 0 for success, non-zero for failure.
6201  */
6202 static int
6203 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6204 {
6205         int r, i, index;
6206         unsigned long   flags;
6207         u32 reply_address;
6208         u16 smid;
6209         struct _tr_list *delayed_tr, *delayed_tr_next;
6210         struct _sc_list *delayed_sc, *delayed_sc_next;
6211         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6212         u8 hide_flag;
6213         struct adapter_reply_queue *reply_q;
6214         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6215
6216         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6217
6218         /* clean the delayed target reset list */
6219         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6220             &ioc->delayed_tr_list, list) {
6221                 list_del(&delayed_tr->list);
6222                 kfree(delayed_tr);
6223         }
6224
6225
6226         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6227             &ioc->delayed_tr_volume_list, list) {
6228                 list_del(&delayed_tr->list);
6229                 kfree(delayed_tr);
6230         }
6231
6232         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6233             &ioc->delayed_sc_list, list) {
6234                 list_del(&delayed_sc->list);
6235                 kfree(delayed_sc);
6236         }
6237
6238         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6239             &ioc->delayed_event_ack_list, list) {
6240                 list_del(&delayed_event_ack->list);
6241                 kfree(delayed_event_ack);
6242         }
6243
6244         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6245
6246         /* hi-priority queue */
6247         INIT_LIST_HEAD(&ioc->hpr_free_list);
6248         smid = ioc->hi_priority_smid;
6249         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6250                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6251                 ioc->hpr_lookup[i].smid = smid;
6252                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6253                     &ioc->hpr_free_list);
6254         }
6255
6256         /* internal queue */
6257         INIT_LIST_HEAD(&ioc->internal_free_list);
6258         smid = ioc->internal_smid;
6259         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6260                 ioc->internal_lookup[i].cb_idx = 0xFF;
6261                 ioc->internal_lookup[i].smid = smid;
6262                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6263                     &ioc->internal_free_list);
6264         }
6265
6266         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6267
6268         /* initialize Reply Free Queue */
6269         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6270             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6271             ioc->reply_sz) {
6272                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6273                 if (ioc->is_mcpu_endpoint)
6274                         _base_clone_reply_to_sys_mem(ioc,
6275                                         reply_address, i);
6276         }
6277
6278         /* initialize reply queues */
6279         if (ioc->is_driver_loading)
6280                 _base_assign_reply_queues(ioc);
6281
6282         /* initialize Reply Post Free Queue */
6283         index = 0;
6284         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6285         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6286                 /*
6287                  * If RDPQ is enabled, switch to the next allocation.
6288                  * Otherwise advance within the contiguous region.
6289                  */
6290                 if (ioc->rdpq_array_enable) {
6291                         reply_q->reply_post_free =
6292                                 ioc->reply_post[index++].reply_post_free;
6293                 } else {
6294                         reply_q->reply_post_free = reply_post_free_contig;
6295                         reply_post_free_contig += ioc->reply_post_queue_depth;
6296                 }
6297
6298                 reply_q->reply_post_host_index = 0;
6299                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6300                         reply_q->reply_post_free[i].Words =
6301                             cpu_to_le64(ULLONG_MAX);
6302                 if (!_base_is_controller_msix_enabled(ioc))
6303                         goto skip_init_reply_post_free_queue;
6304         }
6305  skip_init_reply_post_free_queue:
6306
6307         r = _base_send_ioc_init(ioc);
6308         if (r)
6309                 return r;
6310
6311         /* initialize reply free host index */
6312         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6313         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6314
6315         /* initialize reply post host index */
6316         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6317                 if (ioc->combined_reply_queue)
6318                         writel((reply_q->msix_index & 7)<<
6319                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6320                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6321                 else
6322                         writel(reply_q->msix_index <<
6323                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6324                                 &ioc->chip->ReplyPostHostIndex);
6325
6326                 if (!_base_is_controller_msix_enabled(ioc))
6327                         goto skip_init_reply_post_host_index;
6328         }
6329
6330  skip_init_reply_post_host_index:
6331
6332         _base_unmask_interrupts(ioc);
6333
6334         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6335                 r = _base_display_fwpkg_version(ioc);
6336                 if (r)
6337                         return r;
6338         }
6339
6340         _base_static_config_pages(ioc);
6341         r = _base_event_notification(ioc);
6342         if (r)
6343                 return r;
6344
6345         if (ioc->is_driver_loading) {
6346
6347                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6348                     == 0x80) {
6349                         hide_flag = (u8) (
6350                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6351                             MFG_PAGE10_HIDE_SSDS_MASK);
6352                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6353                                 ioc->mfg_pg10_hide_flag = hide_flag;
6354                 }
6355
6356                 ioc->wait_for_discovery_to_complete =
6357                     _base_determine_wait_on_discovery(ioc);
6358
6359                 return r; /* scan_start and scan_finished support */
6360         }
6361
6362         r = _base_send_port_enable(ioc);
6363         if (r)
6364                 return r;
6365
6366         return r;
6367 }
6368
6369 /**
6370  * mpt3sas_base_free_resources - free resources controller resources
6371  * @ioc: per adapter object
6372  */
6373 void
6374 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6375 {
6376         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6377
6378         /* synchronizing freeing resource with pci_access_mutex lock */
6379         mutex_lock(&ioc->pci_access_mutex);
6380         if (ioc->chip_phys && ioc->chip) {
6381                 _base_mask_interrupts(ioc);
6382                 ioc->shost_recovery = 1;
6383                 _base_make_ioc_ready(ioc, SOFT_RESET);
6384                 ioc->shost_recovery = 0;
6385         }
6386
6387         mpt3sas_base_unmap_resources(ioc);
6388         mutex_unlock(&ioc->pci_access_mutex);
6389         return;
6390 }
6391
6392 /**
6393  * mpt3sas_base_attach - attach controller instance
6394  * @ioc: per adapter object
6395  *
6396  * Return: 0 for success, non-zero for failure.
6397  */
6398 int
6399 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6400 {
6401         int r, i;
6402         int cpu_id, last_cpu_id = 0;
6403
6404         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6405
6406         /* setup cpu_msix_table */
6407         ioc->cpu_count = num_online_cpus();
6408         for_each_online_cpu(cpu_id)
6409                 last_cpu_id = cpu_id;
6410         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6411         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6412         ioc->reply_queue_count = 1;
6413         if (!ioc->cpu_msix_table) {
6414                 dfailprintk(ioc,
6415                             ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n"));
6416                 r = -ENOMEM;
6417                 goto out_free_resources;
6418         }
6419
6420         if (ioc->is_warpdrive) {
6421                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6422                     sizeof(resource_size_t *), GFP_KERNEL);
6423                 if (!ioc->reply_post_host_index) {
6424                         dfailprintk(ioc,
6425                                     ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n"));
6426                         r = -ENOMEM;
6427                         goto out_free_resources;
6428                 }
6429         }
6430
6431         ioc->rdpq_array_enable_assigned = 0;
6432         ioc->dma_mask = 0;
6433         if (ioc->is_aero_ioc)
6434                 ioc->base_readl = &_base_readl_aero;
6435         else
6436                 ioc->base_readl = &_base_readl;
6437         r = mpt3sas_base_map_resources(ioc);
6438         if (r)
6439                 goto out_free_resources;
6440
6441         pci_set_drvdata(ioc->pdev, ioc->shost);
6442         r = _base_get_ioc_facts(ioc);
6443         if (r)
6444                 goto out_free_resources;
6445
6446         switch (ioc->hba_mpi_version_belonged) {
6447         case MPI2_VERSION:
6448                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6449                 ioc->build_sg = &_base_build_sg;
6450                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6451                 break;
6452         case MPI25_VERSION:
6453         case MPI26_VERSION:
6454                 /*
6455                  * In SAS3.0,
6456                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6457                  * Target Status - all require the IEEE formated scatter gather
6458                  * elements.
6459                  */
6460                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6461                 ioc->build_sg = &_base_build_sg_ieee;
6462                 ioc->build_nvme_prp = &_base_build_nvme_prp;
6463                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6464                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6465
6466                 break;
6467         }
6468
6469         if (ioc->is_mcpu_endpoint)
6470                 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6471         else
6472                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6473
6474         /*
6475          * These function pointers for other requests that don't
6476          * the require IEEE scatter gather elements.
6477          *
6478          * For example Configuration Pages and SAS IOUNIT Control don't.
6479          */
6480         ioc->build_sg_mpi = &_base_build_sg;
6481         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6482
6483         r = _base_make_ioc_ready(ioc, SOFT_RESET);
6484         if (r)
6485                 goto out_free_resources;
6486
6487         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6488             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6489         if (!ioc->pfacts) {
6490                 r = -ENOMEM;
6491                 goto out_free_resources;
6492         }
6493
6494         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6495                 r = _base_get_port_facts(ioc, i);
6496                 if (r)
6497                         goto out_free_resources;
6498         }
6499
6500         r = _base_allocate_memory_pools(ioc);
6501         if (r)
6502                 goto out_free_resources;
6503
6504         init_waitqueue_head(&ioc->reset_wq);
6505
6506         /* allocate memory pd handle bitmask list */
6507         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6508         if (ioc->facts.MaxDevHandle % 8)
6509                 ioc->pd_handles_sz++;
6510         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6511             GFP_KERNEL);
6512         if (!ioc->pd_handles) {
6513                 r = -ENOMEM;
6514                 goto out_free_resources;
6515         }
6516         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6517             GFP_KERNEL);
6518         if (!ioc->blocking_handles) {
6519                 r = -ENOMEM;
6520                 goto out_free_resources;
6521         }
6522
6523         /* allocate memory for pending OS device add list */
6524         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6525         if (ioc->facts.MaxDevHandle % 8)
6526                 ioc->pend_os_device_add_sz++;
6527         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6528             GFP_KERNEL);
6529         if (!ioc->pend_os_device_add)
6530                 goto out_free_resources;
6531
6532         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6533         ioc->device_remove_in_progress =
6534                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6535         if (!ioc->device_remove_in_progress)
6536                 goto out_free_resources;
6537
6538         ioc->fwfault_debug = mpt3sas_fwfault_debug;
6539
6540         /* base internal command bits */
6541         mutex_init(&ioc->base_cmds.mutex);
6542         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6543         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6544
6545         /* port_enable command bits */
6546         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6547         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6548
6549         /* transport internal command bits */
6550         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6551         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6552         mutex_init(&ioc->transport_cmds.mutex);
6553
6554         /* scsih internal command bits */
6555         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6556         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6557         mutex_init(&ioc->scsih_cmds.mutex);
6558
6559         /* task management internal command bits */
6560         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6561         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6562         mutex_init(&ioc->tm_cmds.mutex);
6563
6564         /* config page internal command bits */
6565         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6566         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6567         mutex_init(&ioc->config_cmds.mutex);
6568
6569         /* ctl module internal command bits */
6570         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6571         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6572         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6573         mutex_init(&ioc->ctl_cmds.mutex);
6574
6575         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6576             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6577             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6578             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6579                 r = -ENOMEM;
6580                 goto out_free_resources;
6581         }
6582
6583         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6584                 ioc->event_masks[i] = -1;
6585
6586         /* here we enable the events we care about */
6587         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6588         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6589         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6590         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6591         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6592         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6593         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6594         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6595         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6596         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6597         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6598         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6599         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6600         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6601                 if (ioc->is_gen35_ioc) {
6602                         _base_unmask_events(ioc,
6603                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6604                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6605                         _base_unmask_events(ioc,
6606                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6607                 }
6608         }
6609         r = _base_make_ioc_operational(ioc);
6610         if (r)
6611                 goto out_free_resources;
6612
6613         ioc->non_operational_loop = 0;
6614         ioc->got_task_abort_from_ioctl = 0;
6615         return 0;
6616
6617  out_free_resources:
6618
6619         ioc->remove_host = 1;
6620
6621         mpt3sas_base_free_resources(ioc);
6622         _base_release_memory_pools(ioc);
6623         pci_set_drvdata(ioc->pdev, NULL);
6624         kfree(ioc->cpu_msix_table);
6625         if (ioc->is_warpdrive)
6626                 kfree(ioc->reply_post_host_index);
6627         kfree(ioc->pd_handles);
6628         kfree(ioc->blocking_handles);
6629         kfree(ioc->device_remove_in_progress);
6630         kfree(ioc->pend_os_device_add);
6631         kfree(ioc->tm_cmds.reply);
6632         kfree(ioc->transport_cmds.reply);
6633         kfree(ioc->scsih_cmds.reply);
6634         kfree(ioc->config_cmds.reply);
6635         kfree(ioc->base_cmds.reply);
6636         kfree(ioc->port_enable_cmds.reply);
6637         kfree(ioc->ctl_cmds.reply);
6638         kfree(ioc->ctl_cmds.sense);
6639         kfree(ioc->pfacts);
6640         ioc->ctl_cmds.reply = NULL;
6641         ioc->base_cmds.reply = NULL;
6642         ioc->tm_cmds.reply = NULL;
6643         ioc->scsih_cmds.reply = NULL;
6644         ioc->transport_cmds.reply = NULL;
6645         ioc->config_cmds.reply = NULL;
6646         ioc->pfacts = NULL;
6647         return r;
6648 }
6649
6650
6651 /**
6652  * mpt3sas_base_detach - remove controller instance
6653  * @ioc: per adapter object
6654  */
6655 void
6656 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6657 {
6658         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6659
6660         mpt3sas_base_stop_watchdog(ioc);
6661         mpt3sas_base_free_resources(ioc);
6662         _base_release_memory_pools(ioc);
6663         mpt3sas_free_enclosure_list(ioc);
6664         pci_set_drvdata(ioc->pdev, NULL);
6665         kfree(ioc->cpu_msix_table);
6666         if (ioc->is_warpdrive)
6667                 kfree(ioc->reply_post_host_index);
6668         kfree(ioc->pd_handles);
6669         kfree(ioc->blocking_handles);
6670         kfree(ioc->device_remove_in_progress);
6671         kfree(ioc->pend_os_device_add);
6672         kfree(ioc->pfacts);
6673         kfree(ioc->ctl_cmds.reply);
6674         kfree(ioc->ctl_cmds.sense);
6675         kfree(ioc->base_cmds.reply);
6676         kfree(ioc->port_enable_cmds.reply);
6677         kfree(ioc->tm_cmds.reply);
6678         kfree(ioc->transport_cmds.reply);
6679         kfree(ioc->scsih_cmds.reply);
6680         kfree(ioc->config_cmds.reply);
6681 }
6682
6683 /**
6684  * _base_pre_reset_handler - pre reset handler
6685  * @ioc: per adapter object
6686  */
6687 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6688 {
6689         mpt3sas_scsih_pre_reset_handler(ioc);
6690         mpt3sas_ctl_pre_reset_handler(ioc);
6691         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
6692 }
6693
6694 /**
6695  * _base_after_reset_handler - after reset handler
6696  * @ioc: per adapter object
6697  */
6698 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6699 {
6700         mpt3sas_scsih_after_reset_handler(ioc);
6701         mpt3sas_ctl_after_reset_handler(ioc);
6702         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
6703         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6704                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
6705                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6706                 complete(&ioc->transport_cmds.done);
6707         }
6708         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6709                 ioc->base_cmds.status |= MPT3_CMD_RESET;
6710                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6711                 complete(&ioc->base_cmds.done);
6712         }
6713         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6714                 ioc->port_enable_failed = 1;
6715                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6716                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6717                 if (ioc->is_driver_loading) {
6718                         ioc->start_scan_failed =
6719                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
6720                         ioc->start_scan = 0;
6721                         ioc->port_enable_cmds.status =
6722                                 MPT3_CMD_NOT_USED;
6723                 } else {
6724                         complete(&ioc->port_enable_cmds.done);
6725                 }
6726         }
6727         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6728                 ioc->config_cmds.status |= MPT3_CMD_RESET;
6729                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6730                 ioc->config_cmds.smid = USHRT_MAX;
6731                 complete(&ioc->config_cmds.done);
6732         }
6733 }
6734
6735 /**
6736  * _base_reset_done_handler - reset done handler
6737  * @ioc: per adapter object
6738  */
6739 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
6740 {
6741         mpt3sas_scsih_reset_done_handler(ioc);
6742         mpt3sas_ctl_reset_done_handler(ioc);
6743         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
6744 }
6745
6746 /**
6747  * mpt3sas_wait_for_commands_to_complete - reset controller
6748  * @ioc: Pointer to MPT_ADAPTER structure
6749  *
6750  * This function is waiting 10s for all pending commands to complete
6751  * prior to putting controller in reset.
6752  */
6753 void
6754 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6755 {
6756         u32 ioc_state;
6757
6758         ioc->pending_io_count = 0;
6759
6760         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6761         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6762                 return;
6763
6764         /* pending command count */
6765         ioc->pending_io_count = scsi_host_busy(ioc->shost);
6766
6767         if (!ioc->pending_io_count)
6768                 return;
6769
6770         /* wait for pending commands to complete */
6771         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6772 }
6773
6774 /**
6775  * mpt3sas_base_hard_reset_handler - reset controller
6776  * @ioc: Pointer to MPT_ADAPTER structure
6777  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6778  *
6779  * Return: 0 for success, non-zero for failure.
6780  */
6781 int
6782 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6783         enum reset_type type)
6784 {
6785         int r;
6786         unsigned long flags;
6787         u32 ioc_state;
6788         u8 is_fault = 0, is_trigger = 0;
6789
6790         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
6791
6792         if (ioc->pci_error_recovery) {
6793                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
6794                 r = 0;
6795                 goto out_unlocked;
6796         }
6797
6798         if (mpt3sas_fwfault_debug)
6799                 mpt3sas_halt_firmware(ioc);
6800
6801         /* wait for an active reset in progress to complete */
6802         mutex_lock(&ioc->reset_in_progress_mutex);
6803
6804         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6805         ioc->shost_recovery = 1;
6806         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6807
6808         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6809             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6810             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6811             MPT3_DIAG_BUFFER_IS_RELEASED))) {
6812                 is_trigger = 1;
6813                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6814                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6815                         is_fault = 1;
6816         }
6817         _base_pre_reset_handler(ioc);
6818         mpt3sas_wait_for_commands_to_complete(ioc);
6819         _base_mask_interrupts(ioc);
6820         r = _base_make_ioc_ready(ioc, type);
6821         if (r)
6822                 goto out;
6823         _base_after_reset_handler(ioc);
6824
6825         /* If this hard reset is called while port enable is active, then
6826          * there is no reason to call make_ioc_operational
6827          */
6828         if (ioc->is_driver_loading && ioc->port_enable_failed) {
6829                 ioc->remove_host = 1;
6830                 r = -EFAULT;
6831                 goto out;
6832         }
6833         r = _base_get_ioc_facts(ioc);
6834         if (r)
6835                 goto out;
6836
6837         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6838                 panic("%s: Issue occurred with flashing controller firmware."
6839                       "Please reboot the system and ensure that the correct"
6840                       " firmware version is running\n", ioc->name);
6841
6842         r = _base_make_ioc_operational(ioc);
6843         if (!r)
6844                 _base_reset_done_handler(ioc);
6845
6846  out:
6847         dtmprintk(ioc,
6848                   ioc_info(ioc, "%s: %s\n",
6849                            __func__, r == 0 ? "SUCCESS" : "FAILED"));
6850
6851         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6852         ioc->shost_recovery = 0;
6853         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6854         ioc->ioc_reset_count++;
6855         mutex_unlock(&ioc->reset_in_progress_mutex);
6856
6857  out_unlocked:
6858         if ((r == 0) && is_trigger) {
6859                 if (is_fault)
6860                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6861                 else
6862                         mpt3sas_trigger_master(ioc,
6863                             MASTER_TRIGGER_ADAPTER_RESET);
6864         }
6865         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
6866         return r;
6867 }