OSDN Git Service

Merge tag 'perf-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         blk_mq_requeue_request(rq, false);
126         if (!scsi_host_in_recovery(cmd->device->host))
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device, cmd);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_mq_destroy_queue() finishes.
163          */
164         cmd->result = 0;
165
166         blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167                                !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188  * scsi_execute_cmd - insert request and wait for the result
189  * @sdev:       scsi_device
190  * @cmd:        scsi command
191  * @opf:        block layer request cmd_flags
192  * @buffer:     data buffer
193  * @bufflen:    len of buffer
194  * @timeout:    request timeout in HZ
195  * @retries:    number of times to retry request
196  * @args:       Optional args. See struct definition for field descriptions
197  *
198  * Returns the scsi_cmnd result field if a command was executed, or a negative
199  * Linux error code if we didn't get that far.
200  */
201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202                      blk_opf_t opf, void *buffer, unsigned int bufflen,
203                      int timeout, int retries,
204                      const struct scsi_exec_args *args)
205 {
206         static const struct scsi_exec_args default_args;
207         struct request *req;
208         struct scsi_cmnd *scmd;
209         int ret;
210
211         if (!args)
212                 args = &default_args;
213         else if (WARN_ON_ONCE(args->sense &&
214                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
215                 return -EINVAL;
216
217         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218         if (IS_ERR(req))
219                 return PTR_ERR(req);
220
221         if (bufflen) {
222                 ret = blk_rq_map_kern(sdev->request_queue, req,
223                                       buffer, bufflen, GFP_NOIO);
224                 if (ret)
225                         goto out;
226         }
227         scmd = blk_mq_rq_to_pdu(req);
228         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230         scmd->allowed = retries;
231         scmd->flags |= args->scmd_flags;
232         req->timeout = timeout;
233         req->rq_flags |= RQF_QUIET;
234
235         /*
236          * head injection *required* here otherwise quiesce won't work
237          */
238         blk_execute_rq(req, true);
239
240         /*
241          * Some devices (USB mass-storage in particular) may transfer
242          * garbage data together with a residue indicating that the data
243          * is invalid.  Prevent the garbage from being misinterpreted
244          * and prevent security leaks by zeroing out the excess data.
245          */
246         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249         if (args->resid)
250                 *args->resid = scmd->resid_len;
251         if (args->sense)
252                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253         if (args->sshdr)
254                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255                                      args->sshdr);
256
257         ret = scmd->result;
258  out:
259         blk_mq_free_request(req);
260
261         return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266  * Wake up the error handler if necessary. Avoid as follows that the error
267  * handler is not woken up if host in-flight requests number ==
268  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269  * with an RCU read lock in this function to ensure that this function in
270  * its entirety either finishes before scsi_eh_scmd_add() increases the
271  * host_failed counter or that it notices the shost state change made by
272  * scsi_eh_scmd_add().
273  */
274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276         unsigned long flags;
277
278         rcu_read_lock();
279         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280         if (unlikely(scsi_host_in_recovery(shost))) {
281                 spin_lock_irqsave(shost->host_lock, flags);
282                 if (shost->host_failed || shost->host_eh_scheduled)
283                         scsi_eh_wakeup(shost);
284                 spin_unlock_irqrestore(shost->host_lock, flags);
285         }
286         rcu_read_unlock();
287 }
288
289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
290 {
291         struct Scsi_Host *shost = sdev->host;
292         struct scsi_target *starget = scsi_target(sdev);
293
294         scsi_dec_host_busy(shost, cmd);
295
296         if (starget->can_queue > 0)
297                 atomic_dec(&starget->target_busy);
298
299         sbitmap_put(&sdev->budget_map, cmd->budget_token);
300         cmd->budget_token = -1;
301 }
302
303 /*
304  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
305  * interrupts disabled.
306  */
307 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
308 {
309         struct scsi_device *current_sdev = data;
310
311         if (sdev != current_sdev)
312                 blk_mq_run_hw_queues(sdev->request_queue, true);
313 }
314
315 /*
316  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
317  * and call blk_run_queue for all the scsi_devices on the target -
318  * including current_sdev first.
319  *
320  * Called with *no* scsi locks held.
321  */
322 static void scsi_single_lun_run(struct scsi_device *current_sdev)
323 {
324         struct Scsi_Host *shost = current_sdev->host;
325         struct scsi_target *starget = scsi_target(current_sdev);
326         unsigned long flags;
327
328         spin_lock_irqsave(shost->host_lock, flags);
329         starget->starget_sdev_user = NULL;
330         spin_unlock_irqrestore(shost->host_lock, flags);
331
332         /*
333          * Call blk_run_queue for all LUNs on the target, starting with
334          * current_sdev. We race with others (to set starget_sdev_user),
335          * but in most cases, we will be first. Ideally, each LU on the
336          * target would get some limited time or requests on the target.
337          */
338         blk_mq_run_hw_queues(current_sdev->request_queue,
339                              shost->queuecommand_may_block);
340
341         spin_lock_irqsave(shost->host_lock, flags);
342         if (!starget->starget_sdev_user)
343                 __starget_for_each_device(starget, current_sdev,
344                                           scsi_kick_sdev_queue);
345         spin_unlock_irqrestore(shost->host_lock, flags);
346 }
347
348 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
349 {
350         if (scsi_device_busy(sdev) >= sdev->queue_depth)
351                 return true;
352         if (atomic_read(&sdev->device_blocked) > 0)
353                 return true;
354         return false;
355 }
356
357 static inline bool scsi_target_is_busy(struct scsi_target *starget)
358 {
359         if (starget->can_queue > 0) {
360                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
361                         return true;
362                 if (atomic_read(&starget->target_blocked) > 0)
363                         return true;
364         }
365         return false;
366 }
367
368 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
369 {
370         if (atomic_read(&shost->host_blocked) > 0)
371                 return true;
372         if (shost->host_self_blocked)
373                 return true;
374         return false;
375 }
376
377 static void scsi_starved_list_run(struct Scsi_Host *shost)
378 {
379         LIST_HEAD(starved_list);
380         struct scsi_device *sdev;
381         unsigned long flags;
382
383         spin_lock_irqsave(shost->host_lock, flags);
384         list_splice_init(&shost->starved_list, &starved_list);
385
386         while (!list_empty(&starved_list)) {
387                 struct request_queue *slq;
388
389                 /*
390                  * As long as shost is accepting commands and we have
391                  * starved queues, call blk_run_queue. scsi_request_fn
392                  * drops the queue_lock and can add us back to the
393                  * starved_list.
394                  *
395                  * host_lock protects the starved_list and starved_entry.
396                  * scsi_request_fn must get the host_lock before checking
397                  * or modifying starved_list or starved_entry.
398                  */
399                 if (scsi_host_is_busy(shost))
400                         break;
401
402                 sdev = list_entry(starved_list.next,
403                                   struct scsi_device, starved_entry);
404                 list_del_init(&sdev->starved_entry);
405                 if (scsi_target_is_busy(scsi_target(sdev))) {
406                         list_move_tail(&sdev->starved_entry,
407                                        &shost->starved_list);
408                         continue;
409                 }
410
411                 /*
412                  * Once we drop the host lock, a racing scsi_remove_device()
413                  * call may remove the sdev from the starved list and destroy
414                  * it and the queue.  Mitigate by taking a reference to the
415                  * queue and never touching the sdev again after we drop the
416                  * host lock.  Note: if __scsi_remove_device() invokes
417                  * blk_mq_destroy_queue() before the queue is run from this
418                  * function then blk_run_queue() will return immediately since
419                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
420                  */
421                 slq = sdev->request_queue;
422                 if (!blk_get_queue(slq))
423                         continue;
424                 spin_unlock_irqrestore(shost->host_lock, flags);
425
426                 blk_mq_run_hw_queues(slq, false);
427                 blk_put_queue(slq);
428
429                 spin_lock_irqsave(shost->host_lock, flags);
430         }
431         /* put any unprocessed entries back */
432         list_splice(&starved_list, &shost->starved_list);
433         spin_unlock_irqrestore(shost->host_lock, flags);
434 }
435
436 /**
437  * scsi_run_queue - Select a proper request queue to serve next.
438  * @q:  last request's queue
439  *
440  * The previous command was completely finished, start a new one if possible.
441  */
442 static void scsi_run_queue(struct request_queue *q)
443 {
444         struct scsi_device *sdev = q->queuedata;
445
446         if (scsi_target(sdev)->single_lun)
447                 scsi_single_lun_run(sdev);
448         if (!list_empty(&sdev->host->starved_list))
449                 scsi_starved_list_run(sdev->host);
450
451         /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
452         blk_mq_kick_requeue_list(q);
453 }
454
455 void scsi_requeue_run_queue(struct work_struct *work)
456 {
457         struct scsi_device *sdev;
458         struct request_queue *q;
459
460         sdev = container_of(work, struct scsi_device, requeue_work);
461         q = sdev->request_queue;
462         scsi_run_queue(q);
463 }
464
465 void scsi_run_host_queues(struct Scsi_Host *shost)
466 {
467         struct scsi_device *sdev;
468
469         shost_for_each_device(sdev, shost)
470                 scsi_run_queue(sdev->request_queue);
471 }
472
473 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
474 {
475         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
476                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
477
478                 if (drv->uninit_command)
479                         drv->uninit_command(cmd);
480         }
481 }
482
483 void scsi_free_sgtables(struct scsi_cmnd *cmd)
484 {
485         if (cmd->sdb.table.nents)
486                 sg_free_table_chained(&cmd->sdb.table,
487                                 SCSI_INLINE_SG_CNT);
488         if (scsi_prot_sg_count(cmd))
489                 sg_free_table_chained(&cmd->prot_sdb->table,
490                                 SCSI_INLINE_PROT_SG_CNT);
491 }
492 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
493
494 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
495 {
496         scsi_free_sgtables(cmd);
497         scsi_uninit_cmd(cmd);
498 }
499
500 static void scsi_run_queue_async(struct scsi_device *sdev)
501 {
502         if (scsi_host_in_recovery(sdev->host))
503                 return;
504
505         if (scsi_target(sdev)->single_lun ||
506             !list_empty(&sdev->host->starved_list)) {
507                 kblockd_schedule_work(&sdev->requeue_work);
508         } else {
509                 /*
510                  * smp_mb() present in sbitmap_queue_clear() or implied in
511                  * .end_io is for ordering writing .device_busy in
512                  * scsi_device_unbusy() and reading sdev->restarts.
513                  */
514                 int old = atomic_read(&sdev->restarts);
515
516                 /*
517                  * ->restarts has to be kept as non-zero if new budget
518                  *  contention occurs.
519                  *
520                  *  No need to run queue when either another re-run
521                  *  queue wins in updating ->restarts or a new budget
522                  *  contention occurs.
523                  */
524                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
525                         blk_mq_run_hw_queues(sdev->request_queue, true);
526         }
527 }
528
529 /* Returns false when no more bytes to process, true if there are more */
530 static bool scsi_end_request(struct request *req, blk_status_t error,
531                 unsigned int bytes)
532 {
533         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
534         struct scsi_device *sdev = cmd->device;
535         struct request_queue *q = sdev->request_queue;
536
537         if (blk_update_request(req, error, bytes))
538                 return true;
539
540         // XXX:
541         if (blk_queue_add_random(q))
542                 add_disk_randomness(req->q->disk);
543
544         if (!blk_rq_is_passthrough(req)) {
545                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
546                 cmd->flags &= ~SCMD_INITIALIZED;
547         }
548
549         /*
550          * Calling rcu_barrier() is not necessary here because the
551          * SCSI error handler guarantees that the function called by
552          * call_rcu() has been called before scsi_end_request() is
553          * called.
554          */
555         destroy_rcu_head(&cmd->rcu);
556
557         /*
558          * In the MQ case the command gets freed by __blk_mq_end_request,
559          * so we have to do all cleanup that depends on it earlier.
560          *
561          * We also can't kick the queues from irq context, so we
562          * will have to defer it to a workqueue.
563          */
564         scsi_mq_uninit_cmd(cmd);
565
566         /*
567          * queue is still alive, so grab the ref for preventing it
568          * from being cleaned up during running queue.
569          */
570         percpu_ref_get(&q->q_usage_counter);
571
572         __blk_mq_end_request(req, error);
573
574         scsi_run_queue_async(sdev);
575
576         percpu_ref_put(&q->q_usage_counter);
577         return false;
578 }
579
580 /**
581  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
582  * @result:     scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value.
585  */
586 static blk_status_t scsi_result_to_blk_status(int result)
587 {
588         /*
589          * Check the scsi-ml byte first in case we converted a host or status
590          * byte.
591          */
592         switch (scsi_ml_byte(result)) {
593         case SCSIML_STAT_OK:
594                 break;
595         case SCSIML_STAT_RESV_CONFLICT:
596                 return BLK_STS_RESV_CONFLICT;
597         case SCSIML_STAT_NOSPC:
598                 return BLK_STS_NOSPC;
599         case SCSIML_STAT_MED_ERROR:
600                 return BLK_STS_MEDIUM;
601         case SCSIML_STAT_TGT_FAILURE:
602                 return BLK_STS_TARGET;
603         case SCSIML_STAT_DL_TIMEOUT:
604                 return BLK_STS_DURATION_LIMIT;
605         }
606
607         switch (host_byte(result)) {
608         case DID_OK:
609                 if (scsi_status_is_good(result))
610                         return BLK_STS_OK;
611                 return BLK_STS_IOERR;
612         case DID_TRANSPORT_FAILFAST:
613         case DID_TRANSPORT_MARGINAL:
614                 return BLK_STS_TRANSPORT;
615         default:
616                 return BLK_STS_IOERR;
617         }
618 }
619
620 /**
621  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
622  * @rq: request to examine
623  *
624  * Description:
625  *     A request could be merge of IOs which require different failure
626  *     handling.  This function determines the number of bytes which
627  *     can be failed from the beginning of the request without
628  *     crossing into area which need to be retried further.
629  *
630  * Return:
631  *     The number of bytes to fail.
632  */
633 static unsigned int scsi_rq_err_bytes(const struct request *rq)
634 {
635         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
636         unsigned int bytes = 0;
637         struct bio *bio;
638
639         if (!(rq->rq_flags & RQF_MIXED_MERGE))
640                 return blk_rq_bytes(rq);
641
642         /*
643          * Currently the only 'mixing' which can happen is between
644          * different fastfail types.  We can safely fail portions
645          * which have all the failfast bits that the first one has -
646          * the ones which are at least as eager to fail as the first
647          * one.
648          */
649         for (bio = rq->bio; bio; bio = bio->bi_next) {
650                 if ((bio->bi_opf & ff) != ff)
651                         break;
652                 bytes += bio->bi_iter.bi_size;
653         }
654
655         /* this could lead to infinite loop */
656         BUG_ON(blk_rq_bytes(rq) && !bytes);
657         return bytes;
658 }
659
660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661 {
662         struct request *req = scsi_cmd_to_rq(cmd);
663         unsigned long wait_for;
664
665         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666                 return false;
667
668         wait_for = (cmd->allowed + 1) * req->timeout;
669         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671                             wait_for/HZ);
672                 return true;
673         }
674         return false;
675 }
676
677 /*
678  * When ALUA transition state is returned, reprep the cmd to
679  * use the ALUA handler's transition timeout. Delay the reprep
680  * 1 sec to avoid aggressive retries of the target in that
681  * state.
682  */
683 #define ALUA_TRANSITION_REPREP_DELAY    1000
684
685 /* Helper for scsi_io_completion() when special action required. */
686 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
687 {
688         struct request *req = scsi_cmd_to_rq(cmd);
689         int level = 0;
690         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
691               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
692         struct scsi_sense_hdr sshdr;
693         bool sense_valid;
694         bool sense_current = true;      /* false implies "deferred sense" */
695         blk_status_t blk_stat;
696
697         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
698         if (sense_valid)
699                 sense_current = !scsi_sense_is_deferred(&sshdr);
700
701         blk_stat = scsi_result_to_blk_status(result);
702
703         if (host_byte(result) == DID_RESET) {
704                 /* Third party bus reset or reset for error recovery
705                  * reasons.  Just retry the command and see what
706                  * happens.
707                  */
708                 action = ACTION_RETRY;
709         } else if (sense_valid && sense_current) {
710                 switch (sshdr.sense_key) {
711                 case UNIT_ATTENTION:
712                         if (cmd->device->removable) {
713                                 /* Detected disc change.  Set a bit
714                                  * and quietly refuse further access.
715                                  */
716                                 cmd->device->changed = 1;
717                                 action = ACTION_FAIL;
718                         } else {
719                                 /* Must have been a power glitch, or a
720                                  * bus reset.  Could not have been a
721                                  * media change, so we just retry the
722                                  * command and see what happens.
723                                  */
724                                 action = ACTION_RETRY;
725                         }
726                         break;
727                 case ILLEGAL_REQUEST:
728                         /* If we had an ILLEGAL REQUEST returned, then
729                          * we may have performed an unsupported
730                          * command.  The only thing this should be
731                          * would be a ten byte read where only a six
732                          * byte read was supported.  Also, on a system
733                          * where READ CAPACITY failed, we may have
734                          * read past the end of the disk.
735                          */
736                         if ((cmd->device->use_10_for_rw &&
737                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
738                             (cmd->cmnd[0] == READ_10 ||
739                              cmd->cmnd[0] == WRITE_10)) {
740                                 /* This will issue a new 6-byte command. */
741                                 cmd->device->use_10_for_rw = 0;
742                                 action = ACTION_REPREP;
743                         } else if (sshdr.asc == 0x10) /* DIX */ {
744                                 action = ACTION_FAIL;
745                                 blk_stat = BLK_STS_PROTECTION;
746                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
747                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
748                                 action = ACTION_FAIL;
749                                 blk_stat = BLK_STS_TARGET;
750                         } else
751                                 action = ACTION_FAIL;
752                         break;
753                 case ABORTED_COMMAND:
754                         action = ACTION_FAIL;
755                         if (sshdr.asc == 0x10) /* DIF */
756                                 blk_stat = BLK_STS_PROTECTION;
757                         break;
758                 case NOT_READY:
759                         /* If the device is in the process of becoming
760                          * ready, or has a temporary blockage, retry.
761                          */
762                         if (sshdr.asc == 0x04) {
763                                 switch (sshdr.ascq) {
764                                 case 0x01: /* becoming ready */
765                                 case 0x04: /* format in progress */
766                                 case 0x05: /* rebuild in progress */
767                                 case 0x06: /* recalculation in progress */
768                                 case 0x07: /* operation in progress */
769                                 case 0x08: /* Long write in progress */
770                                 case 0x09: /* self test in progress */
771                                 case 0x11: /* notify (enable spinup) required */
772                                 case 0x14: /* space allocation in progress */
773                                 case 0x1a: /* start stop unit in progress */
774                                 case 0x1b: /* sanitize in progress */
775                                 case 0x1d: /* configuration in progress */
776                                 case 0x24: /* depopulation in progress */
777                                         action = ACTION_DELAYED_RETRY;
778                                         break;
779                                 case 0x0a: /* ALUA state transition */
780                                         action = ACTION_DELAYED_REPREP;
781                                         break;
782                                 default:
783                                         action = ACTION_FAIL;
784                                         break;
785                                 }
786                         } else
787                                 action = ACTION_FAIL;
788                         break;
789                 case VOLUME_OVERFLOW:
790                         /* See SSC3rXX or current. */
791                         action = ACTION_FAIL;
792                         break;
793                 case DATA_PROTECT:
794                         action = ACTION_FAIL;
795                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
796                             (sshdr.asc == 0x55 &&
797                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
798                                 /* Insufficient zone resources */
799                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
800                         }
801                         break;
802                 case COMPLETED:
803                         fallthrough;
804                 default:
805                         action = ACTION_FAIL;
806                         break;
807                 }
808         } else
809                 action = ACTION_FAIL;
810
811         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812                 action = ACTION_FAIL;
813
814         switch (action) {
815         case ACTION_FAIL:
816                 /* Give up and fail the remainder of the request */
817                 if (!(req->rq_flags & RQF_QUIET)) {
818                         static DEFINE_RATELIMIT_STATE(_rs,
819                                         DEFAULT_RATELIMIT_INTERVAL,
820                                         DEFAULT_RATELIMIT_BURST);
821
822                         if (unlikely(scsi_logging_level))
823                                 level =
824                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825                                                     SCSI_LOG_MLCOMPLETE_BITS);
826
827                         /*
828                          * if logging is enabled the failure will be printed
829                          * in scsi_log_completion(), so avoid duplicate messages
830                          */
831                         if (!level && __ratelimit(&_rs)) {
832                                 scsi_print_result(cmd, NULL, FAILED);
833                                 if (sense_valid)
834                                         scsi_print_sense(cmd);
835                                 scsi_print_command(cmd);
836                         }
837                 }
838                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839                         return;
840                 fallthrough;
841         case ACTION_REPREP:
842                 scsi_mq_requeue_cmd(cmd, 0);
843                 break;
844         case ACTION_DELAYED_REPREP:
845                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
846                 break;
847         case ACTION_RETRY:
848                 /* Retry the same command immediately */
849                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
850                 break;
851         case ACTION_DELAYED_RETRY:
852                 /* Retry the same command after a delay */
853                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
854                 break;
855         }
856 }
857
858 /*
859  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
860  * new result that may suppress further error checking. Also modifies
861  * *blk_statp in some cases.
862  */
863 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
864                                         blk_status_t *blk_statp)
865 {
866         bool sense_valid;
867         bool sense_current = true;      /* false implies "deferred sense" */
868         struct request *req = scsi_cmd_to_rq(cmd);
869         struct scsi_sense_hdr sshdr;
870
871         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
872         if (sense_valid)
873                 sense_current = !scsi_sense_is_deferred(&sshdr);
874
875         if (blk_rq_is_passthrough(req)) {
876                 if (sense_valid) {
877                         /*
878                          * SG_IO wants current and deferred errors
879                          */
880                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
881                                              SCSI_SENSE_BUFFERSIZE);
882                 }
883                 if (sense_current)
884                         *blk_statp = scsi_result_to_blk_status(result);
885         } else if (blk_rq_bytes(req) == 0 && sense_current) {
886                 /*
887                  * Flush commands do not transfers any data, and thus cannot use
888                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
889                  * This sets *blk_statp explicitly for the problem case.
890                  */
891                 *blk_statp = scsi_result_to_blk_status(result);
892         }
893         /*
894          * Recovered errors need reporting, but they're always treated as
895          * success, so fiddle the result code here.  For passthrough requests
896          * we already took a copy of the original into sreq->result which
897          * is what gets returned to the user
898          */
899         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
900                 bool do_print = true;
901                 /*
902                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
903                  * skip print since caller wants ATA registers. Only occurs
904                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
905                  */
906                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
907                         do_print = false;
908                 else if (req->rq_flags & RQF_QUIET)
909                         do_print = false;
910                 if (do_print)
911                         scsi_print_sense(cmd);
912                 result = 0;
913                 /* for passthrough, *blk_statp may be set */
914                 *blk_statp = BLK_STS_OK;
915         }
916         /*
917          * Another corner case: the SCSI status byte is non-zero but 'good'.
918          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
919          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
920          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
921          * intermediate statuses (both obsolete in SAM-4) as good.
922          */
923         if ((result & 0xff) && scsi_status_is_good(result)) {
924                 result = 0;
925                 *blk_statp = BLK_STS_OK;
926         }
927         return result;
928 }
929
930 /**
931  * scsi_io_completion - Completion processing for SCSI commands.
932  * @cmd:        command that is finished.
933  * @good_bytes: number of processed bytes.
934  *
935  * We will finish off the specified number of sectors. If we are done, the
936  * command block will be released and the queue function will be goosed. If we
937  * are not done then we have to figure out what to do next:
938  *
939  *   a) We can call scsi_mq_requeue_cmd().  The request will be
940  *      unprepared and put back on the queue.  Then a new command will
941  *      be created for it.  This should be used if we made forward
942  *      progress, or if we want to switch from READ(10) to READ(6) for
943  *      example.
944  *
945  *   b) We can call scsi_io_completion_action().  The request will be
946  *      put back on the queue and retried using the same command as
947  *      before, possibly after a delay.
948  *
949  *   c) We can call scsi_end_request() with blk_stat other than
950  *      BLK_STS_OK, to fail the remainder of the request.
951  */
952 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
953 {
954         int result = cmd->result;
955         struct request *req = scsi_cmd_to_rq(cmd);
956         blk_status_t blk_stat = BLK_STS_OK;
957
958         if (unlikely(result))   /* a nz result may or may not be an error */
959                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
960
961         /*
962          * Next deal with any sectors which we were able to correctly
963          * handle.
964          */
965         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
966                 "%u sectors total, %d bytes done.\n",
967                 blk_rq_sectors(req), good_bytes));
968
969         /*
970          * Failed, zero length commands always need to drop down
971          * to retry code. Fast path should return in this block.
972          */
973         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
974                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
975                         return; /* no bytes remaining */
976         }
977
978         /* Kill remainder if no retries. */
979         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
980                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
981                         WARN_ONCE(true,
982                             "Bytes remaining after failed, no-retry command");
983                 return;
984         }
985
986         /*
987          * If there had been no error, but we have leftover bytes in the
988          * request just queue the command up again.
989          */
990         if (likely(result == 0))
991                 scsi_mq_requeue_cmd(cmd, 0);
992         else
993                 scsi_io_completion_action(cmd, result);
994 }
995
996 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
997                 struct request *rq)
998 {
999         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1000                !op_is_write(req_op(rq)) &&
1001                sdev->host->hostt->dma_need_drain(rq);
1002 }
1003
1004 /**
1005  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1006  * @cmd: SCSI command data structure to initialize.
1007  *
1008  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1009  * for @cmd.
1010  *
1011  * Returns:
1012  * * BLK_STS_OK       - on success
1013  * * BLK_STS_RESOURCE - if the failure is retryable
1014  * * BLK_STS_IOERR    - if the failure is fatal
1015  */
1016 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1017 {
1018         struct scsi_device *sdev = cmd->device;
1019         struct request *rq = scsi_cmd_to_rq(cmd);
1020         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1021         struct scatterlist *last_sg = NULL;
1022         blk_status_t ret;
1023         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1024         int count;
1025
1026         if (WARN_ON_ONCE(!nr_segs))
1027                 return BLK_STS_IOERR;
1028
1029         /*
1030          * Make sure there is space for the drain.  The driver must adjust
1031          * max_hw_segments to be prepared for this.
1032          */
1033         if (need_drain)
1034                 nr_segs++;
1035
1036         /*
1037          * If sg table allocation fails, requeue request later.
1038          */
1039         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1040                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1041                 return BLK_STS_RESOURCE;
1042
1043         /*
1044          * Next, walk the list, and fill in the addresses and sizes of
1045          * each segment.
1046          */
1047         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1048
1049         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1050                 unsigned int pad_len =
1051                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1052
1053                 last_sg->length += pad_len;
1054                 cmd->extra_len += pad_len;
1055         }
1056
1057         if (need_drain) {
1058                 sg_unmark_end(last_sg);
1059                 last_sg = sg_next(last_sg);
1060                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1061                 sg_mark_end(last_sg);
1062
1063                 cmd->extra_len += sdev->dma_drain_len;
1064                 count++;
1065         }
1066
1067         BUG_ON(count > cmd->sdb.table.nents);
1068         cmd->sdb.table.nents = count;
1069         cmd->sdb.length = blk_rq_payload_bytes(rq);
1070
1071         if (blk_integrity_rq(rq)) {
1072                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1073                 int ivecs;
1074
1075                 if (WARN_ON_ONCE(!prot_sdb)) {
1076                         /*
1077                          * This can happen if someone (e.g. multipath)
1078                          * queues a command to a device on an adapter
1079                          * that does not support DIX.
1080                          */
1081                         ret = BLK_STS_IOERR;
1082                         goto out_free_sgtables;
1083                 }
1084
1085                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1086
1087                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1088                                 prot_sdb->table.sgl,
1089                                 SCSI_INLINE_PROT_SG_CNT)) {
1090                         ret = BLK_STS_RESOURCE;
1091                         goto out_free_sgtables;
1092                 }
1093
1094                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1095                                                 prot_sdb->table.sgl);
1096                 BUG_ON(count > ivecs);
1097                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1098
1099                 cmd->prot_sdb = prot_sdb;
1100                 cmd->prot_sdb->table.nents = count;
1101         }
1102
1103         return BLK_STS_OK;
1104 out_free_sgtables:
1105         scsi_free_sgtables(cmd);
1106         return ret;
1107 }
1108 EXPORT_SYMBOL(scsi_alloc_sgtables);
1109
1110 /**
1111  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1112  * @rq: Request associated with the SCSI command to be initialized.
1113  *
1114  * This function initializes the members of struct scsi_cmnd that must be
1115  * initialized before request processing starts and that won't be
1116  * reinitialized if a SCSI command is requeued.
1117  */
1118 static void scsi_initialize_rq(struct request *rq)
1119 {
1120         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1121
1122         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1123         cmd->cmd_len = MAX_COMMAND_SIZE;
1124         cmd->sense_len = 0;
1125         init_rcu_head(&cmd->rcu);
1126         cmd->jiffies_at_alloc = jiffies;
1127         cmd->retries = 0;
1128 }
1129
1130 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1131                                    blk_mq_req_flags_t flags)
1132 {
1133         struct request *rq;
1134
1135         rq = blk_mq_alloc_request(q, opf, flags);
1136         if (!IS_ERR(rq))
1137                 scsi_initialize_rq(rq);
1138         return rq;
1139 }
1140 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1141
1142 /*
1143  * Only called when the request isn't completed by SCSI, and not freed by
1144  * SCSI
1145  */
1146 static void scsi_cleanup_rq(struct request *rq)
1147 {
1148         if (rq->rq_flags & RQF_DONTPREP) {
1149                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1150                 rq->rq_flags &= ~RQF_DONTPREP;
1151         }
1152 }
1153
1154 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1155 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1156 {
1157         struct request *rq = scsi_cmd_to_rq(cmd);
1158
1159         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1160                 cmd->flags |= SCMD_INITIALIZED;
1161                 scsi_initialize_rq(rq);
1162         }
1163
1164         cmd->device = dev;
1165         INIT_LIST_HEAD(&cmd->eh_entry);
1166         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 }
1168
1169 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1170                 struct request *req)
1171 {
1172         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1173
1174         /*
1175          * Passthrough requests may transfer data, in which case they must
1176          * a bio attached to them.  Or they might contain a SCSI command
1177          * that does not transfer data, in which case they may optionally
1178          * submit a request without an attached bio.
1179          */
1180         if (req->bio) {
1181                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1182                 if (unlikely(ret != BLK_STS_OK))
1183                         return ret;
1184         } else {
1185                 BUG_ON(blk_rq_bytes(req));
1186
1187                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1188         }
1189
1190         cmd->transfersize = blk_rq_bytes(req);
1191         return BLK_STS_OK;
1192 }
1193
1194 static blk_status_t
1195 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1196 {
1197         switch (sdev->sdev_state) {
1198         case SDEV_CREATED:
1199                 return BLK_STS_OK;
1200         case SDEV_OFFLINE:
1201         case SDEV_TRANSPORT_OFFLINE:
1202                 /*
1203                  * If the device is offline we refuse to process any
1204                  * commands.  The device must be brought online
1205                  * before trying any recovery commands.
1206                  */
1207                 if (!sdev->offline_already) {
1208                         sdev->offline_already = true;
1209                         sdev_printk(KERN_ERR, sdev,
1210                                     "rejecting I/O to offline device\n");
1211                 }
1212                 return BLK_STS_IOERR;
1213         case SDEV_DEL:
1214                 /*
1215                  * If the device is fully deleted, we refuse to
1216                  * process any commands as well.
1217                  */
1218                 sdev_printk(KERN_ERR, sdev,
1219                             "rejecting I/O to dead device\n");
1220                 return BLK_STS_IOERR;
1221         case SDEV_BLOCK:
1222         case SDEV_CREATED_BLOCK:
1223                 return BLK_STS_RESOURCE;
1224         case SDEV_QUIESCE:
1225                 /*
1226                  * If the device is blocked we only accept power management
1227                  * commands.
1228                  */
1229                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1230                         return BLK_STS_RESOURCE;
1231                 return BLK_STS_OK;
1232         default:
1233                 /*
1234                  * For any other not fully online state we only allow
1235                  * power management commands.
1236                  */
1237                 if (req && !(req->rq_flags & RQF_PM))
1238                         return BLK_STS_OFFLINE;
1239                 return BLK_STS_OK;
1240         }
1241 }
1242
1243 /*
1244  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1245  * and return the token else return -1.
1246  */
1247 static inline int scsi_dev_queue_ready(struct request_queue *q,
1248                                   struct scsi_device *sdev)
1249 {
1250         int token;
1251
1252         token = sbitmap_get(&sdev->budget_map);
1253         if (atomic_read(&sdev->device_blocked)) {
1254                 if (token < 0)
1255                         goto out;
1256
1257                 if (scsi_device_busy(sdev) > 1)
1258                         goto out_dec;
1259
1260                 /*
1261                  * unblock after device_blocked iterates to zero
1262                  */
1263                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1264                         goto out_dec;
1265                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1266                                    "unblocking device at zero depth\n"));
1267         }
1268
1269         return token;
1270 out_dec:
1271         if (token >= 0)
1272                 sbitmap_put(&sdev->budget_map, token);
1273 out:
1274         return -1;
1275 }
1276
1277 /*
1278  * scsi_target_queue_ready: checks if there we can send commands to target
1279  * @sdev: scsi device on starget to check.
1280  */
1281 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1282                                            struct scsi_device *sdev)
1283 {
1284         struct scsi_target *starget = scsi_target(sdev);
1285         unsigned int busy;
1286
1287         if (starget->single_lun) {
1288                 spin_lock_irq(shost->host_lock);
1289                 if (starget->starget_sdev_user &&
1290                     starget->starget_sdev_user != sdev) {
1291                         spin_unlock_irq(shost->host_lock);
1292                         return 0;
1293                 }
1294                 starget->starget_sdev_user = sdev;
1295                 spin_unlock_irq(shost->host_lock);
1296         }
1297
1298         if (starget->can_queue <= 0)
1299                 return 1;
1300
1301         busy = atomic_inc_return(&starget->target_busy) - 1;
1302         if (atomic_read(&starget->target_blocked) > 0) {
1303                 if (busy)
1304                         goto starved;
1305
1306                 /*
1307                  * unblock after target_blocked iterates to zero
1308                  */
1309                 if (atomic_dec_return(&starget->target_blocked) > 0)
1310                         goto out_dec;
1311
1312                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313                                  "unblocking target at zero depth\n"));
1314         }
1315
1316         if (busy >= starget->can_queue)
1317                 goto starved;
1318
1319         return 1;
1320
1321 starved:
1322         spin_lock_irq(shost->host_lock);
1323         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1324         spin_unlock_irq(shost->host_lock);
1325 out_dec:
1326         if (starget->can_queue > 0)
1327                 atomic_dec(&starget->target_busy);
1328         return 0;
1329 }
1330
1331 /*
1332  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1333  * return 0. We must end up running the queue again whenever 0 is
1334  * returned, else IO can hang.
1335  */
1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337                                    struct Scsi_Host *shost,
1338                                    struct scsi_device *sdev,
1339                                    struct scsi_cmnd *cmd)
1340 {
1341         if (atomic_read(&shost->host_blocked) > 0) {
1342                 if (scsi_host_busy(shost) > 0)
1343                         goto starved;
1344
1345                 /*
1346                  * unblock after host_blocked iterates to zero
1347                  */
1348                 if (atomic_dec_return(&shost->host_blocked) > 0)
1349                         goto out_dec;
1350
1351                 SCSI_LOG_MLQUEUE(3,
1352                         shost_printk(KERN_INFO, shost,
1353                                      "unblocking host at zero depth\n"));
1354         }
1355
1356         if (shost->host_self_blocked)
1357                 goto starved;
1358
1359         /* We're OK to process the command, so we can't be starved */
1360         if (!list_empty(&sdev->starved_entry)) {
1361                 spin_lock_irq(shost->host_lock);
1362                 if (!list_empty(&sdev->starved_entry))
1363                         list_del_init(&sdev->starved_entry);
1364                 spin_unlock_irq(shost->host_lock);
1365         }
1366
1367         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1368
1369         return 1;
1370
1371 starved:
1372         spin_lock_irq(shost->host_lock);
1373         if (list_empty(&sdev->starved_entry))
1374                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375         spin_unlock_irq(shost->host_lock);
1376 out_dec:
1377         scsi_dec_host_busy(shost, cmd);
1378         return 0;
1379 }
1380
1381 /*
1382  * Busy state exporting function for request stacking drivers.
1383  *
1384  * For efficiency, no lock is taken to check the busy state of
1385  * shost/starget/sdev, since the returned value is not guaranteed and
1386  * may be changed after request stacking drivers call the function,
1387  * regardless of taking lock or not.
1388  *
1389  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1390  * needs to return 'not busy'. Otherwise, request stacking drivers
1391  * may hold requests forever.
1392  */
1393 static bool scsi_mq_lld_busy(struct request_queue *q)
1394 {
1395         struct scsi_device *sdev = q->queuedata;
1396         struct Scsi_Host *shost;
1397
1398         if (blk_queue_dying(q))
1399                 return false;
1400
1401         shost = sdev->host;
1402
1403         /*
1404          * Ignore host/starget busy state.
1405          * Since block layer does not have a concept of fairness across
1406          * multiple queues, congestion of host/starget needs to be handled
1407          * in SCSI layer.
1408          */
1409         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1410                 return true;
1411
1412         return false;
1413 }
1414
1415 /*
1416  * Block layer request completion callback. May be called from interrupt
1417  * context.
1418  */
1419 static void scsi_complete(struct request *rq)
1420 {
1421         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1422         enum scsi_disposition disposition;
1423
1424         INIT_LIST_HEAD(&cmd->eh_entry);
1425
1426         atomic_inc(&cmd->device->iodone_cnt);
1427         if (cmd->result)
1428                 atomic_inc(&cmd->device->ioerr_cnt);
1429
1430         disposition = scsi_decide_disposition(cmd);
1431         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1432                 disposition = SUCCESS;
1433
1434         scsi_log_completion(cmd, disposition);
1435
1436         switch (disposition) {
1437         case SUCCESS:
1438                 scsi_finish_command(cmd);
1439                 break;
1440         case NEEDS_RETRY:
1441                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1442                 break;
1443         case ADD_TO_MLQUEUE:
1444                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1445                 break;
1446         default:
1447                 scsi_eh_scmd_add(cmd);
1448                 break;
1449         }
1450 }
1451
1452 /**
1453  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1454  * @cmd: command block we are dispatching.
1455  *
1456  * Return: nonzero return request was rejected and device's queue needs to be
1457  * plugged.
1458  */
1459 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1460 {
1461         struct Scsi_Host *host = cmd->device->host;
1462         int rtn = 0;
1463
1464         atomic_inc(&cmd->device->iorequest_cnt);
1465
1466         /* check if the device is still usable */
1467         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1468                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1469                  * returns an immediate error upwards, and signals
1470                  * that the device is no longer present */
1471                 cmd->result = DID_NO_CONNECT << 16;
1472                 goto done;
1473         }
1474
1475         /* Check to see if the scsi lld made this device blocked. */
1476         if (unlikely(scsi_device_blocked(cmd->device))) {
1477                 /*
1478                  * in blocked state, the command is just put back on
1479                  * the device queue.  The suspend state has already
1480                  * blocked the queue so future requests should not
1481                  * occur until the device transitions out of the
1482                  * suspend state.
1483                  */
1484                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1485                         "queuecommand : device blocked\n"));
1486                 atomic_dec(&cmd->device->iorequest_cnt);
1487                 return SCSI_MLQUEUE_DEVICE_BUSY;
1488         }
1489
1490         /* Store the LUN value in cmnd, if needed. */
1491         if (cmd->device->lun_in_cdb)
1492                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493                                (cmd->device->lun << 5 & 0xe0);
1494
1495         scsi_log_send(cmd);
1496
1497         /*
1498          * Before we queue this command, check if the command
1499          * length exceeds what the host adapter can handle.
1500          */
1501         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503                                "queuecommand : command too long. "
1504                                "cdb_size=%d host->max_cmd_len=%d\n",
1505                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1506                 cmd->result = (DID_ABORT << 16);
1507                 goto done;
1508         }
1509
1510         if (unlikely(host->shost_state == SHOST_DEL)) {
1511                 cmd->result = (DID_NO_CONNECT << 16);
1512                 goto done;
1513
1514         }
1515
1516         trace_scsi_dispatch_cmd_start(cmd);
1517         rtn = host->hostt->queuecommand(host, cmd);
1518         if (rtn) {
1519                 atomic_dec(&cmd->device->iorequest_cnt);
1520                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1521                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1522                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1523                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1524
1525                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1526                         "queuecommand : request rejected\n"));
1527         }
1528
1529         return rtn;
1530  done:
1531         scsi_done(cmd);
1532         return 0;
1533 }
1534
1535 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1536 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1537 {
1538         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1539                 sizeof(struct scatterlist);
1540 }
1541
1542 static blk_status_t scsi_prepare_cmd(struct request *req)
1543 {
1544         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1545         struct scsi_device *sdev = req->q->queuedata;
1546         struct Scsi_Host *shost = sdev->host;
1547         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1548         struct scatterlist *sg;
1549
1550         scsi_init_command(sdev, cmd);
1551
1552         cmd->eh_eflags = 0;
1553         cmd->prot_type = 0;
1554         cmd->prot_flags = 0;
1555         cmd->submitter = 0;
1556         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1557         cmd->underflow = 0;
1558         cmd->transfersize = 0;
1559         cmd->host_scribble = NULL;
1560         cmd->result = 0;
1561         cmd->extra_len = 0;
1562         cmd->state = 0;
1563         if (in_flight)
1564                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1565
1566         /*
1567          * Only clear the driver-private command data if the LLD does not supply
1568          * a function to initialize that data.
1569          */
1570         if (!shost->hostt->init_cmd_priv)
1571                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1572
1573         cmd->prot_op = SCSI_PROT_NORMAL;
1574         if (blk_rq_bytes(req))
1575                 cmd->sc_data_direction = rq_dma_dir(req);
1576         else
1577                 cmd->sc_data_direction = DMA_NONE;
1578
1579         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580         cmd->sdb.table.sgl = sg;
1581
1582         if (scsi_host_get_prot(shost)) {
1583                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585                 cmd->prot_sdb->table.sgl =
1586                         (struct scatterlist *)(cmd->prot_sdb + 1);
1587         }
1588
1589         /*
1590          * Special handling for passthrough commands, which don't go to the ULP
1591          * at all:
1592          */
1593         if (blk_rq_is_passthrough(req))
1594                 return scsi_setup_scsi_cmnd(sdev, req);
1595
1596         if (sdev->handler && sdev->handler->prep_fn) {
1597                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598
1599                 if (ret != BLK_STS_OK)
1600                         return ret;
1601         }
1602
1603         /* Usually overridden by the ULP */
1604         cmd->allowed = 0;
1605         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1606         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1607 }
1608
1609 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1610 {
1611         struct request *req = scsi_cmd_to_rq(cmd);
1612
1613         switch (cmd->submitter) {
1614         case SUBMITTED_BY_BLOCK_LAYER:
1615                 break;
1616         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1617                 return scsi_eh_done(cmd);
1618         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1619                 return;
1620         }
1621
1622         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1623                 return;
1624         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1625                 return;
1626         trace_scsi_dispatch_cmd_done(cmd);
1627
1628         if (complete_directly)
1629                 blk_mq_complete_request_direct(req, scsi_complete);
1630         else
1631                 blk_mq_complete_request(req);
1632 }
1633
1634 void scsi_done(struct scsi_cmnd *cmd)
1635 {
1636         scsi_done_internal(cmd, false);
1637 }
1638 EXPORT_SYMBOL(scsi_done);
1639
1640 void scsi_done_direct(struct scsi_cmnd *cmd)
1641 {
1642         scsi_done_internal(cmd, true);
1643 }
1644 EXPORT_SYMBOL(scsi_done_direct);
1645
1646 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1647 {
1648         struct scsi_device *sdev = q->queuedata;
1649
1650         sbitmap_put(&sdev->budget_map, budget_token);
1651 }
1652
1653 /*
1654  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1655  * not change behaviour from the previous unplug mechanism, experimentation
1656  * may prove this needs changing.
1657  */
1658 #define SCSI_QUEUE_DELAY 3
1659
1660 static int scsi_mq_get_budget(struct request_queue *q)
1661 {
1662         struct scsi_device *sdev = q->queuedata;
1663         int token = scsi_dev_queue_ready(q, sdev);
1664
1665         if (token >= 0)
1666                 return token;
1667
1668         atomic_inc(&sdev->restarts);
1669
1670         /*
1671          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1672          * .restarts must be incremented before .device_busy is read because the
1673          * code in scsi_run_queue_async() depends on the order of these operations.
1674          */
1675         smp_mb__after_atomic();
1676
1677         /*
1678          * If all in-flight requests originated from this LUN are completed
1679          * before reading .device_busy, sdev->device_busy will be observed as
1680          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1681          * soon. Otherwise, completion of one of these requests will observe
1682          * the .restarts flag, and the request queue will be run for handling
1683          * this request, see scsi_end_request().
1684          */
1685         if (unlikely(scsi_device_busy(sdev) == 0 &&
1686                                 !scsi_device_blocked(sdev)))
1687                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1688         return -1;
1689 }
1690
1691 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1692 {
1693         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1694
1695         cmd->budget_token = token;
1696 }
1697
1698 static int scsi_mq_get_rq_budget_token(struct request *req)
1699 {
1700         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1701
1702         return cmd->budget_token;
1703 }
1704
1705 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1706                          const struct blk_mq_queue_data *bd)
1707 {
1708         struct request *req = bd->rq;
1709         struct request_queue *q = req->q;
1710         struct scsi_device *sdev = q->queuedata;
1711         struct Scsi_Host *shost = sdev->host;
1712         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1713         blk_status_t ret;
1714         int reason;
1715
1716         WARN_ON_ONCE(cmd->budget_token < 0);
1717
1718         /*
1719          * If the device is not in running state we will reject some or all
1720          * commands.
1721          */
1722         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1723                 ret = scsi_device_state_check(sdev, req);
1724                 if (ret != BLK_STS_OK)
1725                         goto out_put_budget;
1726         }
1727
1728         ret = BLK_STS_RESOURCE;
1729         if (!scsi_target_queue_ready(shost, sdev))
1730                 goto out_put_budget;
1731         if (unlikely(scsi_host_in_recovery(shost))) {
1732                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1733                         ret = BLK_STS_OFFLINE;
1734                 goto out_dec_target_busy;
1735         }
1736         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1737                 goto out_dec_target_busy;
1738
1739         if (!(req->rq_flags & RQF_DONTPREP)) {
1740                 ret = scsi_prepare_cmd(req);
1741                 if (ret != BLK_STS_OK)
1742                         goto out_dec_host_busy;
1743                 req->rq_flags |= RQF_DONTPREP;
1744         } else {
1745                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1746         }
1747
1748         cmd->flags &= SCMD_PRESERVED_FLAGS;
1749         if (sdev->simple_tags)
1750                 cmd->flags |= SCMD_TAGGED;
1751         if (bd->last)
1752                 cmd->flags |= SCMD_LAST;
1753
1754         scsi_set_resid(cmd, 0);
1755         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1756         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1757
1758         blk_mq_start_request(req);
1759         reason = scsi_dispatch_cmd(cmd);
1760         if (reason) {
1761                 scsi_set_blocked(cmd, reason);
1762                 ret = BLK_STS_RESOURCE;
1763                 goto out_dec_host_busy;
1764         }
1765
1766         return BLK_STS_OK;
1767
1768 out_dec_host_busy:
1769         scsi_dec_host_busy(shost, cmd);
1770 out_dec_target_busy:
1771         if (scsi_target(sdev)->can_queue > 0)
1772                 atomic_dec(&scsi_target(sdev)->target_busy);
1773 out_put_budget:
1774         scsi_mq_put_budget(q, cmd->budget_token);
1775         cmd->budget_token = -1;
1776         switch (ret) {
1777         case BLK_STS_OK:
1778                 break;
1779         case BLK_STS_RESOURCE:
1780         case BLK_STS_ZONE_RESOURCE:
1781                 if (scsi_device_blocked(sdev))
1782                         ret = BLK_STS_DEV_RESOURCE;
1783                 break;
1784         case BLK_STS_AGAIN:
1785                 cmd->result = DID_BUS_BUSY << 16;
1786                 if (req->rq_flags & RQF_DONTPREP)
1787                         scsi_mq_uninit_cmd(cmd);
1788                 break;
1789         default:
1790                 if (unlikely(!scsi_device_online(sdev)))
1791                         cmd->result = DID_NO_CONNECT << 16;
1792                 else
1793                         cmd->result = DID_ERROR << 16;
1794                 /*
1795                  * Make sure to release all allocated resources when
1796                  * we hit an error, as we will never see this command
1797                  * again.
1798                  */
1799                 if (req->rq_flags & RQF_DONTPREP)
1800                         scsi_mq_uninit_cmd(cmd);
1801                 scsi_run_queue_async(sdev);
1802                 break;
1803         }
1804         return ret;
1805 }
1806
1807 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808                                 unsigned int hctx_idx, unsigned int numa_node)
1809 {
1810         struct Scsi_Host *shost = set->driver_data;
1811         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812         struct scatterlist *sg;
1813         int ret = 0;
1814
1815         cmd->sense_buffer =
1816                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1817         if (!cmd->sense_buffer)
1818                 return -ENOMEM;
1819
1820         if (scsi_host_get_prot(shost)) {
1821                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822                         shost->hostt->cmd_size;
1823                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824         }
1825
1826         if (shost->hostt->init_cmd_priv) {
1827                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1828                 if (ret < 0)
1829                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830         }
1831
1832         return ret;
1833 }
1834
1835 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836                                  unsigned int hctx_idx)
1837 {
1838         struct Scsi_Host *shost = set->driver_data;
1839         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840
1841         if (shost->hostt->exit_cmd_priv)
1842                 shost->hostt->exit_cmd_priv(shost, cmd);
1843         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1844 }
1845
1846
1847 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848 {
1849         struct Scsi_Host *shost = hctx->driver_data;
1850
1851         if (shost->hostt->mq_poll)
1852                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1853
1854         return 0;
1855 }
1856
1857 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858                           unsigned int hctx_idx)
1859 {
1860         struct Scsi_Host *shost = data;
1861
1862         hctx->driver_data = shost;
1863         return 0;
1864 }
1865
1866 static void scsi_map_queues(struct blk_mq_tag_set *set)
1867 {
1868         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869
1870         if (shost->hostt->map_queues)
1871                 return shost->hostt->map_queues(shost);
1872         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873 }
1874
1875 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876 {
1877         struct device *dev = shost->dma_dev;
1878
1879         /*
1880          * this limit is imposed by hardware restrictions
1881          */
1882         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883                                         SG_MAX_SEGMENTS));
1884
1885         if (scsi_host_prot_dma(shost)) {
1886                 shost->sg_prot_tablesize =
1887                         min_not_zero(shost->sg_prot_tablesize,
1888                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891         }
1892
1893         blk_queue_max_hw_sectors(q, shost->max_sectors);
1894         blk_queue_segment_boundary(q, shost->dma_boundary);
1895         dma_set_seg_boundary(dev, shost->dma_boundary);
1896
1897         blk_queue_max_segment_size(q, shost->max_segment_size);
1898         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1900
1901         /*
1902          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1903          * which is a common minimum for HBAs, and the minimum DMA alignment,
1904          * which is set by the platform.
1905          *
1906          * Devices that require a bigger alignment can increase it later.
1907          */
1908         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909 }
1910 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911
1912 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913         .get_budget     = scsi_mq_get_budget,
1914         .put_budget     = scsi_mq_put_budget,
1915         .queue_rq       = scsi_queue_rq,
1916         .complete       = scsi_complete,
1917         .timeout        = scsi_timeout,
1918 #ifdef CONFIG_BLK_DEBUG_FS
1919         .show_rq        = scsi_show_rq,
1920 #endif
1921         .init_request   = scsi_mq_init_request,
1922         .exit_request   = scsi_mq_exit_request,
1923         .cleanup_rq     = scsi_cleanup_rq,
1924         .busy           = scsi_mq_lld_busy,
1925         .map_queues     = scsi_map_queues,
1926         .init_hctx      = scsi_init_hctx,
1927         .poll           = scsi_mq_poll,
1928         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930 };
1931
1932
1933 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934 {
1935         struct Scsi_Host *shost = hctx->driver_data;
1936
1937         shost->hostt->commit_rqs(shost, hctx->queue_num);
1938 }
1939
1940 static const struct blk_mq_ops scsi_mq_ops = {
1941         .get_budget     = scsi_mq_get_budget,
1942         .put_budget     = scsi_mq_put_budget,
1943         .queue_rq       = scsi_queue_rq,
1944         .commit_rqs     = scsi_commit_rqs,
1945         .complete       = scsi_complete,
1946         .timeout        = scsi_timeout,
1947 #ifdef CONFIG_BLK_DEBUG_FS
1948         .show_rq        = scsi_show_rq,
1949 #endif
1950         .init_request   = scsi_mq_init_request,
1951         .exit_request   = scsi_mq_exit_request,
1952         .cleanup_rq     = scsi_cleanup_rq,
1953         .busy           = scsi_mq_lld_busy,
1954         .map_queues     = scsi_map_queues,
1955         .init_hctx      = scsi_init_hctx,
1956         .poll           = scsi_mq_poll,
1957         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959 };
1960
1961 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962 {
1963         unsigned int cmd_size, sgl_size;
1964         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965
1966         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967                                 scsi_mq_inline_sgl_size(shost));
1968         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969         if (scsi_host_get_prot(shost))
1970                 cmd_size += sizeof(struct scsi_data_buffer) +
1971                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972
1973         memset(tag_set, 0, sizeof(*tag_set));
1974         if (shost->hostt->commit_rqs)
1975                 tag_set->ops = &scsi_mq_ops;
1976         else
1977                 tag_set->ops = &scsi_mq_ops_no_commit;
1978         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979         tag_set->nr_maps = shost->nr_maps ? : 1;
1980         tag_set->queue_depth = shost->can_queue;
1981         tag_set->cmd_size = cmd_size;
1982         tag_set->numa_node = dev_to_node(shost->dma_dev);
1983         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984         tag_set->flags |=
1985                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1986         if (shost->queuecommand_may_block)
1987                 tag_set->flags |= BLK_MQ_F_BLOCKING;
1988         tag_set->driver_data = shost;
1989         if (shost->host_tagset)
1990                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1991
1992         return blk_mq_alloc_tag_set(tag_set);
1993 }
1994
1995 void scsi_mq_free_tags(struct kref *kref)
1996 {
1997         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1998                                                tagset_refcnt);
1999
2000         blk_mq_free_tag_set(&shost->tag_set);
2001         complete(&shost->tagset_freed);
2002 }
2003
2004 /**
2005  * scsi_device_from_queue - return sdev associated with a request_queue
2006  * @q: The request queue to return the sdev from
2007  *
2008  * Return the sdev associated with a request queue or NULL if the
2009  * request_queue does not reference a SCSI device.
2010  */
2011 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2012 {
2013         struct scsi_device *sdev = NULL;
2014
2015         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2016             q->mq_ops == &scsi_mq_ops)
2017                 sdev = q->queuedata;
2018         if (!sdev || !get_device(&sdev->sdev_gendev))
2019                 sdev = NULL;
2020
2021         return sdev;
2022 }
2023 /*
2024  * pktcdvd should have been integrated into the SCSI layers, but for historical
2025  * reasons like the old IDE driver it isn't.  This export allows it to safely
2026  * probe if a given device is a SCSI one and only attach to that.
2027  */
2028 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2029 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2030 #endif
2031
2032 /**
2033  * scsi_block_requests - Utility function used by low-level drivers to prevent
2034  * further commands from being queued to the device.
2035  * @shost:  host in question
2036  *
2037  * There is no timer nor any other means by which the requests get unblocked
2038  * other than the low-level driver calling scsi_unblock_requests().
2039  */
2040 void scsi_block_requests(struct Scsi_Host *shost)
2041 {
2042         shost->host_self_blocked = 1;
2043 }
2044 EXPORT_SYMBOL(scsi_block_requests);
2045
2046 /**
2047  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2048  * further commands to be queued to the device.
2049  * @shost:  host in question
2050  *
2051  * There is no timer nor any other means by which the requests get unblocked
2052  * other than the low-level driver calling scsi_unblock_requests(). This is done
2053  * as an API function so that changes to the internals of the scsi mid-layer
2054  * won't require wholesale changes to drivers that use this feature.
2055  */
2056 void scsi_unblock_requests(struct Scsi_Host *shost)
2057 {
2058         shost->host_self_blocked = 0;
2059         scsi_run_host_queues(shost);
2060 }
2061 EXPORT_SYMBOL(scsi_unblock_requests);
2062
2063 void scsi_exit_queue(void)
2064 {
2065         kmem_cache_destroy(scsi_sense_cache);
2066 }
2067
2068 /**
2069  *      scsi_mode_select - issue a mode select
2070  *      @sdev:  SCSI device to be queried
2071  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2072  *      @sp:    Save page bit (0 == don't save, 1 == save)
2073  *      @buffer: request buffer (may not be smaller than eight bytes)
2074  *      @len:   length of request buffer.
2075  *      @timeout: command timeout
2076  *      @retries: number of retries before failing
2077  *      @data: returns a structure abstracting the mode header data
2078  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2079  *              must be SCSI_SENSE_BUFFERSIZE big.
2080  *
2081  *      Returns zero if successful; negative error number or scsi
2082  *      status on error
2083  *
2084  */
2085 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2086                      unsigned char *buffer, int len, int timeout, int retries,
2087                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2088 {
2089         unsigned char cmd[10];
2090         unsigned char *real_buffer;
2091         const struct scsi_exec_args exec_args = {
2092                 .sshdr = sshdr,
2093         };
2094         int ret;
2095
2096         memset(cmd, 0, sizeof(cmd));
2097         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2098
2099         /*
2100          * Use MODE SELECT(10) if the device asked for it or if the mode page
2101          * and the mode select header cannot fit within the maximumm 255 bytes
2102          * of the MODE SELECT(6) command.
2103          */
2104         if (sdev->use_10_for_ms ||
2105             len + 4 > 255 ||
2106             data->block_descriptor_length > 255) {
2107                 if (len > 65535 - 8)
2108                         return -EINVAL;
2109                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2110                 if (!real_buffer)
2111                         return -ENOMEM;
2112                 memcpy(real_buffer + 8, buffer, len);
2113                 len += 8;
2114                 real_buffer[0] = 0;
2115                 real_buffer[1] = 0;
2116                 real_buffer[2] = data->medium_type;
2117                 real_buffer[3] = data->device_specific;
2118                 real_buffer[4] = data->longlba ? 0x01 : 0;
2119                 real_buffer[5] = 0;
2120                 put_unaligned_be16(data->block_descriptor_length,
2121                                    &real_buffer[6]);
2122
2123                 cmd[0] = MODE_SELECT_10;
2124                 put_unaligned_be16(len, &cmd[7]);
2125         } else {
2126                 if (data->longlba)
2127                         return -EINVAL;
2128
2129                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2130                 if (!real_buffer)
2131                         return -ENOMEM;
2132                 memcpy(real_buffer + 4, buffer, len);
2133                 len += 4;
2134                 real_buffer[0] = 0;
2135                 real_buffer[1] = data->medium_type;
2136                 real_buffer[2] = data->device_specific;
2137                 real_buffer[3] = data->block_descriptor_length;
2138
2139                 cmd[0] = MODE_SELECT;
2140                 cmd[4] = len;
2141         }
2142
2143         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2144                                timeout, retries, &exec_args);
2145         kfree(real_buffer);
2146         return ret;
2147 }
2148 EXPORT_SYMBOL_GPL(scsi_mode_select);
2149
2150 /**
2151  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2152  *      @sdev:  SCSI device to be queried
2153  *      @dbd:   set to prevent mode sense from returning block descriptors
2154  *      @modepage: mode page being requested
2155  *      @subpage: sub-page of the mode page being requested
2156  *      @buffer: request buffer (may not be smaller than eight bytes)
2157  *      @len:   length of request buffer.
2158  *      @timeout: command timeout
2159  *      @retries: number of retries before failing
2160  *      @data: returns a structure abstracting the mode header data
2161  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2162  *              must be SCSI_SENSE_BUFFERSIZE big.
2163  *
2164  *      Returns zero if successful, or a negative error number on failure
2165  */
2166 int
2167 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2168                   unsigned char *buffer, int len, int timeout, int retries,
2169                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2170 {
2171         unsigned char cmd[12];
2172         int use_10_for_ms;
2173         int header_length;
2174         int result, retry_count = retries;
2175         struct scsi_sense_hdr my_sshdr;
2176         const struct scsi_exec_args exec_args = {
2177                 /* caller might not be interested in sense, but we need it */
2178                 .sshdr = sshdr ? : &my_sshdr,
2179         };
2180
2181         memset(data, 0, sizeof(*data));
2182         memset(&cmd[0], 0, 12);
2183
2184         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2185         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2186         cmd[2] = modepage;
2187         cmd[3] = subpage;
2188
2189         sshdr = exec_args.sshdr;
2190
2191  retry:
2192         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2193
2194         if (use_10_for_ms) {
2195                 if (len < 8 || len > 65535)
2196                         return -EINVAL;
2197
2198                 cmd[0] = MODE_SENSE_10;
2199                 put_unaligned_be16(len, &cmd[7]);
2200                 header_length = 8;
2201         } else {
2202                 if (len < 4)
2203                         return -EINVAL;
2204
2205                 cmd[0] = MODE_SENSE;
2206                 cmd[4] = len;
2207                 header_length = 4;
2208         }
2209
2210         memset(buffer, 0, len);
2211
2212         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2213                                   timeout, retries, &exec_args);
2214         if (result < 0)
2215                 return result;
2216
2217         /* This code looks awful: what it's doing is making sure an
2218          * ILLEGAL REQUEST sense return identifies the actual command
2219          * byte as the problem.  MODE_SENSE commands can return
2220          * ILLEGAL REQUEST if the code page isn't supported */
2221
2222         if (!scsi_status_is_good(result)) {
2223                 if (scsi_sense_valid(sshdr)) {
2224                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2225                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2226                                 /*
2227                                  * Invalid command operation code: retry using
2228                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2229                                  * request, except if the request mode page is
2230                                  * too large for MODE SENSE single byte
2231                                  * allocation length field.
2232                                  */
2233                                 if (use_10_for_ms) {
2234                                         if (len > 255)
2235                                                 return -EIO;
2236                                         sdev->use_10_for_ms = 0;
2237                                         goto retry;
2238                                 }
2239                         }
2240                         if (scsi_status_is_check_condition(result) &&
2241                             sshdr->sense_key == UNIT_ATTENTION &&
2242                             retry_count) {
2243                                 retry_count--;
2244                                 goto retry;
2245                         }
2246                 }
2247                 return -EIO;
2248         }
2249         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2250                      (modepage == 6 || modepage == 8))) {
2251                 /* Initio breakage? */
2252                 header_length = 0;
2253                 data->length = 13;
2254                 data->medium_type = 0;
2255                 data->device_specific = 0;
2256                 data->longlba = 0;
2257                 data->block_descriptor_length = 0;
2258         } else if (use_10_for_ms) {
2259                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2260                 data->medium_type = buffer[2];
2261                 data->device_specific = buffer[3];
2262                 data->longlba = buffer[4] & 0x01;
2263                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2264         } else {
2265                 data->length = buffer[0] + 1;
2266                 data->medium_type = buffer[1];
2267                 data->device_specific = buffer[2];
2268                 data->block_descriptor_length = buffer[3];
2269         }
2270         data->header_length = header_length;
2271
2272         return 0;
2273 }
2274 EXPORT_SYMBOL(scsi_mode_sense);
2275
2276 /**
2277  *      scsi_test_unit_ready - test if unit is ready
2278  *      @sdev:  scsi device to change the state of.
2279  *      @timeout: command timeout
2280  *      @retries: number of retries before failing
2281  *      @sshdr: outpout pointer for decoded sense information.
2282  *
2283  *      Returns zero if unsuccessful or an error if TUR failed.  For
2284  *      removable media, UNIT_ATTENTION sets ->changed flag.
2285  **/
2286 int
2287 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2288                      struct scsi_sense_hdr *sshdr)
2289 {
2290         char cmd[] = {
2291                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2292         };
2293         const struct scsi_exec_args exec_args = {
2294                 .sshdr = sshdr,
2295         };
2296         int result;
2297
2298         /* try to eat the UNIT_ATTENTION if there are enough retries */
2299         do {
2300                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2301                                           timeout, 1, &exec_args);
2302                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2303                     sshdr->sense_key == UNIT_ATTENTION)
2304                         sdev->changed = 1;
2305         } while (scsi_sense_valid(sshdr) &&
2306                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2307
2308         return result;
2309 }
2310 EXPORT_SYMBOL(scsi_test_unit_ready);
2311
2312 /**
2313  *      scsi_device_set_state - Take the given device through the device state model.
2314  *      @sdev:  scsi device to change the state of.
2315  *      @state: state to change to.
2316  *
2317  *      Returns zero if successful or an error if the requested
2318  *      transition is illegal.
2319  */
2320 int
2321 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2322 {
2323         enum scsi_device_state oldstate = sdev->sdev_state;
2324
2325         if (state == oldstate)
2326                 return 0;
2327
2328         switch (state) {
2329         case SDEV_CREATED:
2330                 switch (oldstate) {
2331                 case SDEV_CREATED_BLOCK:
2332                         break;
2333                 default:
2334                         goto illegal;
2335                 }
2336                 break;
2337
2338         case SDEV_RUNNING:
2339                 switch (oldstate) {
2340                 case SDEV_CREATED:
2341                 case SDEV_OFFLINE:
2342                 case SDEV_TRANSPORT_OFFLINE:
2343                 case SDEV_QUIESCE:
2344                 case SDEV_BLOCK:
2345                         break;
2346                 default:
2347                         goto illegal;
2348                 }
2349                 break;
2350
2351         case SDEV_QUIESCE:
2352                 switch (oldstate) {
2353                 case SDEV_RUNNING:
2354                 case SDEV_OFFLINE:
2355                 case SDEV_TRANSPORT_OFFLINE:
2356                         break;
2357                 default:
2358                         goto illegal;
2359                 }
2360                 break;
2361
2362         case SDEV_OFFLINE:
2363         case SDEV_TRANSPORT_OFFLINE:
2364                 switch (oldstate) {
2365                 case SDEV_CREATED:
2366                 case SDEV_RUNNING:
2367                 case SDEV_QUIESCE:
2368                 case SDEV_BLOCK:
2369                         break;
2370                 default:
2371                         goto illegal;
2372                 }
2373                 break;
2374
2375         case SDEV_BLOCK:
2376                 switch (oldstate) {
2377                 case SDEV_RUNNING:
2378                 case SDEV_CREATED_BLOCK:
2379                 case SDEV_QUIESCE:
2380                 case SDEV_OFFLINE:
2381                         break;
2382                 default:
2383                         goto illegal;
2384                 }
2385                 break;
2386
2387         case SDEV_CREATED_BLOCK:
2388                 switch (oldstate) {
2389                 case SDEV_CREATED:
2390                         break;
2391                 default:
2392                         goto illegal;
2393                 }
2394                 break;
2395
2396         case SDEV_CANCEL:
2397                 switch (oldstate) {
2398                 case SDEV_CREATED:
2399                 case SDEV_RUNNING:
2400                 case SDEV_QUIESCE:
2401                 case SDEV_OFFLINE:
2402                 case SDEV_TRANSPORT_OFFLINE:
2403                         break;
2404                 default:
2405                         goto illegal;
2406                 }
2407                 break;
2408
2409         case SDEV_DEL:
2410                 switch (oldstate) {
2411                 case SDEV_CREATED:
2412                 case SDEV_RUNNING:
2413                 case SDEV_OFFLINE:
2414                 case SDEV_TRANSPORT_OFFLINE:
2415                 case SDEV_CANCEL:
2416                 case SDEV_BLOCK:
2417                 case SDEV_CREATED_BLOCK:
2418                         break;
2419                 default:
2420                         goto illegal;
2421                 }
2422                 break;
2423
2424         }
2425         sdev->offline_already = false;
2426         sdev->sdev_state = state;
2427         return 0;
2428
2429  illegal:
2430         SCSI_LOG_ERROR_RECOVERY(1,
2431                                 sdev_printk(KERN_ERR, sdev,
2432                                             "Illegal state transition %s->%s",
2433                                             scsi_device_state_name(oldstate),
2434                                             scsi_device_state_name(state))
2435                                 );
2436         return -EINVAL;
2437 }
2438 EXPORT_SYMBOL(scsi_device_set_state);
2439
2440 /**
2441  *      scsi_evt_emit - emit a single SCSI device uevent
2442  *      @sdev: associated SCSI device
2443  *      @evt: event to emit
2444  *
2445  *      Send a single uevent (scsi_event) to the associated scsi_device.
2446  */
2447 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2448 {
2449         int idx = 0;
2450         char *envp[3];
2451
2452         switch (evt->evt_type) {
2453         case SDEV_EVT_MEDIA_CHANGE:
2454                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2455                 break;
2456         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2457                 scsi_rescan_device(sdev);
2458                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2459                 break;
2460         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2461                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2462                 break;
2463         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2464                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2465                 break;
2466         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2467                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2468                 break;
2469         case SDEV_EVT_LUN_CHANGE_REPORTED:
2470                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2471                 break;
2472         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2473                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2474                 break;
2475         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2476                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2477                 break;
2478         default:
2479                 /* do nothing */
2480                 break;
2481         }
2482
2483         envp[idx++] = NULL;
2484
2485         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2486 }
2487
2488 /**
2489  *      scsi_evt_thread - send a uevent for each scsi event
2490  *      @work: work struct for scsi_device
2491  *
2492  *      Dispatch queued events to their associated scsi_device kobjects
2493  *      as uevents.
2494  */
2495 void scsi_evt_thread(struct work_struct *work)
2496 {
2497         struct scsi_device *sdev;
2498         enum scsi_device_event evt_type;
2499         LIST_HEAD(event_list);
2500
2501         sdev = container_of(work, struct scsi_device, event_work);
2502
2503         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2504                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2505                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2506
2507         while (1) {
2508                 struct scsi_event *evt;
2509                 struct list_head *this, *tmp;
2510                 unsigned long flags;
2511
2512                 spin_lock_irqsave(&sdev->list_lock, flags);
2513                 list_splice_init(&sdev->event_list, &event_list);
2514                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2515
2516                 if (list_empty(&event_list))
2517                         break;
2518
2519                 list_for_each_safe(this, tmp, &event_list) {
2520                         evt = list_entry(this, struct scsi_event, node);
2521                         list_del(&evt->node);
2522                         scsi_evt_emit(sdev, evt);
2523                         kfree(evt);
2524                 }
2525         }
2526 }
2527
2528 /**
2529  *      sdev_evt_send - send asserted event to uevent thread
2530  *      @sdev: scsi_device event occurred on
2531  *      @evt: event to send
2532  *
2533  *      Assert scsi device event asynchronously.
2534  */
2535 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2536 {
2537         unsigned long flags;
2538
2539 #if 0
2540         /* FIXME: currently this check eliminates all media change events
2541          * for polled devices.  Need to update to discriminate between AN
2542          * and polled events */
2543         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2544                 kfree(evt);
2545                 return;
2546         }
2547 #endif
2548
2549         spin_lock_irqsave(&sdev->list_lock, flags);
2550         list_add_tail(&evt->node, &sdev->event_list);
2551         schedule_work(&sdev->event_work);
2552         spin_unlock_irqrestore(&sdev->list_lock, flags);
2553 }
2554 EXPORT_SYMBOL_GPL(sdev_evt_send);
2555
2556 /**
2557  *      sdev_evt_alloc - allocate a new scsi event
2558  *      @evt_type: type of event to allocate
2559  *      @gfpflags: GFP flags for allocation
2560  *
2561  *      Allocates and returns a new scsi_event.
2562  */
2563 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2564                                   gfp_t gfpflags)
2565 {
2566         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2567         if (!evt)
2568                 return NULL;
2569
2570         evt->evt_type = evt_type;
2571         INIT_LIST_HEAD(&evt->node);
2572
2573         /* evt_type-specific initialization, if any */
2574         switch (evt_type) {
2575         case SDEV_EVT_MEDIA_CHANGE:
2576         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2577         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2578         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2579         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580         case SDEV_EVT_LUN_CHANGE_REPORTED:
2581         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2582         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2583         default:
2584                 /* do nothing */
2585                 break;
2586         }
2587
2588         return evt;
2589 }
2590 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2591
2592 /**
2593  *      sdev_evt_send_simple - send asserted event to uevent thread
2594  *      @sdev: scsi_device event occurred on
2595  *      @evt_type: type of event to send
2596  *      @gfpflags: GFP flags for allocation
2597  *
2598  *      Assert scsi device event asynchronously, given an event type.
2599  */
2600 void sdev_evt_send_simple(struct scsi_device *sdev,
2601                           enum scsi_device_event evt_type, gfp_t gfpflags)
2602 {
2603         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2604         if (!evt) {
2605                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2606                             evt_type);
2607                 return;
2608         }
2609
2610         sdev_evt_send(sdev, evt);
2611 }
2612 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2613
2614 /**
2615  *      scsi_device_quiesce - Block all commands except power management.
2616  *      @sdev:  scsi device to quiesce.
2617  *
2618  *      This works by trying to transition to the SDEV_QUIESCE state
2619  *      (which must be a legal transition).  When the device is in this
2620  *      state, only power management requests will be accepted, all others will
2621  *      be deferred.
2622  *
2623  *      Must be called with user context, may sleep.
2624  *
2625  *      Returns zero if unsuccessful or an error if not.
2626  */
2627 int
2628 scsi_device_quiesce(struct scsi_device *sdev)
2629 {
2630         struct request_queue *q = sdev->request_queue;
2631         int err;
2632
2633         /*
2634          * It is allowed to call scsi_device_quiesce() multiple times from
2635          * the same context but concurrent scsi_device_quiesce() calls are
2636          * not allowed.
2637          */
2638         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2639
2640         if (sdev->quiesced_by == current)
2641                 return 0;
2642
2643         blk_set_pm_only(q);
2644
2645         blk_mq_freeze_queue(q);
2646         /*
2647          * Ensure that the effect of blk_set_pm_only() will be visible
2648          * for percpu_ref_tryget() callers that occur after the queue
2649          * unfreeze even if the queue was already frozen before this function
2650          * was called. See also https://lwn.net/Articles/573497/.
2651          */
2652         synchronize_rcu();
2653         blk_mq_unfreeze_queue(q);
2654
2655         mutex_lock(&sdev->state_mutex);
2656         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2657         if (err == 0)
2658                 sdev->quiesced_by = current;
2659         else
2660                 blk_clear_pm_only(q);
2661         mutex_unlock(&sdev->state_mutex);
2662
2663         return err;
2664 }
2665 EXPORT_SYMBOL(scsi_device_quiesce);
2666
2667 /**
2668  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2669  *      @sdev:  scsi device to resume.
2670  *
2671  *      Moves the device from quiesced back to running and restarts the
2672  *      queues.
2673  *
2674  *      Must be called with user context, may sleep.
2675  */
2676 void scsi_device_resume(struct scsi_device *sdev)
2677 {
2678         /* check if the device state was mutated prior to resume, and if
2679          * so assume the state is being managed elsewhere (for example
2680          * device deleted during suspend)
2681          */
2682         mutex_lock(&sdev->state_mutex);
2683         if (sdev->sdev_state == SDEV_QUIESCE)
2684                 scsi_device_set_state(sdev, SDEV_RUNNING);
2685         if (sdev->quiesced_by) {
2686                 sdev->quiesced_by = NULL;
2687                 blk_clear_pm_only(sdev->request_queue);
2688         }
2689         mutex_unlock(&sdev->state_mutex);
2690 }
2691 EXPORT_SYMBOL(scsi_device_resume);
2692
2693 static void
2694 device_quiesce_fn(struct scsi_device *sdev, void *data)
2695 {
2696         scsi_device_quiesce(sdev);
2697 }
2698
2699 void
2700 scsi_target_quiesce(struct scsi_target *starget)
2701 {
2702         starget_for_each_device(starget, NULL, device_quiesce_fn);
2703 }
2704 EXPORT_SYMBOL(scsi_target_quiesce);
2705
2706 static void
2707 device_resume_fn(struct scsi_device *sdev, void *data)
2708 {
2709         scsi_device_resume(sdev);
2710 }
2711
2712 void
2713 scsi_target_resume(struct scsi_target *starget)
2714 {
2715         starget_for_each_device(starget, NULL, device_resume_fn);
2716 }
2717 EXPORT_SYMBOL(scsi_target_resume);
2718
2719 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2720 {
2721         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2722                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2723
2724         return 0;
2725 }
2726
2727 void scsi_start_queue(struct scsi_device *sdev)
2728 {
2729         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2730                 blk_mq_unquiesce_queue(sdev->request_queue);
2731 }
2732
2733 static void scsi_stop_queue(struct scsi_device *sdev)
2734 {
2735         /*
2736          * The atomic variable of ->queue_stopped covers that
2737          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2738          *
2739          * The caller needs to wait until quiesce is done.
2740          */
2741         if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2742                 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2743 }
2744
2745 /**
2746  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2747  * @sdev: device to block
2748  *
2749  * Pause SCSI command processing on the specified device. Does not sleep.
2750  *
2751  * Returns zero if successful or a negative error code upon failure.
2752  *
2753  * Notes:
2754  * This routine transitions the device to the SDEV_BLOCK state (which must be
2755  * a legal transition). When the device is in this state, command processing
2756  * is paused until the device leaves the SDEV_BLOCK state. See also
2757  * scsi_internal_device_unblock_nowait().
2758  */
2759 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2760 {
2761         int ret = __scsi_internal_device_block_nowait(sdev);
2762
2763         /*
2764          * The device has transitioned to SDEV_BLOCK.  Stop the
2765          * block layer from calling the midlayer with this device's
2766          * request queue.
2767          */
2768         if (!ret)
2769                 scsi_stop_queue(sdev);
2770         return ret;
2771 }
2772 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2773
2774 /**
2775  * scsi_device_block - try to transition to the SDEV_BLOCK state
2776  * @sdev: device to block
2777  * @data: dummy argument, ignored
2778  *
2779  * Pause SCSI command processing on the specified device. Callers must wait
2780  * until all ongoing scsi_queue_rq() calls have finished after this function
2781  * returns.
2782  *
2783  * Note:
2784  * This routine transitions the device to the SDEV_BLOCK state (which must be
2785  * a legal transition). When the device is in this state, command processing
2786  * is paused until the device leaves the SDEV_BLOCK state. See also
2787  * scsi_internal_device_unblock().
2788  */
2789 static void scsi_device_block(struct scsi_device *sdev, void *data)
2790 {
2791         int err;
2792         enum scsi_device_state state;
2793
2794         mutex_lock(&sdev->state_mutex);
2795         err = __scsi_internal_device_block_nowait(sdev);
2796         state = sdev->sdev_state;
2797         if (err == 0)
2798                 /*
2799                  * scsi_stop_queue() must be called with the state_mutex
2800                  * held. Otherwise a simultaneous scsi_start_queue() call
2801                  * might unquiesce the queue before we quiesce it.
2802                  */
2803                 scsi_stop_queue(sdev);
2804
2805         mutex_unlock(&sdev->state_mutex);
2806
2807         WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2808                   __func__, dev_name(&sdev->sdev_gendev), state);
2809 }
2810
2811 /**
2812  * scsi_internal_device_unblock_nowait - resume a device after a block request
2813  * @sdev:       device to resume
2814  * @new_state:  state to set the device to after unblocking
2815  *
2816  * Restart the device queue for a previously suspended SCSI device. Does not
2817  * sleep.
2818  *
2819  * Returns zero if successful or a negative error code upon failure.
2820  *
2821  * Notes:
2822  * This routine transitions the device to the SDEV_RUNNING state or to one of
2823  * the offline states (which must be a legal transition) allowing the midlayer
2824  * to goose the queue for this device.
2825  */
2826 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2827                                         enum scsi_device_state new_state)
2828 {
2829         switch (new_state) {
2830         case SDEV_RUNNING:
2831         case SDEV_TRANSPORT_OFFLINE:
2832                 break;
2833         default:
2834                 return -EINVAL;
2835         }
2836
2837         /*
2838          * Try to transition the scsi device to SDEV_RUNNING or one of the
2839          * offlined states and goose the device queue if successful.
2840          */
2841         switch (sdev->sdev_state) {
2842         case SDEV_BLOCK:
2843         case SDEV_TRANSPORT_OFFLINE:
2844                 sdev->sdev_state = new_state;
2845                 break;
2846         case SDEV_CREATED_BLOCK:
2847                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2848                     new_state == SDEV_OFFLINE)
2849                         sdev->sdev_state = new_state;
2850                 else
2851                         sdev->sdev_state = SDEV_CREATED;
2852                 break;
2853         case SDEV_CANCEL:
2854         case SDEV_OFFLINE:
2855                 break;
2856         default:
2857                 return -EINVAL;
2858         }
2859         scsi_start_queue(sdev);
2860
2861         return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2864
2865 /**
2866  * scsi_internal_device_unblock - resume a device after a block request
2867  * @sdev:       device to resume
2868  * @new_state:  state to set the device to after unblocking
2869  *
2870  * Restart the device queue for a previously suspended SCSI device. May sleep.
2871  *
2872  * Returns zero if successful or a negative error code upon failure.
2873  *
2874  * Notes:
2875  * This routine transitions the device to the SDEV_RUNNING state or to one of
2876  * the offline states (which must be a legal transition) allowing the midlayer
2877  * to goose the queue for this device.
2878  */
2879 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2880                                         enum scsi_device_state new_state)
2881 {
2882         int ret;
2883
2884         mutex_lock(&sdev->state_mutex);
2885         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2886         mutex_unlock(&sdev->state_mutex);
2887
2888         return ret;
2889 }
2890
2891 static int
2892 target_block(struct device *dev, void *data)
2893 {
2894         if (scsi_is_target_device(dev))
2895                 starget_for_each_device(to_scsi_target(dev), NULL,
2896                                         scsi_device_block);
2897         return 0;
2898 }
2899
2900 /**
2901  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2902  * @dev: a parent device of one or more scsi_target devices
2903  * @shost: the Scsi_Host to which this device belongs
2904  *
2905  * Iterate over all children of @dev, which should be scsi_target devices,
2906  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2907  * ongoing scsi_queue_rq() calls to finish. May sleep.
2908  *
2909  * Note:
2910  * @dev must not itself be a scsi_target device.
2911  */
2912 void
2913 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2914 {
2915         WARN_ON_ONCE(scsi_is_target_device(dev));
2916         device_for_each_child(dev, NULL, target_block);
2917         blk_mq_wait_quiesce_done(&shost->tag_set);
2918 }
2919 EXPORT_SYMBOL_GPL(scsi_block_targets);
2920
2921 static void
2922 device_unblock(struct scsi_device *sdev, void *data)
2923 {
2924         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2925 }
2926
2927 static int
2928 target_unblock(struct device *dev, void *data)
2929 {
2930         if (scsi_is_target_device(dev))
2931                 starget_for_each_device(to_scsi_target(dev), data,
2932                                         device_unblock);
2933         return 0;
2934 }
2935
2936 void
2937 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2938 {
2939         if (scsi_is_target_device(dev))
2940                 starget_for_each_device(to_scsi_target(dev), &new_state,
2941                                         device_unblock);
2942         else
2943                 device_for_each_child(dev, &new_state, target_unblock);
2944 }
2945 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2946
2947 /**
2948  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2949  * @shost: device to block
2950  *
2951  * Pause SCSI command processing for all logical units associated with the SCSI
2952  * host and wait until pending scsi_queue_rq() calls have finished.
2953  *
2954  * Returns zero if successful or a negative error code upon failure.
2955  */
2956 int
2957 scsi_host_block(struct Scsi_Host *shost)
2958 {
2959         struct scsi_device *sdev;
2960         int ret;
2961
2962         /*
2963          * Call scsi_internal_device_block_nowait so we can avoid
2964          * calling synchronize_rcu() for each LUN.
2965          */
2966         shost_for_each_device(sdev, shost) {
2967                 mutex_lock(&sdev->state_mutex);
2968                 ret = scsi_internal_device_block_nowait(sdev);
2969                 mutex_unlock(&sdev->state_mutex);
2970                 if (ret) {
2971                         scsi_device_put(sdev);
2972                         return ret;
2973                 }
2974         }
2975
2976         /* Wait for ongoing scsi_queue_rq() calls to finish. */
2977         blk_mq_wait_quiesce_done(&shost->tag_set);
2978
2979         return 0;
2980 }
2981 EXPORT_SYMBOL_GPL(scsi_host_block);
2982
2983 int
2984 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2985 {
2986         struct scsi_device *sdev;
2987         int ret = 0;
2988
2989         shost_for_each_device(sdev, shost) {
2990                 ret = scsi_internal_device_unblock(sdev, new_state);
2991                 if (ret) {
2992                         scsi_device_put(sdev);
2993                         break;
2994                 }
2995         }
2996         return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2999
3000 /**
3001  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3002  * @sgl:        scatter-gather list
3003  * @sg_count:   number of segments in sg
3004  * @offset:     offset in bytes into sg, on return offset into the mapped area
3005  * @len:        bytes to map, on return number of bytes mapped
3006  *
3007  * Returns virtual address of the start of the mapped page
3008  */
3009 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3010                           size_t *offset, size_t *len)
3011 {
3012         int i;
3013         size_t sg_len = 0, len_complete = 0;
3014         struct scatterlist *sg;
3015         struct page *page;
3016
3017         WARN_ON(!irqs_disabled());
3018
3019         for_each_sg(sgl, sg, sg_count, i) {
3020                 len_complete = sg_len; /* Complete sg-entries */
3021                 sg_len += sg->length;
3022                 if (sg_len > *offset)
3023                         break;
3024         }
3025
3026         if (unlikely(i == sg_count)) {
3027                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3028                         "elements %d\n",
3029                        __func__, sg_len, *offset, sg_count);
3030                 WARN_ON(1);
3031                 return NULL;
3032         }
3033
3034         /* Offset starting from the beginning of first page in this sg-entry */
3035         *offset = *offset - len_complete + sg->offset;
3036
3037         /* Assumption: contiguous pages can be accessed as "page + i" */
3038         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3039         *offset &= ~PAGE_MASK;
3040
3041         /* Bytes in this sg-entry from *offset to the end of the page */
3042         sg_len = PAGE_SIZE - *offset;
3043         if (*len > sg_len)
3044                 *len = sg_len;
3045
3046         return kmap_atomic(page);
3047 }
3048 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3049
3050 /**
3051  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3052  * @virt:       virtual address to be unmapped
3053  */
3054 void scsi_kunmap_atomic_sg(void *virt)
3055 {
3056         kunmap_atomic(virt);
3057 }
3058 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3059
3060 void sdev_disable_disk_events(struct scsi_device *sdev)
3061 {
3062         atomic_inc(&sdev->disk_events_disable_depth);
3063 }
3064 EXPORT_SYMBOL(sdev_disable_disk_events);
3065
3066 void sdev_enable_disk_events(struct scsi_device *sdev)
3067 {
3068         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3069                 return;
3070         atomic_dec(&sdev->disk_events_disable_depth);
3071 }
3072 EXPORT_SYMBOL(sdev_enable_disk_events);
3073
3074 static unsigned char designator_prio(const unsigned char *d)
3075 {
3076         if (d[1] & 0x30)
3077                 /* not associated with LUN */
3078                 return 0;
3079
3080         if (d[3] == 0)
3081                 /* invalid length */
3082                 return 0;
3083
3084         /*
3085          * Order of preference for lun descriptor:
3086          * - SCSI name string
3087          * - NAA IEEE Registered Extended
3088          * - EUI-64 based 16-byte
3089          * - EUI-64 based 12-byte
3090          * - NAA IEEE Registered
3091          * - NAA IEEE Extended
3092          * - EUI-64 based 8-byte
3093          * - SCSI name string (truncated)
3094          * - T10 Vendor ID
3095          * as longer descriptors reduce the likelyhood
3096          * of identification clashes.
3097          */
3098
3099         switch (d[1] & 0xf) {
3100         case 8:
3101                 /* SCSI name string, variable-length UTF-8 */
3102                 return 9;
3103         case 3:
3104                 switch (d[4] >> 4) {
3105                 case 6:
3106                         /* NAA registered extended */
3107                         return 8;
3108                 case 5:
3109                         /* NAA registered */
3110                         return 5;
3111                 case 4:
3112                         /* NAA extended */
3113                         return 4;
3114                 case 3:
3115                         /* NAA locally assigned */
3116                         return 1;
3117                 default:
3118                         break;
3119                 }
3120                 break;
3121         case 2:
3122                 switch (d[3]) {
3123                 case 16:
3124                         /* EUI64-based, 16 byte */
3125                         return 7;
3126                 case 12:
3127                         /* EUI64-based, 12 byte */
3128                         return 6;
3129                 case 8:
3130                         /* EUI64-based, 8 byte */
3131                         return 3;
3132                 default:
3133                         break;
3134                 }
3135                 break;
3136         case 1:
3137                 /* T10 vendor ID */
3138                 return 1;
3139         default:
3140                 break;
3141         }
3142
3143         return 0;
3144 }
3145
3146 /**
3147  * scsi_vpd_lun_id - return a unique device identification
3148  * @sdev: SCSI device
3149  * @id:   buffer for the identification
3150  * @id_len:  length of the buffer
3151  *
3152  * Copies a unique device identification into @id based
3153  * on the information in the VPD page 0x83 of the device.
3154  * The string will be formatted as a SCSI name string.
3155  *
3156  * Returns the length of the identification or error on failure.
3157  * If the identifier is longer than the supplied buffer the actual
3158  * identifier length is returned and the buffer is not zero-padded.
3159  */
3160 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3161 {
3162         u8 cur_id_prio = 0;
3163         u8 cur_id_size = 0;
3164         const unsigned char *d, *cur_id_str;
3165         const struct scsi_vpd *vpd_pg83;
3166         int id_size = -EINVAL;
3167
3168         rcu_read_lock();
3169         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3170         if (!vpd_pg83) {
3171                 rcu_read_unlock();
3172                 return -ENXIO;
3173         }
3174
3175         /* The id string must be at least 20 bytes + terminating NULL byte */
3176         if (id_len < 21) {
3177                 rcu_read_unlock();
3178                 return -EINVAL;
3179         }
3180
3181         memset(id, 0, id_len);
3182         for (d = vpd_pg83->data + 4;
3183              d < vpd_pg83->data + vpd_pg83->len;
3184              d += d[3] + 4) {
3185                 u8 prio = designator_prio(d);
3186
3187                 if (prio == 0 || cur_id_prio > prio)
3188                         continue;
3189
3190                 switch (d[1] & 0xf) {
3191                 case 0x1:
3192                         /* T10 Vendor ID */
3193                         if (cur_id_size > d[3])
3194                                 break;
3195                         cur_id_prio = prio;
3196                         cur_id_size = d[3];
3197                         if (cur_id_size + 4 > id_len)
3198                                 cur_id_size = id_len - 4;
3199                         cur_id_str = d + 4;
3200                         id_size = snprintf(id, id_len, "t10.%*pE",
3201                                            cur_id_size, cur_id_str);
3202                         break;
3203                 case 0x2:
3204                         /* EUI-64 */
3205                         cur_id_prio = prio;
3206                         cur_id_size = d[3];
3207                         cur_id_str = d + 4;
3208                         switch (cur_id_size) {
3209                         case 8:
3210                                 id_size = snprintf(id, id_len,
3211                                                    "eui.%8phN",
3212                                                    cur_id_str);
3213                                 break;
3214                         case 12:
3215                                 id_size = snprintf(id, id_len,
3216                                                    "eui.%12phN",
3217                                                    cur_id_str);
3218                                 break;
3219                         case 16:
3220                                 id_size = snprintf(id, id_len,
3221                                                    "eui.%16phN",
3222                                                    cur_id_str);
3223                                 break;
3224                         default:
3225                                 break;
3226                         }
3227                         break;
3228                 case 0x3:
3229                         /* NAA */
3230                         cur_id_prio = prio;
3231                         cur_id_size = d[3];
3232                         cur_id_str = d + 4;
3233                         switch (cur_id_size) {
3234                         case 8:
3235                                 id_size = snprintf(id, id_len,
3236                                                    "naa.%8phN",
3237                                                    cur_id_str);
3238                                 break;
3239                         case 16:
3240                                 id_size = snprintf(id, id_len,
3241                                                    "naa.%16phN",
3242                                                    cur_id_str);
3243                                 break;
3244                         default:
3245                                 break;
3246                         }
3247                         break;
3248                 case 0x8:
3249                         /* SCSI name string */
3250                         if (cur_id_size > d[3])
3251                                 break;
3252                         /* Prefer others for truncated descriptor */
3253                         if (d[3] > id_len) {
3254                                 prio = 2;
3255                                 if (cur_id_prio > prio)
3256                                         break;
3257                         }
3258                         cur_id_prio = prio;
3259                         cur_id_size = id_size = d[3];
3260                         cur_id_str = d + 4;
3261                         if (cur_id_size >= id_len)
3262                                 cur_id_size = id_len - 1;
3263                         memcpy(id, cur_id_str, cur_id_size);
3264                         break;
3265                 default:
3266                         break;
3267                 }
3268         }
3269         rcu_read_unlock();
3270
3271         return id_size;
3272 }
3273 EXPORT_SYMBOL(scsi_vpd_lun_id);
3274
3275 /*
3276  * scsi_vpd_tpg_id - return a target port group identifier
3277  * @sdev: SCSI device
3278  *
3279  * Returns the Target Port Group identifier from the information
3280  * froom VPD page 0x83 of the device.
3281  *
3282  * Returns the identifier or error on failure.
3283  */
3284 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3285 {
3286         const unsigned char *d;
3287         const struct scsi_vpd *vpd_pg83;
3288         int group_id = -EAGAIN, rel_port = -1;
3289
3290         rcu_read_lock();
3291         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3292         if (!vpd_pg83) {
3293                 rcu_read_unlock();
3294                 return -ENXIO;
3295         }
3296
3297         d = vpd_pg83->data + 4;
3298         while (d < vpd_pg83->data + vpd_pg83->len) {
3299                 switch (d[1] & 0xf) {
3300                 case 0x4:
3301                         /* Relative target port */
3302                         rel_port = get_unaligned_be16(&d[6]);
3303                         break;
3304                 case 0x5:
3305                         /* Target port group */
3306                         group_id = get_unaligned_be16(&d[6]);
3307                         break;
3308                 default:
3309                         break;
3310                 }
3311                 d += d[3] + 4;
3312         }
3313         rcu_read_unlock();
3314
3315         if (group_id >= 0 && rel_id && rel_port != -1)
3316                 *rel_id = rel_port;
3317
3318         return group_id;
3319 }
3320 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3321
3322 /**
3323  * scsi_build_sense - build sense data for a command
3324  * @scmd:       scsi command for which the sense should be formatted
3325  * @desc:       Sense format (non-zero == descriptor format,
3326  *              0 == fixed format)
3327  * @key:        Sense key
3328  * @asc:        Additional sense code
3329  * @ascq:       Additional sense code qualifier
3330  *
3331  **/
3332 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3333 {
3334         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3335         scmd->result = SAM_STAT_CHECK_CONDITION;
3336 }
3337 EXPORT_SYMBOL_GPL(scsi_build_sense);