OSDN Git Service

spi: spi-atmel: Use correct enum for DMA transfer direction
[android-x86/kernel.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR                                  0x0000
33 #define SPI_MR                                  0x0004
34 #define SPI_RDR                                 0x0008
35 #define SPI_TDR                                 0x000c
36 #define SPI_SR                                  0x0010
37 #define SPI_IER                                 0x0014
38 #define SPI_IDR                                 0x0018
39 #define SPI_IMR                                 0x001c
40 #define SPI_CSR0                                0x0030
41 #define SPI_CSR1                                0x0034
42 #define SPI_CSR2                                0x0038
43 #define SPI_CSR3                                0x003c
44 #define SPI_FMR                                 0x0040
45 #define SPI_FLR                                 0x0044
46 #define SPI_VERSION                             0x00fc
47 #define SPI_RPR                                 0x0100
48 #define SPI_RCR                                 0x0104
49 #define SPI_TPR                                 0x0108
50 #define SPI_TCR                                 0x010c
51 #define SPI_RNPR                                0x0110
52 #define SPI_RNCR                                0x0114
53 #define SPI_TNPR                                0x0118
54 #define SPI_TNCR                                0x011c
55 #define SPI_PTCR                                0x0120
56 #define SPI_PTSR                                0x0124
57
58 /* Bitfields in CR */
59 #define SPI_SPIEN_OFFSET                        0
60 #define SPI_SPIEN_SIZE                          1
61 #define SPI_SPIDIS_OFFSET                       1
62 #define SPI_SPIDIS_SIZE                         1
63 #define SPI_SWRST_OFFSET                        7
64 #define SPI_SWRST_SIZE                          1
65 #define SPI_LASTXFER_OFFSET                     24
66 #define SPI_LASTXFER_SIZE                       1
67 #define SPI_TXFCLR_OFFSET                       16
68 #define SPI_TXFCLR_SIZE                         1
69 #define SPI_RXFCLR_OFFSET                       17
70 #define SPI_RXFCLR_SIZE                         1
71 #define SPI_FIFOEN_OFFSET                       30
72 #define SPI_FIFOEN_SIZE                         1
73 #define SPI_FIFODIS_OFFSET                      31
74 #define SPI_FIFODIS_SIZE                        1
75
76 /* Bitfields in MR */
77 #define SPI_MSTR_OFFSET                         0
78 #define SPI_MSTR_SIZE                           1
79 #define SPI_PS_OFFSET                           1
80 #define SPI_PS_SIZE                             1
81 #define SPI_PCSDEC_OFFSET                       2
82 #define SPI_PCSDEC_SIZE                         1
83 #define SPI_FDIV_OFFSET                         3
84 #define SPI_FDIV_SIZE                           1
85 #define SPI_MODFDIS_OFFSET                      4
86 #define SPI_MODFDIS_SIZE                        1
87 #define SPI_WDRBT_OFFSET                        5
88 #define SPI_WDRBT_SIZE                          1
89 #define SPI_LLB_OFFSET                          7
90 #define SPI_LLB_SIZE                            1
91 #define SPI_PCS_OFFSET                          16
92 #define SPI_PCS_SIZE                            4
93 #define SPI_DLYBCS_OFFSET                       24
94 #define SPI_DLYBCS_SIZE                         8
95
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET                           0
98 #define SPI_RD_SIZE                             16
99
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET                           0
102 #define SPI_TD_SIZE                             16
103
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET                         0
106 #define SPI_RDRF_SIZE                           1
107 #define SPI_TDRE_OFFSET                         1
108 #define SPI_TDRE_SIZE                           1
109 #define SPI_MODF_OFFSET                         2
110 #define SPI_MODF_SIZE                           1
111 #define SPI_OVRES_OFFSET                        3
112 #define SPI_OVRES_SIZE                          1
113 #define SPI_ENDRX_OFFSET                        4
114 #define SPI_ENDRX_SIZE                          1
115 #define SPI_ENDTX_OFFSET                        5
116 #define SPI_ENDTX_SIZE                          1
117 #define SPI_RXBUFF_OFFSET                       6
118 #define SPI_RXBUFF_SIZE                         1
119 #define SPI_TXBUFE_OFFSET                       7
120 #define SPI_TXBUFE_SIZE                         1
121 #define SPI_NSSR_OFFSET                         8
122 #define SPI_NSSR_SIZE                           1
123 #define SPI_TXEMPTY_OFFSET                      9
124 #define SPI_TXEMPTY_SIZE                        1
125 #define SPI_SPIENS_OFFSET                       16
126 #define SPI_SPIENS_SIZE                         1
127 #define SPI_TXFEF_OFFSET                        24
128 #define SPI_TXFEF_SIZE                          1
129 #define SPI_TXFFF_OFFSET                        25
130 #define SPI_TXFFF_SIZE                          1
131 #define SPI_TXFTHF_OFFSET                       26
132 #define SPI_TXFTHF_SIZE                         1
133 #define SPI_RXFEF_OFFSET                        27
134 #define SPI_RXFEF_SIZE                          1
135 #define SPI_RXFFF_OFFSET                        28
136 #define SPI_RXFFF_SIZE                          1
137 #define SPI_RXFTHF_OFFSET                       29
138 #define SPI_RXFTHF_SIZE                         1
139 #define SPI_TXFPTEF_OFFSET                      30
140 #define SPI_TXFPTEF_SIZE                        1
141 #define SPI_RXFPTEF_OFFSET                      31
142 #define SPI_RXFPTEF_SIZE                        1
143
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET                         0
146 #define SPI_CPOL_SIZE                           1
147 #define SPI_NCPHA_OFFSET                        1
148 #define SPI_NCPHA_SIZE                          1
149 #define SPI_CSAAT_OFFSET                        3
150 #define SPI_CSAAT_SIZE                          1
151 #define SPI_BITS_OFFSET                         4
152 #define SPI_BITS_SIZE                           4
153 #define SPI_SCBR_OFFSET                         8
154 #define SPI_SCBR_SIZE                           8
155 #define SPI_DLYBS_OFFSET                        16
156 #define SPI_DLYBS_SIZE                          8
157 #define SPI_DLYBCT_OFFSET                       24
158 #define SPI_DLYBCT_SIZE                         8
159
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET                        0
162 #define SPI_RXCTR_SIZE                          16
163
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET                        0
166 #define SPI_TXCTR_SIZE                          16
167
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET                        0
170 #define SPI_RXNCR_SIZE                          16
171
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET                        0
174 #define SPI_TXNCR_SIZE                          16
175
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET                        0
178 #define SPI_RXTEN_SIZE                          1
179 #define SPI_RXTDIS_OFFSET                       1
180 #define SPI_RXTDIS_SIZE                         1
181 #define SPI_TXTEN_OFFSET                        8
182 #define SPI_TXTEN_SIZE                          1
183 #define SPI_TXTDIS_OFFSET                       9
184 #define SPI_TXTDIS_SIZE                         1
185
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET                       0
188 #define SPI_TXRDYM_SIZE                         2
189 #define SPI_RXRDYM_OFFSET                       4
190 #define SPI_RXRDYM_SIZE                         2
191 #define SPI_TXFTHRES_OFFSET                     16
192 #define SPI_TXFTHRES_SIZE                       6
193 #define SPI_RXFTHRES_OFFSET                     24
194 #define SPI_RXFTHRES_SIZE                       6
195
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET                         0
198 #define SPI_TXFL_SIZE                           6
199 #define SPI_RXFL_OFFSET                         16
200 #define SPI_RXFL_SIZE                           6
201
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT                          0
204 #define SPI_BITS_9_BPT                          1
205 #define SPI_BITS_10_BPT                         2
206 #define SPI_BITS_11_BPT                         3
207 #define SPI_BITS_12_BPT                         4
208 #define SPI_BITS_13_BPT                         5
209 #define SPI_BITS_14_BPT                         6
210 #define SPI_BITS_15_BPT                         7
211 #define SPI_BITS_16_BPT                         8
212 #define SPI_ONE_DATA                            0
213 #define SPI_TWO_DATA                            1
214 #define SPI_FOUR_DATA                           2
215
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218         (1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225           | SPI_BF(name, value))
226
227 /* Register access macros */
228 #ifdef CONFIG_AVR32
229 #define spi_readl(port, reg) \
230         __raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232         __raw_writel((value), (port)->regs + SPI_##reg)
233
234 #define spi_readw(port, reg) \
235         __raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237         __raw_writew((value), (port)->regs + SPI_##reg)
238
239 #define spi_readb(port, reg) \
240         __raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242         __raw_writeb((value), (port)->regs + SPI_##reg)
243 #else
244 #define spi_readl(port, reg) \
245         readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247         writel_relaxed((value), (port)->regs + SPI_##reg)
248
249 #define spi_readw(port, reg) \
250         readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252         writew_relaxed((value), (port)->regs + SPI_##reg)
253
254 #define spi_readb(port, reg) \
255         readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257         writeb_relaxed((value), (port)->regs + SPI_##reg)
258 #endif
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260  * cache operations; better heuristics consider wordsize and bitrate.
261  */
262 #define DMA_MIN_BYTES   16
263
264 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
265
266 #define AUTOSUSPEND_TIMEOUT     2000
267
268 struct atmel_spi_caps {
269         bool    is_spi2;
270         bool    has_wdrbt;
271         bool    has_dma_support;
272         bool    has_pdc_support;
273 };
274
275 /*
276  * The core SPI transfer engine just talks to a register bank to set up
277  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
278  * framework provides the base clock, subdivided for each spi_device.
279  */
280 struct atmel_spi {
281         spinlock_t              lock;
282         unsigned long           flags;
283
284         phys_addr_t             phybase;
285         void __iomem            *regs;
286         int                     irq;
287         struct clk              *clk;
288         struct platform_device  *pdev;
289         unsigned long           spi_clk;
290
291         struct spi_transfer     *current_transfer;
292         int                     current_remaining_bytes;
293         int                     done_status;
294         dma_addr_t              dma_addr_rx_bbuf;
295         dma_addr_t              dma_addr_tx_bbuf;
296         void                    *addr_rx_bbuf;
297         void                    *addr_tx_bbuf;
298
299         struct completion       xfer_completion;
300
301         struct atmel_spi_caps   caps;
302
303         bool                    use_dma;
304         bool                    use_pdc;
305         bool                    use_cs_gpios;
306
307         bool                    keep_cs;
308         bool                    cs_active;
309
310         u32                     fifo_size;
311 };
312
313 /* Controller-specific per-slave state */
314 struct atmel_spi_device {
315         unsigned int            npcs_pin;
316         u32                     csr;
317 };
318
319 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
320 #define INVALID_DMA_ADDRESS     0xffffffff
321
322 /*
323  * Version 2 of the SPI controller has
324  *  - CR.LASTXFER
325  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
326  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
327  *  - SPI_CSRx.CSAAT
328  *  - SPI_CSRx.SBCR allows faster clocking
329  */
330 static bool atmel_spi_is_v2(struct atmel_spi *as)
331 {
332         return as->caps.is_spi2;
333 }
334
335 /*
336  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
337  * they assume that spi slave device state will not change on deselect, so
338  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
339  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
340  * controllers have CSAAT and friends.
341  *
342  * Since the CSAAT functionality is a bit weird on newer controllers as
343  * well, we use GPIO to control nCSx pins on all controllers, updating
344  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
345  * support active-high chipselects despite the controller's belief that
346  * only active-low devices/systems exists.
347  *
348  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
349  * right when driven with GPIO.  ("Mode Fault does not allow more than one
350  * Master on Chip Select 0.")  No workaround exists for that ... so for
351  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
352  * and (c) will trigger that first erratum in some cases.
353  */
354
355 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356 {
357         struct atmel_spi_device *asd = spi->controller_state;
358         unsigned active = spi->mode & SPI_CS_HIGH;
359         u32 mr;
360
361         if (atmel_spi_is_v2(as)) {
362                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
363                 /* For the low SPI version, there is a issue that PDC transfer
364                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
365                  */
366                 spi_writel(as, CSR0, asd->csr);
367                 if (as->caps.has_wdrbt) {
368                         spi_writel(as, MR,
369                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
370                                         | SPI_BIT(WDRBT)
371                                         | SPI_BIT(MODFDIS)
372                                         | SPI_BIT(MSTR));
373                 } else {
374                         spi_writel(as, MR,
375                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
376                                         | SPI_BIT(MODFDIS)
377                                         | SPI_BIT(MSTR));
378                 }
379
380                 mr = spi_readl(as, MR);
381                 if (as->use_cs_gpios)
382                         gpio_set_value(asd->npcs_pin, active);
383         } else {
384                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
385                 int i;
386                 u32 csr;
387
388                 /* Make sure clock polarity is correct */
389                 for (i = 0; i < spi->master->num_chipselect; i++) {
390                         csr = spi_readl(as, CSR0 + 4 * i);
391                         if ((csr ^ cpol) & SPI_BIT(CPOL))
392                                 spi_writel(as, CSR0 + 4 * i,
393                                                 csr ^ SPI_BIT(CPOL));
394                 }
395
396                 mr = spi_readl(as, MR);
397                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
398                 if (as->use_cs_gpios && spi->chip_select != 0)
399                         gpio_set_value(asd->npcs_pin, active);
400                 spi_writel(as, MR, mr);
401         }
402
403         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
404                         asd->npcs_pin, active ? " (high)" : "",
405                         mr);
406 }
407
408 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
409 {
410         struct atmel_spi_device *asd = spi->controller_state;
411         unsigned active = spi->mode & SPI_CS_HIGH;
412         u32 mr;
413
414         /* only deactivate *this* device; sometimes transfers to
415          * another device may be active when this routine is called.
416          */
417         mr = spi_readl(as, MR);
418         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
419                 mr = SPI_BFINS(PCS, 0xf, mr);
420                 spi_writel(as, MR, mr);
421         }
422
423         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
424                         asd->npcs_pin, active ? " (low)" : "",
425                         mr);
426
427         if (!as->use_cs_gpios)
428                 spi_writel(as, CR, SPI_BIT(LASTXFER));
429         else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
430                 gpio_set_value(asd->npcs_pin, !active);
431 }
432
433 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
434 {
435         spin_lock_irqsave(&as->lock, as->flags);
436 }
437
438 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
439 {
440         spin_unlock_irqrestore(&as->lock, as->flags);
441 }
442
443 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
444 {
445         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
446 }
447
448 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
449                                 struct spi_transfer *xfer)
450 {
451         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
452 }
453
454 static bool atmel_spi_can_dma(struct spi_master *master,
455                               struct spi_device *spi,
456                               struct spi_transfer *xfer)
457 {
458         struct atmel_spi *as = spi_master_get_devdata(master);
459
460         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
461                 return atmel_spi_use_dma(as, xfer) &&
462                         !atmel_spi_is_vmalloc_xfer(xfer);
463         else
464                 return atmel_spi_use_dma(as, xfer);
465
466 }
467
468 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
469                                 struct dma_slave_config *slave_config,
470                                 u8 bits_per_word)
471 {
472         struct spi_master *master = platform_get_drvdata(as->pdev);
473         int err = 0;
474
475         if (bits_per_word > 8) {
476                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
477                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
478         } else {
479                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
480                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
481         }
482
483         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
484         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
485         slave_config->src_maxburst = 1;
486         slave_config->dst_maxburst = 1;
487         slave_config->device_fc = false;
488
489         /*
490          * This driver uses fixed peripheral select mode (PS bit set to '0' in
491          * the Mode Register).
492          * So according to the datasheet, when FIFOs are available (and
493          * enabled), the Transmit FIFO operates in Multiple Data Mode.
494          * In this mode, up to 2 data, not 4, can be written into the Transmit
495          * Data Register in a single access.
496          * However, the first data has to be written into the lowest 16 bits and
497          * the second data into the highest 16 bits of the Transmit
498          * Data Register. For 8bit data (the most frequent case), it would
499          * require to rework tx_buf so each data would actualy fit 16 bits.
500          * So we'd rather write only one data at the time. Hence the transmit
501          * path works the same whether FIFOs are available (and enabled) or not.
502          */
503         slave_config->direction = DMA_MEM_TO_DEV;
504         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
505                 dev_err(&as->pdev->dev,
506                         "failed to configure tx dma channel\n");
507                 err = -EINVAL;
508         }
509
510         /*
511          * This driver configures the spi controller for master mode (MSTR bit
512          * set to '1' in the Mode Register).
513          * So according to the datasheet, when FIFOs are available (and
514          * enabled), the Receive FIFO operates in Single Data Mode.
515          * So the receive path works the same whether FIFOs are available (and
516          * enabled) or not.
517          */
518         slave_config->direction = DMA_DEV_TO_MEM;
519         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
520                 dev_err(&as->pdev->dev,
521                         "failed to configure rx dma channel\n");
522                 err = -EINVAL;
523         }
524
525         return err;
526 }
527
528 static int atmel_spi_configure_dma(struct spi_master *master,
529                                    struct atmel_spi *as)
530 {
531         struct dma_slave_config slave_config;
532         struct device *dev = &as->pdev->dev;
533         int err;
534
535         dma_cap_mask_t mask;
536         dma_cap_zero(mask);
537         dma_cap_set(DMA_SLAVE, mask);
538
539         master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
540         if (IS_ERR(master->dma_tx)) {
541                 err = PTR_ERR(master->dma_tx);
542                 if (err == -EPROBE_DEFER) {
543                         dev_warn(dev, "no DMA channel available at the moment\n");
544                         goto error_clear;
545                 }
546                 dev_err(dev,
547                         "DMA TX channel not available, SPI unable to use DMA\n");
548                 err = -EBUSY;
549                 goto error_clear;
550         }
551
552         /*
553          * No reason to check EPROBE_DEFER here since we have already requested
554          * tx channel. If it fails here, it's for another reason.
555          */
556         master->dma_rx = dma_request_slave_channel(dev, "rx");
557
558         if (!master->dma_rx) {
559                 dev_err(dev,
560                         "DMA RX channel not available, SPI unable to use DMA\n");
561                 err = -EBUSY;
562                 goto error;
563         }
564
565         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
566         if (err)
567                 goto error;
568
569         dev_info(&as->pdev->dev,
570                         "Using %s (tx) and %s (rx) for DMA transfers\n",
571                         dma_chan_name(master->dma_tx),
572                         dma_chan_name(master->dma_rx));
573
574         return 0;
575 error:
576         if (master->dma_rx)
577                 dma_release_channel(master->dma_rx);
578         if (!IS_ERR(master->dma_tx))
579                 dma_release_channel(master->dma_tx);
580 error_clear:
581         master->dma_tx = master->dma_rx = NULL;
582         return err;
583 }
584
585 static void atmel_spi_stop_dma(struct spi_master *master)
586 {
587         if (master->dma_rx)
588                 dmaengine_terminate_all(master->dma_rx);
589         if (master->dma_tx)
590                 dmaengine_terminate_all(master->dma_tx);
591 }
592
593 static void atmel_spi_release_dma(struct spi_master *master)
594 {
595         if (master->dma_rx) {
596                 dma_release_channel(master->dma_rx);
597                 master->dma_rx = NULL;
598         }
599         if (master->dma_tx) {
600                 dma_release_channel(master->dma_tx);
601                 master->dma_tx = NULL;
602         }
603 }
604
605 /* This function is called by the DMA driver from tasklet context */
606 static void dma_callback(void *data)
607 {
608         struct spi_master       *master = data;
609         struct atmel_spi        *as = spi_master_get_devdata(master);
610
611         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
612             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
613                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
614                        as->current_transfer->len);
615         }
616         complete(&as->xfer_completion);
617 }
618
619 /*
620  * Next transfer using PIO without FIFO.
621  */
622 static void atmel_spi_next_xfer_single(struct spi_master *master,
623                                        struct spi_transfer *xfer)
624 {
625         struct atmel_spi        *as = spi_master_get_devdata(master);
626         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
627
628         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
629
630         /* Make sure data is not remaining in RDR */
631         spi_readl(as, RDR);
632         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
633                 spi_readl(as, RDR);
634                 cpu_relax();
635         }
636
637         if (xfer->bits_per_word > 8)
638                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
639         else
640                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
641
642         dev_dbg(master->dev.parent,
643                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
644                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
645                 xfer->bits_per_word);
646
647         /* Enable relevant interrupts */
648         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
649 }
650
651 /*
652  * Next transfer using PIO with FIFO.
653  */
654 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
655                                      struct spi_transfer *xfer)
656 {
657         struct atmel_spi *as = spi_master_get_devdata(master);
658         u32 current_remaining_data, num_data;
659         u32 offset = xfer->len - as->current_remaining_bytes;
660         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
661         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
662         u16 td0, td1;
663         u32 fifomr;
664
665         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
666
667         /* Compute the number of data to transfer in the current iteration */
668         current_remaining_data = ((xfer->bits_per_word > 8) ?
669                                   ((u32)as->current_remaining_bytes >> 1) :
670                                   (u32)as->current_remaining_bytes);
671         num_data = min(current_remaining_data, as->fifo_size);
672
673         /* Flush RX and TX FIFOs */
674         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
675         while (spi_readl(as, FLR))
676                 cpu_relax();
677
678         /* Set RX FIFO Threshold to the number of data to transfer */
679         fifomr = spi_readl(as, FMR);
680         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
681
682         /* Clear FIFO flags in the Status Register, especially RXFTHF */
683         (void)spi_readl(as, SR);
684
685         /* Fill TX FIFO */
686         while (num_data >= 2) {
687                 if (xfer->bits_per_word > 8) {
688                         td0 = *words++;
689                         td1 = *words++;
690                 } else {
691                         td0 = *bytes++;
692                         td1 = *bytes++;
693                 }
694
695                 spi_writel(as, TDR, (td1 << 16) | td0);
696                 num_data -= 2;
697         }
698
699         if (num_data) {
700                 if (xfer->bits_per_word > 8)
701                         td0 = *words++;
702                 else
703                         td0 = *bytes++;
704
705                 spi_writew(as, TDR, td0);
706                 num_data--;
707         }
708
709         dev_dbg(master->dev.parent,
710                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
711                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
712                 xfer->bits_per_word);
713
714         /*
715          * Enable RX FIFO Threshold Flag interrupt to be notified about
716          * transfer completion.
717          */
718         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
719 }
720
721 /*
722  * Next transfer using PIO.
723  */
724 static void atmel_spi_next_xfer_pio(struct spi_master *master,
725                                     struct spi_transfer *xfer)
726 {
727         struct atmel_spi *as = spi_master_get_devdata(master);
728
729         if (as->fifo_size)
730                 atmel_spi_next_xfer_fifo(master, xfer);
731         else
732                 atmel_spi_next_xfer_single(master, xfer);
733 }
734
735 /*
736  * Submit next transfer for DMA.
737  */
738 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
739                                 struct spi_transfer *xfer,
740                                 u32 *plen)
741 {
742         struct atmel_spi        *as = spi_master_get_devdata(master);
743         struct dma_chan         *rxchan = master->dma_rx;
744         struct dma_chan         *txchan = master->dma_tx;
745         struct dma_async_tx_descriptor *rxdesc;
746         struct dma_async_tx_descriptor *txdesc;
747         struct dma_slave_config slave_config;
748         dma_cookie_t            cookie;
749
750         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
751
752         /* Check that the channels are available */
753         if (!rxchan || !txchan)
754                 return -ENODEV;
755
756         /* release lock for DMA operations */
757         atmel_spi_unlock(as);
758
759         *plen = xfer->len;
760
761         if (atmel_spi_dma_slave_config(as, &slave_config,
762                                        xfer->bits_per_word))
763                 goto err_exit;
764
765         /* Send both scatterlists */
766         if (atmel_spi_is_vmalloc_xfer(xfer) &&
767             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
768                 rxdesc = dmaengine_prep_slave_single(rxchan,
769                                                      as->dma_addr_rx_bbuf,
770                                                      xfer->len,
771                                                      DMA_DEV_TO_MEM,
772                                                      DMA_PREP_INTERRUPT |
773                                                      DMA_CTRL_ACK);
774         } else {
775                 rxdesc = dmaengine_prep_slave_sg(rxchan,
776                                                  xfer->rx_sg.sgl,
777                                                  xfer->rx_sg.nents,
778                                                  DMA_DEV_TO_MEM,
779                                                  DMA_PREP_INTERRUPT |
780                                                  DMA_CTRL_ACK);
781         }
782         if (!rxdesc)
783                 goto err_dma;
784
785         if (atmel_spi_is_vmalloc_xfer(xfer) &&
786             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
787                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
788                 txdesc = dmaengine_prep_slave_single(txchan,
789                                                      as->dma_addr_tx_bbuf,
790                                                      xfer->len, DMA_MEM_TO_DEV,
791                                                      DMA_PREP_INTERRUPT |
792                                                      DMA_CTRL_ACK);
793         } else {
794                 txdesc = dmaengine_prep_slave_sg(txchan,
795                                                  xfer->tx_sg.sgl,
796                                                  xfer->tx_sg.nents,
797                                                  DMA_MEM_TO_DEV,
798                                                  DMA_PREP_INTERRUPT |
799                                                  DMA_CTRL_ACK);
800         }
801         if (!txdesc)
802                 goto err_dma;
803
804         dev_dbg(master->dev.parent,
805                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
806                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
807                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
808
809         /* Enable relevant interrupts */
810         spi_writel(as, IER, SPI_BIT(OVRES));
811
812         /* Put the callback on the RX transfer only, that should finish last */
813         rxdesc->callback = dma_callback;
814         rxdesc->callback_param = master;
815
816         /* Submit and fire RX and TX with TX last so we're ready to read! */
817         cookie = rxdesc->tx_submit(rxdesc);
818         if (dma_submit_error(cookie))
819                 goto err_dma;
820         cookie = txdesc->tx_submit(txdesc);
821         if (dma_submit_error(cookie))
822                 goto err_dma;
823         rxchan->device->device_issue_pending(rxchan);
824         txchan->device->device_issue_pending(txchan);
825
826         /* take back lock */
827         atmel_spi_lock(as);
828         return 0;
829
830 err_dma:
831         spi_writel(as, IDR, SPI_BIT(OVRES));
832         atmel_spi_stop_dma(master);
833 err_exit:
834         atmel_spi_lock(as);
835         return -ENOMEM;
836 }
837
838 static void atmel_spi_next_xfer_data(struct spi_master *master,
839                                 struct spi_transfer *xfer,
840                                 dma_addr_t *tx_dma,
841                                 dma_addr_t *rx_dma,
842                                 u32 *plen)
843 {
844         *rx_dma = xfer->rx_dma + xfer->len - *plen;
845         *tx_dma = xfer->tx_dma + xfer->len - *plen;
846         if (*plen > master->max_dma_len)
847                 *plen = master->max_dma_len;
848 }
849
850 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
851                                     struct spi_device *spi,
852                                     struct spi_transfer *xfer)
853 {
854         u32                     scbr, csr;
855         unsigned long           bus_hz;
856
857         /* v1 chips start out at half the peripheral bus speed. */
858         bus_hz = as->spi_clk;
859         if (!atmel_spi_is_v2(as))
860                 bus_hz /= 2;
861
862         /*
863          * Calculate the lowest divider that satisfies the
864          * constraint, assuming div32/fdiv/mbz == 0.
865          */
866         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
867
868         /*
869          * If the resulting divider doesn't fit into the
870          * register bitfield, we can't satisfy the constraint.
871          */
872         if (scbr >= (1 << SPI_SCBR_SIZE)) {
873                 dev_err(&spi->dev,
874                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
875                         xfer->speed_hz, scbr, bus_hz/255);
876                 return -EINVAL;
877         }
878         if (scbr == 0) {
879                 dev_err(&spi->dev,
880                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
881                         xfer->speed_hz, scbr, bus_hz);
882                 return -EINVAL;
883         }
884         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
885         csr = SPI_BFINS(SCBR, scbr, csr);
886         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
887
888         return 0;
889 }
890
891 /*
892  * Submit next transfer for PDC.
893  * lock is held, spi irq is blocked
894  */
895 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
896                                         struct spi_message *msg,
897                                         struct spi_transfer *xfer)
898 {
899         struct atmel_spi        *as = spi_master_get_devdata(master);
900         u32                     len;
901         dma_addr_t              tx_dma, rx_dma;
902
903         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
904
905         len = as->current_remaining_bytes;
906         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
907         as->current_remaining_bytes -= len;
908
909         spi_writel(as, RPR, rx_dma);
910         spi_writel(as, TPR, tx_dma);
911
912         if (msg->spi->bits_per_word > 8)
913                 len >>= 1;
914         spi_writel(as, RCR, len);
915         spi_writel(as, TCR, len);
916
917         dev_dbg(&msg->spi->dev,
918                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919                 xfer, xfer->len, xfer->tx_buf,
920                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
921                 (unsigned long long)xfer->rx_dma);
922
923         if (as->current_remaining_bytes) {
924                 len = as->current_remaining_bytes;
925                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
926                 as->current_remaining_bytes -= len;
927
928                 spi_writel(as, RNPR, rx_dma);
929                 spi_writel(as, TNPR, tx_dma);
930
931                 if (msg->spi->bits_per_word > 8)
932                         len >>= 1;
933                 spi_writel(as, RNCR, len);
934                 spi_writel(as, TNCR, len);
935
936                 dev_dbg(&msg->spi->dev,
937                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
938                         xfer, xfer->len, xfer->tx_buf,
939                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
940                         (unsigned long long)xfer->rx_dma);
941         }
942
943         /* REVISIT: We're waiting for RXBUFF before we start the next
944          * transfer because we need to handle some difficult timing
945          * issues otherwise. If we wait for TXBUFE in one transfer and
946          * then starts waiting for RXBUFF in the next, it's difficult
947          * to tell the difference between the RXBUFF interrupt we're
948          * actually waiting for and the RXBUFF interrupt of the
949          * previous transfer.
950          *
951          * It should be doable, though. Just not now...
952          */
953         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
954         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
955 }
956
957 /*
958  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
959  *  - The buffer is either valid for CPU access, else NULL
960  *  - If the buffer is valid, so is its DMA address
961  *
962  * This driver manages the dma address unless message->is_dma_mapped.
963  */
964 static int
965 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967         struct device   *dev = &as->pdev->dev;
968
969         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
970         if (xfer->tx_buf) {
971                 /* tx_buf is a const void* where we need a void * for the dma
972                  * mapping */
973                 void *nonconst_tx = (void *)xfer->tx_buf;
974
975                 xfer->tx_dma = dma_map_single(dev,
976                                 nonconst_tx, xfer->len,
977                                 DMA_TO_DEVICE);
978                 if (dma_mapping_error(dev, xfer->tx_dma))
979                         return -ENOMEM;
980         }
981         if (xfer->rx_buf) {
982                 xfer->rx_dma = dma_map_single(dev,
983                                 xfer->rx_buf, xfer->len,
984                                 DMA_FROM_DEVICE);
985                 if (dma_mapping_error(dev, xfer->rx_dma)) {
986                         if (xfer->tx_buf)
987                                 dma_unmap_single(dev,
988                                                 xfer->tx_dma, xfer->len,
989                                                 DMA_TO_DEVICE);
990                         return -ENOMEM;
991                 }
992         }
993         return 0;
994 }
995
996 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
997                                      struct spi_transfer *xfer)
998 {
999         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1000                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001                                  xfer->len, DMA_TO_DEVICE);
1002         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1003                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004                                  xfer->len, DMA_FROM_DEVICE);
1005 }
1006
1007 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1008 {
1009         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1010 }
1011
1012 static void
1013 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014 {
1015         u8              *rxp;
1016         u16             *rxp16;
1017         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1018
1019         if (xfer->bits_per_word > 8) {
1020                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1021                 *rxp16 = spi_readl(as, RDR);
1022         } else {
1023                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1024                 *rxp = spi_readl(as, RDR);
1025         }
1026         if (xfer->bits_per_word > 8) {
1027                 if (as->current_remaining_bytes > 2)
1028                         as->current_remaining_bytes -= 2;
1029                 else
1030                         as->current_remaining_bytes = 0;
1031         } else {
1032                 as->current_remaining_bytes--;
1033         }
1034 }
1035
1036 static void
1037 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038 {
1039         u32 fifolr = spi_readl(as, FLR);
1040         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1041         u32 offset = xfer->len - as->current_remaining_bytes;
1042         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1043         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1044         u16 rd; /* RD field is the lowest 16 bits of RDR */
1045
1046         /* Update the number of remaining bytes to transfer */
1047         num_bytes = ((xfer->bits_per_word > 8) ?
1048                      (num_data << 1) :
1049                      num_data);
1050
1051         if (as->current_remaining_bytes > num_bytes)
1052                 as->current_remaining_bytes -= num_bytes;
1053         else
1054                 as->current_remaining_bytes = 0;
1055
1056         /* Handle odd number of bytes when data are more than 8bit width */
1057         if (xfer->bits_per_word > 8)
1058                 as->current_remaining_bytes &= ~0x1;
1059
1060         /* Read data */
1061         while (num_data) {
1062                 rd = spi_readl(as, RDR);
1063                 if (xfer->bits_per_word > 8)
1064                         *words++ = rd;
1065                 else
1066                         *bytes++ = rd;
1067                 num_data--;
1068         }
1069 }
1070
1071 /* Called from IRQ
1072  *
1073  * Must update "current_remaining_bytes" to keep track of data
1074  * to transfer.
1075  */
1076 static void
1077 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078 {
1079         if (as->fifo_size)
1080                 atmel_spi_pump_fifo_data(as, xfer);
1081         else
1082                 atmel_spi_pump_single_data(as, xfer);
1083 }
1084
1085 /* Interrupt
1086  *
1087  * No need for locking in this Interrupt handler: done_status is the
1088  * only information modified.
1089  */
1090 static irqreturn_t
1091 atmel_spi_pio_interrupt(int irq, void *dev_id)
1092 {
1093         struct spi_master       *master = dev_id;
1094         struct atmel_spi        *as = spi_master_get_devdata(master);
1095         u32                     status, pending, imr;
1096         struct spi_transfer     *xfer;
1097         int                     ret = IRQ_NONE;
1098
1099         imr = spi_readl(as, IMR);
1100         status = spi_readl(as, SR);
1101         pending = status & imr;
1102
1103         if (pending & SPI_BIT(OVRES)) {
1104                 ret = IRQ_HANDLED;
1105                 spi_writel(as, IDR, SPI_BIT(OVRES));
1106                 dev_warn(master->dev.parent, "overrun\n");
1107
1108                 /*
1109                  * When we get an overrun, we disregard the current
1110                  * transfer. Data will not be copied back from any
1111                  * bounce buffer and msg->actual_len will not be
1112                  * updated with the last xfer.
1113                  *
1114                  * We will also not process any remaning transfers in
1115                  * the message.
1116                  */
1117                 as->done_status = -EIO;
1118                 smp_wmb();
1119
1120                 /* Clear any overrun happening while cleaning up */
1121                 spi_readl(as, SR);
1122
1123                 complete(&as->xfer_completion);
1124
1125         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126                 atmel_spi_lock(as);
1127
1128                 if (as->current_remaining_bytes) {
1129                         ret = IRQ_HANDLED;
1130                         xfer = as->current_transfer;
1131                         atmel_spi_pump_pio_data(as, xfer);
1132                         if (!as->current_remaining_bytes)
1133                                 spi_writel(as, IDR, pending);
1134
1135                         complete(&as->xfer_completion);
1136                 }
1137
1138                 atmel_spi_unlock(as);
1139         } else {
1140                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1141                 ret = IRQ_HANDLED;
1142                 spi_writel(as, IDR, pending);
1143         }
1144
1145         return ret;
1146 }
1147
1148 static irqreturn_t
1149 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150 {
1151         struct spi_master       *master = dev_id;
1152         struct atmel_spi        *as = spi_master_get_devdata(master);
1153         u32                     status, pending, imr;
1154         int                     ret = IRQ_NONE;
1155
1156         imr = spi_readl(as, IMR);
1157         status = spi_readl(as, SR);
1158         pending = status & imr;
1159
1160         if (pending & SPI_BIT(OVRES)) {
1161
1162                 ret = IRQ_HANDLED;
1163
1164                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165                                      | SPI_BIT(OVRES)));
1166
1167                 /* Clear any overrun happening while cleaning up */
1168                 spi_readl(as, SR);
1169
1170                 as->done_status = -EIO;
1171
1172                 complete(&as->xfer_completion);
1173
1174         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175                 ret = IRQ_HANDLED;
1176
1177                 spi_writel(as, IDR, pending);
1178
1179                 complete(&as->xfer_completion);
1180         }
1181
1182         return ret;
1183 }
1184
1185 static int atmel_spi_setup(struct spi_device *spi)
1186 {
1187         struct atmel_spi        *as;
1188         struct atmel_spi_device *asd;
1189         u32                     csr;
1190         unsigned int            bits = spi->bits_per_word;
1191         unsigned int            npcs_pin;
1192
1193         as = spi_master_get_devdata(spi->master);
1194
1195         /* see notes above re chipselect */
1196         if (!atmel_spi_is_v2(as)
1197                         && spi->chip_select == 0
1198                         && (spi->mode & SPI_CS_HIGH)) {
1199                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1200                 return -EINVAL;
1201         }
1202
1203         csr = SPI_BF(BITS, bits - 8);
1204         if (spi->mode & SPI_CPOL)
1205                 csr |= SPI_BIT(CPOL);
1206         if (!(spi->mode & SPI_CPHA))
1207                 csr |= SPI_BIT(NCPHA);
1208         if (!as->use_cs_gpios)
1209                 csr |= SPI_BIT(CSAAT);
1210
1211         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1212          *
1213          * DLYBCT would add delays between words, slowing down transfers.
1214          * It could potentially be useful to cope with DMA bottlenecks, but
1215          * in those cases it's probably best to just use a lower bitrate.
1216          */
1217         csr |= SPI_BF(DLYBS, 0);
1218         csr |= SPI_BF(DLYBCT, 0);
1219
1220         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221         npcs_pin = (unsigned long)spi->controller_data;
1222
1223         if (!as->use_cs_gpios)
1224                 npcs_pin = spi->chip_select;
1225         else if (gpio_is_valid(spi->cs_gpio))
1226                 npcs_pin = spi->cs_gpio;
1227
1228         asd = spi->controller_state;
1229         if (!asd) {
1230                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1231                 if (!asd)
1232                         return -ENOMEM;
1233
1234                 if (as->use_cs_gpios)
1235                         gpio_direction_output(npcs_pin,
1236                                               !(spi->mode & SPI_CS_HIGH));
1237
1238                 asd->npcs_pin = npcs_pin;
1239                 spi->controller_state = asd;
1240         }
1241
1242         asd->csr = csr;
1243
1244         dev_dbg(&spi->dev,
1245                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246                 bits, spi->mode, spi->chip_select, csr);
1247
1248         if (!atmel_spi_is_v2(as))
1249                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250
1251         return 0;
1252 }
1253
1254 static int atmel_spi_one_transfer(struct spi_master *master,
1255                                         struct spi_message *msg,
1256                                         struct spi_transfer *xfer)
1257 {
1258         struct atmel_spi        *as;
1259         struct spi_device       *spi = msg->spi;
1260         u8                      bits;
1261         u32                     len;
1262         struct atmel_spi_device *asd;
1263         int                     timeout;
1264         int                     ret;
1265         unsigned long           dma_timeout;
1266
1267         as = spi_master_get_devdata(master);
1268
1269         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1270                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271                 return -EINVAL;
1272         }
1273
1274         asd = spi->controller_state;
1275         bits = (asd->csr >> 4) & 0xf;
1276         if (bits != xfer->bits_per_word - 8) {
1277                 dev_dbg(&spi->dev,
1278                         "you can't yet change bits_per_word in transfers\n");
1279                 return -ENOPROTOOPT;
1280         }
1281
1282         /*
1283          * DMA map early, for performance (empties dcache ASAP) and
1284          * better fault reporting.
1285          */
1286         if ((!msg->is_dma_mapped)
1287                 && as->use_pdc) {
1288                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1289                         return -ENOMEM;
1290         }
1291
1292         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293
1294         as->done_status = 0;
1295         as->current_transfer = xfer;
1296         as->current_remaining_bytes = xfer->len;
1297         while (as->current_remaining_bytes) {
1298                 reinit_completion(&as->xfer_completion);
1299
1300                 if (as->use_pdc) {
1301                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1302                 } else if (atmel_spi_use_dma(as, xfer)) {
1303                         len = as->current_remaining_bytes;
1304                         ret = atmel_spi_next_xfer_dma_submit(master,
1305                                                                 xfer, &len);
1306                         if (ret) {
1307                                 dev_err(&spi->dev,
1308                                         "unable to use DMA, fallback to PIO\n");
1309                                 atmel_spi_next_xfer_pio(master, xfer);
1310                         } else {
1311                                 as->current_remaining_bytes -= len;
1312                                 if (as->current_remaining_bytes < 0)
1313                                         as->current_remaining_bytes = 0;
1314                         }
1315                 } else {
1316                         atmel_spi_next_xfer_pio(master, xfer);
1317                 }
1318
1319                 /* interrupts are disabled, so free the lock for schedule */
1320                 atmel_spi_unlock(as);
1321                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1322                                                           SPI_DMA_TIMEOUT);
1323                 atmel_spi_lock(as);
1324                 if (WARN_ON(dma_timeout == 0)) {
1325                         dev_err(&spi->dev, "spi transfer timeout\n");
1326                         as->done_status = -EIO;
1327                 }
1328
1329                 if (as->done_status)
1330                         break;
1331         }
1332
1333         if (as->done_status) {
1334                 if (as->use_pdc) {
1335                         dev_warn(master->dev.parent,
1336                                 "overrun (%u/%u remaining)\n",
1337                                 spi_readl(as, TCR), spi_readl(as, RCR));
1338
1339                         /*
1340                          * Clean up DMA registers and make sure the data
1341                          * registers are empty.
1342                          */
1343                         spi_writel(as, RNCR, 0);
1344                         spi_writel(as, TNCR, 0);
1345                         spi_writel(as, RCR, 0);
1346                         spi_writel(as, TCR, 0);
1347                         for (timeout = 1000; timeout; timeout--)
1348                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1349                                         break;
1350                         if (!timeout)
1351                                 dev_warn(master->dev.parent,
1352                                          "timeout waiting for TXEMPTY");
1353                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1354                                 spi_readl(as, RDR);
1355
1356                         /* Clear any overrun happening while cleaning up */
1357                         spi_readl(as, SR);
1358
1359                 } else if (atmel_spi_use_dma(as, xfer)) {
1360                         atmel_spi_stop_dma(master);
1361                 }
1362
1363                 if (!msg->is_dma_mapped
1364                         && as->use_pdc)
1365                         atmel_spi_dma_unmap_xfer(master, xfer);
1366
1367                 return 0;
1368
1369         } else {
1370                 /* only update length if no error */
1371                 msg->actual_length += xfer->len;
1372         }
1373
1374         if (!msg->is_dma_mapped
1375                 && as->use_pdc)
1376                 atmel_spi_dma_unmap_xfer(master, xfer);
1377
1378         if (xfer->delay_usecs)
1379                 udelay(xfer->delay_usecs);
1380
1381         if (xfer->cs_change) {
1382                 if (list_is_last(&xfer->transfer_list,
1383                                  &msg->transfers)) {
1384                         as->keep_cs = true;
1385                 } else {
1386                         as->cs_active = !as->cs_active;
1387                         if (as->cs_active)
1388                                 cs_activate(as, msg->spi);
1389                         else
1390                                 cs_deactivate(as, msg->spi);
1391                 }
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int atmel_spi_transfer_one_message(struct spi_master *master,
1398                                                 struct spi_message *msg)
1399 {
1400         struct atmel_spi *as;
1401         struct spi_transfer *xfer;
1402         struct spi_device *spi = msg->spi;
1403         int ret = 0;
1404
1405         as = spi_master_get_devdata(master);
1406
1407         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1408                                         msg, dev_name(&spi->dev));
1409
1410         atmel_spi_lock(as);
1411         cs_activate(as, spi);
1412
1413         as->cs_active = true;
1414         as->keep_cs = false;
1415
1416         msg->status = 0;
1417         msg->actual_length = 0;
1418
1419         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420                 ret = atmel_spi_one_transfer(master, msg, xfer);
1421                 if (ret)
1422                         goto msg_done;
1423         }
1424
1425         if (as->use_pdc)
1426                 atmel_spi_disable_pdc_transfer(as);
1427
1428         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429                 dev_dbg(&spi->dev,
1430                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431                         xfer, xfer->len,
1432                         xfer->tx_buf, &xfer->tx_dma,
1433                         xfer->rx_buf, &xfer->rx_dma);
1434         }
1435
1436 msg_done:
1437         if (!as->keep_cs)
1438                 cs_deactivate(as, msg->spi);
1439
1440         atmel_spi_unlock(as);
1441
1442         msg->status = as->done_status;
1443         spi_finalize_current_message(spi->master);
1444
1445         return ret;
1446 }
1447
1448 static void atmel_spi_cleanup(struct spi_device *spi)
1449 {
1450         struct atmel_spi_device *asd = spi->controller_state;
1451
1452         if (!asd)
1453                 return;
1454
1455         spi->controller_state = NULL;
1456         kfree(asd);
1457 }
1458
1459 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1460 {
1461         return spi_readl(as, VERSION) & 0x00000fff;
1462 }
1463
1464 static void atmel_get_caps(struct atmel_spi *as)
1465 {
1466         unsigned int version;
1467
1468         version = atmel_get_version(as);
1469
1470         as->caps.is_spi2 = version > 0x121;
1471         as->caps.has_wdrbt = version >= 0x210;
1472         as->caps.has_dma_support = version >= 0x212;
1473         as->caps.has_pdc_support = version < 0x212;
1474 }
1475
1476 /*-------------------------------------------------------------------------*/
1477 static int atmel_spi_gpio_cs(struct platform_device *pdev)
1478 {
1479         struct spi_master       *master = platform_get_drvdata(pdev);
1480         struct atmel_spi        *as = spi_master_get_devdata(master);
1481         struct device_node      *np = master->dev.of_node;
1482         int                     i;
1483         int                     ret = 0;
1484         int                     nb = 0;
1485
1486         if (!as->use_cs_gpios)
1487                 return 0;
1488
1489         if (!np)
1490                 return 0;
1491
1492         nb = of_gpio_named_count(np, "cs-gpios");
1493         for (i = 0; i < nb; i++) {
1494                 int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1495                                                 "cs-gpios", i);
1496
1497                 if (cs_gpio == -EPROBE_DEFER)
1498                         return cs_gpio;
1499
1500                 if (gpio_is_valid(cs_gpio)) {
1501                         ret = devm_gpio_request(&pdev->dev, cs_gpio,
1502                                                 dev_name(&pdev->dev));
1503                         if (ret)
1504                                 return ret;
1505                 }
1506         }
1507
1508         return 0;
1509 }
1510
1511 static void atmel_spi_init(struct atmel_spi *as)
1512 {
1513         spi_writel(as, CR, SPI_BIT(SWRST));
1514         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1515
1516         /* It is recommended to enable FIFOs first thing after reset */
1517         if (as->fifo_size)
1518                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1519
1520         if (as->caps.has_wdrbt) {
1521                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1522                                 | SPI_BIT(MSTR));
1523         } else {
1524                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1525         }
1526
1527         if (as->use_pdc)
1528                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1529         spi_writel(as, CR, SPI_BIT(SPIEN));
1530 }
1531
1532 static int atmel_spi_probe(struct platform_device *pdev)
1533 {
1534         struct resource         *regs;
1535         int                     irq;
1536         struct clk              *clk;
1537         int                     ret;
1538         struct spi_master       *master;
1539         struct atmel_spi        *as;
1540
1541         /* Select default pin state */
1542         pinctrl_pm_select_default_state(&pdev->dev);
1543
1544         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545         if (!regs)
1546                 return -ENXIO;
1547
1548         irq = platform_get_irq(pdev, 0);
1549         if (irq < 0)
1550                 return irq;
1551
1552         clk = devm_clk_get(&pdev->dev, "spi_clk");
1553         if (IS_ERR(clk))
1554                 return PTR_ERR(clk);
1555
1556         /* setup spi core then atmel-specific driver state */
1557         ret = -ENOMEM;
1558         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1559         if (!master)
1560                 goto out_free;
1561
1562         /* the spi->mode bits understood by this driver: */
1563         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1564         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1565         master->dev.of_node = pdev->dev.of_node;
1566         master->bus_num = pdev->id;
1567         master->num_chipselect = master->dev.of_node ? 0 : 4;
1568         master->setup = atmel_spi_setup;
1569         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1570         master->transfer_one_message = atmel_spi_transfer_one_message;
1571         master->cleanup = atmel_spi_cleanup;
1572         master->auto_runtime_pm = true;
1573         master->max_dma_len = SPI_MAX_DMA_XFER;
1574         master->can_dma = atmel_spi_can_dma;
1575         platform_set_drvdata(pdev, master);
1576
1577         as = spi_master_get_devdata(master);
1578
1579         spin_lock_init(&as->lock);
1580
1581         as->pdev = pdev;
1582         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1583         if (IS_ERR(as->regs)) {
1584                 ret = PTR_ERR(as->regs);
1585                 goto out_unmap_regs;
1586         }
1587         as->phybase = regs->start;
1588         as->irq = irq;
1589         as->clk = clk;
1590
1591         init_completion(&as->xfer_completion);
1592
1593         atmel_get_caps(as);
1594
1595         as->use_cs_gpios = true;
1596         if (atmel_spi_is_v2(as) &&
1597             pdev->dev.of_node &&
1598             !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1599                 as->use_cs_gpios = false;
1600                 master->num_chipselect = 4;
1601         }
1602
1603         ret = atmel_spi_gpio_cs(pdev);
1604         if (ret)
1605                 goto out_unmap_regs;
1606
1607         as->use_dma = false;
1608         as->use_pdc = false;
1609         if (as->caps.has_dma_support) {
1610                 ret = atmel_spi_configure_dma(master, as);
1611                 if (ret == 0) {
1612                         as->use_dma = true;
1613                 } else if (ret == -EPROBE_DEFER) {
1614                         return ret;
1615                 }
1616         } else if (as->caps.has_pdc_support) {
1617                 as->use_pdc = true;
1618         }
1619
1620         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1621                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1622                                                       SPI_MAX_DMA_XFER,
1623                                                       &as->dma_addr_rx_bbuf,
1624                                                       GFP_KERNEL | GFP_DMA);
1625                 if (!as->addr_rx_bbuf) {
1626                         as->use_dma = false;
1627                 } else {
1628                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1629                                         SPI_MAX_DMA_XFER,
1630                                         &as->dma_addr_tx_bbuf,
1631                                         GFP_KERNEL | GFP_DMA);
1632                         if (!as->addr_tx_bbuf) {
1633                                 as->use_dma = false;
1634                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1635                                                   as->addr_rx_bbuf,
1636                                                   as->dma_addr_rx_bbuf);
1637                         }
1638                 }
1639                 if (!as->use_dma)
1640                         dev_info(master->dev.parent,
1641                                  "  can not allocate dma coherent memory\n");
1642         }
1643
1644         if (as->caps.has_dma_support && !as->use_dma)
1645                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1646
1647         if (as->use_pdc) {
1648                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1649                                         0, dev_name(&pdev->dev), master);
1650         } else {
1651                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1652                                         0, dev_name(&pdev->dev), master);
1653         }
1654         if (ret)
1655                 goto out_unmap_regs;
1656
1657         /* Initialize the hardware */
1658         ret = clk_prepare_enable(clk);
1659         if (ret)
1660                 goto out_free_irq;
1661
1662         as->spi_clk = clk_get_rate(clk);
1663
1664         as->fifo_size = 0;
1665         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1666                                   &as->fifo_size)) {
1667                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1668         }
1669
1670         atmel_spi_init(as);
1671
1672         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1673         pm_runtime_use_autosuspend(&pdev->dev);
1674         pm_runtime_set_active(&pdev->dev);
1675         pm_runtime_enable(&pdev->dev);
1676
1677         ret = devm_spi_register_master(&pdev->dev, master);
1678         if (ret)
1679                 goto out_free_dma;
1680
1681         /* go! */
1682         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683                         atmel_get_version(as), (unsigned long)regs->start,
1684                         irq);
1685
1686         return 0;
1687
1688 out_free_dma:
1689         pm_runtime_disable(&pdev->dev);
1690         pm_runtime_set_suspended(&pdev->dev);
1691
1692         if (as->use_dma)
1693                 atmel_spi_release_dma(master);
1694
1695         spi_writel(as, CR, SPI_BIT(SWRST));
1696         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1697         clk_disable_unprepare(clk);
1698 out_free_irq:
1699 out_unmap_regs:
1700 out_free:
1701         spi_master_put(master);
1702         return ret;
1703 }
1704
1705 static int atmel_spi_remove(struct platform_device *pdev)
1706 {
1707         struct spi_master       *master = platform_get_drvdata(pdev);
1708         struct atmel_spi        *as = spi_master_get_devdata(master);
1709
1710         pm_runtime_get_sync(&pdev->dev);
1711
1712         /* reset the hardware and block queue progress */
1713         if (as->use_dma) {
1714                 atmel_spi_stop_dma(master);
1715                 atmel_spi_release_dma(master);
1716                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1717                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1718                                           as->addr_tx_bbuf,
1719                                           as->dma_addr_tx_bbuf);
1720                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1721                                           as->addr_rx_bbuf,
1722                                           as->dma_addr_rx_bbuf);
1723                 }
1724         }
1725
1726         spin_lock_irq(&as->lock);
1727         spi_writel(as, CR, SPI_BIT(SWRST));
1728         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1729         spi_readl(as, SR);
1730         spin_unlock_irq(&as->lock);
1731
1732         clk_disable_unprepare(as->clk);
1733
1734         pm_runtime_put_noidle(&pdev->dev);
1735         pm_runtime_disable(&pdev->dev);
1736
1737         return 0;
1738 }
1739
1740 #ifdef CONFIG_PM
1741 static int atmel_spi_runtime_suspend(struct device *dev)
1742 {
1743         struct spi_master *master = dev_get_drvdata(dev);
1744         struct atmel_spi *as = spi_master_get_devdata(master);
1745
1746         clk_disable_unprepare(as->clk);
1747         pinctrl_pm_select_sleep_state(dev);
1748
1749         return 0;
1750 }
1751
1752 static int atmel_spi_runtime_resume(struct device *dev)
1753 {
1754         struct spi_master *master = dev_get_drvdata(dev);
1755         struct atmel_spi *as = spi_master_get_devdata(master);
1756
1757         pinctrl_pm_select_default_state(dev);
1758
1759         return clk_prepare_enable(as->clk);
1760 }
1761
1762 #ifdef CONFIG_PM_SLEEP
1763 static int atmel_spi_suspend(struct device *dev)
1764 {
1765         struct spi_master *master = dev_get_drvdata(dev);
1766         int ret;
1767
1768         /* Stop the queue running */
1769         ret = spi_master_suspend(master);
1770         if (ret) {
1771                 dev_warn(dev, "cannot suspend master\n");
1772                 return ret;
1773         }
1774
1775         if (!pm_runtime_suspended(dev))
1776                 atmel_spi_runtime_suspend(dev);
1777
1778         return 0;
1779 }
1780
1781 static int atmel_spi_resume(struct device *dev)
1782 {
1783         struct spi_master *master = dev_get_drvdata(dev);
1784         struct atmel_spi *as = spi_master_get_devdata(master);
1785         int ret;
1786
1787         ret = clk_prepare_enable(as->clk);
1788         if (ret)
1789                 return ret;
1790
1791         atmel_spi_init(as);
1792
1793         clk_disable_unprepare(as->clk);
1794
1795         if (!pm_runtime_suspended(dev)) {
1796                 ret = atmel_spi_runtime_resume(dev);
1797                 if (ret)
1798                         return ret;
1799         }
1800
1801         /* Start the queue running */
1802         ret = spi_master_resume(master);
1803         if (ret)
1804                 dev_err(dev, "problem starting queue (%d)\n", ret);
1805
1806         return ret;
1807 }
1808 #endif
1809
1810 static const struct dev_pm_ops atmel_spi_pm_ops = {
1811         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1812         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1813                            atmel_spi_runtime_resume, NULL)
1814 };
1815 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1816 #else
1817 #define ATMEL_SPI_PM_OPS        NULL
1818 #endif
1819
1820 #if defined(CONFIG_OF)
1821 static const struct of_device_id atmel_spi_dt_ids[] = {
1822         { .compatible = "atmel,at91rm9200-spi" },
1823         { /* sentinel */ }
1824 };
1825
1826 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1827 #endif
1828
1829 static struct platform_driver atmel_spi_driver = {
1830         .driver         = {
1831                 .name   = "atmel_spi",
1832                 .pm     = ATMEL_SPI_PM_OPS,
1833                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1834         },
1835         .probe          = atmel_spi_probe,
1836         .remove         = atmel_spi_remove,
1837 };
1838 module_platform_driver(atmel_spi_driver);
1839
1840 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842 MODULE_LICENSE("GPL");
1843 MODULE_ALIAS("platform:atmel_spi");