OSDN Git Service

Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[uclinux-h8/linux.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR                                  0x0000
33 #define SPI_MR                                  0x0004
34 #define SPI_RDR                                 0x0008
35 #define SPI_TDR                                 0x000c
36 #define SPI_SR                                  0x0010
37 #define SPI_IER                                 0x0014
38 #define SPI_IDR                                 0x0018
39 #define SPI_IMR                                 0x001c
40 #define SPI_CSR0                                0x0030
41 #define SPI_CSR1                                0x0034
42 #define SPI_CSR2                                0x0038
43 #define SPI_CSR3                                0x003c
44 #define SPI_FMR                                 0x0040
45 #define SPI_FLR                                 0x0044
46 #define SPI_VERSION                             0x00fc
47 #define SPI_RPR                                 0x0100
48 #define SPI_RCR                                 0x0104
49 #define SPI_TPR                                 0x0108
50 #define SPI_TCR                                 0x010c
51 #define SPI_RNPR                                0x0110
52 #define SPI_RNCR                                0x0114
53 #define SPI_TNPR                                0x0118
54 #define SPI_TNCR                                0x011c
55 #define SPI_PTCR                                0x0120
56 #define SPI_PTSR                                0x0124
57
58 /* Bitfields in CR */
59 #define SPI_SPIEN_OFFSET                        0
60 #define SPI_SPIEN_SIZE                          1
61 #define SPI_SPIDIS_OFFSET                       1
62 #define SPI_SPIDIS_SIZE                         1
63 #define SPI_SWRST_OFFSET                        7
64 #define SPI_SWRST_SIZE                          1
65 #define SPI_LASTXFER_OFFSET                     24
66 #define SPI_LASTXFER_SIZE                       1
67 #define SPI_TXFCLR_OFFSET                       16
68 #define SPI_TXFCLR_SIZE                         1
69 #define SPI_RXFCLR_OFFSET                       17
70 #define SPI_RXFCLR_SIZE                         1
71 #define SPI_FIFOEN_OFFSET                       30
72 #define SPI_FIFOEN_SIZE                         1
73 #define SPI_FIFODIS_OFFSET                      31
74 #define SPI_FIFODIS_SIZE                        1
75
76 /* Bitfields in MR */
77 #define SPI_MSTR_OFFSET                         0
78 #define SPI_MSTR_SIZE                           1
79 #define SPI_PS_OFFSET                           1
80 #define SPI_PS_SIZE                             1
81 #define SPI_PCSDEC_OFFSET                       2
82 #define SPI_PCSDEC_SIZE                         1
83 #define SPI_FDIV_OFFSET                         3
84 #define SPI_FDIV_SIZE                           1
85 #define SPI_MODFDIS_OFFSET                      4
86 #define SPI_MODFDIS_SIZE                        1
87 #define SPI_WDRBT_OFFSET                        5
88 #define SPI_WDRBT_SIZE                          1
89 #define SPI_LLB_OFFSET                          7
90 #define SPI_LLB_SIZE                            1
91 #define SPI_PCS_OFFSET                          16
92 #define SPI_PCS_SIZE                            4
93 #define SPI_DLYBCS_OFFSET                       24
94 #define SPI_DLYBCS_SIZE                         8
95
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET                           0
98 #define SPI_RD_SIZE                             16
99
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET                           0
102 #define SPI_TD_SIZE                             16
103
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET                         0
106 #define SPI_RDRF_SIZE                           1
107 #define SPI_TDRE_OFFSET                         1
108 #define SPI_TDRE_SIZE                           1
109 #define SPI_MODF_OFFSET                         2
110 #define SPI_MODF_SIZE                           1
111 #define SPI_OVRES_OFFSET                        3
112 #define SPI_OVRES_SIZE                          1
113 #define SPI_ENDRX_OFFSET                        4
114 #define SPI_ENDRX_SIZE                          1
115 #define SPI_ENDTX_OFFSET                        5
116 #define SPI_ENDTX_SIZE                          1
117 #define SPI_RXBUFF_OFFSET                       6
118 #define SPI_RXBUFF_SIZE                         1
119 #define SPI_TXBUFE_OFFSET                       7
120 #define SPI_TXBUFE_SIZE                         1
121 #define SPI_NSSR_OFFSET                         8
122 #define SPI_NSSR_SIZE                           1
123 #define SPI_TXEMPTY_OFFSET                      9
124 #define SPI_TXEMPTY_SIZE                        1
125 #define SPI_SPIENS_OFFSET                       16
126 #define SPI_SPIENS_SIZE                         1
127 #define SPI_TXFEF_OFFSET                        24
128 #define SPI_TXFEF_SIZE                          1
129 #define SPI_TXFFF_OFFSET                        25
130 #define SPI_TXFFF_SIZE                          1
131 #define SPI_TXFTHF_OFFSET                       26
132 #define SPI_TXFTHF_SIZE                         1
133 #define SPI_RXFEF_OFFSET                        27
134 #define SPI_RXFEF_SIZE                          1
135 #define SPI_RXFFF_OFFSET                        28
136 #define SPI_RXFFF_SIZE                          1
137 #define SPI_RXFTHF_OFFSET                       29
138 #define SPI_RXFTHF_SIZE                         1
139 #define SPI_TXFPTEF_OFFSET                      30
140 #define SPI_TXFPTEF_SIZE                        1
141 #define SPI_RXFPTEF_OFFSET                      31
142 #define SPI_RXFPTEF_SIZE                        1
143
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET                         0
146 #define SPI_CPOL_SIZE                           1
147 #define SPI_NCPHA_OFFSET                        1
148 #define SPI_NCPHA_SIZE                          1
149 #define SPI_CSAAT_OFFSET                        3
150 #define SPI_CSAAT_SIZE                          1
151 #define SPI_BITS_OFFSET                         4
152 #define SPI_BITS_SIZE                           4
153 #define SPI_SCBR_OFFSET                         8
154 #define SPI_SCBR_SIZE                           8
155 #define SPI_DLYBS_OFFSET                        16
156 #define SPI_DLYBS_SIZE                          8
157 #define SPI_DLYBCT_OFFSET                       24
158 #define SPI_DLYBCT_SIZE                         8
159
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET                        0
162 #define SPI_RXCTR_SIZE                          16
163
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET                        0
166 #define SPI_TXCTR_SIZE                          16
167
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET                        0
170 #define SPI_RXNCR_SIZE                          16
171
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET                        0
174 #define SPI_TXNCR_SIZE                          16
175
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET                        0
178 #define SPI_RXTEN_SIZE                          1
179 #define SPI_RXTDIS_OFFSET                       1
180 #define SPI_RXTDIS_SIZE                         1
181 #define SPI_TXTEN_OFFSET                        8
182 #define SPI_TXTEN_SIZE                          1
183 #define SPI_TXTDIS_OFFSET                       9
184 #define SPI_TXTDIS_SIZE                         1
185
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET                       0
188 #define SPI_TXRDYM_SIZE                         2
189 #define SPI_RXRDYM_OFFSET                       4
190 #define SPI_RXRDYM_SIZE                         2
191 #define SPI_TXFTHRES_OFFSET                     16
192 #define SPI_TXFTHRES_SIZE                       6
193 #define SPI_RXFTHRES_OFFSET                     24
194 #define SPI_RXFTHRES_SIZE                       6
195
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET                         0
198 #define SPI_TXFL_SIZE                           6
199 #define SPI_RXFL_OFFSET                         16
200 #define SPI_RXFL_SIZE                           6
201
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT                          0
204 #define SPI_BITS_9_BPT                          1
205 #define SPI_BITS_10_BPT                         2
206 #define SPI_BITS_11_BPT                         3
207 #define SPI_BITS_12_BPT                         4
208 #define SPI_BITS_13_BPT                         5
209 #define SPI_BITS_14_BPT                         6
210 #define SPI_BITS_15_BPT                         7
211 #define SPI_BITS_16_BPT                         8
212 #define SPI_ONE_DATA                            0
213 #define SPI_TWO_DATA                            1
214 #define SPI_FOUR_DATA                           2
215
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218         (1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225           | SPI_BF(name, value))
226
227 /* Register access macros */
228 #ifdef CONFIG_AVR32
229 #define spi_readl(port, reg) \
230         __raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232         __raw_writel((value), (port)->regs + SPI_##reg)
233
234 #define spi_readw(port, reg) \
235         __raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237         __raw_writew((value), (port)->regs + SPI_##reg)
238
239 #define spi_readb(port, reg) \
240         __raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242         __raw_writeb((value), (port)->regs + SPI_##reg)
243 #else
244 #define spi_readl(port, reg) \
245         readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247         writel_relaxed((value), (port)->regs + SPI_##reg)
248
249 #define spi_readw(port, reg) \
250         readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252         writew_relaxed((value), (port)->regs + SPI_##reg)
253
254 #define spi_readb(port, reg) \
255         readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257         writeb_relaxed((value), (port)->regs + SPI_##reg)
258 #endif
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260  * cache operations; better heuristics consider wordsize and bitrate.
261  */
262 #define DMA_MIN_BYTES   16
263
264 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
265
266 #define AUTOSUSPEND_TIMEOUT     2000
267
268 struct atmel_spi_dma {
269         struct dma_chan                 *chan_rx;
270         struct dma_chan                 *chan_tx;
271         struct scatterlist              sgrx;
272         struct scatterlist              sgtx;
273         struct dma_async_tx_descriptor  *data_desc_rx;
274         struct dma_async_tx_descriptor  *data_desc_tx;
275
276         struct at_dma_slave     dma_slave;
277 };
278
279 struct atmel_spi_caps {
280         bool    is_spi2;
281         bool    has_wdrbt;
282         bool    has_dma_support;
283 };
284
285 /*
286  * The core SPI transfer engine just talks to a register bank to set up
287  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
288  * framework provides the base clock, subdivided for each spi_device.
289  */
290 struct atmel_spi {
291         spinlock_t              lock;
292         unsigned long           flags;
293
294         phys_addr_t             phybase;
295         void __iomem            *regs;
296         int                     irq;
297         struct clk              *clk;
298         struct platform_device  *pdev;
299
300         struct spi_transfer     *current_transfer;
301         int                     current_remaining_bytes;
302         int                     done_status;
303
304         struct completion       xfer_completion;
305
306         /* scratch buffer */
307         void                    *buffer;
308         dma_addr_t              buffer_dma;
309
310         struct atmel_spi_caps   caps;
311
312         bool                    use_dma;
313         bool                    use_pdc;
314         bool                    use_cs_gpios;
315         /* dmaengine data */
316         struct atmel_spi_dma    dma;
317
318         bool                    keep_cs;
319         bool                    cs_active;
320
321         u32                     fifo_size;
322 };
323
324 /* Controller-specific per-slave state */
325 struct atmel_spi_device {
326         unsigned int            npcs_pin;
327         u32                     csr;
328 };
329
330 #define BUFFER_SIZE             PAGE_SIZE
331 #define INVALID_DMA_ADDRESS     0xffffffff
332
333 /*
334  * Version 2 of the SPI controller has
335  *  - CR.LASTXFER
336  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
337  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
338  *  - SPI_CSRx.CSAAT
339  *  - SPI_CSRx.SBCR allows faster clocking
340  */
341 static bool atmel_spi_is_v2(struct atmel_spi *as)
342 {
343         return as->caps.is_spi2;
344 }
345
346 /*
347  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
348  * they assume that spi slave device state will not change on deselect, so
349  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
350  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
351  * controllers have CSAAT and friends.
352  *
353  * Since the CSAAT functionality is a bit weird on newer controllers as
354  * well, we use GPIO to control nCSx pins on all controllers, updating
355  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
356  * support active-high chipselects despite the controller's belief that
357  * only active-low devices/systems exists.
358  *
359  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
360  * right when driven with GPIO.  ("Mode Fault does not allow more than one
361  * Master on Chip Select 0.")  No workaround exists for that ... so for
362  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
363  * and (c) will trigger that first erratum in some cases.
364  */
365
366 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
367 {
368         struct atmel_spi_device *asd = spi->controller_state;
369         unsigned active = spi->mode & SPI_CS_HIGH;
370         u32 mr;
371
372         if (atmel_spi_is_v2(as)) {
373                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
374                 /* For the low SPI version, there is a issue that PDC transfer
375                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
376                  */
377                 spi_writel(as, CSR0, asd->csr);
378                 if (as->caps.has_wdrbt) {
379                         spi_writel(as, MR,
380                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
381                                         | SPI_BIT(WDRBT)
382                                         | SPI_BIT(MODFDIS)
383                                         | SPI_BIT(MSTR));
384                 } else {
385                         spi_writel(as, MR,
386                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
387                                         | SPI_BIT(MODFDIS)
388                                         | SPI_BIT(MSTR));
389                 }
390
391                 mr = spi_readl(as, MR);
392                 if (as->use_cs_gpios)
393                         gpio_set_value(asd->npcs_pin, active);
394         } else {
395                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
396                 int i;
397                 u32 csr;
398
399                 /* Make sure clock polarity is correct */
400                 for (i = 0; i < spi->master->num_chipselect; i++) {
401                         csr = spi_readl(as, CSR0 + 4 * i);
402                         if ((csr ^ cpol) & SPI_BIT(CPOL))
403                                 spi_writel(as, CSR0 + 4 * i,
404                                                 csr ^ SPI_BIT(CPOL));
405                 }
406
407                 mr = spi_readl(as, MR);
408                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
409                 if (as->use_cs_gpios && spi->chip_select != 0)
410                         gpio_set_value(asd->npcs_pin, active);
411                 spi_writel(as, MR, mr);
412         }
413
414         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
415                         asd->npcs_pin, active ? " (high)" : "",
416                         mr);
417 }
418
419 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
420 {
421         struct atmel_spi_device *asd = spi->controller_state;
422         unsigned active = spi->mode & SPI_CS_HIGH;
423         u32 mr;
424
425         /* only deactivate *this* device; sometimes transfers to
426          * another device may be active when this routine is called.
427          */
428         mr = spi_readl(as, MR);
429         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
430                 mr = SPI_BFINS(PCS, 0xf, mr);
431                 spi_writel(as, MR, mr);
432         }
433
434         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
435                         asd->npcs_pin, active ? " (low)" : "",
436                         mr);
437
438         if (!as->use_cs_gpios)
439                 spi_writel(as, CR, SPI_BIT(LASTXFER));
440         else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
441                 gpio_set_value(asd->npcs_pin, !active);
442 }
443
444 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
445 {
446         spin_lock_irqsave(&as->lock, as->flags);
447 }
448
449 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
450 {
451         spin_unlock_irqrestore(&as->lock, as->flags);
452 }
453
454 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
455                                 struct spi_transfer *xfer)
456 {
457         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
458 }
459
460 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
461                                 struct dma_slave_config *slave_config,
462                                 u8 bits_per_word)
463 {
464         int err = 0;
465
466         if (bits_per_word > 8) {
467                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469         } else {
470                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472         }
473
474         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476         slave_config->src_maxburst = 1;
477         slave_config->dst_maxburst = 1;
478         slave_config->device_fc = false;
479
480         /*
481          * This driver uses fixed peripheral select mode (PS bit set to '0' in
482          * the Mode Register).
483          * So according to the datasheet, when FIFOs are available (and
484          * enabled), the Transmit FIFO operates in Multiple Data Mode.
485          * In this mode, up to 2 data, not 4, can be written into the Transmit
486          * Data Register in a single access.
487          * However, the first data has to be written into the lowest 16 bits and
488          * the second data into the highest 16 bits of the Transmit
489          * Data Register. For 8bit data (the most frequent case), it would
490          * require to rework tx_buf so each data would actualy fit 16 bits.
491          * So we'd rather write only one data at the time. Hence the transmit
492          * path works the same whether FIFOs are available (and enabled) or not.
493          */
494         slave_config->direction = DMA_MEM_TO_DEV;
495         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
496                 dev_err(&as->pdev->dev,
497                         "failed to configure tx dma channel\n");
498                 err = -EINVAL;
499         }
500
501         /*
502          * This driver configures the spi controller for master mode (MSTR bit
503          * set to '1' in the Mode Register).
504          * So according to the datasheet, when FIFOs are available (and
505          * enabled), the Receive FIFO operates in Single Data Mode.
506          * So the receive path works the same whether FIFOs are available (and
507          * enabled) or not.
508          */
509         slave_config->direction = DMA_DEV_TO_MEM;
510         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
511                 dev_err(&as->pdev->dev,
512                         "failed to configure rx dma channel\n");
513                 err = -EINVAL;
514         }
515
516         return err;
517 }
518
519 static int atmel_spi_configure_dma(struct atmel_spi *as)
520 {
521         struct dma_slave_config slave_config;
522         struct device *dev = &as->pdev->dev;
523         int err;
524
525         dma_cap_mask_t mask;
526         dma_cap_zero(mask);
527         dma_cap_set(DMA_SLAVE, mask);
528
529         as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
530         if (IS_ERR(as->dma.chan_tx)) {
531                 err = PTR_ERR(as->dma.chan_tx);
532                 if (err == -EPROBE_DEFER) {
533                         dev_warn(dev, "no DMA channel available at the moment\n");
534                         return err;
535                 }
536                 dev_err(dev,
537                         "DMA TX channel not available, SPI unable to use DMA\n");
538                 err = -EBUSY;
539                 goto error;
540         }
541
542         /*
543          * No reason to check EPROBE_DEFER here since we have already requested
544          * tx channel. If it fails here, it's for another reason.
545          */
546         as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
547
548         if (!as->dma.chan_rx) {
549                 dev_err(dev,
550                         "DMA RX channel not available, SPI unable to use DMA\n");
551                 err = -EBUSY;
552                 goto error;
553         }
554
555         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
556         if (err)
557                 goto error;
558
559         dev_info(&as->pdev->dev,
560                         "Using %s (tx) and %s (rx) for DMA transfers\n",
561                         dma_chan_name(as->dma.chan_tx),
562                         dma_chan_name(as->dma.chan_rx));
563         return 0;
564 error:
565         if (as->dma.chan_rx)
566                 dma_release_channel(as->dma.chan_rx);
567         if (!IS_ERR(as->dma.chan_tx))
568                 dma_release_channel(as->dma.chan_tx);
569         return err;
570 }
571
572 static void atmel_spi_stop_dma(struct atmel_spi *as)
573 {
574         if (as->dma.chan_rx)
575                 dmaengine_terminate_all(as->dma.chan_rx);
576         if (as->dma.chan_tx)
577                 dmaengine_terminate_all(as->dma.chan_tx);
578 }
579
580 static void atmel_spi_release_dma(struct atmel_spi *as)
581 {
582         if (as->dma.chan_rx)
583                 dma_release_channel(as->dma.chan_rx);
584         if (as->dma.chan_tx)
585                 dma_release_channel(as->dma.chan_tx);
586 }
587
588 /* This function is called by the DMA driver from tasklet context */
589 static void dma_callback(void *data)
590 {
591         struct spi_master       *master = data;
592         struct atmel_spi        *as = spi_master_get_devdata(master);
593
594         complete(&as->xfer_completion);
595 }
596
597 /*
598  * Next transfer using PIO without FIFO.
599  */
600 static void atmel_spi_next_xfer_single(struct spi_master *master,
601                                        struct spi_transfer *xfer)
602 {
603         struct atmel_spi        *as = spi_master_get_devdata(master);
604         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
605
606         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
607
608         /* Make sure data is not remaining in RDR */
609         spi_readl(as, RDR);
610         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
611                 spi_readl(as, RDR);
612                 cpu_relax();
613         }
614
615         if (xfer->tx_buf) {
616                 if (xfer->bits_per_word > 8)
617                         spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
618                 else
619                         spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
620         } else {
621                 spi_writel(as, TDR, 0);
622         }
623
624         dev_dbg(master->dev.parent,
625                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
626                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
627                 xfer->bits_per_word);
628
629         /* Enable relevant interrupts */
630         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
631 }
632
633 /*
634  * Next transfer using PIO with FIFO.
635  */
636 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
637                                      struct spi_transfer *xfer)
638 {
639         struct atmel_spi *as = spi_master_get_devdata(master);
640         u32 current_remaining_data, num_data;
641         u32 offset = xfer->len - as->current_remaining_bytes;
642         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
643         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
644         u16 td0, td1;
645         u32 fifomr;
646
647         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
648
649         /* Compute the number of data to transfer in the current iteration */
650         current_remaining_data = ((xfer->bits_per_word > 8) ?
651                                   ((u32)as->current_remaining_bytes >> 1) :
652                                   (u32)as->current_remaining_bytes);
653         num_data = min(current_remaining_data, as->fifo_size);
654
655         /* Flush RX and TX FIFOs */
656         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
657         while (spi_readl(as, FLR))
658                 cpu_relax();
659
660         /* Set RX FIFO Threshold to the number of data to transfer */
661         fifomr = spi_readl(as, FMR);
662         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
663
664         /* Clear FIFO flags in the Status Register, especially RXFTHF */
665         (void)spi_readl(as, SR);
666
667         /* Fill TX FIFO */
668         while (num_data >= 2) {
669                 if (xfer->tx_buf) {
670                         if (xfer->bits_per_word > 8) {
671                                 td0 = *words++;
672                                 td1 = *words++;
673                         } else {
674                                 td0 = *bytes++;
675                                 td1 = *bytes++;
676                         }
677                 } else {
678                         td0 = 0;
679                         td1 = 0;
680                 }
681
682                 spi_writel(as, TDR, (td1 << 16) | td0);
683                 num_data -= 2;
684         }
685
686         if (num_data) {
687                 if (xfer->tx_buf) {
688                         if (xfer->bits_per_word > 8)
689                                 td0 = *words++;
690                         else
691                                 td0 = *bytes++;
692                 } else {
693                         td0 = 0;
694                 }
695
696                 spi_writew(as, TDR, td0);
697                 num_data--;
698         }
699
700         dev_dbg(master->dev.parent,
701                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703                 xfer->bits_per_word);
704
705         /*
706          * Enable RX FIFO Threshold Flag interrupt to be notified about
707          * transfer completion.
708          */
709         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710 }
711
712 /*
713  * Next transfer using PIO.
714  */
715 static void atmel_spi_next_xfer_pio(struct spi_master *master,
716                                     struct spi_transfer *xfer)
717 {
718         struct atmel_spi *as = spi_master_get_devdata(master);
719
720         if (as->fifo_size)
721                 atmel_spi_next_xfer_fifo(master, xfer);
722         else
723                 atmel_spi_next_xfer_single(master, xfer);
724 }
725
726 /*
727  * Submit next transfer for DMA.
728  */
729 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730                                 struct spi_transfer *xfer,
731                                 u32 *plen)
732 {
733         struct atmel_spi        *as = spi_master_get_devdata(master);
734         struct dma_chan         *rxchan = as->dma.chan_rx;
735         struct dma_chan         *txchan = as->dma.chan_tx;
736         struct dma_async_tx_descriptor *rxdesc;
737         struct dma_async_tx_descriptor *txdesc;
738         struct dma_slave_config slave_config;
739         dma_cookie_t            cookie;
740         u32     len = *plen;
741
742         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
743
744         /* Check that the channels are available */
745         if (!rxchan || !txchan)
746                 return -ENODEV;
747
748         /* release lock for DMA operations */
749         atmel_spi_unlock(as);
750
751         /* prepare the RX dma transfer */
752         sg_init_table(&as->dma.sgrx, 1);
753         if (xfer->rx_buf) {
754                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
755         } else {
756                 as->dma.sgrx.dma_address = as->buffer_dma;
757                 if (len > BUFFER_SIZE)
758                         len = BUFFER_SIZE;
759         }
760
761         /* prepare the TX dma transfer */
762         sg_init_table(&as->dma.sgtx, 1);
763         if (xfer->tx_buf) {
764                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
765         } else {
766                 as->dma.sgtx.dma_address = as->buffer_dma;
767                 if (len > BUFFER_SIZE)
768                         len = BUFFER_SIZE;
769                 memset(as->buffer, 0, len);
770         }
771
772         sg_dma_len(&as->dma.sgtx) = len;
773         sg_dma_len(&as->dma.sgrx) = len;
774
775         *plen = len;
776
777         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
778                 goto err_exit;
779
780         /* Send both scatterlists */
781         rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
782                                          DMA_FROM_DEVICE,
783                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
784         if (!rxdesc)
785                 goto err_dma;
786
787         txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
788                                          DMA_TO_DEVICE,
789                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
790         if (!txdesc)
791                 goto err_dma;
792
793         dev_dbg(master->dev.parent,
794                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
795                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
796                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
797
798         /* Enable relevant interrupts */
799         spi_writel(as, IER, SPI_BIT(OVRES));
800
801         /* Put the callback on the RX transfer only, that should finish last */
802         rxdesc->callback = dma_callback;
803         rxdesc->callback_param = master;
804
805         /* Submit and fire RX and TX with TX last so we're ready to read! */
806         cookie = rxdesc->tx_submit(rxdesc);
807         if (dma_submit_error(cookie))
808                 goto err_dma;
809         cookie = txdesc->tx_submit(txdesc);
810         if (dma_submit_error(cookie))
811                 goto err_dma;
812         rxchan->device->device_issue_pending(rxchan);
813         txchan->device->device_issue_pending(txchan);
814
815         /* take back lock */
816         atmel_spi_lock(as);
817         return 0;
818
819 err_dma:
820         spi_writel(as, IDR, SPI_BIT(OVRES));
821         atmel_spi_stop_dma(as);
822 err_exit:
823         atmel_spi_lock(as);
824         return -ENOMEM;
825 }
826
827 static void atmel_spi_next_xfer_data(struct spi_master *master,
828                                 struct spi_transfer *xfer,
829                                 dma_addr_t *tx_dma,
830                                 dma_addr_t *rx_dma,
831                                 u32 *plen)
832 {
833         struct atmel_spi        *as = spi_master_get_devdata(master);
834         u32                     len = *plen;
835
836         /* use scratch buffer only when rx or tx data is unspecified */
837         if (xfer->rx_buf)
838                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
839         else {
840                 *rx_dma = as->buffer_dma;
841                 if (len > BUFFER_SIZE)
842                         len = BUFFER_SIZE;
843         }
844
845         if (xfer->tx_buf)
846                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
847         else {
848                 *tx_dma = as->buffer_dma;
849                 if (len > BUFFER_SIZE)
850                         len = BUFFER_SIZE;
851                 memset(as->buffer, 0, len);
852                 dma_sync_single_for_device(&as->pdev->dev,
853                                 as->buffer_dma, len, DMA_TO_DEVICE);
854         }
855
856         *plen = len;
857 }
858
859 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
860                                     struct spi_device *spi,
861                                     struct spi_transfer *xfer)
862 {
863         u32                     scbr, csr;
864         unsigned long           bus_hz;
865
866         /* v1 chips start out at half the peripheral bus speed. */
867         bus_hz = clk_get_rate(as->clk);
868         if (!atmel_spi_is_v2(as))
869                 bus_hz /= 2;
870
871         /*
872          * Calculate the lowest divider that satisfies the
873          * constraint, assuming div32/fdiv/mbz == 0.
874          */
875         if (xfer->speed_hz)
876                 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
877         else
878                 /*
879                  * This can happend if max_speed is null.
880                  * In this case, we set the lowest possible speed
881                  */
882                 scbr = 0xff;
883
884         /*
885          * If the resulting divider doesn't fit into the
886          * register bitfield, we can't satisfy the constraint.
887          */
888         if (scbr >= (1 << SPI_SCBR_SIZE)) {
889                 dev_err(&spi->dev,
890                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
891                         xfer->speed_hz, scbr, bus_hz/255);
892                 return -EINVAL;
893         }
894         if (scbr == 0) {
895                 dev_err(&spi->dev,
896                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
897                         xfer->speed_hz, scbr, bus_hz);
898                 return -EINVAL;
899         }
900         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
901         csr = SPI_BFINS(SCBR, scbr, csr);
902         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
903
904         return 0;
905 }
906
907 /*
908  * Submit next transfer for PDC.
909  * lock is held, spi irq is blocked
910  */
911 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
912                                         struct spi_message *msg,
913                                         struct spi_transfer *xfer)
914 {
915         struct atmel_spi        *as = spi_master_get_devdata(master);
916         u32                     len;
917         dma_addr_t              tx_dma, rx_dma;
918
919         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
920
921         len = as->current_remaining_bytes;
922         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
923         as->current_remaining_bytes -= len;
924
925         spi_writel(as, RPR, rx_dma);
926         spi_writel(as, TPR, tx_dma);
927
928         if (msg->spi->bits_per_word > 8)
929                 len >>= 1;
930         spi_writel(as, RCR, len);
931         spi_writel(as, TCR, len);
932
933         dev_dbg(&msg->spi->dev,
934                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
935                 xfer, xfer->len, xfer->tx_buf,
936                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
937                 (unsigned long long)xfer->rx_dma);
938
939         if (as->current_remaining_bytes) {
940                 len = as->current_remaining_bytes;
941                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
942                 as->current_remaining_bytes -= len;
943
944                 spi_writel(as, RNPR, rx_dma);
945                 spi_writel(as, TNPR, tx_dma);
946
947                 if (msg->spi->bits_per_word > 8)
948                         len >>= 1;
949                 spi_writel(as, RNCR, len);
950                 spi_writel(as, TNCR, len);
951
952                 dev_dbg(&msg->spi->dev,
953                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
954                         xfer, xfer->len, xfer->tx_buf,
955                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
956                         (unsigned long long)xfer->rx_dma);
957         }
958
959         /* REVISIT: We're waiting for RXBUFF before we start the next
960          * transfer because we need to handle some difficult timing
961          * issues otherwise. If we wait for TXBUFE in one transfer and
962          * then starts waiting for RXBUFF in the next, it's difficult
963          * to tell the difference between the RXBUFF interrupt we're
964          * actually waiting for and the RXBUFF interrupt of the
965          * previous transfer.
966          *
967          * It should be doable, though. Just not now...
968          */
969         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
970         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
971 }
972
973 /*
974  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
975  *  - The buffer is either valid for CPU access, else NULL
976  *  - If the buffer is valid, so is its DMA address
977  *
978  * This driver manages the dma address unless message->is_dma_mapped.
979  */
980 static int
981 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
982 {
983         struct device   *dev = &as->pdev->dev;
984
985         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
986         if (xfer->tx_buf) {
987                 /* tx_buf is a const void* where we need a void * for the dma
988                  * mapping */
989                 void *nonconst_tx = (void *)xfer->tx_buf;
990
991                 xfer->tx_dma = dma_map_single(dev,
992                                 nonconst_tx, xfer->len,
993                                 DMA_TO_DEVICE);
994                 if (dma_mapping_error(dev, xfer->tx_dma))
995                         return -ENOMEM;
996         }
997         if (xfer->rx_buf) {
998                 xfer->rx_dma = dma_map_single(dev,
999                                 xfer->rx_buf, xfer->len,
1000                                 DMA_FROM_DEVICE);
1001                 if (dma_mapping_error(dev, xfer->rx_dma)) {
1002                         if (xfer->tx_buf)
1003                                 dma_unmap_single(dev,
1004                                                 xfer->tx_dma, xfer->len,
1005                                                 DMA_TO_DEVICE);
1006                         return -ENOMEM;
1007                 }
1008         }
1009         return 0;
1010 }
1011
1012 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1013                                      struct spi_transfer *xfer)
1014 {
1015         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1016                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1017                                  xfer->len, DMA_TO_DEVICE);
1018         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1019                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1020                                  xfer->len, DMA_FROM_DEVICE);
1021 }
1022
1023 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1024 {
1025         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1026 }
1027
1028 static void
1029 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1030 {
1031         u8              *rxp;
1032         u16             *rxp16;
1033         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1034
1035         if (xfer->rx_buf) {
1036                 if (xfer->bits_per_word > 8) {
1037                         rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1038                         *rxp16 = spi_readl(as, RDR);
1039                 } else {
1040                         rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1041                         *rxp = spi_readl(as, RDR);
1042                 }
1043         } else {
1044                 spi_readl(as, RDR);
1045         }
1046         if (xfer->bits_per_word > 8) {
1047                 if (as->current_remaining_bytes > 2)
1048                         as->current_remaining_bytes -= 2;
1049                 else
1050                         as->current_remaining_bytes = 0;
1051         } else {
1052                 as->current_remaining_bytes--;
1053         }
1054 }
1055
1056 static void
1057 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1058 {
1059         u32 fifolr = spi_readl(as, FLR);
1060         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1061         u32 offset = xfer->len - as->current_remaining_bytes;
1062         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1063         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1064         u16 rd; /* RD field is the lowest 16 bits of RDR */
1065
1066         /* Update the number of remaining bytes to transfer */
1067         num_bytes = ((xfer->bits_per_word > 8) ?
1068                      (num_data << 1) :
1069                      num_data);
1070
1071         if (as->current_remaining_bytes > num_bytes)
1072                 as->current_remaining_bytes -= num_bytes;
1073         else
1074                 as->current_remaining_bytes = 0;
1075
1076         /* Handle odd number of bytes when data are more than 8bit width */
1077         if (xfer->bits_per_word > 8)
1078                 as->current_remaining_bytes &= ~0x1;
1079
1080         /* Read data */
1081         while (num_data) {
1082                 rd = spi_readl(as, RDR);
1083                 if (xfer->rx_buf) {
1084                         if (xfer->bits_per_word > 8)
1085                                 *words++ = rd;
1086                         else
1087                                 *bytes++ = rd;
1088                 }
1089                 num_data--;
1090         }
1091 }
1092
1093 /* Called from IRQ
1094  *
1095  * Must update "current_remaining_bytes" to keep track of data
1096  * to transfer.
1097  */
1098 static void
1099 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1100 {
1101         if (as->fifo_size)
1102                 atmel_spi_pump_fifo_data(as, xfer);
1103         else
1104                 atmel_spi_pump_single_data(as, xfer);
1105 }
1106
1107 /* Interrupt
1108  *
1109  * No need for locking in this Interrupt handler: done_status is the
1110  * only information modified.
1111  */
1112 static irqreturn_t
1113 atmel_spi_pio_interrupt(int irq, void *dev_id)
1114 {
1115         struct spi_master       *master = dev_id;
1116         struct atmel_spi        *as = spi_master_get_devdata(master);
1117         u32                     status, pending, imr;
1118         struct spi_transfer     *xfer;
1119         int                     ret = IRQ_NONE;
1120
1121         imr = spi_readl(as, IMR);
1122         status = spi_readl(as, SR);
1123         pending = status & imr;
1124
1125         if (pending & SPI_BIT(OVRES)) {
1126                 ret = IRQ_HANDLED;
1127                 spi_writel(as, IDR, SPI_BIT(OVRES));
1128                 dev_warn(master->dev.parent, "overrun\n");
1129
1130                 /*
1131                  * When we get an overrun, we disregard the current
1132                  * transfer. Data will not be copied back from any
1133                  * bounce buffer and msg->actual_len will not be
1134                  * updated with the last xfer.
1135                  *
1136                  * We will also not process any remaning transfers in
1137                  * the message.
1138                  */
1139                 as->done_status = -EIO;
1140                 smp_wmb();
1141
1142                 /* Clear any overrun happening while cleaning up */
1143                 spi_readl(as, SR);
1144
1145                 complete(&as->xfer_completion);
1146
1147         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1148                 atmel_spi_lock(as);
1149
1150                 if (as->current_remaining_bytes) {
1151                         ret = IRQ_HANDLED;
1152                         xfer = as->current_transfer;
1153                         atmel_spi_pump_pio_data(as, xfer);
1154                         if (!as->current_remaining_bytes)
1155                                 spi_writel(as, IDR, pending);
1156
1157                         complete(&as->xfer_completion);
1158                 }
1159
1160                 atmel_spi_unlock(as);
1161         } else {
1162                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1163                 ret = IRQ_HANDLED;
1164                 spi_writel(as, IDR, pending);
1165         }
1166
1167         return ret;
1168 }
1169
1170 static irqreturn_t
1171 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1172 {
1173         struct spi_master       *master = dev_id;
1174         struct atmel_spi        *as = spi_master_get_devdata(master);
1175         u32                     status, pending, imr;
1176         int                     ret = IRQ_NONE;
1177
1178         imr = spi_readl(as, IMR);
1179         status = spi_readl(as, SR);
1180         pending = status & imr;
1181
1182         if (pending & SPI_BIT(OVRES)) {
1183
1184                 ret = IRQ_HANDLED;
1185
1186                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1187                                      | SPI_BIT(OVRES)));
1188
1189                 /* Clear any overrun happening while cleaning up */
1190                 spi_readl(as, SR);
1191
1192                 as->done_status = -EIO;
1193
1194                 complete(&as->xfer_completion);
1195
1196         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1197                 ret = IRQ_HANDLED;
1198
1199                 spi_writel(as, IDR, pending);
1200
1201                 complete(&as->xfer_completion);
1202         }
1203
1204         return ret;
1205 }
1206
1207 static int atmel_spi_setup(struct spi_device *spi)
1208 {
1209         struct atmel_spi        *as;
1210         struct atmel_spi_device *asd;
1211         u32                     csr;
1212         unsigned int            bits = spi->bits_per_word;
1213         unsigned int            npcs_pin;
1214         int                     ret;
1215
1216         as = spi_master_get_devdata(spi->master);
1217
1218         /* see notes above re chipselect */
1219         if (!atmel_spi_is_v2(as)
1220                         && spi->chip_select == 0
1221                         && (spi->mode & SPI_CS_HIGH)) {
1222                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1223                 return -EINVAL;
1224         }
1225
1226         csr = SPI_BF(BITS, bits - 8);
1227         if (spi->mode & SPI_CPOL)
1228                 csr |= SPI_BIT(CPOL);
1229         if (!(spi->mode & SPI_CPHA))
1230                 csr |= SPI_BIT(NCPHA);
1231         if (!as->use_cs_gpios)
1232                 csr |= SPI_BIT(CSAAT);
1233
1234         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1235          *
1236          * DLYBCT would add delays between words, slowing down transfers.
1237          * It could potentially be useful to cope with DMA bottlenecks, but
1238          * in those cases it's probably best to just use a lower bitrate.
1239          */
1240         csr |= SPI_BF(DLYBS, 0);
1241         csr |= SPI_BF(DLYBCT, 0);
1242
1243         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1244         npcs_pin = (unsigned long)spi->controller_data;
1245
1246         if (!as->use_cs_gpios)
1247                 npcs_pin = spi->chip_select;
1248         else if (gpio_is_valid(spi->cs_gpio))
1249                 npcs_pin = spi->cs_gpio;
1250
1251         asd = spi->controller_state;
1252         if (!asd) {
1253                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1254                 if (!asd)
1255                         return -ENOMEM;
1256
1257                 if (as->use_cs_gpios) {
1258                         ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1259                         if (ret) {
1260                                 kfree(asd);
1261                                 return ret;
1262                         }
1263
1264                         gpio_direction_output(npcs_pin,
1265                                               !(spi->mode & SPI_CS_HIGH));
1266                 }
1267
1268                 asd->npcs_pin = npcs_pin;
1269                 spi->controller_state = asd;
1270         }
1271
1272         asd->csr = csr;
1273
1274         dev_dbg(&spi->dev,
1275                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1276                 bits, spi->mode, spi->chip_select, csr);
1277
1278         if (!atmel_spi_is_v2(as))
1279                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1280
1281         return 0;
1282 }
1283
1284 static int atmel_spi_one_transfer(struct spi_master *master,
1285                                         struct spi_message *msg,
1286                                         struct spi_transfer *xfer)
1287 {
1288         struct atmel_spi        *as;
1289         struct spi_device       *spi = msg->spi;
1290         u8                      bits;
1291         u32                     len;
1292         struct atmel_spi_device *asd;
1293         int                     timeout;
1294         int                     ret;
1295         unsigned long           dma_timeout;
1296
1297         as = spi_master_get_devdata(master);
1298
1299         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1300                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1301                 return -EINVAL;
1302         }
1303
1304         if (xfer->bits_per_word) {
1305                 asd = spi->controller_state;
1306                 bits = (asd->csr >> 4) & 0xf;
1307                 if (bits != xfer->bits_per_word - 8) {
1308                         dev_dbg(&spi->dev,
1309                         "you can't yet change bits_per_word in transfers\n");
1310                         return -ENOPROTOOPT;
1311                 }
1312         }
1313
1314         /*
1315          * DMA map early, for performance (empties dcache ASAP) and
1316          * better fault reporting.
1317          */
1318         if ((!msg->is_dma_mapped)
1319                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1320                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321                         return -ENOMEM;
1322         }
1323
1324         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1325
1326         as->done_status = 0;
1327         as->current_transfer = xfer;
1328         as->current_remaining_bytes = xfer->len;
1329         while (as->current_remaining_bytes) {
1330                 reinit_completion(&as->xfer_completion);
1331
1332                 if (as->use_pdc) {
1333                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1334                 } else if (atmel_spi_use_dma(as, xfer)) {
1335                         len = as->current_remaining_bytes;
1336                         ret = atmel_spi_next_xfer_dma_submit(master,
1337                                                                 xfer, &len);
1338                         if (ret) {
1339                                 dev_err(&spi->dev,
1340                                         "unable to use DMA, fallback to PIO\n");
1341                                 atmel_spi_next_xfer_pio(master, xfer);
1342                         } else {
1343                                 as->current_remaining_bytes -= len;
1344                                 if (as->current_remaining_bytes < 0)
1345                                         as->current_remaining_bytes = 0;
1346                         }
1347                 } else {
1348                         atmel_spi_next_xfer_pio(master, xfer);
1349                 }
1350
1351                 /* interrupts are disabled, so free the lock for schedule */
1352                 atmel_spi_unlock(as);
1353                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1354                                                           SPI_DMA_TIMEOUT);
1355                 atmel_spi_lock(as);
1356                 if (WARN_ON(dma_timeout == 0)) {
1357                         dev_err(&spi->dev, "spi transfer timeout\n");
1358                         as->done_status = -EIO;
1359                 }
1360
1361                 if (as->done_status)
1362                         break;
1363         }
1364
1365         if (as->done_status) {
1366                 if (as->use_pdc) {
1367                         dev_warn(master->dev.parent,
1368                                 "overrun (%u/%u remaining)\n",
1369                                 spi_readl(as, TCR), spi_readl(as, RCR));
1370
1371                         /*
1372                          * Clean up DMA registers and make sure the data
1373                          * registers are empty.
1374                          */
1375                         spi_writel(as, RNCR, 0);
1376                         spi_writel(as, TNCR, 0);
1377                         spi_writel(as, RCR, 0);
1378                         spi_writel(as, TCR, 0);
1379                         for (timeout = 1000; timeout; timeout--)
1380                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1381                                         break;
1382                         if (!timeout)
1383                                 dev_warn(master->dev.parent,
1384                                          "timeout waiting for TXEMPTY");
1385                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1386                                 spi_readl(as, RDR);
1387
1388                         /* Clear any overrun happening while cleaning up */
1389                         spi_readl(as, SR);
1390
1391                 } else if (atmel_spi_use_dma(as, xfer)) {
1392                         atmel_spi_stop_dma(as);
1393                 }
1394
1395                 if (!msg->is_dma_mapped
1396                         && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1397                         atmel_spi_dma_unmap_xfer(master, xfer);
1398
1399                 return 0;
1400
1401         } else {
1402                 /* only update length if no error */
1403                 msg->actual_length += xfer->len;
1404         }
1405
1406         if (!msg->is_dma_mapped
1407                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1408                 atmel_spi_dma_unmap_xfer(master, xfer);
1409
1410         if (xfer->delay_usecs)
1411                 udelay(xfer->delay_usecs);
1412
1413         if (xfer->cs_change) {
1414                 if (list_is_last(&xfer->transfer_list,
1415                                  &msg->transfers)) {
1416                         as->keep_cs = true;
1417                 } else {
1418                         as->cs_active = !as->cs_active;
1419                         if (as->cs_active)
1420                                 cs_activate(as, msg->spi);
1421                         else
1422                                 cs_deactivate(as, msg->spi);
1423                 }
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int atmel_spi_transfer_one_message(struct spi_master *master,
1430                                                 struct spi_message *msg)
1431 {
1432         struct atmel_spi *as;
1433         struct spi_transfer *xfer;
1434         struct spi_device *spi = msg->spi;
1435         int ret = 0;
1436
1437         as = spi_master_get_devdata(master);
1438
1439         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1440                                         msg, dev_name(&spi->dev));
1441
1442         atmel_spi_lock(as);
1443         cs_activate(as, spi);
1444
1445         as->cs_active = true;
1446         as->keep_cs = false;
1447
1448         msg->status = 0;
1449         msg->actual_length = 0;
1450
1451         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452                 ret = atmel_spi_one_transfer(master, msg, xfer);
1453                 if (ret)
1454                         goto msg_done;
1455         }
1456
1457         if (as->use_pdc)
1458                 atmel_spi_disable_pdc_transfer(as);
1459
1460         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1461                 dev_dbg(&spi->dev,
1462                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1463                         xfer, xfer->len,
1464                         xfer->tx_buf, &xfer->tx_dma,
1465                         xfer->rx_buf, &xfer->rx_dma);
1466         }
1467
1468 msg_done:
1469         if (!as->keep_cs)
1470                 cs_deactivate(as, msg->spi);
1471
1472         atmel_spi_unlock(as);
1473
1474         msg->status = as->done_status;
1475         spi_finalize_current_message(spi->master);
1476
1477         return ret;
1478 }
1479
1480 static void atmel_spi_cleanup(struct spi_device *spi)
1481 {
1482         struct atmel_spi_device *asd = spi->controller_state;
1483         unsigned                gpio = (unsigned long) spi->controller_data;
1484
1485         if (!asd)
1486                 return;
1487
1488         spi->controller_state = NULL;
1489         gpio_free(gpio);
1490         kfree(asd);
1491 }
1492
1493 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1494 {
1495         return spi_readl(as, VERSION) & 0x00000fff;
1496 }
1497
1498 static void atmel_get_caps(struct atmel_spi *as)
1499 {
1500         unsigned int version;
1501
1502         version = atmel_get_version(as);
1503         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1504
1505         as->caps.is_spi2 = version > 0x121;
1506         as->caps.has_wdrbt = version >= 0x210;
1507         as->caps.has_dma_support = version >= 0x212;
1508 }
1509
1510 /*-------------------------------------------------------------------------*/
1511
1512 static int atmel_spi_probe(struct platform_device *pdev)
1513 {
1514         struct resource         *regs;
1515         int                     irq;
1516         struct clk              *clk;
1517         int                     ret;
1518         struct spi_master       *master;
1519         struct atmel_spi        *as;
1520
1521         /* Select default pin state */
1522         pinctrl_pm_select_default_state(&pdev->dev);
1523
1524         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1525         if (!regs)
1526                 return -ENXIO;
1527
1528         irq = platform_get_irq(pdev, 0);
1529         if (irq < 0)
1530                 return irq;
1531
1532         clk = devm_clk_get(&pdev->dev, "spi_clk");
1533         if (IS_ERR(clk))
1534                 return PTR_ERR(clk);
1535
1536         /* setup spi core then atmel-specific driver state */
1537         ret = -ENOMEM;
1538         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1539         if (!master)
1540                 goto out_free;
1541
1542         /* the spi->mode bits understood by this driver: */
1543         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1544         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1545         master->dev.of_node = pdev->dev.of_node;
1546         master->bus_num = pdev->id;
1547         master->num_chipselect = master->dev.of_node ? 0 : 4;
1548         master->setup = atmel_spi_setup;
1549         master->transfer_one_message = atmel_spi_transfer_one_message;
1550         master->cleanup = atmel_spi_cleanup;
1551         master->auto_runtime_pm = true;
1552         platform_set_drvdata(pdev, master);
1553
1554         as = spi_master_get_devdata(master);
1555
1556         /*
1557          * Scratch buffer is used for throwaway rx and tx data.
1558          * It's coherent to minimize dcache pollution.
1559          */
1560         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1561                                         &as->buffer_dma, GFP_KERNEL);
1562         if (!as->buffer)
1563                 goto out_free;
1564
1565         spin_lock_init(&as->lock);
1566
1567         as->pdev = pdev;
1568         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1569         if (IS_ERR(as->regs)) {
1570                 ret = PTR_ERR(as->regs);
1571                 goto out_free_buffer;
1572         }
1573         as->phybase = regs->start;
1574         as->irq = irq;
1575         as->clk = clk;
1576
1577         init_completion(&as->xfer_completion);
1578
1579         atmel_get_caps(as);
1580
1581         as->use_cs_gpios = true;
1582         if (atmel_spi_is_v2(as) &&
1583             !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1584                 as->use_cs_gpios = false;
1585                 master->num_chipselect = 4;
1586         }
1587
1588         as->use_dma = false;
1589         as->use_pdc = false;
1590         if (as->caps.has_dma_support) {
1591                 ret = atmel_spi_configure_dma(as);
1592                 if (ret == 0)
1593                         as->use_dma = true;
1594                 else if (ret == -EPROBE_DEFER)
1595                         return ret;
1596         } else {
1597                 as->use_pdc = true;
1598         }
1599
1600         if (as->caps.has_dma_support && !as->use_dma)
1601                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1602
1603         if (as->use_pdc) {
1604                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1605                                         0, dev_name(&pdev->dev), master);
1606         } else {
1607                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1608                                         0, dev_name(&pdev->dev), master);
1609         }
1610         if (ret)
1611                 goto out_unmap_regs;
1612
1613         /* Initialize the hardware */
1614         ret = clk_prepare_enable(clk);
1615         if (ret)
1616                 goto out_free_irq;
1617         spi_writel(as, CR, SPI_BIT(SWRST));
1618         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619         if (as->caps.has_wdrbt) {
1620                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1621                                 | SPI_BIT(MSTR));
1622         } else {
1623                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1624         }
1625
1626         if (as->use_pdc)
1627                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1628         spi_writel(as, CR, SPI_BIT(SPIEN));
1629
1630         as->fifo_size = 0;
1631         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632                                   &as->fifo_size)) {
1633                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1635         }
1636
1637         /* go! */
1638         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1639                         (unsigned long)regs->start, irq);
1640
1641         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1642         pm_runtime_use_autosuspend(&pdev->dev);
1643         pm_runtime_set_active(&pdev->dev);
1644         pm_runtime_enable(&pdev->dev);
1645
1646         ret = devm_spi_register_master(&pdev->dev, master);
1647         if (ret)
1648                 goto out_free_dma;
1649
1650         return 0;
1651
1652 out_free_dma:
1653         pm_runtime_disable(&pdev->dev);
1654         pm_runtime_set_suspended(&pdev->dev);
1655
1656         if (as->use_dma)
1657                 atmel_spi_release_dma(as);
1658
1659         spi_writel(as, CR, SPI_BIT(SWRST));
1660         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661         clk_disable_unprepare(clk);
1662 out_free_irq:
1663 out_unmap_regs:
1664 out_free_buffer:
1665         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1666                         as->buffer_dma);
1667 out_free:
1668         spi_master_put(master);
1669         return ret;
1670 }
1671
1672 static int atmel_spi_remove(struct platform_device *pdev)
1673 {
1674         struct spi_master       *master = platform_get_drvdata(pdev);
1675         struct atmel_spi        *as = spi_master_get_devdata(master);
1676
1677         pm_runtime_get_sync(&pdev->dev);
1678
1679         /* reset the hardware and block queue progress */
1680         spin_lock_irq(&as->lock);
1681         if (as->use_dma) {
1682                 atmel_spi_stop_dma(as);
1683                 atmel_spi_release_dma(as);
1684         }
1685
1686         spi_writel(as, CR, SPI_BIT(SWRST));
1687         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1688         spi_readl(as, SR);
1689         spin_unlock_irq(&as->lock);
1690
1691         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1692                         as->buffer_dma);
1693
1694         clk_disable_unprepare(as->clk);
1695
1696         pm_runtime_put_noidle(&pdev->dev);
1697         pm_runtime_disable(&pdev->dev);
1698
1699         return 0;
1700 }
1701
1702 #ifdef CONFIG_PM
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1704 {
1705         struct spi_master *master = dev_get_drvdata(dev);
1706         struct atmel_spi *as = spi_master_get_devdata(master);
1707
1708         clk_disable_unprepare(as->clk);
1709         pinctrl_pm_select_sleep_state(dev);
1710
1711         return 0;
1712 }
1713
1714 static int atmel_spi_runtime_resume(struct device *dev)
1715 {
1716         struct spi_master *master = dev_get_drvdata(dev);
1717         struct atmel_spi *as = spi_master_get_devdata(master);
1718
1719         pinctrl_pm_select_default_state(dev);
1720
1721         return clk_prepare_enable(as->clk);
1722 }
1723
1724 static int atmel_spi_suspend(struct device *dev)
1725 {
1726         struct spi_master *master = dev_get_drvdata(dev);
1727         int ret;
1728
1729         /* Stop the queue running */
1730         ret = spi_master_suspend(master);
1731         if (ret) {
1732                 dev_warn(dev, "cannot suspend master\n");
1733                 return ret;
1734         }
1735
1736         if (!pm_runtime_suspended(dev))
1737                 atmel_spi_runtime_suspend(dev);
1738
1739         return 0;
1740 }
1741
1742 static int atmel_spi_resume(struct device *dev)
1743 {
1744         struct spi_master *master = dev_get_drvdata(dev);
1745         int ret;
1746
1747         if (!pm_runtime_suspended(dev)) {
1748                 ret = atmel_spi_runtime_resume(dev);
1749                 if (ret)
1750                         return ret;
1751         }
1752
1753         /* Start the queue running */
1754         ret = spi_master_resume(master);
1755         if (ret)
1756                 dev_err(dev, "problem starting queue (%d)\n", ret);
1757
1758         return ret;
1759 }
1760
1761 static const struct dev_pm_ops atmel_spi_pm_ops = {
1762         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1763         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1764                            atmel_spi_runtime_resume, NULL)
1765 };
1766 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1767 #else
1768 #define ATMEL_SPI_PM_OPS        NULL
1769 #endif
1770
1771 #if defined(CONFIG_OF)
1772 static const struct of_device_id atmel_spi_dt_ids[] = {
1773         { .compatible = "atmel,at91rm9200-spi" },
1774         { /* sentinel */ }
1775 };
1776
1777 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1778 #endif
1779
1780 static struct platform_driver atmel_spi_driver = {
1781         .driver         = {
1782                 .name   = "atmel_spi",
1783                 .pm     = ATMEL_SPI_PM_OPS,
1784                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1785         },
1786         .probe          = atmel_spi_probe,
1787         .remove         = atmel_spi_remove,
1788 };
1789 module_platform_driver(atmel_spi_driver);
1790
1791 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1792 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1793 MODULE_LICENSE("GPL");
1794 MODULE_ALIAS("platform:atmel_spi");