OSDN Git Service

4c0d0cc4d3b1e4720ea09c3c82daed96c1d17cc9
[tomoyo/tomoyo-test1.git] / drivers / spi / spi-bcm-qspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26
27 #define DRIVER_NAME "bcm_qspi"
28
29
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID                        0x000
32 #define BSPI_SCRATCH                            0x004
33 #define BSPI_MAST_N_BOOT_CTRL                   0x008
34 #define BSPI_BUSY_STATUS                        0x00c
35 #define BSPI_INTR_STATUS                        0x010
36 #define BSPI_B0_STATUS                          0x014
37 #define BSPI_B0_CTRL                            0x018
38 #define BSPI_B1_STATUS                          0x01c
39 #define BSPI_B1_CTRL                            0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
41 #define BSPI_FLEX_MODE_ENABLE                   0x028
42 #define BSPI_BITS_PER_CYCLE                     0x02c
43 #define BSPI_BITS_PER_PHASE                     0x030
44 #define BSPI_CMD_AND_MODE_BYTE                  0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46 #define BSPI_BSPI_XOR_VALUE                     0x03c
47 #define BSPI_BSPI_XOR_ENABLE                    0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
49 #define BSPI_BSPI_PIO_IODIR                     0x048
50 #define BSPI_BSPI_PIO_DATA                      0x04c
51
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR                     0x100
54 #define BSPI_RAF_NUM_WORDS                      0x104
55 #define BSPI_RAF_CTRL                           0x108
56 #define BSPI_RAF_FULLNESS                       0x10c
57 #define BSPI_RAF_WATERMARK                      0x110
58 #define BSPI_RAF_STATUS                 0x114
59 #define BSPI_RAF_READ_DATA                      0x118
60 #define BSPI_RAF_WORD_CNT                       0x11c
61 #define BSPI_RAF_CURR_ADDR                      0x120
62
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
69
70 #define BSPI_ADDRLEN_3BYTES                     3
71 #define BSPI_ADDRLEN_4BYTES                     4
72
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
74
75 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
77
78 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
80
81 #define BSPI_READ_LENGTH                        256
82
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB                          0x000
85 #define MSPI_SPCR0_MSB                          0x004
86 #define MSPI_SPCR1_LSB                          0x008
87 #define MSPI_SPCR1_MSB                          0x00c
88 #define MSPI_NEWQP                              0x010
89 #define MSPI_ENDQP                              0x014
90 #define MSPI_SPCR2                              0x018
91 #define MSPI_MSPI_STATUS                        0x020
92 #define MSPI_CPTQP                              0x024
93 #define MSPI_SPCR3                              0x028
94 #define MSPI_TXRAM                              0x040
95 #define MSPI_RXRAM                              0x0c0
96 #define MSPI_CDRAM                              0x140
97 #define MSPI_WRITE_LOCK                 0x180
98
99 #define MSPI_MASTER_BIT                 BIT(7)
100
101 #define MSPI_NUM_CDRAM                          16
102 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
103 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
104 #define MSPI_CDRAM_PCS                          0xf
105
106 #define MSPI_SPCR2_SPE                          BIT(6)
107 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
108
109 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
110
111 #define INTR_BASE_BIT_SHIFT                     0x02
112 #define INTR_COUNT                              0x07
113
114 #define NUM_CHIPSELECT                          4
115 #define QSPI_SPBR_MIN                           8U
116 #define QSPI_SPBR_MAX                           255U
117
118 #define OPCODE_DIOR                             0xBB
119 #define OPCODE_QIOR                             0xEB
120 #define OPCODE_DIOR_4B                          0xBC
121 #define OPCODE_QIOR_4B                          0xEC
122
123 #define MAX_CMD_SIZE                            6
124
125 #define ADDR_4MB_MASK                           GENMASK(22, 0)
126
127 /* stop at end of transfer, no other reason */
128 #define TRANS_STATUS_BREAK_NONE         0
129 /* stop at end of spi_message */
130 #define TRANS_STATUS_BREAK_EOM                  1
131 /* stop at end of spi_transfer if delay */
132 #define TRANS_STATUS_BREAK_DELAY                2
133 /* stop at end of spi_transfer if cs_change */
134 #define TRANS_STATUS_BREAK_CS_CHANGE            4
135 /* stop if we run out of bytes */
136 #define TRANS_STATUS_BREAK_NO_BYTES             8
137
138 /* events that make us stop filling TX slots */
139 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
140                                TRANS_STATUS_BREAK_DELAY |               \
141                                TRANS_STATUS_BREAK_CS_CHANGE)
142
143 /* events that make us deassert CS */
144 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
145                                      TRANS_STATUS_BREAK_CS_CHANGE)
146
147 struct bcm_qspi_parms {
148         u32 speed_hz;
149         u8 mode;
150         u8 bits_per_word;
151 };
152
153 struct bcm_xfer_mode {
154         bool flex_mode;
155         unsigned int width;
156         unsigned int addrlen;
157         unsigned int hp;
158 };
159
160 enum base_type {
161         MSPI,
162         BSPI,
163         CHIP_SELECT,
164         BASEMAX,
165 };
166
167 enum irq_source {
168         SINGLE_L2,
169         MUXED_L1,
170 };
171
172 struct bcm_qspi_irq {
173         const char *irq_name;
174         const irq_handler_t irq_handler;
175         int irq_source;
176         u32 mask;
177 };
178
179 struct bcm_qspi_dev_id {
180         const struct bcm_qspi_irq *irqp;
181         void *dev;
182 };
183
184
185 struct qspi_trans {
186         struct spi_transfer *trans;
187         int byte;
188         bool mspi_last_trans;
189 };
190
191 struct bcm_qspi {
192         struct platform_device *pdev;
193         struct spi_master *master;
194         struct clk *clk;
195         u32 base_clk;
196         u32 max_speed_hz;
197         void __iomem *base[BASEMAX];
198
199         /* Some SoCs provide custom interrupt status register(s) */
200         struct bcm_qspi_soc_intc        *soc_intc;
201
202         struct bcm_qspi_parms last_parms;
203         struct qspi_trans  trans_pos;
204         int curr_cs;
205         int bspi_maj_rev;
206         int bspi_min_rev;
207         int bspi_enabled;
208         const struct spi_mem_op *bspi_rf_op;
209         u32 bspi_rf_op_idx;
210         u32 bspi_rf_op_len;
211         u32 bspi_rf_op_status;
212         struct bcm_xfer_mode xfer_mode;
213         u32 s3_strap_override_ctrl;
214         bool bspi_mode;
215         bool big_endian;
216         int num_irqs;
217         struct bcm_qspi_dev_id *dev_ids;
218         struct completion mspi_done;
219         struct completion bspi_done;
220 };
221
222 static inline bool has_bspi(struct bcm_qspi *qspi)
223 {
224         return qspi->bspi_mode;
225 }
226
227 /* Read qspi controller register*/
228 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
229                                 unsigned int offset)
230 {
231         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
232 }
233
234 /* Write qspi controller register*/
235 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
236                                   unsigned int offset, unsigned int data)
237 {
238         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
239 }
240
241 /* BSPI helpers */
242 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
243 {
244         int i;
245
246         /* this should normally finish within 10us */
247         for (i = 0; i < 1000; i++) {
248                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
249                         return 0;
250                 udelay(1);
251         }
252         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
253         return -EIO;
254 }
255
256 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
257 {
258         if (qspi->bspi_maj_rev < 4)
259                 return true;
260         return false;
261 }
262
263 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
264 {
265         bcm_qspi_bspi_busy_poll(qspi);
266         /* Force rising edge for the b0/b1 'flush' field */
267         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
268         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
269         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
270         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
271 }
272
273 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
274 {
275         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
276                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
277 }
278
279 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
280 {
281         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
282
283         /* BSPI v3 LR is LE only, convert data to host endianness */
284         if (bcm_qspi_bspi_ver_three(qspi))
285                 data = le32_to_cpu(data);
286
287         return data;
288 }
289
290 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
291 {
292         bcm_qspi_bspi_busy_poll(qspi);
293         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
294                        BSPI_RAF_CTRL_START_MASK);
295 }
296
297 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
298 {
299         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
300                        BSPI_RAF_CTRL_CLEAR_MASK);
301         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
302 }
303
304 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
305 {
306         u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
307         u32 data = 0;
308
309         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
310                 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
311         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
312                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
313                 if (likely(qspi->bspi_rf_op_len >= 4) &&
314                     IS_ALIGNED((uintptr_t)buf, 4)) {
315                         buf[qspi->bspi_rf_op_idx++] = data;
316                         qspi->bspi_rf_op_len -= 4;
317                 } else {
318                         /* Read out remaining bytes, make sure*/
319                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
320
321                         data = cpu_to_le32(data);
322                         while (qspi->bspi_rf_op_len) {
323                                 *cbuf++ = (u8)data;
324                                 data >>= 8;
325                                 qspi->bspi_rf_op_len--;
326                         }
327                 }
328         }
329 }
330
331 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
332                                           int bpp, int bpc, int flex_mode)
333 {
334         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
335         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
336         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
337         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
338         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
339 }
340
341 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
342                                        const struct spi_mem_op *op, int hp)
343 {
344         int bpc = 0, bpp = 0;
345         u8 command = op->cmd.opcode;
346         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
347         int addrlen = op->addr.nbytes;
348         int flex_mode = 1;
349
350         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
351                 width, addrlen, hp);
352
353         if (addrlen == BSPI_ADDRLEN_4BYTES)
354                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
355
356         bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
357
358         switch (width) {
359         case SPI_NBITS_SINGLE:
360                 if (addrlen == BSPI_ADDRLEN_3BYTES)
361                         /* default mode, does not need flex_cmd */
362                         flex_mode = 0;
363                 break;
364         case SPI_NBITS_DUAL:
365                 bpc = 0x00000001;
366                 if (hp) {
367                         bpc |= 0x00010100; /* address and mode are 2-bit */
368                         bpp = BSPI_BPP_MODE_SELECT_MASK;
369                 }
370                 break;
371         case SPI_NBITS_QUAD:
372                 bpc = 0x00000002;
373                 if (hp) {
374                         bpc |= 0x00020200; /* address and mode are 4-bit */
375                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
376                 }
377                 break;
378         default:
379                 return -EINVAL;
380         }
381
382         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
383
384         return 0;
385 }
386
387 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
388                                       const struct spi_mem_op *op, int hp)
389 {
390         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
391         int addrlen = op->addr.nbytes;
392         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
393
394         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
395                 width, addrlen, hp);
396
397         switch (width) {
398         case SPI_NBITS_SINGLE:
399                 /* clear quad/dual mode */
400                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
401                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
402                 break;
403         case SPI_NBITS_QUAD:
404                 /* clear dual mode and set quad mode */
405                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
406                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
407                 break;
408         case SPI_NBITS_DUAL:
409                 /* clear quad mode set dual mode */
410                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
411                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
412                 break;
413         default:
414                 return -EINVAL;
415         }
416
417         if (addrlen == BSPI_ADDRLEN_4BYTES)
418                 /* set 4byte mode*/
419                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
420         else
421                 /* clear 4 byte mode */
422                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
423
424         /* set the override mode */
425         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
426         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
427         bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
428
429         return 0;
430 }
431
432 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
433                                   const struct spi_mem_op *op, int hp)
434 {
435         int error = 0;
436         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
437         int addrlen = op->addr.nbytes;
438
439         /* default mode */
440         qspi->xfer_mode.flex_mode = true;
441
442         if (!bcm_qspi_bspi_ver_three(qspi)) {
443                 u32 val, mask;
444
445                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
446                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
447                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
448                         qspi->xfer_mode.flex_mode = false;
449                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
450                         error = bcm_qspi_bspi_set_override(qspi, op, hp);
451                 }
452         }
453
454         if (qspi->xfer_mode.flex_mode)
455                 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
456
457         if (error) {
458                 dev_warn(&qspi->pdev->dev,
459                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
460                          width, addrlen, hp);
461         } else if (qspi->xfer_mode.width != width ||
462                    qspi->xfer_mode.addrlen != addrlen ||
463                    qspi->xfer_mode.hp != hp) {
464                 qspi->xfer_mode.width = width;
465                 qspi->xfer_mode.addrlen = addrlen;
466                 qspi->xfer_mode.hp = hp;
467                 dev_dbg(&qspi->pdev->dev,
468                         "cs:%d %d-lane output, %d-byte address%s\n",
469                         qspi->curr_cs,
470                         qspi->xfer_mode.width,
471                         qspi->xfer_mode.addrlen,
472                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
473         }
474
475         return error;
476 }
477
478 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
479 {
480         if (!has_bspi(qspi))
481                 return;
482
483         qspi->bspi_enabled = 1;
484         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
485                 return;
486
487         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
488         udelay(1);
489         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
490         udelay(1);
491 }
492
493 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
494 {
495         if (!has_bspi(qspi))
496                 return;
497
498         qspi->bspi_enabled = 0;
499         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
500                 return;
501
502         bcm_qspi_bspi_busy_poll(qspi);
503         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
504         udelay(1);
505 }
506
507 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
508 {
509         u32 rd = 0;
510         u32 wr = 0;
511
512         if (qspi->base[CHIP_SELECT]) {
513                 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
514                 wr = (rd & ~0xff) | (1 << cs);
515                 if (rd == wr)
516                         return;
517                 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
518                 usleep_range(10, 20);
519         }
520
521         dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
522         qspi->curr_cs = cs;
523 }
524
525 /* MSPI helpers */
526 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
527                                   const struct bcm_qspi_parms *xp)
528 {
529         u32 spcr, spbr = 0;
530
531         if (xp->speed_hz)
532                 spbr = qspi->base_clk / (2 * xp->speed_hz);
533
534         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
535         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
536
537         spcr = MSPI_MASTER_BIT;
538         /* for 16 bit the data should be zero */
539         if (xp->bits_per_word != 16)
540                 spcr |= xp->bits_per_word << 2;
541         spcr |= xp->mode & 3;
542         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
543
544         qspi->last_parms = *xp;
545 }
546
547 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
548                                   struct spi_device *spi,
549                                   struct spi_transfer *trans)
550 {
551         struct bcm_qspi_parms xp;
552
553         xp.speed_hz = trans->speed_hz;
554         xp.bits_per_word = trans->bits_per_word;
555         xp.mode = spi->mode;
556
557         bcm_qspi_hw_set_parms(qspi, &xp);
558 }
559
560 static int bcm_qspi_setup(struct spi_device *spi)
561 {
562         struct bcm_qspi_parms *xp;
563
564         if (spi->bits_per_word > 16)
565                 return -EINVAL;
566
567         xp = spi_get_ctldata(spi);
568         if (!xp) {
569                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
570                 if (!xp)
571                         return -ENOMEM;
572                 spi_set_ctldata(spi, xp);
573         }
574         xp->speed_hz = spi->max_speed_hz;
575         xp->mode = spi->mode;
576
577         if (spi->bits_per_word)
578                 xp->bits_per_word = spi->bits_per_word;
579         else
580                 xp->bits_per_word = 8;
581
582         return 0;
583 }
584
585 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
586                                            struct qspi_trans *qt)
587 {
588         if (qt->mspi_last_trans &&
589             spi_transfer_is_last(qspi->master, qt->trans))
590                 return true;
591         else
592                 return false;
593 }
594
595 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
596                                         struct qspi_trans *qt, int flags)
597 {
598         int ret = TRANS_STATUS_BREAK_NONE;
599
600         /* count the last transferred bytes */
601         if (qt->trans->bits_per_word <= 8)
602                 qt->byte++;
603         else
604                 qt->byte += 2;
605
606         if (qt->byte >= qt->trans->len) {
607                 /* we're at the end of the spi_transfer */
608                 /* in TX mode, need to pause for a delay or CS change */
609                 if (qt->trans->delay_usecs &&
610                     (flags & TRANS_STATUS_BREAK_DELAY))
611                         ret |= TRANS_STATUS_BREAK_DELAY;
612                 if (qt->trans->cs_change &&
613                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
614                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
615
616                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
617                         ret |= TRANS_STATUS_BREAK_EOM;
618                 else
619                         ret |= TRANS_STATUS_BREAK_NO_BYTES;
620
621                 qt->trans = NULL;
622         }
623
624         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
625                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
626         return ret;
627 }
628
629 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
630 {
631         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
632
633         /* mask out reserved bits */
634         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
635 }
636
637 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
638 {
639         u32 reg_offset = MSPI_RXRAM;
640         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
641         u32 msb_offset = reg_offset + (slot << 3);
642
643         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
644                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
645 }
646
647 static void read_from_hw(struct bcm_qspi *qspi, int slots)
648 {
649         struct qspi_trans tp;
650         int slot;
651
652         bcm_qspi_disable_bspi(qspi);
653
654         if (slots > MSPI_NUM_CDRAM) {
655                 /* should never happen */
656                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
657                 return;
658         }
659
660         tp = qspi->trans_pos;
661
662         for (slot = 0; slot < slots; slot++) {
663                 if (tp.trans->bits_per_word <= 8) {
664                         u8 *buf = tp.trans->rx_buf;
665
666                         if (buf)
667                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
668                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
669                                 buf ? buf[tp.byte] : 0x0);
670                 } else {
671                         u16 *buf = tp.trans->rx_buf;
672
673                         if (buf)
674                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
675                                                                       slot);
676                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
677                                 buf ? buf[tp.byte / 2] : 0x0);
678                 }
679
680                 update_qspi_trans_byte_count(qspi, &tp,
681                                              TRANS_STATUS_BREAK_NONE);
682         }
683
684         qspi->trans_pos = tp;
685 }
686
687 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
688                                        u8 val)
689 {
690         u32 reg_offset = MSPI_TXRAM + (slot << 3);
691
692         /* mask out reserved bits */
693         bcm_qspi_write(qspi, MSPI, reg_offset, val);
694 }
695
696 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
697                                         u16 val)
698 {
699         u32 reg_offset = MSPI_TXRAM;
700         u32 msb_offset = reg_offset + (slot << 3);
701         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
702
703         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
704         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
705 }
706
707 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
708 {
709         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
710 }
711
712 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
713 {
714         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
715 }
716
717 /* Return number of slots written */
718 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
719 {
720         struct qspi_trans tp;
721         int slot = 0, tstatus = 0;
722         u32 mspi_cdram = 0;
723
724         bcm_qspi_disable_bspi(qspi);
725         tp = qspi->trans_pos;
726         bcm_qspi_update_parms(qspi, spi, tp.trans);
727
728         /* Run until end of transfer or reached the max data */
729         while (!tstatus && slot < MSPI_NUM_CDRAM) {
730                 if (tp.trans->bits_per_word <= 8) {
731                         const u8 *buf = tp.trans->tx_buf;
732                         u8 val = buf ? buf[tp.byte] : 0x00;
733
734                         write_txram_slot_u8(qspi, slot, val);
735                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
736                 } else {
737                         const u16 *buf = tp.trans->tx_buf;
738                         u16 val = buf ? buf[tp.byte / 2] : 0x0000;
739
740                         write_txram_slot_u16(qspi, slot, val);
741                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
742                 }
743                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
744
745                 if (has_bspi(qspi))
746                         mspi_cdram &= ~1;
747                 else
748                         mspi_cdram |= (~(1 << spi->chip_select) &
749                                        MSPI_CDRAM_PCS);
750
751                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
752                                 MSPI_CDRAM_BITSE_BIT);
753
754                 write_cdram_slot(qspi, slot, mspi_cdram);
755
756                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
757                                                        TRANS_STATUS_BREAK_TX);
758                 slot++;
759         }
760
761         if (!slot) {
762                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
763                 goto done;
764         }
765
766         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
767         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
768         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
769
770         /*
771          *  case 1) EOM =1, cs_change =0: SSb inactive
772          *  case 2) EOM =1, cs_change =1: SSb stay active
773          *  case 3) EOM =0, cs_change =0: SSb stay active
774          *  case 4) EOM =0, cs_change =1: SSb inactive
775          */
776         if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
777              == TRANS_STATUS_BREAK_CS_CHANGE) ||
778             ((tstatus & TRANS_STATUS_BREAK_DESELECT)
779              == TRANS_STATUS_BREAK_EOM)) {
780                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
781                         ~MSPI_CDRAM_CONT_BIT;
782                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
783         }
784
785         if (has_bspi(qspi))
786                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
787
788         /* Must flush previous writes before starting MSPI operation */
789         mb();
790         /* Set cont | spe | spifie */
791         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
792
793 done:
794         return slot;
795 }
796
797 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
798                                      const struct spi_mem_op *op)
799 {
800         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
801         u32 addr = 0, len, rdlen, len_words, from = 0;
802         int ret = 0;
803         unsigned long timeo = msecs_to_jiffies(100);
804         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
805
806         if (bcm_qspi_bspi_ver_three(qspi))
807                 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
808                         return -EIO;
809
810         from = op->addr.val;
811         if (!spi->cs_gpiod)
812                 bcm_qspi_chip_select(qspi, spi->chip_select);
813         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
814
815         /*
816          * when using flex mode we need to send
817          * the upper address byte to bspi
818          */
819         if (bcm_qspi_bspi_ver_three(qspi) == false) {
820                 addr = from & 0xff000000;
821                 bcm_qspi_write(qspi, BSPI,
822                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
823         }
824
825         if (!qspi->xfer_mode.flex_mode)
826                 addr = from;
827         else
828                 addr = from & 0x00ffffff;
829
830         if (bcm_qspi_bspi_ver_three(qspi) == true)
831                 addr = (addr + 0xc00000) & 0xffffff;
832
833         /*
834          * read into the entire buffer by breaking the reads
835          * into RAF buffer read lengths
836          */
837         len = op->data.nbytes;
838         qspi->bspi_rf_op_idx = 0;
839
840         do {
841                 if (len > BSPI_READ_LENGTH)
842                         rdlen = BSPI_READ_LENGTH;
843                 else
844                         rdlen = len;
845
846                 reinit_completion(&qspi->bspi_done);
847                 bcm_qspi_enable_bspi(qspi);
848                 len_words = (rdlen + 3) >> 2;
849                 qspi->bspi_rf_op = op;
850                 qspi->bspi_rf_op_status = 0;
851                 qspi->bspi_rf_op_len = rdlen;
852                 dev_dbg(&qspi->pdev->dev,
853                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
854                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
855                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
856                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
857                 if (qspi->soc_intc) {
858                         /*
859                          * clear soc MSPI and BSPI interrupts and enable
860                          * BSPI interrupts.
861                          */
862                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
863                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
864                 }
865
866                 /* Must flush previous writes before starting BSPI operation */
867                 mb();
868                 bcm_qspi_bspi_lr_start(qspi);
869                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
870                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
871                         ret = -ETIMEDOUT;
872                         break;
873                 }
874
875                 /* set msg return length */
876                 addr += rdlen;
877                 len -= rdlen;
878         } while (len);
879
880         return ret;
881 }
882
883 static int bcm_qspi_transfer_one(struct spi_master *master,
884                                  struct spi_device *spi,
885                                  struct spi_transfer *trans)
886 {
887         struct bcm_qspi *qspi = spi_master_get_devdata(master);
888         int slots;
889         unsigned long timeo = msecs_to_jiffies(100);
890
891         if (!spi->cs_gpiod)
892                 bcm_qspi_chip_select(qspi, spi->chip_select);
893         qspi->trans_pos.trans = trans;
894         qspi->trans_pos.byte = 0;
895
896         while (qspi->trans_pos.byte < trans->len) {
897                 reinit_completion(&qspi->mspi_done);
898
899                 slots = write_to_hw(qspi, spi);
900                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
901                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
902                         return -ETIMEDOUT;
903                 }
904
905                 read_from_hw(qspi, slots);
906         }
907         bcm_qspi_enable_bspi(qspi);
908
909         return 0;
910 }
911
912 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
913                                      const struct spi_mem_op *op)
914 {
915         struct spi_master *master = spi->master;
916         struct bcm_qspi *qspi = spi_master_get_devdata(master);
917         struct spi_transfer t[2];
918         u8 cmd[6] = { };
919         int ret, i;
920
921         memset(cmd, 0, sizeof(cmd));
922         memset(t, 0, sizeof(t));
923
924         /* tx */
925         /* opcode is in cmd[0] */
926         cmd[0] = op->cmd.opcode;
927         for (i = 0; i < op->addr.nbytes; i++)
928                 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
929
930         t[0].tx_buf = cmd;
931         t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
932         t[0].bits_per_word = spi->bits_per_word;
933         t[0].tx_nbits = op->cmd.buswidth;
934         /* lets mspi know that this is not last transfer */
935         qspi->trans_pos.mspi_last_trans = false;
936         ret = bcm_qspi_transfer_one(master, spi, &t[0]);
937
938         /* rx */
939         qspi->trans_pos.mspi_last_trans = true;
940         if (!ret) {
941                 /* rx */
942                 t[1].rx_buf = op->data.buf.in;
943                 t[1].len = op->data.nbytes;
944                 t[1].rx_nbits =  op->data.buswidth;
945                 t[1].bits_per_word = spi->bits_per_word;
946                 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
947         }
948
949         return ret;
950 }
951
952 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
953                                 const struct spi_mem_op *op)
954 {
955         struct spi_device *spi = mem->spi;
956         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
957         int ret = 0;
958         bool mspi_read = false;
959         u32 addr = 0, len;
960         u_char *buf;
961
962         if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
963             op->data.dir != SPI_MEM_DATA_IN)
964                 return -ENOTSUPP;
965
966         buf = op->data.buf.in;
967         addr = op->addr.val;
968         len = op->data.nbytes;
969
970         if (bcm_qspi_bspi_ver_three(qspi) == true) {
971                 /*
972                  * The address coming into this function is a raw flash offset.
973                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
974                  * address. If it crosses a 4MB boundary, just revert back to
975                  * using MSPI.
976                  */
977                 addr = (addr + 0xc00000) & 0xffffff;
978
979                 if ((~ADDR_4MB_MASK & addr) ^
980                     (~ADDR_4MB_MASK & (addr + len - 1)))
981                         mspi_read = true;
982         }
983
984         /* non-aligned and very short transfers are handled by MSPI */
985         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
986             len < 4)
987                 mspi_read = true;
988
989         if (mspi_read)
990                 return bcm_qspi_mspi_exec_mem_op(spi, op);
991
992         ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
993
994         if (!ret)
995                 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
996
997         return ret;
998 }
999
1000 static void bcm_qspi_cleanup(struct spi_device *spi)
1001 {
1002         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1003
1004         kfree(xp);
1005 }
1006
1007 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1008 {
1009         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1010         struct bcm_qspi *qspi = qspi_dev_id->dev;
1011         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1012
1013         if (status & MSPI_MSPI_STATUS_SPIF) {
1014                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1015                 /* clear interrupt */
1016                 status &= ~MSPI_MSPI_STATUS_SPIF;
1017                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1018                 if (qspi->soc_intc)
1019                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1020                 complete(&qspi->mspi_done);
1021                 return IRQ_HANDLED;
1022         }
1023
1024         return IRQ_NONE;
1025 }
1026
1027 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1028 {
1029         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1030         struct bcm_qspi *qspi = qspi_dev_id->dev;
1031         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1032         u32 status = qspi_dev_id->irqp->mask;
1033
1034         if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1035                 bcm_qspi_bspi_lr_data_read(qspi);
1036                 if (qspi->bspi_rf_op_len == 0) {
1037                         qspi->bspi_rf_op = NULL;
1038                         if (qspi->soc_intc) {
1039                                 /* disable soc BSPI interrupt */
1040                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1041                                                            false);
1042                                 /* indicate done */
1043                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1044                         }
1045
1046                         if (qspi->bspi_rf_op_status)
1047                                 bcm_qspi_bspi_lr_clear(qspi);
1048                         else
1049                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1050                 }
1051
1052                 if (qspi->soc_intc)
1053                         /* clear soc BSPI interrupt */
1054                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1055         }
1056
1057         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1058         if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1059                 complete(&qspi->bspi_done);
1060
1061         return IRQ_HANDLED;
1062 }
1063
1064 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1065 {
1066         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1067         struct bcm_qspi *qspi = qspi_dev_id->dev;
1068         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1069
1070         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1071         qspi->bspi_rf_op_status = -EIO;
1072         if (qspi->soc_intc)
1073                 /* clear soc interrupt */
1074                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1075
1076         complete(&qspi->bspi_done);
1077         return IRQ_HANDLED;
1078 }
1079
1080 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1081 {
1082         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1083         struct bcm_qspi *qspi = qspi_dev_id->dev;
1084         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1085         irqreturn_t ret = IRQ_NONE;
1086
1087         if (soc_intc) {
1088                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1089
1090                 if (status & MSPI_DONE)
1091                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1092                 else if (status & BSPI_DONE)
1093                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1094                 else if (status & BSPI_ERR)
1095                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1096         }
1097
1098         return ret;
1099 }
1100
1101 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1102         {
1103                 .irq_name = "spi_lr_fullness_reached",
1104                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1105                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1106         },
1107         {
1108                 .irq_name = "spi_lr_session_aborted",
1109                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1110                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1111         },
1112         {
1113                 .irq_name = "spi_lr_impatient",
1114                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1115                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1116         },
1117         {
1118                 .irq_name = "spi_lr_session_done",
1119                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1120                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1121         },
1122 #ifdef QSPI_INT_DEBUG
1123         /* this interrupt is for debug purposes only, dont request irq */
1124         {
1125                 .irq_name = "spi_lr_overread",
1126                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1127                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1128         },
1129 #endif
1130         {
1131                 .irq_name = "mspi_done",
1132                 .irq_handler = bcm_qspi_mspi_l2_isr,
1133                 .mask = INTR_MSPI_DONE_MASK,
1134         },
1135         {
1136                 .irq_name = "mspi_halted",
1137                 .irq_handler = bcm_qspi_mspi_l2_isr,
1138                 .mask = INTR_MSPI_HALTED_MASK,
1139         },
1140         {
1141                 /* single muxed L1 interrupt source */
1142                 .irq_name = "spi_l1_intr",
1143                 .irq_handler = bcm_qspi_l1_isr,
1144                 .irq_source = MUXED_L1,
1145                 .mask = QSPI_INTERRUPTS_ALL,
1146         },
1147 };
1148
1149 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1150 {
1151         u32 val = 0;
1152
1153         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1154         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1155         qspi->bspi_min_rev = val & 0xff;
1156         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1157                 /* Force mapping of BSPI address -> flash offset */
1158                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1159                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1160         }
1161         qspi->bspi_enabled = 1;
1162         bcm_qspi_disable_bspi(qspi);
1163         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1164         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1165 }
1166
1167 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1168 {
1169         struct bcm_qspi_parms parms;
1170
1171         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1172         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1173         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1174         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1175         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1176
1177         parms.mode = SPI_MODE_3;
1178         parms.bits_per_word = 8;
1179         parms.speed_hz = qspi->max_speed_hz;
1180         bcm_qspi_hw_set_parms(qspi, &parms);
1181
1182         if (has_bspi(qspi))
1183                 bcm_qspi_bspi_init(qspi);
1184 }
1185
1186 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1187 {
1188         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1189         if (has_bspi(qspi))
1190                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1191
1192 }
1193
1194 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1195         .exec_op = bcm_qspi_exec_mem_op,
1196 };
1197
1198 static const struct of_device_id bcm_qspi_of_match[] = {
1199         { .compatible = "brcm,spi-bcm-qspi" },
1200         {},
1201 };
1202 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1203
1204 int bcm_qspi_probe(struct platform_device *pdev,
1205                    struct bcm_qspi_soc_intc *soc_intc)
1206 {
1207         struct device *dev = &pdev->dev;
1208         struct bcm_qspi *qspi;
1209         struct spi_master *master;
1210         struct resource *res;
1211         int irq, ret = 0, num_ints = 0;
1212         u32 val;
1213         const char *name = NULL;
1214         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1215
1216         /* We only support device-tree instantiation */
1217         if (!dev->of_node)
1218                 return -ENODEV;
1219
1220         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1221                 return -ENODEV;
1222
1223         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1224         if (!master) {
1225                 dev_err(dev, "error allocating spi_master\n");
1226                 return -ENOMEM;
1227         }
1228
1229         qspi = spi_master_get_devdata(master);
1230
1231         qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1232         if (IS_ERR(qspi->clk))
1233                 return PTR_ERR(qspi->clk);
1234
1235         qspi->pdev = pdev;
1236         qspi->trans_pos.trans = NULL;
1237         qspi->trans_pos.byte = 0;
1238         qspi->trans_pos.mspi_last_trans = true;
1239         qspi->master = master;
1240
1241         master->bus_num = -1;
1242         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1243         master->setup = bcm_qspi_setup;
1244         master->transfer_one = bcm_qspi_transfer_one;
1245         master->mem_ops = &bcm_qspi_mem_ops;
1246         master->cleanup = bcm_qspi_cleanup;
1247         master->dev.of_node = dev->of_node;
1248         master->num_chipselect = NUM_CHIPSELECT;
1249         master->use_gpio_descriptors = true;
1250
1251         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1252
1253         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1254                 master->num_chipselect = val;
1255
1256         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1257         if (!res)
1258                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1259                                                    "mspi");
1260
1261         if (res) {
1262                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1263                 if (IS_ERR(qspi->base[MSPI])) {
1264                         ret = PTR_ERR(qspi->base[MSPI]);
1265                         goto qspi_resource_err;
1266                 }
1267         } else {
1268                 goto qspi_resource_err;
1269         }
1270
1271         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1272         if (res) {
1273                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1274                 if (IS_ERR(qspi->base[BSPI])) {
1275                         ret = PTR_ERR(qspi->base[BSPI]);
1276                         goto qspi_resource_err;
1277                 }
1278                 qspi->bspi_mode = true;
1279         } else {
1280                 qspi->bspi_mode = false;
1281         }
1282
1283         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1284
1285         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1286         if (res) {
1287                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1288                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1289                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1290                         goto qspi_resource_err;
1291                 }
1292         }
1293
1294         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1295                                 GFP_KERNEL);
1296         if (!qspi->dev_ids) {
1297                 ret = -ENOMEM;
1298                 goto qspi_resource_err;
1299         }
1300
1301         for (val = 0; val < num_irqs; val++) {
1302                 irq = -1;
1303                 name = qspi_irq_tab[val].irq_name;
1304                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1305                         /* get the l2 interrupts */
1306                         irq = platform_get_irq_byname_optional(pdev, name);
1307                 } else if (!num_ints && soc_intc) {
1308                         /* all mspi, bspi intrs muxed to one L1 intr */
1309                         irq = platform_get_irq(pdev, 0);
1310                 }
1311
1312                 if (irq  >= 0) {
1313                         ret = devm_request_irq(&pdev->dev, irq,
1314                                                qspi_irq_tab[val].irq_handler, 0,
1315                                                name,
1316                                                &qspi->dev_ids[val]);
1317                         if (ret < 0) {
1318                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1319                                 goto qspi_probe_err;
1320                         }
1321
1322                         qspi->dev_ids[val].dev = qspi;
1323                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1324                         num_ints++;
1325                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1326                                 qspi_irq_tab[val].irq_name,
1327                                 irq);
1328                 }
1329         }
1330
1331         if (!num_ints) {
1332                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1333                 ret = -EINVAL;
1334                 goto qspi_probe_err;
1335         }
1336
1337         /*
1338          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1339          * in specific ways
1340          */
1341         if (soc_intc) {
1342                 qspi->soc_intc = soc_intc;
1343                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1344         } else {
1345                 qspi->soc_intc = NULL;
1346         }
1347
1348         ret = clk_prepare_enable(qspi->clk);
1349         if (ret) {
1350                 dev_err(dev, "failed to prepare clock\n");
1351                 goto qspi_probe_err;
1352         }
1353
1354         qspi->base_clk = clk_get_rate(qspi->clk);
1355         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1356
1357         bcm_qspi_hw_init(qspi);
1358         init_completion(&qspi->mspi_done);
1359         init_completion(&qspi->bspi_done);
1360         qspi->curr_cs = -1;
1361
1362         platform_set_drvdata(pdev, qspi);
1363
1364         qspi->xfer_mode.width = -1;
1365         qspi->xfer_mode.addrlen = -1;
1366         qspi->xfer_mode.hp = -1;
1367
1368         ret = devm_spi_register_master(&pdev->dev, master);
1369         if (ret < 0) {
1370                 dev_err(dev, "can't register master\n");
1371                 goto qspi_reg_err;
1372         }
1373
1374         return 0;
1375
1376 qspi_reg_err:
1377         bcm_qspi_hw_uninit(qspi);
1378         clk_disable_unprepare(qspi->clk);
1379 qspi_probe_err:
1380         kfree(qspi->dev_ids);
1381 qspi_resource_err:
1382         spi_master_put(master);
1383         return ret;
1384 }
1385 /* probe function to be called by SoC specific platform driver probe */
1386 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1387
1388 int bcm_qspi_remove(struct platform_device *pdev)
1389 {
1390         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1391
1392         bcm_qspi_hw_uninit(qspi);
1393         clk_disable_unprepare(qspi->clk);
1394         kfree(qspi->dev_ids);
1395         spi_unregister_master(qspi->master);
1396
1397         return 0;
1398 }
1399 /* function to be called by SoC specific platform driver remove() */
1400 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1401
1402 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1403 {
1404         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1405
1406         /* store the override strap value */
1407         if (!bcm_qspi_bspi_ver_three(qspi))
1408                 qspi->s3_strap_override_ctrl =
1409                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1410
1411         spi_master_suspend(qspi->master);
1412         clk_disable_unprepare(qspi->clk);
1413         bcm_qspi_hw_uninit(qspi);
1414
1415         return 0;
1416 };
1417
1418 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1419 {
1420         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1421         int ret = 0;
1422
1423         bcm_qspi_hw_init(qspi);
1424         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1425         if (qspi->soc_intc)
1426                 /* enable MSPI interrupt */
1427                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1428                                                  true);
1429
1430         ret = clk_prepare_enable(qspi->clk);
1431         if (!ret)
1432                 spi_master_resume(qspi->master);
1433
1434         return ret;
1435 }
1436
1437 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1438
1439 /* pm_ops to be called by SoC specific platform driver */
1440 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1441
1442 MODULE_AUTHOR("Kamal Dasu");
1443 MODULE_DESCRIPTION("Broadcom QSPI driver");
1444 MODULE_LICENSE("GPL v2");
1445 MODULE_ALIAS("platform:" DRIVER_NAME);