OSDN Git Service

Merge tag 'drm/tegra/for-4.1-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[uclinux-h8/linux.git] / drivers / spi / spi-dw-mid.c
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/intel_mid_dma.h>
27 #include <linux/pci.h>
28
29 #define RX_BUSY         0
30 #define TX_BUSY         1
31
32 struct mid_dma {
33         struct intel_mid_dma_slave      dmas_tx;
34         struct intel_mid_dma_slave      dmas_rx;
35 };
36
37 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
38 {
39         struct dw_spi *dws = param;
40
41         return dws->dma_dev == chan->device->dev;
42 }
43
44 static int mid_spi_dma_init(struct dw_spi *dws)
45 {
46         struct mid_dma *dw_dma = dws->dma_priv;
47         struct pci_dev *dma_dev;
48         struct intel_mid_dma_slave *rxs, *txs;
49         dma_cap_mask_t mask;
50
51         /*
52          * Get pci device for DMA controller, currently it could only
53          * be the DMA controller of Medfield
54          */
55         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
56         if (!dma_dev)
57                 return -ENODEV;
58
59         dws->dma_dev = &dma_dev->dev;
60
61         dma_cap_zero(mask);
62         dma_cap_set(DMA_SLAVE, mask);
63
64         /* 1. Init rx channel */
65         dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
66         if (!dws->rxchan)
67                 goto err_exit;
68         rxs = &dw_dma->dmas_rx;
69         rxs->hs_mode = LNW_DMA_HW_HS;
70         rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
71         dws->rxchan->private = rxs;
72
73         /* 2. Init tx channel */
74         dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
75         if (!dws->txchan)
76                 goto free_rxchan;
77         txs = &dw_dma->dmas_tx;
78         txs->hs_mode = LNW_DMA_HW_HS;
79         txs->cfg_mode = LNW_DMA_MEM_TO_PER;
80         dws->txchan->private = txs;
81
82         dws->dma_inited = 1;
83         return 0;
84
85 free_rxchan:
86         dma_release_channel(dws->rxchan);
87 err_exit:
88         return -EBUSY;
89 }
90
91 static void mid_spi_dma_exit(struct dw_spi *dws)
92 {
93         if (!dws->dma_inited)
94                 return;
95
96         dmaengine_terminate_all(dws->txchan);
97         dma_release_channel(dws->txchan);
98
99         dmaengine_terminate_all(dws->rxchan);
100         dma_release_channel(dws->rxchan);
101 }
102
103 /*
104  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
105  * channel will clear a corresponding bit.
106  */
107 static void dw_spi_dma_tx_done(void *arg)
108 {
109         struct dw_spi *dws = arg;
110
111         clear_bit(TX_BUSY, &dws->dma_chan_busy);
112         if (test_bit(RX_BUSY, &dws->dma_chan_busy))
113                 return;
114         dw_spi_xfer_done(dws);
115 }
116
117 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws)
118 {
119         struct dma_slave_config txconf;
120         struct dma_async_tx_descriptor *txdesc;
121
122         if (!dws->tx_dma)
123                 return NULL;
124
125         txconf.direction = DMA_MEM_TO_DEV;
126         txconf.dst_addr = dws->dma_addr;
127         txconf.dst_maxburst = LNW_DMA_MSIZE_16;
128         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
129         txconf.dst_addr_width = dws->dma_width;
130         txconf.device_fc = false;
131
132         dmaengine_slave_config(dws->txchan, &txconf);
133
134         memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
135         dws->tx_sgl.dma_address = dws->tx_dma;
136         dws->tx_sgl.length = dws->len;
137
138         txdesc = dmaengine_prep_slave_sg(dws->txchan,
139                                 &dws->tx_sgl,
140                                 1,
141                                 DMA_MEM_TO_DEV,
142                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
143         if (!txdesc)
144                 return NULL;
145
146         txdesc->callback = dw_spi_dma_tx_done;
147         txdesc->callback_param = dws;
148
149         return txdesc;
150 }
151
152 /*
153  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
154  * channel will clear a corresponding bit.
155  */
156 static void dw_spi_dma_rx_done(void *arg)
157 {
158         struct dw_spi *dws = arg;
159
160         clear_bit(RX_BUSY, &dws->dma_chan_busy);
161         if (test_bit(TX_BUSY, &dws->dma_chan_busy))
162                 return;
163         dw_spi_xfer_done(dws);
164 }
165
166 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
167 {
168         struct dma_slave_config rxconf;
169         struct dma_async_tx_descriptor *rxdesc;
170
171         if (!dws->rx_dma)
172                 return NULL;
173
174         rxconf.direction = DMA_DEV_TO_MEM;
175         rxconf.src_addr = dws->dma_addr;
176         rxconf.src_maxburst = LNW_DMA_MSIZE_16;
177         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
178         rxconf.src_addr_width = dws->dma_width;
179         rxconf.device_fc = false;
180
181         dmaengine_slave_config(dws->rxchan, &rxconf);
182
183         memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
184         dws->rx_sgl.dma_address = dws->rx_dma;
185         dws->rx_sgl.length = dws->len;
186
187         rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
188                                 &dws->rx_sgl,
189                                 1,
190                                 DMA_DEV_TO_MEM,
191                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
192         if (!rxdesc)
193                 return NULL;
194
195         rxdesc->callback = dw_spi_dma_rx_done;
196         rxdesc->callback_param = dws;
197
198         return rxdesc;
199 }
200
201 static void dw_spi_dma_setup(struct dw_spi *dws)
202 {
203         u16 dma_ctrl = 0;
204
205         spi_enable_chip(dws, 0);
206
207         dw_writew(dws, DW_SPI_DMARDLR, 0xf);
208         dw_writew(dws, DW_SPI_DMATDLR, 0x10);
209
210         if (dws->tx_dma)
211                 dma_ctrl |= SPI_DMA_TDMAE;
212         if (dws->rx_dma)
213                 dma_ctrl |= SPI_DMA_RDMAE;
214         dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
215
216         spi_enable_chip(dws, 1);
217 }
218
219 static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
220 {
221         struct dma_async_tx_descriptor *txdesc, *rxdesc;
222
223         /* 1. setup DMA related registers */
224         if (cs_change)
225                 dw_spi_dma_setup(dws);
226
227         /* 2. Prepare the TX dma transfer */
228         txdesc = dw_spi_dma_prepare_tx(dws);
229
230         /* 3. Prepare the RX dma transfer */
231         rxdesc = dw_spi_dma_prepare_rx(dws);
232
233         /* rx must be started before tx due to spi instinct */
234         if (rxdesc) {
235                 set_bit(RX_BUSY, &dws->dma_chan_busy);
236                 dmaengine_submit(rxdesc);
237                 dma_async_issue_pending(dws->rxchan);
238         }
239
240         if (txdesc) {
241                 set_bit(TX_BUSY, &dws->dma_chan_busy);
242                 dmaengine_submit(txdesc);
243                 dma_async_issue_pending(dws->txchan);
244         }
245
246         return 0;
247 }
248
249 static struct dw_spi_dma_ops mid_dma_ops = {
250         .dma_init       = mid_spi_dma_init,
251         .dma_exit       = mid_spi_dma_exit,
252         .dma_transfer   = mid_spi_dma_transfer,
253 };
254 #endif
255
256 /* Some specific info for SPI0 controller on Intel MID */
257
258 /* HW info for MRST Clk Control Unit, 32b reg per controller */
259 #define MRST_SPI_CLK_BASE       100000000       /* 100m */
260 #define MRST_CLK_SPI_REG        0xff11d86c
261 #define CLK_SPI_BDIV_OFFSET     0
262 #define CLK_SPI_BDIV_MASK       0x00000007
263 #define CLK_SPI_CDIV_OFFSET     9
264 #define CLK_SPI_CDIV_MASK       0x00000e00
265 #define CLK_SPI_DISABLE_OFFSET  8
266
267 int dw_spi_mid_init(struct dw_spi *dws)
268 {
269         void __iomem *clk_reg;
270         u32 clk_cdiv;
271
272         clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
273         if (!clk_reg)
274                 return -ENOMEM;
275
276         /* Get SPI controller operating freq info */
277         clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
278         clk_cdiv &= CLK_SPI_CDIV_MASK;
279         clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
280         dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
281
282         iounmap(clk_reg);
283
284 #ifdef CONFIG_SPI_DW_MID_DMA
285         dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
286         if (!dws->dma_priv)
287                 return -ENOMEM;
288         dws->dma_ops = &mid_dma_ops;
289 #endif
290         return 0;
291 }