OSDN Git Service

57c828e73c446372cbf05e9da1116bd02e4de764
[tomoyo/tomoyo-test1.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_SDC                       BIT(11)
46 #define SUN6I_TFR_CTL_FBS                       BIT(12)
47 #define SUN6I_TFR_CTL_SDM                       BIT(13)
48 #define SUN6I_TFR_CTL_XCH                       BIT(31)
49
50 #define SUN6I_INT_CTL_REG               0x10
51 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
54 #define SUN6I_INT_CTL_TC                        BIT(12)
55
56 #define SUN6I_INT_STA_REG               0x14
57
58 #define SUN6I_FIFO_CTL_REG              0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
62 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
67
68 #define SUN6I_FIFO_STA_REG              0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
71
72 #define SUN6I_CLK_CTL_REG               0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
74 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
76 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS                       BIT(12)
78
79 #define SUN6I_MAX_XFER_SIZE             0xffffff
80
81 #define SUN6I_BURST_CNT_REG             0x30
82
83 #define SUN6I_XMIT_CNT_REG              0x34
84
85 #define SUN6I_BURST_CTL_CNT_REG         0x38
86
87 #define SUN6I_TXDATA_REG                0x200
88 #define SUN6I_RXDATA_REG                0x300
89
90 struct sun6i_spi_cfg {
91         unsigned long           fifo_depth;
92         bool                    has_clk_ctl;
93 };
94
95 struct sun6i_spi {
96         struct spi_master       *master;
97         void __iomem            *base_addr;
98         dma_addr_t              dma_addr_rx;
99         dma_addr_t              dma_addr_tx;
100         struct clk              *hclk;
101         struct clk              *mclk;
102         struct reset_control    *rstc;
103
104         struct completion       done;
105         struct completion       dma_rx_done;
106
107         const u8                *tx_buf;
108         u8                      *rx_buf;
109         int                     len;
110         const struct sun6i_spi_cfg *cfg;
111 };
112
113 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
114 {
115         return readl(sspi->base_addr + reg);
116 }
117
118 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
119 {
120         writel(value, sspi->base_addr + reg);
121 }
122
123 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
124 {
125         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
126
127         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
128 }
129
130 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
131 {
132         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
133
134         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
135 }
136
137 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
138 {
139         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
140
141         reg &= ~mask;
142         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
143 }
144
145 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
146 {
147         u32 len;
148         u8 byte;
149
150         /* See how much data is available */
151         len = sun6i_spi_get_rx_fifo_count(sspi);
152
153         while (len--) {
154                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
155                 if (sspi->rx_buf)
156                         *sspi->rx_buf++ = byte;
157         }
158 }
159
160 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
161 {
162         u32 cnt;
163         int len;
164         u8 byte;
165
166         /* See how much data we can fit */
167         cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
168
169         len = min((int)cnt, sspi->len);
170
171         while (len--) {
172                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
173                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
174                 sspi->len--;
175         }
176 }
177
178 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
179 {
180         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
181         u32 reg;
182
183         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
184         reg &= ~SUN6I_TFR_CTL_CS_MASK;
185         reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
186
187         if (enable)
188                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
189         else
190                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
191
192         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
193 }
194
195 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
196 {
197         return SUN6I_MAX_XFER_SIZE - 1;
198 }
199
200 static void sun6i_spi_dma_rx_cb(void *param)
201 {
202         struct sun6i_spi *sspi = param;
203
204         complete(&sspi->dma_rx_done);
205 }
206
207 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
208                                  struct spi_transfer *tfr)
209 {
210         struct dma_async_tx_descriptor *rxdesc, *txdesc;
211         struct spi_master *master = sspi->master;
212
213         rxdesc = NULL;
214         if (tfr->rx_buf) {
215                 struct dma_slave_config rxconf = {
216                         .direction = DMA_DEV_TO_MEM,
217                         .src_addr = sspi->dma_addr_rx,
218                         .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
219                         .src_maxburst = 8,
220                 };
221
222                 dmaengine_slave_config(master->dma_rx, &rxconf);
223
224                 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
225                                                  tfr->rx_sg.sgl,
226                                                  tfr->rx_sg.nents,
227                                                  DMA_DEV_TO_MEM,
228                                                  DMA_PREP_INTERRUPT);
229                 if (!rxdesc)
230                         return -EINVAL;
231                 rxdesc->callback_param = sspi;
232                 rxdesc->callback = sun6i_spi_dma_rx_cb;
233         }
234
235         txdesc = NULL;
236         if (tfr->tx_buf) {
237                 struct dma_slave_config txconf = {
238                         .direction = DMA_MEM_TO_DEV,
239                         .dst_addr = sspi->dma_addr_tx,
240                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
241                         .dst_maxburst = 8,
242                 };
243
244                 dmaengine_slave_config(master->dma_tx, &txconf);
245
246                 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
247                                                  tfr->tx_sg.sgl,
248                                                  tfr->tx_sg.nents,
249                                                  DMA_MEM_TO_DEV,
250                                                  DMA_PREP_INTERRUPT);
251                 if (!txdesc) {
252                         if (rxdesc)
253                                 dmaengine_terminate_sync(master->dma_rx);
254                         return -EINVAL;
255                 }
256         }
257
258         if (tfr->rx_buf) {
259                 dmaengine_submit(rxdesc);
260                 dma_async_issue_pending(master->dma_rx);
261         }
262
263         if (tfr->tx_buf) {
264                 dmaengine_submit(txdesc);
265                 dma_async_issue_pending(master->dma_tx);
266         }
267
268         return 0;
269 }
270
271 static int sun6i_spi_transfer_one(struct spi_master *master,
272                                   struct spi_device *spi,
273                                   struct spi_transfer *tfr)
274 {
275         struct sun6i_spi *sspi = spi_master_get_devdata(master);
276         unsigned int div, div_cdr1, div_cdr2, timeout;
277         unsigned int start, end, tx_time;
278         unsigned int trig_level;
279         unsigned int tx_len = 0, rx_len = 0;
280         bool use_dma;
281         int ret = 0;
282         u32 reg;
283
284         if (tfr->len > SUN6I_MAX_XFER_SIZE)
285                 return -EINVAL;
286
287         reinit_completion(&sspi->done);
288         reinit_completion(&sspi->dma_rx_done);
289         sspi->tx_buf = tfr->tx_buf;
290         sspi->rx_buf = tfr->rx_buf;
291         sspi->len = tfr->len;
292         use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
293
294         /* Clear pending interrupts */
295         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
296
297         /* Reset FIFO */
298         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
299                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
300
301         reg = 0;
302
303         if (!use_dma) {
304                 /*
305                  * Setup FIFO interrupt trigger level
306                  * Here we choose 3/4 of the full fifo depth, as it's
307                  * the hardcoded value used in old generation of Allwinner
308                  * SPI controller. (See spi-sun4i.c)
309                  */
310                 trig_level = sspi->cfg->fifo_depth / 4 * 3;
311         } else {
312                 /*
313                  * Setup FIFO DMA request trigger level
314                  * We choose 1/2 of the full fifo depth, that value will
315                  * be used as DMA burst length.
316                  */
317                 trig_level = sspi->cfg->fifo_depth / 2;
318
319                 if (tfr->tx_buf)
320                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
321                 if (tfr->rx_buf)
322                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
323         }
324
325         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
326                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
327
328         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
329
330         /*
331          * Setup the transfer control register: Chip Select,
332          * polarities, etc.
333          */
334         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
335
336         if (spi->mode & SPI_CPOL)
337                 reg |= SUN6I_TFR_CTL_CPOL;
338         else
339                 reg &= ~SUN6I_TFR_CTL_CPOL;
340
341         if (spi->mode & SPI_CPHA)
342                 reg |= SUN6I_TFR_CTL_CPHA;
343         else
344                 reg &= ~SUN6I_TFR_CTL_CPHA;
345
346         if (spi->mode & SPI_LSB_FIRST)
347                 reg |= SUN6I_TFR_CTL_FBS;
348         else
349                 reg &= ~SUN6I_TFR_CTL_FBS;
350
351         /*
352          * If it's a TX only transfer, we don't want to fill the RX
353          * FIFO with bogus data
354          */
355         if (sspi->rx_buf) {
356                 reg &= ~SUN6I_TFR_CTL_DHB;
357                 rx_len = tfr->len;
358         } else {
359                 reg |= SUN6I_TFR_CTL_DHB;
360         }
361
362         /* We want to control the chip select manually */
363         reg |= SUN6I_TFR_CTL_CS_MANUAL;
364
365         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
366
367         if (sspi->cfg->has_clk_ctl) {
368                 unsigned int mclk_rate = clk_get_rate(sspi->mclk);
369
370                 /* Ensure that we have a parent clock fast enough */
371                 if (mclk_rate < (2 * tfr->speed_hz)) {
372                         clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
373                         mclk_rate = clk_get_rate(sspi->mclk);
374                 }
375
376                 /*
377                  * Setup clock divider.
378                  *
379                  * We have two choices there. Either we can use the clock
380                  * divide rate 1, which is calculated thanks to this formula:
381                  * SPI_CLK = MOD_CLK / (2 ^ cdr)
382                  * Or we can use CDR2, which is calculated with the formula:
383                  * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
384                  * Wether we use the former or the latter is set through the
385                  * DRS bit.
386                  *
387                  * First try CDR2, and if we can't reach the expected
388                  * frequency, fall back to CDR1.
389                  */
390                 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
391                 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
392                 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
393                         reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
394                         tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
395                 } else {
396                         div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
397                         reg = SUN6I_CLK_CTL_CDR1(div);
398                         tfr->effective_speed_hz = mclk_rate / (1 << div);
399                 }
400
401                 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
402         } else {
403                 clk_set_rate(sspi->mclk, tfr->speed_hz);
404                 tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
405
406                 /*
407                  * Configure work mode.
408                  *
409                  * There are three work modes depending on the controller clock
410                  * frequency:
411                  * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
412                  * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
413                  * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
414                  */
415                 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
416                 reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
417
418                 if (tfr->effective_speed_hz <= 24000000)
419                         reg |= SUN6I_TFR_CTL_SDM;
420                 else if (tfr->effective_speed_hz >= 80000000)
421                         reg |= SUN6I_TFR_CTL_SDC;
422
423                 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
424         }
425
426         /* Finally enable the bus - doing so before might raise SCK to HIGH */
427         reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
428         reg |= SUN6I_GBL_CTL_BUS_ENABLE;
429         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
430
431         /* Setup the transfer now... */
432         if (sspi->tx_buf)
433                 tx_len = tfr->len;
434
435         /* Setup the counters */
436         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
437         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
438         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
439
440         if (!use_dma) {
441                 /* Fill the TX FIFO */
442                 sun6i_spi_fill_fifo(sspi);
443         } else {
444                 ret = sun6i_spi_prepare_dma(sspi, tfr);
445                 if (ret) {
446                         dev_warn(&master->dev,
447                                  "%s: prepare DMA failed, ret=%d",
448                                  dev_name(&spi->dev), ret);
449                         return ret;
450                 }
451         }
452
453         /* Enable the interrupts */
454         reg = SUN6I_INT_CTL_TC;
455
456         if (!use_dma) {
457                 if (rx_len > sspi->cfg->fifo_depth)
458                         reg |= SUN6I_INT_CTL_RF_RDY;
459                 if (tx_len > sspi->cfg->fifo_depth)
460                         reg |= SUN6I_INT_CTL_TF_ERQ;
461         }
462
463         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
464
465         /* Start the transfer */
466         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
467         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
468
469         tx_time = spi_controller_xfer_timeout(master, tfr);
470         start = jiffies;
471         timeout = wait_for_completion_timeout(&sspi->done,
472                                               msecs_to_jiffies(tx_time));
473
474         if (!use_dma) {
475                 sun6i_spi_drain_fifo(sspi);
476         } else {
477                 if (timeout && rx_len) {
478                         /*
479                          * Even though RX on the peripheral side has finished
480                          * RX DMA might still be in flight
481                          */
482                         timeout = wait_for_completion_timeout(&sspi->dma_rx_done,
483                                                               timeout);
484                         if (!timeout)
485                                 dev_warn(&master->dev, "RX DMA timeout\n");
486                 }
487         }
488
489         end = jiffies;
490         if (!timeout) {
491                 dev_warn(&master->dev,
492                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
493                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
494                          jiffies_to_msecs(end - start), tx_time);
495                 ret = -ETIMEDOUT;
496         }
497
498         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
499
500         if (ret && use_dma) {
501                 dmaengine_terminate_sync(master->dma_rx);
502                 dmaengine_terminate_sync(master->dma_tx);
503         }
504
505         return ret;
506 }
507
508 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
509 {
510         struct sun6i_spi *sspi = dev_id;
511         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
512
513         /* Transfer complete */
514         if (status & SUN6I_INT_CTL_TC) {
515                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
516                 complete(&sspi->done);
517                 return IRQ_HANDLED;
518         }
519
520         /* Receive FIFO 3/4 full */
521         if (status & SUN6I_INT_CTL_RF_RDY) {
522                 sun6i_spi_drain_fifo(sspi);
523                 /* Only clear the interrupt _after_ draining the FIFO */
524                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
525                 return IRQ_HANDLED;
526         }
527
528         /* Transmit FIFO 3/4 empty */
529         if (status & SUN6I_INT_CTL_TF_ERQ) {
530                 sun6i_spi_fill_fifo(sspi);
531
532                 if (!sspi->len)
533                         /* nothing left to transmit */
534                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
535
536                 /* Only clear the interrupt _after_ re-seeding the FIFO */
537                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
538
539                 return IRQ_HANDLED;
540         }
541
542         return IRQ_NONE;
543 }
544
545 static int sun6i_spi_runtime_resume(struct device *dev)
546 {
547         struct spi_master *master = dev_get_drvdata(dev);
548         struct sun6i_spi *sspi = spi_master_get_devdata(master);
549         int ret;
550
551         ret = clk_prepare_enable(sspi->hclk);
552         if (ret) {
553                 dev_err(dev, "Couldn't enable AHB clock\n");
554                 goto out;
555         }
556
557         ret = clk_prepare_enable(sspi->mclk);
558         if (ret) {
559                 dev_err(dev, "Couldn't enable module clock\n");
560                 goto err;
561         }
562
563         ret = reset_control_deassert(sspi->rstc);
564         if (ret) {
565                 dev_err(dev, "Couldn't deassert the device from reset\n");
566                 goto err2;
567         }
568
569         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
570                         SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
571
572         return 0;
573
574 err2:
575         clk_disable_unprepare(sspi->mclk);
576 err:
577         clk_disable_unprepare(sspi->hclk);
578 out:
579         return ret;
580 }
581
582 static int sun6i_spi_runtime_suspend(struct device *dev)
583 {
584         struct spi_master *master = dev_get_drvdata(dev);
585         struct sun6i_spi *sspi = spi_master_get_devdata(master);
586
587         reset_control_assert(sspi->rstc);
588         clk_disable_unprepare(sspi->mclk);
589         clk_disable_unprepare(sspi->hclk);
590
591         return 0;
592 }
593
594 static bool sun6i_spi_can_dma(struct spi_master *master,
595                               struct spi_device *spi,
596                               struct spi_transfer *xfer)
597 {
598         struct sun6i_spi *sspi = spi_master_get_devdata(master);
599
600         /*
601          * If the number of spi words to transfer is less or equal than
602          * the fifo length we can just fill the fifo and wait for a single
603          * irq, so don't bother setting up dma
604          */
605         return xfer->len > sspi->cfg->fifo_depth;
606 }
607
608 static int sun6i_spi_probe(struct platform_device *pdev)
609 {
610         struct spi_master *master;
611         struct sun6i_spi *sspi;
612         struct resource *mem;
613         int ret = 0, irq;
614
615         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
616         if (!master) {
617                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
618                 return -ENOMEM;
619         }
620
621         platform_set_drvdata(pdev, master);
622         sspi = spi_master_get_devdata(master);
623
624         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
625         if (IS_ERR(sspi->base_addr)) {
626                 ret = PTR_ERR(sspi->base_addr);
627                 goto err_free_master;
628         }
629
630         irq = platform_get_irq(pdev, 0);
631         if (irq < 0) {
632                 ret = -ENXIO;
633                 goto err_free_master;
634         }
635
636         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
637                                0, "sun6i-spi", sspi);
638         if (ret) {
639                 dev_err(&pdev->dev, "Cannot request IRQ\n");
640                 goto err_free_master;
641         }
642
643         sspi->master = master;
644         sspi->cfg = of_device_get_match_data(&pdev->dev);
645
646         master->max_speed_hz = 100 * 1000 * 1000;
647         master->min_speed_hz = 3 * 1000;
648         master->use_gpio_descriptors = true;
649         master->set_cs = sun6i_spi_set_cs;
650         master->transfer_one = sun6i_spi_transfer_one;
651         master->num_chipselect = 4;
652         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
653         master->bits_per_word_mask = SPI_BPW_MASK(8);
654         master->dev.of_node = pdev->dev.of_node;
655         master->auto_runtime_pm = true;
656         master->max_transfer_size = sun6i_spi_max_transfer_size;
657
658         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
659         if (IS_ERR(sspi->hclk)) {
660                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
661                 ret = PTR_ERR(sspi->hclk);
662                 goto err_free_master;
663         }
664
665         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
666         if (IS_ERR(sspi->mclk)) {
667                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
668                 ret = PTR_ERR(sspi->mclk);
669                 goto err_free_master;
670         }
671
672         init_completion(&sspi->done);
673         init_completion(&sspi->dma_rx_done);
674
675         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
676         if (IS_ERR(sspi->rstc)) {
677                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
678                 ret = PTR_ERR(sspi->rstc);
679                 goto err_free_master;
680         }
681
682         master->dma_tx = dma_request_chan(&pdev->dev, "tx");
683         if (IS_ERR(master->dma_tx)) {
684                 /* Check tx to see if we need defer probing driver */
685                 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
686                         ret = -EPROBE_DEFER;
687                         goto err_free_master;
688                 }
689                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
690                 master->dma_tx = NULL;
691         }
692
693         master->dma_rx = dma_request_chan(&pdev->dev, "rx");
694         if (IS_ERR(master->dma_rx)) {
695                 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
696                         ret = -EPROBE_DEFER;
697                         goto err_free_dma_tx;
698                 }
699                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
700                 master->dma_rx = NULL;
701         }
702
703         if (master->dma_tx && master->dma_rx) {
704                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
705                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
706                 master->can_dma = sun6i_spi_can_dma;
707         }
708
709         /*
710          * This wake-up/shutdown pattern is to be able to have the
711          * device woken up, even if runtime_pm is disabled
712          */
713         ret = sun6i_spi_runtime_resume(&pdev->dev);
714         if (ret) {
715                 dev_err(&pdev->dev, "Couldn't resume the device\n");
716                 goto err_free_dma_rx;
717         }
718
719         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
720         pm_runtime_use_autosuspend(&pdev->dev);
721         pm_runtime_set_active(&pdev->dev);
722         pm_runtime_enable(&pdev->dev);
723
724         ret = devm_spi_register_master(&pdev->dev, master);
725         if (ret) {
726                 dev_err(&pdev->dev, "cannot register SPI master\n");
727                 goto err_pm_disable;
728         }
729
730         return 0;
731
732 err_pm_disable:
733         pm_runtime_disable(&pdev->dev);
734         sun6i_spi_runtime_suspend(&pdev->dev);
735 err_free_dma_rx:
736         if (master->dma_rx)
737                 dma_release_channel(master->dma_rx);
738 err_free_dma_tx:
739         if (master->dma_tx)
740                 dma_release_channel(master->dma_tx);
741 err_free_master:
742         spi_master_put(master);
743         return ret;
744 }
745
746 static void sun6i_spi_remove(struct platform_device *pdev)
747 {
748         struct spi_master *master = platform_get_drvdata(pdev);
749
750         pm_runtime_force_suspend(&pdev->dev);
751
752         if (master->dma_tx)
753                 dma_release_channel(master->dma_tx);
754         if (master->dma_rx)
755                 dma_release_channel(master->dma_rx);
756 }
757
758 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
759         .fifo_depth     = SUN6I_FIFO_DEPTH,
760         .has_clk_ctl    = true,
761 };
762
763 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
764         .fifo_depth     = SUN8I_FIFO_DEPTH,
765         .has_clk_ctl    = true,
766 };
767
768 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
769         .fifo_depth     = SUN8I_FIFO_DEPTH,
770 };
771
772 static const struct of_device_id sun6i_spi_match[] = {
773         { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
774         { .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
775         {
776                 .compatible = "allwinner,sun50i-r329-spi",
777                 .data = &sun50i_r329_spi_cfg
778         },
779         {}
780 };
781 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
782
783 static const struct dev_pm_ops sun6i_spi_pm_ops = {
784         .runtime_resume         = sun6i_spi_runtime_resume,
785         .runtime_suspend        = sun6i_spi_runtime_suspend,
786 };
787
788 static struct platform_driver sun6i_spi_driver = {
789         .probe  = sun6i_spi_probe,
790         .remove_new = sun6i_spi_remove,
791         .driver = {
792                 .name           = "sun6i-spi",
793                 .of_match_table = sun6i_spi_match,
794                 .pm             = &sun6i_spi_pm_ops,
795         },
796 };
797 module_platform_driver(sun6i_spi_driver);
798
799 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
800 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
801 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
802 MODULE_LICENSE("GPL");