OSDN Git Service

2fc037cfb62f40b3737bb0ab59ed567f9ce21ed2
[android-x86/kernel.git] / drivers / staging / lustre / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include "../../include/linux/libcfs/libcfs.h"
48
49 # include <linux/module.h>
50
51 /* hash_long() */
52 #include "../../include/linux/libcfs/libcfs_hash.h"
53 #include "../include/obd_class.h"
54 #include "../include/obd_support.h"
55 #include "../include/lustre_disk.h"
56 #include "../include/lustre_fid.h"
57 #include "../include/lu_object.h"
58 #include "../include/lu_ref.h"
59 #include <linux/list.h>
60
61 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
62
63 /**
64  * Decrease reference counter on object. If last reference is freed, return
65  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
66  * case, free object immediately.
67  */
68 void lu_object_put(const struct lu_env *env, struct lu_object *o)
69 {
70         struct lu_site_bkt_data *bkt;
71         struct lu_object_header *top;
72         struct lu_site    *site;
73         struct lu_object        *orig;
74         struct cfs_hash_bd          bd;
75         const struct lu_fid     *fid;
76
77         top  = o->lo_header;
78         site = o->lo_dev->ld_site;
79         orig = o;
80
81         /*
82          * till we have full fids-on-OST implemented anonymous objects
83          * are possible in OSP. such an object isn't listed in the site
84          * so we should not remove it from the site.
85          */
86         fid = lu_object_fid(o);
87         if (fid_is_zero(fid)) {
88                 LASSERT(top->loh_hash.next == NULL
89                         && top->loh_hash.pprev == NULL);
90                 LASSERT(list_empty(&top->loh_lru));
91                 if (!atomic_dec_and_test(&top->loh_ref))
92                         return;
93                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
94                         if (o->lo_ops->loo_object_release != NULL)
95                                 o->lo_ops->loo_object_release(env, o);
96                 }
97                 lu_object_free(env, orig);
98                 return;
99         }
100
101         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
102         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
103
104         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
105                 if (lu_object_is_dying(top)) {
106
107                         /*
108                          * somebody may be waiting for this, currently only
109                          * used for cl_object, see cl_object_put_last().
110                          */
111                         wake_up_all(&bkt->lsb_marche_funebre);
112                 }
113                 return;
114         }
115
116         LASSERT(bkt->lsb_busy > 0);
117         bkt->lsb_busy--;
118         /*
119          * When last reference is released, iterate over object
120          * layers, and notify them that object is no longer busy.
121          */
122         list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
123                 if (o->lo_ops->loo_object_release != NULL)
124                         o->lo_ops->loo_object_release(env, o);
125         }
126
127         if (!lu_object_is_dying(top)) {
128                 LASSERT(list_empty(&top->loh_lru));
129                 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
130                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
131                 return;
132         }
133
134         /*
135          * If object is dying (will not be cached), removed it
136          * from hash table and LRU.
137          *
138          * This is done with hash table and LRU lists locked. As the only
139          * way to acquire first reference to previously unreferenced
140          * object is through hash-table lookup (lu_object_find()),
141          * or LRU scanning (lu_site_purge()), that are done under hash-table
142          * and LRU lock, no race with concurrent object lookup is possible
143          * and we can safely destroy object below.
144          */
145         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
146                 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
147         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
148         /*
149          * Object was already removed from hash and lru above, can
150          * kill it.
151          */
152         lu_object_free(env, orig);
153 }
154 EXPORT_SYMBOL(lu_object_put);
155
156 /**
157  * Put object and don't keep in cache. This is temporary solution for
158  * multi-site objects when its layering is not constant.
159  */
160 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
161 {
162         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
163         return lu_object_put(env, o);
164 }
165 EXPORT_SYMBOL(lu_object_put_nocache);
166
167 /**
168  * Kill the object and take it out of LRU cache.
169  * Currently used by client code for layout change.
170  */
171 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
172 {
173         struct lu_object_header *top;
174
175         top = o->lo_header;
176         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
177         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
178                 struct cfs_hash *obj_hash = o->lo_dev->ld_site->ls_obj_hash;
179                 struct cfs_hash_bd bd;
180
181                 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
182                 list_del_init(&top->loh_lru);
183                 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
184                 cfs_hash_bd_unlock(obj_hash, &bd, 1);
185         }
186 }
187 EXPORT_SYMBOL(lu_object_unhash);
188
189 /**
190  * Allocate new object.
191  *
192  * This follows object creation protocol, described in the comment within
193  * struct lu_device_operations definition.
194  */
195 static struct lu_object *lu_object_alloc(const struct lu_env *env,
196                                          struct lu_device *dev,
197                                          const struct lu_fid *f,
198                                          const struct lu_object_conf *conf)
199 {
200         struct lu_object *scan;
201         struct lu_object *top;
202         struct list_head *layers;
203         unsigned int init_mask = 0;
204         unsigned int init_flag;
205         int clean;
206         int result;
207
208         /*
209          * Create top-level object slice. This will also create
210          * lu_object_header.
211          */
212         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
213         if (top == NULL)
214                 return ERR_PTR(-ENOMEM);
215         if (IS_ERR(top))
216                 return top;
217         /*
218          * This is the only place where object fid is assigned. It's constant
219          * after this point.
220          */
221         top->lo_header->loh_fid = *f;
222         layers = &top->lo_header->loh_layers;
223
224         do {
225                 /*
226                  * Call ->loo_object_init() repeatedly, until no more new
227                  * object slices are created.
228                  */
229                 clean = 1;
230                 init_flag = 1;
231                 list_for_each_entry(scan, layers, lo_linkage) {
232                         if (init_mask & init_flag)
233                                 goto next;
234                         clean = 0;
235                         scan->lo_header = top->lo_header;
236                         result = scan->lo_ops->loo_object_init(env, scan, conf);
237                         if (result != 0) {
238                                 lu_object_free(env, top);
239                                 return ERR_PTR(result);
240                         }
241                         init_mask |= init_flag;
242 next:
243                         init_flag <<= 1;
244                 }
245         } while (!clean);
246
247         list_for_each_entry_reverse(scan, layers, lo_linkage) {
248                 if (scan->lo_ops->loo_object_start != NULL) {
249                         result = scan->lo_ops->loo_object_start(env, scan);
250                         if (result != 0) {
251                                 lu_object_free(env, top);
252                                 return ERR_PTR(result);
253                         }
254                 }
255         }
256
257         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
258         return top;
259 }
260
261 /**
262  * Free an object.
263  */
264 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
265 {
266         struct lu_site_bkt_data *bkt;
267         struct lu_site    *site;
268         struct lu_object        *scan;
269         struct list_head              *layers;
270         struct list_head               splice;
271
272         site   = o->lo_dev->ld_site;
273         layers = &o->lo_header->loh_layers;
274         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
275         /*
276          * First call ->loo_object_delete() method to release all resources.
277          */
278         list_for_each_entry_reverse(scan, layers, lo_linkage) {
279                 if (scan->lo_ops->loo_object_delete != NULL)
280                         scan->lo_ops->loo_object_delete(env, scan);
281         }
282
283         /*
284          * Then, splice object layers into stand-alone list, and call
285          * ->loo_object_free() on all layers to free memory. Splice is
286          * necessary, because lu_object_header is freed together with the
287          * top-level slice.
288          */
289         INIT_LIST_HEAD(&splice);
290         list_splice_init(layers, &splice);
291         while (!list_empty(&splice)) {
292                 /*
293                  * Free layers in bottom-to-top order, so that object header
294                  * lives as long as possible and ->loo_object_free() methods
295                  * can look at its contents.
296                  */
297                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
298                 list_del_init(&o->lo_linkage);
299                 LASSERT(o->lo_ops->loo_object_free != NULL);
300                 o->lo_ops->loo_object_free(env, o);
301         }
302
303         if (waitqueue_active(&bkt->lsb_marche_funebre))
304                 wake_up_all(&bkt->lsb_marche_funebre);
305 }
306
307 /**
308  * Free \a nr objects from the cold end of the site LRU list.
309  */
310 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
311 {
312         struct lu_object_header *h;
313         struct lu_object_header *temp;
314         struct lu_site_bkt_data *bkt;
315         struct cfs_hash_bd          bd;
316         struct cfs_hash_bd          bd2;
317         struct list_head               dispose;
318         int                   did_sth;
319         int                   start;
320         int                   count;
321         int                   bnr;
322         int                   i;
323
324         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
325                 return 0;
326
327         INIT_LIST_HEAD(&dispose);
328         /*
329          * Under LRU list lock, scan LRU list and move unreferenced objects to
330          * the dispose list, removing them from LRU and hash table.
331          */
332         start = s->ls_purge_start;
333         bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
334  again:
335         did_sth = 0;
336         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
337                 if (i < start)
338                         continue;
339                 count = bnr;
340                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
341                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
342
343                 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
344                         LASSERT(atomic_read(&h->loh_ref) == 0);
345
346                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
347                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
348
349                         cfs_hash_bd_del_locked(s->ls_obj_hash,
350                                                &bd2, &h->loh_hash);
351                         list_move(&h->loh_lru, &dispose);
352                         if (did_sth == 0)
353                                 did_sth = 1;
354
355                         if (nr != ~0 && --nr == 0)
356                                 break;
357
358                         if (count > 0 && --count == 0)
359                                 break;
360
361                 }
362                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
363                 cond_resched();
364                 /*
365                  * Free everything on the dispose list. This is safe against
366                  * races due to the reasons described in lu_object_put().
367                  */
368                 while (!list_empty(&dispose)) {
369                         h = container_of0(dispose.next,
370                                           struct lu_object_header, loh_lru);
371                         list_del_init(&h->loh_lru);
372                         lu_object_free(env, lu_object_top(h));
373                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
374                 }
375
376                 if (nr == 0)
377                         break;
378         }
379
380         if (nr != 0 && did_sth && start != 0) {
381                 start = 0; /* restart from the first bucket */
382                 goto again;
383         }
384         /* race on s->ls_purge_start, but nobody cares */
385         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
386
387         return nr;
388 }
389 EXPORT_SYMBOL(lu_site_purge);
390
391 /*
392  * Object printing.
393  *
394  * Code below has to jump through certain loops to output object description
395  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
396  * composes object description from strings that are parts of _lines_ of
397  * output (i.e., strings that are not terminated by newline). This doesn't fit
398  * very well into libcfs_debug_msg() interface that assumes that each message
399  * supplied to it is a self-contained output line.
400  *
401  * To work around this, strings are collected in a temporary buffer
402  * (implemented as a value of lu_cdebug_key key), until terminating newline
403  * character is detected.
404  *
405  */
406
407 enum {
408         /**
409          * Maximal line size.
410          *
411          * XXX overflow is not handled correctly.
412          */
413         LU_CDEBUG_LINE = 512
414 };
415
416 struct lu_cdebug_data {
417         /**
418          * Temporary buffer.
419          */
420         char lck_area[LU_CDEBUG_LINE];
421 };
422
423 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
424 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
425
426 /**
427  * Key, holding temporary buffer. This key is registered very early by
428  * lu_global_init().
429  */
430 struct lu_context_key lu_global_key = {
431         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
432                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
433         .lct_init = lu_global_key_init,
434         .lct_fini = lu_global_key_fini
435 };
436
437 /**
438  * Printer function emitting messages through libcfs_debug_msg().
439  */
440 int lu_cdebug_printer(const struct lu_env *env,
441                       void *cookie, const char *format, ...)
442 {
443         struct libcfs_debug_msg_data *msgdata = cookie;
444         struct lu_cdebug_data   *key;
445         int used;
446         int complete;
447         va_list args;
448
449         va_start(args, format);
450
451         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
452         LASSERT(key != NULL);
453
454         used = strlen(key->lck_area);
455         complete = format[strlen(format) - 1] == '\n';
456         /*
457          * Append new chunk to the buffer.
458          */
459         vsnprintf(key->lck_area + used,
460                   ARRAY_SIZE(key->lck_area) - used, format, args);
461         if (complete) {
462                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
463                         libcfs_debug_msg(msgdata, "%s", key->lck_area);
464                 key->lck_area[0] = 0;
465         }
466         va_end(args);
467         return 0;
468 }
469 EXPORT_SYMBOL(lu_cdebug_printer);
470
471 /**
472  * Print object header.
473  */
474 void lu_object_header_print(const struct lu_env *env, void *cookie,
475                             lu_printer_t printer,
476                             const struct lu_object_header *hdr)
477 {
478         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
479                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
480                    PFID(&hdr->loh_fid),
481                    hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
482                    list_empty((struct list_head *)&hdr->loh_lru) ? \
483                    "" : " lru",
484                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
485 }
486 EXPORT_SYMBOL(lu_object_header_print);
487
488 /**
489  * Print human readable representation of the \a o to the \a printer.
490  */
491 void lu_object_print(const struct lu_env *env, void *cookie,
492                      lu_printer_t printer, const struct lu_object *o)
493 {
494         static const char ruler[] = "........................................";
495         struct lu_object_header *top;
496         int depth = 4;
497
498         top = o->lo_header;
499         lu_object_header_print(env, cookie, printer, top);
500         (*printer)(env, cookie, "{\n");
501
502         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
503                 /*
504                  * print `.' \a depth times followed by type name and address
505                  */
506                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
507                            o->lo_dev->ld_type->ldt_name, o);
508
509                 if (o->lo_ops->loo_object_print != NULL)
510                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
511
512                 (*printer)(env, cookie, "\n");
513         }
514
515         (*printer)(env, cookie, "} header@%p\n", top);
516 }
517 EXPORT_SYMBOL(lu_object_print);
518
519 /**
520  * Check object consistency.
521  */
522 int lu_object_invariant(const struct lu_object *o)
523 {
524         struct lu_object_header *top;
525
526         top = o->lo_header;
527         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
528                 if (o->lo_ops->loo_object_invariant != NULL &&
529                     !o->lo_ops->loo_object_invariant(o))
530                         return 0;
531         }
532         return 1;
533 }
534 EXPORT_SYMBOL(lu_object_invariant);
535
536 static struct lu_object *htable_lookup(struct lu_site *s,
537                                        struct cfs_hash_bd *bd,
538                                        const struct lu_fid *f,
539                                        wait_queue_t *waiter,
540                                        __u64 *version)
541 {
542         struct lu_site_bkt_data *bkt;
543         struct lu_object_header *h;
544         struct hlist_node       *hnode;
545         __u64  ver = cfs_hash_bd_version_get(bd);
546
547         if (*version == ver)
548                 return ERR_PTR(-ENOENT);
549
550         *version = ver;
551         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
552         /* cfs_hash_bd_peek_locked is a somehow "internal" function
553          * of cfs_hash, it doesn't add refcount on object. */
554         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
555         if (hnode == NULL) {
556                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
557                 return ERR_PTR(-ENOENT);
558         }
559
560         h = container_of0(hnode, struct lu_object_header, loh_hash);
561         if (likely(!lu_object_is_dying(h))) {
562                 cfs_hash_get(s->ls_obj_hash, hnode);
563                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
564                 list_del_init(&h->loh_lru);
565                 return lu_object_top(h);
566         }
567
568         /*
569          * Lookup found an object being destroyed this object cannot be
570          * returned (to assure that references to dying objects are eventually
571          * drained), and moreover, lookup has to wait until object is freed.
572          */
573
574         init_waitqueue_entry(waiter, current);
575         add_wait_queue(&bkt->lsb_marche_funebre, waiter);
576         set_current_state(TASK_UNINTERRUPTIBLE);
577         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
578         return ERR_PTR(-EAGAIN);
579 }
580
581 /**
582  * Search cache for an object with the fid \a f. If such object is found,
583  * return it. Otherwise, create new object, insert it into cache and return
584  * it. In any case, additional reference is acquired on the returned object.
585  */
586 struct lu_object *lu_object_find(const struct lu_env *env,
587                                  struct lu_device *dev, const struct lu_fid *f,
588                                  const struct lu_object_conf *conf)
589 {
590         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
591 }
592 EXPORT_SYMBOL(lu_object_find);
593
594 static struct lu_object *lu_object_new(const struct lu_env *env,
595                                        struct lu_device *dev,
596                                        const struct lu_fid *f,
597                                        const struct lu_object_conf *conf)
598 {
599         struct lu_object        *o;
600         struct cfs_hash       *hs;
601         struct cfs_hash_bd          bd;
602         struct lu_site_bkt_data *bkt;
603
604         o = lu_object_alloc(env, dev, f, conf);
605         if (unlikely(IS_ERR(o)))
606                 return o;
607
608         hs = dev->ld_site->ls_obj_hash;
609         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
610         bkt = cfs_hash_bd_extra_get(hs, &bd);
611         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
612         bkt->lsb_busy++;
613         cfs_hash_bd_unlock(hs, &bd, 1);
614         return o;
615 }
616
617 /**
618  * Core logic of lu_object_find*() functions.
619  */
620 static struct lu_object *lu_object_find_try(const struct lu_env *env,
621                                             struct lu_device *dev,
622                                             const struct lu_fid *f,
623                                             const struct lu_object_conf *conf,
624                                             wait_queue_t *waiter)
625 {
626         struct lu_object      *o;
627         struct lu_object      *shadow;
628         struct lu_site  *s;
629         struct cfs_hash     *hs;
630         struct cfs_hash_bd        bd;
631         __u64             version = 0;
632
633         /*
634          * This uses standard index maintenance protocol:
635          *
636          *     - search index under lock, and return object if found;
637          *     - otherwise, unlock index, allocate new object;
638          *     - lock index and search again;
639          *     - if nothing is found (usual case), insert newly created
640          *       object into index;
641          *     - otherwise (race: other thread inserted object), free
642          *       object just allocated.
643          *     - unlock index;
644          *     - return object.
645          *
646          * For "LOC_F_NEW" case, we are sure the object is new established.
647          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
648          * just alloc and insert directly.
649          *
650          * If dying object is found during index search, add @waiter to the
651          * site wait-queue and return ERR_PTR(-EAGAIN).
652          */
653         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
654                 return lu_object_new(env, dev, f, conf);
655
656         s  = dev->ld_site;
657         hs = s->ls_obj_hash;
658         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
659         o = htable_lookup(s, &bd, f, waiter, &version);
660         cfs_hash_bd_unlock(hs, &bd, 1);
661         if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
662                 return o;
663
664         /*
665          * Allocate new object. This may result in rather complicated
666          * operations, including fld queries, inode loading, etc.
667          */
668         o = lu_object_alloc(env, dev, f, conf);
669         if (unlikely(IS_ERR(o)))
670                 return o;
671
672         LASSERT(lu_fid_eq(lu_object_fid(o), f));
673
674         cfs_hash_bd_lock(hs, &bd, 1);
675
676         shadow = htable_lookup(s, &bd, f, waiter, &version);
677         if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
678                 struct lu_site_bkt_data *bkt;
679
680                 bkt = cfs_hash_bd_extra_get(hs, &bd);
681                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
682                 bkt->lsb_busy++;
683                 cfs_hash_bd_unlock(hs, &bd, 1);
684                 return o;
685         }
686
687         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
688         cfs_hash_bd_unlock(hs, &bd, 1);
689         lu_object_free(env, o);
690         return shadow;
691 }
692
693 /**
694  * Much like lu_object_find(), but top level device of object is specifically
695  * \a dev rather than top level device of the site. This interface allows
696  * objects of different "stacking" to be created within the same site.
697  */
698 struct lu_object *lu_object_find_at(const struct lu_env *env,
699                                     struct lu_device *dev,
700                                     const struct lu_fid *f,
701                                     const struct lu_object_conf *conf)
702 {
703         struct lu_site_bkt_data *bkt;
704         struct lu_object        *obj;
705         wait_queue_t       wait;
706
707         while (1) {
708                 obj = lu_object_find_try(env, dev, f, conf, &wait);
709                 if (obj != ERR_PTR(-EAGAIN))
710                         return obj;
711                 /*
712                  * lu_object_find_try() already added waiter into the
713                  * wait queue.
714                  */
715                 schedule();
716                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
717                 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
718         }
719 }
720 EXPORT_SYMBOL(lu_object_find_at);
721
722 /**
723  * Find object with given fid, and return its slice belonging to given device.
724  */
725 struct lu_object *lu_object_find_slice(const struct lu_env *env,
726                                        struct lu_device *dev,
727                                        const struct lu_fid *f,
728                                        const struct lu_object_conf *conf)
729 {
730         struct lu_object *top;
731         struct lu_object *obj;
732
733         top = lu_object_find(env, dev, f, conf);
734         if (!IS_ERR(top)) {
735                 obj = lu_object_locate(top->lo_header, dev->ld_type);
736                 if (obj == NULL)
737                         lu_object_put(env, top);
738         } else
739                 obj = top;
740         return obj;
741 }
742 EXPORT_SYMBOL(lu_object_find_slice);
743
744 /**
745  * Global list of all device types.
746  */
747 static LIST_HEAD(lu_device_types);
748
749 int lu_device_type_init(struct lu_device_type *ldt)
750 {
751         int result = 0;
752
753         INIT_LIST_HEAD(&ldt->ldt_linkage);
754         if (ldt->ldt_ops->ldto_init)
755                 result = ldt->ldt_ops->ldto_init(ldt);
756         if (result == 0)
757                 list_add(&ldt->ldt_linkage, &lu_device_types);
758         return result;
759 }
760 EXPORT_SYMBOL(lu_device_type_init);
761
762 void lu_device_type_fini(struct lu_device_type *ldt)
763 {
764         list_del_init(&ldt->ldt_linkage);
765         if (ldt->ldt_ops->ldto_fini)
766                 ldt->ldt_ops->ldto_fini(ldt);
767 }
768 EXPORT_SYMBOL(lu_device_type_fini);
769
770 void lu_types_stop(void)
771 {
772         struct lu_device_type *ldt;
773
774         list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
775                 if (ldt->ldt_device_nr == 0 && ldt->ldt_ops->ldto_stop)
776                         ldt->ldt_ops->ldto_stop(ldt);
777         }
778 }
779 EXPORT_SYMBOL(lu_types_stop);
780
781 /**
782  * Global list of all sites on this node
783  */
784 static LIST_HEAD(lu_sites);
785 static DEFINE_MUTEX(lu_sites_guard);
786
787 /**
788  * Global environment used by site shrinker.
789  */
790 static struct lu_env lu_shrink_env;
791
792 struct lu_site_print_arg {
793         struct lu_env   *lsp_env;
794         void        *lsp_cookie;
795         lu_printer_t     lsp_printer;
796 };
797
798 static int
799 lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
800                   struct hlist_node *hnode, void *data)
801 {
802         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
803         struct lu_object_header  *h;
804
805         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
806         if (!list_empty(&h->loh_layers)) {
807                 const struct lu_object *o;
808
809                 o = lu_object_top(h);
810                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
811                                 arg->lsp_printer, o);
812         } else {
813                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
814                                        arg->lsp_printer, h);
815         }
816         return 0;
817 }
818
819 /**
820  * Print all objects in \a s.
821  */
822 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
823                    lu_printer_t printer)
824 {
825         struct lu_site_print_arg arg = {
826                 .lsp_env     = (struct lu_env *)env,
827                 .lsp_cookie  = cookie,
828                 .lsp_printer = printer,
829         };
830
831         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
832 }
833 EXPORT_SYMBOL(lu_site_print);
834
835 enum {
836         LU_CACHE_PERCENT_MAX     = 50,
837         LU_CACHE_PERCENT_DEFAULT = 20
838 };
839
840 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
841 module_param(lu_cache_percent, int, 0644);
842 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
843
844 /**
845  * Return desired hash table order.
846  */
847 static int lu_htable_order(void)
848 {
849         unsigned long cache_size;
850         int bits;
851
852         /*
853          * Calculate hash table size, assuming that we want reasonable
854          * performance when 20% of total memory is occupied by cache of
855          * lu_objects.
856          *
857          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
858          */
859         cache_size = totalram_pages;
860
861 #if BITS_PER_LONG == 32
862         /* limit hashtable size for lowmem systems to low RAM */
863         if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
864                 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
865 #endif
866
867         /* clear off unreasonable cache setting. */
868         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
869                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
870                       " the range of (0, %u]. Will use default value: %u.\n",
871                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
872                       LU_CACHE_PERCENT_DEFAULT);
873
874                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
875         }
876         cache_size = cache_size / 100 * lu_cache_percent *
877                 (PAGE_CACHE_SIZE / 1024);
878
879         for (bits = 1; (1 << bits) < cache_size; ++bits) {
880                 ;
881         }
882         return bits;
883 }
884
885 static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
886                                 const void *key, unsigned mask)
887 {
888         struct lu_fid  *fid = (struct lu_fid *)key;
889         __u32      hash;
890
891         hash = fid_flatten32(fid);
892         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
893         hash = hash_long(hash, hs->hs_bkt_bits);
894
895         /* give me another random factor */
896         hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
897
898         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
899         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
900
901         return hash & mask;
902 }
903
904 static void *lu_obj_hop_object(struct hlist_node *hnode)
905 {
906         return hlist_entry(hnode, struct lu_object_header, loh_hash);
907 }
908
909 static void *lu_obj_hop_key(struct hlist_node *hnode)
910 {
911         struct lu_object_header *h;
912
913         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
914         return &h->loh_fid;
915 }
916
917 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
918 {
919         struct lu_object_header *h;
920
921         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
922         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
923 }
924
925 static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
926 {
927         struct lu_object_header *h;
928
929         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
930         if (atomic_add_return(1, &h->loh_ref) == 1) {
931                 struct lu_site_bkt_data *bkt;
932                 struct cfs_hash_bd          bd;
933
934                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
935                 bkt = cfs_hash_bd_extra_get(hs, &bd);
936                 bkt->lsb_busy++;
937         }
938 }
939
940 static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
941 {
942         LBUG(); /* we should never called it */
943 }
944
945 cfs_hash_ops_t lu_site_hash_ops = {
946         .hs_hash        = lu_obj_hop_hash,
947         .hs_key  = lu_obj_hop_key,
948         .hs_keycmp      = lu_obj_hop_keycmp,
949         .hs_object      = lu_obj_hop_object,
950         .hs_get  = lu_obj_hop_get,
951         .hs_put_locked  = lu_obj_hop_put_locked,
952 };
953
954 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
955 {
956         spin_lock(&s->ls_ld_lock);
957         if (list_empty(&d->ld_linkage))
958                 list_add(&d->ld_linkage, &s->ls_ld_linkage);
959         spin_unlock(&s->ls_ld_lock);
960 }
961 EXPORT_SYMBOL(lu_dev_add_linkage);
962
963 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
964 {
965         spin_lock(&s->ls_ld_lock);
966         list_del_init(&d->ld_linkage);
967         spin_unlock(&s->ls_ld_lock);
968 }
969 EXPORT_SYMBOL(lu_dev_del_linkage);
970
971 /**
972  * Initialize site \a s, with \a d as the top level device.
973  */
974 #define LU_SITE_BITS_MIN    12
975 #define LU_SITE_BITS_MAX    24
976 /**
977  * total 256 buckets, we don't want too many buckets because:
978  * - consume too much memory
979  * - avoid unbalanced LRU list
980  */
981 #define LU_SITE_BKT_BITS    8
982
983 int lu_site_init(struct lu_site *s, struct lu_device *top)
984 {
985         struct lu_site_bkt_data *bkt;
986         struct cfs_hash_bd bd;
987         char name[16];
988         int bits;
989         int i;
990
991         memset(s, 0, sizeof(*s));
992         bits = lu_htable_order();
993         snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
994         for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
995              bits >= LU_SITE_BITS_MIN; bits--) {
996                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
997                                                  bits - LU_SITE_BKT_BITS,
998                                                  sizeof(*bkt), 0, 0,
999                                                  &lu_site_hash_ops,
1000                                                  CFS_HASH_SPIN_BKTLOCK |
1001                                                  CFS_HASH_NO_ITEMREF |
1002                                                  CFS_HASH_DEPTH |
1003                                                  CFS_HASH_ASSERT_EMPTY);
1004                 if (s->ls_obj_hash != NULL)
1005                         break;
1006         }
1007
1008         if (s->ls_obj_hash == NULL) {
1009                 CERROR("failed to create lu_site hash with bits: %d\n", bits);
1010                 return -ENOMEM;
1011         }
1012
1013         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1014                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1015                 INIT_LIST_HEAD(&bkt->lsb_lru);
1016                 init_waitqueue_head(&bkt->lsb_marche_funebre);
1017         }
1018
1019         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1020         if (s->ls_stats == NULL) {
1021                 cfs_hash_putref(s->ls_obj_hash);
1022                 s->ls_obj_hash = NULL;
1023                 return -ENOMEM;
1024         }
1025
1026         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1027                              0, "created", "created");
1028         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1029                              0, "cache_hit", "cache_hit");
1030         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1031                              0, "cache_miss", "cache_miss");
1032         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1033                              0, "cache_race", "cache_race");
1034         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1035                              0, "cache_death_race", "cache_death_race");
1036         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1037                              0, "lru_purged", "lru_purged");
1038
1039         INIT_LIST_HEAD(&s->ls_linkage);
1040         s->ls_top_dev = top;
1041         top->ld_site = s;
1042         lu_device_get(top);
1043         lu_ref_add(&top->ld_reference, "site-top", s);
1044
1045         INIT_LIST_HEAD(&s->ls_ld_linkage);
1046         spin_lock_init(&s->ls_ld_lock);
1047
1048         lu_dev_add_linkage(s, top);
1049
1050         return 0;
1051 }
1052 EXPORT_SYMBOL(lu_site_init);
1053
1054 /**
1055  * Finalize \a s and release its resources.
1056  */
1057 void lu_site_fini(struct lu_site *s)
1058 {
1059         mutex_lock(&lu_sites_guard);
1060         list_del_init(&s->ls_linkage);
1061         mutex_unlock(&lu_sites_guard);
1062
1063         if (s->ls_obj_hash != NULL) {
1064                 cfs_hash_putref(s->ls_obj_hash);
1065                 s->ls_obj_hash = NULL;
1066         }
1067
1068         if (s->ls_top_dev != NULL) {
1069                 s->ls_top_dev->ld_site = NULL;
1070                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1071                 lu_device_put(s->ls_top_dev);
1072                 s->ls_top_dev = NULL;
1073         }
1074
1075         if (s->ls_stats != NULL)
1076                 lprocfs_free_stats(&s->ls_stats);
1077 }
1078 EXPORT_SYMBOL(lu_site_fini);
1079
1080 /**
1081  * Called when initialization of stack for this site is completed.
1082  */
1083 int lu_site_init_finish(struct lu_site *s)
1084 {
1085         int result;
1086         mutex_lock(&lu_sites_guard);
1087         result = lu_context_refill(&lu_shrink_env.le_ctx);
1088         if (result == 0)
1089                 list_add(&s->ls_linkage, &lu_sites);
1090         mutex_unlock(&lu_sites_guard);
1091         return result;
1092 }
1093 EXPORT_SYMBOL(lu_site_init_finish);
1094
1095 /**
1096  * Acquire additional reference on device \a d
1097  */
1098 void lu_device_get(struct lu_device *d)
1099 {
1100         atomic_inc(&d->ld_ref);
1101 }
1102 EXPORT_SYMBOL(lu_device_get);
1103
1104 /**
1105  * Release reference on device \a d.
1106  */
1107 void lu_device_put(struct lu_device *d)
1108 {
1109         LASSERT(atomic_read(&d->ld_ref) > 0);
1110         atomic_dec(&d->ld_ref);
1111 }
1112 EXPORT_SYMBOL(lu_device_put);
1113
1114 /**
1115  * Initialize device \a d of type \a t.
1116  */
1117 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1118 {
1119         if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1120                 t->ldt_ops->ldto_start(t);
1121         memset(d, 0, sizeof(*d));
1122         atomic_set(&d->ld_ref, 0);
1123         d->ld_type = t;
1124         lu_ref_init(&d->ld_reference);
1125         INIT_LIST_HEAD(&d->ld_linkage);
1126         return 0;
1127 }
1128 EXPORT_SYMBOL(lu_device_init);
1129
1130 /**
1131  * Finalize device \a d.
1132  */
1133 void lu_device_fini(struct lu_device *d)
1134 {
1135         struct lu_device_type *t;
1136
1137         t = d->ld_type;
1138         if (d->ld_obd != NULL) {
1139                 d->ld_obd->obd_lu_dev = NULL;
1140                 d->ld_obd = NULL;
1141         }
1142
1143         lu_ref_fini(&d->ld_reference);
1144         LASSERTF(atomic_read(&d->ld_ref) == 0,
1145                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1146         LASSERT(t->ldt_device_nr > 0);
1147         if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1148                 t->ldt_ops->ldto_stop(t);
1149 }
1150 EXPORT_SYMBOL(lu_device_fini);
1151
1152 /**
1153  * Initialize object \a o that is part of compound object \a h and was created
1154  * by device \a d.
1155  */
1156 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1157                    struct lu_device *d)
1158 {
1159         memset(o, 0, sizeof(*o));
1160         o->lo_header = h;
1161         o->lo_dev = d;
1162         lu_device_get(d);
1163         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1164         INIT_LIST_HEAD(&o->lo_linkage);
1165
1166         return 0;
1167 }
1168 EXPORT_SYMBOL(lu_object_init);
1169
1170 /**
1171  * Finalize object and release its resources.
1172  */
1173 void lu_object_fini(struct lu_object *o)
1174 {
1175         struct lu_device *dev = o->lo_dev;
1176
1177         LASSERT(list_empty(&o->lo_linkage));
1178
1179         if (dev != NULL) {
1180                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1181                               "lu_object", o);
1182                 lu_device_put(dev);
1183                 o->lo_dev = NULL;
1184         }
1185 }
1186 EXPORT_SYMBOL(lu_object_fini);
1187
1188 /**
1189  * Add object \a o as first layer of compound object \a h
1190  *
1191  * This is typically called by the ->ldo_object_alloc() method of top-level
1192  * device.
1193  */
1194 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1195 {
1196         list_move(&o->lo_linkage, &h->loh_layers);
1197 }
1198 EXPORT_SYMBOL(lu_object_add_top);
1199
1200 /**
1201  * Add object \a o as a layer of compound object, going after \a before.
1202  *
1203  * This is typically called by the ->ldo_object_alloc() method of \a
1204  * before->lo_dev.
1205  */
1206 void lu_object_add(struct lu_object *before, struct lu_object *o)
1207 {
1208         list_move(&o->lo_linkage, &before->lo_linkage);
1209 }
1210 EXPORT_SYMBOL(lu_object_add);
1211
1212 /**
1213  * Initialize compound object.
1214  */
1215 int lu_object_header_init(struct lu_object_header *h)
1216 {
1217         memset(h, 0, sizeof(*h));
1218         atomic_set(&h->loh_ref, 1);
1219         INIT_HLIST_NODE(&h->loh_hash);
1220         INIT_LIST_HEAD(&h->loh_lru);
1221         INIT_LIST_HEAD(&h->loh_layers);
1222         lu_ref_init(&h->loh_reference);
1223         return 0;
1224 }
1225 EXPORT_SYMBOL(lu_object_header_init);
1226
1227 /**
1228  * Finalize compound object.
1229  */
1230 void lu_object_header_fini(struct lu_object_header *h)
1231 {
1232         LASSERT(list_empty(&h->loh_layers));
1233         LASSERT(list_empty(&h->loh_lru));
1234         LASSERT(hlist_unhashed(&h->loh_hash));
1235         lu_ref_fini(&h->loh_reference);
1236 }
1237 EXPORT_SYMBOL(lu_object_header_fini);
1238
1239 /**
1240  * Given a compound object, find its slice, corresponding to the device type
1241  * \a dtype.
1242  */
1243 struct lu_object *lu_object_locate(struct lu_object_header *h,
1244                                    const struct lu_device_type *dtype)
1245 {
1246         struct lu_object *o;
1247
1248         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1249                 if (o->lo_dev->ld_type == dtype)
1250                         return o;
1251         }
1252         return NULL;
1253 }
1254 EXPORT_SYMBOL(lu_object_locate);
1255
1256
1257
1258 /**
1259  * Finalize and free devices in the device stack.
1260  *
1261  * Finalize device stack by purging object cache, and calling
1262  * lu_device_type_operations::ldto_device_fini() and
1263  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1264  */
1265 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1266 {
1267         struct lu_site   *site = top->ld_site;
1268         struct lu_device *scan;
1269         struct lu_device *next;
1270
1271         lu_site_purge(env, site, ~0);
1272         for (scan = top; scan != NULL; scan = next) {
1273                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1274                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1275                 lu_device_put(scan);
1276         }
1277
1278         /* purge again. */
1279         lu_site_purge(env, site, ~0);
1280
1281         for (scan = top; scan != NULL; scan = next) {
1282                 const struct lu_device_type *ldt = scan->ld_type;
1283                 struct obd_type      *type;
1284
1285                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1286                 type = ldt->ldt_obd_type;
1287                 if (type != NULL) {
1288                         type->typ_refcnt--;
1289                         class_put_type(type);
1290                 }
1291         }
1292 }
1293 EXPORT_SYMBOL(lu_stack_fini);
1294
1295 enum {
1296         /**
1297          * Maximal number of tld slots.
1298          */
1299         LU_CONTEXT_KEY_NR = 40
1300 };
1301
1302 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1303
1304 static DEFINE_SPINLOCK(lu_keys_guard);
1305
1306 /**
1307  * Global counter incremented whenever key is registered, unregistered,
1308  * revived or quiesced. This is used to void unnecessary calls to
1309  * lu_context_refill(). No locking is provided, as initialization and shutdown
1310  * are supposed to be externally serialized.
1311  */
1312 static unsigned key_set_version = 0;
1313
1314 /**
1315  * Register new key.
1316  */
1317 int lu_context_key_register(struct lu_context_key *key)
1318 {
1319         int result;
1320         int i;
1321
1322         LASSERT(key->lct_init != NULL);
1323         LASSERT(key->lct_fini != NULL);
1324         LASSERT(key->lct_tags != 0);
1325
1326         result = -ENFILE;
1327         spin_lock(&lu_keys_guard);
1328         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1329                 if (lu_keys[i] == NULL) {
1330                         key->lct_index = i;
1331                         atomic_set(&key->lct_used, 1);
1332                         lu_keys[i] = key;
1333                         lu_ref_init(&key->lct_reference);
1334                         result = 0;
1335                         ++key_set_version;
1336                         break;
1337                 }
1338         }
1339         spin_unlock(&lu_keys_guard);
1340         return result;
1341 }
1342 EXPORT_SYMBOL(lu_context_key_register);
1343
1344 static void key_fini(struct lu_context *ctx, int index)
1345 {
1346         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1347                 struct lu_context_key *key;
1348
1349                 key = lu_keys[index];
1350                 LASSERT(key != NULL);
1351                 LASSERT(key->lct_fini != NULL);
1352                 LASSERT(atomic_read(&key->lct_used) > 1);
1353
1354                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1355                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1356                 atomic_dec(&key->lct_used);
1357
1358                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1359 #ifdef CONFIG_MODULE_UNLOAD
1360                         LINVRNT(module_refcount(key->lct_owner) > 0);
1361 #endif
1362                         module_put(key->lct_owner);
1363                 }
1364                 ctx->lc_value[index] = NULL;
1365         }
1366 }
1367
1368 /**
1369  * Deregister key.
1370  */
1371 void lu_context_key_degister(struct lu_context_key *key)
1372 {
1373         LASSERT(atomic_read(&key->lct_used) >= 1);
1374         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1375
1376         lu_context_key_quiesce(key);
1377
1378         ++key_set_version;
1379         spin_lock(&lu_keys_guard);
1380         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1381         if (lu_keys[key->lct_index]) {
1382                 lu_keys[key->lct_index] = NULL;
1383                 lu_ref_fini(&key->lct_reference);
1384         }
1385         spin_unlock(&lu_keys_guard);
1386
1387         LASSERTF(atomic_read(&key->lct_used) == 1,
1388                  "key has instances: %d\n",
1389                  atomic_read(&key->lct_used));
1390 }
1391 EXPORT_SYMBOL(lu_context_key_degister);
1392
1393 /**
1394  * Register a number of keys. This has to be called after all keys have been
1395  * initialized by a call to LU_CONTEXT_KEY_INIT().
1396  */
1397 int lu_context_key_register_many(struct lu_context_key *k, ...)
1398 {
1399         struct lu_context_key *key = k;
1400         va_list args;
1401         int result;
1402
1403         va_start(args, k);
1404         do {
1405                 result = lu_context_key_register(key);
1406                 if (result)
1407                         break;
1408                 key = va_arg(args, struct lu_context_key *);
1409         } while (key != NULL);
1410         va_end(args);
1411
1412         if (result != 0) {
1413                 va_start(args, k);
1414                 while (k != key) {
1415                         lu_context_key_degister(k);
1416                         k = va_arg(args, struct lu_context_key *);
1417                 }
1418                 va_end(args);
1419         }
1420
1421         return result;
1422 }
1423 EXPORT_SYMBOL(lu_context_key_register_many);
1424
1425 /**
1426  * De-register a number of keys. This is a dual to
1427  * lu_context_key_register_many().
1428  */
1429 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1430 {
1431         va_list args;
1432
1433         va_start(args, k);
1434         do {
1435                 lu_context_key_degister(k);
1436                 k = va_arg(args, struct lu_context_key*);
1437         } while (k != NULL);
1438         va_end(args);
1439 }
1440 EXPORT_SYMBOL(lu_context_key_degister_many);
1441
1442 /**
1443  * Revive a number of keys.
1444  */
1445 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1446 {
1447         va_list args;
1448
1449         va_start(args, k);
1450         do {
1451                 lu_context_key_revive(k);
1452                 k = va_arg(args, struct lu_context_key*);
1453         } while (k != NULL);
1454         va_end(args);
1455 }
1456 EXPORT_SYMBOL(lu_context_key_revive_many);
1457
1458 /**
1459  * Quiescent a number of keys.
1460  */
1461 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1462 {
1463         va_list args;
1464
1465         va_start(args, k);
1466         do {
1467                 lu_context_key_quiesce(k);
1468                 k = va_arg(args, struct lu_context_key*);
1469         } while (k != NULL);
1470         va_end(args);
1471 }
1472 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1473
1474 /**
1475  * Return value associated with key \a key in context \a ctx.
1476  */
1477 void *lu_context_key_get(const struct lu_context *ctx,
1478                          const struct lu_context_key *key)
1479 {
1480         LINVRNT(ctx->lc_state == LCS_ENTERED);
1481         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1482         LASSERT(lu_keys[key->lct_index] == key);
1483         return ctx->lc_value[key->lct_index];
1484 }
1485 EXPORT_SYMBOL(lu_context_key_get);
1486
1487 /**
1488  * List of remembered contexts. XXX document me.
1489  */
1490 static LIST_HEAD(lu_context_remembered);
1491
1492 /**
1493  * Destroy \a key in all remembered contexts. This is used to destroy key
1494  * values in "shared" contexts (like service threads), when a module owning
1495  * the key is about to be unloaded.
1496  */
1497 void lu_context_key_quiesce(struct lu_context_key *key)
1498 {
1499         struct lu_context *ctx;
1500
1501         if (!(key->lct_tags & LCT_QUIESCENT)) {
1502                 /*
1503                  * XXX layering violation.
1504                  */
1505                 key->lct_tags |= LCT_QUIESCENT;
1506                 /*
1507                  * XXX memory barrier has to go here.
1508                  */
1509                 spin_lock(&lu_keys_guard);
1510                 list_for_each_entry(ctx, &lu_context_remembered,
1511                                         lc_remember)
1512                         key_fini(ctx, key->lct_index);
1513                 spin_unlock(&lu_keys_guard);
1514                 ++key_set_version;
1515         }
1516 }
1517 EXPORT_SYMBOL(lu_context_key_quiesce);
1518
1519 void lu_context_key_revive(struct lu_context_key *key)
1520 {
1521         key->lct_tags &= ~LCT_QUIESCENT;
1522         ++key_set_version;
1523 }
1524 EXPORT_SYMBOL(lu_context_key_revive);
1525
1526 static void keys_fini(struct lu_context *ctx)
1527 {
1528         int     i;
1529
1530         if (ctx->lc_value == NULL)
1531                 return;
1532
1533         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1534                 key_fini(ctx, i);
1535
1536         OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
1537         ctx->lc_value = NULL;
1538 }
1539
1540 static int keys_fill(struct lu_context *ctx)
1541 {
1542         int i;
1543
1544         LINVRNT(ctx->lc_value != NULL);
1545         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1546                 struct lu_context_key *key;
1547
1548                 key = lu_keys[i];
1549                 if (ctx->lc_value[i] == NULL && key != NULL &&
1550                     (key->lct_tags & ctx->lc_tags) &&
1551                     /*
1552                      * Don't create values for a LCT_QUIESCENT key, as this
1553                      * will pin module owning a key.
1554                      */
1555                     !(key->lct_tags & LCT_QUIESCENT)) {
1556                         void *value;
1557
1558                         LINVRNT(key->lct_init != NULL);
1559                         LINVRNT(key->lct_index == i);
1560
1561                         value = key->lct_init(ctx, key);
1562                         if (unlikely(IS_ERR(value)))
1563                                 return PTR_ERR(value);
1564
1565                         if (!(ctx->lc_tags & LCT_NOREF))
1566                                 try_module_get(key->lct_owner);
1567                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1568                         atomic_inc(&key->lct_used);
1569                         /*
1570                          * This is the only place in the code, where an
1571                          * element of ctx->lc_value[] array is set to non-NULL
1572                          * value.
1573                          */
1574                         ctx->lc_value[i] = value;
1575                         if (key->lct_exit != NULL)
1576                                 ctx->lc_tags |= LCT_HAS_EXIT;
1577                 }
1578                 ctx->lc_version = key_set_version;
1579         }
1580         return 0;
1581 }
1582
1583 static int keys_init(struct lu_context *ctx)
1584 {
1585         OBD_ALLOC(ctx->lc_value,
1586                   ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
1587         if (likely(ctx->lc_value != NULL))
1588                 return keys_fill(ctx);
1589
1590         return -ENOMEM;
1591 }
1592
1593 /**
1594  * Initialize context data-structure. Create values for all keys.
1595  */
1596 int lu_context_init(struct lu_context *ctx, __u32 tags)
1597 {
1598         int     rc;
1599
1600         memset(ctx, 0, sizeof(*ctx));
1601         ctx->lc_state = LCS_INITIALIZED;
1602         ctx->lc_tags = tags;
1603         if (tags & LCT_REMEMBER) {
1604                 spin_lock(&lu_keys_guard);
1605                 list_add(&ctx->lc_remember, &lu_context_remembered);
1606                 spin_unlock(&lu_keys_guard);
1607         } else {
1608                 INIT_LIST_HEAD(&ctx->lc_remember);
1609         }
1610
1611         rc = keys_init(ctx);
1612         if (rc != 0)
1613                 lu_context_fini(ctx);
1614
1615         return rc;
1616 }
1617 EXPORT_SYMBOL(lu_context_init);
1618
1619 /**
1620  * Finalize context data-structure. Destroy key values.
1621  */
1622 void lu_context_fini(struct lu_context *ctx)
1623 {
1624         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1625         ctx->lc_state = LCS_FINALIZED;
1626
1627         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1628                 LASSERT(list_empty(&ctx->lc_remember));
1629                 keys_fini(ctx);
1630
1631         } else { /* could race with key degister */
1632                 spin_lock(&lu_keys_guard);
1633                 keys_fini(ctx);
1634                 list_del_init(&ctx->lc_remember);
1635                 spin_unlock(&lu_keys_guard);
1636         }
1637 }
1638 EXPORT_SYMBOL(lu_context_fini);
1639
1640 /**
1641  * Called before entering context.
1642  */
1643 void lu_context_enter(struct lu_context *ctx)
1644 {
1645         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1646         ctx->lc_state = LCS_ENTERED;
1647 }
1648 EXPORT_SYMBOL(lu_context_enter);
1649
1650 /**
1651  * Called after exiting from \a ctx
1652  */
1653 void lu_context_exit(struct lu_context *ctx)
1654 {
1655         int i;
1656
1657         LINVRNT(ctx->lc_state == LCS_ENTERED);
1658         ctx->lc_state = LCS_LEFT;
1659         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1660                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1661                         if (ctx->lc_value[i] != NULL) {
1662                                 struct lu_context_key *key;
1663
1664                                 key = lu_keys[i];
1665                                 LASSERT(key != NULL);
1666                                 if (key->lct_exit != NULL)
1667                                         key->lct_exit(ctx,
1668                                                       key, ctx->lc_value[i]);
1669                         }
1670                 }
1671         }
1672 }
1673 EXPORT_SYMBOL(lu_context_exit);
1674
1675 /**
1676  * Allocate for context all missing keys that were registered after context
1677  * creation. key_set_version is only changed in rare cases when modules
1678  * are loaded and removed.
1679  */
1680 int lu_context_refill(struct lu_context *ctx)
1681 {
1682         return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1683 }
1684 EXPORT_SYMBOL(lu_context_refill);
1685
1686 /**
1687  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1688  * obd being added. Currently, this is only used on client side, specifically
1689  * for echo device client, for other stack (like ptlrpc threads), context are
1690  * predefined when the lu_device type are registered, during the module probe
1691  * phase.
1692  */
1693 __u32 lu_context_tags_default = 0;
1694 __u32 lu_session_tags_default = 0;
1695
1696 void lu_context_tags_update(__u32 tags)
1697 {
1698         spin_lock(&lu_keys_guard);
1699         lu_context_tags_default |= tags;
1700         key_set_version++;
1701         spin_unlock(&lu_keys_guard);
1702 }
1703 EXPORT_SYMBOL(lu_context_tags_update);
1704
1705 void lu_context_tags_clear(__u32 tags)
1706 {
1707         spin_lock(&lu_keys_guard);
1708         lu_context_tags_default &= ~tags;
1709         key_set_version++;
1710         spin_unlock(&lu_keys_guard);
1711 }
1712 EXPORT_SYMBOL(lu_context_tags_clear);
1713
1714 void lu_session_tags_update(__u32 tags)
1715 {
1716         spin_lock(&lu_keys_guard);
1717         lu_session_tags_default |= tags;
1718         key_set_version++;
1719         spin_unlock(&lu_keys_guard);
1720 }
1721 EXPORT_SYMBOL(lu_session_tags_update);
1722
1723 void lu_session_tags_clear(__u32 tags)
1724 {
1725         spin_lock(&lu_keys_guard);
1726         lu_session_tags_default &= ~tags;
1727         key_set_version++;
1728         spin_unlock(&lu_keys_guard);
1729 }
1730 EXPORT_SYMBOL(lu_session_tags_clear);
1731
1732 int lu_env_init(struct lu_env *env, __u32 tags)
1733 {
1734         int result;
1735
1736         env->le_ses = NULL;
1737         result = lu_context_init(&env->le_ctx, tags);
1738         if (likely(result == 0))
1739                 lu_context_enter(&env->le_ctx);
1740         return result;
1741 }
1742 EXPORT_SYMBOL(lu_env_init);
1743
1744 void lu_env_fini(struct lu_env *env)
1745 {
1746         lu_context_exit(&env->le_ctx);
1747         lu_context_fini(&env->le_ctx);
1748         env->le_ses = NULL;
1749 }
1750 EXPORT_SYMBOL(lu_env_fini);
1751
1752 int lu_env_refill(struct lu_env *env)
1753 {
1754         int result;
1755
1756         result = lu_context_refill(&env->le_ctx);
1757         if (result == 0 && env->le_ses != NULL)
1758                 result = lu_context_refill(env->le_ses);
1759         return result;
1760 }
1761 EXPORT_SYMBOL(lu_env_refill);
1762
1763 /**
1764  * Currently, this API will only be used by echo client.
1765  * Because echo client and normal lustre client will share
1766  * same cl_env cache. So echo client needs to refresh
1767  * the env context after it get one from the cache, especially
1768  * when normal client and echo client co-exist in the same client.
1769  */
1770 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1771                           __u32 stags)
1772 {
1773         int    result;
1774
1775         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1776                 env->le_ctx.lc_version = 0;
1777                 env->le_ctx.lc_tags |= ctags;
1778         }
1779
1780         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1781                 env->le_ses->lc_version = 0;
1782                 env->le_ses->lc_tags |= stags;
1783         }
1784
1785         result = lu_env_refill(env);
1786
1787         return result;
1788 }
1789 EXPORT_SYMBOL(lu_env_refill_by_tags);
1790
1791
1792 typedef struct lu_site_stats{
1793         unsigned        lss_populated;
1794         unsigned        lss_max_search;
1795         unsigned        lss_total;
1796         unsigned        lss_busy;
1797 } lu_site_stats_t;
1798
1799 static void lu_site_stats_get(struct cfs_hash *hs,
1800                               lu_site_stats_t *stats, int populated)
1801 {
1802         struct cfs_hash_bd bd;
1803         int        i;
1804
1805         cfs_hash_for_each_bucket(hs, &bd, i) {
1806                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1807                 struct hlist_head       *hhead;
1808
1809                 cfs_hash_bd_lock(hs, &bd, 1);
1810                 stats->lss_busy  += bkt->lsb_busy;
1811                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1812                 stats->lss_max_search = max((int)stats->lss_max_search,
1813                                             cfs_hash_bd_depmax_get(&bd));
1814                 if (!populated) {
1815                         cfs_hash_bd_unlock(hs, &bd, 1);
1816                         continue;
1817                 }
1818
1819                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1820                         if (!hlist_empty(hhead))
1821                                 stats->lss_populated++;
1822                 }
1823                 cfs_hash_bd_unlock(hs, &bd, 1);
1824         }
1825 }
1826
1827
1828 /*
1829  * There exists a potential lock inversion deadlock scenario when using
1830  * Lustre on top of ZFS. This occurs between one of ZFS's
1831  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
1832  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
1833  * while thread B will take the ht_lock and sleep on the lu_sites_guard
1834  * lock. Obviously neither thread will wake and drop their respective hold
1835  * on their lock.
1836  *
1837  * To prevent this from happening we must ensure the lu_sites_guard lock is
1838  * not taken while down this code path. ZFS reliably does not set the
1839  * __GFP_FS bit in its code paths, so this can be used to determine if it
1840  * is safe to take the lu_sites_guard lock.
1841  *
1842  * Ideally we should accurately return the remaining number of cached
1843  * objects without taking the  lu_sites_guard lock, but this is not
1844  * possible in the current implementation.
1845  */
1846 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1847                                            struct shrink_control *sc)
1848 {
1849         lu_site_stats_t stats;
1850         struct lu_site *s;
1851         struct lu_site *tmp;
1852         unsigned long cached = 0;
1853
1854         if (!(sc->gfp_mask & __GFP_FS))
1855                 return 0;
1856
1857         mutex_lock(&lu_sites_guard);
1858         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1859                 memset(&stats, 0, sizeof(stats));
1860                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1861                 cached += stats.lss_total - stats.lss_busy;
1862         }
1863         mutex_unlock(&lu_sites_guard);
1864
1865         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1866         CDEBUG(D_INODE, "%ld objects cached\n", cached);
1867         return cached;
1868 }
1869
1870 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1871                                           struct shrink_control *sc)
1872 {
1873         struct lu_site *s;
1874         struct lu_site *tmp;
1875         unsigned long remain = sc->nr_to_scan, freed = 0;
1876         LIST_HEAD(splice);
1877
1878         if (!(sc->gfp_mask & __GFP_FS))
1879                 /* We must not take the lu_sites_guard lock when
1880                  * __GFP_FS is *not* set because of the deadlock
1881                  * possibility detailed above. Additionally,
1882                  * since we cannot determine the number of
1883                  * objects in the cache without taking this
1884                  * lock, we're in a particularly tough spot. As
1885                  * a result, we'll just lie and say our cache is
1886                  * empty. This _should_ be ok, as we can't
1887                  * reclaim objects when __GFP_FS is *not* set
1888                  * anyways.
1889                  */
1890                 return SHRINK_STOP;
1891
1892         mutex_lock(&lu_sites_guard);
1893         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1894                 freed = lu_site_purge(&lu_shrink_env, s, remain);
1895                 remain -= freed;
1896                 /*
1897                  * Move just shrunk site to the tail of site list to
1898                  * assure shrinking fairness.
1899                  */
1900                 list_move_tail(&s->ls_linkage, &splice);
1901         }
1902         list_splice(&splice, lu_sites.prev);
1903         mutex_unlock(&lu_sites_guard);
1904
1905         return sc->nr_to_scan - remain;
1906 }
1907
1908 /*
1909  * Debugging stuff.
1910  */
1911
1912 /**
1913  * Environment to be used in debugger, contains all tags.
1914  */
1915 struct lu_env lu_debugging_env;
1916
1917 /**
1918  * Debugging printer function using printk().
1919  */
1920 int lu_printk_printer(const struct lu_env *env,
1921                       void *unused, const char *format, ...)
1922 {
1923         va_list args;
1924
1925         va_start(args, format);
1926         vprintk(format, args);
1927         va_end(args);
1928         return 0;
1929 }
1930
1931 static struct shrinker lu_site_shrinker = {
1932         .count_objects  = lu_cache_shrink_count,
1933         .scan_objects   = lu_cache_shrink_scan,
1934         .seeks          = DEFAULT_SEEKS,
1935 };
1936
1937 /**
1938  * Initialization of global lu_* data.
1939  */
1940 int lu_global_init(void)
1941 {
1942         int result;
1943
1944         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1945
1946         result = lu_ref_global_init();
1947         if (result != 0)
1948                 return result;
1949
1950         LU_CONTEXT_KEY_INIT(&lu_global_key);
1951         result = lu_context_key_register(&lu_global_key);
1952         if (result != 0)
1953                 return result;
1954
1955         /*
1956          * At this level, we don't know what tags are needed, so allocate them
1957          * conservatively. This should not be too bad, because this
1958          * environment is global.
1959          */
1960         mutex_lock(&lu_sites_guard);
1961         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1962         mutex_unlock(&lu_sites_guard);
1963         if (result != 0)
1964                 return result;
1965
1966         /*
1967          * seeks estimation: 3 seeks to read a record from oi, one to read
1968          * inode, one for ea. Unfortunately setting this high value results in
1969          * lu_object/inode cache consuming all the memory.
1970          */
1971         register_shrinker(&lu_site_shrinker);
1972
1973         return result;
1974 }
1975
1976 /**
1977  * Dual to lu_global_init().
1978  */
1979 void lu_global_fini(void)
1980 {
1981         unregister_shrinker(&lu_site_shrinker);
1982         lu_context_key_degister(&lu_global_key);
1983
1984         /*
1985          * Tear shrinker environment down _after_ de-registering
1986          * lu_global_key, because the latter has a value in the former.
1987          */
1988         mutex_lock(&lu_sites_guard);
1989         lu_env_fini(&lu_shrink_env);
1990         mutex_unlock(&lu_sites_guard);
1991
1992         lu_ref_global_fini();
1993 }
1994
1995 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1996 {
1997 #if defined (CONFIG_PROC_FS)
1998         struct lprocfs_counter ret;
1999
2000         lprocfs_stats_collect(stats, idx, &ret);
2001         return (__u32)ret.lc_count;
2002 #else
2003         return 0;
2004 #endif
2005 }
2006
2007 /**
2008  * Output site statistical counters into a buffer. Suitable for
2009  * lprocfs_rd_*()-style functions.
2010  */
2011 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m)
2012 {
2013         lu_site_stats_t stats;
2014
2015         memset(&stats, 0, sizeof(stats));
2016         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2017
2018         return seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2019                         stats.lss_busy,
2020                         stats.lss_total,
2021                         stats.lss_populated,
2022                         CFS_HASH_NHLIST(s->ls_obj_hash),
2023                         stats.lss_max_search,
2024                         ls_stats_read(s->ls_stats, LU_SS_CREATED),
2025                         ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2026                         ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2027                         ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2028                         ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2029                         ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2030 }
2031 EXPORT_SYMBOL(lu_site_stats_print);
2032
2033 /**
2034  * Helper function to initialize a number of kmem slab caches at once.
2035  */
2036 int lu_kmem_init(struct lu_kmem_descr *caches)
2037 {
2038         int result;
2039         struct lu_kmem_descr *iter = caches;
2040
2041         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2042                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2043                                                         iter->ckd_size,
2044                                                         0, 0, NULL);
2045                 if (*iter->ckd_cache == NULL) {
2046                         result = -ENOMEM;
2047                         /* free all previously allocated caches */
2048                         lu_kmem_fini(caches);
2049                         break;
2050                 }
2051         }
2052         return result;
2053 }
2054 EXPORT_SYMBOL(lu_kmem_init);
2055
2056 /**
2057  * Helper function to finalize a number of kmem slab cached at once. Dual to
2058  * lu_kmem_init().
2059  */
2060 void lu_kmem_fini(struct lu_kmem_descr *caches)
2061 {
2062         for (; caches->ckd_cache != NULL; ++caches) {
2063                 if (*caches->ckd_cache != NULL) {
2064                         kmem_cache_destroy(*caches->ckd_cache);
2065                         *caches->ckd_cache = NULL;
2066                 }
2067         }
2068 }
2069 EXPORT_SYMBOL(lu_kmem_fini);
2070
2071 /**
2072  * Temporary solution to be able to assign fid in ->do_create()
2073  * till we have fully-functional OST fids
2074  */
2075 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2076                           const struct lu_fid *fid)
2077 {
2078         struct lu_site          *s = o->lo_dev->ld_site;
2079         struct lu_fid           *old = &o->lo_header->loh_fid;
2080         struct lu_site_bkt_data *bkt;
2081         struct lu_object        *shadow;
2082         wait_queue_t             waiter;
2083         struct cfs_hash         *hs;
2084         struct cfs_hash_bd       bd;
2085         __u64                    version = 0;
2086
2087         LASSERT(fid_is_zero(old));
2088
2089         hs = s->ls_obj_hash;
2090         cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2091         shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2092         /* supposed to be unique */
2093         LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
2094         *old = *fid;
2095         bkt = cfs_hash_bd_extra_get(hs, &bd);
2096         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2097         bkt->lsb_busy++;
2098         cfs_hash_bd_unlock(hs, &bd, 1);
2099 }
2100 EXPORT_SYMBOL(lu_object_assign_fid);
2101
2102 /**
2103  * allocates object with 0 (non-assigned) fid
2104  * XXX: temporary solution to be able to assign fid in ->do_create()
2105  *      till we have fully-functional OST fids
2106  */
2107 struct lu_object *lu_object_anon(const struct lu_env *env,
2108                                  struct lu_device *dev,
2109                                  const struct lu_object_conf *conf)
2110 {
2111         struct lu_fid     fid;
2112         struct lu_object *o;
2113
2114         fid_zero(&fid);
2115         o = lu_object_alloc(env, dev, &fid, conf);
2116
2117         return o;
2118 }
2119 EXPORT_SYMBOL(lu_object_anon);
2120
2121 struct lu_buf LU_BUF_NULL = {
2122         .lb_buf = NULL,
2123         .lb_len = 0
2124 };
2125 EXPORT_SYMBOL(LU_BUF_NULL);
2126
2127 void lu_buf_free(struct lu_buf *buf)
2128 {
2129         LASSERT(buf);
2130         if (buf->lb_buf) {
2131                 LASSERT(buf->lb_len > 0);
2132                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2133                 buf->lb_buf = NULL;
2134                 buf->lb_len = 0;
2135         }
2136 }
2137 EXPORT_SYMBOL(lu_buf_free);
2138
2139 void lu_buf_alloc(struct lu_buf *buf, int size)
2140 {
2141         LASSERT(buf);
2142         LASSERT(buf->lb_buf == NULL);
2143         LASSERT(buf->lb_len == 0);
2144         OBD_ALLOC_LARGE(buf->lb_buf, size);
2145         if (likely(buf->lb_buf))
2146                 buf->lb_len = size;
2147 }
2148 EXPORT_SYMBOL(lu_buf_alloc);
2149
2150 void lu_buf_realloc(struct lu_buf *buf, int size)
2151 {
2152         lu_buf_free(buf);
2153         lu_buf_alloc(buf, size);
2154 }
2155 EXPORT_SYMBOL(lu_buf_realloc);
2156
2157 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len)
2158 {
2159         if (buf->lb_buf == NULL && buf->lb_len == 0)
2160                 lu_buf_alloc(buf, len);
2161
2162         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2163                 lu_buf_realloc(buf, len);
2164
2165         return buf;
2166 }
2167 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2168
2169 /**
2170  * Increase the size of the \a buf.
2171  * preserves old data in buffer
2172  * old buffer remains unchanged on error
2173  * \retval 0 or -ENOMEM
2174  */
2175 int lu_buf_check_and_grow(struct lu_buf *buf, int len)
2176 {
2177         char *ptr;
2178
2179         if (len <= buf->lb_len)
2180                 return 0;
2181
2182         OBD_ALLOC_LARGE(ptr, len);
2183         if (ptr == NULL)
2184                 return -ENOMEM;
2185
2186         /* Free the old buf */
2187         if (buf->lb_buf != NULL) {
2188                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2189                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2190         }
2191
2192         buf->lb_buf = ptr;
2193         buf->lb_len = len;
2194         return 0;
2195 }
2196 EXPORT_SYMBOL(lu_buf_check_and_grow);