OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/l-dev/sensors/master' into gmin...
[android-x86/hardware-intel-libsensors.git] / enumeration.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <ctype.h>
6 #include <dirent.h>
7 #include <stdlib.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "enumeration.h"
11 #include "description.h"
12 #include "utils.h"
13 #include "transform.h"
14 #include "description.h"
15 #include "control.h"
16 #include "calibration.h"
17 #include "filtering.h"
18
19 /*
20  * This table maps syfs entries in scan_elements directories to sensor types,
21  * and will also be used to determine other sysfs names as well as the iio
22  * device number associated to a specific sensor.
23  */
24
25  /*
26   * We duplicate entries for the uncalibrated types after their respective base
27   * sensor. This is because all sensor entries must have an associated catalog entry
28   * and also because when only the uncal sensor is active it needs to take it's data
29   * from the same iio device as the base one.
30   */
31
32 struct sensor_catalog_entry_t sensor_catalog[] = {
33         DECLARE_SENSOR3("accel",      SENSOR_TYPE_ACCELEROMETER,  "x", "y", "z")
34         DECLARE_SENSOR3("anglvel",    SENSOR_TYPE_GYROSCOPE,      "x", "y", "z")
35         DECLARE_SENSOR3("magn",       SENSOR_TYPE_MAGNETIC_FIELD, "x", "y", "z")
36         DECLARE_SENSOR1("intensity",  SENSOR_TYPE_LIGHT,          "both"       )
37         DECLARE_SENSOR0("illuminance",SENSOR_TYPE_LIGHT                        )
38         DECLARE_SENSOR3("incli",      SENSOR_TYPE_ORIENTATION,    "x", "y", "z")
39         DECLARE_SENSOR4("rot",        SENSOR_TYPE_ROTATION_VECTOR,
40                                          "quat_x", "quat_y", "quat_z", "quat_w")
41         DECLARE_SENSOR0("temp",       SENSOR_TYPE_AMBIENT_TEMPERATURE          )
42         DECLARE_SENSOR0("proximity",  SENSOR_TYPE_PROXIMITY                    )
43         DECLARE_SENSOR3("anglvel",      SENSOR_TYPE_GYROSCOPE_UNCALIBRATED, "x", "y", "z")
44 };
45
46 #define CATALOG_SIZE    ARRAY_SIZE(sensor_catalog)
47
48 /* ACPI PLD (physical location of device) definitions, as used with sensors */
49
50 #define PANEL_FRONT     4
51 #define PANEL_BACK      5
52
53 /* We equate sensor handles to indices in these tables */
54
55 struct sensor_t      sensor_desc[MAX_SENSORS];  /* Android-level descriptors */
56 struct sensor_info_t sensor_info[MAX_SENSORS];  /* Internal descriptors      */
57 int sensor_count;                               /* Detected sensors          */
58
59
60 static void setup_properties_from_pld(int s, int panel, int rotation,
61                                       int num_channels)
62 {
63         /*
64          * Generate suitable order and opt_scale directives from the PLD panel
65          * and rotation codes we got. This can later be superseded by the usual
66          * properties if necessary. Eventually we'll need to replace these
67          * mechanisms by a less convoluted one, such as a 3x3 placement matrix.
68          */
69
70         int x = 1;
71         int y = 1;
72         int z = 1;
73         int xy_swap = 0;
74         int angle = rotation * 45;
75
76         /* Only deal with 3 axis chips for now */
77         if (num_channels < 3)
78                 return;
79
80         if (panel == PANEL_BACK) {
81                 /* Chip placed on the back panel ; negate x and z */
82                 x = -x;
83                 z = -z;
84         }
85
86         switch (angle) {
87                 case 90: /* 90° clockwise: negate y then swap x,y */
88                         xy_swap = 1;
89                         y = -y;
90                         break;
91
92                 case 180: /* Upside down: negate x and y */
93                         x = -x;
94                         y = -y;
95                         break;
96
97                 case 270: /* 90° counter clockwise: negate x then swap x,y */
98                         x = -x;
99                         xy_swap = 1;
100                         break;
101         }
102
103         if (xy_swap) {
104                 sensor_info[s].order[0] = 1;
105                 sensor_info[s].order[1] = 0;
106                 sensor_info[s].order[2] = 2;
107                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
108         }
109
110         sensor_info[s].channel[0].opt_scale = x;
111         sensor_info[s].channel[1].opt_scale = y;
112         sensor_info[s].channel[2].opt_scale = z;
113 }
114
115
116 static int is_valid_pld (int panel, int rotation)
117 {
118         if (panel != PANEL_FRONT && panel != PANEL_BACK) {
119                 ALOGW("Unhandled PLD panel spec: %d\n", panel);
120                 return 0;
121         }
122
123         /* Only deal with 90° rotations for now */
124         if (rotation < 0 || rotation > 7 || (rotation & 1)) {
125                 ALOGW("Unhandled PLD rotation spec: %d\n", rotation);
126                 return 0;
127         }
128
129         return 1;
130 }
131
132
133 static int read_pld_from_properties (int s, int* panel, int* rotation)
134 {
135         int p, r;
136
137         if (sensor_get_prop(s, "panel", &p))
138                 return -1;
139
140         if (sensor_get_prop(s, "rotation", &r))
141                 return -1;
142
143         if (!is_valid_pld(p, r))
144                 return -1;
145
146         *panel = p;
147         *rotation = r;
148
149         ALOGI("S%d PLD from properties: panel=%d, rotation=%d\n", s, p, r);
150
151         return 0;
152 }
153
154
155 static int read_pld_from_sysfs (int s, int dev_num, int* panel, int* rotation)
156 {
157         char sysfs_path[PATH_MAX];
158         int p,r;
159
160         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/panel", dev_num);
161
162         if (sysfs_read_int(sysfs_path, &p))
163                 return -1;
164
165         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/rotation", dev_num);
166
167         if (sysfs_read_int(sysfs_path, &r))
168                 return -1;
169
170         if (!is_valid_pld(p, r))
171                 return -1;
172
173         *panel = p;
174         *rotation = r;
175
176         ALOGI("S%d PLD from sysfs: panel=%d, rotation=%d\n", s, p, r);
177
178         return 0;
179 }
180
181
182 static void decode_placement_information (int dev_num, int num_channels, int s)
183 {
184         /*
185          * See if we have optional "physical location of device" ACPI tags.
186          * We're only interested in panel and rotation specifiers. Use the
187          * .panel and .rotation properties in priority, and the actual ACPI
188          * values as a second source.
189          */
190
191         int panel;
192         int rotation;
193
194         if (read_pld_from_properties(s, &panel, &rotation) &&
195                 read_pld_from_sysfs(s, dev_num, &panel, &rotation))
196                         return; /* No PLD data available */
197
198         /* Map that to field ordering and scaling mechanisms */
199         setup_properties_from_pld(s, panel, rotation, num_channels);
200 }
201
202
203 static void add_sensor (int dev_num, int catalog_index, int use_polling)
204 {
205         int s;
206         int sensor_type;
207         int retval;
208         char sysfs_path[PATH_MAX];
209         const char* prefix;
210         float scale;
211         int c;
212         float opt_scale;
213         const char* ch_name;
214         int num_channels;
215         char suffix[MAX_NAME_SIZE + 8];
216
217         if (sensor_count == MAX_SENSORS) {
218                 ALOGE("Too many sensors!\n");
219                 return;
220         }
221
222         sensor_type = sensor_catalog[catalog_index].type;
223
224         /*
225          * At this point we could check that the expected sysfs attributes are
226          * present ; that would enable having multiple catalog entries with the
227          * same sensor type, accomodating different sets of sysfs attributes.
228          */
229
230         s = sensor_count;
231
232         sensor_info[s].dev_num          = dev_num;
233         sensor_info[s].catalog_index    = catalog_index;
234         sensor_info[s].type             = sensor_type;
235
236         num_channels = sensor_catalog[catalog_index].num_channels;
237
238         if (use_polling)
239                 sensor_info[s].num_channels = 0;
240         else
241                 sensor_info[s].num_channels = num_channels;
242
243         prefix = sensor_catalog[catalog_index].tag;
244
245         /*
246          * receiving the illumination sensor calibration inputs from
247          * the Android properties and setting it within sysfs
248          */
249         if (sensor_type == SENSOR_TYPE_LIGHT) {
250                 retval = sensor_get_illumincalib(s);
251                 if (retval > 0) {
252                         sprintf(sysfs_path, ILLUMINATION_CALIBPATH, dev_num);
253                         sysfs_write_int(sysfs_path, retval);
254                 }
255         }
256
257         /* Read name attribute, if available */
258         sprintf(sysfs_path, NAME_PATH, dev_num);
259         sysfs_read_str(sysfs_path, sensor_info[s].internal_name, MAX_NAME_SIZE);
260
261         /* See if we have general offsets and scale values for this sensor */
262
263         sprintf(sysfs_path, SENSOR_OFFSET_PATH, dev_num, prefix);
264         sysfs_read_float(sysfs_path, &sensor_info[s].offset);
265
266         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
267         if (!sensor_get_fl_prop(s, "scale", &scale)) {
268                 /*
269                  * There is a chip preferred scale specified,
270                  * so try to store it in sensor's scale file
271                  */
272                 if (sysfs_write_float(sysfs_path, scale) == -1 && errno == ENOENT) {
273                         ALOGE("Failed to store scale[%f] into %s - file is missing", scale, sysfs_path);
274                         /* Store failed, try to store the scale into channel specific file */
275                         for (c = 0; c < num_channels; c++)
276                         {
277                                 sprintf(sysfs_path, BASE_PATH "%s", dev_num,
278                                         sensor_catalog[catalog_index].channel[c].scale_path);
279                                 if (sysfs_write_float(sysfs_path, scale) == -1)
280                                         ALOGE("Failed to store scale[%f] into %s", scale, sysfs_path);
281                         }
282                 }
283         }
284
285         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
286         if (!sysfs_read_float(sysfs_path, &scale)) {
287                 sensor_info[s].scale = scale;
288                 ALOGI("Scale path:%s scale:%f dev_num:%d\n",
289                                         sysfs_path, scale, dev_num);
290         } else {
291                 sensor_info[s].scale = 1;
292
293                 /* Read channel specific scale if any*/
294                 for (c = 0; c < num_channels; c++)
295                 {
296                         sprintf(sysfs_path, BASE_PATH "%s", dev_num,
297                            sensor_catalog[catalog_index].channel[c].scale_path);
298
299                         if (!sysfs_read_float(sysfs_path, &scale)) {
300                                 sensor_info[s].channel[c].scale = scale;
301                                 sensor_info[s].scale = 0;
302
303                                 ALOGI(  "Scale path:%s "
304                                         "channel scale:%f dev_num:%d\n",
305                                         sysfs_path, scale, dev_num);
306                         }
307                 }
308         }
309
310         /* Set default scaling - if num_channels is zero, we have one channel */
311
312         sensor_info[s].channel[0].opt_scale = 1;
313
314         for (c = 1; c < num_channels; c++)
315                 sensor_info[s].channel[c].opt_scale = 1;
316
317         /* Read ACPI _PLD attributes for this sensor, if there are any */
318         decode_placement_information(dev_num, num_channels, s);
319
320         /*
321          * See if we have optional correction scaling factors for each of the
322          * channels of this sensor. These would be expressed using properties
323          * like iio.accel.y.opt_scale = -1. In case of a single channel we also
324          * support things such as iio.temp.opt_scale = -1. Note that this works
325          * for all types of sensors, and whatever transform is selected, on top
326          * of any previous conversions.
327          */
328
329         if (num_channels) {
330                 for (c = 0; c < num_channels; c++) {
331                         ch_name = sensor_catalog[catalog_index].channel[c].name;
332                         sprintf(suffix, "%s.opt_scale", ch_name);
333                         if (!sensor_get_fl_prop(s, suffix, &opt_scale))
334                                 sensor_info[s].channel[c].opt_scale = opt_scale;
335                 }
336         } else
337                 if (!sensor_get_fl_prop(s, "opt_scale", &opt_scale))
338                         sensor_info[s].channel[0].opt_scale = opt_scale;
339
340         /* Initialize Android-visible descriptor */
341         sensor_desc[s].name             = sensor_get_name(s);
342         sensor_desc[s].vendor           = sensor_get_vendor(s);
343         sensor_desc[s].version          = sensor_get_version(s);
344         sensor_desc[s].handle           = s;
345         sensor_desc[s].type             = sensor_type;
346         sensor_desc[s].maxRange         = sensor_get_max_range(s);
347         sensor_desc[s].resolution       = sensor_get_resolution(s);
348         sensor_desc[s].power            = sensor_get_power(s);
349         sensor_desc[s].stringType = sensor_get_string_type(s);
350
351         /* None of our supported sensors requires a special permission.
352         *  If this will be the case we should implement a sensor_get_perm
353         */
354         sensor_desc[s].requiredPermission = "";
355         sensor_desc[s].flags = sensor_get_flags(s);
356         sensor_desc[s].minDelay = sensor_get_min_delay(s);
357         sensor_desc[s].maxDelay = sensor_get_max_delay(s);
358         ALOGI("Sensor %d (%s) type(%d) minD(%d) maxD(%d) flags(%2.2x)\n",
359                 s, sensor_info[s].friendly_name, sensor_desc[s].type,
360                 sensor_desc[s].minDelay, sensor_desc[s].maxDelay, sensor_desc[s].flags);
361
362         /* We currently do not implement batching when we'll so
363          * these should be overriden appropriately
364          */
365         sensor_desc[s].fifoReservedEventCount = 0;
366         sensor_desc[s].fifoMaxEventCount = 0;
367
368         if (sensor_info[s].internal_name[0] == '\0') {
369                 /*
370                  * In case the kernel-mode driver doesn't expose a name for
371                  * the iio device, use (null)-dev%d as the trigger name...
372                  * This can be considered a kernel-mode iio driver bug.
373                  */
374                 ALOGW("Using null trigger on sensor %d (dev %d)\n", s, dev_num);
375                 strcpy(sensor_info[s].internal_name, "(null)");
376         }
377
378         if (sensor_type == SENSOR_TYPE_GYROSCOPE ||
379                 sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
380                 struct gyro_cal* calibration_data = calloc(1, sizeof(struct gyro_cal));
381                 sensor_info[s].cal_data = calibration_data;
382                 denoise_median_init(s, 3, 7);
383         }
384
385         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD) {
386                 struct compass_cal* calibration_data = calloc(1, sizeof(struct compass_cal));
387                 sensor_info[s].cal_data = calibration_data;
388         }
389
390         /* Select one of the available sensor sample processing styles */
391         select_transform(s);
392
393         /* Initialize fields related to sysfs reads offloading */
394         sensor_info[s].thread_data_fd[0]  = -1;
395         sensor_info[s].thread_data_fd[1]  = -1;
396         sensor_info[s].acquisition_thread = -1;
397
398         /* Check if we have a special ordering property on this sensor */
399         if (sensor_get_order(s, sensor_info[s].order))
400                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
401
402         sensor_count++;
403 }
404
405
406 static void discover_poll_sensors (int dev_num, char map[CATALOG_SIZE])
407 {
408         char base_dir[PATH_MAX];
409         DIR *dir;
410         struct dirent *d;
411         unsigned int i;
412         int c;
413
414         memset(map, 0, CATALOG_SIZE);
415
416         snprintf(base_dir, sizeof(base_dir), BASE_PATH, dev_num);
417
418         dir = opendir(base_dir);
419         if (!dir) {
420                 return;
421         }
422
423         /* Enumerate entries in this iio device's base folder */
424
425         while ((d = readdir(dir))) {
426                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
427                         continue;
428
429                 /* If the name matches a catalog entry, flag it */
430                 for (i = 0; i<CATALOG_SIZE; i++) {
431                 /* This will be added separately later */
432                 if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
433                         continue;
434                 for (c=0; c<sensor_catalog[i].num_channels; c++)
435                         if (!strcmp(d->d_name,sensor_catalog[i].channel[c].raw_path) ||
436                                 !strcmp(d->d_name, sensor_catalog[i].channel[c].input_path)) {
437                                         map[i] = 1;
438                                         break;
439                         }
440                 }
441         }
442
443         closedir(dir);
444 }
445
446
447 static void discover_trig_sensors (int dev_num, char map[CATALOG_SIZE])
448 {
449         char scan_elem_dir[PATH_MAX];
450         DIR *dir;
451         struct dirent *d;
452         unsigned int i;
453
454         memset(map, 0, CATALOG_SIZE);
455
456         /* Enumerate entries in this iio device's scan_elements folder */
457
458         snprintf(scan_elem_dir, sizeof(scan_elem_dir), CHANNEL_PATH, dev_num);
459
460         dir = opendir(scan_elem_dir);
461         if (!dir) {
462                 return;
463         }
464
465         while ((d = readdir(dir))) {
466                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
467                         continue;
468
469                 /* Compare en entry to known ones and create matching sensors */
470
471                 for (i = 0; i<CATALOG_SIZE; i++) {
472                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
473                                 continue;
474                         if (!strcmp(d->d_name,
475                                         sensor_catalog[i].channel[0].en_path)) {
476                                         map[i] = 1;
477                                         break;
478                         }
479                 }
480         }
481
482         closedir(dir);
483 }
484
485
486 static void orientation_sensor_check(void)
487 {
488         /*
489          * If we have accel + gyro + magn but no rotation vector sensor,
490          * SensorService replaces the HAL provided orientation sensor by the
491          * AOSP version... provided we report one. So initialize a virtual
492          * orientation sensor with zero values, which will get replaced. See:
493          * frameworks/native/services/sensorservice/SensorService.cpp, looking
494          * for SENSOR_TYPE_ROTATION_VECTOR; that code should presumably fall
495          * back to mUserSensorList.add instead of replaceAt, but accommodate it.
496          */
497
498         int i;
499         int has_acc = 0;
500         int has_gyr = 0;
501         int has_mag = 0;
502         int has_rot = 0;
503         int has_ori = 0;
504         int catalog_size = CATALOG_SIZE;
505
506         for (i=0; i<sensor_count; i++)
507                 switch (sensor_info[i].type) {
508                         case SENSOR_TYPE_ACCELEROMETER:
509                                 has_acc = 1;
510                                 break;
511                         case SENSOR_TYPE_GYROSCOPE:
512                                 has_gyr = 1;
513                                 break;
514                         case SENSOR_TYPE_MAGNETIC_FIELD:
515                                 has_mag = 1;
516                                 break;
517                         case SENSOR_TYPE_ORIENTATION:
518                                 has_ori = 1;
519                                 break;
520                         case SENSOR_TYPE_ROTATION_VECTOR:
521                                 has_rot = 1;
522                                 break;
523                 }
524
525         if (has_acc && has_gyr && has_mag && !has_rot && !has_ori)
526                 for (i=0; i<catalog_size; i++)
527                         if (sensor_catalog[i].type == SENSOR_TYPE_ORIENTATION) {
528                                 ALOGI("Adding placeholder orientation sensor");
529                                 add_sensor(0, i, 1);
530                                 break;
531                         }
532 }
533
534 static void propose_new_trigger (int s, char trigger_name[MAX_NAME_SIZE],
535                                  int sensor_name_len)
536 {
537         /*
538          * A new trigger has been enumerated for this sensor. Check if it makes
539          * sense to use it over the currently selected one, and select it if it
540          * is so. The format is something like sensor_name-dev0.
541          */
542
543         const char *suffix = trigger_name + sensor_name_len + 1;
544
545         /* dev is the default, and lowest priority; no need to update */
546         if (!memcmp(suffix, "dev", 3))
547                 return;
548
549         /* If we found any-motion trigger, record it */
550
551         if (!memcmp(suffix, "any-motion-", 11)) {
552                 strcpy(sensor_info[s].motion_trigger_name, trigger_name);
553                 return;
554         }
555
556         /*
557          * It's neither the default "dev" nor an "any-motion" one. Make sure we
558          * use this though, as we may not have any other indication of the name
559          * of the trigger to use with this sensor.
560          */
561         strcpy(sensor_info[s].init_trigger_name, trigger_name);
562 }
563
564
565 static void update_sensor_matching_trigger_name (char name[MAX_NAME_SIZE])
566 {
567         /*
568          * Check if we have a sensor matching the specified trigger name,
569          * which should then begin with the sensor name, and end with a number
570          * equal to the iio device number the sensor is associated to. If so,
571          * update the string we're going to write to trigger/current_trigger
572          * when enabling this sensor.
573          */
574
575         int s;
576         int dev_num;
577         int len;
578         char* cursor;
579         int sensor_name_len;
580
581         /*
582          * First determine the iio device number this trigger refers to. We
583          * expect the last few characters (typically one) of the trigger name
584          * to be this number, so perform a few checks.
585          */
586         len = strnlen(name, MAX_NAME_SIZE);
587
588         if (len < 2)
589                 return;
590
591         cursor = name + len - 1;
592
593         if (!isdigit(*cursor))
594                 return;
595
596         while (len && isdigit(*cursor)) {
597                 len--;
598                 cursor--;
599         }
600
601         dev_num = atoi(cursor+1);
602
603         /* See if that matches a sensor */
604         for (s=0; s<sensor_count; s++)
605                 if (sensor_info[s].dev_num == dev_num) {
606
607                         sensor_name_len = strlen(sensor_info[s].internal_name);
608
609                         if (!strncmp(name,
610                                      sensor_info[s].internal_name,
611                                      sensor_name_len))
612                                 /* Switch to new trigger if appropriate */
613                                 propose_new_trigger(s, name, sensor_name_len);
614                 }
615 }
616
617
618 static void setup_trigger_names (void)
619 {
620         char filename[PATH_MAX];
621         char buf[MAX_NAME_SIZE];
622         int len;
623         int s;
624         int trigger;
625         int ret;
626
627         /* By default, use the name-dev convention that most drivers use */
628         for (s=0; s<sensor_count; s++)
629                 snprintf(sensor_info[s].init_trigger_name,
630                          MAX_NAME_SIZE, "%s-dev%d",
631                          sensor_info[s].internal_name, sensor_info[s].dev_num);
632
633         /* Now have a look to /sys/bus/iio/devices/triggerX entries */
634
635         for (trigger=0; trigger<MAX_TRIGGERS; trigger++) {
636
637                 snprintf(filename, sizeof(filename), TRIGGER_FILE_PATH,trigger);
638
639                 ret = sysfs_read_str(filename, buf, sizeof(buf));
640
641                 if (ret < 0)
642                         break;
643
644                 /* Record initial and any-motion triggers names */
645                 update_sensor_matching_trigger_name(buf);
646         }
647
648         /*
649          * Certain drivers expose only motion triggers even though they should
650          * be continous. For these, use the default trigger name as the motion
651          * trigger. The code generating intermediate events is dependent on
652          * motion_trigger_name being set to a non empty string.
653          */
654
655         for (s=0; s<sensor_count; s++)
656                 if ((sensor_info[s].quirks & QUIRK_TERSE_DRIVER) &&
657                     sensor_info[s].motion_trigger_name[0] == '\0')
658                         strcpy( sensor_info[s].motion_trigger_name,
659                                 sensor_info[s].init_trigger_name);
660
661         for (s=0; s<sensor_count; s++)
662                 if (sensor_info[s].num_channels) {
663                         ALOGI("Sensor %d (%s) default trigger: %s\n", s,
664                                 sensor_info[s].friendly_name,
665                                 sensor_info[s].init_trigger_name);
666                         if (sensor_info[s].motion_trigger_name[0])
667                                 ALOGI("Sensor %d (%s) motion trigger: %s\n",
668                                 s, sensor_info[s].friendly_name,
669                                 sensor_info[s].motion_trigger_name);
670                 }
671 }
672
673 static void uncalibrated_gyro_check (void)
674 {
675         unsigned int has_gyr = 0;
676         unsigned int dev_num;
677         int i, c;
678         unsigned int is_poll_sensor;
679         char buf[MAX_NAME_SIZE];
680
681         int cal_idx = 0;
682         int uncal_idx = 0;
683         int catalog_size = CATALOG_SIZE; /* Avoid GCC sign comparison warning */
684
685         /* Checking to see if we have a gyroscope - we can only have uncal if we have the base sensor */
686         for (i=0; i < sensor_count; i++)
687                 if (sensor_info[i].type == SENSOR_TYPE_GYROSCOPE) {
688                         has_gyr=1;
689                         dev_num = sensor_info[i].dev_num;
690                         is_poll_sensor = !sensor_info[i].num_channels;
691                         cal_idx = i;
692                         break;
693                 }
694
695         /*
696          * If we have a gyro we can add the uncalibrated sensor of the same type and
697          * on the same dev_num. We will save indexes for easy finding and also save the
698          * channel specific information.
699          */
700         if (has_gyr)
701                 for (i=0; i<catalog_size; i++)
702                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
703                                 add_sensor(dev_num, i, is_poll_sensor);
704
705                                 uncal_idx = sensor_count - 1; /* Just added uncalibrated sensor */
706
707                                 /* Similar to build_sensor_report_maps */
708                                 for (c = 0; c < sensor_info[uncal_idx].num_channels; c++)
709                                 {
710                                         memcpy( &(sensor_info[uncal_idx].channel[c].type_spec),
711                                                 &(sensor_info[cal_idx].channel[c].type_spec),
712                                                 sizeof(sensor_info[uncal_idx].channel[c].type_spec));
713                                         sensor_info[uncal_idx].channel[c].type_info = sensor_info[cal_idx].channel[c].type_info;
714                                         sensor_info[uncal_idx].channel[c].offset    = sensor_info[cal_idx].channel[c].offset;
715                                         sensor_info[uncal_idx].channel[c].size      = sensor_info[cal_idx].channel[c].size;
716                                 }
717                                 sensor_info[uncal_idx].pair_idx = cal_idx;
718                                 sensor_info[cal_idx].pair_idx = uncal_idx;
719                                 strncpy(sensor_info[uncal_idx].init_trigger_name,
720                                         sensor_info[cal_idx].init_trigger_name,
721                                         MAX_NAME_SIZE);
722                                 strncpy(sensor_info[uncal_idx].motion_trigger_name,
723                                         sensor_info[cal_idx].motion_trigger_name,
724                                         MAX_NAME_SIZE);
725
726                                 /* Add "Uncalibrated " prefix to sensor name */
727                                 strcpy(buf, sensor_info[cal_idx].friendly_name);
728                                 snprintf(sensor_info[uncal_idx].friendly_name,
729                                          MAX_NAME_SIZE,
730                                          "%s %s", "Uncalibrated", buf);
731                                 break;
732                         }
733 }
734
735 void enumerate_sensors (void)
736 {
737         /*
738          * Discover supported sensors and allocate control structures for them.
739          * Multiple sensors can potentially rely on a single iio device (each
740          * using their own channels). We can't have multiple sensors of the same
741          * type on the same device. In case of detection as both a poll-mode
742          * and trigger-based sensor, use the trigger usage mode.
743          */
744         char poll_sensors[CATALOG_SIZE];
745         char trig_sensors[CATALOG_SIZE];
746         int dev_num;
747         unsigned int i;
748         int trig_found;
749
750         for (dev_num=0; dev_num<MAX_DEVICES; dev_num++) {
751                 trig_found = 0;
752
753                 discover_poll_sensors(dev_num, poll_sensors);
754                 discover_trig_sensors(dev_num, trig_sensors);
755
756                 for (i=0; i<CATALOG_SIZE; i++)
757                         if (trig_sensors[i]) {
758                                 add_sensor(dev_num, i, 0);
759                                 trig_found = 1;
760                         }
761                         else
762                                 if (poll_sensors[i])
763                                         add_sensor(dev_num, i, 1);
764
765                 if (trig_found) {
766                         build_sensor_report_maps(dev_num);
767                 }
768         }
769
770         ALOGI("Discovered %d sensors\n", sensor_count);
771
772         /* Set up default - as well as custom - trigger names */
773         setup_trigger_names();
774
775         /* Make sure Android fall backs to its own orientation sensor */
776         orientation_sensor_check();
777
778         /*
779          * Create the uncalibrated counterpart to the compensated gyroscope.
780          * This is is a new sensor type in Android 4.4.
781          */
782         uncalibrated_gyro_check();
783 }
784
785
786 void delete_enumeration_data (void)
787 {
788         int i;
789         for (i = 0; i < sensor_count; i++)
790         switch (sensor_info[i].type) {
791                 case SENSOR_TYPE_MAGNETIC_FIELD:
792                         if (sensor_info[i].cal_data != NULL) {
793                                 free(sensor_info[i].cal_data);
794                                 sensor_info[i].cal_data = NULL;
795                                 sensor_info[i].cal_level = 0;
796                         }
797                         break;
798                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
799                 case SENSOR_TYPE_GYROSCOPE:
800                         if (sensor_info[i].cal_data != NULL) {
801                                 free(sensor_info[i].cal_data);
802                                 sensor_info[i].cal_data = NULL;
803                                 sensor_info[i].cal_level = 0;
804                         }
805                         break;
806                         if (sensor_info[i].filter != NULL) {
807                                 denoise_median_release(i);
808                         }
809                 default:
810                         break;
811         }
812         /* Reset sensor count */
813         sensor_count = 0;
814 }
815
816
817 int get_sensors_list(   struct sensors_module_t* module,
818                         struct sensor_t const** list)
819 {
820         *list = sensor_desc;
821         return sensor_count;
822 }
823