OSDN Git Service

IRDA-2056: Add type field to sensor_info structure
[android-x86/hardware-intel-libsensors.git] / enumeration.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <ctype.h>
6 #include <dirent.h>
7 #include <stdlib.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "enumeration.h"
11 #include "description.h"
12 #include "utils.h"
13 #include "transform.h"
14 #include "description.h"
15 #include "control.h"
16 #include "calibration.h"
17 #include "filtering.h"
18
19 /*
20  * This table maps syfs entries in scan_elements directories to sensor types,
21  * and will also be used to determine other sysfs names as well as the iio
22  * device number associated to a specific sensor.
23  */
24
25  /*
26   * We duplicate entries for the uncalibrated types after their respective base
27   * sensor. This is because all sensor entries must have an associated catalog entry
28   * and also because when only the uncal sensor is active it needs to take it's data
29   * from the same iio device as the base one.
30   */
31
32 struct sensor_catalog_entry_t sensor_catalog[] = {
33         DECLARE_SENSOR3("accel",      SENSOR_TYPE_ACCELEROMETER,  "x", "y", "z")
34         DECLARE_SENSOR3("anglvel",    SENSOR_TYPE_GYROSCOPE,      "x", "y", "z")
35         DECLARE_SENSOR3("magn",       SENSOR_TYPE_MAGNETIC_FIELD, "x", "y", "z")
36         DECLARE_SENSOR1("intensity",  SENSOR_TYPE_LIGHT,          "both"       )
37         DECLARE_SENSOR0("illuminance",SENSOR_TYPE_LIGHT                        )
38         DECLARE_SENSOR3("incli",      SENSOR_TYPE_ORIENTATION,    "x", "y", "z")
39         DECLARE_SENSOR4("rot",        SENSOR_TYPE_ROTATION_VECTOR,
40                                          "quat_x", "quat_y", "quat_z", "quat_w")
41         DECLARE_SENSOR0("temp",       SENSOR_TYPE_AMBIENT_TEMPERATURE          )
42         DECLARE_SENSOR0("proximity",  SENSOR_TYPE_PROXIMITY                    )
43         DECLARE_SENSOR3("anglvel",      SENSOR_TYPE_GYROSCOPE_UNCALIBRATED, "x", "y", "z")
44 };
45
46 #define CATALOG_SIZE    ARRAY_SIZE(sensor_catalog)
47
48 /* ACPI PLD (physical location of device) definitions, as used with sensors */
49
50 #define PANEL_FRONT     4
51 #define PANEL_BACK      5
52
53 /* We equate sensor handles to indices in these tables */
54
55 struct sensor_t      sensor_desc[MAX_SENSORS];  /* Android-level descriptors */
56 struct sensor_info_t sensor_info[MAX_SENSORS];  /* Internal descriptors      */
57 int sensor_count;                               /* Detected sensors          */
58
59
60 static void setup_properties_from_pld(int s, int panel, int rotation,
61                                       int num_channels)
62 {
63         /*
64          * Generate suitable order and opt_scale directives from the PLD panel
65          * and rotation codes we got. This can later be superseded by the usual
66          * properties if necessary. Eventually we'll need to replace these
67          * mechanisms by a less convoluted one, such as a 3x3 placement matrix.
68          */
69
70         int x = 1;
71         int y = 1;
72         int z = 1;
73         int xy_swap = 0;
74         int angle = rotation * 45;
75
76         /* Only deal with 3 axis chips for now */
77         if (num_channels < 3)
78                 return;
79
80         if (panel == PANEL_BACK) {
81                 /* Chip placed on the back panel ; negate x and z */
82                 x = -x;
83                 z = -z;
84         }
85
86         switch (angle) {
87                 case 90: /* 90° clockwise: negate y then swap x,y */
88                         xy_swap = 1;
89                         y = -y;
90                         break;
91
92                 case 180: /* Upside down: negate x and y */
93                         x = -x;
94                         y = -y;
95                         break;
96
97                 case 270: /* 90° counter clockwise: negate x then swap x,y */
98                         x = -x;
99                         xy_swap = 1;
100                         break;
101         }
102
103         if (xy_swap) {
104                 sensor_info[s].order[0] = 1;
105                 sensor_info[s].order[1] = 0;
106                 sensor_info[s].order[2] = 2;
107                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
108         }
109
110         sensor_info[s].channel[0].opt_scale = x;
111         sensor_info[s].channel[1].opt_scale = y;
112         sensor_info[s].channel[2].opt_scale = z;
113 }
114
115
116 static int is_valid_pld (int panel, int rotation)
117 {
118         if (panel != PANEL_FRONT && panel != PANEL_BACK) {
119                 ALOGW("Unhandled PLD panel spec: %d\n", panel);
120                 return 0;
121         }
122
123         /* Only deal with 90° rotations for now */
124         if (rotation < 0 || rotation > 7 || (rotation & 1)) {
125                 ALOGW("Unhandled PLD rotation spec: %d\n", rotation);
126                 return 0;
127         }
128
129         return 1;
130 }
131
132
133 static int read_pld_from_properties (int s, int* panel, int* rotation)
134 {
135         int p, r;
136
137         if (sensor_get_prop(s, "panel", &p))
138                 return -1;
139
140         if (sensor_get_prop(s, "rotation", &r))
141                 return -1;
142
143         if (!is_valid_pld(p, r))
144                 return -1;
145
146         *panel = p;
147         *rotation = r;
148
149         ALOGI("S%d PLD from properties: panel=%d, rotation=%d\n", s, p, r);
150
151         return 0;
152 }
153
154
155 static int read_pld_from_sysfs (int s, int dev_num, int* panel, int* rotation)
156 {
157         char sysfs_path[PATH_MAX];
158         int p,r;
159
160         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/panel", dev_num);
161
162         if (sysfs_read_int(sysfs_path, &p))
163                 return -1;
164
165         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/rotation", dev_num);
166
167         if (sysfs_read_int(sysfs_path, &r))
168                 return -1;
169
170         if (!is_valid_pld(p, r))
171                 return -1;
172
173         *panel = p;
174         *rotation = r;
175
176         ALOGI("S%d PLD from sysfs: panel=%d, rotation=%d\n", s, p, r);
177
178         return 0;
179 }
180
181
182 static void decode_placement_information (int dev_num, int num_channels, int s)
183 {
184         /*
185          * See if we have optional "physical location of device" ACPI tags.
186          * We're only interested in panel and rotation specifiers. Use the
187          * .panel and .rotation properties in priority, and the actual ACPI
188          * values as a second source.
189          */
190
191         int panel;
192         int rotation;
193
194         if (read_pld_from_properties(s, &panel, &rotation) &&
195                 read_pld_from_sysfs(s, dev_num, &panel, &rotation))
196                         return; /* No PLD data available */
197
198         /* Map that to field ordering and scaling mechanisms */
199         setup_properties_from_pld(s, panel, rotation, num_channels);
200 }
201
202
203 static void add_sensor (int dev_num, int catalog_index, int use_polling)
204 {
205         int s;
206         int sensor_type;
207         int retval;
208         char sysfs_path[PATH_MAX];
209         const char* prefix;
210         float scale;
211         int c;
212         float opt_scale;
213         const char* ch_name;
214         int num_channels;
215         char suffix[MAX_NAME_SIZE + 8];
216
217         if (sensor_count == MAX_SENSORS) {
218                 ALOGE("Too many sensors!\n");
219                 return;
220         }
221
222         sensor_type = sensor_catalog[catalog_index].type;
223
224         /*
225          * At this point we could check that the expected sysfs attributes are
226          * present ; that would enable having multiple catalog entries with the
227          * same sensor type, accomodating different sets of sysfs attributes.
228          */
229
230         s = sensor_count;
231
232         sensor_info[s].dev_num          = dev_num;
233         sensor_info[s].catalog_index    = catalog_index;
234         sensor_info[s].type             = sensor_type;
235
236         num_channels = sensor_catalog[catalog_index].num_channels;
237
238         if (use_polling)
239                 sensor_info[s].num_channels = 0;
240         else
241                 sensor_info[s].num_channels = num_channels;
242
243         prefix = sensor_catalog[catalog_index].tag;
244
245         /*
246          * receiving the illumination sensor calibration inputs from
247          * the Android properties and setting it within sysfs
248          */
249         if (sensor_type == SENSOR_TYPE_LIGHT) {
250                 retval = sensor_get_illumincalib(s);
251                 if (retval > 0) {
252                         sprintf(sysfs_path, ILLUMINATION_CALIBPATH, dev_num);
253                         sysfs_write_int(sysfs_path, retval);
254                 }
255         }
256
257         /* Read name attribute, if available */
258         sprintf(sysfs_path, NAME_PATH, dev_num);
259         sysfs_read_str(sysfs_path, sensor_info[s].internal_name, MAX_NAME_SIZE);
260
261         /* See if we have general offsets and scale values for this sensor */
262
263         sprintf(sysfs_path, SENSOR_OFFSET_PATH, dev_num, prefix);
264         sysfs_read_float(sysfs_path, &sensor_info[s].offset);
265
266         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
267         if (!sysfs_read_float(sysfs_path, &scale)) {
268                 sensor_info[s].scale = scale;
269                 ALOGI("Scale path:%s scale:%f dev_num:%d\n",
270                                         sysfs_path, scale, dev_num);
271         } else {
272                 sensor_info[s].scale = 1;
273
274                 /* Read channel specific scale if any*/
275                 for (c = 0; c < num_channels; c++)
276                 {
277                         sprintf(sysfs_path, BASE_PATH "%s", dev_num,
278                            sensor_catalog[catalog_index].channel[c].scale_path);
279
280                         if (!sysfs_read_float(sysfs_path, &scale)) {
281                                 sensor_info[s].channel[c].scale = scale;
282                                 sensor_info[s].scale = 0;
283
284                                 ALOGI(  "Scale path:%s "
285                                         "channel scale:%f dev_num:%d\n",
286                                         sysfs_path, scale, dev_num);
287                         }
288                 }
289         }
290
291         /* Set default scaling - if num_channels is zero, we have one channel */
292
293         sensor_info[s].channel[0].opt_scale = 1;
294
295         for (c = 1; c < num_channels; c++)
296                 sensor_info[s].channel[c].opt_scale = 1;
297
298         /* Read ACPI _PLD attributes for this sensor, if there are any */
299         decode_placement_information(dev_num, num_channels, s);
300
301         /*
302          * See if we have optional correction scaling factors for each of the
303          * channels of this sensor. These would be expressed using properties
304          * like iio.accel.y.opt_scale = -1. In case of a single channel we also
305          * support things such as iio.temp.opt_scale = -1. Note that this works
306          * for all types of sensors, and whatever transform is selected, on top
307          * of any previous conversions.
308          */
309
310         if (num_channels) {
311                 for (c = 0; c < num_channels; c++) {
312                         ch_name = sensor_catalog[catalog_index].channel[c].name;
313                         sprintf(suffix, "%s.opt_scale", ch_name);
314                         if (!sensor_get_fl_prop(s, suffix, &opt_scale))
315                                 sensor_info[s].channel[c].opt_scale = opt_scale;
316                 }
317         } else
318                 if (!sensor_get_fl_prop(s, "opt_scale", &opt_scale))
319                         sensor_info[s].channel[0].opt_scale = opt_scale;
320
321         /* Initialize Android-visible descriptor */
322         sensor_desc[s].name             = sensor_get_name(s);
323         sensor_desc[s].vendor           = sensor_get_vendor(s);
324         sensor_desc[s].version          = sensor_get_version(s);
325         sensor_desc[s].handle           = s;
326         sensor_desc[s].type             = sensor_type;
327         sensor_desc[s].maxRange         = sensor_get_max_range(s);
328         sensor_desc[s].resolution       = sensor_get_resolution(s);
329         sensor_desc[s].power            = sensor_get_power(s);
330         sensor_desc[s].stringType = sensor_get_string_type(s);
331
332         /* None of our supported sensors requires a special permission.
333         *  If this will be the case we should implement a sensor_get_perm
334         */
335         sensor_desc[s].requiredPermission = "";
336         sensor_desc[s].flags = sensor_get_flags(s);
337         sensor_desc[s].minDelay = sensor_get_min_delay(s);
338         sensor_desc[s].maxDelay = sensor_get_max_delay(s);
339         ALOGI("Sensor %d (%s) type(%d) minD(%d) maxD(%d) flags(%2.2x)\n",
340                 s, sensor_info[s].friendly_name, sensor_desc[s].type,
341                 sensor_desc[s].minDelay, sensor_desc[s].maxDelay, sensor_desc[s].flags);
342
343         /* We currently do not implement batching when we'll so
344          * these should be overriden appropriately
345          */
346         sensor_desc[s].fifoReservedEventCount = 0;
347         sensor_desc[s].fifoMaxEventCount = 0;
348
349         if (sensor_info[s].internal_name[0] == '\0') {
350                 /*
351                  * In case the kernel-mode driver doesn't expose a name for
352                  * the iio device, use (null)-dev%d as the trigger name...
353                  * This can be considered a kernel-mode iio driver bug.
354                  */
355                 ALOGW("Using null trigger on sensor %d (dev %d)\n", s, dev_num);
356                 strcpy(sensor_info[s].internal_name, "(null)");
357         }
358
359         if (sensor_type == SENSOR_TYPE_GYROSCOPE ||
360                 sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
361                 struct gyro_cal* calibration_data = calloc(1, sizeof(struct gyro_cal));
362                 sensor_info[s].cal_data = calibration_data;
363                 denoise_median_init(s, 7, 3);
364         }
365
366         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD) {
367                 struct compass_cal* calibration_data = calloc(1, sizeof(struct compass_cal));
368                 sensor_info[s].cal_data = calibration_data;
369         }
370
371         /* Select one of the available sensor sample processing styles */
372         select_transform(s);
373
374         /* Initialize fields related to sysfs reads offloading */
375         sensor_info[s].thread_data_fd[0]  = -1;
376         sensor_info[s].thread_data_fd[1]  = -1;
377         sensor_info[s].acquisition_thread = -1;
378
379         sensor_info[s].meta_data_pending = 0;
380
381         /* Check if we have a special ordering property on this sensor */
382         if (sensor_get_order(s, sensor_info[s].order))
383                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
384
385         sensor_count++;
386 }
387
388
389 static void discover_poll_sensors (int dev_num, char map[CATALOG_SIZE])
390 {
391         char base_dir[PATH_MAX];
392         DIR *dir;
393         struct dirent *d;
394         unsigned int i;
395         int c;
396
397         memset(map, 0, CATALOG_SIZE);
398
399         snprintf(base_dir, sizeof(base_dir), BASE_PATH, dev_num);
400
401         dir = opendir(base_dir);
402         if (!dir) {
403                 return;
404         }
405
406         /* Enumerate entries in this iio device's base folder */
407
408         while ((d = readdir(dir))) {
409                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
410                         continue;
411
412                 /* If the name matches a catalog entry, flag it */
413                 for (i = 0; i<CATALOG_SIZE; i++) {
414                 /* This will be added separately later */
415                 if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
416                         continue;
417                 for (c=0; c<sensor_catalog[i].num_channels; c++)
418                         if (!strcmp(d->d_name,sensor_catalog[i].channel[c].raw_path) ||
419                                 !strcmp(d->d_name, sensor_catalog[i].channel[c].input_path)) {
420                                         map[i] = 1;
421                                         break;
422                         }
423                 }
424         }
425
426         closedir(dir);
427 }
428
429
430 static void discover_trig_sensors (int dev_num, char map[CATALOG_SIZE])
431 {
432         char scan_elem_dir[PATH_MAX];
433         DIR *dir;
434         struct dirent *d;
435         unsigned int i;
436
437         memset(map, 0, CATALOG_SIZE);
438
439         /* Enumerate entries in this iio device's scan_elements folder */
440
441         snprintf(scan_elem_dir, sizeof(scan_elem_dir), CHANNEL_PATH, dev_num);
442
443         dir = opendir(scan_elem_dir);
444         if (!dir) {
445                 return;
446         }
447
448         while ((d = readdir(dir))) {
449                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
450                         continue;
451
452                 /* Compare en entry to known ones and create matching sensors */
453
454                 for (i = 0; i<CATALOG_SIZE; i++) {
455                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
456                                 continue;
457                         if (!strcmp(d->d_name,
458                                         sensor_catalog[i].channel[0].en_path)) {
459                                         map[i] = 1;
460                                         break;
461                         }
462                 }
463         }
464
465         closedir(dir);
466 }
467
468
469 static void orientation_sensor_check(void)
470 {
471         /*
472          * If we have accel + gyro + magn but no rotation vector sensor,
473          * SensorService replaces the HAL provided orientation sensor by the
474          * AOSP version... provided we report one. So initialize a virtual
475          * orientation sensor with zero values, which will get replaced. See:
476          * frameworks/native/services/sensorservice/SensorService.cpp, looking
477          * for SENSOR_TYPE_ROTATION_VECTOR; that code should presumably fall
478          * back to mUserSensorList.add instead of replaceAt, but accommodate it.
479          */
480
481         int i;
482         int has_acc = 0;
483         int has_gyr = 0;
484         int has_mag = 0;
485         int has_rot = 0;
486         int has_ori = 0;
487         int catalog_size = CATALOG_SIZE;
488
489         for (i=0; i<sensor_count; i++)
490                 switch (sensor_info[i].type) {
491                         case SENSOR_TYPE_ACCELEROMETER:
492                                 has_acc = 1;
493                                 break;
494                         case SENSOR_TYPE_GYROSCOPE:
495                                 has_gyr = 1;
496                                 break;
497                         case SENSOR_TYPE_MAGNETIC_FIELD:
498                                 has_mag = 1;
499                                 break;
500                         case SENSOR_TYPE_ORIENTATION:
501                                 has_ori = 1;
502                                 break;
503                         case SENSOR_TYPE_ROTATION_VECTOR:
504                                 has_rot = 1;
505                                 break;
506                 }
507
508         if (has_acc && has_gyr && has_mag && !has_rot && !has_ori)
509                 for (i=0; i<catalog_size; i++)
510                         if (sensor_catalog[i].type == SENSOR_TYPE_ORIENTATION) {
511                                 ALOGI("Adding placeholder orientation sensor");
512                                 add_sensor(0, i, 1);
513                                 break;
514                         }
515 }
516
517 static void propose_new_trigger (int s, char trigger_name[MAX_NAME_SIZE],
518                                  int sensor_name_len)
519 {
520         /*
521          * A new trigger has been enumerated for this sensor. Check if it makes
522          * sense to use it over the currently selected one, and select it if it
523          * is so. The format is something like sensor_name-dev0.
524          */
525
526         const char *suffix = trigger_name + sensor_name_len + 1;
527
528         /* dev is the default, and lowest priority; no need to update */
529         if (!memcmp(suffix, "dev", 3))
530                 return;
531
532         /* If we found any-motion trigger, record it */
533
534         if (!memcmp(suffix, "any-motion-", 11)) {
535                 strcpy(sensor_info[s].motion_trigger_name, trigger_name);
536                 return;
537         }
538
539         /*
540          * It's neither the default "dev" nor an "any-motion" one. Make sure we
541          * use this though, as we may not have any other indication of the name
542          * of the trigger to use with this sensor.
543          */
544         strcpy(sensor_info[s].init_trigger_name, trigger_name);
545 }
546
547
548 static void update_sensor_matching_trigger_name (char name[MAX_NAME_SIZE])
549 {
550         /*
551          * Check if we have a sensor matching the specified trigger name,
552          * which should then begin with the sensor name, and end with a number
553          * equal to the iio device number the sensor is associated to. If so,
554          * update the string we're going to write to trigger/current_trigger
555          * when enabling this sensor.
556          */
557
558         int s;
559         int dev_num;
560         int len;
561         char* cursor;
562         int sensor_name_len;
563
564         /*
565          * First determine the iio device number this trigger refers to. We
566          * expect the last few characters (typically one) of the trigger name
567          * to be this number, so perform a few checks.
568          */
569         len = strnlen(name, MAX_NAME_SIZE);
570
571         if (len < 2)
572                 return;
573
574         cursor = name + len - 1;
575
576         if (!isdigit(*cursor))
577                 return;
578
579         while (len && isdigit(*cursor)) {
580                 len--;
581                 cursor--;
582         }
583
584         dev_num = atoi(cursor+1);
585
586         /* See if that matches a sensor */
587         for (s=0; s<sensor_count; s++)
588                 if (sensor_info[s].dev_num == dev_num) {
589
590                         sensor_name_len = strlen(sensor_info[s].internal_name);
591
592                         if (!strncmp(name,
593                                      sensor_info[s].internal_name,
594                                      sensor_name_len))
595                                 /* Switch to new trigger if appropriate */
596                                 propose_new_trigger(s, name, sensor_name_len);
597                 }
598 }
599
600
601 static void setup_trigger_names (void)
602 {
603         char filename[PATH_MAX];
604         char buf[MAX_NAME_SIZE];
605         int len;
606         int s;
607         int trigger;
608         int ret;
609
610         /* By default, use the name-dev convention that most drivers use */
611         for (s=0; s<sensor_count; s++)
612                 snprintf(sensor_info[s].init_trigger_name,
613                          MAX_NAME_SIZE, "%s-dev%d",
614                          sensor_info[s].internal_name, sensor_info[s].dev_num);
615
616         /* Now have a look to /sys/bus/iio/devices/triggerX entries */
617
618         for (trigger=0; trigger<MAX_TRIGGERS; trigger++) {
619
620                 snprintf(filename, sizeof(filename), TRIGGER_FILE_PATH,trigger);
621
622                 ret = sysfs_read_str(filename, buf, sizeof(buf));
623
624                 if (ret < 0)
625                         break;
626
627                 /* Record initial and any-motion triggers names */
628                 update_sensor_matching_trigger_name(buf);
629         }
630
631         /*
632          * Certain drivers expose only motion triggers even though they should
633          * be continous. For these, use the default trigger name as the motion
634          * trigger. The code generating intermediate events is dependent on
635          * motion_trigger_name being set to a non empty string.
636          */
637
638         for (s=0; s<sensor_count; s++)
639                 if ((sensor_info[s].quirks & QUIRK_TERSE_DRIVER) &&
640                     sensor_info[s].motion_trigger_name[0] == '\0')
641                         strcpy( sensor_info[s].motion_trigger_name,
642                                 sensor_info[s].init_trigger_name);
643
644         for (s=0; s<sensor_count; s++)
645                 if (sensor_info[s].num_channels) {
646                         ALOGI("Sensor %d (%s) default trigger: %s\n", s,
647                                 sensor_info[s].friendly_name,
648                                 sensor_info[s].init_trigger_name);
649                         if (sensor_info[s].motion_trigger_name[0])
650                                 ALOGI("Sensor %d (%s) motion trigger: %s\n",
651                                 s, sensor_info[s].friendly_name,
652                                 sensor_info[s].motion_trigger_name);
653                 }
654 }
655
656 static void uncalibrated_gyro_check (void)
657 {
658         unsigned int has_gyr = 0;
659         unsigned int dev_num;
660         int i, c;
661         unsigned int is_poll_sensor;
662         char buf[MAX_NAME_SIZE];
663
664         int cal_idx = 0;
665         int uncal_idx = 0;
666         int catalog_size = CATALOG_SIZE; /* Avoid GCC sign comparison warning */
667
668         /* Checking to see if we have a gyroscope - we can only have uncal if we have the base sensor */
669         for (i=0; i < sensor_count; i++)
670                 if (sensor_info[i].type == SENSOR_TYPE_GYROSCOPE) {
671                         has_gyr=1;
672                         dev_num = sensor_info[i].dev_num;
673                         is_poll_sensor = !sensor_info[i].num_channels;
674                         cal_idx = i;
675                         break;
676                 }
677
678         /*
679          * If we have a gyro we can add the uncalibrated sensor of the same type and
680          * on the same dev_num. We will save indexes for easy finding and also save the
681          * channel specific information.
682          */
683         if (has_gyr)
684                 for (i=0; i<catalog_size; i++)
685                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
686                                 add_sensor(dev_num, i, is_poll_sensor);
687
688                                 uncal_idx = sensor_count - 1; /* Just added uncalibrated sensor */
689
690                                 /* Similar to build_sensor_report_maps */
691                                 for (c = 0; c < sensor_info[uncal_idx].num_channels; c++)
692                                 {
693                                         memcpy( &(sensor_info[uncal_idx].channel[c].type_spec),
694                                                 &(sensor_info[cal_idx].channel[c].type_spec),
695                                                 sizeof(sensor_info[uncal_idx].channel[c].type_spec));
696                                         sensor_info[uncal_idx].channel[c].type_info = sensor_info[cal_idx].channel[c].type_info;
697                                         sensor_info[uncal_idx].channel[c].offset    = sensor_info[cal_idx].channel[c].offset;
698                                         sensor_info[uncal_idx].channel[c].size      = sensor_info[cal_idx].channel[c].size;
699                                 }
700                                 sensor_info[uncal_idx].pair_idx = cal_idx;
701                                 sensor_info[cal_idx].pair_idx = uncal_idx;
702                                 strncpy(sensor_info[uncal_idx].init_trigger_name,
703                                         sensor_info[cal_idx].init_trigger_name,
704                                         MAX_NAME_SIZE);
705                                 strncpy(sensor_info[uncal_idx].motion_trigger_name,
706                                         sensor_info[cal_idx].motion_trigger_name,
707                                         MAX_NAME_SIZE);
708
709                                 /* Add "Uncalibrated " prefix to sensor name */
710                                 strcpy(buf, sensor_info[cal_idx].friendly_name);
711                                 snprintf(sensor_info[uncal_idx].friendly_name,
712                                          MAX_NAME_SIZE,
713                                          "%s %s", "Uncalibrated", buf);
714                                 break;
715                         }
716 }
717
718 void enumerate_sensors (void)
719 {
720         /*
721          * Discover supported sensors and allocate control structures for them.
722          * Multiple sensors can potentially rely on a single iio device (each
723          * using their own channels). We can't have multiple sensors of the same
724          * type on the same device. In case of detection as both a poll-mode
725          * and trigger-based sensor, use the trigger usage mode.
726          */
727         char poll_sensors[CATALOG_SIZE];
728         char trig_sensors[CATALOG_SIZE];
729         int dev_num;
730         unsigned int i;
731         int trig_found;
732
733         for (dev_num=0; dev_num<MAX_DEVICES; dev_num++) {
734                 trig_found = 0;
735
736                 discover_poll_sensors(dev_num, poll_sensors);
737                 discover_trig_sensors(dev_num, trig_sensors);
738
739                 for (i=0; i<CATALOG_SIZE; i++)
740                         if (trig_sensors[i]) {
741                                 add_sensor(dev_num, i, 0);
742                                 trig_found = 1;
743                         }
744                         else
745                                 if (poll_sensors[i])
746                                         add_sensor(dev_num, i, 1);
747
748                 if (trig_found) {
749                         build_sensor_report_maps(dev_num);
750                 }
751         }
752
753         ALOGI("Discovered %d sensors\n", sensor_count);
754
755         /* Set up default - as well as custom - trigger names */
756         setup_trigger_names();
757
758         /* Make sure Android fall backs to its own orientation sensor */
759         orientation_sensor_check();
760
761         /*
762          * Create the uncalibrated counterpart to the compensated gyroscope.
763          * This is is a new sensor type in Android 4.4.
764          */
765         uncalibrated_gyro_check();
766 }
767
768
769 void delete_enumeration_data (void)
770 {
771         int i;
772         for (i = 0; i < sensor_count; i++)
773         switch (sensor_info[i].type) {
774                 case SENSOR_TYPE_MAGNETIC_FIELD:
775                         if (sensor_info[i].cal_data != NULL) {
776                                 free(sensor_info[i].cal_data);
777                                 sensor_info[i].cal_data = NULL;
778                                 sensor_info[i].cal_level = 0;
779                         }
780                         break;
781                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
782                 case SENSOR_TYPE_GYROSCOPE:
783                         if (sensor_info[i].cal_data != NULL) {
784                                 free(sensor_info[i].cal_data);
785                                 sensor_info[i].cal_data = NULL;
786                                 sensor_info[i].cal_level = 0;
787                         }
788                         break;
789                         if (sensor_info[i].filter != NULL) {
790                                 denoise_median_release(i);
791                         }
792                 default:
793                         break;
794         }
795         /* Reset sensor count */
796         sensor_count = 0;
797 }
798
799
800 int get_sensors_list(   struct sensors_module_t* module,
801                         struct sensor_t const** list)
802 {
803         *list = sensor_desc;
804         return sensor_count;
805 }
806