OSDN Git Service

btrfs: scrub: Don't check free space before marking a block group RO
[tomoyo/tomoyo-test1.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17
18 /*
19  * Return target flags in extended format or 0 if restripe for this chunk_type
20  * is not in progress
21  *
22  * Should be called with balance_lock held
23  */
24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25 {
26         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27         u64 target = 0;
28
29         if (!bctl)
30                 return 0;
31
32         if (flags & BTRFS_BLOCK_GROUP_DATA &&
33             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41         }
42
43         return target;
44 }
45
46 /*
47  * @flags: available profiles in extended format (see ctree.h)
48  *
49  * Return reduced profile in chunk format.  If profile changing is in progress
50  * (either running or paused) picks the target profile (if it's already
51  * available), otherwise falls back to plain reducing.
52  */
53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54 {
55         u64 num_devices = fs_info->fs_devices->rw_devices;
56         u64 target;
57         u64 raid_type;
58         u64 allowed = 0;
59
60         /*
61          * See if restripe for this chunk_type is in progress, if so try to
62          * reduce to the target profile
63          */
64         spin_lock(&fs_info->balance_lock);
65         target = get_restripe_target(fs_info, flags);
66         if (target) {
67                 /* Pick target profile only if it's already available */
68                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69                         spin_unlock(&fs_info->balance_lock);
70                         return extended_to_chunk(target);
71                 }
72         }
73         spin_unlock(&fs_info->balance_lock);
74
75         /* First, mask out the RAID levels which aren't possible */
76         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78                         allowed |= btrfs_raid_array[raid_type].bg_flag;
79         }
80         allowed &= flags;
81
82         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83                 allowed = BTRFS_BLOCK_GROUP_RAID6;
84         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85                 allowed = BTRFS_BLOCK_GROUP_RAID5;
86         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87                 allowed = BTRFS_BLOCK_GROUP_RAID10;
88         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89                 allowed = BTRFS_BLOCK_GROUP_RAID1;
90         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91                 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95         return extended_to_chunk(flags | allowed);
96 }
97
98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100         unsigned seq;
101         u64 flags;
102
103         do {
104                 flags = orig_flags;
105                 seq = read_seqbegin(&fs_info->profiles_lock);
106
107                 if (flags & BTRFS_BLOCK_GROUP_DATA)
108                         flags |= fs_info->avail_data_alloc_bits;
109                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110                         flags |= fs_info->avail_system_alloc_bits;
111                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112                         flags |= fs_info->avail_metadata_alloc_bits;
113         } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115         return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117
118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119 {
120         return get_alloc_profile(fs_info, orig_flags);
121 }
122
123 void btrfs_get_block_group(struct btrfs_block_group *cache)
124 {
125         atomic_inc(&cache->count);
126 }
127
128 void btrfs_put_block_group(struct btrfs_block_group *cache)
129 {
130         if (atomic_dec_and_test(&cache->count)) {
131                 WARN_ON(cache->pinned > 0);
132                 WARN_ON(cache->reserved > 0);
133
134                 /*
135                  * If not empty, someone is still holding mutex of
136                  * full_stripe_lock, which can only be released by caller.
137                  * And it will definitely cause use-after-free when caller
138                  * tries to release full stripe lock.
139                  *
140                  * No better way to resolve, but only to warn.
141                  */
142                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143                 kfree(cache->free_space_ctl);
144                 kfree(cache);
145         }
146 }
147
148 /*
149  * This adds the block group to the fs_info rb tree for the block group cache
150  */
151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152                                        struct btrfs_block_group *block_group)
153 {
154         struct rb_node **p;
155         struct rb_node *parent = NULL;
156         struct btrfs_block_group *cache;
157
158         spin_lock(&info->block_group_cache_lock);
159         p = &info->block_group_cache_tree.rb_node;
160
161         while (*p) {
162                 parent = *p;
163                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
164                 if (block_group->start < cache->start) {
165                         p = &(*p)->rb_left;
166                 } else if (block_group->start > cache->start) {
167                         p = &(*p)->rb_right;
168                 } else {
169                         spin_unlock(&info->block_group_cache_lock);
170                         return -EEXIST;
171                 }
172         }
173
174         rb_link_node(&block_group->cache_node, parent, p);
175         rb_insert_color(&block_group->cache_node,
176                         &info->block_group_cache_tree);
177
178         if (info->first_logical_byte > block_group->start)
179                 info->first_logical_byte = block_group->start;
180
181         spin_unlock(&info->block_group_cache_lock);
182
183         return 0;
184 }
185
186 /*
187  * This will return the block group at or after bytenr if contains is 0, else
188  * it will return the block group that contains the bytenr
189  */
190 static struct btrfs_block_group *block_group_cache_tree_search(
191                 struct btrfs_fs_info *info, u64 bytenr, int contains)
192 {
193         struct btrfs_block_group *cache, *ret = NULL;
194         struct rb_node *n;
195         u64 end, start;
196
197         spin_lock(&info->block_group_cache_lock);
198         n = info->block_group_cache_tree.rb_node;
199
200         while (n) {
201                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
202                 end = cache->start + cache->length - 1;
203                 start = cache->start;
204
205                 if (bytenr < start) {
206                         if (!contains && (!ret || start < ret->start))
207                                 ret = cache;
208                         n = n->rb_left;
209                 } else if (bytenr > start) {
210                         if (contains && bytenr <= end) {
211                                 ret = cache;
212                                 break;
213                         }
214                         n = n->rb_right;
215                 } else {
216                         ret = cache;
217                         break;
218                 }
219         }
220         if (ret) {
221                 btrfs_get_block_group(ret);
222                 if (bytenr == 0 && info->first_logical_byte > ret->start)
223                         info->first_logical_byte = ret->start;
224         }
225         spin_unlock(&info->block_group_cache_lock);
226
227         return ret;
228 }
229
230 /*
231  * Return the block group that starts at or after bytenr
232  */
233 struct btrfs_block_group *btrfs_lookup_first_block_group(
234                 struct btrfs_fs_info *info, u64 bytenr)
235 {
236         return block_group_cache_tree_search(info, bytenr, 0);
237 }
238
239 /*
240  * Return the block group that contains the given bytenr
241  */
242 struct btrfs_block_group *btrfs_lookup_block_group(
243                 struct btrfs_fs_info *info, u64 bytenr)
244 {
245         return block_group_cache_tree_search(info, bytenr, 1);
246 }
247
248 struct btrfs_block_group *btrfs_next_block_group(
249                 struct btrfs_block_group *cache)
250 {
251         struct btrfs_fs_info *fs_info = cache->fs_info;
252         struct rb_node *node;
253
254         spin_lock(&fs_info->block_group_cache_lock);
255
256         /* If our block group was removed, we need a full search. */
257         if (RB_EMPTY_NODE(&cache->cache_node)) {
258                 const u64 next_bytenr = cache->start + cache->length;
259
260                 spin_unlock(&fs_info->block_group_cache_lock);
261                 btrfs_put_block_group(cache);
262                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
263         }
264         node = rb_next(&cache->cache_node);
265         btrfs_put_block_group(cache);
266         if (node) {
267                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
268                 btrfs_get_block_group(cache);
269         } else
270                 cache = NULL;
271         spin_unlock(&fs_info->block_group_cache_lock);
272         return cache;
273 }
274
275 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
276 {
277         struct btrfs_block_group *bg;
278         bool ret = true;
279
280         bg = btrfs_lookup_block_group(fs_info, bytenr);
281         if (!bg)
282                 return false;
283
284         spin_lock(&bg->lock);
285         if (bg->ro)
286                 ret = false;
287         else
288                 atomic_inc(&bg->nocow_writers);
289         spin_unlock(&bg->lock);
290
291         /* No put on block group, done by btrfs_dec_nocow_writers */
292         if (!ret)
293                 btrfs_put_block_group(bg);
294
295         return ret;
296 }
297
298 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
299 {
300         struct btrfs_block_group *bg;
301
302         bg = btrfs_lookup_block_group(fs_info, bytenr);
303         ASSERT(bg);
304         if (atomic_dec_and_test(&bg->nocow_writers))
305                 wake_up_var(&bg->nocow_writers);
306         /*
307          * Once for our lookup and once for the lookup done by a previous call
308          * to btrfs_inc_nocow_writers()
309          */
310         btrfs_put_block_group(bg);
311         btrfs_put_block_group(bg);
312 }
313
314 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
315 {
316         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
317 }
318
319 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
320                                         const u64 start)
321 {
322         struct btrfs_block_group *bg;
323
324         bg = btrfs_lookup_block_group(fs_info, start);
325         ASSERT(bg);
326         if (atomic_dec_and_test(&bg->reservations))
327                 wake_up_var(&bg->reservations);
328         btrfs_put_block_group(bg);
329 }
330
331 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
332 {
333         struct btrfs_space_info *space_info = bg->space_info;
334
335         ASSERT(bg->ro);
336
337         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
338                 return;
339
340         /*
341          * Our block group is read only but before we set it to read only,
342          * some task might have had allocated an extent from it already, but it
343          * has not yet created a respective ordered extent (and added it to a
344          * root's list of ordered extents).
345          * Therefore wait for any task currently allocating extents, since the
346          * block group's reservations counter is incremented while a read lock
347          * on the groups' semaphore is held and decremented after releasing
348          * the read access on that semaphore and creating the ordered extent.
349          */
350         down_write(&space_info->groups_sem);
351         up_write(&space_info->groups_sem);
352
353         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
354 }
355
356 struct btrfs_caching_control *btrfs_get_caching_control(
357                 struct btrfs_block_group *cache)
358 {
359         struct btrfs_caching_control *ctl;
360
361         spin_lock(&cache->lock);
362         if (!cache->caching_ctl) {
363                 spin_unlock(&cache->lock);
364                 return NULL;
365         }
366
367         ctl = cache->caching_ctl;
368         refcount_inc(&ctl->count);
369         spin_unlock(&cache->lock);
370         return ctl;
371 }
372
373 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
374 {
375         if (refcount_dec_and_test(&ctl->count))
376                 kfree(ctl);
377 }
378
379 /*
380  * When we wait for progress in the block group caching, its because our
381  * allocation attempt failed at least once.  So, we must sleep and let some
382  * progress happen before we try again.
383  *
384  * This function will sleep at least once waiting for new free space to show
385  * up, and then it will check the block group free space numbers for our min
386  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
387  * a free extent of a given size, but this is a good start.
388  *
389  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
390  * any of the information in this block group.
391  */
392 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
393                                            u64 num_bytes)
394 {
395         struct btrfs_caching_control *caching_ctl;
396
397         caching_ctl = btrfs_get_caching_control(cache);
398         if (!caching_ctl)
399                 return;
400
401         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
402                    (cache->free_space_ctl->free_space >= num_bytes));
403
404         btrfs_put_caching_control(caching_ctl);
405 }
406
407 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
408 {
409         struct btrfs_caching_control *caching_ctl;
410         int ret = 0;
411
412         caching_ctl = btrfs_get_caching_control(cache);
413         if (!caching_ctl)
414                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
415
416         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
417         if (cache->cached == BTRFS_CACHE_ERROR)
418                 ret = -EIO;
419         btrfs_put_caching_control(caching_ctl);
420         return ret;
421 }
422
423 #ifdef CONFIG_BTRFS_DEBUG
424 static void fragment_free_space(struct btrfs_block_group *block_group)
425 {
426         struct btrfs_fs_info *fs_info = block_group->fs_info;
427         u64 start = block_group->start;
428         u64 len = block_group->length;
429         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
430                 fs_info->nodesize : fs_info->sectorsize;
431         u64 step = chunk << 1;
432
433         while (len > chunk) {
434                 btrfs_remove_free_space(block_group, start, chunk);
435                 start += step;
436                 if (len < step)
437                         len = 0;
438                 else
439                         len -= step;
440         }
441 }
442 #endif
443
444 /*
445  * This is only called by btrfs_cache_block_group, since we could have freed
446  * extents we need to check the pinned_extents for any extents that can't be
447  * used yet since their free space will be released as soon as the transaction
448  * commits.
449  */
450 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
451 {
452         struct btrfs_fs_info *info = block_group->fs_info;
453         u64 extent_start, extent_end, size, total_added = 0;
454         int ret;
455
456         while (start < end) {
457                 ret = find_first_extent_bit(info->pinned_extents, start,
458                                             &extent_start, &extent_end,
459                                             EXTENT_DIRTY | EXTENT_UPTODATE,
460                                             NULL);
461                 if (ret)
462                         break;
463
464                 if (extent_start <= start) {
465                         start = extent_end + 1;
466                 } else if (extent_start > start && extent_start < end) {
467                         size = extent_start - start;
468                         total_added += size;
469                         ret = btrfs_add_free_space(block_group, start,
470                                                    size);
471                         BUG_ON(ret); /* -ENOMEM or logic error */
472                         start = extent_end + 1;
473                 } else {
474                         break;
475                 }
476         }
477
478         if (start < end) {
479                 size = end - start;
480                 total_added += size;
481                 ret = btrfs_add_free_space(block_group, start, size);
482                 BUG_ON(ret); /* -ENOMEM or logic error */
483         }
484
485         return total_added;
486 }
487
488 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
489 {
490         struct btrfs_block_group *block_group = caching_ctl->block_group;
491         struct btrfs_fs_info *fs_info = block_group->fs_info;
492         struct btrfs_root *extent_root = fs_info->extent_root;
493         struct btrfs_path *path;
494         struct extent_buffer *leaf;
495         struct btrfs_key key;
496         u64 total_found = 0;
497         u64 last = 0;
498         u32 nritems;
499         int ret;
500         bool wakeup = true;
501
502         path = btrfs_alloc_path();
503         if (!path)
504                 return -ENOMEM;
505
506         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
507
508 #ifdef CONFIG_BTRFS_DEBUG
509         /*
510          * If we're fragmenting we don't want to make anybody think we can
511          * allocate from this block group until we've had a chance to fragment
512          * the free space.
513          */
514         if (btrfs_should_fragment_free_space(block_group))
515                 wakeup = false;
516 #endif
517         /*
518          * We don't want to deadlock with somebody trying to allocate a new
519          * extent for the extent root while also trying to search the extent
520          * root to add free space.  So we skip locking and search the commit
521          * root, since its read-only
522          */
523         path->skip_locking = 1;
524         path->search_commit_root = 1;
525         path->reada = READA_FORWARD;
526
527         key.objectid = last;
528         key.offset = 0;
529         key.type = BTRFS_EXTENT_ITEM_KEY;
530
531 next:
532         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
533         if (ret < 0)
534                 goto out;
535
536         leaf = path->nodes[0];
537         nritems = btrfs_header_nritems(leaf);
538
539         while (1) {
540                 if (btrfs_fs_closing(fs_info) > 1) {
541                         last = (u64)-1;
542                         break;
543                 }
544
545                 if (path->slots[0] < nritems) {
546                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
547                 } else {
548                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
549                         if (ret)
550                                 break;
551
552                         if (need_resched() ||
553                             rwsem_is_contended(&fs_info->commit_root_sem)) {
554                                 if (wakeup)
555                                         caching_ctl->progress = last;
556                                 btrfs_release_path(path);
557                                 up_read(&fs_info->commit_root_sem);
558                                 mutex_unlock(&caching_ctl->mutex);
559                                 cond_resched();
560                                 mutex_lock(&caching_ctl->mutex);
561                                 down_read(&fs_info->commit_root_sem);
562                                 goto next;
563                         }
564
565                         ret = btrfs_next_leaf(extent_root, path);
566                         if (ret < 0)
567                                 goto out;
568                         if (ret)
569                                 break;
570                         leaf = path->nodes[0];
571                         nritems = btrfs_header_nritems(leaf);
572                         continue;
573                 }
574
575                 if (key.objectid < last) {
576                         key.objectid = last;
577                         key.offset = 0;
578                         key.type = BTRFS_EXTENT_ITEM_KEY;
579
580                         if (wakeup)
581                                 caching_ctl->progress = last;
582                         btrfs_release_path(path);
583                         goto next;
584                 }
585
586                 if (key.objectid < block_group->start) {
587                         path->slots[0]++;
588                         continue;
589                 }
590
591                 if (key.objectid >= block_group->start + block_group->length)
592                         break;
593
594                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
595                     key.type == BTRFS_METADATA_ITEM_KEY) {
596                         total_found += add_new_free_space(block_group, last,
597                                                           key.objectid);
598                         if (key.type == BTRFS_METADATA_ITEM_KEY)
599                                 last = key.objectid +
600                                         fs_info->nodesize;
601                         else
602                                 last = key.objectid + key.offset;
603
604                         if (total_found > CACHING_CTL_WAKE_UP) {
605                                 total_found = 0;
606                                 if (wakeup)
607                                         wake_up(&caching_ctl->wait);
608                         }
609                 }
610                 path->slots[0]++;
611         }
612         ret = 0;
613
614         total_found += add_new_free_space(block_group, last,
615                                 block_group->start + block_group->length);
616         caching_ctl->progress = (u64)-1;
617
618 out:
619         btrfs_free_path(path);
620         return ret;
621 }
622
623 static noinline void caching_thread(struct btrfs_work *work)
624 {
625         struct btrfs_block_group *block_group;
626         struct btrfs_fs_info *fs_info;
627         struct btrfs_caching_control *caching_ctl;
628         int ret;
629
630         caching_ctl = container_of(work, struct btrfs_caching_control, work);
631         block_group = caching_ctl->block_group;
632         fs_info = block_group->fs_info;
633
634         mutex_lock(&caching_ctl->mutex);
635         down_read(&fs_info->commit_root_sem);
636
637         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
638                 ret = load_free_space_tree(caching_ctl);
639         else
640                 ret = load_extent_tree_free(caching_ctl);
641
642         spin_lock(&block_group->lock);
643         block_group->caching_ctl = NULL;
644         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
645         spin_unlock(&block_group->lock);
646
647 #ifdef CONFIG_BTRFS_DEBUG
648         if (btrfs_should_fragment_free_space(block_group)) {
649                 u64 bytes_used;
650
651                 spin_lock(&block_group->space_info->lock);
652                 spin_lock(&block_group->lock);
653                 bytes_used = block_group->length - block_group->used;
654                 block_group->space_info->bytes_used += bytes_used >> 1;
655                 spin_unlock(&block_group->lock);
656                 spin_unlock(&block_group->space_info->lock);
657                 fragment_free_space(block_group);
658         }
659 #endif
660
661         caching_ctl->progress = (u64)-1;
662
663         up_read(&fs_info->commit_root_sem);
664         btrfs_free_excluded_extents(block_group);
665         mutex_unlock(&caching_ctl->mutex);
666
667         wake_up(&caching_ctl->wait);
668
669         btrfs_put_caching_control(caching_ctl);
670         btrfs_put_block_group(block_group);
671 }
672
673 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
674 {
675         DEFINE_WAIT(wait);
676         struct btrfs_fs_info *fs_info = cache->fs_info;
677         struct btrfs_caching_control *caching_ctl;
678         int ret = 0;
679
680         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
681         if (!caching_ctl)
682                 return -ENOMEM;
683
684         INIT_LIST_HEAD(&caching_ctl->list);
685         mutex_init(&caching_ctl->mutex);
686         init_waitqueue_head(&caching_ctl->wait);
687         caching_ctl->block_group = cache;
688         caching_ctl->progress = cache->start;
689         refcount_set(&caching_ctl->count, 1);
690         btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
691
692         spin_lock(&cache->lock);
693         /*
694          * This should be a rare occasion, but this could happen I think in the
695          * case where one thread starts to load the space cache info, and then
696          * some other thread starts a transaction commit which tries to do an
697          * allocation while the other thread is still loading the space cache
698          * info.  The previous loop should have kept us from choosing this block
699          * group, but if we've moved to the state where we will wait on caching
700          * block groups we need to first check if we're doing a fast load here,
701          * so we can wait for it to finish, otherwise we could end up allocating
702          * from a block group who's cache gets evicted for one reason or
703          * another.
704          */
705         while (cache->cached == BTRFS_CACHE_FAST) {
706                 struct btrfs_caching_control *ctl;
707
708                 ctl = cache->caching_ctl;
709                 refcount_inc(&ctl->count);
710                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
711                 spin_unlock(&cache->lock);
712
713                 schedule();
714
715                 finish_wait(&ctl->wait, &wait);
716                 btrfs_put_caching_control(ctl);
717                 spin_lock(&cache->lock);
718         }
719
720         if (cache->cached != BTRFS_CACHE_NO) {
721                 spin_unlock(&cache->lock);
722                 kfree(caching_ctl);
723                 return 0;
724         }
725         WARN_ON(cache->caching_ctl);
726         cache->caching_ctl = caching_ctl;
727         cache->cached = BTRFS_CACHE_FAST;
728         spin_unlock(&cache->lock);
729
730         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
731                 mutex_lock(&caching_ctl->mutex);
732                 ret = load_free_space_cache(cache);
733
734                 spin_lock(&cache->lock);
735                 if (ret == 1) {
736                         cache->caching_ctl = NULL;
737                         cache->cached = BTRFS_CACHE_FINISHED;
738                         cache->last_byte_to_unpin = (u64)-1;
739                         caching_ctl->progress = (u64)-1;
740                 } else {
741                         if (load_cache_only) {
742                                 cache->caching_ctl = NULL;
743                                 cache->cached = BTRFS_CACHE_NO;
744                         } else {
745                                 cache->cached = BTRFS_CACHE_STARTED;
746                                 cache->has_caching_ctl = 1;
747                         }
748                 }
749                 spin_unlock(&cache->lock);
750 #ifdef CONFIG_BTRFS_DEBUG
751                 if (ret == 1 &&
752                     btrfs_should_fragment_free_space(cache)) {
753                         u64 bytes_used;
754
755                         spin_lock(&cache->space_info->lock);
756                         spin_lock(&cache->lock);
757                         bytes_used = cache->length - cache->used;
758                         cache->space_info->bytes_used += bytes_used >> 1;
759                         spin_unlock(&cache->lock);
760                         spin_unlock(&cache->space_info->lock);
761                         fragment_free_space(cache);
762                 }
763 #endif
764                 mutex_unlock(&caching_ctl->mutex);
765
766                 wake_up(&caching_ctl->wait);
767                 if (ret == 1) {
768                         btrfs_put_caching_control(caching_ctl);
769                         btrfs_free_excluded_extents(cache);
770                         return 0;
771                 }
772         } else {
773                 /*
774                  * We're either using the free space tree or no caching at all.
775                  * Set cached to the appropriate value and wakeup any waiters.
776                  */
777                 spin_lock(&cache->lock);
778                 if (load_cache_only) {
779                         cache->caching_ctl = NULL;
780                         cache->cached = BTRFS_CACHE_NO;
781                 } else {
782                         cache->cached = BTRFS_CACHE_STARTED;
783                         cache->has_caching_ctl = 1;
784                 }
785                 spin_unlock(&cache->lock);
786                 wake_up(&caching_ctl->wait);
787         }
788
789         if (load_cache_only) {
790                 btrfs_put_caching_control(caching_ctl);
791                 return 0;
792         }
793
794         down_write(&fs_info->commit_root_sem);
795         refcount_inc(&caching_ctl->count);
796         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
797         up_write(&fs_info->commit_root_sem);
798
799         btrfs_get_block_group(cache);
800
801         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
802
803         return ret;
804 }
805
806 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
807 {
808         u64 extra_flags = chunk_to_extended(flags) &
809                                 BTRFS_EXTENDED_PROFILE_MASK;
810
811         write_seqlock(&fs_info->profiles_lock);
812         if (flags & BTRFS_BLOCK_GROUP_DATA)
813                 fs_info->avail_data_alloc_bits &= ~extra_flags;
814         if (flags & BTRFS_BLOCK_GROUP_METADATA)
815                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
816         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
817                 fs_info->avail_system_alloc_bits &= ~extra_flags;
818         write_sequnlock(&fs_info->profiles_lock);
819 }
820
821 /*
822  * Clear incompat bits for the following feature(s):
823  *
824  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
825  *            in the whole filesystem
826  *
827  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
828  */
829 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
830 {
831         bool found_raid56 = false;
832         bool found_raid1c34 = false;
833
834         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
835             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
836             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
837                 struct list_head *head = &fs_info->space_info;
838                 struct btrfs_space_info *sinfo;
839
840                 list_for_each_entry_rcu(sinfo, head, list) {
841                         down_read(&sinfo->groups_sem);
842                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
843                                 found_raid56 = true;
844                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
845                                 found_raid56 = true;
846                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
847                                 found_raid1c34 = true;
848                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
849                                 found_raid1c34 = true;
850                         up_read(&sinfo->groups_sem);
851                 }
852                 if (found_raid56)
853                         btrfs_clear_fs_incompat(fs_info, RAID56);
854                 if (found_raid1c34)
855                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
856         }
857 }
858
859 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
860                              u64 group_start, struct extent_map *em)
861 {
862         struct btrfs_fs_info *fs_info = trans->fs_info;
863         struct btrfs_root *root = fs_info->extent_root;
864         struct btrfs_path *path;
865         struct btrfs_block_group *block_group;
866         struct btrfs_free_cluster *cluster;
867         struct btrfs_root *tree_root = fs_info->tree_root;
868         struct btrfs_key key;
869         struct inode *inode;
870         struct kobject *kobj = NULL;
871         int ret;
872         int index;
873         int factor;
874         struct btrfs_caching_control *caching_ctl = NULL;
875         bool remove_em;
876         bool remove_rsv = false;
877
878         block_group = btrfs_lookup_block_group(fs_info, group_start);
879         BUG_ON(!block_group);
880         BUG_ON(!block_group->ro);
881
882         trace_btrfs_remove_block_group(block_group);
883         /*
884          * Free the reserved super bytes from this block group before
885          * remove it.
886          */
887         btrfs_free_excluded_extents(block_group);
888         btrfs_free_ref_tree_range(fs_info, block_group->start,
889                                   block_group->length);
890
891         index = btrfs_bg_flags_to_raid_index(block_group->flags);
892         factor = btrfs_bg_type_to_factor(block_group->flags);
893
894         /* make sure this block group isn't part of an allocation cluster */
895         cluster = &fs_info->data_alloc_cluster;
896         spin_lock(&cluster->refill_lock);
897         btrfs_return_cluster_to_free_space(block_group, cluster);
898         spin_unlock(&cluster->refill_lock);
899
900         /*
901          * make sure this block group isn't part of a metadata
902          * allocation cluster
903          */
904         cluster = &fs_info->meta_alloc_cluster;
905         spin_lock(&cluster->refill_lock);
906         btrfs_return_cluster_to_free_space(block_group, cluster);
907         spin_unlock(&cluster->refill_lock);
908
909         path = btrfs_alloc_path();
910         if (!path) {
911                 ret = -ENOMEM;
912                 goto out;
913         }
914
915         /*
916          * get the inode first so any iput calls done for the io_list
917          * aren't the final iput (no unlinks allowed now)
918          */
919         inode = lookup_free_space_inode(block_group, path);
920
921         mutex_lock(&trans->transaction->cache_write_mutex);
922         /*
923          * Make sure our free space cache IO is done before removing the
924          * free space inode
925          */
926         spin_lock(&trans->transaction->dirty_bgs_lock);
927         if (!list_empty(&block_group->io_list)) {
928                 list_del_init(&block_group->io_list);
929
930                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
931
932                 spin_unlock(&trans->transaction->dirty_bgs_lock);
933                 btrfs_wait_cache_io(trans, block_group, path);
934                 btrfs_put_block_group(block_group);
935                 spin_lock(&trans->transaction->dirty_bgs_lock);
936         }
937
938         if (!list_empty(&block_group->dirty_list)) {
939                 list_del_init(&block_group->dirty_list);
940                 remove_rsv = true;
941                 btrfs_put_block_group(block_group);
942         }
943         spin_unlock(&trans->transaction->dirty_bgs_lock);
944         mutex_unlock(&trans->transaction->cache_write_mutex);
945
946         if (!IS_ERR(inode)) {
947                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
948                 if (ret) {
949                         btrfs_add_delayed_iput(inode);
950                         goto out;
951                 }
952                 clear_nlink(inode);
953                 /* One for the block groups ref */
954                 spin_lock(&block_group->lock);
955                 if (block_group->iref) {
956                         block_group->iref = 0;
957                         block_group->inode = NULL;
958                         spin_unlock(&block_group->lock);
959                         iput(inode);
960                 } else {
961                         spin_unlock(&block_group->lock);
962                 }
963                 /* One for our lookup ref */
964                 btrfs_add_delayed_iput(inode);
965         }
966
967         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
968         key.type = 0;
969         key.offset = block_group->start;
970
971         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
972         if (ret < 0)
973                 goto out;
974         if (ret > 0)
975                 btrfs_release_path(path);
976         if (ret == 0) {
977                 ret = btrfs_del_item(trans, tree_root, path);
978                 if (ret)
979                         goto out;
980                 btrfs_release_path(path);
981         }
982
983         spin_lock(&fs_info->block_group_cache_lock);
984         rb_erase(&block_group->cache_node,
985                  &fs_info->block_group_cache_tree);
986         RB_CLEAR_NODE(&block_group->cache_node);
987
988         if (fs_info->first_logical_byte == block_group->start)
989                 fs_info->first_logical_byte = (u64)-1;
990         spin_unlock(&fs_info->block_group_cache_lock);
991
992         down_write(&block_group->space_info->groups_sem);
993         /*
994          * we must use list_del_init so people can check to see if they
995          * are still on the list after taking the semaphore
996          */
997         list_del_init(&block_group->list);
998         if (list_empty(&block_group->space_info->block_groups[index])) {
999                 kobj = block_group->space_info->block_group_kobjs[index];
1000                 block_group->space_info->block_group_kobjs[index] = NULL;
1001                 clear_avail_alloc_bits(fs_info, block_group->flags);
1002         }
1003         up_write(&block_group->space_info->groups_sem);
1004         clear_incompat_bg_bits(fs_info, block_group->flags);
1005         if (kobj) {
1006                 kobject_del(kobj);
1007                 kobject_put(kobj);
1008         }
1009
1010         if (block_group->has_caching_ctl)
1011                 caching_ctl = btrfs_get_caching_control(block_group);
1012         if (block_group->cached == BTRFS_CACHE_STARTED)
1013                 btrfs_wait_block_group_cache_done(block_group);
1014         if (block_group->has_caching_ctl) {
1015                 down_write(&fs_info->commit_root_sem);
1016                 if (!caching_ctl) {
1017                         struct btrfs_caching_control *ctl;
1018
1019                         list_for_each_entry(ctl,
1020                                     &fs_info->caching_block_groups, list)
1021                                 if (ctl->block_group == block_group) {
1022                                         caching_ctl = ctl;
1023                                         refcount_inc(&caching_ctl->count);
1024                                         break;
1025                                 }
1026                 }
1027                 if (caching_ctl)
1028                         list_del_init(&caching_ctl->list);
1029                 up_write(&fs_info->commit_root_sem);
1030                 if (caching_ctl) {
1031                         /* Once for the caching bgs list and once for us. */
1032                         btrfs_put_caching_control(caching_ctl);
1033                         btrfs_put_caching_control(caching_ctl);
1034                 }
1035         }
1036
1037         spin_lock(&trans->transaction->dirty_bgs_lock);
1038         WARN_ON(!list_empty(&block_group->dirty_list));
1039         WARN_ON(!list_empty(&block_group->io_list));
1040         spin_unlock(&trans->transaction->dirty_bgs_lock);
1041
1042         btrfs_remove_free_space_cache(block_group);
1043
1044         spin_lock(&block_group->space_info->lock);
1045         list_del_init(&block_group->ro_list);
1046
1047         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1048                 WARN_ON(block_group->space_info->total_bytes
1049                         < block_group->length);
1050                 WARN_ON(block_group->space_info->bytes_readonly
1051                         < block_group->length);
1052                 WARN_ON(block_group->space_info->disk_total
1053                         < block_group->length * factor);
1054         }
1055         block_group->space_info->total_bytes -= block_group->length;
1056         block_group->space_info->bytes_readonly -= block_group->length;
1057         block_group->space_info->disk_total -= block_group->length * factor;
1058
1059         spin_unlock(&block_group->space_info->lock);
1060
1061         key.objectid = block_group->start;
1062         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1063         key.offset = block_group->length;
1064
1065         mutex_lock(&fs_info->chunk_mutex);
1066         spin_lock(&block_group->lock);
1067         block_group->removed = 1;
1068         /*
1069          * At this point trimming can't start on this block group, because we
1070          * removed the block group from the tree fs_info->block_group_cache_tree
1071          * so no one can't find it anymore and even if someone already got this
1072          * block group before we removed it from the rbtree, they have already
1073          * incremented block_group->trimming - if they didn't, they won't find
1074          * any free space entries because we already removed them all when we
1075          * called btrfs_remove_free_space_cache().
1076          *
1077          * And we must not remove the extent map from the fs_info->mapping_tree
1078          * to prevent the same logical address range and physical device space
1079          * ranges from being reused for a new block group. This is because our
1080          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1081          * completely transactionless, so while it is trimming a range the
1082          * currently running transaction might finish and a new one start,
1083          * allowing for new block groups to be created that can reuse the same
1084          * physical device locations unless we take this special care.
1085          *
1086          * There may also be an implicit trim operation if the file system
1087          * is mounted with -odiscard. The same protections must remain
1088          * in place until the extents have been discarded completely when
1089          * the transaction commit has completed.
1090          */
1091         remove_em = (atomic_read(&block_group->trimming) == 0);
1092         spin_unlock(&block_group->lock);
1093
1094         mutex_unlock(&fs_info->chunk_mutex);
1095
1096         ret = remove_block_group_free_space(trans, block_group);
1097         if (ret)
1098                 goto out;
1099
1100         btrfs_put_block_group(block_group);
1101         btrfs_put_block_group(block_group);
1102
1103         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104         if (ret > 0)
1105                 ret = -EIO;
1106         if (ret < 0)
1107                 goto out;
1108
1109         ret = btrfs_del_item(trans, root, path);
1110         if (ret)
1111                 goto out;
1112
1113         if (remove_em) {
1114                 struct extent_map_tree *em_tree;
1115
1116                 em_tree = &fs_info->mapping_tree;
1117                 write_lock(&em_tree->lock);
1118                 remove_extent_mapping(em_tree, em);
1119                 write_unlock(&em_tree->lock);
1120                 /* once for the tree */
1121                 free_extent_map(em);
1122         }
1123 out:
1124         if (remove_rsv)
1125                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1126         btrfs_free_path(path);
1127         return ret;
1128 }
1129
1130 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1131                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1132 {
1133         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1134         struct extent_map *em;
1135         struct map_lookup *map;
1136         unsigned int num_items;
1137
1138         read_lock(&em_tree->lock);
1139         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1140         read_unlock(&em_tree->lock);
1141         ASSERT(em && em->start == chunk_offset);
1142
1143         /*
1144          * We need to reserve 3 + N units from the metadata space info in order
1145          * to remove a block group (done at btrfs_remove_chunk() and at
1146          * btrfs_remove_block_group()), which are used for:
1147          *
1148          * 1 unit for adding the free space inode's orphan (located in the tree
1149          * of tree roots).
1150          * 1 unit for deleting the block group item (located in the extent
1151          * tree).
1152          * 1 unit for deleting the free space item (located in tree of tree
1153          * roots).
1154          * N units for deleting N device extent items corresponding to each
1155          * stripe (located in the device tree).
1156          *
1157          * In order to remove a block group we also need to reserve units in the
1158          * system space info in order to update the chunk tree (update one or
1159          * more device items and remove one chunk item), but this is done at
1160          * btrfs_remove_chunk() through a call to check_system_chunk().
1161          */
1162         map = em->map_lookup;
1163         num_items = 3 + map->num_stripes;
1164         free_extent_map(em);
1165
1166         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1167                                                            num_items, 1);
1168 }
1169
1170 /*
1171  * Mark block group @cache read-only, so later write won't happen to block
1172  * group @cache.
1173  *
1174  * If @force is not set, this function will only mark the block group readonly
1175  * if we have enough free space (1M) in other metadata/system block groups.
1176  * If @force is not set, this function will mark the block group readonly
1177  * without checking free space.
1178  *
1179  * NOTE: This function doesn't care if other block groups can contain all the
1180  * data in this block group. That check should be done by relocation routine,
1181  * not this function.
1182  */
1183 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1184 {
1185         struct btrfs_space_info *sinfo = cache->space_info;
1186         u64 num_bytes;
1187         u64 sinfo_used;
1188         u64 min_allocable_bytes;
1189         int ret = -ENOSPC;
1190
1191         /*
1192          * We need some metadata space and system metadata space for
1193          * allocating chunks in some corner cases until we force to set
1194          * it to be readonly.
1195          */
1196         if ((sinfo->flags &
1197              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1198             !force)
1199                 min_allocable_bytes = SZ_1M;
1200         else
1201                 min_allocable_bytes = 0;
1202
1203         spin_lock(&sinfo->lock);
1204         spin_lock(&cache->lock);
1205
1206         if (cache->ro) {
1207                 cache->ro++;
1208                 ret = 0;
1209                 goto out;
1210         }
1211
1212         num_bytes = cache->length - cache->reserved - cache->pinned -
1213                     cache->bytes_super - cache->used;
1214         sinfo_used = btrfs_space_info_used(sinfo, true);
1215
1216         /*
1217          * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1218          *
1219          * Here we make sure if we mark this bg RO, we still have enough
1220          * free space as buffer (if min_allocable_bytes is not 0).
1221          */
1222         if (sinfo_used + num_bytes + min_allocable_bytes <=
1223             sinfo->total_bytes) {
1224                 sinfo->bytes_readonly += num_bytes;
1225                 cache->ro++;
1226                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1227                 ret = 0;
1228         }
1229 out:
1230         spin_unlock(&cache->lock);
1231         spin_unlock(&sinfo->lock);
1232         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233                 btrfs_info(cache->fs_info,
1234                         "unable to make block group %llu ro", cache->start);
1235                 btrfs_info(cache->fs_info,
1236                         "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1237                         sinfo_used, num_bytes, min_allocable_bytes);
1238                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1239         }
1240         return ret;
1241 }
1242
1243 /*
1244  * Process the unused_bgs list and remove any that don't have any allocated
1245  * space inside of them.
1246  */
1247 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1248 {
1249         struct btrfs_block_group *block_group;
1250         struct btrfs_space_info *space_info;
1251         struct btrfs_trans_handle *trans;
1252         int ret = 0;
1253
1254         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1255                 return;
1256
1257         spin_lock(&fs_info->unused_bgs_lock);
1258         while (!list_empty(&fs_info->unused_bgs)) {
1259                 u64 start, end;
1260                 int trimming;
1261
1262                 block_group = list_first_entry(&fs_info->unused_bgs,
1263                                                struct btrfs_block_group,
1264                                                bg_list);
1265                 list_del_init(&block_group->bg_list);
1266
1267                 space_info = block_group->space_info;
1268
1269                 if (ret || btrfs_mixed_space_info(space_info)) {
1270                         btrfs_put_block_group(block_group);
1271                         continue;
1272                 }
1273                 spin_unlock(&fs_info->unused_bgs_lock);
1274
1275                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1276
1277                 /* Don't want to race with allocators so take the groups_sem */
1278                 down_write(&space_info->groups_sem);
1279                 spin_lock(&block_group->lock);
1280                 if (block_group->reserved || block_group->pinned ||
1281                     block_group->used || block_group->ro ||
1282                     list_is_singular(&block_group->list)) {
1283                         /*
1284                          * We want to bail if we made new allocations or have
1285                          * outstanding allocations in this block group.  We do
1286                          * the ro check in case balance is currently acting on
1287                          * this block group.
1288                          */
1289                         trace_btrfs_skip_unused_block_group(block_group);
1290                         spin_unlock(&block_group->lock);
1291                         up_write(&space_info->groups_sem);
1292                         goto next;
1293                 }
1294                 spin_unlock(&block_group->lock);
1295
1296                 /* We don't want to force the issue, only flip if it's ok. */
1297                 ret = inc_block_group_ro(block_group, 0);
1298                 up_write(&space_info->groups_sem);
1299                 if (ret < 0) {
1300                         ret = 0;
1301                         goto next;
1302                 }
1303
1304                 /*
1305                  * Want to do this before we do anything else so we can recover
1306                  * properly if we fail to join the transaction.
1307                  */
1308                 trans = btrfs_start_trans_remove_block_group(fs_info,
1309                                                      block_group->start);
1310                 if (IS_ERR(trans)) {
1311                         btrfs_dec_block_group_ro(block_group);
1312                         ret = PTR_ERR(trans);
1313                         goto next;
1314                 }
1315
1316                 /*
1317                  * We could have pending pinned extents for this block group,
1318                  * just delete them, we don't care about them anymore.
1319                  */
1320                 start = block_group->start;
1321                 end = start + block_group->length - 1;
1322                 /*
1323                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
1324                  * btrfs_finish_extent_commit(). If we are at transaction N,
1325                  * another task might be running finish_extent_commit() for the
1326                  * previous transaction N - 1, and have seen a range belonging
1327                  * to the block group in freed_extents[] before we were able to
1328                  * clear the whole block group range from freed_extents[]. This
1329                  * means that task can lookup for the block group after we
1330                  * unpinned it from freed_extents[] and removed it, leading to
1331                  * a BUG_ON() at btrfs_unpin_extent_range().
1332                  */
1333                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1334                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1335                                   EXTENT_DIRTY);
1336                 if (ret) {
1337                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1338                         btrfs_dec_block_group_ro(block_group);
1339                         goto end_trans;
1340                 }
1341                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1342                                   EXTENT_DIRTY);
1343                 if (ret) {
1344                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1345                         btrfs_dec_block_group_ro(block_group);
1346                         goto end_trans;
1347                 }
1348                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1349
1350                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1351                 spin_lock(&space_info->lock);
1352                 spin_lock(&block_group->lock);
1353
1354                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1355                                                      -block_group->pinned);
1356                 space_info->bytes_readonly += block_group->pinned;
1357                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1358                                    -block_group->pinned,
1359                                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
1360                 block_group->pinned = 0;
1361
1362                 spin_unlock(&block_group->lock);
1363                 spin_unlock(&space_info->lock);
1364
1365                 /* DISCARD can flip during remount */
1366                 trimming = btrfs_test_opt(fs_info, DISCARD);
1367
1368                 /* Implicit trim during transaction commit. */
1369                 if (trimming)
1370                         btrfs_get_block_group_trimming(block_group);
1371
1372                 /*
1373                  * Btrfs_remove_chunk will abort the transaction if things go
1374                  * horribly wrong.
1375                  */
1376                 ret = btrfs_remove_chunk(trans, block_group->start);
1377
1378                 if (ret) {
1379                         if (trimming)
1380                                 btrfs_put_block_group_trimming(block_group);
1381                         goto end_trans;
1382                 }
1383
1384                 /*
1385                  * If we're not mounted with -odiscard, we can just forget
1386                  * about this block group. Otherwise we'll need to wait
1387                  * until transaction commit to do the actual discard.
1388                  */
1389                 if (trimming) {
1390                         spin_lock(&fs_info->unused_bgs_lock);
1391                         /*
1392                          * A concurrent scrub might have added us to the list
1393                          * fs_info->unused_bgs, so use a list_move operation
1394                          * to add the block group to the deleted_bgs list.
1395                          */
1396                         list_move(&block_group->bg_list,
1397                                   &trans->transaction->deleted_bgs);
1398                         spin_unlock(&fs_info->unused_bgs_lock);
1399                         btrfs_get_block_group(block_group);
1400                 }
1401 end_trans:
1402                 btrfs_end_transaction(trans);
1403 next:
1404                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1405                 btrfs_put_block_group(block_group);
1406                 spin_lock(&fs_info->unused_bgs_lock);
1407         }
1408         spin_unlock(&fs_info->unused_bgs_lock);
1409 }
1410
1411 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1412 {
1413         struct btrfs_fs_info *fs_info = bg->fs_info;
1414
1415         spin_lock(&fs_info->unused_bgs_lock);
1416         if (list_empty(&bg->bg_list)) {
1417                 btrfs_get_block_group(bg);
1418                 trace_btrfs_add_unused_block_group(bg);
1419                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1420         }
1421         spin_unlock(&fs_info->unused_bgs_lock);
1422 }
1423
1424 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1425                                   struct btrfs_path *path,
1426                                   struct btrfs_key *key)
1427 {
1428         struct btrfs_root *root = fs_info->extent_root;
1429         int ret = 0;
1430         struct btrfs_key found_key;
1431         struct extent_buffer *leaf;
1432         struct btrfs_block_group_item bg;
1433         u64 flags;
1434         int slot;
1435
1436         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1437         if (ret < 0)
1438                 goto out;
1439
1440         while (1) {
1441                 slot = path->slots[0];
1442                 leaf = path->nodes[0];
1443                 if (slot >= btrfs_header_nritems(leaf)) {
1444                         ret = btrfs_next_leaf(root, path);
1445                         if (ret == 0)
1446                                 continue;
1447                         if (ret < 0)
1448                                 goto out;
1449                         break;
1450                 }
1451                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1452
1453                 if (found_key.objectid >= key->objectid &&
1454                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1455                         struct extent_map_tree *em_tree;
1456                         struct extent_map *em;
1457
1458                         em_tree = &root->fs_info->mapping_tree;
1459                         read_lock(&em_tree->lock);
1460                         em = lookup_extent_mapping(em_tree, found_key.objectid,
1461                                                    found_key.offset);
1462                         read_unlock(&em_tree->lock);
1463                         if (!em) {
1464                                 btrfs_err(fs_info,
1465                         "logical %llu len %llu found bg but no related chunk",
1466                                           found_key.objectid, found_key.offset);
1467                                 ret = -ENOENT;
1468                         } else if (em->start != found_key.objectid ||
1469                                    em->len != found_key.offset) {
1470                                 btrfs_err(fs_info,
1471                 "block group %llu len %llu mismatch with chunk %llu len %llu",
1472                                           found_key.objectid, found_key.offset,
1473                                           em->start, em->len);
1474                                 ret = -EUCLEAN;
1475                         } else {
1476                                 read_extent_buffer(leaf, &bg,
1477                                         btrfs_item_ptr_offset(leaf, slot),
1478                                         sizeof(bg));
1479                                 flags = btrfs_stack_block_group_flags(&bg) &
1480                                         BTRFS_BLOCK_GROUP_TYPE_MASK;
1481
1482                                 if (flags != (em->map_lookup->type &
1483                                               BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1484                                         btrfs_err(fs_info,
1485 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1486                                                 found_key.objectid,
1487                                                 found_key.offset, flags,
1488                                                 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1489                                                  em->map_lookup->type));
1490                                         ret = -EUCLEAN;
1491                                 } else {
1492                                         ret = 0;
1493                                 }
1494                         }
1495                         free_extent_map(em);
1496                         goto out;
1497                 }
1498                 path->slots[0]++;
1499         }
1500 out:
1501         return ret;
1502 }
1503
1504 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1505 {
1506         u64 extra_flags = chunk_to_extended(flags) &
1507                                 BTRFS_EXTENDED_PROFILE_MASK;
1508
1509         write_seqlock(&fs_info->profiles_lock);
1510         if (flags & BTRFS_BLOCK_GROUP_DATA)
1511                 fs_info->avail_data_alloc_bits |= extra_flags;
1512         if (flags & BTRFS_BLOCK_GROUP_METADATA)
1513                 fs_info->avail_metadata_alloc_bits |= extra_flags;
1514         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1515                 fs_info->avail_system_alloc_bits |= extra_flags;
1516         write_sequnlock(&fs_info->profiles_lock);
1517 }
1518
1519 static int exclude_super_stripes(struct btrfs_block_group *cache)
1520 {
1521         struct btrfs_fs_info *fs_info = cache->fs_info;
1522         u64 bytenr;
1523         u64 *logical;
1524         int stripe_len;
1525         int i, nr, ret;
1526
1527         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1528                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1529                 cache->bytes_super += stripe_len;
1530                 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1531                                                 stripe_len);
1532                 if (ret)
1533                         return ret;
1534         }
1535
1536         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1537                 bytenr = btrfs_sb_offset(i);
1538                 ret = btrfs_rmap_block(fs_info, cache->start,
1539                                        bytenr, &logical, &nr, &stripe_len);
1540                 if (ret)
1541                         return ret;
1542
1543                 while (nr--) {
1544                         u64 start, len;
1545
1546                         if (logical[nr] > cache->start + cache->length)
1547                                 continue;
1548
1549                         if (logical[nr] + stripe_len <= cache->start)
1550                                 continue;
1551
1552                         start = logical[nr];
1553                         if (start < cache->start) {
1554                                 start = cache->start;
1555                                 len = (logical[nr] + stripe_len) - start;
1556                         } else {
1557                                 len = min_t(u64, stripe_len,
1558                                             cache->start + cache->length - start);
1559                         }
1560
1561                         cache->bytes_super += len;
1562                         ret = btrfs_add_excluded_extent(fs_info, start, len);
1563                         if (ret) {
1564                                 kfree(logical);
1565                                 return ret;
1566                         }
1567                 }
1568
1569                 kfree(logical);
1570         }
1571         return 0;
1572 }
1573
1574 static void link_block_group(struct btrfs_block_group *cache)
1575 {
1576         struct btrfs_space_info *space_info = cache->space_info;
1577         int index = btrfs_bg_flags_to_raid_index(cache->flags);
1578         bool first = false;
1579
1580         down_write(&space_info->groups_sem);
1581         if (list_empty(&space_info->block_groups[index]))
1582                 first = true;
1583         list_add_tail(&cache->list, &space_info->block_groups[index]);
1584         up_write(&space_info->groups_sem);
1585
1586         if (first)
1587                 btrfs_sysfs_add_block_group_type(cache);
1588 }
1589
1590 static struct btrfs_block_group *btrfs_create_block_group_cache(
1591                 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1592 {
1593         struct btrfs_block_group *cache;
1594
1595         cache = kzalloc(sizeof(*cache), GFP_NOFS);
1596         if (!cache)
1597                 return NULL;
1598
1599         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1600                                         GFP_NOFS);
1601         if (!cache->free_space_ctl) {
1602                 kfree(cache);
1603                 return NULL;
1604         }
1605
1606         cache->start = start;
1607         cache->length = size;
1608
1609         cache->fs_info = fs_info;
1610         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1611         set_free_space_tree_thresholds(cache);
1612
1613         atomic_set(&cache->count, 1);
1614         spin_lock_init(&cache->lock);
1615         init_rwsem(&cache->data_rwsem);
1616         INIT_LIST_HEAD(&cache->list);
1617         INIT_LIST_HEAD(&cache->cluster_list);
1618         INIT_LIST_HEAD(&cache->bg_list);
1619         INIT_LIST_HEAD(&cache->ro_list);
1620         INIT_LIST_HEAD(&cache->dirty_list);
1621         INIT_LIST_HEAD(&cache->io_list);
1622         btrfs_init_free_space_ctl(cache);
1623         atomic_set(&cache->trimming, 0);
1624         mutex_init(&cache->free_space_lock);
1625         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1626
1627         return cache;
1628 }
1629
1630 /*
1631  * Iterate all chunks and verify that each of them has the corresponding block
1632  * group
1633  */
1634 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1635 {
1636         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1637         struct extent_map *em;
1638         struct btrfs_block_group *bg;
1639         u64 start = 0;
1640         int ret = 0;
1641
1642         while (1) {
1643                 read_lock(&map_tree->lock);
1644                 /*
1645                  * lookup_extent_mapping will return the first extent map
1646                  * intersecting the range, so setting @len to 1 is enough to
1647                  * get the first chunk.
1648                  */
1649                 em = lookup_extent_mapping(map_tree, start, 1);
1650                 read_unlock(&map_tree->lock);
1651                 if (!em)
1652                         break;
1653
1654                 bg = btrfs_lookup_block_group(fs_info, em->start);
1655                 if (!bg) {
1656                         btrfs_err(fs_info,
1657         "chunk start=%llu len=%llu doesn't have corresponding block group",
1658                                      em->start, em->len);
1659                         ret = -EUCLEAN;
1660                         free_extent_map(em);
1661                         break;
1662                 }
1663                 if (bg->start != em->start || bg->length != em->len ||
1664                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1665                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1666                         btrfs_err(fs_info,
1667 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1668                                 em->start, em->len,
1669                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1670                                 bg->start, bg->length,
1671                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1672                         ret = -EUCLEAN;
1673                         free_extent_map(em);
1674                         btrfs_put_block_group(bg);
1675                         break;
1676                 }
1677                 start = em->start + em->len;
1678                 free_extent_map(em);
1679                 btrfs_put_block_group(bg);
1680         }
1681         return ret;
1682 }
1683
1684 static int read_one_block_group(struct btrfs_fs_info *info,
1685                                 struct btrfs_path *path,
1686                                 const struct btrfs_key *key,
1687                                 int need_clear)
1688 {
1689         struct extent_buffer *leaf = path->nodes[0];
1690         struct btrfs_block_group *cache;
1691         struct btrfs_space_info *space_info;
1692         struct btrfs_block_group_item bgi;
1693         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1694         int slot = path->slots[0];
1695         int ret;
1696
1697         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1698
1699         cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
1700         if (!cache)
1701                 return -ENOMEM;
1702
1703         if (need_clear) {
1704                 /*
1705                  * When we mount with old space cache, we need to
1706                  * set BTRFS_DC_CLEAR and set dirty flag.
1707                  *
1708                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1709                  *    truncate the old free space cache inode and
1710                  *    setup a new one.
1711                  * b) Setting 'dirty flag' makes sure that we flush
1712                  *    the new space cache info onto disk.
1713                  */
1714                 if (btrfs_test_opt(info, SPACE_CACHE))
1715                         cache->disk_cache_state = BTRFS_DC_CLEAR;
1716         }
1717         read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1718                            sizeof(bgi));
1719         cache->used = btrfs_stack_block_group_used(&bgi);
1720         cache->flags = btrfs_stack_block_group_flags(&bgi);
1721         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1722             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1723                         btrfs_err(info,
1724 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1725                                   cache->start);
1726                         ret = -EINVAL;
1727                         goto error;
1728         }
1729
1730         /*
1731          * We need to exclude the super stripes now so that the space info has
1732          * super bytes accounted for, otherwise we'll think we have more space
1733          * than we actually do.
1734          */
1735         ret = exclude_super_stripes(cache);
1736         if (ret) {
1737                 /* We may have excluded something, so call this just in case. */
1738                 btrfs_free_excluded_extents(cache);
1739                 goto error;
1740         }
1741
1742         /*
1743          * Check for two cases, either we are full, and therefore don't need
1744          * to bother with the caching work since we won't find any space, or we
1745          * are empty, and we can just add all the space in and be done with it.
1746          * This saves us _a_lot_ of time, particularly in the full case.
1747          */
1748         if (key->offset == cache->used) {
1749                 cache->last_byte_to_unpin = (u64)-1;
1750                 cache->cached = BTRFS_CACHE_FINISHED;
1751                 btrfs_free_excluded_extents(cache);
1752         } else if (cache->used == 0) {
1753                 cache->last_byte_to_unpin = (u64)-1;
1754                 cache->cached = BTRFS_CACHE_FINISHED;
1755                 add_new_free_space(cache, key->objectid,
1756                                    key->objectid + key->offset);
1757                 btrfs_free_excluded_extents(cache);
1758         }
1759
1760         ret = btrfs_add_block_group_cache(info, cache);
1761         if (ret) {
1762                 btrfs_remove_free_space_cache(cache);
1763                 goto error;
1764         }
1765         trace_btrfs_add_block_group(info, cache, 0);
1766         btrfs_update_space_info(info, cache->flags, key->offset,
1767                                 cache->used, cache->bytes_super, &space_info);
1768
1769         cache->space_info = space_info;
1770
1771         link_block_group(cache);
1772
1773         set_avail_alloc_bits(info, cache->flags);
1774         if (btrfs_chunk_readonly(info, cache->start)) {
1775                 inc_block_group_ro(cache, 1);
1776         } else if (cache->used == 0) {
1777                 ASSERT(list_empty(&cache->bg_list));
1778                 btrfs_mark_bg_unused(cache);
1779         }
1780         return 0;
1781 error:
1782         btrfs_put_block_group(cache);
1783         return ret;
1784 }
1785
1786 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1787 {
1788         struct btrfs_path *path;
1789         int ret;
1790         struct btrfs_block_group *cache;
1791         struct btrfs_space_info *space_info;
1792         struct btrfs_key key;
1793         int need_clear = 0;
1794         u64 cache_gen;
1795
1796         key.objectid = 0;
1797         key.offset = 0;
1798         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1799         path = btrfs_alloc_path();
1800         if (!path)
1801                 return -ENOMEM;
1802         path->reada = READA_FORWARD;
1803
1804         cache_gen = btrfs_super_cache_generation(info->super_copy);
1805         if (btrfs_test_opt(info, SPACE_CACHE) &&
1806             btrfs_super_generation(info->super_copy) != cache_gen)
1807                 need_clear = 1;
1808         if (btrfs_test_opt(info, CLEAR_CACHE))
1809                 need_clear = 1;
1810
1811         while (1) {
1812                 ret = find_first_block_group(info, path, &key);
1813                 if (ret > 0)
1814                         break;
1815                 if (ret != 0)
1816                         goto error;
1817
1818                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819                 ret = read_one_block_group(info, path, &key, need_clear);
1820                 if (ret < 0)
1821                         goto error;
1822                 key.objectid += key.offset;
1823                 key.offset = 0;
1824                 btrfs_release_path(path);
1825         }
1826
1827         list_for_each_entry_rcu(space_info, &info->space_info, list) {
1828                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1829                       (BTRFS_BLOCK_GROUP_RAID10 |
1830                        BTRFS_BLOCK_GROUP_RAID1_MASK |
1831                        BTRFS_BLOCK_GROUP_RAID56_MASK |
1832                        BTRFS_BLOCK_GROUP_DUP)))
1833                         continue;
1834                 /*
1835                  * Avoid allocating from un-mirrored block group if there are
1836                  * mirrored block groups.
1837                  */
1838                 list_for_each_entry(cache,
1839                                 &space_info->block_groups[BTRFS_RAID_RAID0],
1840                                 list)
1841                         inc_block_group_ro(cache, 1);
1842                 list_for_each_entry(cache,
1843                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
1844                                 list)
1845                         inc_block_group_ro(cache, 1);
1846         }
1847
1848         btrfs_init_global_block_rsv(info);
1849         ret = check_chunk_block_group_mappings(info);
1850 error:
1851         btrfs_free_path(path);
1852         return ret;
1853 }
1854
1855 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1856 {
1857         struct btrfs_fs_info *fs_info = trans->fs_info;
1858         struct btrfs_block_group *block_group;
1859         struct btrfs_root *extent_root = fs_info->extent_root;
1860         struct btrfs_block_group_item item;
1861         struct btrfs_key key;
1862         int ret = 0;
1863
1864         if (!trans->can_flush_pending_bgs)
1865                 return;
1866
1867         while (!list_empty(&trans->new_bgs)) {
1868                 block_group = list_first_entry(&trans->new_bgs,
1869                                                struct btrfs_block_group,
1870                                                bg_list);
1871                 if (ret)
1872                         goto next;
1873
1874                 spin_lock(&block_group->lock);
1875                 btrfs_set_stack_block_group_used(&item, block_group->used);
1876                 btrfs_set_stack_block_group_chunk_objectid(&item,
1877                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1878                 btrfs_set_stack_block_group_flags(&item, block_group->flags);
1879                 key.objectid = block_group->start;
1880                 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1881                 key.offset = block_group->length;
1882                 spin_unlock(&block_group->lock);
1883
1884                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
1885                                         sizeof(item));
1886                 if (ret)
1887                         btrfs_abort_transaction(trans, ret);
1888                 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1889                 if (ret)
1890                         btrfs_abort_transaction(trans, ret);
1891                 add_block_group_free_space(trans, block_group);
1892                 /* Already aborted the transaction if it failed. */
1893 next:
1894                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1895                 list_del_init(&block_group->bg_list);
1896         }
1897         btrfs_trans_release_chunk_metadata(trans);
1898 }
1899
1900 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1901                            u64 type, u64 chunk_offset, u64 size)
1902 {
1903         struct btrfs_fs_info *fs_info = trans->fs_info;
1904         struct btrfs_block_group *cache;
1905         int ret;
1906
1907         btrfs_set_log_full_commit(trans);
1908
1909         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1910         if (!cache)
1911                 return -ENOMEM;
1912
1913         cache->used = bytes_used;
1914         cache->flags = type;
1915         cache->last_byte_to_unpin = (u64)-1;
1916         cache->cached = BTRFS_CACHE_FINISHED;
1917         cache->needs_free_space = 1;
1918         ret = exclude_super_stripes(cache);
1919         if (ret) {
1920                 /* We may have excluded something, so call this just in case */
1921                 btrfs_free_excluded_extents(cache);
1922                 btrfs_put_block_group(cache);
1923                 return ret;
1924         }
1925
1926         add_new_free_space(cache, chunk_offset, chunk_offset + size);
1927
1928         btrfs_free_excluded_extents(cache);
1929
1930 #ifdef CONFIG_BTRFS_DEBUG
1931         if (btrfs_should_fragment_free_space(cache)) {
1932                 u64 new_bytes_used = size - bytes_used;
1933
1934                 bytes_used += new_bytes_used >> 1;
1935                 fragment_free_space(cache);
1936         }
1937 #endif
1938         /*
1939          * Ensure the corresponding space_info object is created and
1940          * assigned to our block group. We want our bg to be added to the rbtree
1941          * with its ->space_info set.
1942          */
1943         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1944         ASSERT(cache->space_info);
1945
1946         ret = btrfs_add_block_group_cache(fs_info, cache);
1947         if (ret) {
1948                 btrfs_remove_free_space_cache(cache);
1949                 btrfs_put_block_group(cache);
1950                 return ret;
1951         }
1952
1953         /*
1954          * Now that our block group has its ->space_info set and is inserted in
1955          * the rbtree, update the space info's counters.
1956          */
1957         trace_btrfs_add_block_group(fs_info, cache, 1);
1958         btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1959                                 cache->bytes_super, &cache->space_info);
1960         btrfs_update_global_block_rsv(fs_info);
1961
1962         link_block_group(cache);
1963
1964         list_add_tail(&cache->bg_list, &trans->new_bgs);
1965         trans->delayed_ref_updates++;
1966         btrfs_update_delayed_refs_rsv(trans);
1967
1968         set_avail_alloc_bits(fs_info, type);
1969         return 0;
1970 }
1971
1972 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1973 {
1974         u64 num_devices;
1975         u64 stripped;
1976
1977         /*
1978          * if restripe for this chunk_type is on pick target profile and
1979          * return, otherwise do the usual balance
1980          */
1981         stripped = get_restripe_target(fs_info, flags);
1982         if (stripped)
1983                 return extended_to_chunk(stripped);
1984
1985         num_devices = fs_info->fs_devices->rw_devices;
1986
1987         stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1988                 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1989
1990         if (num_devices == 1) {
1991                 stripped |= BTRFS_BLOCK_GROUP_DUP;
1992                 stripped = flags & ~stripped;
1993
1994                 /* turn raid0 into single device chunks */
1995                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
1996                         return stripped;
1997
1998                 /* turn mirroring into duplication */
1999                 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2000                              BTRFS_BLOCK_GROUP_RAID10))
2001                         return stripped | BTRFS_BLOCK_GROUP_DUP;
2002         } else {
2003                 /* they already had raid on here, just return */
2004                 if (flags & stripped)
2005                         return flags;
2006
2007                 stripped |= BTRFS_BLOCK_GROUP_DUP;
2008                 stripped = flags & ~stripped;
2009
2010                 /* switch duplicated blocks with raid1 */
2011                 if (flags & BTRFS_BLOCK_GROUP_DUP)
2012                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
2013
2014                 /* this is drive concat, leave it alone */
2015         }
2016
2017         return flags;
2018 }
2019
2020 /*
2021  * Mark one block group RO, can be called several times for the same block
2022  * group.
2023  *
2024  * @cache:              the destination block group
2025  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2026  *                      ensure we still have some free space after marking this
2027  *                      block group RO.
2028  */
2029 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2030                              bool do_chunk_alloc)
2031 {
2032         struct btrfs_fs_info *fs_info = cache->fs_info;
2033         struct btrfs_trans_handle *trans;
2034         u64 alloc_flags;
2035         int ret;
2036
2037 again:
2038         trans = btrfs_join_transaction(fs_info->extent_root);
2039         if (IS_ERR(trans))
2040                 return PTR_ERR(trans);
2041
2042         /*
2043          * we're not allowed to set block groups readonly after the dirty
2044          * block groups cache has started writing.  If it already started,
2045          * back off and let this transaction commit
2046          */
2047         mutex_lock(&fs_info->ro_block_group_mutex);
2048         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2049                 u64 transid = trans->transid;
2050
2051                 mutex_unlock(&fs_info->ro_block_group_mutex);
2052                 btrfs_end_transaction(trans);
2053
2054                 ret = btrfs_wait_for_commit(fs_info, transid);
2055                 if (ret)
2056                         return ret;
2057                 goto again;
2058         }
2059
2060         if (do_chunk_alloc) {
2061                 /*
2062                  * If we are changing raid levels, try to allocate a
2063                  * corresponding block group with the new raid level.
2064                  */
2065                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2066                 if (alloc_flags != cache->flags) {
2067                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2068                                                 CHUNK_ALLOC_FORCE);
2069                         /*
2070                          * ENOSPC is allowed here, we may have enough space
2071                          * already allocated at the new raid level to carry on
2072                          */
2073                         if (ret == -ENOSPC)
2074                                 ret = 0;
2075                         if (ret < 0)
2076                                 goto out;
2077                 }
2078         }
2079
2080         ret = inc_block_group_ro(cache, !do_chunk_alloc);
2081         if (!do_chunk_alloc)
2082                 goto unlock_out;
2083         if (!ret)
2084                 goto out;
2085         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2086         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2087         if (ret < 0)
2088                 goto out;
2089         ret = inc_block_group_ro(cache, 0);
2090 out:
2091         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2092                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2093                 mutex_lock(&fs_info->chunk_mutex);
2094                 check_system_chunk(trans, alloc_flags);
2095                 mutex_unlock(&fs_info->chunk_mutex);
2096         }
2097 unlock_out:
2098         mutex_unlock(&fs_info->ro_block_group_mutex);
2099
2100         btrfs_end_transaction(trans);
2101         return ret;
2102 }
2103
2104 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2105 {
2106         struct btrfs_space_info *sinfo = cache->space_info;
2107         u64 num_bytes;
2108
2109         BUG_ON(!cache->ro);
2110
2111         spin_lock(&sinfo->lock);
2112         spin_lock(&cache->lock);
2113         if (!--cache->ro) {
2114                 num_bytes = cache->length - cache->reserved -
2115                             cache->pinned - cache->bytes_super - cache->used;
2116                 sinfo->bytes_readonly -= num_bytes;
2117                 list_del_init(&cache->ro_list);
2118         }
2119         spin_unlock(&cache->lock);
2120         spin_unlock(&sinfo->lock);
2121 }
2122
2123 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2124                                  struct btrfs_path *path,
2125                                  struct btrfs_block_group *cache)
2126 {
2127         struct btrfs_fs_info *fs_info = trans->fs_info;
2128         int ret;
2129         struct btrfs_root *extent_root = fs_info->extent_root;
2130         unsigned long bi;
2131         struct extent_buffer *leaf;
2132         struct btrfs_block_group_item bgi;
2133         struct btrfs_key key;
2134
2135         key.objectid = cache->start;
2136         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2137         key.offset = cache->length;
2138
2139         ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
2140         if (ret) {
2141                 if (ret > 0)
2142                         ret = -ENOENT;
2143                 goto fail;
2144         }
2145
2146         leaf = path->nodes[0];
2147         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2148         btrfs_set_stack_block_group_used(&bgi, cache->used);
2149         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2150                         BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2151         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2152         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2153         btrfs_mark_buffer_dirty(leaf);
2154 fail:
2155         btrfs_release_path(path);
2156         return ret;
2157
2158 }
2159
2160 static int cache_save_setup(struct btrfs_block_group *block_group,
2161                             struct btrfs_trans_handle *trans,
2162                             struct btrfs_path *path)
2163 {
2164         struct btrfs_fs_info *fs_info = block_group->fs_info;
2165         struct btrfs_root *root = fs_info->tree_root;
2166         struct inode *inode = NULL;
2167         struct extent_changeset *data_reserved = NULL;
2168         u64 alloc_hint = 0;
2169         int dcs = BTRFS_DC_ERROR;
2170         u64 num_pages = 0;
2171         int retries = 0;
2172         int ret = 0;
2173
2174         /*
2175          * If this block group is smaller than 100 megs don't bother caching the
2176          * block group.
2177          */
2178         if (block_group->length < (100 * SZ_1M)) {
2179                 spin_lock(&block_group->lock);
2180                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2181                 spin_unlock(&block_group->lock);
2182                 return 0;
2183         }
2184
2185         if (trans->aborted)
2186                 return 0;
2187 again:
2188         inode = lookup_free_space_inode(block_group, path);
2189         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2190                 ret = PTR_ERR(inode);
2191                 btrfs_release_path(path);
2192                 goto out;
2193         }
2194
2195         if (IS_ERR(inode)) {
2196                 BUG_ON(retries);
2197                 retries++;
2198
2199                 if (block_group->ro)
2200                         goto out_free;
2201
2202                 ret = create_free_space_inode(trans, block_group, path);
2203                 if (ret)
2204                         goto out_free;
2205                 goto again;
2206         }
2207
2208         /*
2209          * We want to set the generation to 0, that way if anything goes wrong
2210          * from here on out we know not to trust this cache when we load up next
2211          * time.
2212          */
2213         BTRFS_I(inode)->generation = 0;
2214         ret = btrfs_update_inode(trans, root, inode);
2215         if (ret) {
2216                 /*
2217                  * So theoretically we could recover from this, simply set the
2218                  * super cache generation to 0 so we know to invalidate the
2219                  * cache, but then we'd have to keep track of the block groups
2220                  * that fail this way so we know we _have_ to reset this cache
2221                  * before the next commit or risk reading stale cache.  So to
2222                  * limit our exposure to horrible edge cases lets just abort the
2223                  * transaction, this only happens in really bad situations
2224                  * anyway.
2225                  */
2226                 btrfs_abort_transaction(trans, ret);
2227                 goto out_put;
2228         }
2229         WARN_ON(ret);
2230
2231         /* We've already setup this transaction, go ahead and exit */
2232         if (block_group->cache_generation == trans->transid &&
2233             i_size_read(inode)) {
2234                 dcs = BTRFS_DC_SETUP;
2235                 goto out_put;
2236         }
2237
2238         if (i_size_read(inode) > 0) {
2239                 ret = btrfs_check_trunc_cache_free_space(fs_info,
2240                                         &fs_info->global_block_rsv);
2241                 if (ret)
2242                         goto out_put;
2243
2244                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2245                 if (ret)
2246                         goto out_put;
2247         }
2248
2249         spin_lock(&block_group->lock);
2250         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2251             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2252                 /*
2253                  * don't bother trying to write stuff out _if_
2254                  * a) we're not cached,
2255                  * b) we're with nospace_cache mount option,
2256                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
2257                  */
2258                 dcs = BTRFS_DC_WRITTEN;
2259                 spin_unlock(&block_group->lock);
2260                 goto out_put;
2261         }
2262         spin_unlock(&block_group->lock);
2263
2264         /*
2265          * We hit an ENOSPC when setting up the cache in this transaction, just
2266          * skip doing the setup, we've already cleared the cache so we're safe.
2267          */
2268         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2269                 ret = -ENOSPC;
2270                 goto out_put;
2271         }
2272
2273         /*
2274          * Try to preallocate enough space based on how big the block group is.
2275          * Keep in mind this has to include any pinned space which could end up
2276          * taking up quite a bit since it's not folded into the other space
2277          * cache.
2278          */
2279         num_pages = div_u64(block_group->length, SZ_256M);
2280         if (!num_pages)
2281                 num_pages = 1;
2282
2283         num_pages *= 16;
2284         num_pages *= PAGE_SIZE;
2285
2286         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2287         if (ret)
2288                 goto out_put;
2289
2290         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2291                                               num_pages, num_pages,
2292                                               &alloc_hint);
2293         /*
2294          * Our cache requires contiguous chunks so that we don't modify a bunch
2295          * of metadata or split extents when writing the cache out, which means
2296          * we can enospc if we are heavily fragmented in addition to just normal
2297          * out of space conditions.  So if we hit this just skip setting up any
2298          * other block groups for this transaction, maybe we'll unpin enough
2299          * space the next time around.
2300          */
2301         if (!ret)
2302                 dcs = BTRFS_DC_SETUP;
2303         else if (ret == -ENOSPC)
2304                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2305
2306 out_put:
2307         iput(inode);
2308 out_free:
2309         btrfs_release_path(path);
2310 out:
2311         spin_lock(&block_group->lock);
2312         if (!ret && dcs == BTRFS_DC_SETUP)
2313                 block_group->cache_generation = trans->transid;
2314         block_group->disk_cache_state = dcs;
2315         spin_unlock(&block_group->lock);
2316
2317         extent_changeset_free(data_reserved);
2318         return ret;
2319 }
2320
2321 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2322 {
2323         struct btrfs_fs_info *fs_info = trans->fs_info;
2324         struct btrfs_block_group *cache, *tmp;
2325         struct btrfs_transaction *cur_trans = trans->transaction;
2326         struct btrfs_path *path;
2327
2328         if (list_empty(&cur_trans->dirty_bgs) ||
2329             !btrfs_test_opt(fs_info, SPACE_CACHE))
2330                 return 0;
2331
2332         path = btrfs_alloc_path();
2333         if (!path)
2334                 return -ENOMEM;
2335
2336         /* Could add new block groups, use _safe just in case */
2337         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2338                                  dirty_list) {
2339                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2340                         cache_save_setup(cache, trans, path);
2341         }
2342
2343         btrfs_free_path(path);
2344         return 0;
2345 }
2346
2347 /*
2348  * Transaction commit does final block group cache writeback during a critical
2349  * section where nothing is allowed to change the FS.  This is required in
2350  * order for the cache to actually match the block group, but can introduce a
2351  * lot of latency into the commit.
2352  *
2353  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2354  * There's a chance we'll have to redo some of it if the block group changes
2355  * again during the commit, but it greatly reduces the commit latency by
2356  * getting rid of the easy block groups while we're still allowing others to
2357  * join the commit.
2358  */
2359 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2360 {
2361         struct btrfs_fs_info *fs_info = trans->fs_info;
2362         struct btrfs_block_group *cache;
2363         struct btrfs_transaction *cur_trans = trans->transaction;
2364         int ret = 0;
2365         int should_put;
2366         struct btrfs_path *path = NULL;
2367         LIST_HEAD(dirty);
2368         struct list_head *io = &cur_trans->io_bgs;
2369         int num_started = 0;
2370         int loops = 0;
2371
2372         spin_lock(&cur_trans->dirty_bgs_lock);
2373         if (list_empty(&cur_trans->dirty_bgs)) {
2374                 spin_unlock(&cur_trans->dirty_bgs_lock);
2375                 return 0;
2376         }
2377         list_splice_init(&cur_trans->dirty_bgs, &dirty);
2378         spin_unlock(&cur_trans->dirty_bgs_lock);
2379
2380 again:
2381         /* Make sure all the block groups on our dirty list actually exist */
2382         btrfs_create_pending_block_groups(trans);
2383
2384         if (!path) {
2385                 path = btrfs_alloc_path();
2386                 if (!path)
2387                         return -ENOMEM;
2388         }
2389
2390         /*
2391          * cache_write_mutex is here only to save us from balance or automatic
2392          * removal of empty block groups deleting this block group while we are
2393          * writing out the cache
2394          */
2395         mutex_lock(&trans->transaction->cache_write_mutex);
2396         while (!list_empty(&dirty)) {
2397                 bool drop_reserve = true;
2398
2399                 cache = list_first_entry(&dirty, struct btrfs_block_group,
2400                                          dirty_list);
2401                 /*
2402                  * This can happen if something re-dirties a block group that
2403                  * is already under IO.  Just wait for it to finish and then do
2404                  * it all again
2405                  */
2406                 if (!list_empty(&cache->io_list)) {
2407                         list_del_init(&cache->io_list);
2408                         btrfs_wait_cache_io(trans, cache, path);
2409                         btrfs_put_block_group(cache);
2410                 }
2411
2412
2413                 /*
2414                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2415                  * it should update the cache_state.  Don't delete until after
2416                  * we wait.
2417                  *
2418                  * Since we're not running in the commit critical section
2419                  * we need the dirty_bgs_lock to protect from update_block_group
2420                  */
2421                 spin_lock(&cur_trans->dirty_bgs_lock);
2422                 list_del_init(&cache->dirty_list);
2423                 spin_unlock(&cur_trans->dirty_bgs_lock);
2424
2425                 should_put = 1;
2426
2427                 cache_save_setup(cache, trans, path);
2428
2429                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2430                         cache->io_ctl.inode = NULL;
2431                         ret = btrfs_write_out_cache(trans, cache, path);
2432                         if (ret == 0 && cache->io_ctl.inode) {
2433                                 num_started++;
2434                                 should_put = 0;
2435
2436                                 /*
2437                                  * The cache_write_mutex is protecting the
2438                                  * io_list, also refer to the definition of
2439                                  * btrfs_transaction::io_bgs for more details
2440                                  */
2441                                 list_add_tail(&cache->io_list, io);
2442                         } else {
2443                                 /*
2444                                  * If we failed to write the cache, the
2445                                  * generation will be bad and life goes on
2446                                  */
2447                                 ret = 0;
2448                         }
2449                 }
2450                 if (!ret) {
2451                         ret = write_one_cache_group(trans, path, cache);
2452                         /*
2453                          * Our block group might still be attached to the list
2454                          * of new block groups in the transaction handle of some
2455                          * other task (struct btrfs_trans_handle->new_bgs). This
2456                          * means its block group item isn't yet in the extent
2457                          * tree. If this happens ignore the error, as we will
2458                          * try again later in the critical section of the
2459                          * transaction commit.
2460                          */
2461                         if (ret == -ENOENT) {
2462                                 ret = 0;
2463                                 spin_lock(&cur_trans->dirty_bgs_lock);
2464                                 if (list_empty(&cache->dirty_list)) {
2465                                         list_add_tail(&cache->dirty_list,
2466                                                       &cur_trans->dirty_bgs);
2467                                         btrfs_get_block_group(cache);
2468                                         drop_reserve = false;
2469                                 }
2470                                 spin_unlock(&cur_trans->dirty_bgs_lock);
2471                         } else if (ret) {
2472                                 btrfs_abort_transaction(trans, ret);
2473                         }
2474                 }
2475
2476                 /* If it's not on the io list, we need to put the block group */
2477                 if (should_put)
2478                         btrfs_put_block_group(cache);
2479                 if (drop_reserve)
2480                         btrfs_delayed_refs_rsv_release(fs_info, 1);
2481
2482                 if (ret)
2483                         break;
2484
2485                 /*
2486                  * Avoid blocking other tasks for too long. It might even save
2487                  * us from writing caches for block groups that are going to be
2488                  * removed.
2489                  */
2490                 mutex_unlock(&trans->transaction->cache_write_mutex);
2491                 mutex_lock(&trans->transaction->cache_write_mutex);
2492         }
2493         mutex_unlock(&trans->transaction->cache_write_mutex);
2494
2495         /*
2496          * Go through delayed refs for all the stuff we've just kicked off
2497          * and then loop back (just once)
2498          */
2499         ret = btrfs_run_delayed_refs(trans, 0);
2500         if (!ret && loops == 0) {
2501                 loops++;
2502                 spin_lock(&cur_trans->dirty_bgs_lock);
2503                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2504                 /*
2505                  * dirty_bgs_lock protects us from concurrent block group
2506                  * deletes too (not just cache_write_mutex).
2507                  */
2508                 if (!list_empty(&dirty)) {
2509                         spin_unlock(&cur_trans->dirty_bgs_lock);
2510                         goto again;
2511                 }
2512                 spin_unlock(&cur_trans->dirty_bgs_lock);
2513         } else if (ret < 0) {
2514                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2515         }
2516
2517         btrfs_free_path(path);
2518         return ret;
2519 }
2520
2521 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2522 {
2523         struct btrfs_fs_info *fs_info = trans->fs_info;
2524         struct btrfs_block_group *cache;
2525         struct btrfs_transaction *cur_trans = trans->transaction;
2526         int ret = 0;
2527         int should_put;
2528         struct btrfs_path *path;
2529         struct list_head *io = &cur_trans->io_bgs;
2530         int num_started = 0;
2531
2532         path = btrfs_alloc_path();
2533         if (!path)
2534                 return -ENOMEM;
2535
2536         /*
2537          * Even though we are in the critical section of the transaction commit,
2538          * we can still have concurrent tasks adding elements to this
2539          * transaction's list of dirty block groups. These tasks correspond to
2540          * endio free space workers started when writeback finishes for a
2541          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2542          * allocate new block groups as a result of COWing nodes of the root
2543          * tree when updating the free space inode. The writeback for the space
2544          * caches is triggered by an earlier call to
2545          * btrfs_start_dirty_block_groups() and iterations of the following
2546          * loop.
2547          * Also we want to do the cache_save_setup first and then run the
2548          * delayed refs to make sure we have the best chance at doing this all
2549          * in one shot.
2550          */
2551         spin_lock(&cur_trans->dirty_bgs_lock);
2552         while (!list_empty(&cur_trans->dirty_bgs)) {
2553                 cache = list_first_entry(&cur_trans->dirty_bgs,
2554                                          struct btrfs_block_group,
2555                                          dirty_list);
2556
2557                 /*
2558                  * This can happen if cache_save_setup re-dirties a block group
2559                  * that is already under IO.  Just wait for it to finish and
2560                  * then do it all again
2561                  */
2562                 if (!list_empty(&cache->io_list)) {
2563                         spin_unlock(&cur_trans->dirty_bgs_lock);
2564                         list_del_init(&cache->io_list);
2565                         btrfs_wait_cache_io(trans, cache, path);
2566                         btrfs_put_block_group(cache);
2567                         spin_lock(&cur_trans->dirty_bgs_lock);
2568                 }
2569
2570                 /*
2571                  * Don't remove from the dirty list until after we've waited on
2572                  * any pending IO
2573                  */
2574                 list_del_init(&cache->dirty_list);
2575                 spin_unlock(&cur_trans->dirty_bgs_lock);
2576                 should_put = 1;
2577
2578                 cache_save_setup(cache, trans, path);
2579
2580                 if (!ret)
2581                         ret = btrfs_run_delayed_refs(trans,
2582                                                      (unsigned long) -1);
2583
2584                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2585                         cache->io_ctl.inode = NULL;
2586                         ret = btrfs_write_out_cache(trans, cache, path);
2587                         if (ret == 0 && cache->io_ctl.inode) {
2588                                 num_started++;
2589                                 should_put = 0;
2590                                 list_add_tail(&cache->io_list, io);
2591                         } else {
2592                                 /*
2593                                  * If we failed to write the cache, the
2594                                  * generation will be bad and life goes on
2595                                  */
2596                                 ret = 0;
2597                         }
2598                 }
2599                 if (!ret) {
2600                         ret = write_one_cache_group(trans, path, cache);
2601                         /*
2602                          * One of the free space endio workers might have
2603                          * created a new block group while updating a free space
2604                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
2605                          * and hasn't released its transaction handle yet, in
2606                          * which case the new block group is still attached to
2607                          * its transaction handle and its creation has not
2608                          * finished yet (no block group item in the extent tree
2609                          * yet, etc). If this is the case, wait for all free
2610                          * space endio workers to finish and retry. This is a
2611                          * a very rare case so no need for a more efficient and
2612                          * complex approach.
2613                          */
2614                         if (ret == -ENOENT) {
2615                                 wait_event(cur_trans->writer_wait,
2616                                    atomic_read(&cur_trans->num_writers) == 1);
2617                                 ret = write_one_cache_group(trans, path, cache);
2618                         }
2619                         if (ret)
2620                                 btrfs_abort_transaction(trans, ret);
2621                 }
2622
2623                 /* If its not on the io list, we need to put the block group */
2624                 if (should_put)
2625                         btrfs_put_block_group(cache);
2626                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2627                 spin_lock(&cur_trans->dirty_bgs_lock);
2628         }
2629         spin_unlock(&cur_trans->dirty_bgs_lock);
2630
2631         /*
2632          * Refer to the definition of io_bgs member for details why it's safe
2633          * to use it without any locking
2634          */
2635         while (!list_empty(io)) {
2636                 cache = list_first_entry(io, struct btrfs_block_group,
2637                                          io_list);
2638                 list_del_init(&cache->io_list);
2639                 btrfs_wait_cache_io(trans, cache, path);
2640                 btrfs_put_block_group(cache);
2641         }
2642
2643         btrfs_free_path(path);
2644         return ret;
2645 }
2646
2647 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2648                              u64 bytenr, u64 num_bytes, int alloc)
2649 {
2650         struct btrfs_fs_info *info = trans->fs_info;
2651         struct btrfs_block_group *cache = NULL;
2652         u64 total = num_bytes;
2653         u64 old_val;
2654         u64 byte_in_group;
2655         int factor;
2656         int ret = 0;
2657
2658         /* Block accounting for super block */
2659         spin_lock(&info->delalloc_root_lock);
2660         old_val = btrfs_super_bytes_used(info->super_copy);
2661         if (alloc)
2662                 old_val += num_bytes;
2663         else
2664                 old_val -= num_bytes;
2665         btrfs_set_super_bytes_used(info->super_copy, old_val);
2666         spin_unlock(&info->delalloc_root_lock);
2667
2668         while (total) {
2669                 cache = btrfs_lookup_block_group(info, bytenr);
2670                 if (!cache) {
2671                         ret = -ENOENT;
2672                         break;
2673                 }
2674                 factor = btrfs_bg_type_to_factor(cache->flags);
2675
2676                 /*
2677                  * If this block group has free space cache written out, we
2678                  * need to make sure to load it if we are removing space.  This
2679                  * is because we need the unpinning stage to actually add the
2680                  * space back to the block group, otherwise we will leak space.
2681                  */
2682                 if (!alloc && !btrfs_block_group_done(cache))
2683                         btrfs_cache_block_group(cache, 1);
2684
2685                 byte_in_group = bytenr - cache->start;
2686                 WARN_ON(byte_in_group > cache->length);
2687
2688                 spin_lock(&cache->space_info->lock);
2689                 spin_lock(&cache->lock);
2690
2691                 if (btrfs_test_opt(info, SPACE_CACHE) &&
2692                     cache->disk_cache_state < BTRFS_DC_CLEAR)
2693                         cache->disk_cache_state = BTRFS_DC_CLEAR;
2694
2695                 old_val = cache->used;
2696                 num_bytes = min(total, cache->length - byte_in_group);
2697                 if (alloc) {
2698                         old_val += num_bytes;
2699                         cache->used = old_val;
2700                         cache->reserved -= num_bytes;
2701                         cache->space_info->bytes_reserved -= num_bytes;
2702                         cache->space_info->bytes_used += num_bytes;
2703                         cache->space_info->disk_used += num_bytes * factor;
2704                         spin_unlock(&cache->lock);
2705                         spin_unlock(&cache->space_info->lock);
2706                 } else {
2707                         old_val -= num_bytes;
2708                         cache->used = old_val;
2709                         cache->pinned += num_bytes;
2710                         btrfs_space_info_update_bytes_pinned(info,
2711                                         cache->space_info, num_bytes);
2712                         cache->space_info->bytes_used -= num_bytes;
2713                         cache->space_info->disk_used -= num_bytes * factor;
2714                         spin_unlock(&cache->lock);
2715                         spin_unlock(&cache->space_info->lock);
2716
2717                         percpu_counter_add_batch(
2718                                         &cache->space_info->total_bytes_pinned,
2719                                         num_bytes,
2720                                         BTRFS_TOTAL_BYTES_PINNED_BATCH);
2721                         set_extent_dirty(info->pinned_extents,
2722                                          bytenr, bytenr + num_bytes - 1,
2723                                          GFP_NOFS | __GFP_NOFAIL);
2724                 }
2725
2726                 spin_lock(&trans->transaction->dirty_bgs_lock);
2727                 if (list_empty(&cache->dirty_list)) {
2728                         list_add_tail(&cache->dirty_list,
2729                                       &trans->transaction->dirty_bgs);
2730                         trans->delayed_ref_updates++;
2731                         btrfs_get_block_group(cache);
2732                 }
2733                 spin_unlock(&trans->transaction->dirty_bgs_lock);
2734
2735                 /*
2736                  * No longer have used bytes in this block group, queue it for
2737                  * deletion. We do this after adding the block group to the
2738                  * dirty list to avoid races between cleaner kthread and space
2739                  * cache writeout.
2740                  */
2741                 if (!alloc && old_val == 0)
2742                         btrfs_mark_bg_unused(cache);
2743
2744                 btrfs_put_block_group(cache);
2745                 total -= num_bytes;
2746                 bytenr += num_bytes;
2747         }
2748
2749         /* Modified block groups are accounted for in the delayed_refs_rsv. */
2750         btrfs_update_delayed_refs_rsv(trans);
2751         return ret;
2752 }
2753
2754 /**
2755  * btrfs_add_reserved_bytes - update the block_group and space info counters
2756  * @cache:      The cache we are manipulating
2757  * @ram_bytes:  The number of bytes of file content, and will be same to
2758  *              @num_bytes except for the compress path.
2759  * @num_bytes:  The number of bytes in question
2760  * @delalloc:   The blocks are allocated for the delalloc write
2761  *
2762  * This is called by the allocator when it reserves space. If this is a
2763  * reservation and the block group has become read only we cannot make the
2764  * reservation and return -EAGAIN, otherwise this function always succeeds.
2765  */
2766 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2767                              u64 ram_bytes, u64 num_bytes, int delalloc)
2768 {
2769         struct btrfs_space_info *space_info = cache->space_info;
2770         int ret = 0;
2771
2772         spin_lock(&space_info->lock);
2773         spin_lock(&cache->lock);
2774         if (cache->ro) {
2775                 ret = -EAGAIN;
2776         } else {
2777                 cache->reserved += num_bytes;
2778                 space_info->bytes_reserved += num_bytes;
2779                 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2780                                               space_info->flags, num_bytes, 1);
2781                 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2782                                                       space_info, -ram_bytes);
2783                 if (delalloc)
2784                         cache->delalloc_bytes += num_bytes;
2785         }
2786         spin_unlock(&cache->lock);
2787         spin_unlock(&space_info->lock);
2788         return ret;
2789 }
2790
2791 /**
2792  * btrfs_free_reserved_bytes - update the block_group and space info counters
2793  * @cache:      The cache we are manipulating
2794  * @num_bytes:  The number of bytes in question
2795  * @delalloc:   The blocks are allocated for the delalloc write
2796  *
2797  * This is called by somebody who is freeing space that was never actually used
2798  * on disk.  For example if you reserve some space for a new leaf in transaction
2799  * A and before transaction A commits you free that leaf, you call this with
2800  * reserve set to 0 in order to clear the reservation.
2801  */
2802 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2803                                u64 num_bytes, int delalloc)
2804 {
2805         struct btrfs_space_info *space_info = cache->space_info;
2806
2807         spin_lock(&space_info->lock);
2808         spin_lock(&cache->lock);
2809         if (cache->ro)
2810                 space_info->bytes_readonly += num_bytes;
2811         cache->reserved -= num_bytes;
2812         space_info->bytes_reserved -= num_bytes;
2813         space_info->max_extent_size = 0;
2814
2815         if (delalloc)
2816                 cache->delalloc_bytes -= num_bytes;
2817         spin_unlock(&cache->lock);
2818         spin_unlock(&space_info->lock);
2819 }
2820
2821 static void force_metadata_allocation(struct btrfs_fs_info *info)
2822 {
2823         struct list_head *head = &info->space_info;
2824         struct btrfs_space_info *found;
2825
2826         rcu_read_lock();
2827         list_for_each_entry_rcu(found, head, list) {
2828                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2829                         found->force_alloc = CHUNK_ALLOC_FORCE;
2830         }
2831         rcu_read_unlock();
2832 }
2833
2834 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2835                               struct btrfs_space_info *sinfo, int force)
2836 {
2837         u64 bytes_used = btrfs_space_info_used(sinfo, false);
2838         u64 thresh;
2839
2840         if (force == CHUNK_ALLOC_FORCE)
2841                 return 1;
2842
2843         /*
2844          * in limited mode, we want to have some free space up to
2845          * about 1% of the FS size.
2846          */
2847         if (force == CHUNK_ALLOC_LIMITED) {
2848                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
2849                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2850
2851                 if (sinfo->total_bytes - bytes_used < thresh)
2852                         return 1;
2853         }
2854
2855         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2856                 return 0;
2857         return 1;
2858 }
2859
2860 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2861 {
2862         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2863
2864         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2865 }
2866
2867 /*
2868  * If force is CHUNK_ALLOC_FORCE:
2869  *    - return 1 if it successfully allocates a chunk,
2870  *    - return errors including -ENOSPC otherwise.
2871  * If force is NOT CHUNK_ALLOC_FORCE:
2872  *    - return 0 if it doesn't need to allocate a new chunk,
2873  *    - return 1 if it successfully allocates a chunk,
2874  *    - return errors including -ENOSPC otherwise.
2875  */
2876 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2877                       enum btrfs_chunk_alloc_enum force)
2878 {
2879         struct btrfs_fs_info *fs_info = trans->fs_info;
2880         struct btrfs_space_info *space_info;
2881         bool wait_for_alloc = false;
2882         bool should_alloc = false;
2883         int ret = 0;
2884
2885         /* Don't re-enter if we're already allocating a chunk */
2886         if (trans->allocating_chunk)
2887                 return -ENOSPC;
2888
2889         space_info = btrfs_find_space_info(fs_info, flags);
2890         ASSERT(space_info);
2891
2892         do {
2893                 spin_lock(&space_info->lock);
2894                 if (force < space_info->force_alloc)
2895                         force = space_info->force_alloc;
2896                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
2897                 if (space_info->full) {
2898                         /* No more free physical space */
2899                         if (should_alloc)
2900                                 ret = -ENOSPC;
2901                         else
2902                                 ret = 0;
2903                         spin_unlock(&space_info->lock);
2904                         return ret;
2905                 } else if (!should_alloc) {
2906                         spin_unlock(&space_info->lock);
2907                         return 0;
2908                 } else if (space_info->chunk_alloc) {
2909                         /*
2910                          * Someone is already allocating, so we need to block
2911                          * until this someone is finished and then loop to
2912                          * recheck if we should continue with our allocation
2913                          * attempt.
2914                          */
2915                         wait_for_alloc = true;
2916                         spin_unlock(&space_info->lock);
2917                         mutex_lock(&fs_info->chunk_mutex);
2918                         mutex_unlock(&fs_info->chunk_mutex);
2919                 } else {
2920                         /* Proceed with allocation */
2921                         space_info->chunk_alloc = 1;
2922                         wait_for_alloc = false;
2923                         spin_unlock(&space_info->lock);
2924                 }
2925
2926                 cond_resched();
2927         } while (wait_for_alloc);
2928
2929         mutex_lock(&fs_info->chunk_mutex);
2930         trans->allocating_chunk = true;
2931
2932         /*
2933          * If we have mixed data/metadata chunks we want to make sure we keep
2934          * allocating mixed chunks instead of individual chunks.
2935          */
2936         if (btrfs_mixed_space_info(space_info))
2937                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2938
2939         /*
2940          * if we're doing a data chunk, go ahead and make sure that
2941          * we keep a reasonable number of metadata chunks allocated in the
2942          * FS as well.
2943          */
2944         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2945                 fs_info->data_chunk_allocations++;
2946                 if (!(fs_info->data_chunk_allocations %
2947                       fs_info->metadata_ratio))
2948                         force_metadata_allocation(fs_info);
2949         }
2950
2951         /*
2952          * Check if we have enough space in SYSTEM chunk because we may need
2953          * to update devices.
2954          */
2955         check_system_chunk(trans, flags);
2956
2957         ret = btrfs_alloc_chunk(trans, flags);
2958         trans->allocating_chunk = false;
2959
2960         spin_lock(&space_info->lock);
2961         if (ret < 0) {
2962                 if (ret == -ENOSPC)
2963                         space_info->full = 1;
2964                 else
2965                         goto out;
2966         } else {
2967                 ret = 1;
2968                 space_info->max_extent_size = 0;
2969         }
2970
2971         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2972 out:
2973         space_info->chunk_alloc = 0;
2974         spin_unlock(&space_info->lock);
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         /*
2977          * When we allocate a new chunk we reserve space in the chunk block
2978          * reserve to make sure we can COW nodes/leafs in the chunk tree or
2979          * add new nodes/leafs to it if we end up needing to do it when
2980          * inserting the chunk item and updating device items as part of the
2981          * second phase of chunk allocation, performed by
2982          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2983          * large number of new block groups to create in our transaction
2984          * handle's new_bgs list to avoid exhausting the chunk block reserve
2985          * in extreme cases - like having a single transaction create many new
2986          * block groups when starting to write out the free space caches of all
2987          * the block groups that were made dirty during the lifetime of the
2988          * transaction.
2989          */
2990         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2991                 btrfs_create_pending_block_groups(trans);
2992
2993         return ret;
2994 }
2995
2996 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2997 {
2998         u64 num_dev;
2999
3000         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3001         if (!num_dev)
3002                 num_dev = fs_info->fs_devices->rw_devices;
3003
3004         return num_dev;
3005 }
3006
3007 /*
3008  * Reserve space in the system space for allocating or removing a chunk
3009  */
3010 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3011 {
3012         struct btrfs_fs_info *fs_info = trans->fs_info;
3013         struct btrfs_space_info *info;
3014         u64 left;
3015         u64 thresh;
3016         int ret = 0;
3017         u64 num_devs;
3018
3019         /*
3020          * Needed because we can end up allocating a system chunk and for an
3021          * atomic and race free space reservation in the chunk block reserve.
3022          */
3023         lockdep_assert_held(&fs_info->chunk_mutex);
3024
3025         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3026         spin_lock(&info->lock);
3027         left = info->total_bytes - btrfs_space_info_used(info, true);
3028         spin_unlock(&info->lock);
3029
3030         num_devs = get_profile_num_devs(fs_info, type);
3031
3032         /* num_devs device items to update and 1 chunk item to add or remove */
3033         thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3034                 btrfs_calc_insert_metadata_size(fs_info, 1);
3035
3036         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3037                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3038                            left, thresh, type);
3039                 btrfs_dump_space_info(fs_info, info, 0, 0);
3040         }
3041
3042         if (left < thresh) {
3043                 u64 flags = btrfs_system_alloc_profile(fs_info);
3044
3045                 /*
3046                  * Ignore failure to create system chunk. We might end up not
3047                  * needing it, as we might not need to COW all nodes/leafs from
3048                  * the paths we visit in the chunk tree (they were already COWed
3049                  * or created in the current transaction for example).
3050                  */
3051                 ret = btrfs_alloc_chunk(trans, flags);
3052         }
3053
3054         if (!ret) {
3055                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3056                                           &fs_info->chunk_block_rsv,
3057                                           thresh, BTRFS_RESERVE_NO_FLUSH);
3058                 if (!ret)
3059                         trans->chunk_bytes_reserved += thresh;
3060         }
3061 }
3062
3063 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3064 {
3065         struct btrfs_block_group *block_group;
3066         u64 last = 0;
3067
3068         while (1) {
3069                 struct inode *inode;
3070
3071                 block_group = btrfs_lookup_first_block_group(info, last);
3072                 while (block_group) {
3073                         btrfs_wait_block_group_cache_done(block_group);
3074                         spin_lock(&block_group->lock);
3075                         if (block_group->iref)
3076                                 break;
3077                         spin_unlock(&block_group->lock);
3078                         block_group = btrfs_next_block_group(block_group);
3079                 }
3080                 if (!block_group) {
3081                         if (last == 0)
3082                                 break;
3083                         last = 0;
3084                         continue;
3085                 }
3086
3087                 inode = block_group->inode;
3088                 block_group->iref = 0;
3089                 block_group->inode = NULL;
3090                 spin_unlock(&block_group->lock);
3091                 ASSERT(block_group->io_ctl.inode == NULL);
3092                 iput(inode);
3093                 last = block_group->start + block_group->length;
3094                 btrfs_put_block_group(block_group);
3095         }
3096 }
3097
3098 /*
3099  * Must be called only after stopping all workers, since we could have block
3100  * group caching kthreads running, and therefore they could race with us if we
3101  * freed the block groups before stopping them.
3102  */
3103 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3104 {
3105         struct btrfs_block_group *block_group;
3106         struct btrfs_space_info *space_info;
3107         struct btrfs_caching_control *caching_ctl;
3108         struct rb_node *n;
3109
3110         down_write(&info->commit_root_sem);
3111         while (!list_empty(&info->caching_block_groups)) {
3112                 caching_ctl = list_entry(info->caching_block_groups.next,
3113                                          struct btrfs_caching_control, list);
3114                 list_del(&caching_ctl->list);
3115                 btrfs_put_caching_control(caching_ctl);
3116         }
3117         up_write(&info->commit_root_sem);
3118
3119         spin_lock(&info->unused_bgs_lock);
3120         while (!list_empty(&info->unused_bgs)) {
3121                 block_group = list_first_entry(&info->unused_bgs,
3122                                                struct btrfs_block_group,
3123                                                bg_list);
3124                 list_del_init(&block_group->bg_list);
3125                 btrfs_put_block_group(block_group);
3126         }
3127         spin_unlock(&info->unused_bgs_lock);
3128
3129         spin_lock(&info->block_group_cache_lock);
3130         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3131                 block_group = rb_entry(n, struct btrfs_block_group,
3132                                        cache_node);
3133                 rb_erase(&block_group->cache_node,
3134                          &info->block_group_cache_tree);
3135                 RB_CLEAR_NODE(&block_group->cache_node);
3136                 spin_unlock(&info->block_group_cache_lock);
3137
3138                 down_write(&block_group->space_info->groups_sem);
3139                 list_del(&block_group->list);
3140                 up_write(&block_group->space_info->groups_sem);
3141
3142                 /*
3143                  * We haven't cached this block group, which means we could
3144                  * possibly have excluded extents on this block group.
3145                  */
3146                 if (block_group->cached == BTRFS_CACHE_NO ||
3147                     block_group->cached == BTRFS_CACHE_ERROR)
3148                         btrfs_free_excluded_extents(block_group);
3149
3150                 btrfs_remove_free_space_cache(block_group);
3151                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3152                 ASSERT(list_empty(&block_group->dirty_list));
3153                 ASSERT(list_empty(&block_group->io_list));
3154                 ASSERT(list_empty(&block_group->bg_list));
3155                 ASSERT(atomic_read(&block_group->count) == 1);
3156                 btrfs_put_block_group(block_group);
3157
3158                 spin_lock(&info->block_group_cache_lock);
3159         }
3160         spin_unlock(&info->block_group_cache_lock);
3161
3162         /*
3163          * Now that all the block groups are freed, go through and free all the
3164          * space_info structs.  This is only called during the final stages of
3165          * unmount, and so we know nobody is using them.  We call
3166          * synchronize_rcu() once before we start, just to be on the safe side.
3167          */
3168         synchronize_rcu();
3169
3170         btrfs_release_global_block_rsv(info);
3171
3172         while (!list_empty(&info->space_info)) {
3173                 space_info = list_entry(info->space_info.next,
3174                                         struct btrfs_space_info,
3175                                         list);
3176
3177                 /*
3178                  * Do not hide this behind enospc_debug, this is actually
3179                  * important and indicates a real bug if this happens.
3180                  */
3181                 if (WARN_ON(space_info->bytes_pinned > 0 ||
3182                             space_info->bytes_reserved > 0 ||
3183                             space_info->bytes_may_use > 0))
3184                         btrfs_dump_space_info(info, space_info, 0, 0);
3185                 list_del(&space_info->list);
3186                 btrfs_sysfs_remove_space_info(space_info);
3187         }
3188         return 0;
3189 }