OSDN Git Service

Merge tag 'drm-msm-fixes-2022-10-24' of https://gitlab.freedesktop.org/drm/msm into...
[tomoyo/tomoyo-test1.git] / fs / btrfs / block-rsv.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10
11 /*
12  * HOW DO BLOCK RESERVES WORK
13  *
14  *   Think of block_rsv's as buckets for logically grouped metadata
15  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
16  *   how large we want our block rsv to be, ->reserved is how much space is
17  *   currently reserved for this block reserve.
18  *
19  *   ->failfast exists for the truncate case, and is described below.
20  *
21  * NORMAL OPERATION
22  *
23  *   -> Reserve
24  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
25  *
26  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
27  *     accounted for in space_info->bytes_may_use, and then add the bytes to
28  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
29  *
30  *     ->size is an over-estimation of how much we may use for a particular
31  *     operation.
32  *
33  *   -> Use
34  *     Entrance: btrfs_use_block_rsv
35  *
36  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
37  *     to determine the appropriate block_rsv to use, and then verify that
38  *     ->reserved has enough space for our tree block allocation.  Once
39  *     successful we subtract fs_info->nodesize from ->reserved.
40  *
41  *   -> Finish
42  *     Entrance: btrfs_block_rsv_release
43  *
44  *     We are finished with our operation, subtract our individual reservation
45  *     from ->size, and then subtract ->size from ->reserved and free up the
46  *     excess if there is any.
47  *
48  *     There is some logic here to refill the delayed refs rsv or the global rsv
49  *     as needed, otherwise the excess is subtracted from
50  *     space_info->bytes_may_use.
51  *
52  * TYPES OF BLOCK RESERVES
53  *
54  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
55  *   These behave normally, as described above, just within the confines of the
56  *   lifetime of their particular operation (transaction for the whole trans
57  *   handle lifetime, for example).
58  *
59  * BLOCK_RSV_GLOBAL
60  *   It is impossible to properly account for all the space that may be required
61  *   to make our extent tree updates.  This block reserve acts as an overflow
62  *   buffer in case our delayed refs reserve does not reserve enough space to
63  *   update the extent tree.
64  *
65  *   We can steal from this in some cases as well, notably on evict() or
66  *   truncate() in order to help users recover from ENOSPC conditions.
67  *
68  * BLOCK_RSV_DELALLOC
69  *   The individual item sizes are determined by the per-inode size
70  *   calculations, which are described with the delalloc code.  This is pretty
71  *   straightforward, it's just the calculation of ->size encodes a lot of
72  *   different items, and thus it gets used when updating inodes, inserting file
73  *   extents, and inserting checksums.
74  *
75  * BLOCK_RSV_DELREFS
76  *   We keep a running tally of how many delayed refs we have on the system.
77  *   We assume each one of these delayed refs are going to use a full
78  *   reservation.  We use the transaction items and pre-reserve space for every
79  *   operation, and use this reservation to refill any gap between ->size and
80  *   ->reserved that may exist.
81  *
82  *   From there it's straightforward, removing a delayed ref means we remove its
83  *   count from ->size and free up reservations as necessary.  Since this is
84  *   the most dynamic block reserve in the system, we will try to refill this
85  *   block reserve first with any excess returned by any other block reserve.
86  *
87  * BLOCK_RSV_EMPTY
88  *   This is the fallback block reserve to make us try to reserve space if we
89  *   don't have a specific bucket for this allocation.  It is mostly used for
90  *   updating the device tree and such, since that is a separate pool we're
91  *   content to just reserve space from the space_info on demand.
92  *
93  * BLOCK_RSV_TEMP
94  *   This is used by things like truncate and iput.  We will temporarily
95  *   allocate a block reserve, set it to some size, and then truncate bytes
96  *   until we have no space left.  With ->failfast set we'll simply return
97  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
98  *   to make a new reservation.  This is because these operations are
99  *   unbounded, so we want to do as much work as we can, and then back off and
100  *   re-reserve.
101  */
102
103 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
104                                     struct btrfs_block_rsv *block_rsv,
105                                     struct btrfs_block_rsv *dest, u64 num_bytes,
106                                     u64 *qgroup_to_release_ret)
107 {
108         struct btrfs_space_info *space_info = block_rsv->space_info;
109         u64 qgroup_to_release = 0;
110         u64 ret;
111
112         spin_lock(&block_rsv->lock);
113         if (num_bytes == (u64)-1) {
114                 num_bytes = block_rsv->size;
115                 qgroup_to_release = block_rsv->qgroup_rsv_size;
116         }
117         block_rsv->size -= num_bytes;
118         if (block_rsv->reserved >= block_rsv->size) {
119                 num_bytes = block_rsv->reserved - block_rsv->size;
120                 block_rsv->reserved = block_rsv->size;
121                 block_rsv->full = true;
122         } else {
123                 num_bytes = 0;
124         }
125         if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
126                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
127                                     block_rsv->qgroup_rsv_size;
128                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
129         } else {
130                 qgroup_to_release = 0;
131         }
132         spin_unlock(&block_rsv->lock);
133
134         ret = num_bytes;
135         if (num_bytes > 0) {
136                 if (dest) {
137                         spin_lock(&dest->lock);
138                         if (!dest->full) {
139                                 u64 bytes_to_add;
140
141                                 bytes_to_add = dest->size - dest->reserved;
142                                 bytes_to_add = min(num_bytes, bytes_to_add);
143                                 dest->reserved += bytes_to_add;
144                                 if (dest->reserved >= dest->size)
145                                         dest->full = true;
146                                 num_bytes -= bytes_to_add;
147                         }
148                         spin_unlock(&dest->lock);
149                 }
150                 if (num_bytes)
151                         btrfs_space_info_free_bytes_may_use(fs_info,
152                                                             space_info,
153                                                             num_bytes);
154         }
155         if (qgroup_to_release_ret)
156                 *qgroup_to_release_ret = qgroup_to_release;
157         return ret;
158 }
159
160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161                             struct btrfs_block_rsv *dst, u64 num_bytes,
162                             bool update_size)
163 {
164         int ret;
165
166         ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167         if (ret)
168                 return ret;
169
170         btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171         return 0;
172 }
173
174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
175 {
176         memset(rsv, 0, sizeof(*rsv));
177         spin_lock_init(&rsv->lock);
178         rsv->type = type;
179 }
180
181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182                                    struct btrfs_block_rsv *rsv,
183                                    enum btrfs_rsv_type type)
184 {
185         btrfs_init_block_rsv(rsv, type);
186         rsv->space_info = btrfs_find_space_info(fs_info,
187                                             BTRFS_BLOCK_GROUP_METADATA);
188 }
189
190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191                                               enum btrfs_rsv_type type)
192 {
193         struct btrfs_block_rsv *block_rsv;
194
195         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196         if (!block_rsv)
197                 return NULL;
198
199         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200         return block_rsv;
201 }
202
203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204                           struct btrfs_block_rsv *rsv)
205 {
206         if (!rsv)
207                 return;
208         btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209         kfree(rsv);
210 }
211
212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
213                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214                         enum btrfs_reserve_flush_enum flush)
215 {
216         int ret;
217
218         if (num_bytes == 0)
219                 return 0;
220
221         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
222         if (!ret)
223                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224
225         return ret;
226 }
227
228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
229 {
230         u64 num_bytes = 0;
231         int ret = -ENOSPC;
232
233         if (!block_rsv)
234                 return 0;
235
236         spin_lock(&block_rsv->lock);
237         num_bytes = div_factor(block_rsv->size, min_factor);
238         if (block_rsv->reserved >= num_bytes)
239                 ret = 0;
240         spin_unlock(&block_rsv->lock);
241
242         return ret;
243 }
244
245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
247                            enum btrfs_reserve_flush_enum flush)
248 {
249         u64 num_bytes = 0;
250         int ret = -ENOSPC;
251
252         if (!block_rsv)
253                 return 0;
254
255         spin_lock(&block_rsv->lock);
256         num_bytes = min_reserved;
257         if (block_rsv->reserved >= num_bytes)
258                 ret = 0;
259         else
260                 num_bytes -= block_rsv->reserved;
261         spin_unlock(&block_rsv->lock);
262
263         if (!ret)
264                 return 0;
265
266         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
267         if (!ret) {
268                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
269                 return 0;
270         }
271
272         return ret;
273 }
274
275 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
276                             struct btrfs_block_rsv *block_rsv, u64 num_bytes,
277                             u64 *qgroup_to_release)
278 {
279         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
280         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
281         struct btrfs_block_rsv *target = NULL;
282
283         /*
284          * If we are the delayed_rsv then push to the global rsv, otherwise dump
285          * into the delayed rsv if it is not full.
286          */
287         if (block_rsv == delayed_rsv)
288                 target = global_rsv;
289         else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
290                 target = delayed_rsv;
291
292         if (target && block_rsv->space_info != target->space_info)
293                 target = NULL;
294
295         return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
296                                        qgroup_to_release);
297 }
298
299 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
300 {
301         int ret = -ENOSPC;
302
303         spin_lock(&block_rsv->lock);
304         if (block_rsv->reserved >= num_bytes) {
305                 block_rsv->reserved -= num_bytes;
306                 if (block_rsv->reserved < block_rsv->size)
307                         block_rsv->full = false;
308                 ret = 0;
309         }
310         spin_unlock(&block_rsv->lock);
311         return ret;
312 }
313
314 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
315                                u64 num_bytes, bool update_size)
316 {
317         spin_lock(&block_rsv->lock);
318         block_rsv->reserved += num_bytes;
319         if (update_size)
320                 block_rsv->size += num_bytes;
321         else if (block_rsv->reserved >= block_rsv->size)
322                 block_rsv->full = true;
323         spin_unlock(&block_rsv->lock);
324 }
325
326 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
327                              struct btrfs_block_rsv *dest, u64 num_bytes,
328                              int min_factor)
329 {
330         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
331         u64 min_bytes;
332
333         if (global_rsv->space_info != dest->space_info)
334                 return -ENOSPC;
335
336         spin_lock(&global_rsv->lock);
337         min_bytes = div_factor(global_rsv->size, min_factor);
338         if (global_rsv->reserved < min_bytes + num_bytes) {
339                 spin_unlock(&global_rsv->lock);
340                 return -ENOSPC;
341         }
342         global_rsv->reserved -= num_bytes;
343         if (global_rsv->reserved < global_rsv->size)
344                 global_rsv->full = false;
345         spin_unlock(&global_rsv->lock);
346
347         btrfs_block_rsv_add_bytes(dest, num_bytes, true);
348         return 0;
349 }
350
351 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
352 {
353         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
354         struct btrfs_space_info *sinfo = block_rsv->space_info;
355         struct btrfs_root *root, *tmp;
356         u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
357         unsigned int min_items = 1;
358
359         /*
360          * The global block rsv is based on the size of the extent tree, the
361          * checksum tree and the root tree.  If the fs is empty we want to set
362          * it to a minimal amount for safety.
363          *
364          * We also are going to need to modify the minimum of the tree root and
365          * any global roots we could touch.
366          */
367         read_lock(&fs_info->global_root_lock);
368         rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
369                                              rb_node) {
370                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
371                     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
372                     root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
373                         num_bytes += btrfs_root_used(&root->root_item);
374                         min_items++;
375                 }
376         }
377         read_unlock(&fs_info->global_root_lock);
378
379         /*
380          * But we also want to reserve enough space so we can do the fallback
381          * global reserve for an unlink, which is an additional 5 items (see the
382          * comment in __unlink_start_trans for what we're modifying.)
383          *
384          * But we also need space for the delayed ref updates from the unlink,
385          * so its 10, 5 for the actual operation, and 5 for the delayed ref
386          * updates.
387          */
388         min_items += 10;
389
390         num_bytes = max_t(u64, num_bytes,
391                           btrfs_calc_insert_metadata_size(fs_info, min_items));
392
393         spin_lock(&sinfo->lock);
394         spin_lock(&block_rsv->lock);
395
396         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
397
398         if (block_rsv->reserved < block_rsv->size) {
399                 num_bytes = block_rsv->size - block_rsv->reserved;
400                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
401                                                       num_bytes);
402                 block_rsv->reserved = block_rsv->size;
403         } else if (block_rsv->reserved > block_rsv->size) {
404                 num_bytes = block_rsv->reserved - block_rsv->size;
405                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
406                                                       -num_bytes);
407                 block_rsv->reserved = block_rsv->size;
408                 btrfs_try_granting_tickets(fs_info, sinfo);
409         }
410
411         block_rsv->full = (block_rsv->reserved == block_rsv->size);
412
413         if (block_rsv->size >= sinfo->total_bytes)
414                 sinfo->force_alloc = CHUNK_ALLOC_FORCE;
415         spin_unlock(&block_rsv->lock);
416         spin_unlock(&sinfo->lock);
417 }
418
419 void btrfs_init_root_block_rsv(struct btrfs_root *root)
420 {
421         struct btrfs_fs_info *fs_info = root->fs_info;
422
423         switch (root->root_key.objectid) {
424         case BTRFS_CSUM_TREE_OBJECTID:
425         case BTRFS_EXTENT_TREE_OBJECTID:
426         case BTRFS_FREE_SPACE_TREE_OBJECTID:
427         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
428                 root->block_rsv = &fs_info->delayed_refs_rsv;
429                 break;
430         case BTRFS_ROOT_TREE_OBJECTID:
431         case BTRFS_DEV_TREE_OBJECTID:
432         case BTRFS_QUOTA_TREE_OBJECTID:
433                 root->block_rsv = &fs_info->global_block_rsv;
434                 break;
435         case BTRFS_CHUNK_TREE_OBJECTID:
436                 root->block_rsv = &fs_info->chunk_block_rsv;
437                 break;
438         default:
439                 root->block_rsv = NULL;
440                 break;
441         }
442 }
443
444 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
445 {
446         struct btrfs_space_info *space_info;
447
448         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
449         fs_info->chunk_block_rsv.space_info = space_info;
450
451         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
452         fs_info->global_block_rsv.space_info = space_info;
453         fs_info->trans_block_rsv.space_info = space_info;
454         fs_info->empty_block_rsv.space_info = space_info;
455         fs_info->delayed_block_rsv.space_info = space_info;
456         fs_info->delayed_refs_rsv.space_info = space_info;
457
458         btrfs_update_global_block_rsv(fs_info);
459 }
460
461 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
462 {
463         btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
464                                 NULL);
465         WARN_ON(fs_info->trans_block_rsv.size > 0);
466         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
467         WARN_ON(fs_info->chunk_block_rsv.size > 0);
468         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
469         WARN_ON(fs_info->delayed_block_rsv.size > 0);
470         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
471         WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
472         WARN_ON(fs_info->delayed_refs_rsv.size > 0);
473 }
474
475 static struct btrfs_block_rsv *get_block_rsv(
476                                         const struct btrfs_trans_handle *trans,
477                                         const struct btrfs_root *root)
478 {
479         struct btrfs_fs_info *fs_info = root->fs_info;
480         struct btrfs_block_rsv *block_rsv = NULL;
481
482         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
483             (root == fs_info->uuid_root) ||
484             (trans->adding_csums &&
485              root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
486                 block_rsv = trans->block_rsv;
487
488         if (!block_rsv)
489                 block_rsv = root->block_rsv;
490
491         if (!block_rsv)
492                 block_rsv = &fs_info->empty_block_rsv;
493
494         return block_rsv;
495 }
496
497 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
498                                             struct btrfs_root *root,
499                                             u32 blocksize)
500 {
501         struct btrfs_fs_info *fs_info = root->fs_info;
502         struct btrfs_block_rsv *block_rsv;
503         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
504         int ret;
505         bool global_updated = false;
506
507         block_rsv = get_block_rsv(trans, root);
508
509         if (unlikely(block_rsv->size == 0))
510                 goto try_reserve;
511 again:
512         ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
513         if (!ret)
514                 return block_rsv;
515
516         if (block_rsv->failfast)
517                 return ERR_PTR(ret);
518
519         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
520                 global_updated = true;
521                 btrfs_update_global_block_rsv(fs_info);
522                 goto again;
523         }
524
525         /*
526          * The global reserve still exists to save us from ourselves, so don't
527          * warn_on if we are short on our delayed refs reserve.
528          */
529         if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
530             btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
531                 static DEFINE_RATELIMIT_STATE(_rs,
532                                 DEFAULT_RATELIMIT_INTERVAL * 10,
533                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
534                 if (__ratelimit(&_rs))
535                         WARN(1, KERN_DEBUG
536                                 "BTRFS: block rsv %d returned %d\n",
537                                 block_rsv->type, ret);
538         }
539 try_reserve:
540         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
541                                            BTRFS_RESERVE_NO_FLUSH);
542         if (!ret)
543                 return block_rsv;
544         /*
545          * If we couldn't reserve metadata bytes try and use some from
546          * the global reserve if its space type is the same as the global
547          * reservation.
548          */
549         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
550             block_rsv->space_info == global_rsv->space_info) {
551                 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
552                 if (!ret)
553                         return global_rsv;
554         }
555         return ERR_PTR(ret);
556 }