OSDN Git Service

btrfs: cleanup device states define BTRFS_DEV_STATE_MISSING
[android-x86/kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54 #include "ref-verify.h"
55
56 #ifdef CONFIG_X86
57 #include <asm/cpufeature.h>
58 #endif
59
60 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
61                                  BTRFS_HEADER_FLAG_RELOC |\
62                                  BTRFS_SUPER_FLAG_ERROR |\
63                                  BTRFS_SUPER_FLAG_SEEDING |\
64                                  BTRFS_SUPER_FLAG_METADUMP)
65
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72                                       struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75                                         struct extent_io_tree *dirty_pages,
76                                         int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78                                        struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88         struct bio *bio;
89         bio_end_io_t *end_io;
90         void *private;
91         struct btrfs_fs_info *info;
92         blk_status_t status;
93         enum btrfs_wq_endio_type metadata;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         void *private_data;
123         struct btrfs_fs_info *fs_info;
124         struct bio *bio;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         blk_status_t status;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228         struct extent_map_tree *em_tree = &inode->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev = fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char result[BTRFS_CSUM_SIZE];
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297
298         len = buf->len - offset;
299         while (len > 0) {
300                 err = map_private_extent_buffer(buf, offset, 32,
301                                         &kaddr, &map_start, &map_len);
302                 if (err)
303                         return err;
304                 cur_len = min(len, map_len - (offset - map_start));
305                 crc = btrfs_csum_data(kaddr + offset - map_start,
306                                       crc, cur_len);
307                 len -= cur_len;
308                 offset += cur_len;
309         }
310         memset(result, 0, BTRFS_CSUM_SIZE);
311
312         btrfs_csum_final(crc, result);
313
314         if (verify) {
315                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
316                         u32 val;
317                         u32 found = 0;
318                         memcpy(&found, result, csum_size);
319
320                         read_extent_buffer(buf, &val, 0, csum_size);
321                         btrfs_warn_rl(fs_info,
322                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
323                                 fs_info->sb->s_id, buf->start,
324                                 val, found, btrfs_header_level(buf));
325                         return -EUCLEAN;
326                 }
327         } else {
328                 write_extent_buffer(buf, result, 0, csum_size);
329         }
330
331         return 0;
332 }
333
334 /*
335  * we can't consider a given block up to date unless the transid of the
336  * block matches the transid in the parent node's pointer.  This is how we
337  * detect blocks that either didn't get written at all or got written
338  * in the wrong place.
339  */
340 static int verify_parent_transid(struct extent_io_tree *io_tree,
341                                  struct extent_buffer *eb, u64 parent_transid,
342                                  int atomic)
343 {
344         struct extent_state *cached_state = NULL;
345         int ret;
346         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
347
348         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
349                 return 0;
350
351         if (atomic)
352                 return -EAGAIN;
353
354         if (need_lock) {
355                 btrfs_tree_read_lock(eb);
356                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
357         }
358
359         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
360                          &cached_state);
361         if (extent_buffer_uptodate(eb) &&
362             btrfs_header_generation(eb) == parent_transid) {
363                 ret = 0;
364                 goto out;
365         }
366         btrfs_err_rl(eb->fs_info,
367                 "parent transid verify failed on %llu wanted %llu found %llu",
368                         eb->start,
369                         parent_transid, btrfs_header_generation(eb));
370         ret = 1;
371
372         /*
373          * Things reading via commit roots that don't have normal protection,
374          * like send, can have a really old block in cache that may point at a
375          * block that has been freed and re-allocated.  So don't clear uptodate
376          * if we find an eb that is under IO (dirty/writeback) because we could
377          * end up reading in the stale data and then writing it back out and
378          * making everybody very sad.
379          */
380         if (!extent_buffer_under_io(eb))
381                 clear_extent_buffer_uptodate(eb);
382 out:
383         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
384                              &cached_state, GFP_NOFS);
385         if (need_lock)
386                 btrfs_tree_read_unlock_blocking(eb);
387         return ret;
388 }
389
390 /*
391  * Return 0 if the superblock checksum type matches the checksum value of that
392  * algorithm. Pass the raw disk superblock data.
393  */
394 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
395                                   char *raw_disk_sb)
396 {
397         struct btrfs_super_block *disk_sb =
398                 (struct btrfs_super_block *)raw_disk_sb;
399         u16 csum_type = btrfs_super_csum_type(disk_sb);
400         int ret = 0;
401
402         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
403                 u32 crc = ~(u32)0;
404                 const int csum_size = sizeof(crc);
405                 char result[csum_size];
406
407                 /*
408                  * The super_block structure does not span the whole
409                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
410                  * is filled with zeros and is included in the checksum.
411                  */
412                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
413                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
414                 btrfs_csum_final(crc, result);
415
416                 if (memcmp(raw_disk_sb, result, csum_size))
417                         ret = 1;
418         }
419
420         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
421                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
422                                 csum_type);
423                 ret = 1;
424         }
425
426         return ret;
427 }
428
429 /*
430  * helper to read a given tree block, doing retries as required when
431  * the checksums don't match and we have alternate mirrors to try.
432  */
433 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
434                                           struct extent_buffer *eb,
435                                           u64 parent_transid)
436 {
437         struct extent_io_tree *io_tree;
438         int failed = 0;
439         int ret;
440         int num_copies = 0;
441         int mirror_num = 0;
442         int failed_mirror = 0;
443
444         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
445         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
446         while (1) {
447                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
448                                                mirror_num);
449                 if (!ret) {
450                         if (!verify_parent_transid(io_tree, eb,
451                                                    parent_transid, 0))
452                                 break;
453                         else
454                                 ret = -EIO;
455                 }
456
457                 /*
458                  * This buffer's crc is fine, but its contents are corrupted, so
459                  * there is no reason to read the other copies, they won't be
460                  * any less wrong.
461                  */
462                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
463                         break;
464
465                 num_copies = btrfs_num_copies(fs_info,
466                                               eb->start, eb->len);
467                 if (num_copies == 1)
468                         break;
469
470                 if (!failed_mirror) {
471                         failed = 1;
472                         failed_mirror = eb->read_mirror;
473                 }
474
475                 mirror_num++;
476                 if (mirror_num == failed_mirror)
477                         mirror_num++;
478
479                 if (mirror_num > num_copies)
480                         break;
481         }
482
483         if (failed && !ret && failed_mirror)
484                 repair_eb_io_failure(fs_info, eb, failed_mirror);
485
486         return ret;
487 }
488
489 /*
490  * checksum a dirty tree block before IO.  This has extra checks to make sure
491  * we only fill in the checksum field in the first page of a multi-page block
492  */
493
494 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
495 {
496         u64 start = page_offset(page);
497         u64 found_start;
498         struct extent_buffer *eb;
499
500         eb = (struct extent_buffer *)page->private;
501         if (page != eb->pages[0])
502                 return 0;
503
504         found_start = btrfs_header_bytenr(eb);
505         /*
506          * Please do not consolidate these warnings into a single if.
507          * It is useful to know what went wrong.
508          */
509         if (WARN_ON(found_start != start))
510                 return -EUCLEAN;
511         if (WARN_ON(!PageUptodate(page)))
512                 return -EUCLEAN;
513
514         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
515                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
516
517         return csum_tree_block(fs_info, eb, 0);
518 }
519
520 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
521                                  struct extent_buffer *eb)
522 {
523         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
524         u8 fsid[BTRFS_FSID_SIZE];
525         int ret = 1;
526
527         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
528         while (fs_devices) {
529                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530                         ret = 0;
531                         break;
532                 }
533                 fs_devices = fs_devices->seed;
534         }
535         return ret;
536 }
537
538 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
539                                       u64 phy_offset, struct page *page,
540                                       u64 start, u64 end, int mirror)
541 {
542         u64 found_start;
543         int found_level;
544         struct extent_buffer *eb;
545         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
546         struct btrfs_fs_info *fs_info = root->fs_info;
547         int ret = 0;
548         int reads_done;
549
550         if (!page->private)
551                 goto out;
552
553         eb = (struct extent_buffer *)page->private;
554
555         /* the pending IO might have been the only thing that kept this buffer
556          * in memory.  Make sure we have a ref for all this other checks
557          */
558         extent_buffer_get(eb);
559
560         reads_done = atomic_dec_and_test(&eb->io_pages);
561         if (!reads_done)
562                 goto err;
563
564         eb->read_mirror = mirror;
565         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
566                 ret = -EIO;
567                 goto err;
568         }
569
570         found_start = btrfs_header_bytenr(eb);
571         if (found_start != eb->start) {
572                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
573                              found_start, eb->start);
574                 ret = -EIO;
575                 goto err;
576         }
577         if (check_tree_block_fsid(fs_info, eb)) {
578                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
579                              eb->start);
580                 ret = -EIO;
581                 goto err;
582         }
583         found_level = btrfs_header_level(eb);
584         if (found_level >= BTRFS_MAX_LEVEL) {
585                 btrfs_err(fs_info, "bad tree block level %d",
586                           (int)btrfs_header_level(eb));
587                 ret = -EIO;
588                 goto err;
589         }
590
591         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
592                                        eb, found_level);
593
594         ret = csum_tree_block(fs_info, eb, 1);
595         if (ret)
596                 goto err;
597
598         /*
599          * If this is a leaf block and it is corrupt, set the corrupt bit so
600          * that we don't try and read the other copies of this block, just
601          * return -EIO.
602          */
603         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
604                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605                 ret = -EIO;
606         }
607
608         if (found_level > 0 && btrfs_check_node(root, eb))
609                 ret = -EIO;
610
611         if (!ret)
612                 set_extent_buffer_uptodate(eb);
613 err:
614         if (reads_done &&
615             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
616                 btree_readahead_hook(eb, ret);
617
618         if (ret) {
619                 /*
620                  * our io error hook is going to dec the io pages
621                  * again, we have to make sure it has something
622                  * to decrement
623                  */
624                 atomic_inc(&eb->io_pages);
625                 clear_extent_buffer_uptodate(eb);
626         }
627         free_extent_buffer(eb);
628 out:
629         return ret;
630 }
631
632 static int btree_io_failed_hook(struct page *page, int failed_mirror)
633 {
634         struct extent_buffer *eb;
635
636         eb = (struct extent_buffer *)page->private;
637         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
638         eb->read_mirror = failed_mirror;
639         atomic_dec(&eb->io_pages);
640         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
641                 btree_readahead_hook(eb, -EIO);
642         return -EIO;    /* we fixed nothing */
643 }
644
645 static void end_workqueue_bio(struct bio *bio)
646 {
647         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
648         struct btrfs_fs_info *fs_info;
649         struct btrfs_workqueue *wq;
650         btrfs_work_func_t func;
651
652         fs_info = end_io_wq->info;
653         end_io_wq->status = bio->bi_status;
654
655         if (bio_op(bio) == REQ_OP_WRITE) {
656                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
657                         wq = fs_info->endio_meta_write_workers;
658                         func = btrfs_endio_meta_write_helper;
659                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
660                         wq = fs_info->endio_freespace_worker;
661                         func = btrfs_freespace_write_helper;
662                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
663                         wq = fs_info->endio_raid56_workers;
664                         func = btrfs_endio_raid56_helper;
665                 } else {
666                         wq = fs_info->endio_write_workers;
667                         func = btrfs_endio_write_helper;
668                 }
669         } else {
670                 if (unlikely(end_io_wq->metadata ==
671                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
672                         wq = fs_info->endio_repair_workers;
673                         func = btrfs_endio_repair_helper;
674                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
675                         wq = fs_info->endio_raid56_workers;
676                         func = btrfs_endio_raid56_helper;
677                 } else if (end_io_wq->metadata) {
678                         wq = fs_info->endio_meta_workers;
679                         func = btrfs_endio_meta_helper;
680                 } else {
681                         wq = fs_info->endio_workers;
682                         func = btrfs_endio_helper;
683                 }
684         }
685
686         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
687         btrfs_queue_work(wq, &end_io_wq->work);
688 }
689
690 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
691                         enum btrfs_wq_endio_type metadata)
692 {
693         struct btrfs_end_io_wq *end_io_wq;
694
695         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
696         if (!end_io_wq)
697                 return BLK_STS_RESOURCE;
698
699         end_io_wq->private = bio->bi_private;
700         end_io_wq->end_io = bio->bi_end_io;
701         end_io_wq->info = info;
702         end_io_wq->status = 0;
703         end_io_wq->bio = bio;
704         end_io_wq->metadata = metadata;
705
706         bio->bi_private = end_io_wq;
707         bio->bi_end_io = end_workqueue_bio;
708         return 0;
709 }
710
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713         unsigned long limit = min_t(unsigned long,
714                                     info->thread_pool_size,
715                                     info->fs_devices->open_devices);
716         return 256 * limit;
717 }
718
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721         struct async_submit_bio *async;
722         blk_status_t ret;
723
724         async = container_of(work, struct  async_submit_bio, work);
725         ret = async->submit_bio_start(async->private_data, async->bio,
726                                       async->mirror_num, async->bio_flags,
727                                       async->bio_offset);
728         if (ret)
729                 async->status = ret;
730 }
731
732 static void run_one_async_done(struct btrfs_work *work)
733 {
734         struct async_submit_bio *async;
735
736         async = container_of(work, struct  async_submit_bio, work);
737
738         /* If an error occurred we just want to clean up the bio and move on */
739         if (async->status) {
740                 async->bio->bi_status = async->status;
741                 bio_endio(async->bio);
742                 return;
743         }
744
745         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
746                                async->bio_flags, async->bio_offset);
747 }
748
749 static void run_one_async_free(struct btrfs_work *work)
750 {
751         struct async_submit_bio *async;
752
753         async = container_of(work, struct  async_submit_bio, work);
754         kfree(async);
755 }
756
757 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
758                                  int mirror_num, unsigned long bio_flags,
759                                  u64 bio_offset, void *private_data,
760                                  extent_submit_bio_hook_t *submit_bio_start,
761                                  extent_submit_bio_hook_t *submit_bio_done)
762 {
763         struct async_submit_bio *async;
764
765         async = kmalloc(sizeof(*async), GFP_NOFS);
766         if (!async)
767                 return BLK_STS_RESOURCE;
768
769         async->private_data = private_data;
770         async->fs_info = fs_info;
771         async->bio = bio;
772         async->mirror_num = mirror_num;
773         async->submit_bio_start = submit_bio_start;
774         async->submit_bio_done = submit_bio_done;
775
776         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
777                         run_one_async_done, run_one_async_free);
778
779         async->bio_flags = bio_flags;
780         async->bio_offset = bio_offset;
781
782         async->status = 0;
783
784         if (op_is_sync(bio->bi_opf))
785                 btrfs_set_work_high_priority(&async->work);
786
787         btrfs_queue_work(fs_info->workers, &async->work);
788         return 0;
789 }
790
791 static blk_status_t btree_csum_one_bio(struct bio *bio)
792 {
793         struct bio_vec *bvec;
794         struct btrfs_root *root;
795         int i, ret = 0;
796
797         ASSERT(!bio_flagged(bio, BIO_CLONED));
798         bio_for_each_segment_all(bvec, bio, i) {
799                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
800                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
801                 if (ret)
802                         break;
803         }
804
805         return errno_to_blk_status(ret);
806 }
807
808 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
809                                              int mirror_num, unsigned long bio_flags,
810                                              u64 bio_offset)
811 {
812         /*
813          * when we're called for a write, we're already in the async
814          * submission context.  Just jump into btrfs_map_bio
815          */
816         return btree_csum_one_bio(bio);
817 }
818
819 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
820                                             int mirror_num, unsigned long bio_flags,
821                                             u64 bio_offset)
822 {
823         struct inode *inode = private_data;
824         blk_status_t ret;
825
826         /*
827          * when we're called for a write, we're already in the async
828          * submission context.  Just jump into btrfs_map_bio
829          */
830         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
831         if (ret) {
832                 bio->bi_status = ret;
833                 bio_endio(bio);
834         }
835         return ret;
836 }
837
838 static int check_async_write(struct btrfs_inode *bi)
839 {
840         if (atomic_read(&bi->sync_writers))
841                 return 0;
842 #ifdef CONFIG_X86
843         if (static_cpu_has(X86_FEATURE_XMM4_2))
844                 return 0;
845 #endif
846         return 1;
847 }
848
849 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
850                                           int mirror_num, unsigned long bio_flags,
851                                           u64 bio_offset)
852 {
853         struct inode *inode = private_data;
854         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
855         int async = check_async_write(BTRFS_I(inode));
856         blk_status_t ret;
857
858         if (bio_op(bio) != REQ_OP_WRITE) {
859                 /*
860                  * called for a read, do the setup so that checksum validation
861                  * can happen in the async kernel threads
862                  */
863                 ret = btrfs_bio_wq_end_io(fs_info, bio,
864                                           BTRFS_WQ_ENDIO_METADATA);
865                 if (ret)
866                         goto out_w_error;
867                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
868         } else if (!async) {
869                 ret = btree_csum_one_bio(bio);
870                 if (ret)
871                         goto out_w_error;
872                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
873         } else {
874                 /*
875                  * kthread helpers are used to submit writes so that
876                  * checksumming can happen in parallel across all CPUs
877                  */
878                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
879                                           bio_offset, private_data,
880                                           __btree_submit_bio_start,
881                                           __btree_submit_bio_done);
882         }
883
884         if (ret)
885                 goto out_w_error;
886         return 0;
887
888 out_w_error:
889         bio->bi_status = ret;
890         bio_endio(bio);
891         return ret;
892 }
893
894 #ifdef CONFIG_MIGRATION
895 static int btree_migratepage(struct address_space *mapping,
896                         struct page *newpage, struct page *page,
897                         enum migrate_mode mode)
898 {
899         /*
900          * we can't safely write a btree page from here,
901          * we haven't done the locking hook
902          */
903         if (PageDirty(page))
904                 return -EAGAIN;
905         /*
906          * Buffers may be managed in a filesystem specific way.
907          * We must have no buffers or drop them.
908          */
909         if (page_has_private(page) &&
910             !try_to_release_page(page, GFP_KERNEL))
911                 return -EAGAIN;
912         return migrate_page(mapping, newpage, page, mode);
913 }
914 #endif
915
916
917 static int btree_writepages(struct address_space *mapping,
918                             struct writeback_control *wbc)
919 {
920         struct btrfs_fs_info *fs_info;
921         int ret;
922
923         if (wbc->sync_mode == WB_SYNC_NONE) {
924
925                 if (wbc->for_kupdate)
926                         return 0;
927
928                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
929                 /* this is a bit racy, but that's ok */
930                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
931                                              BTRFS_DIRTY_METADATA_THRESH);
932                 if (ret < 0)
933                         return 0;
934         }
935         return btree_write_cache_pages(mapping, wbc);
936 }
937
938 static int btree_readpage(struct file *file, struct page *page)
939 {
940         struct extent_io_tree *tree;
941         tree = &BTRFS_I(page->mapping->host)->io_tree;
942         return extent_read_full_page(tree, page, btree_get_extent, 0);
943 }
944
945 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
946 {
947         if (PageWriteback(page) || PageDirty(page))
948                 return 0;
949
950         return try_release_extent_buffer(page);
951 }
952
953 static void btree_invalidatepage(struct page *page, unsigned int offset,
954                                  unsigned int length)
955 {
956         struct extent_io_tree *tree;
957         tree = &BTRFS_I(page->mapping->host)->io_tree;
958         extent_invalidatepage(tree, page, offset);
959         btree_releasepage(page, GFP_NOFS);
960         if (PagePrivate(page)) {
961                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
962                            "page private not zero on page %llu",
963                            (unsigned long long)page_offset(page));
964                 ClearPagePrivate(page);
965                 set_page_private(page, 0);
966                 put_page(page);
967         }
968 }
969
970 static int btree_set_page_dirty(struct page *page)
971 {
972 #ifdef DEBUG
973         struct extent_buffer *eb;
974
975         BUG_ON(!PagePrivate(page));
976         eb = (struct extent_buffer *)page->private;
977         BUG_ON(!eb);
978         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
979         BUG_ON(!atomic_read(&eb->refs));
980         btrfs_assert_tree_locked(eb);
981 #endif
982         return __set_page_dirty_nobuffers(page);
983 }
984
985 static const struct address_space_operations btree_aops = {
986         .readpage       = btree_readpage,
987         .writepages     = btree_writepages,
988         .releasepage    = btree_releasepage,
989         .invalidatepage = btree_invalidatepage,
990 #ifdef CONFIG_MIGRATION
991         .migratepage    = btree_migratepage,
992 #endif
993         .set_page_dirty = btree_set_page_dirty,
994 };
995
996 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
997 {
998         struct extent_buffer *buf = NULL;
999         struct inode *btree_inode = fs_info->btree_inode;
1000
1001         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1002         if (IS_ERR(buf))
1003                 return;
1004         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1005                                  buf, WAIT_NONE, 0);
1006         free_extent_buffer(buf);
1007 }
1008
1009 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1010                          int mirror_num, struct extent_buffer **eb)
1011 {
1012         struct extent_buffer *buf = NULL;
1013         struct inode *btree_inode = fs_info->btree_inode;
1014         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1015         int ret;
1016
1017         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1018         if (IS_ERR(buf))
1019                 return 0;
1020
1021         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1022
1023         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1024                                        mirror_num);
1025         if (ret) {
1026                 free_extent_buffer(buf);
1027                 return ret;
1028         }
1029
1030         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1031                 free_extent_buffer(buf);
1032                 return -EIO;
1033         } else if (extent_buffer_uptodate(buf)) {
1034                 *eb = buf;
1035         } else {
1036                 free_extent_buffer(buf);
1037         }
1038         return 0;
1039 }
1040
1041 struct extent_buffer *btrfs_find_create_tree_block(
1042                                                 struct btrfs_fs_info *fs_info,
1043                                                 u64 bytenr)
1044 {
1045         if (btrfs_is_testing(fs_info))
1046                 return alloc_test_extent_buffer(fs_info, bytenr);
1047         return alloc_extent_buffer(fs_info, bytenr);
1048 }
1049
1050
1051 int btrfs_write_tree_block(struct extent_buffer *buf)
1052 {
1053         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1054                                         buf->start + buf->len - 1);
1055 }
1056
1057 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1058 {
1059         filemap_fdatawait_range(buf->pages[0]->mapping,
1060                                 buf->start, buf->start + buf->len - 1);
1061 }
1062
1063 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1064                                       u64 parent_transid)
1065 {
1066         struct extent_buffer *buf = NULL;
1067         int ret;
1068
1069         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1070         if (IS_ERR(buf))
1071                 return buf;
1072
1073         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1074         if (ret) {
1075                 free_extent_buffer(buf);
1076                 return ERR_PTR(ret);
1077         }
1078         return buf;
1079
1080 }
1081
1082 void clean_tree_block(struct btrfs_fs_info *fs_info,
1083                       struct extent_buffer *buf)
1084 {
1085         if (btrfs_header_generation(buf) ==
1086             fs_info->running_transaction->transid) {
1087                 btrfs_assert_tree_locked(buf);
1088
1089                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1090                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1091                                                  -buf->len,
1092                                                  fs_info->dirty_metadata_batch);
1093                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1094                         btrfs_set_lock_blocking(buf);
1095                         clear_extent_buffer_dirty(buf);
1096                 }
1097         }
1098 }
1099
1100 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1101 {
1102         struct btrfs_subvolume_writers *writers;
1103         int ret;
1104
1105         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1106         if (!writers)
1107                 return ERR_PTR(-ENOMEM);
1108
1109         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1110         if (ret < 0) {
1111                 kfree(writers);
1112                 return ERR_PTR(ret);
1113         }
1114
1115         init_waitqueue_head(&writers->wait);
1116         return writers;
1117 }
1118
1119 static void
1120 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1121 {
1122         percpu_counter_destroy(&writers->counter);
1123         kfree(writers);
1124 }
1125
1126 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1127                          u64 objectid)
1128 {
1129         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1130         root->node = NULL;
1131         root->commit_root = NULL;
1132         root->state = 0;
1133         root->orphan_cleanup_state = 0;
1134
1135         root->objectid = objectid;
1136         root->last_trans = 0;
1137         root->highest_objectid = 0;
1138         root->nr_delalloc_inodes = 0;
1139         root->nr_ordered_extents = 0;
1140         root->name = NULL;
1141         root->inode_tree = RB_ROOT;
1142         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1143         root->block_rsv = NULL;
1144         root->orphan_block_rsv = NULL;
1145
1146         INIT_LIST_HEAD(&root->dirty_list);
1147         INIT_LIST_HEAD(&root->root_list);
1148         INIT_LIST_HEAD(&root->delalloc_inodes);
1149         INIT_LIST_HEAD(&root->delalloc_root);
1150         INIT_LIST_HEAD(&root->ordered_extents);
1151         INIT_LIST_HEAD(&root->ordered_root);
1152         INIT_LIST_HEAD(&root->logged_list[0]);
1153         INIT_LIST_HEAD(&root->logged_list[1]);
1154         spin_lock_init(&root->orphan_lock);
1155         spin_lock_init(&root->inode_lock);
1156         spin_lock_init(&root->delalloc_lock);
1157         spin_lock_init(&root->ordered_extent_lock);
1158         spin_lock_init(&root->accounting_lock);
1159         spin_lock_init(&root->log_extents_lock[0]);
1160         spin_lock_init(&root->log_extents_lock[1]);
1161         mutex_init(&root->objectid_mutex);
1162         mutex_init(&root->log_mutex);
1163         mutex_init(&root->ordered_extent_mutex);
1164         mutex_init(&root->delalloc_mutex);
1165         init_waitqueue_head(&root->log_writer_wait);
1166         init_waitqueue_head(&root->log_commit_wait[0]);
1167         init_waitqueue_head(&root->log_commit_wait[1]);
1168         INIT_LIST_HEAD(&root->log_ctxs[0]);
1169         INIT_LIST_HEAD(&root->log_ctxs[1]);
1170         atomic_set(&root->log_commit[0], 0);
1171         atomic_set(&root->log_commit[1], 0);
1172         atomic_set(&root->log_writers, 0);
1173         atomic_set(&root->log_batch, 0);
1174         atomic_set(&root->orphan_inodes, 0);
1175         refcount_set(&root->refs, 1);
1176         atomic_set(&root->will_be_snapshotted, 0);
1177         atomic64_set(&root->qgroup_meta_rsv, 0);
1178         root->log_transid = 0;
1179         root->log_transid_committed = -1;
1180         root->last_log_commit = 0;
1181         if (!dummy)
1182                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1183
1184         memset(&root->root_key, 0, sizeof(root->root_key));
1185         memset(&root->root_item, 0, sizeof(root->root_item));
1186         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1187         if (!dummy)
1188                 root->defrag_trans_start = fs_info->generation;
1189         else
1190                 root->defrag_trans_start = 0;
1191         root->root_key.objectid = objectid;
1192         root->anon_dev = 0;
1193
1194         spin_lock_init(&root->root_item_lock);
1195 }
1196
1197 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1198                 gfp_t flags)
1199 {
1200         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1201         if (root)
1202                 root->fs_info = fs_info;
1203         return root;
1204 }
1205
1206 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1207 /* Should only be used by the testing infrastructure */
1208 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1209 {
1210         struct btrfs_root *root;
1211
1212         if (!fs_info)
1213                 return ERR_PTR(-EINVAL);
1214
1215         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1216         if (!root)
1217                 return ERR_PTR(-ENOMEM);
1218
1219         /* We don't use the stripesize in selftest, set it as sectorsize */
1220         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1221         root->alloc_bytenr = 0;
1222
1223         return root;
1224 }
1225 #endif
1226
1227 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1228                                      struct btrfs_fs_info *fs_info,
1229                                      u64 objectid)
1230 {
1231         struct extent_buffer *leaf;
1232         struct btrfs_root *tree_root = fs_info->tree_root;
1233         struct btrfs_root *root;
1234         struct btrfs_key key;
1235         int ret = 0;
1236         uuid_le uuid = NULL_UUID_LE;
1237
1238         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1239         if (!root)
1240                 return ERR_PTR(-ENOMEM);
1241
1242         __setup_root(root, fs_info, objectid);
1243         root->root_key.objectid = objectid;
1244         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245         root->root_key.offset = 0;
1246
1247         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1248         if (IS_ERR(leaf)) {
1249                 ret = PTR_ERR(leaf);
1250                 leaf = NULL;
1251                 goto fail;
1252         }
1253
1254         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1255         btrfs_set_header_bytenr(leaf, leaf->start);
1256         btrfs_set_header_generation(leaf, trans->transid);
1257         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1258         btrfs_set_header_owner(leaf, objectid);
1259         root->node = leaf;
1260
1261         write_extent_buffer_fsid(leaf, fs_info->fsid);
1262         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1263         btrfs_mark_buffer_dirty(leaf);
1264
1265         root->commit_root = btrfs_root_node(root);
1266         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1267
1268         root->root_item.flags = 0;
1269         root->root_item.byte_limit = 0;
1270         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1271         btrfs_set_root_generation(&root->root_item, trans->transid);
1272         btrfs_set_root_level(&root->root_item, 0);
1273         btrfs_set_root_refs(&root->root_item, 1);
1274         btrfs_set_root_used(&root->root_item, leaf->len);
1275         btrfs_set_root_last_snapshot(&root->root_item, 0);
1276         btrfs_set_root_dirid(&root->root_item, 0);
1277         if (is_fstree(objectid))
1278                 uuid_le_gen(&uuid);
1279         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1280         root->root_item.drop_level = 0;
1281
1282         key.objectid = objectid;
1283         key.type = BTRFS_ROOT_ITEM_KEY;
1284         key.offset = 0;
1285         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1286         if (ret)
1287                 goto fail;
1288
1289         btrfs_tree_unlock(leaf);
1290
1291         return root;
1292
1293 fail:
1294         if (leaf) {
1295                 btrfs_tree_unlock(leaf);
1296                 free_extent_buffer(root->commit_root);
1297                 free_extent_buffer(leaf);
1298         }
1299         kfree(root);
1300
1301         return ERR_PTR(ret);
1302 }
1303
1304 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305                                          struct btrfs_fs_info *fs_info)
1306 {
1307         struct btrfs_root *root;
1308         struct extent_buffer *leaf;
1309
1310         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1311         if (!root)
1312                 return ERR_PTR(-ENOMEM);
1313
1314         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1315
1316         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1317         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1318         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1319
1320         /*
1321          * DON'T set REF_COWS for log trees
1322          *
1323          * log trees do not get reference counted because they go away
1324          * before a real commit is actually done.  They do store pointers
1325          * to file data extents, and those reference counts still get
1326          * updated (along with back refs to the log tree).
1327          */
1328
1329         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1330                         NULL, 0, 0, 0);
1331         if (IS_ERR(leaf)) {
1332                 kfree(root);
1333                 return ERR_CAST(leaf);
1334         }
1335
1336         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1337         btrfs_set_header_bytenr(leaf, leaf->start);
1338         btrfs_set_header_generation(leaf, trans->transid);
1339         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1340         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1341         root->node = leaf;
1342
1343         write_extent_buffer_fsid(root->node, fs_info->fsid);
1344         btrfs_mark_buffer_dirty(root->node);
1345         btrfs_tree_unlock(root->node);
1346         return root;
1347 }
1348
1349 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350                              struct btrfs_fs_info *fs_info)
1351 {
1352         struct btrfs_root *log_root;
1353
1354         log_root = alloc_log_tree(trans, fs_info);
1355         if (IS_ERR(log_root))
1356                 return PTR_ERR(log_root);
1357         WARN_ON(fs_info->log_root_tree);
1358         fs_info->log_root_tree = log_root;
1359         return 0;
1360 }
1361
1362 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363                        struct btrfs_root *root)
1364 {
1365         struct btrfs_fs_info *fs_info = root->fs_info;
1366         struct btrfs_root *log_root;
1367         struct btrfs_inode_item *inode_item;
1368
1369         log_root = alloc_log_tree(trans, fs_info);
1370         if (IS_ERR(log_root))
1371                 return PTR_ERR(log_root);
1372
1373         log_root->last_trans = trans->transid;
1374         log_root->root_key.offset = root->root_key.objectid;
1375
1376         inode_item = &log_root->root_item.inode;
1377         btrfs_set_stack_inode_generation(inode_item, 1);
1378         btrfs_set_stack_inode_size(inode_item, 3);
1379         btrfs_set_stack_inode_nlink(inode_item, 1);
1380         btrfs_set_stack_inode_nbytes(inode_item,
1381                                      fs_info->nodesize);
1382         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384         btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386         WARN_ON(root->log_root);
1387         root->log_root = log_root;
1388         root->log_transid = 0;
1389         root->log_transid_committed = -1;
1390         root->last_log_commit = 0;
1391         return 0;
1392 }
1393
1394 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395                                                struct btrfs_key *key)
1396 {
1397         struct btrfs_root *root;
1398         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399         struct btrfs_path *path;
1400         u64 generation;
1401         int ret;
1402
1403         path = btrfs_alloc_path();
1404         if (!path)
1405                 return ERR_PTR(-ENOMEM);
1406
1407         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1408         if (!root) {
1409                 ret = -ENOMEM;
1410                 goto alloc_fail;
1411         }
1412
1413         __setup_root(root, fs_info, key->objectid);
1414
1415         ret = btrfs_find_root(tree_root, key, path,
1416                               &root->root_item, &root->root_key);
1417         if (ret) {
1418                 if (ret > 0)
1419                         ret = -ENOENT;
1420                 goto find_fail;
1421         }
1422
1423         generation = btrfs_root_generation(&root->root_item);
1424         root->node = read_tree_block(fs_info,
1425                                      btrfs_root_bytenr(&root->root_item),
1426                                      generation);
1427         if (IS_ERR(root->node)) {
1428                 ret = PTR_ERR(root->node);
1429                 goto find_fail;
1430         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431                 ret = -EIO;
1432                 free_extent_buffer(root->node);
1433                 goto find_fail;
1434         }
1435         root->commit_root = btrfs_root_node(root);
1436 out:
1437         btrfs_free_path(path);
1438         return root;
1439
1440 find_fail:
1441         kfree(root);
1442 alloc_fail:
1443         root = ERR_PTR(ret);
1444         goto out;
1445 }
1446
1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448                                       struct btrfs_key *location)
1449 {
1450         struct btrfs_root *root;
1451
1452         root = btrfs_read_tree_root(tree_root, location);
1453         if (IS_ERR(root))
1454                 return root;
1455
1456         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1457                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1458                 btrfs_check_and_init_root_item(&root->root_item);
1459         }
1460
1461         return root;
1462 }
1463
1464 int btrfs_init_fs_root(struct btrfs_root *root)
1465 {
1466         int ret;
1467         struct btrfs_subvolume_writers *writers;
1468
1469         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471                                         GFP_NOFS);
1472         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473                 ret = -ENOMEM;
1474                 goto fail;
1475         }
1476
1477         writers = btrfs_alloc_subvolume_writers();
1478         if (IS_ERR(writers)) {
1479                 ret = PTR_ERR(writers);
1480                 goto fail;
1481         }
1482         root->subv_writers = writers;
1483
1484         btrfs_init_free_ino_ctl(root);
1485         spin_lock_init(&root->ino_cache_lock);
1486         init_waitqueue_head(&root->ino_cache_wait);
1487
1488         ret = get_anon_bdev(&root->anon_dev);
1489         if (ret)
1490                 goto fail;
1491
1492         mutex_lock(&root->objectid_mutex);
1493         ret = btrfs_find_highest_objectid(root,
1494                                         &root->highest_objectid);
1495         if (ret) {
1496                 mutex_unlock(&root->objectid_mutex);
1497                 goto fail;
1498         }
1499
1500         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501
1502         mutex_unlock(&root->objectid_mutex);
1503
1504         return 0;
1505 fail:
1506         /* the caller is responsible to call free_fs_root */
1507         return ret;
1508 }
1509
1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511                                         u64 root_id)
1512 {
1513         struct btrfs_root *root;
1514
1515         spin_lock(&fs_info->fs_roots_radix_lock);
1516         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517                                  (unsigned long)root_id);
1518         spin_unlock(&fs_info->fs_roots_radix_lock);
1519         return root;
1520 }
1521
1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523                          struct btrfs_root *root)
1524 {
1525         int ret;
1526
1527         ret = radix_tree_preload(GFP_NOFS);
1528         if (ret)
1529                 return ret;
1530
1531         spin_lock(&fs_info->fs_roots_radix_lock);
1532         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533                                 (unsigned long)root->root_key.objectid,
1534                                 root);
1535         if (ret == 0)
1536                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1537         spin_unlock(&fs_info->fs_roots_radix_lock);
1538         radix_tree_preload_end();
1539
1540         return ret;
1541 }
1542
1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544                                      struct btrfs_key *location,
1545                                      bool check_ref)
1546 {
1547         struct btrfs_root *root;
1548         struct btrfs_path *path;
1549         struct btrfs_key key;
1550         int ret;
1551
1552         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553                 return fs_info->tree_root;
1554         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555                 return fs_info->extent_root;
1556         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557                 return fs_info->chunk_root;
1558         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559                 return fs_info->dev_root;
1560         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561                 return fs_info->csum_root;
1562         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563                 return fs_info->quota_root ? fs_info->quota_root :
1564                                              ERR_PTR(-ENOENT);
1565         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566                 return fs_info->uuid_root ? fs_info->uuid_root :
1567                                             ERR_PTR(-ENOENT);
1568         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569                 return fs_info->free_space_root ? fs_info->free_space_root :
1570                                                   ERR_PTR(-ENOENT);
1571 again:
1572         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1573         if (root) {
1574                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1575                         return ERR_PTR(-ENOENT);
1576                 return root;
1577         }
1578
1579         root = btrfs_read_fs_root(fs_info->tree_root, location);
1580         if (IS_ERR(root))
1581                 return root;
1582
1583         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1584                 ret = -ENOENT;
1585                 goto fail;
1586         }
1587
1588         ret = btrfs_init_fs_root(root);
1589         if (ret)
1590                 goto fail;
1591
1592         path = btrfs_alloc_path();
1593         if (!path) {
1594                 ret = -ENOMEM;
1595                 goto fail;
1596         }
1597         key.objectid = BTRFS_ORPHAN_OBJECTID;
1598         key.type = BTRFS_ORPHAN_ITEM_KEY;
1599         key.offset = location->objectid;
1600
1601         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1602         btrfs_free_path(path);
1603         if (ret < 0)
1604                 goto fail;
1605         if (ret == 0)
1606                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1607
1608         ret = btrfs_insert_fs_root(fs_info, root);
1609         if (ret) {
1610                 if (ret == -EEXIST) {
1611                         free_fs_root(root);
1612                         goto again;
1613                 }
1614                 goto fail;
1615         }
1616         return root;
1617 fail:
1618         free_fs_root(root);
1619         return ERR_PTR(ret);
1620 }
1621
1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623 {
1624         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625         int ret = 0;
1626         struct btrfs_device *device;
1627         struct backing_dev_info *bdi;
1628
1629         rcu_read_lock();
1630         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1631                 if (!device->bdev)
1632                         continue;
1633                 bdi = device->bdev->bd_bdi;
1634                 if (bdi_congested(bdi, bdi_bits)) {
1635                         ret = 1;
1636                         break;
1637                 }
1638         }
1639         rcu_read_unlock();
1640         return ret;
1641 }
1642
1643 /*
1644  * called by the kthread helper functions to finally call the bio end_io
1645  * functions.  This is where read checksum verification actually happens
1646  */
1647 static void end_workqueue_fn(struct btrfs_work *work)
1648 {
1649         struct bio *bio;
1650         struct btrfs_end_io_wq *end_io_wq;
1651
1652         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1653         bio = end_io_wq->bio;
1654
1655         bio->bi_status = end_io_wq->status;
1656         bio->bi_private = end_io_wq->private;
1657         bio->bi_end_io = end_io_wq->end_io;
1658         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1659         bio_endio(bio);
1660 }
1661
1662 static int cleaner_kthread(void *arg)
1663 {
1664         struct btrfs_root *root = arg;
1665         struct btrfs_fs_info *fs_info = root->fs_info;
1666         int again;
1667         struct btrfs_trans_handle *trans;
1668
1669         do {
1670                 again = 0;
1671
1672                 /* Make the cleaner go to sleep early. */
1673                 if (btrfs_need_cleaner_sleep(fs_info))
1674                         goto sleep;
1675
1676                 /*
1677                  * Do not do anything if we might cause open_ctree() to block
1678                  * before we have finished mounting the filesystem.
1679                  */
1680                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1681                         goto sleep;
1682
1683                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1684                         goto sleep;
1685
1686                 /*
1687                  * Avoid the problem that we change the status of the fs
1688                  * during the above check and trylock.
1689                  */
1690                 if (btrfs_need_cleaner_sleep(fs_info)) {
1691                         mutex_unlock(&fs_info->cleaner_mutex);
1692                         goto sleep;
1693                 }
1694
1695                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1696                 btrfs_run_delayed_iputs(fs_info);
1697                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1698
1699                 again = btrfs_clean_one_deleted_snapshot(root);
1700                 mutex_unlock(&fs_info->cleaner_mutex);
1701
1702                 /*
1703                  * The defragger has dealt with the R/O remount and umount,
1704                  * needn't do anything special here.
1705                  */
1706                 btrfs_run_defrag_inodes(fs_info);
1707
1708                 /*
1709                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1710                  * with relocation (btrfs_relocate_chunk) and relocation
1711                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1712                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1713                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1714                  * unused block groups.
1715                  */
1716                 btrfs_delete_unused_bgs(fs_info);
1717 sleep:
1718                 if (!again) {
1719                         set_current_state(TASK_INTERRUPTIBLE);
1720                         if (!kthread_should_stop())
1721                                 schedule();
1722                         __set_current_state(TASK_RUNNING);
1723                 }
1724         } while (!kthread_should_stop());
1725
1726         /*
1727          * Transaction kthread is stopped before us and wakes us up.
1728          * However we might have started a new transaction and COWed some
1729          * tree blocks when deleting unused block groups for example. So
1730          * make sure we commit the transaction we started to have a clean
1731          * shutdown when evicting the btree inode - if it has dirty pages
1732          * when we do the final iput() on it, eviction will trigger a
1733          * writeback for it which will fail with null pointer dereferences
1734          * since work queues and other resources were already released and
1735          * destroyed by the time the iput/eviction/writeback is made.
1736          */
1737         trans = btrfs_attach_transaction(root);
1738         if (IS_ERR(trans)) {
1739                 if (PTR_ERR(trans) != -ENOENT)
1740                         btrfs_err(fs_info,
1741                                   "cleaner transaction attach returned %ld",
1742                                   PTR_ERR(trans));
1743         } else {
1744                 int ret;
1745
1746                 ret = btrfs_commit_transaction(trans);
1747                 if (ret)
1748                         btrfs_err(fs_info,
1749                                   "cleaner open transaction commit returned %d",
1750                                   ret);
1751         }
1752
1753         return 0;
1754 }
1755
1756 static int transaction_kthread(void *arg)
1757 {
1758         struct btrfs_root *root = arg;
1759         struct btrfs_fs_info *fs_info = root->fs_info;
1760         struct btrfs_trans_handle *trans;
1761         struct btrfs_transaction *cur;
1762         u64 transid;
1763         unsigned long now;
1764         unsigned long delay;
1765         bool cannot_commit;
1766
1767         do {
1768                 cannot_commit = false;
1769                 delay = HZ * fs_info->commit_interval;
1770                 mutex_lock(&fs_info->transaction_kthread_mutex);
1771
1772                 spin_lock(&fs_info->trans_lock);
1773                 cur = fs_info->running_transaction;
1774                 if (!cur) {
1775                         spin_unlock(&fs_info->trans_lock);
1776                         goto sleep;
1777                 }
1778
1779                 now = get_seconds();
1780                 if (cur->state < TRANS_STATE_BLOCKED &&
1781                     (now < cur->start_time ||
1782                      now - cur->start_time < fs_info->commit_interval)) {
1783                         spin_unlock(&fs_info->trans_lock);
1784                         delay = HZ * 5;
1785                         goto sleep;
1786                 }
1787                 transid = cur->transid;
1788                 spin_unlock(&fs_info->trans_lock);
1789
1790                 /* If the file system is aborted, this will always fail. */
1791                 trans = btrfs_attach_transaction(root);
1792                 if (IS_ERR(trans)) {
1793                         if (PTR_ERR(trans) != -ENOENT)
1794                                 cannot_commit = true;
1795                         goto sleep;
1796                 }
1797                 if (transid == trans->transid) {
1798                         btrfs_commit_transaction(trans);
1799                 } else {
1800                         btrfs_end_transaction(trans);
1801                 }
1802 sleep:
1803                 wake_up_process(fs_info->cleaner_kthread);
1804                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1805
1806                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1807                                       &fs_info->fs_state)))
1808                         btrfs_cleanup_transaction(fs_info);
1809                 set_current_state(TASK_INTERRUPTIBLE);
1810                 if (!kthread_should_stop() &&
1811                                 (!btrfs_transaction_blocked(fs_info) ||
1812                                  cannot_commit))
1813                         schedule_timeout(delay);
1814                 __set_current_state(TASK_RUNNING);
1815         } while (!kthread_should_stop());
1816         return 0;
1817 }
1818
1819 /*
1820  * this will find the highest generation in the array of
1821  * root backups.  The index of the highest array is returned,
1822  * or -1 if we can't find anything.
1823  *
1824  * We check to make sure the array is valid by comparing the
1825  * generation of the latest  root in the array with the generation
1826  * in the super block.  If they don't match we pitch it.
1827  */
1828 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1829 {
1830         u64 cur;
1831         int newest_index = -1;
1832         struct btrfs_root_backup *root_backup;
1833         int i;
1834
1835         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1836                 root_backup = info->super_copy->super_roots + i;
1837                 cur = btrfs_backup_tree_root_gen(root_backup);
1838                 if (cur == newest_gen)
1839                         newest_index = i;
1840         }
1841
1842         /* check to see if we actually wrapped around */
1843         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1844                 root_backup = info->super_copy->super_roots;
1845                 cur = btrfs_backup_tree_root_gen(root_backup);
1846                 if (cur == newest_gen)
1847                         newest_index = 0;
1848         }
1849         return newest_index;
1850 }
1851
1852
1853 /*
1854  * find the oldest backup so we know where to store new entries
1855  * in the backup array.  This will set the backup_root_index
1856  * field in the fs_info struct
1857  */
1858 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1859                                      u64 newest_gen)
1860 {
1861         int newest_index = -1;
1862
1863         newest_index = find_newest_super_backup(info, newest_gen);
1864         /* if there was garbage in there, just move along */
1865         if (newest_index == -1) {
1866                 info->backup_root_index = 0;
1867         } else {
1868                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869         }
1870 }
1871
1872 /*
1873  * copy all the root pointers into the super backup array.
1874  * this will bump the backup pointer by one when it is
1875  * done
1876  */
1877 static void backup_super_roots(struct btrfs_fs_info *info)
1878 {
1879         int next_backup;
1880         struct btrfs_root_backup *root_backup;
1881         int last_backup;
1882
1883         next_backup = info->backup_root_index;
1884         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1885                 BTRFS_NUM_BACKUP_ROOTS;
1886
1887         /*
1888          * just overwrite the last backup if we're at the same generation
1889          * this happens only at umount
1890          */
1891         root_backup = info->super_for_commit->super_roots + last_backup;
1892         if (btrfs_backup_tree_root_gen(root_backup) ==
1893             btrfs_header_generation(info->tree_root->node))
1894                 next_backup = last_backup;
1895
1896         root_backup = info->super_for_commit->super_roots + next_backup;
1897
1898         /*
1899          * make sure all of our padding and empty slots get zero filled
1900          * regardless of which ones we use today
1901          */
1902         memset(root_backup, 0, sizeof(*root_backup));
1903
1904         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905
1906         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1907         btrfs_set_backup_tree_root_gen(root_backup,
1908                                btrfs_header_generation(info->tree_root->node));
1909
1910         btrfs_set_backup_tree_root_level(root_backup,
1911                                btrfs_header_level(info->tree_root->node));
1912
1913         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1914         btrfs_set_backup_chunk_root_gen(root_backup,
1915                                btrfs_header_generation(info->chunk_root->node));
1916         btrfs_set_backup_chunk_root_level(root_backup,
1917                                btrfs_header_level(info->chunk_root->node));
1918
1919         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1920         btrfs_set_backup_extent_root_gen(root_backup,
1921                                btrfs_header_generation(info->extent_root->node));
1922         btrfs_set_backup_extent_root_level(root_backup,
1923                                btrfs_header_level(info->extent_root->node));
1924
1925         /*
1926          * we might commit during log recovery, which happens before we set
1927          * the fs_root.  Make sure it is valid before we fill it in.
1928          */
1929         if (info->fs_root && info->fs_root->node) {
1930                 btrfs_set_backup_fs_root(root_backup,
1931                                          info->fs_root->node->start);
1932                 btrfs_set_backup_fs_root_gen(root_backup,
1933                                btrfs_header_generation(info->fs_root->node));
1934                 btrfs_set_backup_fs_root_level(root_backup,
1935                                btrfs_header_level(info->fs_root->node));
1936         }
1937
1938         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1939         btrfs_set_backup_dev_root_gen(root_backup,
1940                                btrfs_header_generation(info->dev_root->node));
1941         btrfs_set_backup_dev_root_level(root_backup,
1942                                        btrfs_header_level(info->dev_root->node));
1943
1944         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1945         btrfs_set_backup_csum_root_gen(root_backup,
1946                                btrfs_header_generation(info->csum_root->node));
1947         btrfs_set_backup_csum_root_level(root_backup,
1948                                btrfs_header_level(info->csum_root->node));
1949
1950         btrfs_set_backup_total_bytes(root_backup,
1951                              btrfs_super_total_bytes(info->super_copy));
1952         btrfs_set_backup_bytes_used(root_backup,
1953                              btrfs_super_bytes_used(info->super_copy));
1954         btrfs_set_backup_num_devices(root_backup,
1955                              btrfs_super_num_devices(info->super_copy));
1956
1957         /*
1958          * if we don't copy this out to the super_copy, it won't get remembered
1959          * for the next commit
1960          */
1961         memcpy(&info->super_copy->super_roots,
1962                &info->super_for_commit->super_roots,
1963                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1964 }
1965
1966 /*
1967  * this copies info out of the root backup array and back into
1968  * the in-memory super block.  It is meant to help iterate through
1969  * the array, so you send it the number of backups you've already
1970  * tried and the last backup index you used.
1971  *
1972  * this returns -1 when it has tried all the backups
1973  */
1974 static noinline int next_root_backup(struct btrfs_fs_info *info,
1975                                      struct btrfs_super_block *super,
1976                                      int *num_backups_tried, int *backup_index)
1977 {
1978         struct btrfs_root_backup *root_backup;
1979         int newest = *backup_index;
1980
1981         if (*num_backups_tried == 0) {
1982                 u64 gen = btrfs_super_generation(super);
1983
1984                 newest = find_newest_super_backup(info, gen);
1985                 if (newest == -1)
1986                         return -1;
1987
1988                 *backup_index = newest;
1989                 *num_backups_tried = 1;
1990         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1991                 /* we've tried all the backups, all done */
1992                 return -1;
1993         } else {
1994                 /* jump to the next oldest backup */
1995                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1996                         BTRFS_NUM_BACKUP_ROOTS;
1997                 *backup_index = newest;
1998                 *num_backups_tried += 1;
1999         }
2000         root_backup = super->super_roots + newest;
2001
2002         btrfs_set_super_generation(super,
2003                                    btrfs_backup_tree_root_gen(root_backup));
2004         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2005         btrfs_set_super_root_level(super,
2006                                    btrfs_backup_tree_root_level(root_backup));
2007         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2008
2009         /*
2010          * fixme: the total bytes and num_devices need to match or we should
2011          * need a fsck
2012          */
2013         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2014         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2015         return 0;
2016 }
2017
2018 /* helper to cleanup workers */
2019 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2020 {
2021         btrfs_destroy_workqueue(fs_info->fixup_workers);
2022         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2023         btrfs_destroy_workqueue(fs_info->workers);
2024         btrfs_destroy_workqueue(fs_info->endio_workers);
2025         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2026         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2027         btrfs_destroy_workqueue(fs_info->rmw_workers);
2028         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2029         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2030         btrfs_destroy_workqueue(fs_info->submit_workers);
2031         btrfs_destroy_workqueue(fs_info->delayed_workers);
2032         btrfs_destroy_workqueue(fs_info->caching_workers);
2033         btrfs_destroy_workqueue(fs_info->readahead_workers);
2034         btrfs_destroy_workqueue(fs_info->flush_workers);
2035         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2036         btrfs_destroy_workqueue(fs_info->extent_workers);
2037         /*
2038          * Now that all other work queues are destroyed, we can safely destroy
2039          * the queues used for metadata I/O, since tasks from those other work
2040          * queues can do metadata I/O operations.
2041          */
2042         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2043         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2044 }
2045
2046 static void free_root_extent_buffers(struct btrfs_root *root)
2047 {
2048         if (root) {
2049                 free_extent_buffer(root->node);
2050                 free_extent_buffer(root->commit_root);
2051                 root->node = NULL;
2052                 root->commit_root = NULL;
2053         }
2054 }
2055
2056 /* helper to cleanup tree roots */
2057 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2058 {
2059         free_root_extent_buffers(info->tree_root);
2060
2061         free_root_extent_buffers(info->dev_root);
2062         free_root_extent_buffers(info->extent_root);
2063         free_root_extent_buffers(info->csum_root);
2064         free_root_extent_buffers(info->quota_root);
2065         free_root_extent_buffers(info->uuid_root);
2066         if (chunk_root)
2067                 free_root_extent_buffers(info->chunk_root);
2068         free_root_extent_buffers(info->free_space_root);
2069 }
2070
2071 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2072 {
2073         int ret;
2074         struct btrfs_root *gang[8];
2075         int i;
2076
2077         while (!list_empty(&fs_info->dead_roots)) {
2078                 gang[0] = list_entry(fs_info->dead_roots.next,
2079                                      struct btrfs_root, root_list);
2080                 list_del(&gang[0]->root_list);
2081
2082                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2083                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2084                 } else {
2085                         free_extent_buffer(gang[0]->node);
2086                         free_extent_buffer(gang[0]->commit_root);
2087                         btrfs_put_fs_root(gang[0]);
2088                 }
2089         }
2090
2091         while (1) {
2092                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093                                              (void **)gang, 0,
2094                                              ARRAY_SIZE(gang));
2095                 if (!ret)
2096                         break;
2097                 for (i = 0; i < ret; i++)
2098                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2099         }
2100
2101         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2102                 btrfs_free_log_root_tree(NULL, fs_info);
2103                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2104         }
2105 }
2106
2107 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2108 {
2109         mutex_init(&fs_info->scrub_lock);
2110         atomic_set(&fs_info->scrubs_running, 0);
2111         atomic_set(&fs_info->scrub_pause_req, 0);
2112         atomic_set(&fs_info->scrubs_paused, 0);
2113         atomic_set(&fs_info->scrub_cancel_req, 0);
2114         init_waitqueue_head(&fs_info->scrub_pause_wait);
2115         fs_info->scrub_workers_refcnt = 0;
2116 }
2117
2118 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2119 {
2120         spin_lock_init(&fs_info->balance_lock);
2121         mutex_init(&fs_info->balance_mutex);
2122         atomic_set(&fs_info->balance_running, 0);
2123         atomic_set(&fs_info->balance_pause_req, 0);
2124         atomic_set(&fs_info->balance_cancel_req, 0);
2125         fs_info->balance_ctl = NULL;
2126         init_waitqueue_head(&fs_info->balance_wait_q);
2127 }
2128
2129 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2130 {
2131         struct inode *inode = fs_info->btree_inode;
2132
2133         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134         set_nlink(inode, 1);
2135         /*
2136          * we set the i_size on the btree inode to the max possible int.
2137          * the real end of the address space is determined by all of
2138          * the devices in the system
2139          */
2140         inode->i_size = OFFSET_MAX;
2141         inode->i_mapping->a_ops = &btree_aops;
2142
2143         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2144         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2145         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2146         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2147
2148         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2149
2150         BTRFS_I(inode)->root = fs_info->tree_root;
2151         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2152         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2153         btrfs_insert_inode_hash(inode);
2154 }
2155
2156 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2157 {
2158         fs_info->dev_replace.lock_owner = 0;
2159         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2160         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2161         rwlock_init(&fs_info->dev_replace.lock);
2162         atomic_set(&fs_info->dev_replace.read_locks, 0);
2163         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2164         init_waitqueue_head(&fs_info->replace_wait);
2165         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2166 }
2167
2168 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2169 {
2170         spin_lock_init(&fs_info->qgroup_lock);
2171         mutex_init(&fs_info->qgroup_ioctl_lock);
2172         fs_info->qgroup_tree = RB_ROOT;
2173         fs_info->qgroup_op_tree = RB_ROOT;
2174         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2175         fs_info->qgroup_seq = 1;
2176         fs_info->qgroup_ulist = NULL;
2177         fs_info->qgroup_rescan_running = false;
2178         mutex_init(&fs_info->qgroup_rescan_lock);
2179 }
2180
2181 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2182                 struct btrfs_fs_devices *fs_devices)
2183 {
2184         int max_active = fs_info->thread_pool_size;
2185         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2186
2187         fs_info->workers =
2188                 btrfs_alloc_workqueue(fs_info, "worker",
2189                                       flags | WQ_HIGHPRI, max_active, 16);
2190
2191         fs_info->delalloc_workers =
2192                 btrfs_alloc_workqueue(fs_info, "delalloc",
2193                                       flags, max_active, 2);
2194
2195         fs_info->flush_workers =
2196                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2197                                       flags, max_active, 0);
2198
2199         fs_info->caching_workers =
2200                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2201
2202         /*
2203          * a higher idle thresh on the submit workers makes it much more
2204          * likely that bios will be send down in a sane order to the
2205          * devices
2206          */
2207         fs_info->submit_workers =
2208                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2209                                       min_t(u64, fs_devices->num_devices,
2210                                             max_active), 64);
2211
2212         fs_info->fixup_workers =
2213                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2214
2215         /*
2216          * endios are largely parallel and should have a very
2217          * low idle thresh
2218          */
2219         fs_info->endio_workers =
2220                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2221         fs_info->endio_meta_workers =
2222                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2223                                       max_active, 4);
2224         fs_info->endio_meta_write_workers =
2225                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2226                                       max_active, 2);
2227         fs_info->endio_raid56_workers =
2228                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2229                                       max_active, 4);
2230         fs_info->endio_repair_workers =
2231                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2232         fs_info->rmw_workers =
2233                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2234         fs_info->endio_write_workers =
2235                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2236                                       max_active, 2);
2237         fs_info->endio_freespace_worker =
2238                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2239                                       max_active, 0);
2240         fs_info->delayed_workers =
2241                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2242                                       max_active, 0);
2243         fs_info->readahead_workers =
2244                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2245                                       max_active, 2);
2246         fs_info->qgroup_rescan_workers =
2247                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2248         fs_info->extent_workers =
2249                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2250                                       min_t(u64, fs_devices->num_devices,
2251                                             max_active), 8);
2252
2253         if (!(fs_info->workers && fs_info->delalloc_workers &&
2254               fs_info->submit_workers && fs_info->flush_workers &&
2255               fs_info->endio_workers && fs_info->endio_meta_workers &&
2256               fs_info->endio_meta_write_workers &&
2257               fs_info->endio_repair_workers &&
2258               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2259               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2260               fs_info->caching_workers && fs_info->readahead_workers &&
2261               fs_info->fixup_workers && fs_info->delayed_workers &&
2262               fs_info->extent_workers &&
2263               fs_info->qgroup_rescan_workers)) {
2264                 return -ENOMEM;
2265         }
2266
2267         return 0;
2268 }
2269
2270 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2271                             struct btrfs_fs_devices *fs_devices)
2272 {
2273         int ret;
2274         struct btrfs_root *log_tree_root;
2275         struct btrfs_super_block *disk_super = fs_info->super_copy;
2276         u64 bytenr = btrfs_super_log_root(disk_super);
2277
2278         if (fs_devices->rw_devices == 0) {
2279                 btrfs_warn(fs_info, "log replay required on RO media");
2280                 return -EIO;
2281         }
2282
2283         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2284         if (!log_tree_root)
2285                 return -ENOMEM;
2286
2287         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2288
2289         log_tree_root->node = read_tree_block(fs_info, bytenr,
2290                                               fs_info->generation + 1);
2291         if (IS_ERR(log_tree_root->node)) {
2292                 btrfs_warn(fs_info, "failed to read log tree");
2293                 ret = PTR_ERR(log_tree_root->node);
2294                 kfree(log_tree_root);
2295                 return ret;
2296         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2297                 btrfs_err(fs_info, "failed to read log tree");
2298                 free_extent_buffer(log_tree_root->node);
2299                 kfree(log_tree_root);
2300                 return -EIO;
2301         }
2302         /* returns with log_tree_root freed on success */
2303         ret = btrfs_recover_log_trees(log_tree_root);
2304         if (ret) {
2305                 btrfs_handle_fs_error(fs_info, ret,
2306                                       "Failed to recover log tree");
2307                 free_extent_buffer(log_tree_root->node);
2308                 kfree(log_tree_root);
2309                 return ret;
2310         }
2311
2312         if (sb_rdonly(fs_info->sb)) {
2313                 ret = btrfs_commit_super(fs_info);
2314                 if (ret)
2315                         return ret;
2316         }
2317
2318         return 0;
2319 }
2320
2321 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2322 {
2323         struct btrfs_root *tree_root = fs_info->tree_root;
2324         struct btrfs_root *root;
2325         struct btrfs_key location;
2326         int ret;
2327
2328         BUG_ON(!fs_info->tree_root);
2329
2330         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2331         location.type = BTRFS_ROOT_ITEM_KEY;
2332         location.offset = 0;
2333
2334         root = btrfs_read_tree_root(tree_root, &location);
2335         if (IS_ERR(root))
2336                 return PTR_ERR(root);
2337         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338         fs_info->extent_root = root;
2339
2340         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2341         root = btrfs_read_tree_root(tree_root, &location);
2342         if (IS_ERR(root))
2343                 return PTR_ERR(root);
2344         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345         fs_info->dev_root = root;
2346         btrfs_init_devices_late(fs_info);
2347
2348         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2349         root = btrfs_read_tree_root(tree_root, &location);
2350         if (IS_ERR(root))
2351                 return PTR_ERR(root);
2352         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353         fs_info->csum_root = root;
2354
2355         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2356         root = btrfs_read_tree_root(tree_root, &location);
2357         if (!IS_ERR(root)) {
2358                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2360                 fs_info->quota_root = root;
2361         }
2362
2363         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2364         root = btrfs_read_tree_root(tree_root, &location);
2365         if (IS_ERR(root)) {
2366                 ret = PTR_ERR(root);
2367                 if (ret != -ENOENT)
2368                         return ret;
2369         } else {
2370                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371                 fs_info->uuid_root = root;
2372         }
2373
2374         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376                 root = btrfs_read_tree_root(tree_root, &location);
2377                 if (IS_ERR(root))
2378                         return PTR_ERR(root);
2379                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380                 fs_info->free_space_root = root;
2381         }
2382
2383         return 0;
2384 }
2385
2386 int open_ctree(struct super_block *sb,
2387                struct btrfs_fs_devices *fs_devices,
2388                char *options)
2389 {
2390         u32 sectorsize;
2391         u32 nodesize;
2392         u32 stripesize;
2393         u64 generation;
2394         u64 features;
2395         struct btrfs_key location;
2396         struct buffer_head *bh;
2397         struct btrfs_super_block *disk_super;
2398         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2399         struct btrfs_root *tree_root;
2400         struct btrfs_root *chunk_root;
2401         int ret;
2402         int err = -EINVAL;
2403         int num_backups_tried = 0;
2404         int backup_index = 0;
2405         int max_active;
2406         int clear_free_space_tree = 0;
2407
2408         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2409         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2410         if (!tree_root || !chunk_root) {
2411                 err = -ENOMEM;
2412                 goto fail;
2413         }
2414
2415         ret = init_srcu_struct(&fs_info->subvol_srcu);
2416         if (ret) {
2417                 err = ret;
2418                 goto fail;
2419         }
2420
2421         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2422         if (ret) {
2423                 err = ret;
2424                 goto fail_srcu;
2425         }
2426         fs_info->dirty_metadata_batch = PAGE_SIZE *
2427                                         (1 + ilog2(nr_cpu_ids));
2428
2429         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2430         if (ret) {
2431                 err = ret;
2432                 goto fail_dirty_metadata_bytes;
2433         }
2434
2435         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2436         if (ret) {
2437                 err = ret;
2438                 goto fail_delalloc_bytes;
2439         }
2440
2441         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2442         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2443         INIT_LIST_HEAD(&fs_info->trans_list);
2444         INIT_LIST_HEAD(&fs_info->dead_roots);
2445         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2446         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2447         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2448         spin_lock_init(&fs_info->delalloc_root_lock);
2449         spin_lock_init(&fs_info->trans_lock);
2450         spin_lock_init(&fs_info->fs_roots_radix_lock);
2451         spin_lock_init(&fs_info->delayed_iput_lock);
2452         spin_lock_init(&fs_info->defrag_inodes_lock);
2453         spin_lock_init(&fs_info->tree_mod_seq_lock);
2454         spin_lock_init(&fs_info->super_lock);
2455         spin_lock_init(&fs_info->qgroup_op_lock);
2456         spin_lock_init(&fs_info->buffer_lock);
2457         spin_lock_init(&fs_info->unused_bgs_lock);
2458         rwlock_init(&fs_info->tree_mod_log_lock);
2459         mutex_init(&fs_info->unused_bg_unpin_mutex);
2460         mutex_init(&fs_info->delete_unused_bgs_mutex);
2461         mutex_init(&fs_info->reloc_mutex);
2462         mutex_init(&fs_info->delalloc_root_mutex);
2463         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2464         seqlock_init(&fs_info->profiles_lock);
2465
2466         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2467         INIT_LIST_HEAD(&fs_info->space_info);
2468         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2469         INIT_LIST_HEAD(&fs_info->unused_bgs);
2470         btrfs_mapping_init(&fs_info->mapping_tree);
2471         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2472                              BTRFS_BLOCK_RSV_GLOBAL);
2473         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2474         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2475         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2476         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2477                              BTRFS_BLOCK_RSV_DELOPS);
2478         atomic_set(&fs_info->async_delalloc_pages, 0);
2479         atomic_set(&fs_info->defrag_running, 0);
2480         atomic_set(&fs_info->qgroup_op_seq, 0);
2481         atomic_set(&fs_info->reada_works_cnt, 0);
2482         atomic64_set(&fs_info->tree_mod_seq, 0);
2483         fs_info->sb = sb;
2484         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2485         fs_info->metadata_ratio = 0;
2486         fs_info->defrag_inodes = RB_ROOT;
2487         atomic64_set(&fs_info->free_chunk_space, 0);
2488         fs_info->tree_mod_log = RB_ROOT;
2489         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2490         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2491         /* readahead state */
2492         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2493         spin_lock_init(&fs_info->reada_lock);
2494         btrfs_init_ref_verify(fs_info);
2495
2496         fs_info->thread_pool_size = min_t(unsigned long,
2497                                           num_online_cpus() + 2, 8);
2498
2499         INIT_LIST_HEAD(&fs_info->ordered_roots);
2500         spin_lock_init(&fs_info->ordered_root_lock);
2501
2502         fs_info->btree_inode = new_inode(sb);
2503         if (!fs_info->btree_inode) {
2504                 err = -ENOMEM;
2505                 goto fail_bio_counter;
2506         }
2507         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2508
2509         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2510                                         GFP_KERNEL);
2511         if (!fs_info->delayed_root) {
2512                 err = -ENOMEM;
2513                 goto fail_iput;
2514         }
2515         btrfs_init_delayed_root(fs_info->delayed_root);
2516
2517         btrfs_init_scrub(fs_info);
2518 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2519         fs_info->check_integrity_print_mask = 0;
2520 #endif
2521         btrfs_init_balance(fs_info);
2522         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2523
2524         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2525         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2526
2527         btrfs_init_btree_inode(fs_info);
2528
2529         spin_lock_init(&fs_info->block_group_cache_lock);
2530         fs_info->block_group_cache_tree = RB_ROOT;
2531         fs_info->first_logical_byte = (u64)-1;
2532
2533         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2534         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2535         fs_info->pinned_extents = &fs_info->freed_extents[0];
2536         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2537
2538         mutex_init(&fs_info->ordered_operations_mutex);
2539         mutex_init(&fs_info->tree_log_mutex);
2540         mutex_init(&fs_info->chunk_mutex);
2541         mutex_init(&fs_info->transaction_kthread_mutex);
2542         mutex_init(&fs_info->cleaner_mutex);
2543         mutex_init(&fs_info->volume_mutex);
2544         mutex_init(&fs_info->ro_block_group_mutex);
2545         init_rwsem(&fs_info->commit_root_sem);
2546         init_rwsem(&fs_info->cleanup_work_sem);
2547         init_rwsem(&fs_info->subvol_sem);
2548         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2549
2550         btrfs_init_dev_replace_locks(fs_info);
2551         btrfs_init_qgroup(fs_info);
2552
2553         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2554         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2555
2556         init_waitqueue_head(&fs_info->transaction_throttle);
2557         init_waitqueue_head(&fs_info->transaction_wait);
2558         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2559         init_waitqueue_head(&fs_info->async_submit_wait);
2560
2561         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2562
2563         /* Usable values until the real ones are cached from the superblock */
2564         fs_info->nodesize = 4096;
2565         fs_info->sectorsize = 4096;
2566         fs_info->stripesize = 4096;
2567
2568         ret = btrfs_alloc_stripe_hash_table(fs_info);
2569         if (ret) {
2570                 err = ret;
2571                 goto fail_alloc;
2572         }
2573
2574         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2575
2576         invalidate_bdev(fs_devices->latest_bdev);
2577
2578         /*
2579          * Read super block and check the signature bytes only
2580          */
2581         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2582         if (IS_ERR(bh)) {
2583                 err = PTR_ERR(bh);
2584                 goto fail_alloc;
2585         }
2586
2587         /*
2588          * We want to check superblock checksum, the type is stored inside.
2589          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2590          */
2591         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2592                 btrfs_err(fs_info, "superblock checksum mismatch");
2593                 err = -EINVAL;
2594                 brelse(bh);
2595                 goto fail_alloc;
2596         }
2597
2598         /*
2599          * super_copy is zeroed at allocation time and we never touch the
2600          * following bytes up to INFO_SIZE, the checksum is calculated from
2601          * the whole block of INFO_SIZE
2602          */
2603         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2604         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2605                sizeof(*fs_info->super_for_commit));
2606         brelse(bh);
2607
2608         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2609
2610         ret = btrfs_check_super_valid(fs_info);
2611         if (ret) {
2612                 btrfs_err(fs_info, "superblock contains fatal errors");
2613                 err = -EINVAL;
2614                 goto fail_alloc;
2615         }
2616
2617         disk_super = fs_info->super_copy;
2618         if (!btrfs_super_root(disk_super))
2619                 goto fail_alloc;
2620
2621         /* check FS state, whether FS is broken. */
2622         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2623                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2624
2625         /*
2626          * run through our array of backup supers and setup
2627          * our ring pointer to the oldest one
2628          */
2629         generation = btrfs_super_generation(disk_super);
2630         find_oldest_super_backup(fs_info, generation);
2631
2632         /*
2633          * In the long term, we'll store the compression type in the super
2634          * block, and it'll be used for per file compression control.
2635          */
2636         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2637
2638         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2639         if (ret) {
2640                 err = ret;
2641                 goto fail_alloc;
2642         }
2643
2644         features = btrfs_super_incompat_flags(disk_super) &
2645                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2646         if (features) {
2647                 btrfs_err(fs_info,
2648                     "cannot mount because of unsupported optional features (%llx)",
2649                     features);
2650                 err = -EINVAL;
2651                 goto fail_alloc;
2652         }
2653
2654         features = btrfs_super_incompat_flags(disk_super);
2655         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2656         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2657                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2658         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2659                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2660
2661         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2662                 btrfs_info(fs_info, "has skinny extents");
2663
2664         /*
2665          * flag our filesystem as having big metadata blocks if
2666          * they are bigger than the page size
2667          */
2668         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2669                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2670                         btrfs_info(fs_info,
2671                                 "flagging fs with big metadata feature");
2672                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2673         }
2674
2675         nodesize = btrfs_super_nodesize(disk_super);
2676         sectorsize = btrfs_super_sectorsize(disk_super);
2677         stripesize = sectorsize;
2678         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2679         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2680
2681         /* Cache block sizes */
2682         fs_info->nodesize = nodesize;
2683         fs_info->sectorsize = sectorsize;
2684         fs_info->stripesize = stripesize;
2685
2686         /*
2687          * mixed block groups end up with duplicate but slightly offset
2688          * extent buffers for the same range.  It leads to corruptions
2689          */
2690         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2691             (sectorsize != nodesize)) {
2692                 btrfs_err(fs_info,
2693 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2694                         nodesize, sectorsize);
2695                 goto fail_alloc;
2696         }
2697
2698         /*
2699          * Needn't use the lock because there is no other task which will
2700          * update the flag.
2701          */
2702         btrfs_set_super_incompat_flags(disk_super, features);
2703
2704         features = btrfs_super_compat_ro_flags(disk_super) &
2705                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2706         if (!sb_rdonly(sb) && features) {
2707                 btrfs_err(fs_info,
2708         "cannot mount read-write because of unsupported optional features (%llx)",
2709                        features);
2710                 err = -EINVAL;
2711                 goto fail_alloc;
2712         }
2713
2714         max_active = fs_info->thread_pool_size;
2715
2716         ret = btrfs_init_workqueues(fs_info, fs_devices);
2717         if (ret) {
2718                 err = ret;
2719                 goto fail_sb_buffer;
2720         }
2721
2722         sb->s_bdi->congested_fn = btrfs_congested_fn;
2723         sb->s_bdi->congested_data = fs_info;
2724         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2725         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2726         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2727         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2728
2729         sb->s_blocksize = sectorsize;
2730         sb->s_blocksize_bits = blksize_bits(sectorsize);
2731         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2732
2733         mutex_lock(&fs_info->chunk_mutex);
2734         ret = btrfs_read_sys_array(fs_info);
2735         mutex_unlock(&fs_info->chunk_mutex);
2736         if (ret) {
2737                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2738                 goto fail_sb_buffer;
2739         }
2740
2741         generation = btrfs_super_chunk_root_generation(disk_super);
2742
2743         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2744
2745         chunk_root->node = read_tree_block(fs_info,
2746                                            btrfs_super_chunk_root(disk_super),
2747                                            generation);
2748         if (IS_ERR(chunk_root->node) ||
2749             !extent_buffer_uptodate(chunk_root->node)) {
2750                 btrfs_err(fs_info, "failed to read chunk root");
2751                 if (!IS_ERR(chunk_root->node))
2752                         free_extent_buffer(chunk_root->node);
2753                 chunk_root->node = NULL;
2754                 goto fail_tree_roots;
2755         }
2756         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2757         chunk_root->commit_root = btrfs_root_node(chunk_root);
2758
2759         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2760            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2761
2762         ret = btrfs_read_chunk_tree(fs_info);
2763         if (ret) {
2764                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2765                 goto fail_tree_roots;
2766         }
2767
2768         /*
2769          * keep the device that is marked to be the target device for the
2770          * dev_replace procedure
2771          */
2772         btrfs_close_extra_devices(fs_devices, 0);
2773
2774         if (!fs_devices->latest_bdev) {
2775                 btrfs_err(fs_info, "failed to read devices");
2776                 goto fail_tree_roots;
2777         }
2778
2779 retry_root_backup:
2780         generation = btrfs_super_generation(disk_super);
2781
2782         tree_root->node = read_tree_block(fs_info,
2783                                           btrfs_super_root(disk_super),
2784                                           generation);
2785         if (IS_ERR(tree_root->node) ||
2786             !extent_buffer_uptodate(tree_root->node)) {
2787                 btrfs_warn(fs_info, "failed to read tree root");
2788                 if (!IS_ERR(tree_root->node))
2789                         free_extent_buffer(tree_root->node);
2790                 tree_root->node = NULL;
2791                 goto recovery_tree_root;
2792         }
2793
2794         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2795         tree_root->commit_root = btrfs_root_node(tree_root);
2796         btrfs_set_root_refs(&tree_root->root_item, 1);
2797
2798         mutex_lock(&tree_root->objectid_mutex);
2799         ret = btrfs_find_highest_objectid(tree_root,
2800                                         &tree_root->highest_objectid);
2801         if (ret) {
2802                 mutex_unlock(&tree_root->objectid_mutex);
2803                 goto recovery_tree_root;
2804         }
2805
2806         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2807
2808         mutex_unlock(&tree_root->objectid_mutex);
2809
2810         ret = btrfs_read_roots(fs_info);
2811         if (ret)
2812                 goto recovery_tree_root;
2813
2814         fs_info->generation = generation;
2815         fs_info->last_trans_committed = generation;
2816
2817         ret = btrfs_recover_balance(fs_info);
2818         if (ret) {
2819                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2820                 goto fail_block_groups;
2821         }
2822
2823         ret = btrfs_init_dev_stats(fs_info);
2824         if (ret) {
2825                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2826                 goto fail_block_groups;
2827         }
2828
2829         ret = btrfs_init_dev_replace(fs_info);
2830         if (ret) {
2831                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2832                 goto fail_block_groups;
2833         }
2834
2835         btrfs_close_extra_devices(fs_devices, 1);
2836
2837         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2838         if (ret) {
2839                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2840                                 ret);
2841                 goto fail_block_groups;
2842         }
2843
2844         ret = btrfs_sysfs_add_device(fs_devices);
2845         if (ret) {
2846                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2847                                 ret);
2848                 goto fail_fsdev_sysfs;
2849         }
2850
2851         ret = btrfs_sysfs_add_mounted(fs_info);
2852         if (ret) {
2853                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2854                 goto fail_fsdev_sysfs;
2855         }
2856
2857         ret = btrfs_init_space_info(fs_info);
2858         if (ret) {
2859                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2860                 goto fail_sysfs;
2861         }
2862
2863         ret = btrfs_read_block_groups(fs_info);
2864         if (ret) {
2865                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2866                 goto fail_sysfs;
2867         }
2868
2869         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2870                 btrfs_warn(fs_info,
2871                 "writeable mount is not allowed due to too many missing devices");
2872                 goto fail_sysfs;
2873         }
2874
2875         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2876                                                "btrfs-cleaner");
2877         if (IS_ERR(fs_info->cleaner_kthread))
2878                 goto fail_sysfs;
2879
2880         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2881                                                    tree_root,
2882                                                    "btrfs-transaction");
2883         if (IS_ERR(fs_info->transaction_kthread))
2884                 goto fail_cleaner;
2885
2886         if (!btrfs_test_opt(fs_info, NOSSD) &&
2887             !fs_info->fs_devices->rotating) {
2888                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2889         }
2890
2891         /*
2892          * Mount does not set all options immediately, we can do it now and do
2893          * not have to wait for transaction commit
2894          */
2895         btrfs_apply_pending_changes(fs_info);
2896
2897 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2898         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2899                 ret = btrfsic_mount(fs_info, fs_devices,
2900                                     btrfs_test_opt(fs_info,
2901                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2902                                     1 : 0,
2903                                     fs_info->check_integrity_print_mask);
2904                 if (ret)
2905                         btrfs_warn(fs_info,
2906                                 "failed to initialize integrity check module: %d",
2907                                 ret);
2908         }
2909 #endif
2910         ret = btrfs_read_qgroup_config(fs_info);
2911         if (ret)
2912                 goto fail_trans_kthread;
2913
2914         if (btrfs_build_ref_tree(fs_info))
2915                 btrfs_err(fs_info, "couldn't build ref tree");
2916
2917         /* do not make disk changes in broken FS or nologreplay is given */
2918         if (btrfs_super_log_root(disk_super) != 0 &&
2919             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2920                 ret = btrfs_replay_log(fs_info, fs_devices);
2921                 if (ret) {
2922                         err = ret;
2923                         goto fail_qgroup;
2924                 }
2925         }
2926
2927         ret = btrfs_find_orphan_roots(fs_info);
2928         if (ret)
2929                 goto fail_qgroup;
2930
2931         if (!sb_rdonly(sb)) {
2932                 ret = btrfs_cleanup_fs_roots(fs_info);
2933                 if (ret)
2934                         goto fail_qgroup;
2935
2936                 mutex_lock(&fs_info->cleaner_mutex);
2937                 ret = btrfs_recover_relocation(tree_root);
2938                 mutex_unlock(&fs_info->cleaner_mutex);
2939                 if (ret < 0) {
2940                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2941                                         ret);
2942                         err = -EINVAL;
2943                         goto fail_qgroup;
2944                 }
2945         }
2946
2947         location.objectid = BTRFS_FS_TREE_OBJECTID;
2948         location.type = BTRFS_ROOT_ITEM_KEY;
2949         location.offset = 0;
2950
2951         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2952         if (IS_ERR(fs_info->fs_root)) {
2953                 err = PTR_ERR(fs_info->fs_root);
2954                 goto fail_qgroup;
2955         }
2956
2957         if (sb_rdonly(sb))
2958                 return 0;
2959
2960         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2961             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2962                 clear_free_space_tree = 1;
2963         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2964                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2965                 btrfs_warn(fs_info, "free space tree is invalid");
2966                 clear_free_space_tree = 1;
2967         }
2968
2969         if (clear_free_space_tree) {
2970                 btrfs_info(fs_info, "clearing free space tree");
2971                 ret = btrfs_clear_free_space_tree(fs_info);
2972                 if (ret) {
2973                         btrfs_warn(fs_info,
2974                                    "failed to clear free space tree: %d", ret);
2975                         close_ctree(fs_info);
2976                         return ret;
2977                 }
2978         }
2979
2980         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2981             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2982                 btrfs_info(fs_info, "creating free space tree");
2983                 ret = btrfs_create_free_space_tree(fs_info);
2984                 if (ret) {
2985                         btrfs_warn(fs_info,
2986                                 "failed to create free space tree: %d", ret);
2987                         close_ctree(fs_info);
2988                         return ret;
2989                 }
2990         }
2991
2992         down_read(&fs_info->cleanup_work_sem);
2993         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2994             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2995                 up_read(&fs_info->cleanup_work_sem);
2996                 close_ctree(fs_info);
2997                 return ret;
2998         }
2999         up_read(&fs_info->cleanup_work_sem);
3000
3001         ret = btrfs_resume_balance_async(fs_info);
3002         if (ret) {
3003                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3004                 close_ctree(fs_info);
3005                 return ret;
3006         }
3007
3008         ret = btrfs_resume_dev_replace_async(fs_info);
3009         if (ret) {
3010                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3011                 close_ctree(fs_info);
3012                 return ret;
3013         }
3014
3015         btrfs_qgroup_rescan_resume(fs_info);
3016
3017         if (!fs_info->uuid_root) {
3018                 btrfs_info(fs_info, "creating UUID tree");
3019                 ret = btrfs_create_uuid_tree(fs_info);
3020                 if (ret) {
3021                         btrfs_warn(fs_info,
3022                                 "failed to create the UUID tree: %d", ret);
3023                         close_ctree(fs_info);
3024                         return ret;
3025                 }
3026         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3027                    fs_info->generation !=
3028                                 btrfs_super_uuid_tree_generation(disk_super)) {
3029                 btrfs_info(fs_info, "checking UUID tree");
3030                 ret = btrfs_check_uuid_tree(fs_info);
3031                 if (ret) {
3032                         btrfs_warn(fs_info,
3033                                 "failed to check the UUID tree: %d", ret);
3034                         close_ctree(fs_info);
3035                         return ret;
3036                 }
3037         } else {
3038                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3039         }
3040         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3041
3042         /*
3043          * backuproot only affect mount behavior, and if open_ctree succeeded,
3044          * no need to keep the flag
3045          */
3046         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3047
3048         return 0;
3049
3050 fail_qgroup:
3051         btrfs_free_qgroup_config(fs_info);
3052 fail_trans_kthread:
3053         kthread_stop(fs_info->transaction_kthread);
3054         btrfs_cleanup_transaction(fs_info);
3055         btrfs_free_fs_roots(fs_info);
3056 fail_cleaner:
3057         kthread_stop(fs_info->cleaner_kthread);
3058
3059         /*
3060          * make sure we're done with the btree inode before we stop our
3061          * kthreads
3062          */
3063         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3064
3065 fail_sysfs:
3066         btrfs_sysfs_remove_mounted(fs_info);
3067
3068 fail_fsdev_sysfs:
3069         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3070
3071 fail_block_groups:
3072         btrfs_put_block_group_cache(fs_info);
3073
3074 fail_tree_roots:
3075         free_root_pointers(fs_info, 1);
3076         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3077
3078 fail_sb_buffer:
3079         btrfs_stop_all_workers(fs_info);
3080         btrfs_free_block_groups(fs_info);
3081 fail_alloc:
3082 fail_iput:
3083         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3084
3085         iput(fs_info->btree_inode);
3086 fail_bio_counter:
3087         percpu_counter_destroy(&fs_info->bio_counter);
3088 fail_delalloc_bytes:
3089         percpu_counter_destroy(&fs_info->delalloc_bytes);
3090 fail_dirty_metadata_bytes:
3091         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3092 fail_srcu:
3093         cleanup_srcu_struct(&fs_info->subvol_srcu);
3094 fail:
3095         btrfs_free_stripe_hash_table(fs_info);
3096         btrfs_close_devices(fs_info->fs_devices);
3097         return err;
3098
3099 recovery_tree_root:
3100         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3101                 goto fail_tree_roots;
3102
3103         free_root_pointers(fs_info, 0);
3104
3105         /* don't use the log in recovery mode, it won't be valid */
3106         btrfs_set_super_log_root(disk_super, 0);
3107
3108         /* we can't trust the free space cache either */
3109         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3110
3111         ret = next_root_backup(fs_info, fs_info->super_copy,
3112                                &num_backups_tried, &backup_index);
3113         if (ret == -1)
3114                 goto fail_block_groups;
3115         goto retry_root_backup;
3116 }
3117
3118 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3119 {
3120         if (uptodate) {
3121                 set_buffer_uptodate(bh);
3122         } else {
3123                 struct btrfs_device *device = (struct btrfs_device *)
3124                         bh->b_private;
3125
3126                 btrfs_warn_rl_in_rcu(device->fs_info,
3127                                 "lost page write due to IO error on %s",
3128                                           rcu_str_deref(device->name));
3129                 /* note, we don't set_buffer_write_io_error because we have
3130                  * our own ways of dealing with the IO errors
3131                  */
3132                 clear_buffer_uptodate(bh);
3133                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3134         }
3135         unlock_buffer(bh);
3136         put_bh(bh);
3137 }
3138
3139 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3140                         struct buffer_head **bh_ret)
3141 {
3142         struct buffer_head *bh;
3143         struct btrfs_super_block *super;
3144         u64 bytenr;
3145
3146         bytenr = btrfs_sb_offset(copy_num);
3147         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3148                 return -EINVAL;
3149
3150         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3151         /*
3152          * If we fail to read from the underlying devices, as of now
3153          * the best option we have is to mark it EIO.
3154          */
3155         if (!bh)
3156                 return -EIO;
3157
3158         super = (struct btrfs_super_block *)bh->b_data;
3159         if (btrfs_super_bytenr(super) != bytenr ||
3160                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3161                 brelse(bh);
3162                 return -EINVAL;
3163         }
3164
3165         *bh_ret = bh;
3166         return 0;
3167 }
3168
3169
3170 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3171 {
3172         struct buffer_head *bh;
3173         struct buffer_head *latest = NULL;
3174         struct btrfs_super_block *super;
3175         int i;
3176         u64 transid = 0;
3177         int ret = -EINVAL;
3178
3179         /* we would like to check all the supers, but that would make
3180          * a btrfs mount succeed after a mkfs from a different FS.
3181          * So, we need to add a special mount option to scan for
3182          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3183          */
3184         for (i = 0; i < 1; i++) {
3185                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3186                 if (ret)
3187                         continue;
3188
3189                 super = (struct btrfs_super_block *)bh->b_data;
3190
3191                 if (!latest || btrfs_super_generation(super) > transid) {
3192                         brelse(latest);
3193                         latest = bh;
3194                         transid = btrfs_super_generation(super);
3195                 } else {
3196                         brelse(bh);
3197                 }
3198         }
3199
3200         if (!latest)
3201                 return ERR_PTR(ret);
3202
3203         return latest;
3204 }
3205
3206 /*
3207  * Write superblock @sb to the @device. Do not wait for completion, all the
3208  * buffer heads we write are pinned.
3209  *
3210  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3211  * the expected device size at commit time. Note that max_mirrors must be
3212  * same for write and wait phases.
3213  *
3214  * Return number of errors when buffer head is not found or submission fails.
3215  */
3216 static int write_dev_supers(struct btrfs_device *device,
3217                             struct btrfs_super_block *sb, int max_mirrors)
3218 {
3219         struct buffer_head *bh;
3220         int i;
3221         int ret;
3222         int errors = 0;
3223         u32 crc;
3224         u64 bytenr;
3225         int op_flags;
3226
3227         if (max_mirrors == 0)
3228                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3229
3230         for (i = 0; i < max_mirrors; i++) {
3231                 bytenr = btrfs_sb_offset(i);
3232                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3233                     device->commit_total_bytes)
3234                         break;
3235
3236                 btrfs_set_super_bytenr(sb, bytenr);
3237
3238                 crc = ~(u32)0;
3239                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3240                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3241                 btrfs_csum_final(crc, sb->csum);
3242
3243                 /* One reference for us, and we leave it for the caller */
3244                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3245                               BTRFS_SUPER_INFO_SIZE);
3246                 if (!bh) {
3247                         btrfs_err(device->fs_info,
3248                             "couldn't get super buffer head for bytenr %llu",
3249                             bytenr);
3250                         errors++;
3251                         continue;
3252                 }
3253
3254                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3255
3256                 /* one reference for submit_bh */
3257                 get_bh(bh);
3258
3259                 set_buffer_uptodate(bh);
3260                 lock_buffer(bh);
3261                 bh->b_end_io = btrfs_end_buffer_write_sync;
3262                 bh->b_private = device;
3263
3264                 /*
3265                  * we fua the first super.  The others we allow
3266                  * to go down lazy.
3267                  */
3268                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3269                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3270                         op_flags |= REQ_FUA;
3271                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3272                 if (ret)
3273                         errors++;
3274         }
3275         return errors < i ? 0 : -1;
3276 }
3277
3278 /*
3279  * Wait for write completion of superblocks done by write_dev_supers,
3280  * @max_mirrors same for write and wait phases.
3281  *
3282  * Return number of errors when buffer head is not found or not marked up to
3283  * date.
3284  */
3285 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3286 {
3287         struct buffer_head *bh;
3288         int i;
3289         int errors = 0;
3290         u64 bytenr;
3291
3292         if (max_mirrors == 0)
3293                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3294
3295         for (i = 0; i < max_mirrors; i++) {
3296                 bytenr = btrfs_sb_offset(i);
3297                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3298                     device->commit_total_bytes)
3299                         break;
3300
3301                 bh = __find_get_block(device->bdev,
3302                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3303                                       BTRFS_SUPER_INFO_SIZE);
3304                 if (!bh) {
3305                         errors++;
3306                         continue;
3307                 }
3308                 wait_on_buffer(bh);
3309                 if (!buffer_uptodate(bh))
3310                         errors++;
3311
3312                 /* drop our reference */
3313                 brelse(bh);
3314
3315                 /* drop the reference from the writing run */
3316                 brelse(bh);
3317         }
3318
3319         return errors < i ? 0 : -1;
3320 }
3321
3322 /*
3323  * endio for the write_dev_flush, this will wake anyone waiting
3324  * for the barrier when it is done
3325  */
3326 static void btrfs_end_empty_barrier(struct bio *bio)
3327 {
3328         complete(bio->bi_private);
3329 }
3330
3331 /*
3332  * Submit a flush request to the device if it supports it. Error handling is
3333  * done in the waiting counterpart.
3334  */
3335 static void write_dev_flush(struct btrfs_device *device)
3336 {
3337         struct request_queue *q = bdev_get_queue(device->bdev);
3338         struct bio *bio = device->flush_bio;
3339
3340         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3341                 return;
3342
3343         bio_reset(bio);
3344         bio->bi_end_io = btrfs_end_empty_barrier;
3345         bio_set_dev(bio, device->bdev);
3346         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3347         init_completion(&device->flush_wait);
3348         bio->bi_private = &device->flush_wait;
3349
3350         btrfsic_submit_bio(bio);
3351         device->flush_bio_sent = 1;
3352 }
3353
3354 /*
3355  * If the flush bio has been submitted by write_dev_flush, wait for it.
3356  */
3357 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3358 {
3359         struct bio *bio = device->flush_bio;
3360
3361         if (!device->flush_bio_sent)
3362                 return BLK_STS_OK;
3363
3364         device->flush_bio_sent = 0;
3365         wait_for_completion_io(&device->flush_wait);
3366
3367         return bio->bi_status;
3368 }
3369
3370 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3371 {
3372         if (!btrfs_check_rw_degradable(fs_info))
3373                 return -EIO;
3374         return 0;
3375 }
3376
3377 /*
3378  * send an empty flush down to each device in parallel,
3379  * then wait for them
3380  */
3381 static int barrier_all_devices(struct btrfs_fs_info *info)
3382 {
3383         struct list_head *head;
3384         struct btrfs_device *dev;
3385         int errors_wait = 0;
3386         blk_status_t ret;
3387
3388         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3389         /* send down all the barriers */
3390         head = &info->fs_devices->devices;
3391         list_for_each_entry(dev, head, dev_list) {
3392                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3393                         continue;
3394                 if (!dev->bdev)
3395                         continue;
3396                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3397                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3398                         continue;
3399
3400                 write_dev_flush(dev);
3401                 dev->last_flush_error = BLK_STS_OK;
3402         }
3403
3404         /* wait for all the barriers */
3405         list_for_each_entry(dev, head, dev_list) {
3406                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3407                         continue;
3408                 if (!dev->bdev) {
3409                         errors_wait++;
3410                         continue;
3411                 }
3412                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3413                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3414                         continue;
3415
3416                 ret = wait_dev_flush(dev);
3417                 if (ret) {
3418                         dev->last_flush_error = ret;
3419                         btrfs_dev_stat_inc_and_print(dev,
3420                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3421                         errors_wait++;
3422                 }
3423         }
3424
3425         if (errors_wait) {
3426                 /*
3427                  * At some point we need the status of all disks
3428                  * to arrive at the volume status. So error checking
3429                  * is being pushed to a separate loop.
3430                  */
3431                 return check_barrier_error(info);
3432         }
3433         return 0;
3434 }
3435
3436 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3437 {
3438         int raid_type;
3439         int min_tolerated = INT_MAX;
3440
3441         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3442             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3443                 min_tolerated = min(min_tolerated,
3444                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3445                                     tolerated_failures);
3446
3447         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3448                 if (raid_type == BTRFS_RAID_SINGLE)
3449                         continue;
3450                 if (!(flags & btrfs_raid_group[raid_type]))
3451                         continue;
3452                 min_tolerated = min(min_tolerated,
3453                                     btrfs_raid_array[raid_type].
3454                                     tolerated_failures);
3455         }
3456
3457         if (min_tolerated == INT_MAX) {
3458                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3459                 min_tolerated = 0;
3460         }
3461
3462         return min_tolerated;
3463 }
3464
3465 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3466 {
3467         struct list_head *head;
3468         struct btrfs_device *dev;
3469         struct btrfs_super_block *sb;
3470         struct btrfs_dev_item *dev_item;
3471         int ret;
3472         int do_barriers;
3473         int max_errors;
3474         int total_errors = 0;
3475         u64 flags;
3476
3477         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3478
3479         /*
3480          * max_mirrors == 0 indicates we're from commit_transaction,
3481          * not from fsync where the tree roots in fs_info have not
3482          * been consistent on disk.
3483          */
3484         if (max_mirrors == 0)
3485                 backup_super_roots(fs_info);
3486
3487         sb = fs_info->super_for_commit;
3488         dev_item = &sb->dev_item;
3489
3490         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3491         head = &fs_info->fs_devices->devices;
3492         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3493
3494         if (do_barriers) {
3495                 ret = barrier_all_devices(fs_info);
3496                 if (ret) {
3497                         mutex_unlock(
3498                                 &fs_info->fs_devices->device_list_mutex);
3499                         btrfs_handle_fs_error(fs_info, ret,
3500                                               "errors while submitting device barriers.");
3501                         return ret;
3502                 }
3503         }
3504
3505         list_for_each_entry(dev, head, dev_list) {
3506                 if (!dev->bdev) {
3507                         total_errors++;
3508                         continue;
3509                 }
3510                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3511                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3512                         continue;
3513
3514                 btrfs_set_stack_device_generation(dev_item, 0);
3515                 btrfs_set_stack_device_type(dev_item, dev->type);
3516                 btrfs_set_stack_device_id(dev_item, dev->devid);
3517                 btrfs_set_stack_device_total_bytes(dev_item,
3518                                                    dev->commit_total_bytes);
3519                 btrfs_set_stack_device_bytes_used(dev_item,
3520                                                   dev->commit_bytes_used);
3521                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3522                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3523                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3524                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3525                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3526
3527                 flags = btrfs_super_flags(sb);
3528                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3529
3530                 ret = write_dev_supers(dev, sb, max_mirrors);
3531                 if (ret)
3532                         total_errors++;
3533         }
3534         if (total_errors > max_errors) {
3535                 btrfs_err(fs_info, "%d errors while writing supers",
3536                           total_errors);
3537                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3538
3539                 /* FUA is masked off if unsupported and can't be the reason */
3540                 btrfs_handle_fs_error(fs_info, -EIO,
3541                                       "%d errors while writing supers",
3542                                       total_errors);
3543                 return -EIO;
3544         }
3545
3546         total_errors = 0;
3547         list_for_each_entry(dev, head, dev_list) {
3548                 if (!dev->bdev)
3549                         continue;
3550                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3551                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3552                         continue;
3553
3554                 ret = wait_dev_supers(dev, max_mirrors);
3555                 if (ret)
3556                         total_errors++;
3557         }
3558         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3559         if (total_errors > max_errors) {
3560                 btrfs_handle_fs_error(fs_info, -EIO,
3561                                       "%d errors while writing supers",
3562                                       total_errors);
3563                 return -EIO;
3564         }
3565         return 0;
3566 }
3567
3568 /* Drop a fs root from the radix tree and free it. */
3569 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3570                                   struct btrfs_root *root)
3571 {
3572         spin_lock(&fs_info->fs_roots_radix_lock);
3573         radix_tree_delete(&fs_info->fs_roots_radix,
3574                           (unsigned long)root->root_key.objectid);
3575         spin_unlock(&fs_info->fs_roots_radix_lock);
3576
3577         if (btrfs_root_refs(&root->root_item) == 0)
3578                 synchronize_srcu(&fs_info->subvol_srcu);
3579
3580         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3581                 btrfs_free_log(NULL, root);
3582                 if (root->reloc_root) {
3583                         free_extent_buffer(root->reloc_root->node);
3584                         free_extent_buffer(root->reloc_root->commit_root);
3585                         btrfs_put_fs_root(root->reloc_root);
3586                         root->reloc_root = NULL;
3587                 }
3588         }
3589
3590         if (root->free_ino_pinned)
3591                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3592         if (root->free_ino_ctl)
3593                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3594         free_fs_root(root);
3595 }
3596
3597 static void free_fs_root(struct btrfs_root *root)
3598 {
3599         iput(root->ino_cache_inode);
3600         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3601         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3602         root->orphan_block_rsv = NULL;
3603         if (root->anon_dev)
3604                 free_anon_bdev(root->anon_dev);
3605         if (root->subv_writers)
3606                 btrfs_free_subvolume_writers(root->subv_writers);
3607         free_extent_buffer(root->node);
3608         free_extent_buffer(root->commit_root);
3609         kfree(root->free_ino_ctl);
3610         kfree(root->free_ino_pinned);
3611         kfree(root->name);
3612         btrfs_put_fs_root(root);
3613 }
3614
3615 void btrfs_free_fs_root(struct btrfs_root *root)
3616 {
3617         free_fs_root(root);
3618 }
3619
3620 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3621 {
3622         u64 root_objectid = 0;
3623         struct btrfs_root *gang[8];
3624         int i = 0;
3625         int err = 0;
3626         unsigned int ret = 0;
3627         int index;
3628
3629         while (1) {
3630                 index = srcu_read_lock(&fs_info->subvol_srcu);
3631                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3632                                              (void **)gang, root_objectid,
3633                                              ARRAY_SIZE(gang));
3634                 if (!ret) {
3635                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3636                         break;
3637                 }
3638                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3639
3640                 for (i = 0; i < ret; i++) {
3641                         /* Avoid to grab roots in dead_roots */
3642                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3643                                 gang[i] = NULL;
3644                                 continue;
3645                         }
3646                         /* grab all the search result for later use */
3647                         gang[i] = btrfs_grab_fs_root(gang[i]);
3648                 }
3649                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3650
3651                 for (i = 0; i < ret; i++) {
3652                         if (!gang[i])
3653                                 continue;
3654                         root_objectid = gang[i]->root_key.objectid;
3655                         err = btrfs_orphan_cleanup(gang[i]);
3656                         if (err)
3657                                 break;
3658                         btrfs_put_fs_root(gang[i]);
3659                 }
3660                 root_objectid++;
3661         }
3662
3663         /* release the uncleaned roots due to error */
3664         for (; i < ret; i++) {
3665                 if (gang[i])
3666                         btrfs_put_fs_root(gang[i]);
3667         }
3668         return err;
3669 }
3670
3671 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3672 {
3673         struct btrfs_root *root = fs_info->tree_root;
3674         struct btrfs_trans_handle *trans;
3675
3676         mutex_lock(&fs_info->cleaner_mutex);
3677         btrfs_run_delayed_iputs(fs_info);
3678         mutex_unlock(&fs_info->cleaner_mutex);
3679         wake_up_process(fs_info->cleaner_kthread);
3680
3681         /* wait until ongoing cleanup work done */
3682         down_write(&fs_info->cleanup_work_sem);
3683         up_write(&fs_info->cleanup_work_sem);
3684
3685         trans = btrfs_join_transaction(root);
3686         if (IS_ERR(trans))
3687                 return PTR_ERR(trans);
3688         return btrfs_commit_transaction(trans);
3689 }
3690
3691 void close_ctree(struct btrfs_fs_info *fs_info)
3692 {
3693         struct btrfs_root *root = fs_info->tree_root;
3694         int ret;
3695
3696         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3697
3698         /* wait for the qgroup rescan worker to stop */
3699         btrfs_qgroup_wait_for_completion(fs_info, false);
3700
3701         /* wait for the uuid_scan task to finish */
3702         down(&fs_info->uuid_tree_rescan_sem);
3703         /* avoid complains from lockdep et al., set sem back to initial state */
3704         up(&fs_info->uuid_tree_rescan_sem);
3705
3706         /* pause restriper - we want to resume on mount */
3707         btrfs_pause_balance(fs_info);
3708
3709         btrfs_dev_replace_suspend_for_unmount(fs_info);
3710
3711         btrfs_scrub_cancel(fs_info);
3712
3713         /* wait for any defraggers to finish */
3714         wait_event(fs_info->transaction_wait,
3715                    (atomic_read(&fs_info->defrag_running) == 0));
3716
3717         /* clear out the rbtree of defraggable inodes */
3718         btrfs_cleanup_defrag_inodes(fs_info);
3719
3720         cancel_work_sync(&fs_info->async_reclaim_work);
3721
3722         if (!sb_rdonly(fs_info->sb)) {
3723                 /*
3724                  * If the cleaner thread is stopped and there are
3725                  * block groups queued for removal, the deletion will be
3726                  * skipped when we quit the cleaner thread.
3727                  */
3728                 btrfs_delete_unused_bgs(fs_info);
3729
3730                 ret = btrfs_commit_super(fs_info);
3731                 if (ret)
3732                         btrfs_err(fs_info, "commit super ret %d", ret);
3733         }
3734
3735         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3736                 btrfs_error_commit_super(fs_info);
3737
3738         kthread_stop(fs_info->transaction_kthread);
3739         kthread_stop(fs_info->cleaner_kthread);
3740
3741         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3742
3743         btrfs_free_qgroup_config(fs_info);
3744
3745         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3746                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3747                        percpu_counter_sum(&fs_info->delalloc_bytes));
3748         }
3749
3750         btrfs_sysfs_remove_mounted(fs_info);
3751         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3752
3753         btrfs_free_fs_roots(fs_info);
3754
3755         btrfs_put_block_group_cache(fs_info);
3756
3757         /*
3758          * we must make sure there is not any read request to
3759          * submit after we stopping all workers.
3760          */
3761         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3762         btrfs_stop_all_workers(fs_info);
3763
3764         btrfs_free_block_groups(fs_info);
3765
3766         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3767         free_root_pointers(fs_info, 1);
3768
3769         iput(fs_info->btree_inode);
3770
3771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3772         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3773                 btrfsic_unmount(fs_info->fs_devices);
3774 #endif
3775
3776         btrfs_close_devices(fs_info->fs_devices);
3777         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3778
3779         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3780         percpu_counter_destroy(&fs_info->delalloc_bytes);
3781         percpu_counter_destroy(&fs_info->bio_counter);
3782         cleanup_srcu_struct(&fs_info->subvol_srcu);
3783
3784         btrfs_free_stripe_hash_table(fs_info);
3785         btrfs_free_ref_cache(fs_info);
3786
3787         __btrfs_free_block_rsv(root->orphan_block_rsv);
3788         root->orphan_block_rsv = NULL;
3789
3790         while (!list_empty(&fs_info->pinned_chunks)) {
3791                 struct extent_map *em;
3792
3793                 em = list_first_entry(&fs_info->pinned_chunks,
3794                                       struct extent_map, list);
3795                 list_del_init(&em->list);
3796                 free_extent_map(em);
3797         }
3798 }
3799
3800 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3801                           int atomic)
3802 {
3803         int ret;
3804         struct inode *btree_inode = buf->pages[0]->mapping->host;
3805
3806         ret = extent_buffer_uptodate(buf);
3807         if (!ret)
3808                 return ret;
3809
3810         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3811                                     parent_transid, atomic);
3812         if (ret == -EAGAIN)
3813                 return ret;
3814         return !ret;
3815 }
3816
3817 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3818 {
3819         struct btrfs_fs_info *fs_info;
3820         struct btrfs_root *root;
3821         u64 transid = btrfs_header_generation(buf);
3822         int was_dirty;
3823
3824 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3825         /*
3826          * This is a fast path so only do this check if we have sanity tests
3827          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3828          * outside of the sanity tests.
3829          */
3830         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3831                 return;
3832 #endif
3833         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3834         fs_info = root->fs_info;
3835         btrfs_assert_tree_locked(buf);
3836         if (transid != fs_info->generation)
3837                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3838                         buf->start, transid, fs_info->generation);
3839         was_dirty = set_extent_buffer_dirty(buf);
3840         if (!was_dirty)
3841                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3842                                          buf->len,
3843                                          fs_info->dirty_metadata_batch);
3844 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3845         /*
3846          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3847          * but item data not updated.
3848          * So here we should only check item pointers, not item data.
3849          */
3850         if (btrfs_header_level(buf) == 0 &&
3851             btrfs_check_leaf_relaxed(root, buf)) {
3852                 btrfs_print_leaf(buf);
3853                 ASSERT(0);
3854         }
3855 #endif
3856 }
3857
3858 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3859                                         int flush_delayed)
3860 {
3861         /*
3862          * looks as though older kernels can get into trouble with
3863          * this code, they end up stuck in balance_dirty_pages forever
3864          */
3865         int ret;
3866
3867         if (current->flags & PF_MEMALLOC)
3868                 return;
3869
3870         if (flush_delayed)
3871                 btrfs_balance_delayed_items(fs_info);
3872
3873         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3874                                      BTRFS_DIRTY_METADATA_THRESH);
3875         if (ret > 0) {
3876                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3877         }
3878 }
3879
3880 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3881 {
3882         __btrfs_btree_balance_dirty(fs_info, 1);
3883 }
3884
3885 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3886 {
3887         __btrfs_btree_balance_dirty(fs_info, 0);
3888 }
3889
3890 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3891 {
3892         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3893         struct btrfs_fs_info *fs_info = root->fs_info;
3894
3895         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3896 }
3897
3898 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3899 {
3900         struct btrfs_super_block *sb = fs_info->super_copy;
3901         u64 nodesize = btrfs_super_nodesize(sb);
3902         u64 sectorsize = btrfs_super_sectorsize(sb);
3903         int ret = 0;
3904
3905         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3906                 btrfs_err(fs_info, "no valid FS found");
3907                 ret = -EINVAL;
3908         }
3909         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
3910                 btrfs_warn(fs_info, "unrecognized super flag: %llu",
3911                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3912         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3913                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3914                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3915                 ret = -EINVAL;
3916         }
3917         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3918                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3919                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3920                 ret = -EINVAL;
3921         }
3922         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3923                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3924                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3925                 ret = -EINVAL;
3926         }
3927
3928         /*
3929          * Check sectorsize and nodesize first, other check will need it.
3930          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3931          */
3932         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3933             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3934                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3935                 ret = -EINVAL;
3936         }
3937         /* Only PAGE SIZE is supported yet */
3938         if (sectorsize != PAGE_SIZE) {
3939                 btrfs_err(fs_info,
3940                         "sectorsize %llu not supported yet, only support %lu",
3941                         sectorsize, PAGE_SIZE);
3942                 ret = -EINVAL;
3943         }
3944         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3945             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3946                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3947                 ret = -EINVAL;
3948         }
3949         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3950                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3951                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3952                 ret = -EINVAL;
3953         }
3954
3955         /* Root alignment check */
3956         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3957                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3958                            btrfs_super_root(sb));
3959                 ret = -EINVAL;
3960         }
3961         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3962                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3963                            btrfs_super_chunk_root(sb));
3964                 ret = -EINVAL;
3965         }
3966         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3967                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3968                            btrfs_super_log_root(sb));
3969                 ret = -EINVAL;
3970         }
3971
3972         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3973                 btrfs_err(fs_info,
3974                            "dev_item UUID does not match fsid: %pU != %pU",
3975                            fs_info->fsid, sb->dev_item.fsid);
3976                 ret = -EINVAL;
3977         }
3978
3979         /*
3980          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3981          * done later
3982          */
3983         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3984                 btrfs_err(fs_info, "bytes_used is too small %llu",
3985                           btrfs_super_bytes_used(sb));
3986                 ret = -EINVAL;
3987         }
3988         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3989                 btrfs_err(fs_info, "invalid stripesize %u",
3990                           btrfs_super_stripesize(sb));
3991                 ret = -EINVAL;
3992         }
3993         if (btrfs_super_num_devices(sb) > (1UL << 31))
3994                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
3995                            btrfs_super_num_devices(sb));
3996         if (btrfs_super_num_devices(sb) == 0) {
3997                 btrfs_err(fs_info, "number of devices is 0");
3998                 ret = -EINVAL;
3999         }
4000
4001         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4002                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4003                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4004                 ret = -EINVAL;
4005         }
4006
4007         /*
4008          * Obvious sys_chunk_array corruptions, it must hold at least one key
4009          * and one chunk
4010          */
4011         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4012                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4013                           btrfs_super_sys_array_size(sb),
4014                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4015                 ret = -EINVAL;
4016         }
4017         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4018                         + sizeof(struct btrfs_chunk)) {
4019                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4020                           btrfs_super_sys_array_size(sb),
4021                           sizeof(struct btrfs_disk_key)
4022                           + sizeof(struct btrfs_chunk));
4023                 ret = -EINVAL;
4024         }
4025
4026         /*
4027          * The generation is a global counter, we'll trust it more than the others
4028          * but it's still possible that it's the one that's wrong.
4029          */
4030         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4031                 btrfs_warn(fs_info,
4032                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4033                         btrfs_super_generation(sb),
4034                         btrfs_super_chunk_root_generation(sb));
4035         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4036             && btrfs_super_cache_generation(sb) != (u64)-1)
4037                 btrfs_warn(fs_info,
4038                         "suspicious: generation < cache_generation: %llu < %llu",
4039                         btrfs_super_generation(sb),
4040                         btrfs_super_cache_generation(sb));
4041
4042         return ret;
4043 }
4044
4045 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4046 {
4047         mutex_lock(&fs_info->cleaner_mutex);
4048         btrfs_run_delayed_iputs(fs_info);
4049         mutex_unlock(&fs_info->cleaner_mutex);
4050
4051         down_write(&fs_info->cleanup_work_sem);
4052         up_write(&fs_info->cleanup_work_sem);
4053
4054         /* cleanup FS via transaction */
4055         btrfs_cleanup_transaction(fs_info);
4056 }
4057
4058 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4059 {
4060         struct btrfs_ordered_extent *ordered;
4061
4062         spin_lock(&root->ordered_extent_lock);
4063         /*
4064          * This will just short circuit the ordered completion stuff which will
4065          * make sure the ordered extent gets properly cleaned up.
4066          */
4067         list_for_each_entry(ordered, &root->ordered_extents,
4068                             root_extent_list)
4069                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4070         spin_unlock(&root->ordered_extent_lock);
4071 }
4072
4073 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4074 {
4075         struct btrfs_root *root;
4076         struct list_head splice;
4077
4078         INIT_LIST_HEAD(&splice);
4079
4080         spin_lock(&fs_info->ordered_root_lock);
4081         list_splice_init(&fs_info->ordered_roots, &splice);
4082         while (!list_empty(&splice)) {
4083                 root = list_first_entry(&splice, struct btrfs_root,
4084                                         ordered_root);
4085                 list_move_tail(&root->ordered_root,
4086                                &fs_info->ordered_roots);
4087
4088                 spin_unlock(&fs_info->ordered_root_lock);
4089                 btrfs_destroy_ordered_extents(root);
4090
4091                 cond_resched();
4092                 spin_lock(&fs_info->ordered_root_lock);
4093         }
4094         spin_unlock(&fs_info->ordered_root_lock);
4095 }
4096
4097 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4098                                       struct btrfs_fs_info *fs_info)
4099 {
4100         struct rb_node *node;
4101         struct btrfs_delayed_ref_root *delayed_refs;
4102         struct btrfs_delayed_ref_node *ref;
4103         int ret = 0;
4104
4105         delayed_refs = &trans->delayed_refs;
4106
4107         spin_lock(&delayed_refs->lock);
4108         if (atomic_read(&delayed_refs->num_entries) == 0) {
4109                 spin_unlock(&delayed_refs->lock);
4110                 btrfs_info(fs_info, "delayed_refs has NO entry");
4111                 return ret;
4112         }
4113
4114         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4115                 struct btrfs_delayed_ref_head *head;
4116                 struct rb_node *n;
4117                 bool pin_bytes = false;
4118
4119                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4120                                 href_node);
4121                 if (!mutex_trylock(&head->mutex)) {
4122                         refcount_inc(&head->refs);
4123                         spin_unlock(&delayed_refs->lock);
4124
4125                         mutex_lock(&head->mutex);
4126                         mutex_unlock(&head->mutex);
4127                         btrfs_put_delayed_ref_head(head);
4128                         spin_lock(&delayed_refs->lock);
4129                         continue;
4130                 }
4131                 spin_lock(&head->lock);
4132                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4133                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4134                                        ref_node);
4135                         ref->in_tree = 0;
4136                         rb_erase(&ref->ref_node, &head->ref_tree);
4137                         RB_CLEAR_NODE(&ref->ref_node);
4138                         if (!list_empty(&ref->add_list))
4139                                 list_del(&ref->add_list);
4140                         atomic_dec(&delayed_refs->num_entries);
4141                         btrfs_put_delayed_ref(ref);
4142                 }
4143                 if (head->must_insert_reserved)
4144                         pin_bytes = true;
4145                 btrfs_free_delayed_extent_op(head->extent_op);
4146                 delayed_refs->num_heads--;
4147                 if (head->processing == 0)
4148                         delayed_refs->num_heads_ready--;
4149                 atomic_dec(&delayed_refs->num_entries);
4150                 rb_erase(&head->href_node, &delayed_refs->href_root);
4151                 RB_CLEAR_NODE(&head->href_node);
4152                 spin_unlock(&head->lock);
4153                 spin_unlock(&delayed_refs->lock);
4154                 mutex_unlock(&head->mutex);
4155
4156                 if (pin_bytes)
4157                         btrfs_pin_extent(fs_info, head->bytenr,
4158                                          head->num_bytes, 1);
4159                 btrfs_put_delayed_ref_head(head);
4160                 cond_resched();
4161                 spin_lock(&delayed_refs->lock);
4162         }
4163
4164         spin_unlock(&delayed_refs->lock);
4165
4166         return ret;
4167 }
4168
4169 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4170 {
4171         struct btrfs_inode *btrfs_inode;
4172         struct list_head splice;
4173
4174         INIT_LIST_HEAD(&splice);
4175
4176         spin_lock(&root->delalloc_lock);
4177         list_splice_init(&root->delalloc_inodes, &splice);
4178
4179         while (!list_empty(&splice)) {
4180                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4181                                                delalloc_inodes);
4182
4183                 list_del_init(&btrfs_inode->delalloc_inodes);
4184                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4185                           &btrfs_inode->runtime_flags);
4186                 spin_unlock(&root->delalloc_lock);
4187
4188                 btrfs_invalidate_inodes(btrfs_inode->root);
4189
4190                 spin_lock(&root->delalloc_lock);
4191         }
4192
4193         spin_unlock(&root->delalloc_lock);
4194 }
4195
4196 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4197 {
4198         struct btrfs_root *root;
4199         struct list_head splice;
4200
4201         INIT_LIST_HEAD(&splice);
4202
4203         spin_lock(&fs_info->delalloc_root_lock);
4204         list_splice_init(&fs_info->delalloc_roots, &splice);
4205         while (!list_empty(&splice)) {
4206                 root = list_first_entry(&splice, struct btrfs_root,
4207                                          delalloc_root);
4208                 list_del_init(&root->delalloc_root);
4209                 root = btrfs_grab_fs_root(root);
4210                 BUG_ON(!root);
4211                 spin_unlock(&fs_info->delalloc_root_lock);
4212
4213                 btrfs_destroy_delalloc_inodes(root);
4214                 btrfs_put_fs_root(root);
4215
4216                 spin_lock(&fs_info->delalloc_root_lock);
4217         }
4218         spin_unlock(&fs_info->delalloc_root_lock);
4219 }
4220
4221 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4222                                         struct extent_io_tree *dirty_pages,
4223                                         int mark)
4224 {
4225         int ret;
4226         struct extent_buffer *eb;
4227         u64 start = 0;
4228         u64 end;
4229
4230         while (1) {
4231                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4232                                             mark, NULL);
4233                 if (ret)
4234                         break;
4235
4236                 clear_extent_bits(dirty_pages, start, end, mark);
4237                 while (start <= end) {
4238                         eb = find_extent_buffer(fs_info, start);
4239                         start += fs_info->nodesize;
4240                         if (!eb)
4241                                 continue;
4242                         wait_on_extent_buffer_writeback(eb);
4243
4244                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4245                                                &eb->bflags))
4246                                 clear_extent_buffer_dirty(eb);
4247                         free_extent_buffer_stale(eb);
4248                 }
4249         }
4250
4251         return ret;
4252 }
4253
4254 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4255                                        struct extent_io_tree *pinned_extents)
4256 {
4257         struct extent_io_tree *unpin;
4258         u64 start;
4259         u64 end;
4260         int ret;
4261         bool loop = true;
4262
4263         unpin = pinned_extents;
4264 again:
4265         while (1) {
4266                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4267                                             EXTENT_DIRTY, NULL);
4268                 if (ret)
4269                         break;
4270
4271                 clear_extent_dirty(unpin, start, end);
4272                 btrfs_error_unpin_extent_range(fs_info, start, end);
4273                 cond_resched();
4274         }
4275
4276         if (loop) {
4277                 if (unpin == &fs_info->freed_extents[0])
4278                         unpin = &fs_info->freed_extents[1];
4279                 else
4280                         unpin = &fs_info->freed_extents[0];
4281                 loop = false;
4282                 goto again;
4283         }
4284
4285         return 0;
4286 }
4287
4288 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4289 {
4290         struct inode *inode;
4291
4292         inode = cache->io_ctl.inode;
4293         if (inode) {
4294                 invalidate_inode_pages2(inode->i_mapping);
4295                 BTRFS_I(inode)->generation = 0;
4296                 cache->io_ctl.inode = NULL;
4297                 iput(inode);
4298         }
4299         btrfs_put_block_group(cache);
4300 }
4301
4302 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4303                              struct btrfs_fs_info *fs_info)
4304 {
4305         struct btrfs_block_group_cache *cache;
4306
4307         spin_lock(&cur_trans->dirty_bgs_lock);
4308         while (!list_empty(&cur_trans->dirty_bgs)) {
4309                 cache = list_first_entry(&cur_trans->dirty_bgs,
4310                                          struct btrfs_block_group_cache,
4311                                          dirty_list);
4312                 if (!cache) {
4313                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4314                         spin_unlock(&cur_trans->dirty_bgs_lock);
4315                         return;
4316                 }
4317
4318                 if (!list_empty(&cache->io_list)) {
4319                         spin_unlock(&cur_trans->dirty_bgs_lock);
4320                         list_del_init(&cache->io_list);
4321                         btrfs_cleanup_bg_io(cache);
4322                         spin_lock(&cur_trans->dirty_bgs_lock);
4323                 }
4324
4325                 list_del_init(&cache->dirty_list);
4326                 spin_lock(&cache->lock);
4327                 cache->disk_cache_state = BTRFS_DC_ERROR;
4328                 spin_unlock(&cache->lock);
4329
4330                 spin_unlock(&cur_trans->dirty_bgs_lock);
4331                 btrfs_put_block_group(cache);
4332                 spin_lock(&cur_trans->dirty_bgs_lock);
4333         }
4334         spin_unlock(&cur_trans->dirty_bgs_lock);
4335
4336         while (!list_empty(&cur_trans->io_bgs)) {
4337                 cache = list_first_entry(&cur_trans->io_bgs,
4338                                          struct btrfs_block_group_cache,
4339                                          io_list);
4340                 if (!cache) {
4341                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4342                         return;
4343                 }
4344
4345                 list_del_init(&cache->io_list);
4346                 spin_lock(&cache->lock);
4347                 cache->disk_cache_state = BTRFS_DC_ERROR;
4348                 spin_unlock(&cache->lock);
4349                 btrfs_cleanup_bg_io(cache);
4350         }
4351 }
4352
4353 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4354                                    struct btrfs_fs_info *fs_info)
4355 {
4356         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4357         ASSERT(list_empty(&cur_trans->dirty_bgs));
4358         ASSERT(list_empty(&cur_trans->io_bgs));
4359
4360         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4361
4362         cur_trans->state = TRANS_STATE_COMMIT_START;
4363         wake_up(&fs_info->transaction_blocked_wait);
4364
4365         cur_trans->state = TRANS_STATE_UNBLOCKED;
4366         wake_up(&fs_info->transaction_wait);
4367
4368         btrfs_destroy_delayed_inodes(fs_info);
4369         btrfs_assert_delayed_root_empty(fs_info);
4370
4371         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4372                                      EXTENT_DIRTY);
4373         btrfs_destroy_pinned_extent(fs_info,
4374                                     fs_info->pinned_extents);
4375
4376         cur_trans->state =TRANS_STATE_COMPLETED;
4377         wake_up(&cur_trans->commit_wait);
4378 }
4379
4380 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4381 {
4382         struct btrfs_transaction *t;
4383
4384         mutex_lock(&fs_info->transaction_kthread_mutex);
4385
4386         spin_lock(&fs_info->trans_lock);
4387         while (!list_empty(&fs_info->trans_list)) {
4388                 t = list_first_entry(&fs_info->trans_list,
4389                                      struct btrfs_transaction, list);
4390                 if (t->state >= TRANS_STATE_COMMIT_START) {
4391                         refcount_inc(&t->use_count);
4392                         spin_unlock(&fs_info->trans_lock);
4393                         btrfs_wait_for_commit(fs_info, t->transid);
4394                         btrfs_put_transaction(t);
4395                         spin_lock(&fs_info->trans_lock);
4396                         continue;
4397                 }
4398                 if (t == fs_info->running_transaction) {
4399                         t->state = TRANS_STATE_COMMIT_DOING;
4400                         spin_unlock(&fs_info->trans_lock);
4401                         /*
4402                          * We wait for 0 num_writers since we don't hold a trans
4403                          * handle open currently for this transaction.
4404                          */
4405                         wait_event(t->writer_wait,
4406                                    atomic_read(&t->num_writers) == 0);
4407                 } else {
4408                         spin_unlock(&fs_info->trans_lock);
4409                 }
4410                 btrfs_cleanup_one_transaction(t, fs_info);
4411
4412                 spin_lock(&fs_info->trans_lock);
4413                 if (t == fs_info->running_transaction)
4414                         fs_info->running_transaction = NULL;
4415                 list_del_init(&t->list);
4416                 spin_unlock(&fs_info->trans_lock);
4417
4418                 btrfs_put_transaction(t);
4419                 trace_btrfs_transaction_commit(fs_info->tree_root);
4420                 spin_lock(&fs_info->trans_lock);
4421         }
4422         spin_unlock(&fs_info->trans_lock);
4423         btrfs_destroy_all_ordered_extents(fs_info);
4424         btrfs_destroy_delayed_inodes(fs_info);
4425         btrfs_assert_delayed_root_empty(fs_info);
4426         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4427         btrfs_destroy_all_delalloc_inodes(fs_info);
4428         mutex_unlock(&fs_info->transaction_kthread_mutex);
4429
4430         return 0;
4431 }
4432
4433 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4434 {
4435         struct inode *inode = private_data;
4436         return btrfs_sb(inode->i_sb);
4437 }
4438
4439 static const struct extent_io_ops btree_extent_io_ops = {
4440         /* mandatory callbacks */
4441         .submit_bio_hook = btree_submit_bio_hook,
4442         .readpage_end_io_hook = btree_readpage_end_io_hook,
4443         /* note we're sharing with inode.c for the merge bio hook */
4444         .merge_bio_hook = btrfs_merge_bio_hook,
4445         .readpage_io_failed_hook = btree_io_failed_hook,
4446         .set_range_writeback = btrfs_set_range_writeback,
4447         .tree_fs_info = btree_fs_info,
4448
4449         /* optional callbacks */
4450 };